WO2002027003A1 - Isomalt produzierende transgene pflanze - Google Patents

Isomalt produzierende transgene pflanze Download PDF

Info

Publication number
WO2002027003A1
WO2002027003A1 PCT/EP2001/008055 EP0108055W WO0227003A1 WO 2002027003 A1 WO2002027003 A1 WO 2002027003A1 EP 0108055 W EP0108055 W EP 0108055W WO 0227003 A1 WO0227003 A1 WO 0227003A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleotide sequence
activity
transgenic plant
dehydrogenase
coding
Prior art date
Application number
PCT/EP2001/008055
Other languages
English (en)
French (fr)
Inventor
Markwart Kunz
Ralf Mattes
Mohammad Munir
Manfred Vogel
Original Assignee
Südzucker Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Südzucker Aktiengesellschaft filed Critical Südzucker Aktiengesellschaft
Priority to EP01954033A priority Critical patent/EP1322772A1/de
Priority to CA002421618A priority patent/CA2421618A1/en
Priority to AU2001276398A priority patent/AU2001276398B2/en
Priority to US10/380,529 priority patent/US20040064851A1/en
Priority to IL15481901A priority patent/IL154819A0/xx
Priority to AU7639801A priority patent/AU7639801A/xx
Priority to JP2002530766A priority patent/JP2004522420A/ja
Publication of WO2002027003A1 publication Critical patent/WO2002027003A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis

