WO2002023655A1 - Batterie de piles a combustible de type polymere solide - Google Patents

Batterie de piles a combustible de type polymere solide Download PDF

Info

Publication number
WO2002023655A1
WO2002023655A1 PCT/JP2001/008103 JP0108103W WO0223655A1 WO 2002023655 A1 WO2002023655 A1 WO 2002023655A1 JP 0108103 W JP0108103 W JP 0108103W WO 0223655 A1 WO0223655 A1 WO 0223655A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
gas
layer
gas barrier
diffusion layer
Prior art date
Application number
PCT/JP2001/008103
Other languages
English (en)
French (fr)
Inventor
Hideki Ito
Toshiro Kobayasi
Takuya Moriga
Akihiko Yamada
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to CA002391587A priority Critical patent/CA2391587C/en
Priority to MXPA02004950A priority patent/MXPA02004950A/es
Priority to BR0107218-8A priority patent/BR0107218A/pt
Priority to AU86272/01A priority patent/AU784147B2/en
Priority to EP01965697A priority patent/EP1326298A4/en
Priority to US10/129,133 priority patent/US7001688B2/en
Priority to JP2002527595A priority patent/JP3702273B2/ja
Publication of WO2002023655A1 publication Critical patent/WO2002023655A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an improvement of a polymer electrolyte fuel cell (PEFC: PolymerE1ecro1teFuelcCe11).
  • a polymer electrolyte fuel cell is composed of a cell, two separators arranged at both ends of the cell and sandwiching the cell, and a diffusion layer arranged between the cell and the separator. I have.
  • the cell comprises a solid polymer membrane and two reaction layers disposed on both sides of the membrane.
  • the diffusion layer includes a carbon paper and a slurry layer formed on one main surface of the carbon paper.
  • a groove for flowing hydrogen gas is formed on the cell side of the separator, and a groove for flowing air is formed on the other separator.
  • An object of the present invention is to provide a polymer electrolyte fuel cell that can avoid stagnation, generate power uniformly in the cell surface, and efficiently remove water.
  • a cell having a solid polymer membrane, a separator sandwiching the cell from both sides, a substrate made of a conductive porous material disposed on the cell and the separator, and the substrate And a diffusion layer having an upper slurry layer, wherein at least a part of the diffusion layer is provided with a gas barrier for preventing gas permeation in a main surface direction.
  • the gas barrier is a gas-impermeable material layer made of rubber or resin disposed on the removed portion by removing the base material corresponding to a portion where a gas barrier is to be formed.
  • the gas barrier is formed by projecting the separator corresponding to a portion where a gas barrier is to be formed from the periphery in the thickness direction to form a projecting portion.
  • the conductive porous material layer described above is a compressed layer obtained by compressing the conductive porous material layer with respect to the surroundings.
  • the gas barrier is a resin-impregnated layer that is kept airtight by impregnating the gas barrier over a portion corresponding to a portion where a gas barrier is to be formed.
  • the base material made of the conductive porous material is made of a carbon paper, a carbon cloth, or a carbon nonwoven fabric. Either of them is made by applying a water-repellent treatment to a fluororesin.
  • the interface E Nerugi one of the diffusion layer is set to 1 X 1 0- 3 ⁇ 5 x 1 0- 2 N / m.
  • the present invention in its preferred embodiment, the fuel gas flow rate supplied with the (L A [IZmi n]) and solid high content type fuel cell in a pressure loss ( ⁇ ⁇ [kgf / cm 2 ]) pressure but in the range of ⁇ ⁇ ⁇ 0. 2 x L a , the oxidant gas flow supplied similarly to the solid high molecular type fuel cell (L c [1 / min] ) and solid high content fuel cell
  • the loss (AP c [MP a]) is in the range of AP c ⁇ 0. l xL c .
  • the present invention is in its preferred embodiment, the gas transmission rate of the diffusion layer 1. 5 X 1 0- 4 cm / s / Pa or more with.
  • the diffusion layer has an average porosity of 45% or more.
  • FIG. 1 is an exploded cross-sectional view schematically illustrating a PEFC according to the present invention.
  • FIG. 2 is a conceptual diagram showing a reaction state of cells constituting the PEFC of FIG.
  • FIG. 3 is a plan view showing an outline of the separation for PEFC.
  • FIG. 4 is a conceptual cross-sectional view of the PEFC according to the embodiment (No. 1) of the present invention.
  • FIG. 5 is a conceptual cross-sectional view of the PEFC according to the embodiment (No. 2) of the present invention.
  • FIG. 6 is a conceptual cross-sectional view of the PEFC according to the embodiment (No. 3) of the present invention.
  • FIG. 7 is a graph showing the correlation between the gas flow rate of the air electrode and the pressure loss.
  • FIG. 8 is a graph showing the correlation between the gas flow rate at the anode and the pressure loss.
  • Figure 9 is a graph showing the correlation between pressure loss and generated voltage.
  • FIG. 10 is a graph showing the relationship between the gas permeation rate of the diffusion layer and the power generation voltage.
  • FIG. 11 is a graph showing the relationship between the average porosity of the diffusion layer and the power generation voltage.
  • PEFC polymer electrolyte fuel cell
  • FIG. 1 is an exploded cross-sectional view of one embodiment of a polymer electrolyte fuel cell according to the present invention.
  • the fuel cell 1 includes a cell 2, separators 3 a and 3 b disposed at both ends of the cell 2 to sandwich the cell 2, and the cell 2 and the separator 2.
  • the cell 2 includes a solid polymer film 5 and reaction layers 6 a and 6 b disposed on both sides of the film 5.
  • the solid polymer film 5 is a film formed of, for example, a perfluorosulfonic acid material.
  • the diffusion layer 4 is also called a base material. It is composed of a carbon paper 7 and a slurry layer 8 formed on one main surface thereof.
