WO2002023608A1 - Gaz de nettoyage et gaz d'attaque - Google Patents

Gaz de nettoyage et gaz d'attaque Download PDF

Info

Publication number
WO2002023608A1
WO2002023608A1 PCT/JP2001/007782 JP0107782W WO0223608A1 WO 2002023608 A1 WO2002023608 A1 WO 2002023608A1 JP 0107782 W JP0107782 W JP 0107782W WO 0223608 A1 WO0223608 A1 WO 0223608A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
cof
cleaning
gases
chamber
Prior art date
Application number
PCT/JP2001/007782
Other languages
English (en)
French (fr)
Inventor
Akira Sekiya
Yuki Mitsui
Ginjiro Tomizawa
Katsuya Fukae
Yutaka Ohira
Taisuke Yonemura
Original Assignee
Research Institute Of Innovative Technology For The Earth
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute Of Innovative Technology For The Earth, National Institute Of Advanced Industrial Science And Technology filed Critical Research Institute Of Innovative Technology For The Earth
Priority to US10/129,115 priority Critical patent/US6787053B2/en
Priority to EP01963514A priority patent/EP1318542B1/en
Publication of WO2002023608A1 publication Critical patent/WO2002023608A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a chamber cleaning gas and an etching gas.
  • Detail further includes Chiyanbakuri one such as a semiconductor substrate suitable for CVD apparatus in the manufacture of a fluorine-containing carbonyl compound having an environment generation hardly COF group harmful exhaust gas such as CF 4 in which is a cause of global warming Gas for etching and etching gas.
  • Chiyanbakuri one such as a semiconductor substrate suitable for CVD apparatus in the manufacture of a fluorine-containing carbonyl compound having an environment generation hardly COF group harmful exhaust gas such as CF 4 in which is a cause of global warming Gas for etching and etching gas.
  • gas etching for partially removing the thin film material has been used in order to form a circuit pattern on various thin film materials constituting a semiconductor circuit.
  • the basic performance required of such a cleaning gas or etching gas is that the cleaning gas has a high cleaning rate, and the etching gas has a high etching rate with respect to the target and high selectivity. And the like.
  • both companies are required to be friendly to the global environment without emitting harmful exhaust gases.
  • fluorine gas such as CF 4 , C 2 F 6 , SF 6 , and NF 3 has been used in large quantities in semiconductor manufacturing processes as a cleaning gas for such deposits or an etching gas for thin films. .
  • the present invention has a low global warming coefficient, does not easily generate exhaust gas such as CF 4 which is harmful to the environment that contributes to global warming, has excellent exhaust gas treatment properties, and is easy to handle. It is also intended to provide a gas for cleaning the chamber, such as a CVD apparatus, which is suitable for semiconductor production and which is excellent in cleaning performance for silicon-containing deposits, and an etching gas excellent in etching performance for silicon-containing films. . Disclosure of the invention
  • the present invention has been made in order to solve the above-mentioned problems.
  • the present inventors have found that a gas obtained by mixing a specific fluorine-containing carbonyl compound with oxygen has a low global warming potential, and has been cleaned or etched. in even less likely to cause harmful exhaust gas to a large CF 4 or the like of the environment impact on global warming, also with content Kei containing
  • the present inventors have found that they have excellent cleaning performance and etching performance for kimono and silicon-containing films, and have completed the present invention. The details are as follows.
  • the first chamber-cleaning gas according to the present invention is: Hey? If 0 2, and a other gases as needed, when the total amount of gas is 100 mol%, wherein the total content of the FCO F and 0 2 is 70 to 100 mol% And
  • the value of the mixing molar ratio of the FCOF and 0 2 (FCOF / 0 2) is preferably l ⁇ FCOF / 0 2 ⁇ 9.
  • the first chamber one cleaning gas of the present invention may include a other gases as necessary.
  • CF 3 and ⁇ _COF and 0 2 may include a other gases as necessary.
  • a CF 3 OCF 2 0 COF and 0 2 may include a other gases as necessary.
