WO2002025808A1 - Amplificateur de puissance a compensation de distorsion non lineaire - Google Patents

Amplificateur de puissance a compensation de distorsion non lineaire Download PDF

Info

Publication number
WO2002025808A1
WO2002025808A1 PCT/JP2001/008134 JP0108134W WO0225808A1 WO 2002025808 A1 WO2002025808 A1 WO 2002025808A1 JP 0108134 W JP0108134 W JP 0108134W WO 0225808 A1 WO0225808 A1 WO 0225808A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
distortion
power
power amplifier
circuit
Prior art date
Application number
PCT/JP2001/008134
Other languages
English (en)
French (fr)
Inventor
Yoshihiko Akaiwa
Original Assignee
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation filed Critical Japan Science And Technology Corporation
Priority to KR10-2003-7003988A priority Critical patent/KR20030041990A/ko
Priority to CA002421773A priority patent/CA2421773A1/en
Priority to US10/380,991 priority patent/US6859099B2/en
Priority to EP01970144A priority patent/EP1335489A4/en
Publication of WO2002025808A1 publication Critical patent/WO2002025808A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits

Definitions

  • the present invention relates to a non-linear distortion compensating power amplifier, and more particularly to a power amplifier suitable for amplifying a linear modulation signal or a plurality of modulation signals in common in a base station for mobile radio communication such as a mobile phone or a mobile phone.
  • the present invention relates to a nonlinear distortion-compensated power amplifier having an improved linear amplification characteristic by providing a predistortion for generating a distortion signal that cancels the nonlinear distortion of the power amplifier on the input side of the power amplifier.
  • Negative feedback method, feed forward method, and Predist overnight method are known as methods to perform this operation. It is rare to be used for radios.
  • the feed-forward method does not cause instability in principle, and is currently used in many base station radios.
  • the feedforward method requires a configuration in which the error component is extracted, separately amplified by the sub-amplifier, and then subtracted from the output signal of the main amplifier, which complicates the circuit and reduces the power consumption by using the sub-amplifier. There is a problem that efficiency is reduced.
  • the predistortion method has attracted attention as an alternative to the feedforward method because a sub-amplifier is not required, and research and development are proceeding.
  • the Predist overnight system has attracted attention because of its high power efficiency.
  • the input signal is distorted in advance to cancel the distortion generated in the amplifier.
  • This predistortion method measures out-of-band unwanted radio waves (spurious) generated by nonlinear distortion, and converts the distorted signal to minimize this. What causes it (predistortion) is known.
  • the gain of a power amplifier tends to fluctuate depending on environmental conditions such as the supply voltage, the ambient temperature, and the time length, and the nonlinear distortion characteristics also change.
  • a conventional predistortion-type nonlinear distortion-compensating power amplifier if the gain of the power amplifier fluctuates, there is a deviation between the distortion signal generated in the predistortion and the nonlinear distortion characteristic of the power amplifier, and the nonlinear distortion cancels out. There was a problem that the function was impaired.
  • An object of the present invention is to provide a non-linear distortion compensating power amplifier based on a pre-distortion method in which the function of canceling non-linear distortion is not impaired by a gain variation of the power amplifier. Disclosure of the invention
  • the present invention provides a nonlinear distortion-compensated power amplifier that controls the generation of a distortion signal by a distortion signal generation circuit (predistortion circuit) and provides a gain adjustment circuit so that the total gain is always maintained at a constant value.
  • the above purpose is achieved by performing gain adjustment control.
  • the nonlinear distortion-compensating power amplifier of the present invention can have the following configurations.
  • the distortion signal corresponding to the input signal generated by the distortion signal generation circuit minimizes the power of the out-of-band signal component in the output signal of the power amplifier. Determined optimally based on the algorithm.
  • the gain of the gain adjustment circuit is adjusted so that the overall gain becomes a constant value based on a comparison between the input signal power and the in-band signal power in the output signal. Controlled.
  • the output power measurement circuit includes a frequency conversion circuit for converting an output signal frequency of the power amplifier, and an in-band signal and an out-of-band signal from the frequency-converted output signal. It comprises a first filter and a second filter for extracting signals, respectively, and a power detector for measuring each power of the extracted in-band signal and out-of-band signal.
  • the band of the output signal includes a plurality of bands in different frequency regions.
  • the nonlinear distortion-compensated power amplifier of the present invention further includes a control circuit that controls the distortion signal generation circuit and the gain adjustment circuit based on the input signal power and the output signal power.
  • the gain adjustment circuit is disposed between the distortion signal generation circuit and the power amplifier.
  • FIG. 3 is a configuration diagram of a nonlinear distortion compensation power amplifier according to one embodiment of the present invention.
  • FIG. 4 is an explanatory diagram of a signal power spectrum in one embodiment of the present invention.
  • FIG. 5 is a configuration diagram of a frequency conversion circuit according to one embodiment of the present invention.
  • 4 is a gain adjustment circuit that compensates for fluctuations in total gain
  • 5 is a power amplifier that has nonlinear distortion characteristics to be compensated
  • 6 is an output terminal that outputs a power-amplified signal
  • 7 Is the input power measurement circuit that measures the instantaneous power of the input signal
  • 8 is the control circuit that controls the distortion signal generation of the distortion signal generation circuit and the gain setting of the gain adjustment circuit
  • 9 is the desired band in the output signal to be amplified.
  • An output power measurement circuit that measures the average power of the signal components and the average power of the unnecessary out-of-band signal components, respectively.
  • 10 performs the control for generating the optimal distortion signal and the constrained control for keeping the total gain constant.
  • Argoryum that is, Is a program).
  • the distortion signal generation circuit 3 includes a variable gain control circuit that distorts the amplitude of the input signal by the control signal from the control circuit 8, and a variable phase control circuit that similarly distorts the phase of the input signal.
  • the gain adjustment circuit 4 is composed of, for example, a variable attenuator, and is controlled so as to compensate for the gain fluctuation by changing the amount of attenuation when a fluctuation in the total gain is detected, so that the total gain is always kept at a constant value.
  • Each power of the input signal and the output signal required for the control of the control circuit 8 is measured by the input power measurement circuit 7 and the output power measurement circuit 9 and sent to the control circuit 8.
  • the input power measurement circuit 7 measures the instantaneous power and the average power of the input signal of the input terminal 1, but if only the instantaneous power is measured and the average power is calculated by the control circuit 8, the input power
  • the force measurement circuit 7 can be simplified.
  • the output power measurement circuit 9 separately measures the average power of the signal component in the desired frequency band included in the output signal of the output signal of the output terminal 6 and the unnecessary signal component outside the band.
  • the measurement result is sent to the control circuit 8, whereby the input signal applied to the input terminal 1 is converted by the distortion signal generation circuit 3 into a distortion signal having amplitude and phase distortion corresponding to the instantaneous value of the input signal, Further, the amplitude is adjusted by the gain compensation of the gain adjustment circuit 4 and input to the power amplifier 5.
  • the output signal with reduced distortion resulting from power amplification by the power amplifier 5 is output from the output terminal 6. Is done.