Definitions

  • the present invention relates to a transgenic plant which can produce isomaltulose, a transgenic plant which can produce 6-O- ⁇ -D-glucopyranosyl-D-sorbitol (hereinafter 1,6-GPS), a transgenic plant which O- ⁇ -D-glucopyranosyl-D-mannitol (hereinafter 1,1-GP), a transgenic plant that can produce a mixture of 1,6-GPS and 1,1-GPM, propagation and harvesting material for this Plants and methods for producing these transgenic plants.
  • 1,6-GPS 6-O- ⁇ -D-glucopyranosyl-D-sorbitol
  • 1,1-GP O- ⁇ -D-glucopyranosyl-D-mannitol
  • sucrose isomerases e.g. from the microorganisms Protaminobacter rubrum and Erwinia rhapontici
  • sucrose isomerases which isomerize the glycosidic bond between the monosaccharide units of sucrose and can thereby catalyze the conversion of sucrose to isomaltulose and trehalulose.
  • the DNA sequences coding for sucrose isomerase and cells transformed therewith are described.
  • Palatinit® also called isomalt or hydrogenated isomaltulose
  • isomalt or hydrogenated isomaltulose an almost equimolar mixture of 1,6-GPS and 1,1-GPM, as well as its individual components 1,1-GPM and 1,6-GPS from sucrose known that an enzymatic conversion of sucrose to isomaltulose followed by chemical hydrogenation of the isomaltulose obtained to give the two stereoisomers 1,6-GPS and 1,1-GPM.
  • Schiweck discloses a process for obtaining Palatinit®, the process comprising the enzymatic conversion of sucrose to isomaltulose and the subsequent hydrogenation of the isolated isomaltulose on Raney nickel catalysts .
  • the conversion of sucrose to isomaltulose takes place by means of the protaminobacter rubrum microorganism, and the isomaltulose obtained in this way is converted to 1,6-GPS and 1,1-GPM by hydrogenation in the presence of Raney nickel catalysts and then enriched by evaporation and cooling crystallization processes.
  • EP 0 625 578 B1 describes processes for the production of sugar-alcohol mixtures containing 1,1-GPM and 1,6-GPS, in which sucrose is first enzymatically converted into a mixture containing isomaltulose and trehalulose and the product obtained is catalytic is hydrogenated to a mixture containing 1,1-GPM, 1,6-GPS and 1-O- ⁇ -D-glucopyranosyl-D-sorbitol (1,1-GPS).
  • DE 195 23 008 AI discloses a process for the preparation of mixtures of 1,1-GPM and 1,6-GPS which involves the hydrogenation of isomaltulose at pressures below 50 atmospheres using ruthenium, nickel or mixtures thereof containing catalysts.
  • DE 197 01 439 A1 discloses processes for the hydrogenation of isomaltulose using a supported nickel catalyst, mixtures of 1,6-GPS and 1,1-GPM being obtained.
  • DE 197 05 664 AI discloses processes for the preparation of 1,6-GPS or 1,1-GPM-enriched mixtures of hydrogenated isomaltulose.
  • a method described in this document comprises the preparation of 1,6-GPS- and / or 1,1-GPM-enriched mixtures ' of hydrogenated isomaltulose or of mixtures containing hydrogenated isomaltulose.
  • 1,6-GPS can be produced in pure form using this method.
  • a mannitol dehydrogenase has been isolated from a microorganism of the genus Pseudomonas (Brünker et al., Biochimica et Biophysica Acta, 1351 (1997), 157-167), which can convert isomaltulose to 1,1-GPM.
  • the state-of-the-art processes are considered disadvantageous with regard to the production of Palatinit®, its individual components and precursors, primarily for the following reasons.
  • sucrose as a starting material by means of physico-chemical processes from, for example, sugar beets and to purify it for the subsequent process steps.
  • the further processing of sucrose to 1,6-GPS and / or 1,1-GPM then comprises further complicated process sequences, with different physical, chemical and / or biological processes having to be used in different reactors.
  • 1,6-GPS In order to obtain 1,6-GPS from sucrose in a targeted manner, for example, at least two separate enzymatic reactions are required, in the course of which time-consuming purification steps generally have to be carried out. The same applies to the production of 1,1-GPM and isomalt.
  • a chemical hydrogenation using catalysts, special hydrogenation reactors and technical hydrogen as well as subsequent separation steps for the isolation of 1,1-GPM from the previously obtained mixture from 1 , 1-GPM and 1,6-GPS can be performed.
  • the technical problem on which the present invention is based is therefore to provide methods and means for carrying them out which enable simple, inexpensive and selective extraction of isomaltulose and its hydrogenation products, in particular 1,6-GPS, from 1,1- Allow GPM or mixtures of these.
  • the present invention solves this technical problem by providing transgenic plants, in particular transgenic potatoes or transgenic sugar beets, which can produce isomaltulose in at least one of their cells from sucrose formed in the plant.
  • the invention relates to a plant outlined above which, in addition to its ability to produce isomaltulose from sucrose formed therein, also has the ability to produce 1,6-GPS and / or 1,1-GPM from this isomaltulose.
  • Such a plant surprisingly and advantageously provides an in vivo system for the production of. Palatinit®, its individual components, and the precursor isomaltulose, which allows the desired end products to be produced immediately at the point where the educt, ie sucrose, is formed. Complex insulation, purification and / or hydrogenation processes are avoided here. In addition, no toxic substances are used.
  • the invention also solves the problem on which it is based by providing processes for the production of the abovementioned plants.
  • a preferred embodiment of the present invention thus relates to a transgenic plant, in particular a transgenic sugar beet or potato, which is capable of producing isomaltulose from sucrose in at least one of its cells.
  • a transgenic plant in particular a transgenic sugar beet or potato, which is capable of producing isomaltulose from sucrose in at least one of its cells.
  • Such a plant provides a valuable raw material for the production of Palatinit®, which can be obtained, for example, after isolation of the isomaltulose from the plant by chemical hydrogenation, which of course also has a 1: 1 ratio of 1,1-GPM 1.6-GPS different mixtures from 1.1-GPM to 1.6-GPS can be produced.
  • Such a plant can also be made the starting point for further genetic engineering manipulations, which ultimately leads to the production of a complete metabolic pathway from sucrose to Palatinit® or its individual components.
  • a transgenic plant which can produce isomaltulose from sucrose formed in the plant is understood to mean a plant which contains a nucleotide sequence which is stably integrated and can be expressed therein and which codes for the activity of a sucrose isomerase.
  • a sucrose isomerase catalyzes the isomerization of sucrose to isomaltulose, the ⁇ 1-> ⁇ 2 glycosidic bond between glucose and fructose in the sucrose in another glycosidic bond, in particular in an ⁇ l-> ⁇ 6 bond is transferred.
  • Nucleotide sequences which are suitable according to the invention and which encode the activity of a sucrose isomerase are known, inter alia, from microorganisms of the genus Protaminobacter, Erwinia, Serratia, Leuconostoc, Pseudomonas, Agrobacterium or Klebsieila.
  • DE 44 14 185 Cl discloses the isolation and cloning of nucleotide sequences coding for sucrose isomerase from the microorganisms Protaminobacter rubrum and Erwinia rhapontici, the document mentioned being fully incorporated in the disclosure of the present teaching with regard to the description and provision of the DNA sequences protection being sought for these DNA sequences in the context of the invention.
  • a particularly preferred embodiment of the present invention relates to a transgenic plant, in particular a transgenic sugar beet or potato, which can produce isomaltulose from sucrose and from the isomaltulose 1,6-GPS formed in this way in at least one of its cells.
  • a transgenic plant which can generate 1,6-GPS from the isomaltulose formed is a plant which contains a nucleotide sequence which is stably integrated and can be expressed therein, and which contains the activity of a sucrose isomerase encoded, and thus can produce isomaltulose from sucrose, and which also contains a stably integrated and expressible nucleotide sequence which encodes the activity of a sorbitol dehydrogenase. Sorbitol dehydrogenase activity specifically reduces isomaltulose to 1.6 GPS.
  • German patent application DE 199 63 126.3 discloses a sorbitol dehydrogenase from the microorganism Glucobacteracter suboxidans which is suitable according to the invention, the document mentioned being fully incorporated into the disclosure content of the present teaching with regard to the description and provision of the DNA sequence and for this DNA sequence is sought after in the context of the invention.
  • transgenic plant in particular a transgenic sugar beet or potato, which can produce isomaltulose in at least one of its cells from the sucrose formed in the plant and from the isomaltulose 1,1-GPM thus formed.
  • a transplanted plant which can produce 1,1-GPM from the isomaltulose formed is a plant which contains a nucleotide sequence which is stably integrated and can be expressed therein, and which contains the activity of a sucrose isomerase encoded, and thus can form isomaltulose from sucrose, and which also contains a stably integrated and expressible nucleotide sequence which encodes the activity of a mannitol dehydrogenase. Mannitol dehydrogenase activity specifically reduces isomaltulose to 1,1-GPM. Brunker et al.
  • transgenic plant in particular a transgenic sugar beet or potato, which in at least one of its cells isomaltulose from the sucrose formed in the plant and a mixture of 1,6-GPS and 1 from the isomaltulose thus formed, Can generate 1-GPM, for example a 1: 1 mixture.
  • a transgenic plant which can generate 1,6-GPS and 1,1-GPM from the isomaltulose formed is understood to mean a plant which contains a nucleotide sequence which is stably integrated and can be expressed therein and which has the activity of a sucrose -Isomerase, and thus can form isomaltulose from sucrose and which also contains either a stably integrated and expressible nucleotide sequence which encodes the activity of a sorbitol dehydrogenase and a stably integrated and expressible nucleotide sequence which encodes the activity of a mannitol dehydrogenase , or contains a stably integrated and expressible nucleotide sequence which encodes the activity of a non-specifically hydrogenating polyolde hydrogenase.
  • Another embodiment of the present invention relates to a transgenic plant, in particular a sugar beet or potato which contains in at least one of its cells a stably integrated and expressible nucleotide sequence which encodes the activity of a sorbitol dehydrogenase.
  • the present invention provides a transgenic plant, in particular a sugar beet, which contains, in at least one of its cells, a stably integrated and expressible nucleotide sequence which codes for the activity of a mannitol dehydrogenase.
  • the two aforementioned plants are advantageous in that they allow the enzymes sorbitol dehydrogenase and mannitol dehydrogenase to be provided.
  • the plants mentioned can serve as starting material for the production of transgenic plants which produce Palatinit® from sucrose, nucleotide sequences coding for sucrose isomerase having to be introduced into the plants mentioned.
  • transgenic plants can be plants of the most diverse types, genera, families, orders and classes, that is to say both _onocotyledonous and dicotyledonous plants, as well as algae, mosses, ferns or gymnospermae.
  • Transgenic plants can also include calli, plant cell cultures, as well as parts, organs, tissues, harvesting or propagation materials thereof.
  • the invention provides in particular that the transgenic plant is a useful plant, in particular a useful plant, which is in its storage organ
  • Can produce sucrose for example Sugar cane or sugar beet.
  • the invention also relates to propagation materials and harvest products of the plants according to the invention, for example flowers, fruits, storage organs, beets, stems, seeds, tubers, roots, leaves, rhizomes, seedlings, cuttings etc.
  • the term "in at least one of its cells” means that a transgenic plant contains at least one cell, but preferably a plurality of cells containing one or more stably integrated nucleotide sequences that have the activity of a sucrose Encode isomerase and / or the activity of a sorbitol dehydrogenase and / or the activity of a mannitol dehydrogenase.
  • the cells are preferably cells in which sucrose is formed or stored.
  • a transgenic sugar beet it is therefore preferably cells of the sugar beet storage organ, that is to say cells of the beet, while in the case of a transgenic potato it is preferably cells of the tuber.
  • the nucleotide sequence can preferably be integrated in the cell nucleus but also in the plastid genome or in the mitochondrial genome, and preferably in such a way that it is stably inherited in the next generation.
  • the present invention thus also relates to transgenic cells which contain the nucleotide sequences mentioned above, and to transgenic plants which are derived from such cells.
  • Such cells can be distinguished from naturally occurring cells in that they each contain one or more of the abovementioned coding nucleotide sequences which of course do not occur in these cells, or in that the abovementioned coding nucleotide sequences are integrated at one location in the genome which do not occur naturally, or that the abovementioned coding nucleotide sequences are present in a number other than the natural number of copies.
  • the plants described above differ in the metabolic activities effected according to the invention and the expression of the enzymes mentioned.
  • the invention advantageously provides plants of this type, the vigor, phenotype and / or cultivation conditions being completely identical to those of a wild type plant.
  • stably integrated and expressible nucleotide sequence means that a nucleotide sequence is linked to nucleic acid elements which allow this nucleotide sequence to be stably integrated into the genome of a plant so that the integrated nucleotide sequence is common is replicated with the naturally existing genome components of the plant cell, and is linked to regulatory DNA elements which ensure the transcription of the nucleotide sequence and the subsequent expression of the product encoded by the nucleotide sequence.
  • the coding regions of these nucleotide sequences are linked in a preferred embodiment with regulatory elements.
  • both homologous and heterologous promoters can be used to express the nucleotide sequences mentioned above. These can be promoters which bring about constitutive expression or promoters which are only active in a specific tissue, at a specific time in plant development or only at a time determined by external influences.
  • the above-mentioned nucleotide sequences are linked to a termination sequence, which brings about a correct transcription termination and an attachment of a poly-A tail to the transcript.
  • a termination sequence which brings about a correct transcription termination and an attachment of a poly-A tail to the transcript.
  • the expression of the nucleotide sequences coding for the enzymatic activities is achieved in that these nucleotide sequences are expressed in at least one plant cell under the control of tissue or organ-specific, in particular storage organ-specific promoters.
  • Tissue-specific promoters for expressing the nucleotide sequences coding for the enzymatic activities in seed tissue are, for example, the Vicilin promoter from Pisum sativum (Newbigin et al., Pla.nta, 180 (1990), 461-470).
  • the invention provides for the expression of the aforementioned nucleotide sequences in the epidermis and the parenchy of so-called sink organs, for example the Arabidopsis promoter AtAAPl (expression in endosperm and during early embryonic development) or AtAAP2 (expression in Phloem des Funiculus) (Hirner et al., Plant J., 14 (1998), 535-544).
  • sink organs for example the Arabidopsis promoter AtAAPl (expression in endosperm and during early embryonic development) or AtAAP2 (expression in Phloem des Funiculus) (Hirner et al., Plant J., 14 (1998), 535-544).
  • nucleotide sequences coding for the enzymatic activities in the plant organs which store large amounts of sucrose.
  • these include, for example, the beet of the sugar beet, the stem from the sugar cane or the tuber of the AGPase antisense line 93 of the potato, the so-called “sucrose potato” (Müller-Röber et al., Mol. Gen.
  • constitutively expressing promoters such as the CaMV 35S promoter, the control cell-specific rolC promoter from Agrobacterium or the Enhanced PMA4 promoter (Morian et al., Plant J., 19 (1999), 31-41) to use.
  • the invention relates to transgenic plants in which the nucleotide sequences encoding the enzymatic activities are fused in frame to a signal sequence which codes a signal peptide for incorporating the gene products having the enzymatic activities into the endoplasmic reticulum of a eukaryotic cell.
  • the invention therefore provides that the nucleotide sequences can be provided with signal sequences which allow the gene products to be localized in certain compartments of the cell.