  • the carbon paper may be any of a carbon cloth and a carbon nonwoven fabric as long as it is a conductive porous material.
  • the slurry layer 8 is formed, for example, by mixing a hydrophilic carbon black, a hydrophobic carbon black, and polytetrafluoroethylene in a solvent naphtha and forming a slurry on the surface of the diffusion layer by screen printing and firing. Layer.
  • a groove 9 for flowing hydrogen gas is formed on the cell side of the separator 3a.
  • a groove 10 for flowing air is formed in the other separator 3b.
  • the reaction layer 6 a is composed of a fuel electrode 11 and, for example, a platinum catalyst layer 12 formed on the solid polymer membrane 5 side
  • the other reaction layer 6b is composed of an air electrode 13 and a platinum catalyst layer 12 formed on the solid polymer film 5 side.
  • the fuel electrode 11 is composed of a platinum alloy catalyst supported on carbon black and a material such as an electrolyte polymer.
  • the air electrode 13 is composed of a platinum alloy catalyst supported on carbon black and an electrolyte polymer. It consists of material.
  • Air electrode 2 H + + 2 e— + (1/2) 0 2 H 2 0
  • the planar shape of the separator 3a is a shape in which grooves are formed in a meandering shape as shown in FIG.
  • the separator with such a shape for example, when hydrogen gas is sent from the introduction hole 14 at the corner of the separator 3a to the discharge hole 15 on the diagonal line, the gas flow rate is increased and it is interposed in the groove.
  • the gas direction is changed, for example, about three times.
  • fuel gas and oxidizing gas bypass the diffusion layer and do not flow according to the shape of the groove, but flow as shown by the dotted line in Fig. 3, and water accumulates in the cell, where the reaction area decreases, It is necessary to prevent the power generation performance from deteriorating.
  • This embodiment employs a structure that does not cause such a problem. You.
  • FIG. 4 (A) is a schematic plan view of a diffusion layer which is one configuration of a PEFC (polymer electrolyte fuel cell) according to the embodiment (Part 1) of the present invention.
  • FIG. 4B shows a cross-sectional view taken along line X--X in FIG. 4A.
  • the slurry layer is not shown in Fig. 4 (A).
  • the slits 22 are formed along the meandering grooves (not shown) of the separator 3a (or 3b) in the bonding layer 21 forming the diffusion layer.
  • a slurry layer 8 is formed on the pressure vessel 21 including the gas barrier 23, and a diffusion layer 24 is formed by the pressure paper 21.
  • the gas barrier 23 is made of a room-temperature-curable silicone rubber sealing material.
  • a gas barrier is produced by pouring a liquid silicone rubber into a slit paper in which a slit is formed, molding it into a predetermined thickness, and curing it at room temperature.
  • the slit 22 is attached to the carbon paper (base material) 21 along a meandering groove (not shown) of the separator 3a (or 3b).
  • the slit 22 is provided with a gas barrier 23 made of, for example, rubber. Therefore, when the gas is flowed in a meandering manner by incorporating the separator into the cell, the gas bypass can be eliminated and the gas can flow along the groove of the separator. Therefore, uniform power generation can be performed within the cell surface without water remaining in the cell. In addition, a uniform gas flow velocity can be obtained in the cell plane, and water can be removed efficiently.
  • Part 2 Embodiment (Part 2)
  • FIG. 5 is a schematic cross-sectional view of a diffusion layer, which is one configuration of the PEFC according to the embodiment (No. 2) of the present invention.
  • the separator 25 has a protruding portion 26 protruding in the thickness direction as compared with the surroundings.
  • the carbon paper 27 corresponding to the protruding portion 26 has a compression layer (gas barrier) 28 formed by being compressed as compared with the surroundings.
  • a slurry layer 8 is formed on the carbon paper 27 including the compression layer 28.
  • a protrusion 26 protruding in the thickness direction compared to the surroundings is formed at a predetermined position of the separator 25, and the carbon paper 27 corresponding to the protrusion 26 is formed.
  • the structure is such that a compression layer 28 is formed on the substrate. Therefore, as in the first embodiment, water can be generated uniformly in the cell surface without water remaining in the cell, and a uniform gas flow rate can be obtained in the cell surface. Water can be removed efficiently.
  • FIG. 6 is a schematic cross-sectional view of a diffusion layer as one configuration of PEFC according to the embodiment (No. 3) of the present invention.
  • the gas barrier is formed as a resin-impregnated layer (gas barrier) 31 impregnated with a resin, for example, on a portion of the carbon paper 21 as a base material where the gas barrier is to be formed.
  • the resin-impregnated layer 31 is airtight so that gas does not pass through.
  • a slurry layer 8 is formed on the carbon paper 21 including the resin-impregnated layer 31.
  • the air-tight resin impregnated layer 31 is formed on the carbon paper 25 corresponding to the portion where the gas barrier is to be formed. For this reason, as in the first embodiment, water accumulates in the cells. It is possible to generate electric power uniformly in the cell surface without stopping, to obtain a uniform gas flow velocity in the cell surface, and to efficiently remove water. Examination of various conditions based on examples
  • the present inventors have further studied the polymer electrolyte fuel cell according to the present invention with respect to appropriate operating conditions and the like in the following examples and comparative examples.
  • Examples 1 and 2 used a diffusion layer on the air electrode side in which a silicon polymer was formed as a gas barrier, and Example 1 used a number of grooves of 23 hours for separation, and Example 2 Manufactured a fuel cell using the number of grooves in the separatory with 30 passes.