  • the gain adjustment circuit 4 is inserted between the distortion signal generation circuit 3 and the power amplifier 5 in the figure, it may be placed between the input terminal 1 and the distortion signal generation circuit 3.
  • the distortion signal generation circuit 3 and the gain adjustment circuit 4 are controlled according to the algorithm 10 of the control circuit 8, respectively.
  • the algorithm 10 is control means realized by executing a program for executing the control stored on a main memory (not shown) on a CPU (not shown).
  • the algorithm 10 of the control circuit 8 requires that the total gain is always constant.
  • a so-called constrained control algorithm is used to optimize the distortion signal while controlling to the desired value. This constrained control algorithm can be realized by alternately and repeatedly executing control for adjusting the total gain to be constant and control for optimizing the distortion signal until a convergence state is finally obtained.
  • control for adjusting the total gain to be constant is to calculate the total gain from the average power of the input signal and the average power of the signal components within the desired band of the output signal, and compare the calculated total gain value with a reference constant value. Then, a deviation of the gain fluctuation is obtained, and a gain compensation value such that the deviation becomes zero is instructed to the gain adjustment circuit 4 to control the total gain to a constant value.
  • a plurality of types of various distortion amount patterns are generated, and an optimum one is selected from the generated distortion amount patterns.
  • different distortion amount patterns are sequentially generated by trial and error, and the distortion amount corresponding to the instantaneous power value of the input signal in each distortion amount pattern is instructed to the distortion signal generation circuit 3.
  • all kinds of distortion amount patterns are generated, distortion signals are generated for each of them, and the distortion amount pattern for minimizing the average power value of the out-of-band signal component is optimized.
  • Fig. 2 shows a flow chart of an example of a constrained control algorithm that optimizes the distortion signal under the condition that the total gain is constant.
  • algorithm 10 shown in FIG. 1 if there is a previously generated distortion amount pattern, a different distortion amount pattern is generated (step S1), and a distortion signal is generated based on the generated distortion amount pattern (step S1).
  • Step S 2) Detect the total gain, compensate the gain fluctuation to a constant value (Step S 3), and then detect the average power value of the out-of-band signal component included in the output signal and save the value (Step S4).
  • step S5 When there is no longer any distortion pattern to be generated (which is considered to be) (step S5), the average power value of each stored distortion amount pattern is compared, and the pattern having the minimum average power value is selected ( In step S6), it is stored in the memory as an optimal pattern (step S7).
  • a signal such as a mobile radio signal input to the input terminal 11 is subjected to amplitude and phase distortion by the predistortion unit 12.
  • the output signal of the predistorter 12 passes through the gain adjustment circuit 13, is amplified by the power amplifier 14, and passes through the directional coupler 15. Is output to the output terminal 16. Part of the output signal is extracted by the directional coupler 15 and input to the output power measurement circuit 19. Part of the output signal input to the output power measurement circuit 19 is frequency-converted by the frequency conversion circuit 20 and then input to the filters 21 and 22.
  • the filter 21 is a filter for extracting a signal within a desired band to be amplified in the output signal
  • the filter 22 is a filter for extracting an unnecessary signal outside the band.
  • the control circuit 18 uses the pattern corresponding to the instantaneous power value and the distortion amount stored in advance in an internal memory (not shown) to calculate the amplitude and phase distortion amount according to the instantaneous power value of the input signal. Then, the distortion amount is instructed to the predistorter 12 to apply distortion to the input signal, thereby generating a distortion signal. At this time, the amplitude and phase distortion amounts indicated by the predistortion system 12 differ depending on the instantaneous power value of the input signal, and the value is determined by the power amplifier 14 according to the principle of the predistortion system. It is required in advance to cancel nonlinear distortion.
  • the pattern of the distortion amount stored in the memory is for optimally canceling the nonlinear distortion of the power amplifier 14 and can be updated as needed during startup or during operation.
  • the optimal distortion amount pattern is the one that minimizes the average power of the out-of-band unnecessary signal at the output of the filter 22 from a variety of calculated distortion amount patterns by trial and error (or iteration). ) And stored in the memory (for example, see the aforementioned Japanese Patent Application No. 2000-9661).
  • the amount of distortion stored in the memory of the control circuit is automatically determined by an appropriate algorithm 10.
  • the control circuit 18 first calculates an average power value from the input signal instantaneous power output from the input power measurement circuit 17, and calculates the average power value within the desired band in the amplifier output signal output from the output power measurement circuit 19. Determine the overall gain by calculating the ratio of the signal to the average power value. If the calculated gain differs from the given reference value, Thus, the gain of the gain adjustment circuit 13 is controlled. After performing the gain adjustment, the algorithm 10 updates the distortion amount pattern.
  • the gain adjustment circuit 13 may be provided before the predistorter 12.
  • FIG. 4 shows a signal power spectrum in one embodiment of the present invention
  • FIG. 5 shows a specific example of the frequency conversion circuit 20 in FIG.
  • the solid line is the power spectrum of the output signal in the ideal case where there is no nonlinear distortion in the power amplifier, and the dashed line shows the unnecessary out-of-band signal (spurious) generated by the nonlinear distortion.
  • the filter 22 takes out the out-of-band signal component, measures the average power of the signal with the average power detector 23, and uses the algorithm 10 (not shown) of the control circuit 18 to obtain this signal. The distortion amount pattern that minimizes the average power value is determined.
  • the filter 21 is a low-pass filter having a pass band of 0 to: ⁇ . At this time, since the local oscillation frequency is set to f 0 , a desired band signal indicated by a solid line in FIG. 4 is extracted from the filter 21. By setting the passband of the filter 22 to ⁇ , an out-of-band signal indicated by a broken line in FIG. 4 can be extracted from the filter 22.
  • the average power detector 23 in FIG. 3 separately measures the average power of the output signals of these filters 21 and 22.
  • the control circuit 18 first obtains an average input signal power value from the instantaneous power of the input signal output from the input power measurement circuit 17.
  • the algorithm 10 of the control circuit 18 gives a certain amount of distortion to the input signal and observes the average power in the output signal band from the filter 21. By calculating the ratio between the observed value and the average power value of the input signal obtained earlier, the power consumption from input terminal 11 to output terminal 16 is obtained. Calculate the profit. If the calculated power gain value is different from a predetermined power gain reference value, the gain of the gain adjustment circuit 13 is adjusted so that they become equal. After the gain adjustment is completed, the algorithm 10 determines the optimal distortion amount pattern for controlling the predictor 12 and updates the memory.
  • the single-band signal spectrum shown in FIG. 4 is assumed. However, even when a plurality of signal bands are arranged on the frequency axis, the local oscillation frequency and the filter By setting 21 and 22 appropriately, the in-band power and out-of-band power of the amplifier output signal can be measured.
  • the present invention even if the characteristics of the power amplifier fluctuate due to changes in environmental conditions or changes over time, it is possible to operate the predistortion while keeping the overall gain constant. Compensation can be maintained.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Description