  • signal sequences that encode signal peptides that lead to the uptake of proteins in the endoplasmic reticulum and that can be demonstrated by the fact that they can be detected in the precursor proteins but not in processed, mature proteins are particularly suitable.
  • the signal peptides are proteolytically removed during the uptake into the endoplasmic reticulum.
  • a signal peptide such as the shortened N-terminal sequence of the proteinase inhibitor PI II from potato (Keil et al., Nucl. Acids Res., 14 (1986), 5641-5650; Schaewen et al., EMBO Journal, 9 (1990), 3033-3044), whereby an uptake of the gene product into the endoplasmic reticulum with subsequent secretion into the apoplastic space is achieved.
  • other signal sequences can also be used according to the invention.
  • the invention provides that the nucleotide sequences encoding the enzymatic activities are fused to a signal sequence which encodes a signal peptide for inclusion in the endoplasmic reticulum of a eukaryotic cell, in particular a plant cell, and for transmission to the vacuole.
  • a signal sequence which encodes a signal peptide for inclusion in the endoplasmic reticulum of a eukaryotic cell, in particular a plant cell, and for transmission to the vacuole.
  • Vacuolar localization of the gene products is particularly advantageous.
  • signal peptides can be used for the vacuolar localization of lectin from barley (Raikhel and Lerner, Dev.
  • a signal sequence of the patatin B33 gene to locate the gene products in the vacuole, in particular a signal sequence which codes the 23 amino-terminal amino acids of the propeptide (Rosahl et al., Mol. Gen. Genet ., 203 (1986), 214-220), that is to say nucleotides 736 to 804.
  • This sequence can be obtained both as a fragment from the genomic DNA of the potato and from the cDNA of the B33 gene.
  • the fusion of the extended B33 signal sequence with the coding nucleotide sequences leads to the uptake of their gene products into the vacuole.
  • the enzymatic nucleotide sequences encoding activities are not fused to a signal sequence, so that the expressed gene products in the. Cytosol remain.
  • the invention also relates to processes for the production of the aforementioned transgenic plants, comprising the transformation of one or more plant cells with a vector, in particular a plasmid, which has one or more nucleotide sequence (s) selected from the group consisting of the activity of a sucrose -Isomerase-encoding nucleotide sequence, a nucleotide sequence encoding the activity of a sorbitol dehydrogenase and a nucleotide sequence encoding the activity of a mannitol dehydrogenase, the integration of the encoding nucleotide sequence (s) contained in this vector or plasmid into the genome of the transformed cell (s ), optionally including its signal sequences and / or regulatory elements and the regeneration of the plant cell (s) to intact, fertile transformed plants that produce sorbitol dehydrogenase, mannitol dehydrogenase and / or sucrose isomerase.
  • a vector in particular a plasm
  • Vectors are in principle plasmids, cosmids, viruses, bacteriophages, shuttle vectors and other vectors commonly used in genetic engineering. tors. Vectors can also have other functional units that stabilize the vector in a host organism and / or enable its replication. Vectors can also contain regulatory elements with which the nucleotide sequence contained is functionally linked and which allow expression of the nucleotide sequence in a host organism. Such regulatory units can be promoters, enhancers, operators and / or transcription termination signals. Vectors also often contain marker genes that allow selection of the host organisms containing them, such as antibiotic resistance genes.
  • Methods for introducing DNA into plant cells include transformations of plant cells with T-DNA using Agrobacterium tumefaciens or Agrobacterium rhizogenes as transformation agents, protoplast fusion, microinjection, the electroporation of DNA, the introduction of DNA using the biolistic method and More options.
  • Agrobacterium tumefaciens or Agrobacterium rhizogenes as transformation agents
  • protoplast fusion protoplast fusion
  • microinjection the electroporation of DNA
  • electroporation of DNA the introduction of DNA using the biolistic method and More options.
  • Simple plasmids such as pUC derivatives, can be used. However, if whole plants are to be regenerated from such transformed cells, a selectable marker should be present.
  • the vector may require the vector to contain additional DNA sequences. If, for example, the Ti or Ri plasmid is used to transform plant cells, it is necessary that at least the right border sequence, but often the right and left border sequence of the Ti and Ri plasmid T-DNA as the flank region with the genes to be introduced is connected. If Agrobacterium is used for the transformation, the DNA to be introduced must be cloned into special plasmids, either in an intermediate vector or in a binary vector. Due to sequences that are homologous to sequences in the T-DNA, intermediate vectors can be integrated into the Ti or Ri plasmid of agrobacteria by homologous recombination.
  • Intermediate vectors cannot replicate in Agrobacteria.
  • the intermediate vector can be transferred to Agrobacterium tumefaciens using a helper plasmid.
  • binary vectors can replicate in both E. coli and Agrobacteria. They contain a gene for a selection marker and a linker or polylinker, which is framed by the right and left T-DNA border region.
  • Binary vectors can be transformed directly into Agrobacteria (Holsters et al., Mol. Gen. Genet., 163 (1978), 181-187).
  • the Agrobacterium serving as the host cell is said to contain a plasmid which carries a vir region.
  • This vir region is necessary for the transfer of the T-DNA into the plant cell.
  • the Agrobacterium transformed in this way becomes the transformation of plant cells used.
  • the use of T-DNA for the transformation of plant cells is described, inter alia, in EP-A-120 516; Hoekema: The Binary Plant Vector System, Offsetdrukkerej Kanters. BV, Alblasserdam (1985), Chapter V; Fralej et al. , Crit. Rev. Plant. Sci., 4,1-46, and An et al. , EMBO J., 4 (1985), 277-287).
  • plant explants can be cocultivated with Agrobacterium tumefaciens or Agrobacterium rhizogenes.
  • Whole plants can then be regenerated from the infected plant material, such as, for example, leaf pieces, stem sections, roots, but also protoplasts or plant cells cultivated in suspension, in a suitable medium which contains antibiotics or biocides for the selection of transformed cells.
  • a preferred method for transforming beet cells using Agrobacterium tumefaciens is disclosed in EP 0 517 833 B1.
  • Figure 1 is a restriction map of plasmid ⁇ pHWG279.1 that an approximately 1.7 kb
  • Hindlll fragment with the sucrose Contains isomerase coding sequence (smuA *) in vector pBR322,
  • FIG. 2 shows a restriction map of the plasmid pHWG469, which contains the native gene of sorbitol dehydrogenase (sdh) from Gluconobacter suboxidans in the vector pBR322.
  • a series of constructs were produced which each contain in a binary vector a promoter which can be expressed in plants, in each case the nucleotide sequence from Protaminobacter rubrum encoding the sucrose isomerase and in each case the polyadenylation signal of the T-DNA octopine synthase (Gielen et al ., 1984) contained.
  • the coding nucleotide sequence was either fused with the signal sequence of the potato's patatin gene (Rosahl et al., Mol. Gen. Genet., 203 (1986), 214-220), which causes vacuolar localization of the gene product, or without a vacuolar target sequence is used to achieve expression in the cytosol of the respective plant cell.
  • Both the CaMV 35 S promoter and the promoter of the patatin gene B33 of the potato (Rocha-Sosa et al., EMBO J., 8 (1989), 23-29), which can be used for organ-specific expression, were used as the promoter in the tuber of the potato and in the beet the sugar beet.
  • the binary vector pBinB33-Hyg (Becker, Nucl. Acids Res., 18 (1990), 203) is used, which already contains the B33 promoter and the polyadenylation signal and also contains the Hyg resistance gene as a marker.
  • the binary vector pGA492 (An, Plant Physiol., 81 (1986), 86-91) was used, which has a kanamycin resistance gene.
  • Agrobacteria were transformed with the plasmids obtained.
  • the transformed agrobacteria were used either to transform the potato or the sugar beet.
  • the construction of the plasmid UL8-19 is described below, in which the sequence coding for sucrose isomerase is at the 5 'end "in frame" with the signal peptide of the patatin gene and at the 3' end with the polyadenylation signal of the octopine synthase T-DNA is fused and is under the control of the B33 promoter.
  • the signal sequence of the patatin gene was amplified using the PCR method and after cleavage of the Ended with the restriction enzymes Apal and Sall in pBluescriptSK, whereby the plasmid pSK297 was obtained.
  • the plasmid pSK297 was digested with the restriction enzyme Sall, the protruding ends were converted into blunt ends and then ligated with the 1.7 kb fragment of the plasmid pSK279, l, the ends of which had also previously been blunted.
  • the plasmid obtained was designated UL5-19.
  • the transition region between the signal sequence and the nucleotide sequence encoding sucrose isomerase was sequenced to ensure that the transition was correct. It was found that although the transition was correct, the nucleotide sequence of the plasmid pHWG279 encoding sucrose isomerase, 1 contained several sequence errors, including a stop codon. The Hindlll fragment was therefore exchanged for a Hindlll fragment coding for an error-free sucrose isomerase. The resulting plasmid pHWG432.3 was checked for enzymatic activity after transformation in Escherichia coli DH5alpha.
  • the cDNA fused to the signal sequence was isolated by cleaving the plasmid pHWG432.3 with Xbal, smoothing the protruding ends and then cleaving with Asp718.
  • the 2.0 kB fragment obtained in this way was cloned into the binary vector pBinB33-Hyg, which had been cleaved with Sall, the protruding ends were subsequently smoothed, and Asp718 so that directional cloning was possible.
  • the Agrobacterium tumefaciens strain pGV2260 (Deblaere et al., Nucl. Acids Res., 13 (1985), 4777-4788) transformed by means of electroporation.
  • the transformed agrobacteria were used to transform the AGPase antisense line 93 of the potato (so-called “sucrose potato”; Müller-Röber et al., 1990) and the potato wild-type variety Desiree.
  • the transgenic plants 086BK and 096BK received.
  • a series of constructs were produced which each contained in a binary vector a promoter which was expressible in plants, in each case the nucleotide sequence from Glucobacter suboxidans encoding the sorbitol dehydrogenase and in each case the polyadenylation signal of the T-DNA octopine synthase.
  • the coding nucleotide sequence was either fused to the signal sequence of the patatin gene in order to achieve vacuolar localization of the gene product, or for expression of the gene product in the cytosol of the cell without the vacuolar target sequence.
  • the CaMV 35 S promoter or the B33 promoter of the B33 gene of the potato were used as promoters.
  • the binary vector pBinB33-Hyg which already contains the B33 promoter and the polyadenylation signal, was used, and in the case of the sugar beet, the binary vector pGA492.
  • Agrobacteria were transformed with the plasmids obtained. The transformed agrobacteria were used to transform either the potato or the sugar beet.
  • the sequence coding for sorbitol dehydrogenase is “in frame” at the 5 'end with the signal peptide of the patatin gene and at the 3' end with the polyadenylation signal of the octopine Synthase of the T-DNA is fused and is under the control of the B33 promoter.
  • the vector pSK297 (pBluescript with 297 bp of the vacuolar target sequence of the patatin gene) was cleaved with the restriction enzyme EcoRV. From the plasmid pHWG469 (see FIG. 2) (courtesy of Prof.
  • a series of constructs were produced which, in a binary vector, encode the mannitol dehydrogenase-encoding nucleotide sequence from Pseudomonas fluorescens DSM 50106 (Brünker et al., Biochimica et Biophysica Acta, 1351 (1997), 157-167) together with a plant-specific promoter and the polyadenylation signal of T-DNA octopine synthase.
  • the coding nucleotide sequence was either fused to the signal sequence of the patatin gene to achieve vacuolar localization of the gene product or without the vacuolar target sequence to express the gene product in the cytosol of the cell.
  • the CaMV 35 S promoter or the B33 promoter of the B33 gene of the potato were used as promoters.
  • the binary vector pBinB33-Hyg was used, which already contains the B33 promoter and the polyadenylation signal, and in the case of the sugar beet, the binary vector pGA492.
  • Agrobacteria were transformed with the plasmids obtained.
  • the transformed agricultural Bacteria were used to transform either the potato or the sugar beet.
  • the DNA transfer into the agrobacteria was carried out by means of direct transformation according to the Höfgen and Willmitzer method (Nucl. Acids Res., 16 (1988), 9877).
  • the plasmid DNA transformed agrobacteria were isolated by the method of Birnboim and Doly (Nucl. Acids Res., 7 (1979), 1513-1523) and analyzed by electrophoresis after suitable restriction cleavage.
  • the plant transformation was carried out by Agrobacterium tumefaciens (strain pGV2260 in C58C1; Deblaere et al., Nucl. Acids Res., 13 (1985), 4777-4788) after the gene transfer mediated in Dietze et al. , Gene transfer to plants, (1995), 24-29.
  • the transgenic plants were selected on either media containing kanamycin or hygromycin.
  • the calli were removed four to six weeks after their appearance and cultured in 250 ml Erlenmeyer flasks which had been sealed with foil, in 100 ml of liquid MSBL medium.
  • the Erlenmeyer flasks were placed on a rotary shaker at approx Shaken at 200 rpm.
  • a cell suspension was obtained after about two to three weeks.
  • the transformation was carried out with cell suspensions after culturing for about three weeks. 10 ml of fresh MSBL medium were added to 10 ml of suspension medium. The suspension thus diluted was distributed into four petri dishes.
  • the plant cells were infected by adding 50 ⁇ l of each Agrobacterium , tumefaciens strain to one of the petri dishes containing the corresponding beet cells.
  • the beet cells and the bacteria were cultivated in a culture chamber in the dark for three days.
  • the bacteria were then removed from the plant cells by first using MSB1 and 600 mg / 1 cefotaxime and then washed with MSB1 plus 300 mg / 1 cefotaxime.
  • the beet cells thus washed were cultivated in petri dishes on a sheet of sterile Whatman paper, which was on MSBl medium containing kanamycin plus 300 mg / l cefotaxime.
  • the dishes were hermetically sealed with plastic film and incubated in the culture chamber for fifteen days. Three to eight weeks later, white calli appeared on a layer of dead cells.
  • the transformed calli had first been cultivated on MSB1 and cefotaxime or MSB1 and cefotaxime and kanamycin for one month, the transformed calli were further cultivated on MSBL medium.
  • genomic DNA was first isolated from the corresponding tissues (potato tubers or sugar beet storage roots). 30 ng each of genomic DNA was used as template for a polymerase chain reaction (PCR; Saki et al., Science, 239 (1988), 487-491). Gene-specific probes from the 5 'and 3' region of the sucrose isomerase from Protaminobacter rubrum, the sorbitol dehydrogenase from Gluconobacter suboxidans and the mannitol dehydrogenase from Pseudomonas fluorescens served as primers.
  • the reactions were each carried out in a solution with a total volume of 50 ⁇ l, containing 1 ⁇ M of the 3 'and 5 ′ primers, 0.2 mM dNTPs, 1.5 mM MgCl 2 , 50 mM KC1 and 20 mM Tris-HCl, pH 8.4, carried out with 1 U tag polymerase (Gibco-BRL).
  • the PCR approaches were each Subjected to 40 cycles of 1 minute denaturation at 95 ° C, 1 min primer annealing at 65 ° C and 2 5 minutes synthesis at 72 ° C with a 10-minute final synthesis for the chain 'completion ended, the entire reaction.
  • the analysis of the reaction products was carried out by means of gel electrophoresis, the PCR product corresponding to the respective transgene being determined via the fragment size. After subcloning and partial sequencing of the PCR products, the transgenes were clearly identified.
  • sucrose isomerase activity in transformed tissue
  • sucrose isomerase activity in transformed potato tubers was carried out as follows. Potato tubers of transgenic potato plants and the wild-type variety Desiree used as a control were chopped, and 2 to 5 g of the chopped material were homogenized after adding 50 ml of boiling water in an omni-mixer for 2 min and then in a water bath at 95 for 15 min ° C heated. Isomaltulose is detected after centrifugation and dilution of the supernatant using the HPAEC method. The results obtained are shown in Table 1. Table 1: Detection of isomaltulose in transgenic potato plants g isomaltulose / kg fresh weight
  • transgenic sample 1 23.6 transgenic sample 2 14.0 transgenic sample 3 44.8 transgenic sample 4 31.4 transgenic sample 5 38.5