  • Comparative Examples 1 and 2 the fuel cell was manufactured using the diffusion layer as it was, in Comparative Example 1 using the number of grooves in Separete 10 passes, and in Comparative Example 2 using the number of grooves 1 pass.
  • FIG. 7 is a graph showing the relationship between the gas flow rate on the air electrode side and the pressure loss. Comparing Comparative Example 1 with Comparative Example 2, the pressure drop dramatically increased for a fixed flow rate by changing the number of grooves from 10 passes to 1 pass, and water was thus removed. Can be.
  • Example 3 the diffusion layer on the fuel electrode side was formed by using a silicone polymer as a gas barrier.
  • the groove depth of the separator was 100% (0.3 mm depth). Was made.
  • Comparative Examples 3 and 4 a diffusion layer was used as it was.
  • a fuel cell was manufactured using a separator with a groove depth of 100%, and in Comparative Example 4 with a groove depth of 50%. did.
  • FIG. 8 is a graph showing the relationship between the gas flow rate on the fuel electrode side and the pressure loss.
  • FIG. 8 shows a comparison between Comparative Example 3 and Example 3.
  • Example 3 a pressure loss was obtained without reducing the depth of the groove during separation. This is probably because gas rectification can be achieved by forming a gas barrier layer in the diffusion layer.
  • Example 3 has a lower pressure loss.
  • water was effectively discharged because the same power generation voltage was obtained as in the comparative example. This is considered to be due to the gas rectification effect of the gas barrier.
  • power generation performance equivalent to that of Comparative Example 4 can be obtained at low pressure.
  • Figure 9 shows the relationship between the pressure loss on the fuel electrode side (one-to-one correspondence with the fuel flow rate) and voltage in each fuel cell.
  • Example 4 has the configuration of Example 1 on the air electrode side, the configuration of Example 2 on the fuel electrode side, The fuel cell was assembled as Comparative Example 1 on the air electrode side, Comparative Example 1 on the fuel electrode side, and Comparative Example 6 on the air electrode side as Comparative Example 2 on the fuel electrode side.
  • the pressure loss is large on both the fuel electrode and the air electrode side as in Comparative Example 5 (the groove depth is 50% compared to Comparative Example 6)
  • a stable high voltage can be obtained where the pressure loss is relatively low.
  • Can be This is thought to be due to the fact that pressure loss is produced even with a small gas flow rate, and because the gas volume is small, the carry-in of water vapor is reduced, and the amount of water that must be discharged to reduce the water content.
  • Example 4 the highest voltage can be obtained with a much smaller gas flow rate than Comparative Examples 5 and 6. This is because water in the fuel cell is efficiently discharged by the rectifying action of the gas barrier layer of the diffusion layer, and also prevents the inert gas (N 2 ) contained in the fuel gas from remaining in the fuel cell, This is probably because the hydrogen concentration in the battery was maintained at an appropriate level.
  • condition of ⁇ P c ⁇ 0.1 XL C relating to the amount of oxidizing gas is derived from the fact that the boundary of the minimum operable pressure drop is understood within the range below the straight line of Example 1 in FIG. Condition.
  • a slurry layer composed of a force black and polytetrafluoroethylene is formed on the surface of a force vapor paper having a different gas permeation rate, and a silicone rubber is formed in a shape similar to that of the groove of the separator. Made.
  • a power generation test was performed using this gas diffusion layer, and the relationship between the gas permeation rate of the diffusion layer and the power generation voltage is shown in FIG.
  • the gas permeation rate is below 1 ⁇ 5 X 1 0- 4 [ m / s / P a], about the power voltage begins to decrease 0. 7 5 X 1 0- 4 [ m / s / P a] voltage drop 1 0 [%] was observed, was a voltage drop of 0.
  • the gas permeation rate of the diffusion layer is 1.5 x 10-4 [m / s / Pa] or more.
  • a slurry layer composed of carbon black and polytetrafluoroethylene was formed on the surface of carbon paper with different average porosity, and a slit was formed using silicone rubber in the same shape as the grooves in Separete. did.
  • a power generation test was performed using this gas diffusion layer, and the relationship between the gas permeation rate of the diffusion layer and the power generation voltage was examined. When the average porosity falls below 40 [%], the generation voltage starts to decrease, and a voltage drop of about 20 [%] is seen at an average porosity of 35 [%], and an average porosity of 20 [%] ], The voltage dropped by 35 [%].
  • the average porosity of the diffusion layer is 40% or more, preferably 45% or more.
  • the separation used in the test had a groove width of 1.0 [mm] and a ridge width of 1.0 [m m] and the groove depth was 0.3 [mm].
  • This dimension is determined by the balance between the electrochemical performance and the mechanical strength requirements to support the electrode, and can be selected according to the application as shown in Table 1 below.
  • the preferred groove width is 0.5 to 2.5 [mm]
  • the width of the groove ridge is 0.5 to 2.5 [mm]
  • the groove depth is 0.2 to 3 0 [mm].
  • Run indicates the test number.
  • Runl is test number 1, 0.5 mm groove width, 2.5 mm ridge width, and 2.0 m length.
  • At least a portion of the diffusion layer is provided with a gas barrier for preventing gas permeation in the main surface direction, thereby preventing water from staying in the cell. It is possible to provide a polymer electrolyte fuel cell capable of achieving uniform power generation in a plane and efficiently removing water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