明細書 非線形歪み補償電力増幅器 技術分野
本発明は、 非線形歪み補償電力増幅器に関し、 特に、 自動車電話や携帯電話な どの移動無線通信の基地局において線形変調信号あるいは複数の変調信号を共通 に増幅するのに適した電力増幅器であつて、 電力増幅器の入力側に電力増幅器が もつ非線形歪みを打ち消すような歪み信号を発生するプレディスト一夕を置くこ とにより線形増幅特性を改善した非線形歪み補償電力増幅器に関する。 背景技術
線形変調波あるいは複数の変調波を電力増幅する電力増幅器では、 不要電波 ( の放射を抑制して電力効率を高めるため、 出来る限り非線形歪みを 小さくする必要がある。 従来、 増幅器の非線形歪みを補償する方式としては、 負 帰還方式、 フィードフォワード方式、 プレディスト一夕方式が知られている。 負帰還方式は、 信号が広帯域になると発振現象などが起こりやすく動作の不安 定性が増すために、 基地局の無線機に使用されることは少なレ、。
フィードフォワード方式は、 原理的には動作の不安定性が生じないので、 現在 、 多くの基地局の無線機に使用されている。 ところが、 フィードフォワード方式 は誤差成分を抽出し、 副増幅器で別個に増幅したのち、 主増幅器の出力信号から 差し引く構成をとる必要があるため、 回路が複雑になるとともに、 副増幅器の使 用により電力効率が低下するという問題がある。
これに対してプレディスト一タ方式は、 副増幅器が不要であることからフィ一 ドフォワード方式に代わるものとして注目され、 研究開発が進められている。 プ レディスト一夕方式がその電源効率の高さから注目されている。 プレディストー タ方式は、 入力信号を前もって歪ませることにより、 増幅器内で発生する歪みを 打ち消すものである。 このプレディスト一夕方式は、 非線形歪みにより発生する 帯域外不要電波 (スプリアス) を測定し、 これを最小とするように、 歪み信号を 発生させるもの (プレディストー夕) が知られている。 例えば、 本発明者が先に なした発明による特許出願 "特願 2 0 0 0 - 9 6 6 1 " に記載されている方式、 あるいは、 Y. ナガ夕の論文 "ディジタル移動通信用線形増幅技術" (参考文献 1参照) や、 F . アントニォ他の論文 "電力増幅器用適応プリディストーション の新技術" (参考文献 2参照) に記載されている方式がある。 これらの方式では 、 与えられたアルゴリズムにより歪み信号の発生を自動的に行なっている。
参考文献 1 : Y. Nagata , ' Linear Ampl ification Technique for Digi tal Mo bi le Communications' , Proceedings of the IEEE Vehicular Technology Confe rence, pp. 159-164, 1989.
参考文献 2 : F. Antonio 他, ' A Novel Adaptive Predistortion Technique for Power Ampl if iers ' , Proceedings of IEEE Vehicular Technology Confere nce, pp. 1505-1509, 1999.
一般に電力増幅器の利得は、 供給電圧、 周囲温度あるいは経時時間長などの環 境条件により変動しやすく、 非線形歪み特性も変化する。 従来のプレディストー 夕方式による非線形歪み補償電力増幅器では、 電力増幅器の利得が変動すると、 プレディストー夕で発生される歪み信号と電力増幅器の非線形歪み特性との間に ズレができて、 非線形歪み打ち消し機能が損なわれるという問題があった。
本発明の目的は、 電力増幅器の利得変動により非線形歪み打ち消し機能が損な われないようにしたプレディストー夕方式による非線形歪み補償電力増幅器を提 供することにある。 発明の開示
本発明は、 非線形歪み補償電力増幅器において、 歪み信号発生回路 (プレディ スト一夕) による歪み信号の発生を制御するとともに、 利得調整回路を設けて総 合利得が常に一定値に保たれるように利得調整制御を行なうようにして、 上記目 的の達成を図るものである。 これにより本発明の非線形歪み補償電力増幅器は、 以下の各構成をとることができる。
本発明の非線形歪み補償電力増幅器は、 電力増幅器と、 電力増幅器の入力側に 置かれて電力増幅器の非線形歪みを打ち消すように入力信号に応じた歪み信号を 発生する歪み信号発生回路と、 総合利得を一定に調整する利得調整回路とを備え る。
また、 好ましくは、 本発明の非線形歪み補償電力増幅器では、 歪み信号発生回 路が発生する入力信号に応じた歪み信号は、 電力増幅器の出力信号中の帯域外信 号成分の電力を最小にするアルゴリズムに基づいて最適に決定される。
また、 好ましくは、 本発明の非線形歪み補償電力増幅器では、 利得調整回路の 利得は、 入力信号電力と出力信号中の帯域内信号電力との比較に基づいて全体の 利得が一定値になるように制御される。
また、 好ましくは、 本発明の非線形歪み補償電力増幅器は、 入力信号電力を測 定する入力電力測定回路と、 出力信号中の帯域内信号電力および帯域外信号電力 を測定する出力電力測定回路とを備える。
また、 好ましくは、 本発明の非線形歪み補償電力増幅器では、 出力電力測定回 路は、 電力増幅器の出力信号周波数を変換する周波数変換回路と、 周波数変換さ れた出力信号から帯域内信号および帯域外信号をそれぞれ取り出す第 1のフィル 夕および第 2のフィルタと、 取り出された帯域内信号および帯域外信号の各電力 を測定する電力検出器とからなる。
また、 好ましくは、 本発明の非線形歪み補償電力増幅器では、 出力信号の帯域 は、 異なる周波数領域の複数の帯域からなる。
また、 好ましくは、 本発明の非線形歪み補償電力増幅器は、 入力信号電力と出 力信号電力に基づいて歪み信号発生回路および利得調整回路を制御する制御回路 を備える。
また、 好ましくは、 本発明の非線形歪み補償電力増幅器では、 制御回路は、 全 体の利得を一定値に保ちながら入力信号に応じた最適な歪み信号を発生させる拘 束付き制御ァルゴリズムを有する。
また、 好ましくは、 本発明の非線形歪み補償電力増幅器では、 拘束付き制御ァ ルゴリズムは、 全体の利得が一定値になるように利得調整回路を制御する第 1の 制御論理と、 出力信号中の帯域外信号成分の電力が最小になるような歪み信号を 歪み信号発生回路が発生できるように、 歪み信号発生回路に与える入力信号の瞬 時値に対応する歪み量のパターンを最適に決定する第 2の制御論理とを含み、 第 1の制御論理と第 2の制御論理は順次交互に実行される。
また、 好ましくは、 本発明の非線形歪み補償電力増幅器では、 利得調整回路は 、 歪み信号発生回路と電力増幅器の間に置かれている。
また、 好ましくは、 本発明の非線形歪み補償電力増幅器では、 利得調整回路は 、 歪み信号発生回路の前段に置かれている。 図面の簡単な説明
第 1図は本発明による非線形歪み補償電力増幅器の基本構成説明図である。 第 2図は本発明によるアルゴリズ厶の 1例を示すフロー図である。
第 3図は本発明の 1実施の形態による非線形歪み補償電力増幅器の構成図であ る。
第 4図は本発明の 1実施の形態における信号電力スぺク トルの説明図である。 第 5図は本発明の 1実施の形態における周波数変換回路の構成図である。 発明を実施するための最良の形態