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft eine transgene Pflanze, die Isomaltulose erzeugen kann, eine transgene Pflanze, die 6-O-α-D-Glucopyranosyl-D-sorbit erzeugen kann, eine transgene Pflanze, die 1-O-α-D-Glucopyranosyl-D-mannit erzeugen kann, eine transgene Pflanze, die ein Gemisch aus 1,6-GPS und 1,1-GPM erzeugen kann, Vermehrungs- und Erntematerial dieser Pflanzen sowie Verfahren zur Erzeugung dieser transgenen Pflanzen.

Description

Iso alt produzierende transgene Pflanze
Beschreibung
Die vorliegende Erfindung betrifft eine transgene Pflanze, die Isomaltulose erzeugen kann, eine transgene Pflanze, die 6-O-α-D-Glucopyranosyl-D- sorbit (im Folgenden 1,6-GPS) erzeugen kann, eine transgene Pflanze, die 1-O-α-D-Glucopyranosyl-D- mannit (im Folgenden 1,1-GP ) erzeugen kann, eine transgene Pflanze, die ein Gemisch aus 1,6-GPS und 1,1-GPM erzeugen kann, Vermehrungs- und Erntematerial dieser Pflanzen sowie Verfahren zur Erzeugung dieser transgenen Pflanzen.
Aus der DE 44 14 185 Cl sind Saccharose-Isomerasen (z.B. aus den Mikroorganismen Protaminobacter rubrum und Erwinia rhapontici) bekannt, die die glycosidische Bindung zwischen den Monosacchari- deinheiten von Saccharose isomerisieren und dadurch die Umwandlung von Saccharose zu Isomaltulose und Trehalulose katalysieren können. In dieser Druckschrift werden die die Saccharose-Isomerase codierenden DNA-Sequenzen sowie damit transformierte Zellen beschrieben.
Auch Verfahren zur Herstellung von Palatinit® (auch Isomalt oder hydrierte Isomaltulose genannt) , einem nahezu äquimolarem Gemisch aus 1,6-GPS und 1,1-GPM, sowie seiner Einzelkomponenten 1,1-GPM und 1,6-GPS aus Saccharose sind bekannt, die eine enzy- matische Umwandlung von Saccharose zu Isomaltulose und anschließend eine chemische Hydrierung der erhaltenen Isomaltulose zu den beiden Stereoisomeren 1,6-GPS und 1,1-GPM umfassen. So offenbart Schiweck (alimenta 19 (1980) , 5-16) ein Verfahren zur Gewin- nung von Palatinit®, wobei das Verfahren die enzy- matische Umsetzung von Saccharose zu Isomaltulose und die anschließende Hydrierung der isolierten Isomaltulose an Raney-Nickel-Katalysatoren umfasst. Dabei erfolgt die Umwandlung von Saccharose zu Iso- maltulose mittels des Mikroorganismus Protaminobac- ter rubrum und die auf diesem Weg gewonnene Isomaltulose wird in Gegenwart von Raney-Nickel-Katalysatoren durch Hydrierung zu 1,6-GPS und 1,1-GPM umgewandelt und anschließend mittels Verdampfungs- und Kühlungskristallisationsverfahren angereichert.
In der EP 0 625 578 Bl werden Verfahren zur Gewinnung von 1,1-GPM und 1,6-GPS enthaltenden Zuckeralkoholgemischen beschrieben, bei denen zunächst Saccharose enzymatisch in ein Isomaltulose- und Treha- lulose-haltiges Gemisch umgewandelt und das dabei erhaltene Produkt katalytisch zu einem 1,1-GPM, 1,6-GPS und 1-O-α-D-Glucopyranosyl-D-sorbit (1,1-GPS) enthaltenden Gemisch hydriert wird.
In der DE 195 23 008 AI wird ein Verfahren zur Her- Stellung von Gemischen aus 1,1-GPM und 1,6-GPS offenbart, das die Hydrierung von Isomaltulose bei Drücken von unter 50 Atmosphären unter Verwendung von Ruthenium, Nickel oder deren Mischungen enthaltenden Katalysatoren umfasst. In der DE 197 01 439 AI werden Verfahren zur Hydrierung von Isomaltulose mittels eines trägergebundenen Nickelkatalysators offenbart, wobei Gemische aus 1,6-GPS und 1,1-GPM erhalten werden.
Die DE 197 05 664 AI offenbart Verfahren zur Herstellung von 1,6-GPS- oder 1,1-GPM- angereicherten Gemischen aus hydrierter Isomaltulose. Ein in dieser Druckschrift beschriebenes Verfahren umfasst die Herstellung 1,6-GPS- und/oder 1, 1-GPM-ange- reicherter Gemische ' aus hydrierter Isomaltulose oder aus hydrierter Isomaltulose enthaltenden Gemischen. Mittels Aufkonzentrierung einer 1,6-GPS- angereicherten Mutterlauge unter bestimmten Bedingungen und Kühlungskristallisation kann unter Ver- wendung dieses Verfahrens 1,6-GPS in reiner Form hergestellt werden.
Aus der deutschen Patentanmeldung DE 199 63 126.3 ist eine Sorbit-Dehydrogenase aus einem Mikroorganismus der Gattung Gluconobacter bekannt, mit deren Hilfe Isomaltulose gezielt zu 1, 6-GPS' umgewandelt werden kann.
Schließlich ist aus einem Mikroorganismus der Gattung Pseudomonas eine Mannit-Dehydrogenase isoliert worden (Brünker et al . , Biochimica et Biophysica Acta, 1351 (1997), 157-167), die Isomaltulose zu 1,1-GPM umwandeln kann.
Die Verfahren nach dem Stand der Technik werden hinsichtlich der Gewinnung von Palatinit®, seiner Einzelbestandteile und Vorstufen vor allem aus den folgenden Gründen als nachteilig angesehen. Erstens ist es bei nahezu allen Verfahren .zur Herstellung der genannten Stoffe erforderlich, zunächst Saccharose als Ausgangsstoff mittels physikalisch-chemischer Verfahren aus zum Beispiel Zuckerrüben zu isolieren und für die nachfolgenden Verfahrensschritte aufzureinigen . Zweitens umfasst dann die weitere Aufarbeitung von Saccharose zu 1,6-GPS und/oder 1,1-GPM weitere komplizierte Verfahrensabfolgen, wobei verschiedene physikalische, chemische und/oder biologische Verfahren in verschiedenen Reaktoren zum Einsatz kommen müssen. Um gezielt 1,6-GPS aus Saccharose zu gewinnen, sind beispielsweise mindestens zwei separate enzyma- tische Umsetzungen erforderlich, in deren Verlauf im Allgemeinen aufwändige Aufreinigungsschritte durchgeführt werden müssen. Ähnliches gilt für die Herstellung von 1,1-GPM und Isomalt. So müssen unter anderem zur Gewinnung von 1,1-GPM aus Saccharose mindestens eine enzymatische Umsetzung, eine chemische Hydrierung unter Verwendung von Katalysatoren, speziellen Hydrierreaktoren und technischem Wasserstoff sowie nachfolgende Trennschritte zur Isolierung von 1,1-GPM aus dem zuvor erhaltenen Gemisch aus 1,1-GPM und 1,6-GPS durchgeführt werden.
Ein erheblicher Nachteil der im Stand der Technik bekannten Verfahren besteht also in der Notwendigkeit, unter einem erheblichen technischen Aufwand mehrere Verfahrensschritte durchzuführen. Da die dabei gewonnenen Produkte zur Verwendung in der Le- bens ittelindustrie bestimmt sind, müssen die Verfahrensgänge darüber hinaus so ausgewählt werden, dass keine toxischen Substanzen, z.B. aus den Katalysatoren, in die Endprodukte gelangen. Dazu sind weitere Aufreinigungsschritte erforderlich, die häufig dazu führen, dass die Ausbeuten an Endprodukten nicht zufriedenstellend sind.
Das der vorliegenden Erfindung zu Grunde liegende technische Problem besteht also darin, Verfahren und Mittel zu deren Durchführung bereit zu stellen, die eine einfache, kostengünstige und selektive Gewinnung von Isomaltulose und ihren Hydrierprodukten, insbesondere von 1,6-GPS, von 1,1-GPM oder von diese umfassenden Gemischen erlauben.
Die vorliegende Erfindung löst dieses technische Problem durch Bereitstellung transgener Pflanzen, insbesondere transgener Kartoffeln oder transgener- Zuckerrüben, die in mindestens einer ihrer Zellen aus in der Pflanze gebildeter Saccharose Isomaltulose erzeugen können. Insbesondere betrifft die Erfindung eine vorstehend skizzierte Pflanze, die neben ihrer Fähigkeit, aus in ihr gebildeter Saccharose Isomaltulose zu erzeugen überdies die Fä- higkeit besitzt, aus dieser Isomaltulose 1,6-GPS und/oder 1,1-GPM zu erzeugen. Eine derartige Pflanze stellt in überraschender und vorteilhafter Weise ein in vivo System zur Erzeugung von. Palati- nit®, seiner Einzelkomponenten, sowie des Vorläu- fers Isomaltulose bereit, welches am Ort der Entstehung des Eduktes, also der Saccharose, eine unmittelbare Erzeugung der gewünschten Endprodukte erlaubt. Aufwändige Isolier-, Aufreinigungs- und/oder Hydrierverfahren werden hier vermieden. Zudem kommen keinerlei toxische Substanzen zum Einsatz . Die Erfindung löst das ihr zugrunde liegende Problem auch durch die Bereitstellung von Verfahren zur Herstellung der vorgenannten Pflanzen.
Eine bevorzugte Ausführungsform der vorliegenden Erfindung betrifft also eine transgene Pflanze, insbesondere eine transgene Zuckerrübe oder Kartoffel, die in der Lage ist, in mindestens einer ihrer Zellen aus Saccharose Isomaltulose zu erzeugen. Eine derartige Pflanze stellt einen wertvollen Roh- stoff für die Herstellung von Palatinit® bereit, welches zum Beispiel nach Isolierung der Isomaltulose aus der Pflanze durch chemische Hydrierung erhalten werden kann, wobei selbstverständlich auch von 1 : 1-Verhältnis von 1,1-GPM zu 1,6-GPS abwei- chende Mischungen von 1,1-GPM zu 1,6-GPS hergestellt werden können. Eine derartige Pflanze kann auch zum Ausgangspunkt weiterer gentechnischer Manipulationen gemacht werden, die letztendlich zur Herstellung eines vollständigen Stoffwechselweges von Saccharose zu Palatinit® oder seiner Einzelkomponenten führt .
Im Zusammenhang mit der Erfindung wird unter einer transgenen Pflanze, die aus in der Pflanze gebildeter Saccharose Isomaltulose erzeugen kann, eine Pflanze verstanden, die eine stabil integrierte und in ihr exprimierbare Nucleotidsequenz enthält, die die Aktivität einer Saccharose-Isomerase codiert. Eine Saccharose-Isomerase katalysiert die Isomeri- sierung von Saccharose zu Isomaltulose, wobei die αl->ß2 glykosidische Bindung zwischen Glucose und Fructose in der Saccharose in eine andere glykosidische Bindung, insbesondere in eine αl->ß6 Bindung überführt wird. Erfindungsgemäß geeignete Nucleo- tidsequenzen, die die Aktivität einer Saccharose- Isomerase codieren, sind unter anderem aus Mikroorganismen der Gattung Protaminobacter, Erwinia, Ser- ratia, Leuconostoc, Pseudomonas, Agrobacterium oder Klebsieila bekannt. Die DE 44 14 185 Cl offenbart die Isolierung und Clonierung von Saccharose- Isomerase codierenden Nucleotidsequenzen aus den Mikroorganismen Protaminobacter rubrum und Erwinia rhapontici, wobei das genannte Dokument hinsichtlich der Beschreibung und Bereitstellung der DNA- Sequenzen vollständig in den Offenbarungsgehalt der vorliegenden Lehre mit einbezogen wird und wobei für diese DNA-Sequenzen im erfindungsgemäßen Kon- text Schutz begehrt wird.
Eine besonders bevorzugte Ausführungsform der vorliegenden Erfindung betrifft eine transgene Pflanze, insbesondere eine transgene Zuckerrübe oder Kartoffel, die in mindestens einer ihrer Zel- len aus Saccharose Isomaltulose und aus der so gebildeten Isomaltulose 1, 6-GPS erzeugen kann.
Im Zusammenhang mit der Erfindung wird unter einer transgenen Pflanze, die aus der gebildeten Isomaltulose 1,6-GPS erzeugen kann, eine Pflanze verstan- den, die eine stabil integrierte und in ihr expri- mierbare Nucleotidsequenz enthält, die die Aktivität einer Saccharose-Isomerase codiert, und somit aus Saccharose Isomaltulose erzeugen kann, und die außerdem eine stabil integrierte und exprimierbare Nucleotidsequenz enthält, die die Aktivität einer Sorbit-Dehydrogenase codiert. Eine Sorbit-Dehydro- genase-Aktivität reduziert Isomaltulose spezifisch zu 1,6-GPS. In der deutschen Patentanmeldung DE 199 63 126.3 ist eine erfindungsgemäß geeignete Sorbit-Dehydrogenase aus dem Mikroorganismus Gluco- nobacter suboxidans offenbart, wobei das genannte Dokument hinsichtlich der Beschreibung und Bereitstellung der DNA-Sequenz vollständig in den Offenbarungsgehalt der vorliegenden Lehre mit einbezogen wird und wobei für diese DNA-Sequenz im erfindungsgemäßen Kontext Schutz begehrt wird.
Eine weitere besonders bevorzugte Ausführungsform der vorliegenden Erfindung betrifft eine transgene Pflanze, insbesondere eine transgene Zuckerrübe oder Kartoffel, die in mindestens einer ihrer Zellen aus der in der Pflanze gebildeten Saccharose Isomaltulose und aus der so gebildeten Isomaltulose 1,1-GPM erzeugen kann.
Im Zusammenhang mit der Erfindung wird unter einer trangenen Pflanze, die aus der gebildeten Isomaltulose 1,1-GPM erzeugen kann, eine Pflanze verstan- den, die eine stabil integrierte und in ihr expri- mierbare Nucleotidsequenz enthält, die die Aktivität einer Saccharose-Isomerase codiert, und somit aus Saccharose Isomaltulose bilden kann, und die außerdem eine stabil integrierte und exprimierbare Nucleotidsequenz enthält, die die Aktivität einer Mannit-Dehydrogenase codiert. Eine Mannit-Dehydro- genase Aktivität reduziert Isomaltulose spezifisch zu 1,1-GPM. Brünker et al . beschreiben in Biochi- mica et Biophysica Acta, 1351 (1997), 157-167, eine er indungsgemäß geeignete Mannit-Dehydrogenase aus dem Mikroorganismus Pseudomonas fluorescens DSM 50106, wobei das genannte Dokument hinsichtlich der Beschreibung und Bereitstellung der DNA-Sequenz vollständig in den Offenbarungsgehalt der vorliegenden Lehre mit einbezogen wird und wobei für diese DNA-Sequenz im erfindungsgemäßen Kontext Schutz begehrt wird.
Eine weitere besonders bevorzugte Ausführungsform der Erfindung betrifft eine transgene Pflanze, insbesondere eine transgene Zuckerrübe oder Kartoffel, die in mindestens einer ihrer Zellen aus der in der Pflanze gebildeten Saccharose Isomaltulose und aus der so gebildeten Isomaltulose ein Gemisch aus 1,6-GPS und 1,1-GPM erzeugen kann, zum Beispiel ein 1:1 Gemisch.
Im Zusammenhang mit der Erfindung wird unter einer transgenen Pflanze, die aus der gebildeten Isomaltulose 1,6-GPS und 1,1-GPM erzeugen kann, eine Pflanze verstanden, die eine stabil integrierte und in ihr exprimierbare Nucleotidsequenz enthält, die die Aktivität einer Saccharose-Isomerase codiert, und somit aus Saccharose Isomaltulose bilden kann und die außerdem entweder eine stabil integrierte und exprimierbare Nucleotidsequenz, die die Aktivität einer Sorbit-Dehydrogenase codiert, und eine stabil integrierte und exprimierbare Nucleo- tidsequenz enthält, die die Aktivität einer Mannit- Dehydrogenase codiert, oder eine stabil integrierte und exprimierbare Nucleotidsequenz enthält, die die Aktivität einer unspezifisch hydrierenden Polyolde- hydrogenase codiert.
Eine weitere Ausführungsform der vorliegenden Erfindung betrifft eine transgene Pflanze, insbeson- dere eine Zuckerrübe oder Kartoffel, die in mindestens einer ihrer Zellen eine stabil integrierte und exprimierbare Nucleotidsequenz enthält, die die Aktivität einer Sorbit-Dehydrogenase codiert.
In einer weiteren Ausführungsform stellt die vorliegende Erfindung eine transgene Pflanze, insbesondere eine Zuckerrübe, bereit, die in mindestens einer ihrer Zellen eine stabil integrierte und exprimierbare Nucleotidsequenz enthält, die die Ak- tivität einer Mannit-Dehydrogenase codiert. Die beiden vorgenannten Pflanzen sind vorteilhaft insofern, als dass sie die Bereitstellung der Enzyme Sorbit-Dehydrogenase und Mannit-Dehydrogenase erlauben. Überdies können die genannten Pflanzen als Ausgangsmaterial für die Herstellung von transgenen Pflanzen dienen, die aus Saccharose Palatinit® erzeugen, wobei in die genannten Pflanzen Saccharose- Isomerase codierenden Nucleotidsequenzen eingeführt werden müssen.
Bei den transgenen Pflanzen kann es sich um Pflanzen der verschiedensten Arten, Gattungen, Familien, Ordnungen und Klassen handeln, das heißt sowohl _ .onocotyle als auch dicotyle Pflanzen, ebenso wie Algen, Moose, Farne oder Gymnospermae . Transgene Pflanzen können auch Kalli, Pflanzenzellkulturen, sowie Teile, Organe, Gewebe, Ernte- oder Vermehrungsmaterialien davon umfassen.
Die Erfindung sieht insbesondere vor, dass die transgene Pflanze eine Nutzpflanze ist, insbeson- dere eine Nutzpflanze, die in ihrem Speicherorgan
Saccharose produzieren kann, wie zum Beispiel Zuckerrohr oder Zuckerrübe. Die Erfindung betrifft ebenfalls Vermehrungsmaterialien und Ernteprodukte der erfindungsgemäßen Pflanzen, beispielsweise Blüten, Früchte, Speicherorgane, Rüben, Stengel, Sa- men, Knollen, Wurzeln, Blätter, Wurzelstöcke, Sämlinge, Stecklinge etc.
Im Zusammenhang mit der vorliegenden Erfindung bedeutet der Ausdruck "in mindestens einer ihrer Zellen", , dass eine transgene Pflanze mindestens eine Zelle, vorzugsweise jedoch eine Vielzahl von Zellen enthält/enthalten, die eine oder mehrere stabil integrierte Nucleotidsequenzen enthalten, die die Aktivität einer Saccharose-Isomerase und/oder die Aktivität einer Sorbit-Dehydrogenase und/oder die Ak- tivität einer Mannit-Dehydrogenase codieren. Bei den Zellen handelt es sich vorzugsweise um Zellen, in denen Saccharose gebildet oder gespeichert wird. Im Falle einer transgenen Zuckerrübe handelt es sich also bevorzugt um Zellen des Zuckerrübenspei- cherorgans, das heißt um Zellen der Rübe, während es sich im Falle einer transgenen Kartoffel bevorzugt um Zellen der Knolle handelt.