明 細 書 固体高分子型燃料電池 技術分野
本発明は、 固体高分子型燃料電池 (P E F C : P o l yme r E 1 e c r o 1 t e Fue l C e 11 ) の改良に関する。 背景技術
従来、 固体高分子型燃料電池では、 セルと、 このセルの両端側に配置さ れてセルを挾持する二つのセパレー夕と、 前記セルとセパレー夕間に配置 された拡散層とから構成されている。
前記セルは、 固体高分子膜と、 該膜の両側に配置された二つの反応層と から構成されている。 前記拡散層は、 カーボンぺーパと、 この一方の主面 に形成されたスラリー層とから構成されている。 前記セパレ一夕のセル側 には水素ガスを流すための溝が形成され、 他方のセパレー夕には空気を流 すための溝が形成されている。
しかしながら、 従来の固体高分子型燃料電池用セパレ一夕によれば、 燃 料ガス、 酸化ガスが上記拡散層をバイパスして溝の形状通りに流れず、 セ ル中に水が滞留し、 その部分で反応面積が少なくなり、 発電性能劣化の原 因となったりセルが破損する恐れがあるという問題があった。
また一方、 セル内に滞留する水を除去するために、 セパレー夕での圧力 損失を十分大きく取り、 対流する水をガス中に気体として取込む方法が採 用されていた。 この方法によると固体高分子型燃料電池でのガス圧力損失 が大きくなりガスを供給するコンプレッサ等の補器の動力が大きくなり、 燃料電池システム全体としての発電効率が低下する問題があった。 発明の開示
本発明はこうした事情を考慮してなされたもので、 拡散層の少なく とも 一部に、 主面方向へのガスの透過を阻止するガスバリアを設けた構成とす ることにより、 セル中に水が滞留するのを回避し、 セル面内で均一な発電 をなしえるとともに、 除水も効率的になしえる固体高分子型燃料電池を提 供することを目的とする。
本発明によれば、 固体高分子膜を有したセルと、 このセルを両側から挟 むセパレー夕と、 前記セルとセパレー夕閫に配置された導電性多孔質材料 からなる基材および該基材上のスラリー層を有した拡散層とを具備し、 前 記拡散層の少なくとも一部に、 主面方向へのガスの透過を阻止するガスバ リァを設けた固体高分子型燃料電池が提供される。
本発明は、 その好適な実施の形態において、 前記ガスバリアを、 ガスバ リア形成予定部に対応する前記基材を除去し、 その除去部分に配置された ゴムまたは樹脂によるガス不透過材料層としている。
また、 本発明は、 その好適な実施の形態において、 前記ガスバリアを、 ガスバリァ形成予定部に対応する前記セパレ一夕を周囲より厚み方向に突 出させて突出部を形成し、 この突出部に位置する前記導電性多孔材料層を 周囲と比べ圧縮して得られる圧縮層としている。
また、 本発明は、 その好適な実施の形態において、 前記ガスバリアを、 ガスバリァ形成予定部に対応する前記セパレ一夕に含浸して気密性を保持 した樹脂含浸層としている。
また、 本発明は、 その好適な実施の形態において、 前記導電性多孔質材 料からなる基材を、 カーボンぺーパ、 カーボンクロス、 カーボン不織布の いずれかにフヅ素樹脂を撥水処理してなる構成としている。
また、 本発明は、 その好適な実施の形態において、 前記拡散層の界面ェ ネルギ一は、 1 X 1 0— 3〜 5 x 1 0— 2N/mとしている。
また、 本発明は、 その好適な実施の形態において、 供給される燃料ガス 流量を (LA [ IZmi n]) と固体高分型燃料電池で圧力損失 (ΔΡΑ [k g f/c m2]) とが ΔΡΑ≤ 0. 2 x LAの範囲にあり、 同様にこの固体高 分子型燃料電池に供給される酸化剤ガス流量 (L c [ 1/m i n]) と固体 高分型燃料電池で圧力損失 (AP c [MP a]) とが AP c≤ 0. l xLcの 範囲としている。
さらに、 本発明は、 その好適な実施の形態において、 前記拡散層のガス 透過速度を 1. 5 X 1 0-4 cm/s/Pa以上としている。
さらに、 本発明は、 その好適な実施の形態において、 前記拡散層の平均 気孔率を、 4 5 %以上としている。 図面の簡単な説明
図 1は、 本発明に係る PEF Cの概略を説明する断面分解図である。
図 2は、 図 1の P E F Cを構成するセルの反応状況を示す概念図である。 図 3は、 P E F C用セパレ一夕の概略を示す平面図である。
図 4は、 本発明の実施の形態 (その 1 ) に係る P E F Cの概念的断面図 である。
図 5は、 本発明の実施の形態 (その 2 ) に係る P E F Cの概念的断面図 である。
図 6は、 本発明の実施の形態 (その 3 ) に係る P E F Cの概念的断面図 である。
図 7は、 空気極のガス流量と圧力損失の相関を示すグラフである。 図 8は、 燃料極のガス流量と圧力損失の相関を示すグラフである。
図 9は、 圧力損失と発電電圧の相関を示すグラフである。
図 1 0は、拡散層のガス透過速度と発電電圧の関係を示すグラフである。 図 1 1は、 拡散層の平均気孔率と発電電圧の関係を示すグラフである。
発明を実施するための最良の形態
以下、 図面を参照して本発明の実施の形態を説明する。 しかしながら、 かかる実施の形態は、 本発明の技術的範囲を限定するものではない。
まず、 本発明の一実施の形態に係る固体高分子型燃料電池 (P E F C ) について図面を参照して説明する。
実施の形態 (その 1 )
図 1は、 本発明に係る固体高分子型燃料電池の一実施の形態を断面でか つ分解して示す。 この燃料電池 1は、 セル 2と、 このセル 2の両端側に配 置されてセル 2を挟持するセパレー夕 3 a、 3 bと、 前記セル 2とセパレ
—夕 3 a、 3 b間に配置された拡散層 4とから構成されている。
前記セル 2は、 固体高分子膜 5と、 該膜 5の両側に配置された反応層 6 a、 6 bとから構成されている。
固体高分子膜 5は、 例えば、 パーフルォロスルホン酸の素材で形成され ている膜である。
前記拡散層 4は、 基材とも呼ばれるものである。 カーボンぺ一パ 7と、 この一方の主面に形成されたスラリー層 8とから構成されている。 なお、 このカーボンぺーパは、導電性多孔質材料であれば、他にカーボンクロス、 カーボン不織布のいずれかで良い。 スラリー層 8は、 例えば、 親水性力一 ボンブラヅク、 疎水性カーボンブラヅク及びポリテトラフルォロエチレン をソルベントナフサ中で混合してスラリーとしてこれを拡散層表面にスク リーン印刷し焼成して形成される層である。 一方、 前記セパレー夕 3 aのセル側には水素ガスを流すための溝 9を形 成している。 他方のセパレー夕 3 bには空気を流すための溝 1 0を形成し ている。