第 1図に、 本発明による非線形歪み補償電力増幅器の基本構成を示す。 第 1図 において、 1は電力増幅すべき信号が入力される入力端子、 2は電力増幅器の非 線形歪み補償を行なう補償回路、 3は入力信号に瞬時値に応じた歪みを与えて歪 み信号を発生する歪み信号発生回路、 4は総合利得の変動を補償する利得調整回 路、 5は補償されるべき非線形歪み特性をもつ電力増幅器、 6は電力増幅された 信号を出力する出力端子、 7は入力信号の瞬時電力を測定する入力電力測定回路 、 8は歪み信号発生回路の歪み信号生成と利得調整回路の利得設定を制御する制 御回路、 9は出力信号中の増幅すべき希望帯域内の信号成分の平均電力と不要な 帯域外信号成分の平均電力をそれぞれ測定する出力電力測定回路、 1 0は最適な 歪み信号を生成する制御と総合利得を一定に保つ拘束付き制御を行なぅァルゴリ ズ厶 (即ち、 プログラム) である。
以下、 第 1図の回路の各部機能と動作の細部について、 例示的方法により説明 する。
補償回路 2の歪み信号発生回路 3と利得調整回路 4および電力増幅器 5は、 入 力端子 1と出力端子 6の間に縦続接続されている。 歪み信号発生回路 3は、 入力 信号の順次の瞬時値に対して、 後段の電力増幅器 5の非線形歪みによって丁度打 ち消されるような振幅と位相の歪みを前もって与えておくことにより、 電力増幅 器の出力信号には歪みが現れないようにする。 制御回路 8は、 歪み信号発生制御 のため、 入力信号の瞬時電力に応じて入力信号に与える歪み量を、 各瞬時電力値 に対応する一連の歪み量のパターンとして、 図示省略されているメモリに記憶し ており、 入力信号の瞬時電力値が検出されると、 その値に対応する歪み量をメモ リから読み出し、 歪み信号発生回路 3に指示して入力信号に歪みを与え、 歪み信 号を発生する。 このとき入力信号に与える歪みは、 振幅歪みと位相歪みからなり (位相歪みは省略できる場合もある) 、 電力増幅器 5の非線形歪み特性によって 丁度打ち消されるように最適に定められる。
歪み信号発生回路 3は、 制御回路 8からの制御信号により入力信号の振幅に歪 みを与える可変利得制御回路と、 同じく入力信号の位相に歪みを与える可変位相 制御回路で構成される。
利得調整回路 4は、 たとえば可変減衰器で構成され、 総合利得の変動が検出さ れたとき減衰量を変化させて利得変動を補償するように制御され、 総合利得が常 に一定値に保たれるようにする。
制御回路 8の制御に必要とされる入力信号と出力信号の各電力は、 入力電力測 定回路 7と出力電力測定回路 9により測定され、 制御回路 8に送られる。 入力電 力測定回路 7は、 入力端子 1の入力信号の瞬時電力と平均電力を測定するが、 瞬 時電力のみを測定して、 平均電力は制御回路 8で計算するようにすれば、 入力電 力測定回路 7を簡単化できる。 同様にして、 出力電力測定回路 9は、 出力端子 6 の出力信号について、 出力信号中に含まれる希望周波数帯域内の信号成分と、 帯 域外の不要信号成分との各平均電力を別々に測定し、 測定結果を制御回路 8に送 これにより、 入力端子 1に印加された入力信号は、 歪み信号発生回路 3で入力 信号の瞬時値に応じた振幅と位相の歪みをもつ歪み信号に変換され、 さらに利得 調整回路 4の利得補償で振幅を調整されて電力増幅器 5に入力される。 電力増幅 器 5で電力増幅された結果の歪みを低減された出力信号は、 出力端子 6から出力 される。 なお、 利得調整回路 4は、 図では歪み信号発生回路 3と電力増幅器 5の 間に挿入されているが、 入力端子 1 と歪み信号発生回路 3の間に置いてもよい。 歪み信号発生回路 3および利得調整回路 4は、 それぞれ制御回路 8のァルゴリズ ム 1 0にしたがって制御される。 アルゴリズム 1 0は、 主メモリ (図示せず) 上 に格納された当該制御を実行するプログラムを C P U (図示せず) 上で実行する ことにより実現される制御手段である。
ところで、 増幅器の総合利得値と歪み特性の間には相互に影響し合う関係があ つて、 一方を変えると他方も変わってしまうため、 制御回路 8のアルゴリズム 1 0には、 総合利得を常に一定の目標値に制御した状態で歪み信号を最適化するい わゆる拘束付き制御ァルゴリズムが使用される。 この拘束付き制御アルゴリズム は、 総合利得を一定に調整する制御と歪み信号を最適化する制御を、 収束状態が 最終的に得られるまで交互に繰り返し実行することにより実現できる。
ここで総合利得を一定に調整する制御は、 入力信号の平均電力と出力信号の希 望帯域内信号成分の平均電力から総合利得を算出し、 算出した総合利得値を基準 の一定値と比較して利得変動の偏差を求め、 その偏差が零になるような利得補償 値を利得調整回路 4に指示して、 総合利得を一定値に制御するものである。
この総合利得を一定値に制御した後に続いて行なう歪み信号の最適化制御では 、 複数種類の多様な歪み量パターンを生成して、 生成した歪み量パターンの中か ら最適なものを選択する。 このためのアルゴリズム 1 0としては、 たとえば試行 錯誤的に異なる歪み量パターンを逐次生成し、 それぞれの歪み量パターンで入力 信号の瞬時電力値に対応する歪み量を歪み信号発生回路 3に指示して歪み信号を 発生させ、 そのとき増幅器から出力される信号中に含まれる不要な帯域外信号成 分の平均電力を監視して、 帯域外信号成分の平均電力値が許容値以下になった最 初の歪み量パターンを最適なものとして選択する方法とすることができる。 ある いはまた、 すべての種類の歪み量パターンを生成してそれぞれについて歪み信号 の発生を実行し、 その中で帯域外信号成分の平均電力値を最小にする歪み量パ夕 —ンを最適なものとして選択する方法をとつてもよい。 ただし、 いずれの方法で あっても、 各新しい歪み量パターンを適用したとき、 前述した総合利得を一定値 に制御するアルゴリズムを実行する必要がある。 複数種類の多様な歪み量パターンを生成するには、 計算により歪み量パターン を逐次変化させる方法や、 予め作成した複数種類の歪み量パターンをメモリに記 憶させておいてその中から逐次選択する方法がある。
第 2図に、 総合利得が一定の条件の基で歪み信号の最適化を図る拘束付き制御 アルゴリズムの例をフローで示す。 第 1図に示すアルゴリズム 1 0において、 既 生成の歪み量パターンがあればそれとは異なる歪み量パターンを生成し (ステツ プ S 1 ) 、 生成した歪み量パターンに基づき歪み信号を発生させるとともに (ス テツプ S 2 ) 、 総合利得を検出して利得変動を一定値に補償し (ステップ S 3 ) 、 その後で出力信号に含まれている帯域外信号成分の平均電力値を検出して値を 保存する (ステップ S 4 ) 。 以上のステップ S 1乃至ステップ S 4の処理を繰り 返すことにより、 逐次的に生成した複数の相互に異なる歪み量パタ一ンのすべて について、 同様の処理を行う。 生成すべき (と思われる) 歪み量パターンがなく なつたならば (ステップ S 5 ) 、 保存されている各歪み量パターンの平均電力値 を比較して平均電力値が最小のパターンを選択し (ステップ S 6 ) 、 それを最適 パターンとしてメモリに記憶する (ステップ S 7 ) 。