Die Nucleotidsequenz kann vorzugsweise im Zellkern aber auch im Piastidengenom oder im mitochondrialen Genom integriert sein, und zwar vorzugsweise so, dass sie stabil in die nächste Generation vererbt wird.
Die vorliegende Erfindung betrifft somit auch transgene Zellen, die die vorstehend genannten Nuc- leotidsequenzen enthalten, sowie transgene Pflanzen, die von derartigen Zellen abstammen. Derartige Zellen lassen sich von natürlicherweise vorkommenden Zellen dadurch unterscheiden, dass sie jeweils eine oder mehrere der vorstehend genannten codierenden Nucleotidsequenzen enthalten, die na- türlicherweise in diesen Zellen nicht vorkommen, oder dass die vorstehend genannten codierenden Nucleotidsequenzen an einem Ort des Genoms integriert sind, an dem -sie natürlicherweise nicht vorkommen, oder dass die vorstehend genannten codierenden Nuc- leotidsequenzen in einer anderen als der natürlichen Kopiezahl vorliegen. Zudem unterscheiden sich die vorstehend beschriebenen Pflanzen durch die erfindungsgemäß bewirkten Stoffwechselaktivitäten und die Expression der genannten Enzyme. Die Erfindung stellt in vorteilhafter Weise derartige Pflanzen bereit, wobei deren Wüchsigkeit, Phänotyp und/oder Kulturbedingungen denen einer Wildtyppflanze vollständig gleichen.
Im Zusammenhang mit der vorliegenden Erfindung be- deutet der Ausdruck "stabil integrierte und exprimierbare Nucleotidsequenz", dass eine Nucleotidsequenz mit Nucleinsäure-Elementen verknüpft ist, die eine stabile Integration dieser Nucleotidsequenz in das Genom einer Pflanze gestatten, so dass die in- tegrierte Nucleotidsequenz gemeinsam mit den natürlicherweise vorhandenen Genombestandteilen der Pflanzenzelle repliziert wird, sowie mit regulatorischen DNA-Elementen verknüpft ist, die die Transkription der Nucleotidsequenz und die an- schließende Expression des von der Nucleotidsequenz codierten Produktes gewährleisten. Zur Expression der vorstehend genannten Nucleotidsequenz in pflanzlichen Zellen, insbesondere in sense-Orientierung, werden die codierenden Bereiche dieser Nucleotidsequenzen in bevorzugter Ausfüh- rungsform mit regulatorischen Elementen verknüpft. 'Dazu zählen insbesondere Promotoren, die die Transkription in Pflanzenzellen gewährleisten. Zur Expression der vorstehend genannten Nucleotidsequenzen kommen prinzipiell sowohl homologe als auch heterologe Promotoren in Betracht. Es kann sich dabei um Promotoren handeln, die eine konstitutive Expression bewirken oder um Promotoren, die nur in einem bestimmten Gewebe, zu einem bestimmten Zeitpunkt der Pflanzenentwicklung oder nur zu einem durch äußere Einflüsse determinierten Zeitpunkt aktiv sind. Außerdem werden die vorstehend genannten Nucleotidsequenzen in bevorzugter Ausführungsform mit einer Terminationssequenz verknüpft, wodurch eine korrekte Transkriptions-Beendigung und eine Anlagerung eines Poly-A-Schwanzes an das Transkript bewirkt werden. Derartige Elemente sind in der Literatur beschrieben (Gielen et al . , EMBO J., 8 (1989) , 23-29) .
In einer bevorzugten Ausführungsform der vorliegen- den Erfindung wird die Expression der die enzymati- schen Aktivitäten codierenden Nucleotidsequenzen dadurch erreicht, dass diese Nucleotidsequenzen unter der Kontrolle gewebe- oder organspezifischer, insbesondere speicherorganspezifischer Promotoren, in mindestens einer Pflanzenzelle exprimiert werden. Gewebespezifische Promotoren zur Expression der die enzymatischen Aktivitäten codierenden Nucleotidsequenzen in Samengewebe sind zum Beispiel der Vici- lin-Promotor aus Pisum sativum (Newbigin et al . , Pla.nta, 180 (1990), 461-470). In einer weiteren be- vorzügten Ausführungsform sieht die Erfindung vor, zur Expression der vorstehend genannten Nucleotidsequenzen in der Epidermis und dem Parenchy von sogenannten Sink-Organen beispielsweise den Arabi- dopsis-Promotor AtAAPl (Expression in Endosperm und während früher Embrionalentwicklung) oder AtAAP2 (Expression in Phloem des Funiculus) (Hirner et al., Plant J. , 14 (1998), 535-544) zu verwenden.
In einer besonders bevorzugten Ausführungsform ist vorgesehen, die die enzymatischen Aktivitäten codierenden Nucleotidsequenzen in den Pflanzenorganen zu exprimieren, die große Mengen an Saccharose speichern. Dazu zählen beispielsweise die Rübe der Zuckerrübe, der Stamm vom Zuckerrohr oder die Knolle der AGPase-antisense-Linie 93 der Kartoffel, der sogenannten „Saccharosekartoffel" (Müller-Röber et al., Mol. Gen. Genet . , 224 (1990), 136-146). Die Expression der die enzymatischen Aktivitäten codierenden Nucleotidsequenzen in solchen Organen kann beispielsweise erreicht werden, indem der B33- Promotor des B33-Gens aus Kartoffeln verwendet wird (Rocha-Sosa et al . , EMBO J., 8 (1988), 23-29).
In weiteren Ausführungsformen der Erfindung kann vorgesehen sein, konstitutiv exprimierende Promoto- ren wie den CaMV 35S-Promotor, den geleitzellenspe- zifischen rolC-Promotor aus Agrobacterium oder den Enhanced PMA4-Promotor (Morian et al . , Plant J. , 19 (1999), 31-41) einzusetzen.
In einer weiteren Ausführungsform betrifft die Erfindung transgene Pflanzen, in denen die die enzy- matischen Aktivitäten codierenden Nucleotidsequenzen im Leseraster an eine Signalsequenz fusioniert sind, welche ein Signalpeptid zur Aufnahme der die enzymatischen Aktivitäten aufweisenden Genprodukte in das endoplasmatische Reticulum einer eukaryon- tischen Zelle codiert. Die Erfindung sieht also vor, dass die Nucleotidsequenzen mit Signalsequenzen versehen werden können, die eine Lokalisation der Genprodukte in bestimmten Kompartimenten der Zelle erlauben. So kommen insbesondere Signalse- quenzen in Betracht, die Signalpeptide codieren, welche zur Aufnahme von Proteinen in das endoplasmatische Reticulum führen und die sich dadurch nachweisen lassen, dass sie zwar in den Vorläuferproteinen, nicht jedoch in prozessierten, reifen Proteinen nachweisbar sind. Bekanntermaßen werden nämlich die Signalpeptide während der Aufnahme in das endoplasmatische Reticulum proteolytisch entfernt. So kann in einer Ausführungsform der Erfindung vorgesehen sein, ein Signalpeptid wie zum Bei- spiel die verkürzte N-terminale Sequenz des Protei- nase-inhibitors PI II aus Kartoffel (Keil et al., Nucl. Acids Res . , 14 (1986), 5641-5650; Schaewen et al., EMBO Journal, 9 (1990), 3033-3044) zu verwenden, wodurch eine Aufnahme des Genprodukts in das endoplasmatische Retikulum mit anschließender Sekretion in den apoplastischen Raum erreicht wird. Selbstverständlich können erfindungsgemäß auch andere Signalsequenzen verwendet werden. In einer weiteren Ausführungsform sieht die Erfindung vor, dass die die enzymatischen Aktivitäten codierenden Nucleotidsequenzen an eine Signalsequenz fusioniert sind, welche ein Signalpeptid zur Aufnahme ins endoplasmatische Reticulum einer euka- ryontischen Zelle, insbesondere einer Pflanzenzelle, und zur Weiterleitung in die Vakuole codiert. Eine vakuoläre Lokalisation der Genprodukte ist besonders vorteilhaft. Erfindungsgemäß können beispielsweise Signalpeptide zur vakuolären Lokalisation von Lektin aus Gerste verwendet werden (Raikhel und Lerner, Dev. Genet . , 12 (1991), 255- 260) , 43 Aminosäuren im aminoterminalen Bereich des reifen Phytohämaglutinins der Bohne codierende Sig- nalsequenzen (Tague et al . , Plant Cell, 2 (1990), 533-546) und Signalsequenzen aus einem Patatingen aus Kartoffel.
Erfindungsgemäß ist besonders bevorzugt, zur Lokalisation der Genprodukte in der Vakuole eine Sig- nalsequenz des Patatin-B33-Gens_,-zu verwenden, insbesondere eine Signalsequenz, die die 23 aminoterminalen Aminosäuren des Propeptids codiert (Rosahl et al., Mol. Gen. Genet., 203 (1986), 214-220), das heißt also die Nucleotide 736 bis 804.. Diese Se- quenz lässt sich sowohl als Fragment aus genomischer DNA der Kartoffel als auch aus der cDNA des B33-Gens gewinnen. Die Fusion der erweiterten B33- Signalsequenz mit den codierenden Nucleotidsequenzen führt zur Aufnahme von deren Genprodukten in die Vakuole.
In einer weiteren besonders bevorzugten Ausführungsform ist vorgesehen, dass die die enzymati- schen Aktivitäten codierenden Nucleotidsequenzen nicht mit einer Signalsequenz fusioniert sind, so dass die exprimierten Genprodukte im . Cytosol verbleiben.
Die Erfindung betrifft auch Verfahren zur Herstellung der vorgenannten transgenen Pflanzen, umfassend die Transformation einer oder mehrerer Pflanzenzellen mit einem Vektor, insbesondere einem Plasmid, der/ das eine oder mehrere Nucleotidse- quenz (en) ausgewählt aus der Gruppe bestehend aus einer die Aktivität einer Saccharose-Isomerase codierenden Nucleotidsequenz, einer die Aktivität einer Sorbit-Dehydrogenase codierenden Nucleotidsequenz und einer die Aktivität einer Mannit-Dehy- drogenase codierenden Nucleotidsequenz enthält, die Integration der in diesem Vektor oder Plasmid enthaltenen codierenden Nucleotidsequenz (en) in das Genom der transformierten Zelle (n) , gegebenenfalls unter Einschluss von dessen/deren Signalsequenzen und/oder regulatorischen Elementen und die Regeneration der Pflanzenzelle (n) zu intakten, fruchtbaren transformierten Pflanzen, die Sorbit-Dehydrogenase, Mannit-Dehydrogenase und/oder Saccharose- Isomerase erzeugen.
Für die Einführung von DNA in eine pflanzliche Wirtszelle stehen eine Vielzahl von Verfahren zur Verfügung. Bei vielen Verfahren ist es erforderlich, dass die einzuführenden Nucleotidsequenzen in Clonierungs- und oder Expressionsvektoren vorlie- gen. Bei Vektoren handelt es sich prinzipiell um Plasmide, Cosmide, Viren, Bacteriophagen, Shuttle- Vektoren und andere in der Gentechnik üblichen Vek- toren. Vektoren können noch andere Funktionseinheiten besitzen, die den Vektor in einem Wirtsorganismus stabilisieren und/oder dessen Replikation ermöglichen. Vektoren können auch regulatorische Ele- mente enthalten, mit denen die enthaltene Nucleotidsequenz funktioneil verbunden ist und die die Expression der Nucleotidsequenz in einem Wirtsorganismus gestatten. Derartige regulatorische Einheiten können Promotoren, Enhancer, Operatoren und/ oder Transkriptionsterminationssignale sein. Vektoren- enthalten darüber hinaus häufig Marker-Gene, die eine Selektion der sie enthaltenden Wirtsorganismen erlauben, wie zum Beispiel Antibiotika- Resistenzgene .
Verfahren zur Einführung von DNA in Pflanzenzellen umfassen Transformationen pflanzlicher Zellen mit T-DNA unter Verwendung von Agrobacterium tumefa- ciens oder Agrobacterium rhizogenes als Transformationsmittel, die Protoplastenfusion, die Mikroin- jektion, die Elektroporation von DNA, die Einbringung von DNA mittels der biolistischen Methode sowie weitere Möglichkeiten. Bei den Verfahren der Mikroinjektion und Elektroporation von DNA in Pflanzenzellen werden an sich keine speziellen An- forderungen an die verwendeten Plasmide gestellt. Es können einfache Plasmide, wie zum Beispiel pUC- Derivate verwendet werden. Wenn aus derartig transformierten Zellen jedoch ganze Pflanzen regeneriert werden sollen, sollte ein selektierbarer Marker vorhanden sein.
In Abhängigkeit von dem verwendeten Verfahren zur Einführung codierender Nucleotidsequenzen in die Pflanzenzellen kann es erforderlich sein, dass der Vektor weitere DNA-Sequenzen enthält. Werden beispielsweise das Ti- oder Ri-Plasmid zur Transformation von Pflanzenzellen verwendet, ist es erforder- lieh, dass zumindest die rechte Bordersequenz, häufig jedoch die rechte und die linke Bordersequenz der Ti- und Ri-Plasmid-T-DNA als Flankenbereich mit den einzuführenden Genen verbunden ist. Bei Verwendung von Agrobacterium zur Transformation muss die einzuführende DNA in spezielle Plasmide cloniert werden, und zwar entweder in einen intermediären- Vektor oder in einen binären Vektor. Auf Grund von Sequenzen, die homolog zu Sequenzen in der T-DNA sind, können intermediäre Vektoren durch homologe Rekombination in das Ti- oder Ri-Plasmid von Agro- bacterien integriert werden. Diese enthalten außerdem die für den Transfer der T-DNA erforderliche vir-Region. Intermediäre Vektoren können sich nicht in Agrobacterien replizieren. Mittels eines Hel- ferplasmids kann der intermediäre Vektor auf Agrobacterium tumefaciens übertragen werden. Im Gegensatz dazu können sich binäre Vektoren sowohl in E. coli als auch in Agrobacterien replizieren. Sie enthalten ein Gen für einen Selektionsmarker und einen Linker oder Polylinker-, der von der rechten und linken T-DNA-Borderregion eingerahmt wird. Binäre Vektoren lassen sich direkt in Agrobacterien transformieren (Holsters et al . , Mol. Gen. Genet., 163 (1978), 181-187). Das als Wirtszelle dienende Agrobacterium soll ein Plasmid, welches eine vir- Region trägt, enthalten. Dieser vir-Bereich ist für den Transfer der T-DNA in die Pflanzenzelle notwendig. Das auf diese Weise transformierte Agrobacterium wird zur Transformation von Pflanzenzellen verwendet. Die Verwendung von T-DNA für die Transformation von Pflanzenzellen ist unter anderem beschrieben in EP-A-120 516; Hoekema: The Binary Plant Vector System, Offsetdrukkerej Kanters. B. V., Alblasserdam (1985), Kapitel V; Fralej et al . , Crit. Rev. Plant. Sei., 4,1-46, und An et al . , EMBO J., 4 (1985), 277-287). Um DNA in die Pflanzenzelle zu transferieren, können Pflanzenexplantate mit Agrobacterium tumefaciens oder Agrobacterium rhizo- genes cokultiviert werden. Aus dem infizierten Pflanzenmaterial, wie zum Beispiel Blattstücken, Stengelabschnitten, Wurzeln, aber auch Protoplasten oder in Suspension kultivierten Pflanzenzellen, können dann in einem geeigneten Medium, das Anti- biotika oder Biozide zur Selektion transformierter Zellen enthält, wieder ganze Pflanzen regeneriert werden. Ein bevorzugtes Verfahren zur Transformation von Rübenzellen mittels Agrobacterium tumefaciens ist in EP 0 517 833 Bl offenbart.
Andere Möglichkeiten zur Einführung von Fremd-DNA unter Verwendung des biolistischen Verfahrens oder mittels Protoplastentransformation sind unter anderem in Willmitzer, L., Transgenic plants, In: Bio- technology, A Multi-Volume Comprehensive Treatise (Hersg. H. J. Rehm, G. Reed, A. Pühler, P. Stadler) Band 2 (1993), 627-659, VCH Weinheim New York Basel Cambridge, offenbart. Alternative Systeme zur Transformation von monocotylen Pflanzen sind die elektrisch oder chemisch induzierte DNA-Aufnahme in Protoplasten, die Elektroporation von partiell per- meabilisierten Zellen, die Makroinjektion von DNA in Blütenstände, die Mikroinjektion von DNA in Mik- rosporen und Pro-Embryonen, die DNA-Aufnahme durch keimende Pollen und die DNA-Aufnahme in Embryonen durch Quellung (Potrykos, Physiol. Plant (1990), 269-273) . Neuere Untersuchungen weisen darauf hin, dass auch monocotyle Pflanzen mit Hilfe von Vekto- ren auf der Basis von Agrobacterium transformiert werden können (Chan et al . , Plant Mol. Biol., 22 (1993), 491-506; Hiei et al . , Plant J., 6 (1994), 271-282; Bytebier et al., Proc. Natl . Acad. Sei. USA, 84 (1987), 5345-5349; Raineri et al., Bio/Technology, 8 (1990), 33-38; Gould et al . , Plant. Physiol., 95 (1991), 426-434; Mooney et al . , Plant, Cell Tiss. & Org . Cult., 25 (1991), 209-218; Li et al., Plant Mol. Biol., 20 (1992), 1037-1048). Für verschiedene Getreidearten sind einige der vor- stehend genannten Transformationssysteme etabliert worden, wie zum Beispiel die Elektroporation von Geweben, die Transformation von Protoplasten und der DNA-Transfer durch Partikelbeschuss in' regenerierbare Gewebe und Zellen (Jahne et al . , Euphyti- ca, 85 (1995), 35-44). Die Transformation von Weizen ist von Maheshwari et al . , Critical Reviews in Plant Science, 14(2) (1995), 149-178, und die Transformation von Mais ist von Brettschneider et al., Theor. Appl . Genet., 94 (1997), 737-748, und Ishida- et al . , Nature Biotechnology, 14 • (1996), 745-750, beschrieben worden.
Die Erfindung wird anhand der folgenden Figuren und Beispiele erläutert. Die Figuren zeigen:
Figur 1 eine Restriktionskarte des Plasmids pHWG279.1, das ein etwa 1,7 kb großes
Hindlll-Fragment mit der Saccharose- Isomerase codierenden Sequenz (smuA*) im Vektor pBR322 enthält,
Figur 2 eine Restriktionskarte des Plasmids pHWG469, das das native Gen der Sorbit- Dehydrogenase (sdh) aus Gluconobacter suboxidans im Vektor pBR322 enthält.
Beispiel 1 :
Herstellung von Vektoren, die eine Saccharose- Isomerase codierende Nucleotidsequenz enthalten