前記セル 2を更に具体的に説明すると、 図 2に示すように、 反応層 6 a は、 燃料極 1 1 と固体高分子膜 5側に形成された例えば白金触媒層 1 2と から構成し、 他方の反応層 6 bは空気極 1 3と固体高分子膜 5側に形成さ れた白金触媒層 1 2とから構成している。 燃料極 1 1は、 白金系合金触媒 をカーボンブラックに担持したものと電解質高分子等の素材で構成し、 空 気極 1 3は白金合金触媒をカーボンブラックに担持したものと電解質高分 子等の素材で構成している。
ここで、 前記燃料極 1 1、 空気極 1 3では、 下記のような反応が行われ る。
燃料極: H 2→2 H + + 2 e _
空気極: 2 H + + 2 e— + ( 1 / 2 ) 0 2 H 2 0
ところで、 こう した構成の燃料電池において、 前記セパレ一夕 3 a (ま たは 3 b ) の平面形状は図 3に示すように溝を蛇行状に形成した形状とし ている。 つまり、 こうした形状のセパレ一夕では、 例えば水素ガスをセパ レー夕 3 aのコーナー部の導入穴 1 4から対角線上の排出用穴 1 5へ送る 際に、 ガスの流速を上げて溝に介在する水を吹き飛ばすため、 例えば 3回 程度ガスの向きを変える構成としている。
ここで、 燃料ガス、 酸化ガスが拡散層をバイパスして溝の形状通りに流 れず、 図 3中の点線のように流れ、 セル中に水が滞留し、 その部分で反応 面積が少なくなり、 発電性能劣化を起こしたり しないようにする必要があ る。
本実施の形態では、 このような問題を引き起こさない構造を採用してい る。
図 4 ( A )、 ( B ) を参照する。 ここで、 前記したように、 図 4 ( A ) は 本発明の実施の形態 (その 1 ) に係る P E F C (固体高分子型燃料電池) の一構成である拡散層の概略平面図、 図 4 ( B ) は図 4 ( A ) の X— X線 に沿う断面図を示している。 但し、 図 4 ( A ) ではスラリー層を図示して いない。
拡散層を構成する力一ボンぺ一パ 2 1では、 セパレー夕 3 a (または 3 b ) の蛇行状の溝 (図示せず) に沿ってスリッ ト 2 2を形成している。 こ の力一ボンぺーパ 2 1のスリ ヅ ト 2 2には、 例えばゴムからなるガスバリ ァ 2 3を設けている。
前記ガスバリア 2 3を含む力一ボンべ一パ 2 1上にはスラリー層 8が形 成され、 力一ボンペーパー 2 1 とにより拡散層 2 4が形成されている。 こ こで、 ガスバリァ 2 3は常温硬化型のシリコンゴムシール材からなつてい る。
本実施の形態では、 スリ ッ トが形成された力一ボンペーパーに液状のシ リコンゴムを流し込み、 所定の厚さとなるように成形、 室温で硬化させる ことでガスバリァを作製する。
実施の形態 (その 1 ) によれば、 セパレ一夕 3 a (または 3 b ) の蛇行 状の溝 (図示せず) に沿ってカーボンぺーパ (基材) 2 1にスリ ヅ ト 2 2 を形成し、 このスリ ッ ト 2 2に例えばゴムからなるガスバリア 2 3を設け た構成となっている。 このため、 セパレー夕をセルに組み込んでガスを蛇 行状に流す際、 ガスのバイパスをなく し、 セパレ一夕の溝に沿って流すこ とができる。 したがって、 セル中に水が滞留することなく、 セルの面内で 均一な発電を行うことができる。 また、 セル面内で均一なガス流速を得る' ことができ、 除水を効率良く行うことができる。 実施の形態 (その 2 )
図 5を参照する。 図 5は本発明の実施の形態 (その 2 ) に係る P E F C の一構成である拡散層おょぴセパレー夕の概略断面図を示す。 この実施の 形態で、 セパレー夕 2 5は、 周囲と比べ厚み方向に突出した突出部 2 6を 有する。 該突出部 2 6に対応したカーボンぺーパ 2 7は、 周囲のそれと比 ベて圧縮して形成された圧縮層 (ガスバリア) 2 8を有している。 前記圧 縮層 2 8を含む前記カーボンぺ一パ 2 7上には、 スラリー層 8が形成され ている。
本実施の形態 (その 2 ) によれば、 セパレー夕 2 5の所定の位置に周囲 と比べ厚み方向に突出した突出部 2 6を形成し、 この突出部 2 6に対応し たカーボンペーパー 2 7に圧縮層 2 8を形成した構成となっている。 この ため、 実施の形態 (その 1 ) と同様、 セル中に水が滞留することなく、 セ ルの面内で均一な発電を行うことができ、 またセル面内で均一なガス流速 を得ることができ、 除水を効率良く行うことができる。
実施の形態 (その 3 )
図 6を参照する。 図 6は本発明の実施の形態 (その 3 ) に係る P E F C の一構成である拡散層の概略断面図を示す。 この実施の形態では、 ガスバ リァは、基材であるカーボンペーパー 2 1のガスバリァ形成予定部に樹脂、 例えばが含浸された樹脂含浸層 (ガスバリア) 3 1 として形成している。 ここで、 樹脂含浸層 3 1は気密性を有し、 ガスが通り抜けないようになつ ている。 前記樹脂含浸層 3 1を含む力一ボンペーパー 2 1上にはスラリ 一層 8が形成されている。
この実施の形態 (その 3 ) によれば、 ガスバリア形成予定部に対応する 力一ボンペーパー 2 5に気密性を有した樹脂含浸層 3 1が形成された構成 となっている。 このため、 実施の形態 (その 1 ) と同様、 セル中に水が滞 留することなく、 セルの面内で均一な発電を行うことができ、 またセル面 内で均一なガス流速を得ることができ、 除水を効率良く行うことができる。 実施例に基づく諸条件の検討
本発明者らは、 本発明に係る固体高分子型燃料電池について、 その適切 な運転条件等について、 以下に示す実施例、 比較例について、 さらに検討 を打った。
実施例 1及び 2、 比較例 1及び 2
実施例 1、 2は空気極側の拡散層にシリコ一ン製ポリマ一をガスバリァ として形成したものを用いて、 実施例 1はセパレ一夕の溝本数を 2 3パス としたもの、 実施例 2はセパレー夕の溝本数を 3 0パスとしたものを用い て燃料電池を製作した。
比較例 1、 2は拡散層をそのまま用いて、 比較例 1はセパレ一夕の溝本 数を 1 0パス、 比較例 2は溝本数を 1パスとしたものを用いて燃料電池を 製作した。
図 7は空気極側のガス流量と圧力損失の関係を示したグラフである。 比 較例 1 と比較例 2とを比較すると、 溝本数を 1 0パスから 1パスにするこ とによって圧力損失が一定流量に対して劇的に大きくなり、 これによつて 水を除去することができる。
ここで、 比較例 1 と実施例 1、 2を比較するとセパレ一夕の溝本数によ る圧力損失の差異がない。 これは、 実施例 1、 2では、 拡散層にガスバリ ァ層を形成することで、 ガスの整流を実現することができたためと考えら れる。
比較例 2と実施例 1、 2を比較すると実施例 1、 2で圧力損失が低くな つている。 しかし、 ガスの整流作用により、 比較例 2と同等以上に水が効 果的に排出されることが確認されている。 したがって、実施例 1、 2では、 低圧力で比較例 2と同等の発電性能が得られる。