このようなアルゴリズム 1 0に基づく制御を、 起動時のほか、 運用中に適当な 周期で繰り返すことにより、 環境変化に影響されることなく、 常に総合利得を一 定に保った状態で最適な歪み信号を生成することができ、 電力増幅器の非線形歪 みを精度よく安定に補償することが可能となる。
第 3図に、 本発明の好適な 1実施の形態による非線形歪み補償電力増幅器の構 成を示す。 第 3図において、 1 1は入力端子、 1 2はプレディスト一タ (Pred) 、 1 3は利得調整回路 (A G )、 1 4は電力増幅器 (PA) 、 1 5は方向性結合器 、 1 6は出力端子、 1 7は入力電力測定回路 (PWR DET ) 、 1 8は制御回路 (Co ηθ、 1 9は出力電力測定回路、 2 0は周波数変換回路、 2 1 と 2 2はフィルタ 、 2 3は平均電力検出器である。 制御回路 1 8は、 図示しないが、 アルゴリズム 1 0を備える。
入力端子 1 1に入力された移動無線などの信号は、 プレディストー夕 1 2によ り、 振幅および位相歪みを受ける。 プレディストータ 1 2の出力信号は利得調整 回路 1 3を通ったのち、 電力増幅器 1 4で増幅され、 方向性結合器 1 5を介して 、 出力端子 1 6に出力される。 出力信号の一部は、 方向性結合器 1 5により取り 出されて、 出力電力測定回路 1 9に入力される。 出力電力測定回路 1 9に入力さ れた出力信号の一部は、 周波数変換回路 2 0で周波数変換されたのち、 フィルタ 2 1、 2 2に入力される。 フィルタ 2 1は、 出力信号中の増幅すべき希望帯域内 の信号を取り出すフィルタであり、 フィルタ 2 2は帯域外の不要信号を取り出す フィルタである。 各フィルタ 2 1, 2 2の出力は、 それぞれ平均電力検出器 2 3 に入力されて、 帯域内信号平均電力と帯域外不要信号平均電力が測定される。 平 均電力検出器 2 3の検出出力は、 制御回路 1 8に入力される。 また入力信号の一 部は、 入力電力測定回路 1 7に入力されて瞬時電力を測定され、 その測定出力は 制御回路 1 8に入力される。
制御回路 1 8は、 内部のメモリ (図示せず) に予め記憶されている瞬時電力値 と歪み量の対応のパターンを用いて、 入力信号の瞬時電力値に応じた振幅および 位相の歪み量を求め、 その歪 量をプレディスト一タ 1 2に指示して入力信号に 歪みを付与させ、 歪み信号を発生する。 このときプレディストー夕 1 2に指示す る振幅及び位相の歪み量は、 入力信号の瞬時電力値により異なっており、 その値 は、 プレディストー夕方式の原理に即して、 電力増幅器 1 4の非線形歪みを打ち 消すように予め求められる。
メモリに記憶される歪み量のパターンは、 電力増幅器 1 4の非線形歪みを最適 に打ち消すものであり、 起動時や運用中に適宜更新されることができる。 最適な 歪み量のパターンは、 計算により生成した多様な歪み量パターンの中から、 フィ ル夕 2 2の出力の帯域外不要信号の平均電力を最小にするものが、 試行錯誤 (あ るいは反復法) などによるアルゴリズムを用いて選択され、 メモリに記憶される (例えば、 前述した特願 2 0 0 0 - 9 6 6 1を参照) 。 いずれにせよ、 本実施の 形態では、 制御回路のメモリに記憶される歪み量は適当なァルゴりズム 1 0によ り自動的に決定される。
制御回路 1 8は、 はじめに入力電力測定回路 1 7の出力である入力信号瞬時電 力から平均電力値を求め、 この値と出力電力測定回路 1 9から出力される増幅器 出力信号中の希望帯域内信号の平均電力値との比を計算することにより、 全体の 利得を求める。 求めた利得が与えられた基準値と異なる場合には、 これが一致す るように、 利得調整回路 1 3の利得を制御する。 この利得調整を行ったのち、 ァ ルゴリズム 1 0は歪み量パターンの更新を実施する。 なお、 利得調整回路 1 3は プレディスト一タ 1 2の前へ設けてもよい。
第 4図は、 本発明の 1実施の形態における信号電力スペクトルを示し、 第 5図 は第 3図における周波数変換回路 2 0の具体例を示す。
第 4図において、 実線は電力増幅器において非線形歪みが存在しない理想的な 場合の出力信号の電カスペクトルであり、 破線は非線形歪みにより発生した不要 な帯域外信号 (スプリアス) を示す。 第 3図の構成では、 フィルタ 2 2がこの帯 域外信号成分を取り出し、 平均電力検出器 2 3で信号の平均電力を測定し、 制御 回路 1 8のアルゴリズム 1 0 (図示せず) により、 この平均電力値が最小となる ような歪み量パターンを決定する。
第 5図に示す周波数変換回路は、 入力端子 3 1に第 3図の方向性結合器 1 5か ら分岐された出力信号の一部を入力し、 出力端子 3 4に周波数変換された信号を 出力する。 入力端子 3 1への入力信号は、 局部発振器 3 2からの局部発振信号出 力とともに、 周波数ミキサ 3 6に入力され、 両信号の差の周波数成分が低域フィ ルタ 3 3により取り出される。 局部発振器 3 2の発振周波数は制御端子 3 5に入 力される信号により変化できるものとし、 ここでは第 4図に示される電カスペク トルの中心周波数 f。に設定される。 出力端子 3 4から出力される信号は、 第 3図 のフィルタ 2 1 と 2 2に入力される。 フィルタ 2 1は、 通過帯域が 0〜 :^の低 域通過フィルタとする。 このとき、 局部発振周波数を f 0に設定したので、 フィル 夕 2 1からは、 第 4図の実線部分で示される希望帯域内信号が取り出される。 ま たフィル夕 2 2の通過帯域を厶 〜 に設定することにより、 フィルタ 2 2か らは第 4図に破線で示される帯域外信号を取り出すことができる。
第 3図の平均電力検出器 2 3は、 これらのフィルタ 2 1, 2 2の出力信号の平 均電力を別個に測定する。 制御回路 1 8は、 先に、 入力電力測定回路 1 7の出力 である入力信号の瞬時電力から入力信号平均電力値を求めておく。 制御回路 1 8 のアルゴリズム 1 0は、 入力信号にある歪み量を与えてみて、 フィルタ 2 1から の出力信号帯域内平均電力を観測する。 この観測値と先に求めていた入力信号の 平均電力値の比をとることにより、 入力端子 1 1から出力端子 1 6までの電力利 得を計算する。 計算された電力利得値が予め定めている電力利得の基準値と異な つていれば、 これらが等しくなるように利得調整回路 1 3の利得を調整する。 ァ ルゴリズム 1 0は、 この利得調整が終了してから、 プレディスト一タ 1 2を制御 するための最適な歪み量パ夕一ンの決定とメモリの更新を行う。
以上に述べた実施の形態では、 第 4図に示される単一帯域の信号スぺクトルを 仮定したが、 信号帯域が周波数軸上に複数個並んでいる場合においても、 局部発 振周波数とフィルタ 2 1、 2 2を適切に設定することにより、 増幅器出力信号の 帯域内電力と帯域外電力をそれぞれ測定することができる。 産業上の利用可能性
本発明によれば、 電力増幅器の特性が環境条件の変化や経時変化で変動したと しても、 全体の利得を常に一定に保ちながらプレディスト一夕を動作させること ができるので、 良好な非線形歪み補償を維持することができる。