Es wurde eine Reihe von Konstrukten hergestellt, die in einem binären Vektor jeweils einen in Pflanzen exprimierbaren Promotor, jeweils die Saccharose-Isomerase codierende Nucleotidsequenz aus Pro- taminobacter rubrum und jeweils das Polyadenylie- rungssignal der T-DNA-Octopin-Synthase (Gielen et al . , 1984) enthielten. Die codierende Nucleotidsequenz wurde entweder mit der Signalsequenz des Pa- tatin-Gens der Kartoffel (Rosahl et al . , Mol. Gen. Genet., 203 (1986), 214-220) fusioniert, die eine vakuoläre Lokalisation des Genprodukts bewirkt, oder ohne eine vakuoläre Target-Sequenz verwendet, um eine Expression im Cytosol der jeweiligen Pflanzenzelle zu erreichen. Als Promotor wurden sowohl der CaMV 35 S-Promotor als auch der Promotor des Patatin-Gens B33 der Kartoffel (Rocha-Sosa et al . , EMBO J., 8 (1989), 23-29) verwendet, mit dem sich eine organspezifische Expression in der Knolle der Kartoffel und in der Speicherrübe der Zuckerrübe erreichen lässt. Im Fall der Kartoffel wurde der binäre Vektor pBinB33-Hyg (Becker, Nucl . Acids Res., 18 (1990), 203) verwendet, der bereits den B33-Promotor und das Polyadenylierungssignal enthält und außerdem das Hyg-Resistenzgen als Marker enthält. Im Fall der Zuckerrübe wurde der binäre Vektor pGA492 (An, Plant Physiol., 81 (1986), 86- 91) verwendet, der ein Kanamycin-Resistenzgen besitzt. Mit den erhaltenen Plasmiden wurden Agrobak- terien transformiert. Die transformierten Agrobak- terien wurden entweder zur Transformation der Kartoffel oder der Zuckerrübe verwendet. Im Folgenden wird die Konstruktion des Plasmids UL8-19 beschrieben, bei dem die Saccharose-Isomerase codierende Sequenz am 5' -Ende „in frame" mit dem Signalpeptid des Patatin-Gens und am 3' -Ende mit dem Polyadenylierungssignal der Octopin-Synthase der T-DNA fusioniert ist und unter der Kontrolle des B33- Promotors steht .
Ein ca. 1,7 kb Hindlll-Fragment (enthaltend die Saccharose-Isomerase codierende Sequenz) des in Figur 1 dargestellten Plasmids pHWG279,l (freundlicherweise zur Verfügung gestellt von Prof. Mattes, Universität Stuttgart) , das das native Gen der Saccharose-Isomerase aus Protaminobacter rubrum im Vektor pBR322 (Bolivar et al . , Gene, 2 (2) (1977), 95-113; Peden, Gene 22 (2-3) (1983), 277-280) enthält, wurde in den Vektor pBluescriptSK (Strata- gene, Heidelberg) cloniert, wobei ein als pSK279,l bezeichnetes Plasmid erhalten wurde. Zur „in fra- me"-Clonierung eines vakuolären Transitpeptides des Patatin-Gens (297 bp, Rosahl et al . , 1986) wurde die Signalsequenz des Patatingens mit Hilfe des PCR-Verfahrens amplifiziert und nach Spaltung der Enden mit den Restriktionsenzymen Apal und Sall in pBluescriptSK cloniert, wobei das Plasmid pSK297 erhalten wurde. Das Plasmid pSK297 wurde mit dem Restriktionsenzym Sall gespalten, die überstehenden Enden wurden in glatte Enden überführt und anschließend mit dem 1,7 kb-Fragment des Plasmids pSK279,l ligiert, dessen Enden vorher ebenfalls in glatte Enden überführt worden waren. Das erhaltene Plasmid wurde als UL5-19 bezeichnet. Zur Kontrolle wurde der Übergangsbereich zwischen der Signalsequenz und der Saccharose-Isomerase codierenden Nucleotidsequenz sequenziert, um sicherzustellen, dass der Übergang korrekt war. Dabei stellte sich heraus, dass zwar der Übergang korrekt war, die Sac- charose-Isomerase codierende Nucleotidsequenz des Plasmids pHWG279,l jedoch mehrere Sequenzfehler, unter anderem ein Stop-Codon, enthielt. Deshalb wurde das Hindlll-Fragment gegen ein eine fehlerfreie Saccharose-Isomerase codierendes Hindlll- Fragment ausgetauscht. Das erhaltene Plasmid pHWG432,3 wurde nach Transformation in Escherichia coli DH5alpha auf enzymatische Aktivität überprüft. Die mit der Signalsequenz fusionierte cDNA wurde isoliert, indem das Plasmid pHWG432,3 mit Xbal ge- spalten wurde, die überstehenden Enden geglättet wurden und danach eine Spaltung mit Asp718 erfolgte. Das dabei erhaltene 2,0 kB-Fragment wurde in den binären Vektor pBinB33-Hyg cloniert, der mit Sall, wobei die überstehenden Enden anschließend geglättet wurden, und Asp718 gespalten worden war, so dass eine gerichtete Clonierung möglich war. Mit dem dabei erhaltenen, als UL8-19 bezeichneten Vektor wurde der Agrobacterium tumefaciens-Stamm pGV2260 (Deblaere et al . , Nucl . Acids Res., 13 (1985), 4777-4788) mittels Elektroporation transformiert. Die transformierten Agrobakterien wurden zur Transformation der AGPase-antisense-Linie 93 der Kartoffel (sogen. „Saccharose-Kartoffel"; Müller-Röber et al . , 1990) und der Kartoffel-Wildtyp- Varietät Desiree verwendet. Dabei wurden die transgenen Pflanzen 086BK beziehungsweise 096BK erhalten.
Beispiel 2:
Herstellung von Vektoren, die eine Sorbit- Dehydrogenase codierende Nucleotidsequenz enthalten
Es wurde eine Reihe von Konstrukten hergestellt, die in einem binären Vektor jeweils einen in Pflan- zen exprimierbaren Promotor, jeweils die Sorbit- dehydrogenase codierende Nucleotidsequenz aus Glu- conobacter suboxidans und jeweils das Polyadenylie- rungssignal der T-DNA-Octopin-Synthase enthielten. Auch in diesem Beispiel wurde die codierende Nucle- otidsequenz entweder mit der Signalsequenz des Patatin-Gens fusioniert, um eine vakuoläre Lokalisation des Genprodukts zu erreichen, oder zur Expression des Genprodukts im Cytosol der Zelle ohne die vakuoläre Target-Sequenz verwendet. Als Promotoren wurden der CaMV 35 S-Promotor oder der B33-Promotor des B33-Gens der Kartoffel verwendet. Im Fall der Kartoffel wurde der binäre Vektor pBinB33-Hyg verwendet, der bereits den B33-Promotor und das Polya- denylierungssignal enthält, und im Fall der Zucker- rübe der binäre Vektor pGA492. Mit den erhaltenen Plasmiden wurden Agrobakterien transformiert. Die transformierten Agrobakterien wurden entweder zur Transformation der Kartoffel oder der Zuckerrübe verwendet. Im Folgenden wird die Konstruktion des Plasmids U120/19 beschrieben, bei dem die Sorbit- Dehydrogenase codierende Sequenz am 5' -Ende „in frame" mit dem Signalpeptid des Patatin-Gens und am 3' -Ende mit dem Polyadenylierungssignal der Octo- pin-Synthase der T-DNA fusioniert ist und unter der Kontrolle des B33-Promotors steht.
Der Vektor pSK297 (pBluescript mit 297 bp der vakuolären Targetsequenz des Patatin-Gens) wurde mit dem Restriktionsenzym EcoRV gespalten. Aus dem Plasmid pHWG469 (siehe Figur 2) (freundlicherweise zur Verfügung gestellt von Prof. Mattes, Universi- tat Stuttgart) , das das native Gen der Sorbit- Dehydrogenase aus Gluconobacter suboxidans im Vektor pBR322 (Bolivar et al., Gene, 2 (2) (1977), 95- 113; Peden, Gene 22 (2-3) (1983), 277-280) enthält, wurde ein eine Sorbit-Dehydrogenase aus Gluconobac- ter suboxidans codierendes Fragment durch Spaltung mit den Restriktionsenzymen EcoRV und Hindlll ausgeschnitten und nach Überführung überhängender Enden in glatte Enden gerichtet hinter die vakuoläre Targetsequenz cloniert, so dass ein durchgängiges Leseraster entstand. Das Leseraster wurde an der Fusionsstelle mittels Sequenzierung überprüft. Aus dem so erhaltenen Plasmid UL19/19 wurde mittels Spaltung mit den Restriktionsenzymen Asp718 und BamHI ein 1145 bp-Fragment ausgeschnitten, das das fusionierte Protein codiert. Dieses Fragment wurde in den binären Vektor pBinB33 (Becker, NAR, 18 (1990), 203) cloniert. Mit dem resultierenden Plasmid UL20/19 wurde der Agrobacterium tumefaciens- Stamm pGV2260 transformiert. Die transformierten Agrobakterien wurden zur Transformation der Linien 21 und 33 der Kartoffellinie 096BK verwendet. Dabei wurden die transgenen Pflanzen 158BK beziehungs- weise 159BK erhalten.
Beispiel 3:
Herstellung eines binären Vektors, der eine Mannit- Dehydrogenase codierende Nucleotidsequenz enthält
Es wurde eine Reihe von Konstrukten hergestellt, die in einem binären Vektor die Mannit-Dehydrogenase codierende Nucleotidsequenz aus Pseudomonas fluorescens DSM 50106 (Brünker et al., Biochimica et Biophysica Acta, 1351 (1997), 157-167) zusammen mit jeweils einem pflanzenspezifischen Promotor und dem Polyadenylierungssignal der T-DNA-Octopin-Synthase enthielten. Auch in diesem Beispiel wurde die codierende Nucleotidsequenz entweder mit der Signalsequenz des Patatin-Gens fusioniert, um eine va- kuoläre Lokalisation des Genprodukts zu erreichen, oder ohne die vakuoläre Target-Sequenz verwendet, um das Genprodukt im Cytosol der Zelle zu exprimie- ren. Als Promotoren wurden der CaMV 35 S-Promotor oder der B33-Promotor des B33-Gens der Kartoffel verwendet. Im Fall der Kartoffel wurde der binäre Vektor pBinB33-Hyg verwendet, der bereits den B33- Promotor und das Polyadenylierungssignal enthält, und im Fall der Zuckerrübe der binäre Vektor pGA492. Mit den erhaltenen Plasmiden wurden Agro- bakterien transformiert. Die transformierten Agro- bakterien wurden entweder zur Transformation der Kartoffel oder der Zuckerrübe verwendet.
Beispiel 4:
Transformation von Agrobacterium tumefaciens
Der DNA-Transfer in die Agrobakterien erfolgte mittels direkter Transformation nach dem Verfahren von Höfgen und Willmitzer (Nucl . Acids Res . , 16 (1988), 9877). Die Plasmid-DNA transformierten Agrobakte- rien wurde nach dem Verfahren von Birnboim und Doly (Nucl. Acids Res., 7 (1979), 1513-1523) isoliert und nach geeigneter Restriktionsspaltung gele- lektrophoretisch analysiert.
Beispiel 5:
Transformation der Kartoffel
Die Pflanzentransformation erfolgte durch Agrobak- terium tumefaciens (Stamm pGV2260 in C58C1; Deblae- re et al . , Nucl. Acids Res., 13 (1985), 4777-4788) vermittelten Gentransfer nach dem in Dietze et al . , Gentransfer to Plants, (1995), 24-29, beschriebenen Verfahren. Die transgenen Pflanzen wurden entweder auf Kanamycin oder Hygromycin enthaltenden Medien selektiert . Beispiel 6 :
Induktion regenerierbarer Kalli aus Blättern der Zuckerrübe
Etwa einen Monat nach der Keimung von Zuckerrüben- samen im Gewächshaus wurden Versuche zur Induktion von Kalli gemäß dem von Saunders et al . (Saunders, J. W. und Doley, W. P., J. Plant. Physiol., 124 (1986) , 473-479) beschriebenen Verfahren durchgeführt. Dabei wurden einer jeden Pflanze junge, drei bis fünf Zentimeter lange Blätter abgenommen, desinfiziert, mit sterilem Wasser dreimal gespült und auf sterilem Filterpapier getrocknet. Jedes Blatt wurde anschließend in Stücke von etwa 0,25 cm2 geschnitten und die so erhaltenen Explantate wurden in Petrischalen auf MSBl-Medium kultiviert. Nachdem die Schalen mit einer Kunststofffolie luftdicht abgeschlossen worden waren, wurden sie dreißig Tage bei 30 °C im Dunklen inkubiert und anschließend in Kulturkammern überführt. Vier bis zehn Wochen nach Kulturbeginn erschienen auf oder unter den Blat- texplantaten weiße brüchige Kalli.
Beispiel 7 :
Gewinnung von Zellsuspensionen aus induzierten Kal- li der Zuckerrübe
Vier bis sechs Wochen nach ihrem Erscheinen wurden die Kalli entnommen und in 250 ml-Erlenmeyerkolben, die mit Folie verschlossen worden waren, in 100 ml flüssigem MSBl-Medium kultiviert. Die Erlenmeyer- kolben wurden auf einem Rotationsschüttler bei etwa 200 U/min geschüttelt. Nach etwa zwei bis drei Wochen wurde eine Zellsuspension erhalten.
Beispiel 8 :
Transformation von Zellsuspensionen und jungen Kalli der Zuckerrübe
ZeilSuspension
Die Transformation wurde mit Zellsuspensionen nach etwa dreiwöchigem Kultivieren durchgeführt. Zu 10 ml Suspensionsmedium wurden 10 ml frisches MSBl- Medium zugegeben. Die so verdünnte Suspension wurde auf vier Petrischalen verteilt.
Aus Stammkulturen von Agrobacterium tumefaciens- Stämmen, die mit den erstellten Binärvektoren transformiert worden waren, wurden 50 μl entnommen und in 2 ml LB-Medium, das Rifampicin und Tetracyc- lin enthielt, kultiviert. Die Kulturen wurden zwei Tage mit 200 U/min bei 30° C gerührt. Dieser Stamm wurde in frisches Medium umgesetzt und unter den vorstehend beschriebenen Bedingungen die Nacht über kultiviert.
Die Infektion der Pflanzenzellen erfolgte, indem 50 μl eines jeden Agrobacterium, tumefaciens-Stammes einer der die entsprechenden Rübenzellen enthalten- den Petrischalen zugesetzt wurden. Die Rübenzellen und die Bakterien wurden drei Tage lang in einer Kulturkammer in der Dunkelheit kultiviert. Anschließend wurden die Bakterien von den Pflanzenzellen entfernt, indem zunächst mit MSB1 und 600 mg/1 Cefotaxim und dann mit MSB1 plus 300 mg/1 Cefotaxim gewaschen wurde. Die so gewaschenen Rübenzellen wurden in Petrischalen auf einem Blatt sterilen Whatman-Papier kultiviert, das auf Kanamy- cinhaltigem MSBl-Medium plus 300mg/l Cefotaxim lag. Die Schalen wurden mit Kunststofffolie luftdicht verschlossen und fünfzehn Tage in der Kulturkammer inkubiert. Drei bis acht Wochen danach erschienen weiße Kalli auf einer Schicht abgestorbener Zellen.
Dispersion neu induzierter Kalli
Es wurden junge, aus Blattexplantaten frisch induzierte Kalli transformiert. Dabei wurden Kalli verwendet, die nach zwei bis sechs Wochen auf Blättern gerade erschienen waren. Diese Kalli wurden in ste- rilen Kunststoffröhrchen in flüssigem MSBl-Medium dispergiert und dem gleichen Transformationsverfahren wie die Zellsuspensionen unterworfen.
Beispiel 9:
Regeneration von Zuckerrüben-Pflanzen aus transformierten Kalli
Nachdem die transformierten Kalli zunächst einen Monat auf MSB1 und Cefotaxim oder MSB1 und Cefotaxim und Kanamycin kultiviert worden waren, erfolgte die weitere Kultivierung der transformierten Kalli auf MSBl-Medium.
Nach einer bestimmten Zeit entwickelten sich aus bestimmten Kalli Sprossen und/oder Embryonen. Sobald die Sprossen mit der Entwicklung von Blättern begonnen hatten, wurden diese auf MS-Medium, das 1 mg/1 Naphtalinessigsäure enthielt, eingewurzelt. Nach zwei bis sechs Wochen erschienen Wurzeln. Nach der Entwicklung von Wurzeln wurden die Pflanzen im Gewächshaus- in Humuserde aklimatisiert . Nach weiteren drei Monaten hatten sich vollständige Pflanzen entwickelt .
Beispiel 10:
Nachweis des gebildeten Mannit-Dehydrogenase-, Sorbit-Dehydrogenase- und Saccharose-Isomerase-Gens in transformiertem Gewebe
Die Vorselektion von transformierten Pflanzen erfolgte auf Kanamycin beziehungsweise Hygromycin enthaltenden Medien. Zum Nachweis der Transgene wurde zunächst genomische DNA aus den entsprechenden Geweben (Kartoffelknollen oder Zuckerrüben- Speicherwurzel) isoliert. Jeweils 30 ng genomische DNA wurde als Template für eine Polymerase- Kettenreaktion (PCR; Saki et al . , Science, 239 (1988), 487-491) verwendet. Als Primer dienten genspezifische Sonden aus dem 5'- und 3' -Bereich der Saccharose-Isomerase aus Protaminobacter rubrum, der Sorbit-Dehydrogenase aus Gluconobacter suboxidans und der Mannit-Dehydrogenase aus Pseudomonas fluorescens. Die Reaktionen wurden jeweils in einer Lösung mit einem Gesamtvolumen von 50 μl, enthaltend 1 μM der 3'- und 5' -Primer, 0,2 mM dNTPs, 1,5 mM MgCl2, 50 mM KC1 und 20 mM Tris-HCl, pH-Wert 8,4, mit 1 E Tag-Polymerase (Gibco-BRL) durchgeführt. Die PCR-Ansätze wurden jeweils 40 Zyklen mit 1-minütiger Denaturierung bei 95°C, 1-minütiger Primeranlagerung bei 65°C und 2, 5-minütiger Synthese bei 72°C unterworfen, wobei eine 10-minütige abschließende Synthese zur Ketten- 'Vervollständigung die gesamte Reaktion beendete. Die Analyse der Reaktionsprodukte erfolgte mittels Gelelektrophorese, wobei das dem jeweiligen Transgen entsprechende PCR-Produkt über die Fragmentgröße bestimmt wurde. Nach Subclonierung und par- tieller Sequenzierung der PCR-Produkte konnten die Transgene eindeutig identifiziert werden.
Beispiel 11:
Nachweis der Saccharose-Isomerase-Aktivität in transformiertem Gewebe
Der Nachweis der Saccharose-Isomerase-Aktivität in transformierten Kartoffelknollen wurde wie folgt durchgeführt. Kartoffelknollen transgener Kartoffelpflanzen und der als Kontrolle verwendeten Wild- typ-Varietät Desiree wurden zerkleinert und jeweils 2 bis 5 g des zerkleinerten Materials wurden nach Zugabe von 50 ml kochendem Wasser in einem Omni- Mixer 2 min homogenisiert und anschließend 15 min in einem Wasserbad bei 95°C erhitzt. Der Nachweis von Isomaltulose erfolgt nach Zentrifugation und Verdünnung des Überstandes mit Hilfe des HPAEC- Verfahrens . Die dabei erhaltenen Ergebnisse sind in Tabelle 1 dargestellt. Tabelle 1: Nachweis von Isomaltulose in transgenen Kartoffelpflanzen g Isomaltulose/kg Frischgewicht
Desiree 1 0,0
Desiree 2 0,0
Desiree 3 0,0 transgene Probe 1 23,6 transgene Probe 2 14,0 transgene Probe 3 44,8 transgene Probe 4 31,4 transgene Probe 5 38,5