実施例 3、 比較例 3、 4
実施例 3は燃料極側の拡散層にシリコーン製ポリマ一をガスバリアとし て形成したものを用いて、 実施例 3はセパレ一夕の溝深さを 1 0 0 % ( 0 . 3 m m深さ)としたものを製作した。
比較例 3、 4は拡散層をそのまま用いて、 比較例 3はセパレー夕の溝深 さを 1 0 0 %、 比較例 4は溝深さを 5 0 %としたものを用いて燃料電池を 製作した。
図 8は燃料極側のガス流量と圧力損失の関係を示したグラフである。
比較例 3と比較例 4とを実施した場合、 溝深さを 1 0 0 %から 5 0 %に することによって圧力損失が一定流量に対して劇的におおきくなり水を効 果的に除去することができた。
図 8で比較例 3と実施例 3を比較すると、 実施例 3では、 セパレ一夕の 溝深さを減少させることなく圧力損失が得られている。 これは、 拡散層に ガスバリア層を形成することで、 ガスの整流を実現することができるため と思われる。
比較例 4と実施例 3を比較すると実施例 3ででは、 圧力損失が低くなつ ている。 しかし、 実際に発電評価を行った結果、 比較例な条件時と同じ発 電電圧が得られることより、 水が効果的に排出されることが確認されてい る。これは、ガスバリァによるガスの整流作用のためであると考えられる。 このように、 低圧力で比較例 4と同等の発電性能が得られる。
実施例 4、 比較例 5、 6
図 9は各燃料電池における燃料極側の圧力損失(燃料流量と 1対 1対応) と電圧の関係を示している。
実施例 4は空気極側に実施例 1、 燃料極側に実施例 2の構成、 比較例 5 は空気極側に比較例 1、 燃料極側に比較例 1の構成、 比較例 6は空気極側 に比較例 2、 燃料極側に比較例 4の構成として燃料電池を組み立てた。 比較例 5の様に燃料極、 空気極側共に圧力損失が大きなもの(比較例 6に 比べて溝深さが 5 0 % )では、圧力損失が比較的低いところで安定した高電 圧を得ることができる。 これは少ないガス流量でも圧力損失がつくこと、 ガス量が少ないために水蒸気の持ち込みが減少し、 排出しなければ行けな い水分が減少することによるものと考えられる。
比較例 6 の様に燃料極、 空気極側共に圧力損失が小さな条件では安定し た高電圧を得ることが出来ず、 安定した高電圧を得るためには圧力損失を 大きくすることが必要であり、 大量のガスを供給しなければ行けないこと が了解される。
一方、 実施例 4では比較例 5、 6に対して非常に少ないガス流量で最高 電圧が得られる。 これは拡散層のガスバリァ層の整流作用により燃料電池 内の水が効率よく排出されるため、 また、 燃料ガスに含まれる不活性ガス (N2) が燃料電池内に滞留するのを防ぎ、 燃料電池内の水素濃度が適性に 保たれているためだと考えられる。
本発明に係るガスバリアを設けることにより、 供給される燃料ガス流量 を (LA [ 1/m i n]) と固体高分型燃料電池で圧力損失 (ΔΡΑ [k g f /cm2]) とが ΔΡΑ≤ 0. 2 x LAの範囲にあり、 同様にこの固体高分子 型燃料電池に供給される酸化剤ガス流量 (Lc [ 1/m i n]) と固体高分 型燃料電池で圧力損失 (ΔΡ。 [MP a]) とが ΔΡ。≤ 0. 1 x Lcの範囲 であっても、 好適にセル中に水が滞留するのを回避し、 セル面内で均一な 発電をなしえるとともに、 除水も効率的になしえる。
ここで、 燃料ガス流量に関する Δ PA≤ 0. 2 X LAの条件は、 図 8の実 施例 3の結果から、 実施例 3の直線よりも下の範囲で、 運転できる最低圧 損の境界が了解されることから導かれる条件である。
また、 酸化剤ガス量に関する△ P c≤ 0. 1 XLCの条件は、 図 7の実施 例 1 の直線よりも下の範囲で、 運転できる最低圧損の境界が了解されるこ とから導かれる条件である。
実施例 5
ガス透過速度が異なる力一ボンぺーパの表面に力一ボンブラヅクとポリ テトラフルォロエチレンとからなるスラリ層を形成し、 これにセパレー夕 の溝と同様の形状にシリコーンゴムを用いてスリ ッ トを製作した。 このガ ス拡散層を用いて発電試験を行い、 拡散層のガス透過速度と発電電圧の関 係を図 1 0に示す。 ガス透過速度が 1 · 5 X 1 0— 4 [m/s/P a] 以下 になると、 発電電圧が低下し始めて 0. 7 5 X 1 0- 4 [m/s/P a] で は約 1 0 [%] の電圧低下が見られ、 0. 3 8 X 1 0 4 [m/s/P a] では 3 7 [%] の電圧低下となった。 このことより拡散層のガス透過速度 は 1. 5 x 1 0—4 [m/s/P a] 以上であることが好適である。
実施例 6
平均気孔率が異なるカーボンぺーパの表面にカーボンブラックとポリテ トラフルォロエチレンとからなるスラリ層を形成し、 これにセパレ一夕の 溝と同様の形状にシリコーンゴムを用いてスリ ヅ トを製作した。 このガス 拡散層を用いて発電試験を行い、 拡散層のガス透過速度と発電電圧の関係 を調べた結果を図 1 1に示す。 平均気孔率が 4 0 [%] 以下になると、 発 電電圧が低下し始めて、 平均気孔率 3 5 [%] では約 2 0 [%] の電圧低 下が見られ、 平均気孔率 20 [%] では 3 5 [%] の電圧低下となった。 このことより拡散層の平均気孔率は 40 [%] 以上、 好適には45 [%] 以上である。
ここで、 試験に用いたセパレー夕は溝幅 1. 0 [mm]、 畝部幅 1. 0 [m m]、 溝深さ 0. 3 [mm] であった。 この寸法は電気化学的性能と電極を 支持するための機械的強度条件との釣り合いから決定されるものであり、 用途によって、 以下の表 1にあるように選択することができる。 表 1から 了解されるように、 望ましい溝幅は 0. 5〜2. 5 [mm], 溝畝部分の幅 は 0. 5〜2. 5 [mm], 溝深さは 0. 2〜3. 0 [mm] である。
表 1
溝形状と発電性能
Figure imgf000014_0001
なお、 表 1で、 Runは、 試験番号を表わし、 例えば、 Runl は、 試験番号 1で、 0. 5 mmの溝幅、 2. 5 mmの畝幅、 2. 0 mの長さであること を意味する。
以上、 本発明の保護範囲は、 上記の実施の形態例に限定されるものでは なく、 特許請求の範囲に記載された発明とその均等物にまで及ぷものであ る。
産業上の利用可能性
以上、 本発明によれば、 拡散層の少なくとも一部に、 主面方向へのガス の透過を阻止するガスバリアを設けた構成とすることにより、 セル中に水 が滞留するのを回避し、 セル面内で均一な発電をなしえるとともに、 除水 も効率的になしえる固体高分子型燃料電池を提供することができる。