Claims

請求の範囲
1 . 電力増幅器と、 電力増幅器の入力側に置かれて電力増幅器の非線形歪みを 打ち消すように入力信号に応じた歪み信号を発生する歪み信号発生回路と、 総合 利得を一定に調整する利得調整回路とを備える
ことを特徴とする非線形歪み補償電力増幅器。
2 . 歪み信号発生回路が発生する入力信号に応じた歪み信号は、 電力増幅器の 出力信号中の不要な帯域外信号成分の電力を最小にするアルゴリズムに基づいて 決定される
ことを特徴とする請求の範囲第 1項に記載の非線形歪み補償電力増幅器。
3 . 利得調整回路の利得は、 入力信号電力と出力信号中の帯域内信号電力とに 基づいて全体の利得が一定値になるように制御される
ことを特徴とする請求の範囲第 1項または第 2項に記載の非線形歪み補償電力 増幅器。
4 . 入力信号電力を測定する入力電力測定回路と、 出力信号中の帯域内信号電 力および帯域外信号電力を測定する出力電力測定回路とを備える
ことを特徴とする請求の範囲第 1項に記載の非線形歪み補償電力増幅器。
5 . 出力電力測定回路は、 電力増幅器の出力信号周波数を変換する周波数変換 回路と、 周波数変換された出力信号から帯域内信号およぴ帯域外信号をそれぞれ 取り出す第 1のフィル夕および第 2のフィル夕と、 取り出された帯域内信号およ び帯域外信号の各電力を測定する電力検出器とからなる
ことを特徴とする請求の範囲第 4項に記載の非線形歪み補償電力増幅器。
6 . 出力信号の帯域は、 異なる周波数領域の複数の帯域からなる
ことを特徴とする請求の範囲第 5項に記載の非線形歪み補償電力増幅器。
7 . 入力信号電力と出力信号電力に基づいて歪み信号発生回路および利得調整 回路を制御する制御回路を備える
ことを特徴とする請求の範囲第 1項に記載の非線形歪み補償電力増幅器。
8 . 制御回路は、 全体の利得を一定値に保ちながら入力信号に応じた最適な歪 み信号を発生させる拘束付き制御ァルゴリズムを有する ことを特徴とする請求の範囲第 7項に記載の非線形歪み補償電力増幅器。
9 . 拘束付き制御アルゴリズムは、 全体の利得が一定値になるように利得調整 回路を制御する第 1の制御論理と、 出力信号中の帯域外信号成分の電力が最小に なるような歪み信号を歪み信号発生回路が発生できるように、 歪み信号発生回路 に与える入力信号の瞬時値に対応する歪み量のパターンを最適に決定する第 2の 制御論理とを含み、 第 1の制御論理と第 2の制御論理は順次交互に実行される ことを特徴とする請求の範囲第 8項に記載の非線形歪み補償電力増幅器。
1 0 . 利得調整回路は、 歪み信号発生回路と電力増幅器の間に置かれている ことを特徴とする請求の範囲第 1項に記載の非線形歪み補償電力増幅器。
1 1 . 利得調整回路は、 歪み信号発生回路の前段に置かれている
ことを特徴とする請求の範囲第 1項に記載の非線形歪み補償電力増幅器。
PCT/JP2001/008134 2000-09-19 2001-09-19 Amplificateur de puissance a compensation de distorsion non lineaire WO2002025808A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR10-2003-7003988A KR20030041990A (ko) 2000-09-19 2001-09-19 비선형 왜곡 보상 전력 증폭기
CA002421773A CA2421773A1 (en) 2000-09-19 2001-09-19 Nonlinear distortion compensation power amplifier
US10/380,991 US6859099B2 (en) 2000-09-19 2001-09-19 Nonlinear distortion compensation power amplifier
EP01970144A EP1335489A4 (en) 2000-09-19 2001-09-19 POWER AMPLIFIER WITH COMPENSATION OF NONLINEAR DISTORTIONS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-283042 2000-09-19
JP2000283042A JP2002094335A (ja) 2000-09-19 2000-09-19 非線形歪み補償電力増幅器