Claims

Ansprύche
1. Transgene Pflanze, die in mindestens einer ihrer Zellen aus in der Pflanze gebildeter Saccharose Isomaltulose erzeugen kann, wobei die Pflanze in der mindestens einen Zelle eine stabil integrierte und in ihr exprimierbare Nucleotidsequenz enthält, die die Aktivität einer Saccharose-Isomerase codiert .
2. Transgene Pflanze nach Anspruch 1, dadurch gekennzeichnet, dass diese in der mindestens einen Zelle eine zusätzliche stabil integrierte und exprimierbare Nucleotidsequenz enthält, die die Aktivität einer Sorbit-Dehydrogenase codiert und die die Zelle in die Lage versetzt, aus der gebildeten Isomaltulose 6-O- -D-Glucopyranosyl-D-sorbit (1,6- GPS) zu erzeugen.
3. Transgene Pflanze nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass diese in der mindestens einen Zelle eine zusätzliche stabil integrierte und exprimierbare Nucleotidsequenz enthält, die die Aktivität einer Mannit-Dehydrogenase codiert und die die Zelle in die Lage versetzt, aus der gebildeten Isomaltulose 1-0- -D-Glucopyranosyl-D-mannit (1,1- GPM) zu erzeugen.
4. Transgene Pflanze nach Anspruch 1, dadurch gekennzeichnet, dass diese in der mindestens einen Zelle eine zusätzliche stabil integrierte und exprimierbare Nucleotidsequenz, die die Aktivität einer Sorbit-Dehydrogenase codiert, und eine zusätzliche stabil integrierte und exprimierbare Nuc- leotidsequenz enthält, die die Aktivität einer Mannit-Dehydrogenase codiert, wobei diese Nucleotidsequenzen die Zelle in die Lage versetzen, aus der gebildeten Isomaltulose 1-O-α-D-Glucopyranosyl-D- mannit und 6-O-α-D-Glucopyranosyl-D-sorbit zu er- zeugen.
5. Transgene Pflanze, die in mindestens einer ihrer Zellen eine stabil integrierte und exprimierbare Nucleotidsequenz enthält, die die Aktivität einer Sorbit-Dehydrogenase codiert.
6. Transgene Pflanze, die in mindestens einer ihrer Zellen eine stabil integrierte und exprimierbare Nucleotidsequenz enthält, die die Aktivität einer Mannit-Dehydrogenase codiert.
7. Transgene Pflanze nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass sie eine Kartoffel ist .
8. Transgene Pflanze nach einem der Ansprüche 1 bis
6, dadurch gekennzeichnet, dass sie eine Zuckerrübe ist .
9. Transgene Pflanze nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Nucleotidsequenz in einem Pflanzen-Vektor enthalten ist.
10. Transgene Pflanze nach Anspruch 9, wobei die codierende Nucleotidsequenz eine cDNA oder eine genomische DNA-Sequenz ist.
11. Transgene Pflanze nach Anspruch 10, wobei die Saccharose-Isomerase codierende Nucleotidsequenz aus einem Mikroorganismus, insbesondere aus einem Mikroorganismus der Gattung Protaminobacter, Erwinia, Serratia, Leuconostoc, Pseudomonas, Agrobacterium oder Klebsiella, die Sorbit-Dehydrogenasen co- dierende Nucleotidsequenz aus einem Mikroorganismus, insbesondere aus einem Mikroorganismus der Gattung Gluconobacter, und die Mannit-Dehydrogenase aus einem Mikroorganismus, insbesondere aus einem Mikroorganismus der Gattung Pseudomonase, erhält- lieh ist.
12. Transgene Pflanze nach einem der Ansprüche 1 bis 11, wobei die codierende Nucleotidsequenz unter der funktioneilen Kontrolle mindestens eines regulatorischen Elementes steht, das die Transkription in pflanzlichen Zellen gewährleistet.
13. Transgene Pflanze nach Anspruch 12, wobei das mindestens eine regulatorische Element ein Promotor, insbesondere ein pflanzenspezifischer Promotor ist .
14. Transgene Pflanze nach Anspruch 13, wobei der Promotor ein gewebe- oder organspezifischer, vorzugsweise ein speicherorganspezifischer Promotor ist.
15. Transgene Pflanze nach einem der Ansprüche 1 bis 14, wobei die codierende Nucleotidsequenz im Leseraster entweder an eine Signalsequenz fusioniert ist, welche ein Signalpeptid codiert, das den Transport des Proteins mit der Aktivität einer Saccharose-Isomerase, des Proteins mit der Aktivität einer Sorbit-Dehydrogenase oder des Proteins mit der Aktivität einer Mannit-Dehydrogenase zu einem bestimmten Zellkompartiment oder einer bestimmten Zellorganelle gewährleistet, oder nicht an eine Signalsequenz fusioniert ist, so daß das Protein mit der Aktivität einer Saccharose-Isomerase, das Protein mit der Aktivität einer Sorbit- Dehydrogenase oder das Protein mit der Aktivität einer Mannit-Dehydrogenase im Cytosol lokalisiert ist .
16. Transgene Pflanze nach einem der Ansprüche 1 bis 15, wobei die codierende Nucleotidsequenz funk- tionell mit Terminations- und/oder Polyadenylie- rungssignalen verbunden ist.
17. Vermehrungs- und/oder Erntematerial einer Pflanze nach einem der Ansprüche 1 bis 16.
18. Verfahren zur Herstellung einer transgenen Pflanze nach Anspruch 1, umfassend
a) die Transformation einer oder mehrerer Pflanzenzellen mit einer die Aktivität einer Saccharose- Isomerase codierenden Nucleotidsequenz,
b) die Integration der Nucleotidsequenz in das Genom der transformierten Zelle (n) und
c) die Regeneration von Pflanzen, die aus Saccharose Isomaltulose erzeugen.
19. Verfahren zur Herstellung einer transgenen Pflanze nach einem der Ansprüche 1 bis 4, umfassend
a) die Transformation einer oder mehrerer Pflanzenzellen mit einer oder mehreren Nucleotidsequenz (en) ausgewählt aus der Gruppe bestehend aus einer die Aktivität einer Saccharose-Isomerase codierenden Nucleotidsequenz, einer die Aktivität einer Sorbit- Dehydrogenase codierenden Nucleotidsequenz und einer die Aktivität einer Mannit-Dehydrogenase codie- renden Nucleotidsequenz,
b) die Integration der Nucleotidsequenz (en) in das Genom der transformierten Zelle (n) und
c) die Regeneration von Pflanzen, die Sorbit- Dehydrogenase, Mannit-Dehydrogenase- und/oder Sac- charose-Isomerase erzeugen.
20. Verfahren nach Anspruch 19, wobei die Transformation eine Cotransformation der jeweils eingesetzten Nucleotidsequenzen ist.
21. Verfahren nach Anspruch 19, wobei die zu trans- formierenden Zellen transgene Zellen sind, die mindestens eine stabil integrierte Nucleotidsequenz enthalten, ausgewählt aus der Gruppe bestehend aus einer die Aktivität einer Saccharose-Isomerase codierenden Nucleotidsequenz, einer die Aktivität ei- ner Sorbit-Dehydrogenase codierenden Nucleotidsequenz und einer die Aktiviät einer Mannit- Dehydrogenase codierenden Nucleotidsequenz.
22. Verfahren nach einem der Ansprüche 18 bis 20, dadurch gekennzeichnet, dass die transformierte (n) Nucleotidsequenz (en) in einem Pflanzenvektor enthalten sind.
23. Verfahren nach Anspruch 22, wobei die codierende (n) Nucleotidsequenz (en) eine cDNA oder eine genomische DNA Sequenz ist (sind) .
24. Verfahren nach Anspruch 23, wobei die Saccharose-Isomerase codierende Nucleotidsequenz aus einem Mikroorganismus, insbesondere aus einem Mikroorganismus der Gattung Protaminobacter, Erwinia, Serra- tia, Leuconostoc, Pseudomonas, Agrobacterium oder Klebsieila, die Sorbit-Dehydrogenase codierende Nucleotidsequenz aus einem Mikroorganismus, insbe- sondere aus einem Mikroorganismus der Gattung Glu- conobacter, und die Mannit-Dehydrogenase codierende Nucleotidsequenz aus einem Mikroorganismus, insbesondere einem Mikroorganismus der Gattung Pseudomonas, erhältlich ist.
25. Verfahren nach einem der Ansprüche 18 bis 24 wobei die codierende (n) Nucleotidsequenz (en) jeweils unter der funktionellen Kontrolle mindestens eines regulatorischen Elementes steht/stehen, das die Transkription in pflanzlichen Zellen gewähr- leistet.
26. Verfahren nach Anspruch 25, wobei das mindestens eine regulatorische Element ein Promotor, insbesondere ein pflanzenspezifischer Promotor ist.
27. Verfahren nach Anspruch 26, wobei der Promotor ein gewebe- oder organspezifischer, vorzugsweise ein speicherorganspezifischer Promotor ist.
28. Verfahren nach einem der Ansprüche 18 bis 27, wobei die codierende (n) Nucleotidsequenz (en) entweder im Leseraster an eine Signalsequenz fusioniert ist (sind) , welche ein Signalpeptid codiert, das den Transport des codierten Proteins zu einem bestimmten Zellkompartiment oder einer bestimmten Zellorganelle gewährleistet, oder nicht an eine Signalsequenz fusioniert ist, so daß das codierte Protein im Cytosol lokalisiert ist.
29. Verfahren nach einem der Ansprüche 18 bis 28, wobei die codierende (n) Nucleotidsequenz (en) funk- tionell mit Terminations- und/oder Polyadenylie- rungssignalen verbunden ist (sind) .
PCT/EP2001/008055 2000-09-20 2001-07-12 Isomalt produzierende transgene pflanze WO2002027003A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP01954033A EP1322772A1 (de) 2000-09-20 2001-07-12 Isomalt produzierende transgene pflanze
CA002421618A CA2421618A1 (en) 2000-09-20 2001-07-12 Transgenic plants which produce isomalt
AU2001276398A AU2001276398B2 (en) 2000-09-20 2001-07-12 Transgenic plants which produce isomalt
US10/380,529 US20040064851A1 (en) 2000-09-20 2001-07-12 Transgenic plants which produce isomalt
IL15481901A IL154819A0 (en) 2000-09-20 2001-07-12 Transgenic plants producing isomalt and processes for the production thereof
AU7639801A AU7639801A (en) 2000-09-20 2001-07-12 Transgenic plants which produce isomalt
JP2002530766A JP2004522420A (ja) 2000-09-20 2001-07-12 イソマルトを生産するトランスジェニック植物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10047286.9 2000-09-20
DE10047286A DE10047286B4 (de) 2000-09-20 2000-09-20 Isomalt produzierende transgene Pflanze