Claims

請 求 の 範 囲
1. 固体高分子膜を有したセルと、 このセルを両側から挟むセパレー夕 と、 前記セルとセパレー夕間に配置された、 導電性多孔質材料からなる基 材および該基材上のスラリー層を有した拡散層とを具備し、 前記拡散層の 少なく とも一部に、 主面方向へのガスの透過を阻止するガスバリアを設け た固体高分子型燃料電池。
2. 前記ガスバリアを、 ガスバリア形成予定部に対応する前記基材を除 去し、 その除去部分に配置されたゴムまたは樹脂によるガス不透過材料層 とした請求項 1記載の固体高分子型燃料電池。
3 . 前記ガスバリアを、 ガスバリア形成予定部に対応する前記セパレー 夕を周囲より厚み方向に突出させて突出部を形成し、 この突出部に位置す る前記導電性多孔材料層を周囲と比べ圧縮して得られる圧縮層とした請求 項 1記載の固体高分子型燃料電池。
. 前記ガスバリアを、 ガスバリア形成予定部に対応する前記セパレー 夕に含浸して気密性を保持した樹脂含浸層とした請求項 1記載の固体高分 子型燃料電池。
5. 前記導電性多孔質材料からなる基材を、 カーボンぺーパ、 カーボン クロス、 カーボン不織布のいずれかにフッ素樹脂を撥水処理してなる構成 とした請求項 1〜 4のいずれかに記載の固体高分子型燃料電池。
6. 前記拡散層の界面エネルギーは、 1 X 1 0-3〜 5 X 1 0 _2N/mと した請求項 1〜 5のいずれかに記載の固体高分子型燃料電池。
7. 供給される燃料ガス流量を LA [ 1/mi n] と、 圧力損失 ΔΡΑ [k g f /cm2] とが、 ΔΡΑ≤ 0. 2 XLAの範囲にあり、 供給される酸化 剤ガス流量 Lc [ 1/mi n] と、 圧力損失を ΔΡ。 [k g f /cm2] と が APc≤ 0. 1 X L cの範囲にあるようにした請求項 1〜 6のいずれかに 記載の固体高分子型燃料電池。
8. 前記拡散層のガス透過速度を 1. 5 X 1 0-4 cm/s/Pa以上とし た請求項 1〜 7のいずれかに記載の固体高分子型燃料電池。
9. 前記拡散層の平均気孔率を 45 %以上とした請求項 1〜 8のいずれ かに記載の固体高分子型燃料電池。
PCT/JP2001/008103 2000-09-18 2001-09-18 Batterie de piles a combustible de type polymere solide WO2002023655A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA002391587A CA2391587C (en) 2000-09-18 2001-09-18 Polymer electrolyte fuel cell
MXPA02004950A MXPA02004950A (es) 2000-09-18 2001-09-18 Celda de combustible de electrolito de polimero.
BR0107218-8A BR0107218A (pt) 2000-09-18 2001-09-18 Célula de combustìvel eletrolìtica de polìmero
AU86272/01A AU784147B2 (en) 2000-09-18 2001-09-18 Solid polymer type fuel battery
EP01965697A EP1326298A4 (en) 2000-09-18 2001-09-18 BATTERY OF FUEL CELLS OF SOLID POLYMER TYPE
US10/129,133 US7001688B2 (en) 2000-09-18 2001-09-18 Solid polymer type fuel battery
JP2002527595A JP3702273B2 (ja) 2000-09-18 2001-09-18 固体高分子型燃料電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-282397 2000-09-18
JP2000282397 2000-09-18

Publications (1)

Publication Number Publication Date
WO2002023655A1 true WO2002023655A1 (fr) 2002-03-21

Family

ID=18766926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008103 WO2002023655A1 (fr) 2000-09-18 2001-09-18 Batterie de piles a combustible de type polymere solide

Country Status (10)

Country Link
US (1) US7001688B2 (ja)
EP (1) EP1326298A4 (ja)
JP (1) JP3702273B2 (ja)
KR (1) KR100458783B1 (ja)
CN (1) CN1299379C (ja)
AU (1) AU784147B2 (ja)
BR (1) BR0107218A (ja)
CA (1) CA2391587C (ja)
MX (1) MXPA02004950A (ja)
WO (1) WO2002023655A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202740A (ja) * 2004-12-21 2006-08-03 Matsushita Electric Ind Co Ltd 直接メタノール型燃料電池
JP2006210027A (ja) * 2005-01-26 2006-08-10 Toyota Motor Corp 燃料電池とその製造方法
JP2008541362A (ja) * 2005-05-11 2008-11-20 カール・フロイデンベルク・カーゲー ガス拡散層、ならびにその装置およびその製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10145875B4 (de) * 2001-09-18 2010-09-16 Daimler Ag Membran-Elektroden-Einheit für eine selbstbefeuchtende Brennstoffzelle
GB2382455B (en) * 2001-11-07 2004-10-13 Intelligent Energy Ltd Fuel cell fluid flow field plates
JP2004214019A (ja) * 2002-12-27 2004-07-29 Nissan Motor Co Ltd 燃料電池
JP2005243442A (ja) * 2004-02-26 2005-09-08 Mitsubishi Electric Corp 燃料電池
JP4848664B2 (ja) * 2005-04-22 2011-12-28 日産自動車株式会社 固体電解質型燃料電池及びスタック構造体
US7722979B2 (en) * 2005-10-14 2010-05-25 Gm Global Technology Operations, Inc. Fuel cells with hydrophobic diffusion medium
WO2007088832A1 (ja) * 2006-02-02 2007-08-09 Matsushita Electric Industrial Co., Ltd. セパレータ板および燃料電池
US8690960B2 (en) * 2009-11-24 2014-04-08 Covidien Lp Reinforced tissue patch
AU2012382382A1 (en) 2012-06-12 2015-01-15 Aquahydrex Pty Ltd Breathable electrode and method for use in water splitting
MX2016001378A (es) * 2013-07-31 2016-08-18 Aquahydrex Pty Ltd Celdas electroquimicas modulares.
EP3221533B1 (en) * 2014-11-18 2020-10-07 Parafoil Design & Engineering Pte Ltd A flood barrier
CN113677829A (zh) 2019-02-01 2021-11-19 阿酷海德里克斯公司 具有限制电解质的电化学系统
JP2022131625A (ja) * 2021-02-26 2022-09-07 本田技研工業株式会社 パウチセル、パウチセルの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273570A (ja) * 1985-09-27 1987-04-04 Toshiba Corp 燃料電池の製造方法
JPH02226663A (ja) * 1989-02-23 1990-09-10 Toray Ind Inc 燃料電池用基材の端部のガスシール方法
JPH0845517A (ja) * 1994-07-28 1996-02-16 Tanaka Kikinzoku Kogyo Kk 高分子電解質型燃料電池用シール構造及びその製造方法
JPH09265992A (ja) * 1996-03-29 1997-10-07 Mazda Motor Corp 燃料電池の電極構造