Publications (1)

Publication Number Publication Date
WO2002025808A1 true WO2002025808A1 (fr) 2002-03-28

Family

ID=18767458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008134 WO2002025808A1 (fr) 2000-09-19 2001-09-19 Amplificateur de puissance a compensation de distorsion non lineaire

Country Status (7)

Country Link
US (1) US6859099B2 (ja)
EP (1) EP1335489A4 (ja)
JP (1) JP2002094335A (ja)
KR (1) KR20030041990A (ja)
CN (1) CN1265549C (ja)
CA (1) CA2421773A1 (ja)
WO (1) WO2002025808A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7212584B2 (en) 2002-08-05 2007-05-01 Hitachi Kokusai Electric Inc. Distortion compensator
JP2012520031A (ja) * 2009-03-09 2012-08-30 ゼットティーイー ウィストロン テレコム アーベー 拡大の作業範囲を有するデジタルプリディストーション回路及びその方法

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7120410B2 (en) * 2001-09-28 2006-10-10 Broadcom Corporation LNA gain adjustment in an RF receiver to compensate for intermodulation interference
US6873832B2 (en) * 2001-09-28 2005-03-29 Broadcom Corporation Timing based LNA gain adjustment in an RF receiver to compensate for intermodulation interference
US7657241B2 (en) * 2002-02-01 2010-02-02 Qualcomm, Incorporated Distortion reduction calibration
EP1511182B1 (en) * 2002-05-31 2011-07-13 Fujitsu Limited Table reference predistortor
US7295819B2 (en) 2003-03-11 2007-11-13 Andrew Corporation Signal sample acquisition techniques
US6919764B2 (en) * 2003-03-11 2005-07-19 Andrew Corporation Amplifier control system with statistical enhancement of resolution of digital control signals
US7123890B2 (en) 2003-03-11 2006-10-17 Andrew Corporation Signal sample acquisition techniques
JP4394409B2 (ja) * 2003-09-25 2010-01-06 株式会社日立国際電気 プリディストーション方式歪補償機能付き増幅器
WO2006072973A1 (ja) * 2005-01-04 2006-07-13 Fujitsu Limited Dcオフセット補償方法及びdcオフセット補償装置
JP4697778B2 (ja) * 2005-03-25 2011-06-08 パナソニック株式会社 歪み補償装置及び歪み補償方法
JP4701024B2 (ja) * 2005-07-07 2011-06-15 株式会社日立国際電気 プリディストーション歪補償付き増幅器
JP5242024B2 (ja) * 2006-06-08 2013-07-24 株式会社東芝 歪補償装置、増幅装置、送信装置、歪補償方法
US7400129B1 (en) * 2006-06-30 2008-07-15 At&T Mobility Ii Llc Measurement of distortion in an amplifier
JP4715669B2 (ja) * 2006-08-01 2011-07-06 オムロン株式会社 温度調節器
KR100853698B1 (ko) * 2006-12-08 2008-08-25 한국전자통신연구원 링크 송신기 및 링크 송신기의 오차 보정 방법
CN101765969A (zh) * 2007-07-31 2010-06-30 富士通株式会社 失真补偿装置和方法
JP5176692B2 (ja) * 2008-05-28 2013-04-03 日本電気株式会社 歪補償回路及び歪補償方法
CN101621305B (zh) * 2008-06-30 2012-08-29 富士通株式会社 基带预失真装置和方法
JP4800352B2 (ja) * 2008-07-29 2011-10-26 シャープ株式会社 自動利得制御回路、チューナ、テレビ受信機およびセットトップボックス
US8611460B2 (en) 2008-09-03 2013-12-17 Freescale Semiconductor, Inc. Wireless communication unit, integrated circuit and method of power control of a power amplifier therefor
CN101414804B (zh) * 2008-09-18 2010-05-12 北京创毅视讯科技有限公司 功率放大器非线性校正方法、装置和功率放大器
JP2010166453A (ja) * 2009-01-16 2010-07-29 Sumitomo Electric Ind Ltd 歪補償装置及び無線基地局
JP2010278505A (ja) 2009-05-26 2010-12-09 Fujitsu Ltd 無線送信装置
CN102480273B (zh) * 2010-11-24 2014-09-10 中兴通讯股份有限公司 一种实现功率放大器输出功率控制的装置及方法
US8258876B1 (en) * 2011-01-07 2012-09-04 Anadigics, Inc. Power amplifier protection circuit
JP5630327B2 (ja) * 2011-03-01 2014-11-26 富士通株式会社 送信装置及び歪補償方法
CN102882478B (zh) * 2011-07-15 2016-03-16 瑞昱半导体股份有限公司 功率放大器的补偿装置及其相关方法
US8649745B2 (en) 2011-12-21 2014-02-11 Telefonaktiebolaget L M Ericsson (Publ) Adaptive predistortion for a non-linear subsystem based on a model as a concatenation of a non-linear model followed by a linear model
US9374044B2 (en) 2011-12-21 2016-06-21 Telefonaktiebolaget L M Ericsson (Publ) Architecture of nonlinear RF filter-based transmitter
US9819318B2 (en) 2011-12-21 2017-11-14 Telefonaktiebolaget L M Ericsson (Publ) Architecture of a low bandwidth predistortion system for non-linear RF components
GB2488201B (en) * 2012-01-27 2013-04-10 Renesas Mobile Corp Power control
US8811532B2 (en) 2012-03-16 2014-08-19 Telefonaktiebolaget L M Ericsson (Publ) Architecture and the training method of a PA DPD system with space mapping applied in the predistorter
JP2015026968A (ja) * 2013-07-26 2015-02-05 富士通株式会社 歪補償装置および歪補償方法
US9225387B2 (en) 2013-08-09 2015-12-29 Cable Television Laboratories, Inc. Analysis of captured signals to measure nonlinear distortion
US9209863B2 (en) * 2013-08-09 2015-12-08 Cable Television Laboratories, Inc. Analysis of captured random data signals to measure linear and nonlinear distortions
JP6179306B2 (ja) * 2013-09-19 2017-08-16 三菱電機株式会社 歪補償回路および歪補償方法
CN104581920B (zh) 2013-10-25 2019-07-23 展讯通信(上海)有限公司 一种多通道信号发射系统及发射方法
US9826263B2 (en) * 2014-10-22 2017-11-21 Arcom Digital, Llc Detecting CPD in HFC network with OFDM signals
CN108322237B (zh) * 2017-01-14 2020-09-29 鸿富锦精密工业(深圳)有限公司 干扰抑制系统及方法
US10230353B2 (en) 2017-03-03 2019-03-12 Apsidon, Inc. Nonlinear signal filtering
WO2019146549A1 (ja) * 2018-01-23 2019-08-01 株式会社村田製作所 電力増幅回路
KR102059817B1 (ko) * 2018-05-25 2019-12-27 삼성전기주식회사 증폭 이득 가변에 따른 위상 왜곡을 보상하는 가변이득 저잡음 증폭장치
CN113484809A (zh) * 2021-07-14 2021-10-08 上海联影医疗科技股份有限公司 射频功率放大器的输出稳定装置、射频系统和磁共振系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05102739A (ja) * 1991-10-04 1993-04-23 Nec Corp 電力増幅器
JPH10322137A (ja) * 1997-05-20 1998-12-04 Matsushita Electric Ind Co Ltd プリディストーション型歪補償回路付送信装置
JP2000151295A (ja) * 1998-11-05 2000-05-30 Mitsubishi Electric Corp 歪補償回路
JP2000216640A (ja) * 1998-12-10 2000-08-04 Nortel Networks Ltd 線形増幅装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5170495A (en) * 1990-10-31 1992-12-08 Northern Telecom Limited Controlling clipping in a microwave power amplifier
US5193224A (en) 1991-04-24 1993-03-09 Northern Telecom Limited Adaptive phase control for a power amplifier predistorter
JPH05268117A (ja) 1992-03-17 1993-10-15 Fujitsu Ltd 送信電力制御方式
FR2722350B1 (fr) * 1994-07-08 1996-08-23 Alcatel Espace Methode de linearisation d'un amplificateur non-lineaire, circuit de linearisation et amplificateur comportant un tel circuit
JP2746130B2 (ja) 1994-07-25 1998-04-28 日本電気株式会社 非線形特性発生回路
US5742201A (en) * 1996-01-30 1998-04-21 Spectrian Polar envelope correction mechanism for enhancing linearity of RF/microwave power amplifier
US6072364A (en) * 1997-06-17 2000-06-06 Amplix Adaptive digital predistortion for power amplifiers with real time modeling of memoryless complex gains
US6600792B2 (en) * 1998-06-26 2003-07-29 Qualcomm Incorporated Predistortion technique for high power amplifiers
US6069530A (en) * 1998-09-16 2000-05-30 Motorola, Inc. Apparatus and method for linear power amplification
JP3939888B2 (ja) 2000-01-19 2007-07-04 独立行政法人科学技術振興機構 非線形歪み補償電力増幅器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05102739A (ja) * 1991-10-04 1993-04-23 Nec Corp 電力増幅器
JPH10322137A (ja) * 1997-05-20 1998-12-04 Matsushita Electric Ind Co Ltd プリディストーション型歪補償回路付送信装置
JP2000151295A (ja) * 1998-11-05 2000-05-30 Mitsubishi Electric Corp 歪補償回路
JP2000216640A (ja) * 1998-12-10 2000-08-04 Nortel Networks Ltd 線形増幅装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1335489A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7212584B2 (en) 2002-08-05 2007-05-01 Hitachi Kokusai Electric Inc. Distortion compensator
JP2012520031A (ja) * 2009-03-09 2012-08-30 ゼットティーイー ウィストロン テレコム アーベー 拡大の作業範囲を有するデジタルプリディストーション回路及びその方法