Publications (1)

Publication Number Publication Date
WO2002027003A1 true WO2002027003A1 (de) 2002-04-04

Family

ID=7657432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/008055 WO2002027003A1 (de) 2000-09-20 2001-07-12 Isomalt produzierende transgene pflanze

Country Status (9)

Country Link
US (1) US20040064851A1 (de)
EP (1) EP1322772A1 (de)
JP (1) JP2004522420A (de)
AU (2) AU7639801A (de)
CA (1) CA2421618A1 (de)
DE (1) DE10047286B4 (de)
IL (1) IL154819A0 (de)
WO (1) WO2002027003A1 (de)
ZA (1) ZA200302195B (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1328647A1 (de) * 2000-08-29 2003-07-23 University of Queensland Isomaltulose-synthase
WO2004005504A1 (de) * 2002-07-04 2004-01-15 Sungene Gmbh & Co. Kgaa Verfahren zum erreichen einer pathogenresistenz in pflanzen
WO2004099403A1 (en) 2003-05-12 2004-11-18 The University Of Queensland A method of increasing the total or soluble carbohydrate content or sweetness of an endogenous carbohydrate by catalysing the conversion of an endogenous sugar to an alien sugar.
US7572950B2 (en) * 2002-07-04 2009-08-11 Sungene Gmbh & Co. Kgaa Methods for obtaining pathogen resistance in plants
US9127287B2 (en) 2008-06-11 2015-09-08 Syngenta Participations Ag Compositions and methods for producing fermentable carbohydrates

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107158B (zh) * 2021-12-22 2022-07-26 广东省科学院生物与医学工程研究所 一种高产高纯度异麦芽酮糖的重组谷氨酸棒杆菌及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020047A2 (de) * 1994-01-19 1995-07-27 Südzucker Aktiengesellschaft Mannheim/Ochsenfurt Herstellung von akariogenen zuckerersatzstoffen
US6274379B1 (en) * 1998-07-15 2001-08-14 E. I. Du Pont De Nemours & Company Plant sorbitol biosynthetic enzymes
WO2001059136A1 (de) * 2000-02-14 2001-08-16 IPK Institut für Pflanzengenetik und Kulturpflanzenforschung Produktion nicht-kariogener zucker in transgenen pflanzen
WO2001059135A1 (de) * 2000-02-14 2001-08-16 IPK Institut für Pflanzengenetik und Kulturpflanzenforschung Verfahren zur beeinflussung der pollenentwicklung durch veränderung des saccharosestoffwechsels

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2087036A1 (en) * 1991-05-09 1992-11-10 Mitchell C. Tarczynski Transgenic plants with altered polyol content
US5780709A (en) * 1993-08-25 1998-07-14 Dekalb Genetics Corporation Transgenic maize with increased mannitol content
DE4414185C1 (de) * 1994-01-19 1995-09-07 Suedzucker Ag Saccharose-Isomerase und Herstellung von akariogenen Zuckerersatzstoffen
CA2239802A1 (en) * 1997-08-21 1999-02-21 F. Hoffmann-La Roche Ag D-sorbitol dehydrogenase gene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020047A2 (de) * 1994-01-19 1995-07-27 Südzucker Aktiengesellschaft Mannheim/Ochsenfurt Herstellung von akariogenen zuckerersatzstoffen
US6274379B1 (en) * 1998-07-15 2001-08-14 E. I. Du Pont De Nemours & Company Plant sorbitol biosynthetic enzymes
WO2001059136A1 (de) * 2000-02-14 2001-08-16 IPK Institut für Pflanzengenetik und Kulturpflanzenforschung Produktion nicht-kariogener zucker in transgenen pflanzen
WO2001059135A1 (de) * 2000-02-14 2001-08-16 IPK Institut für Pflanzengenetik und Kulturpflanzenforschung Verfahren zur beeinflussung der pollenentwicklung durch veränderung des saccharosestoffwechsels

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BRUENKER PETER ET AL: "Cloning, nucleotide sequence and expression of a mannitol dehydrogenase gene from Pseudomonas fluorescens DSM 50106 in Escherichia coli.", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1351, no. 1-2, 1997, pages 157 - 167, XP001034763, ISSN: 0006-3002 *
CHOI E-S ET AL: "PURIFICATION OF A MEMBRANE-BOUND SORBITOL DEHYDROGENASE FROM GLUCONOBACTER SUBOXYDANS", FEMS MICROBIOLOGY LETTERS, AMSTERDAM, NL, vol. 125, no. 1, 1995, pages 45 - 49, XP000852950, ISSN: 0378-1097 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1328647A4 (de) * 2000-08-29 2006-03-22 Univ Queensland Isomaltulose-synthase
US8124373B2 (en) 2000-08-29 2012-02-28 The University Of Queensland Isomaltulose synthases, polynucleotides encoding them and uses therefor
EP1328647A1 (de) * 2000-08-29 2003-07-23 University of Queensland Isomaltulose-synthase
US7250282B2 (en) 2000-08-29 2007-07-31 The University Of Queensland Of St. Lucia Isomaltulose synthases, polynucleotides encoding them and uses therefor
US7572950B2 (en) * 2002-07-04 2009-08-11 Sungene Gmbh & Co. Kgaa Methods for obtaining pathogen resistance in plants
WO2004005504A1 (de) * 2002-07-04 2004-01-15 Sungene Gmbh & Co. Kgaa Verfahren zum erreichen einer pathogenresistenz in pflanzen
JP2006525797A (ja) * 2003-05-12 2006-11-16 ザ ユニバーシティー オブ クイーンズランド 内因性糖の外来性糖への変換を触媒することにより、総炭水化物含量もしくは可溶性炭水化物含量または内因性炭水化物の甘味度を高める方法
EP1623031A4 (de) * 2003-05-12 2007-03-14 Univ Queensland Verfahren zur erhöhung des gesamt- oder löslichen kohlenhydratgehalts oder der süsse eines endogenen kohlenhydrats durch katalyse der umwandlung eines endogenen zuckers in einen fremdzucker
EP1623031A1 (de) * 2003-05-12 2006-02-08 The University Of Queensland Verfahren zur erhöhung des gesamt- oder löslichen kohlenhydratgehalts oder der süsse eines endogenen kohlenhydrats durch katalyse der umwandlung eines endogenen zuckers in einen fremdzucker
WO2004099403A1 (en) 2003-05-12 2004-11-18 The University Of Queensland A method of increasing the total or soluble carbohydrate content or sweetness of an endogenous carbohydrate by catalysing the conversion of an endogenous sugar to an alien sugar.
US7655836B2 (en) 2003-05-12 2010-02-02 The University Of Queensland Method for increasing product yield
EP2345729A2 (de) 2003-05-12 2011-07-20 The University Of Queensland Verfahren zur Erhöhung des gesamten oder löslichen Kohlenhydratgehalts oder der Süße eines endogenen Kohlenhydrat durch die Katalysierung der Umwandlung eines endogenen Zuckers in einen Fremdzucker
EP2348116A2 (de) 2003-05-12 2011-07-27 The University Of Queensland Verfahren zur Erhöhung des gesamten oder löslichen Kohlenhydratgehalts oder der Süße eines endogenen Kohlenhydrat durch die Katalysierung der Umwandlung eines endogenen Zuckers in einen Fremdzucker
EP2354231A1 (de) 2003-05-12 2011-08-10 The University Of Queensland Verfahren zur Erhöhung des gesamten oder löslichen Kohlenhydratgehalts oder der Süße eines endogenen Kohlenhydrat durch die Katalysierung der Umwandlung eines endogenen Zuckers in einen Fremdzucker
EP2345729A3 (de) * 2003-05-12 2011-08-31 The University Of Queensland Verfahren zur Erhöhung des gesamten oder löslichen Kohlenhydratgehalts oder der Süße eines endogenen Kohlenhydrat durch die Katalysierung der Umwandlung eines endogenen Zuckers in einen Fremdzucker
US8022269B2 (en) 2003-05-12 2011-09-20 The University Of Queensland Altered metabolism
US9127287B2 (en) 2008-06-11 2015-09-08 Syngenta Participations Ag Compositions and methods for producing fermentable carbohydrates

Also Published As

Publication number Publication date
DE10047286B4 (de) 2005-06-09
CA2421618A1 (en) 2003-03-19
DE10047286A1 (de) 2002-04-04
EP1322772A1 (de) 2003-07-02
IL154819A0 (en) 2003-10-31
JP2004522420A (ja) 2004-07-29
US20040064851A1 (en) 2004-04-01
AU7639801A (en) 2002-04-08
AU2001276398B2 (en) 2005-10-20
ZA200302195B (en) 2004-03-29

Similar Documents

Publication Publication Date Title
DE69836267T2 (de) Nukleinsäuren aus der artischocke (cynara scolymus), welche für ein enzym mit fruktosylpolymerase-aktivität kodieren
EP0973921B1 (de) 2-desoxyglucose-6-phosphat (2-dog-6-p) phosphatase dna-sequenzen als selektionsmarker in pflanzen
CN101182523B (zh) 植物花药特异性启动子及其应用
DE19509695A1 (de) Verfahren zur Herstellung einer modifizieren Stärke in Pflanzen, sowie die aus den Pflanzen isolierbare modifizierte Stärke
WO2014144094A1 (en) Tal-mediated transfer dna insertion
JP3431177B2 (ja) 習性及び収量において変更されたトランスジェニック植物を作製するプラスミド
DE4444460A1 (de) Verfahren zur Steigerung des Ertrags sowie zur Veränderung des Blühverhaltens bei Pflanzen
DE10047286B4 (de) Isomalt produzierende transgene Pflanze
CN104744579B (zh) 抗逆相关蛋白GmL16在调控植物抗逆性中的应用
EP1272645B1 (de) Produktion nicht-kariogener zucker in transgenen pflanzen
WO2001059135A1 (de) Verfahren zur beeinflussung der pollenentwicklung durch veränderung des saccharosestoffwechsels
CN116685197A (zh) 促进植物再生和转化
WO1998006831A1 (de) TRANSGENE PFLANZENZELLEN UND PFLANZEN MIT VERÄNDERTER ACETYL-CoA-BILDUNG
EP0789773A1 (de) Verfahren zur veränderung des blühverhaltens bei pflanzen
CN111285927B (zh) 植物耐逆性相关蛋白SiWRKY78及其编码基因与应用
WO2001073086A2 (de) Verfahren zur genetischen modifizierung einer pflanze
DE10045182A1 (de) Verwendung von Palatinase- und Trehalulase-Sequenzen als nutritive Marker in transformierten Zellen
DE19732926C2 (de) DNA-Sequenzen, kodierend einen Glukose-6-phosphat-Phosphat-Translokator, sowie Plasmide, Bakterien, Hefen und Pflanzen, enthaltend diesen Transporter
CN114539373A (zh) 与甘薯茎线虫病抗性相关蛋白IbPIF1及其编码基因与应用
KR101272473B1 (ko) 형질전환 억새 식물체의 제조 방법 및 그에 따른 식물체
EP1255841A2 (de) Verwendung von palatinase- und trehalulase-sequenzen als nutritive marker in transformierten zellen
EP1190081B1 (de) Pflanzen mit veränderter genexpression
CN115807027A (zh) Cdk8基因在提高植物耐盐性的应用
DE10050233A1 (de) Verfahren zur genetischen Modifizierung einer Pflanze
DE10045113A1 (de) Verfahren zur Beeinflussung der Pollenentwicklung durch Veränderung des Saccharosestoffwechsels

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA IL JP US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001954033

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 154819

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2001276398

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2002530766

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003/02195

Country of ref document: ZA

Ref document number: 200302195

Country of ref document: ZA

Ref document number: 2421618

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2001954033

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10380529

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2001276398

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 2001954033

Country of ref document: EP