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4279970A (en) * 1980-02-20 1981-07-21 Electric Power Research Institute, Inc. Electrochemical cell including ribbed electrode substrates
US4365008A (en) * 1981-07-27 1982-12-21 United Technologies Corporation Densified edge seals for fuel cell components
US4824739A (en) * 1986-12-29 1989-04-25 International Fuel Cells Method of operating an electrochemical cell stack
US5252410A (en) * 1991-09-13 1993-10-12 Ballard Power Systems Inc. Lightweight fuel cell membrane electrode assembly with integral reactant flow passages
US5264299A (en) * 1991-12-26 1993-11-23 International Fuel Cells Corporation Proton exchange membrane fuel cell support plate and an assembly including the same
CA2139167C (en) * 1993-12-29 1997-12-02 Keijiro Yamashita Electrode used in electrochemical reaction and fuel cell using the same
US6106965A (en) * 1996-03-29 2000-08-22 Mazda Motor Corporation Polymer electrolyte fuel cell
US6146780A (en) * 1997-01-24 2000-11-14 Lynntech, Inc. Bipolar separator plates for electrochemical cell stacks
US5976726A (en) * 1997-05-01 1999-11-02 Ballard Power Systems Inc. Electrochemical cell with fluid distribution layer having integral sealing capability
US6468682B1 (en) * 2000-05-17 2002-10-22 Avista Laboratories, Inc. Ion exchange membrane fuel cell
CA2412869C (en) * 2000-06-29 2010-10-05 Nok Corporation Constituent part for fuel cell
CA2356008C (en) * 2000-09-01 2010-01-05 Honda Giken Kogyo Kabushiki Kaisha Membrane electrode assembly for fuel cell and method for producing the same
AU6060601A (en) * 2000-11-21 2002-06-03 Nok Corp Constituent part for fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273570A (ja) * 1985-09-27 1987-04-04 Toshiba Corp 燃料電池の製造方法
JPH02226663A (ja) * 1989-02-23 1990-09-10 Toray Ind Inc 燃料電池用基材の端部のガスシール方法
JPH0845517A (ja) * 1994-07-28 1996-02-16 Tanaka Kikinzoku Kogyo Kk 高分子電解質型燃料電池用シール構造及びその製造方法
JPH09265992A (ja) * 1996-03-29 1997-10-07 Mazda Motor Corp 燃料電池の電極構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1326298A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202740A (ja) * 2004-12-21 2006-08-03 Matsushita Electric Ind Co Ltd 直接メタノール型燃料電池
JP2006210027A (ja) * 2005-01-26 2006-08-10 Toyota Motor Corp 燃料電池とその製造方法
JP4581702B2 (ja) * 2005-01-26 2010-11-17 トヨタ自動車株式会社 燃料電池
JP2008541362A (ja) * 2005-05-11 2008-11-20 カール・フロイデンベルク・カーゲー ガス拡散層、ならびにその装置およびその製造方法

Also Published As

Publication number Publication date
JP3702273B2 (ja) 2005-10-05
EP1326298A4 (en) 2006-07-19
AU784147B2 (en) 2006-02-09
KR20020064316A (ko) 2002-08-07
AU8627201A (en) 2002-03-26
BR0107218A (pt) 2002-08-27
JPWO2002023655A1 (ja) 2004-01-29
MXPA02004950A (es) 2003-10-14
KR100458783B1 (ko) 2004-12-03
CA2391587A1 (en) 2002-03-21
US20030008200A1 (en) 2003-01-09
CN1299379C (zh) 2007-02-07
EP1326298A1 (en) 2003-07-09
CA2391587C (en) 2008-08-05
US7001688B2 (en) 2006-02-21
CN1393042A (zh) 2003-01-22

Similar Documents

Publication Publication Date Title
JP4304101B2 (ja) 電解質膜・電極構造体及び燃料電池
US6780533B2 (en) Fuel cell having interdigitated flow channels and water transport plates
WO2002023655A1 (fr) Batterie de piles a combustible de type polymere solide
JP5109311B2 (ja) 膜電極接合体、および、これを用いた燃料電池
US20020071978A1 (en) Fuel cell having a hydrophilic substrate layer
US20050084731A1 (en) Fuel cell
JP2001057218A (ja) 固体高分子型燃料電池およびその製造方法
CN107180986B (zh) 膜电极组件和包括膜电极组件的燃料电池
US20120003560A1 (en) Fuel cell for moisture management at gas inlets
US6833204B2 (en) Method of operating phosphoric acid fuel cell
EP1429408A1 (en) Electrolyte membrane/electrode union for fuel cell and process for producing the same
JP4514027B2 (ja) 燃料電池セル、および燃料電池
US7927754B2 (en) Pressure relief feature for a fuel cell stack
WO2000065678A1 (fr) Procede de fonctionnement d'une pile a combustible electrolytique a polymere
JPH08167416A (ja) 固体高分子電解質型燃料電池用の燃料電池セル
US20020045090A1 (en) Method for producing phosphoric acid fuel cell
US20040157111A1 (en) Fuel cell
JP2004253269A (ja) 高分子電解質型燃料電池およびその運転方法
JP2002319421A (ja) 固体高分子型燃料電池の起動方法及び製造方法
US20110104582A1 (en) Tailoring liquid water permeability of diffusion layers in fuel cell stacks
US20130260277A1 (en) Diffusion layer structure of fuel cell
JP2000277130A (ja) 固体高分子型燃料電池及び電解質膜の作製方法
JP2004186008A (ja) 固体高分子型燃料電池および固体高分子燃料型電池システムおよび移動体
JP5176376B2 (ja) 電解質膜およびそれを用いた燃料電池
JP2005190749A (ja) 燃料電池用膜電極接合体及びそれを用いた固体高分子形燃料電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN IN JP KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT

ENP Entry into the national phase

Ref document number: 2002 527595

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2391587

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10129133

Country of ref document: US

Ref document number: 2001965697

Country of ref document: EP

Ref document number: PA/a/2002/004950

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 018028020

Country of ref document: CN

Ref document number: 1020027006377

Country of ref document: KR

Ref document number: 200186272

Country of ref document: AU

Ref document number: 86272/01

Country of ref document: AU

Ref document number: IN/PCT/2002/729/CHE

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 1020027006377

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001965697

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027006377

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 200186272

Country of ref document: AU