Also Published As

Publication number Publication date
CN1265549C (zh) 2006-07-19
US20040032296A1 (en) 2004-02-19
CN1475043A (zh) 2004-02-11
EP1335489A1 (en) 2003-08-13
KR20030041990A (ko) 2003-05-27
EP1335489A4 (en) 2007-03-28
US6859099B2 (en) 2005-02-22
JP2002094335A (ja) 2002-03-29
CA2421773A1 (en) 2003-03-19

Similar Documents

Publication Publication Date Title
WO2002025808A1 (fr) Amplificateur de puissance a compensation de distorsion non lineaire
US8433263B2 (en) Wireless communication unit, integrated circuit and method of power control of a power amplifier therefor
US5610554A (en) Cancellation loop, for a feed-forward amplifier, employing an adaptive controller
EP1560329A1 (en) Digital predistorter using power series model
US20050253652A1 (en) Digital predistortion apparatus and method in power amplifier
JP2002232325A (ja) プリディストーション歪み補償装置
WO2004030206A1 (ja) 増幅装置
JPH09135123A (ja) 低ひずみアンプ
JP2002522989A (ja) 移動通信システムの電力増幅線形化装置及び方法
EP2795792B1 (en) Adaptive predistortion for a non-linear subsystem based on a model as a concatenation of a non-linear model followed by a linear model
JP2005333353A (ja) プリディストータ
US20090221245A1 (en) Method and system for estimating and compensating non-linear distortion in a transmitter using calibration
JP3939888B2 (ja) 非線形歪み補償電力増幅器
JPH11511927A (ja) プレ・ポストひずみ増幅器
WO2004051844A2 (en) Digital predistortion system for linearizing a power amplifier
GB2337169A (en) An adaptive predistorter for an amplifier
KR101244548B1 (ko) 송신 장치 및 조정값 측정 방법
JP4043824B2 (ja) 非線形歪補償装置および非線形歪補償方法
US20080290939A1 (en) Method and apparatus for distortion correction of RF amplifiers
US6326840B1 (en) Feed-forward distortion compensation amplifier and method of amplifying signal with feed-forward distortion compensation
JP2008028746A (ja) 歪み補償装置
EP1353438B1 (en) Feedforward amplifier, communication apparatus, feedforward amplifying method, program and medium
JP2001268151A (ja) プリディストーション歪補償装置
JP4312626B2 (ja) フィードフォワード型歪補償増幅器
US11196537B2 (en) Wireless communication apparatus and coefficient update method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FI FR GB SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020037003988

Country of ref document: KR

Ref document number: 2421773

Country of ref document: CA

Ref document number: 10380991

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001970144

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018190960

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037003988

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001970144

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001970144

Country of ref document: EP