  • the first chamber one cleaning gas of the present invention, FCOF, and CF 3 OCOF and CF 3 OCF 2 at least one fluorine compound and 0 2 selected from the group consisting of OCOF, other optionally and a gas, when the total amount of gas was 10 0 mol%, FCOF, CF 3 OCOF and CF 3 total content of at least one fluorine compound selected from the group consisting of OCF 2 OCOF and the content of o 2 May be a gas having a total of 70 to 100 mol%.
  • Second Chillan bar cleaning gas of the present invention a CF 3 COF and 0 2, and a other gases as required, when the total amount of gas was 100 mol%, and CF 3 C OF 0
  • the total content of 2 and 70 to 100 mol% is characterized.
  • the value of the mixing molar ratio of the CF 3 COF and 0 2 is preferably 0. 25 ⁇ CF 3 COF / 0 2 ⁇ 1. 5.
  • the second chamber one cleaning gas of the present invention can a C 3 F 7 COF and 0 2, and a other gases as required, and the total amount of gas was 100 mol%, C 3 F 7 COF and 0 2 gas derconnection total content is 70 to 100 mole% of may further includes a CF 2 (COF) 2 and 0 2, and other gases as required wherein, when the total amount of gas is 100 mol%, the sum of CF 2 (COF) 2 and 0 2 and the content of may be a gas which is 70 to 100 mol%.
  • the other gas is preferably at least one inert gas selected from N 2 , He, Ne, Ar, Kr, 6 and 11.
  • the other gas is: 3 ⁇ (0 ⁇ or ⁇ ? 3 ⁇ .? 2 Includes ⁇ 30.
  • the chamber-one cleaning gas is a CVD apparatus chamber-one cleaning gas.
  • the chamber-cleaning gas is a gas for cleaning silicon-containing deposits
  • the silicon-containing deposits include (1) silicon, (2) oxygen, nitrogen, fluorine and carbon.
  • At least one of them is used.
  • First Kei-containing film for the etching gas according to the present invention includes a FCOF and 0 2, and a other gases as needed, when the total amount of gas was 100 mol%, FCO F and 0 2 And a total content of 70 to 100 mol%.
  • the value of the mixing molar ratio of the FCOF and ⁇ 2 (FCOF / 0 2) is preferably l ⁇ FCOF / 0 2 ⁇ 9.
  • the first silicon-containing film etching gas according to the present invention may include CF 3 OCOF and O 2, and if necessary, other gases. Also, a CF 3 OCF 2 0 COF and 0 2, may include a other gases as necessary.
  • FCOF, and CF 3 OCOF and CF 3 at least one fluorine compound selected from the group consisting of OCF 2 OCOF and 0 2, and a other gases as required, and the total amount of gas is 100 mol% when, FCOF, the sum of the total content and 0 2 content of CF 3 OC_ ⁇ _F and CF 3 at least one fluorine compound selected from the group consisting of OCF 2 OC_ ⁇ _F is 70 to 100 mol% It may be gas.
  • Second Kei-containing film for the etching gas according to the present invention Ji 3 (0? A and 0 2, and a other gases as required, when the total amount of gas was 100 mol%, CF 3 the total content of C oF and 0 2 are you are characterized in that 70 to 100 mol%.
  • the value of the mixture molar ratio of CF 3 C ⁇ F and ⁇ 2 is preferably 0.25 ⁇ CF 3 COF / O 2 ⁇ 1.5.
  • the second gay-containing film for the etching gas according to the present invention can a C 3 F 7 COF and 0 2, and a other gases as required, and the total amount of gas was 100 mol%
  • the gas may have a total content of C 3 F 7 COF and O 2 of 70 to 100 mol%.
  • CF 2 (C_ ⁇ _F) 2 and 0 2 and a other gases as required, when the total amount of gas is 100 mol%, the content of the CF 2 (COF) 2 0 2 May be a gas having a total of 70 to 100 mol%.
  • the other gas is preferably at least one inert gas selected from N 2 , He, Ne, Ar, K r, and 6] 1.
  • the other gas may include CF 3 OCOF and / or CF 3 OCF 2 OCOF.
  • the silicon-containing film includes (1) a silicon film, (2) a film comprising silicon and at least one of oxygen, nitrogen, fluorine and carbon, and (3) a high-melting metal silicide film. Preferably, at least one of them is used.
  • the gas for cleaning the chamber containing silicon-containing deposits and the etching gas for the silicon-containing film according to the present invention are gases in which oxygen is mixed with a specific fluorine-containing compound having a COF group.
  • the first chamber one cleaning gas of the present invention is a cleaning gas containing at least one compound selected from the group consisting of FCOF, CF 3 OC OF, CF 3 OCF 2 0 COF.
  • the second chamber cleaning gas according to the present invention is a chamber cleaning gas containing CF 3 COF, C 3 F 7 COF or CF 2 (COF) 2 . .
  • the first chamber one cleaning gas of the present invention, FCOF, a CF 3 OC OF, cleaning gas containing at least one compound selected from the group consisting of CF 3 OCF 2 OCOF.
  • FCOF can be preferably used.
  • the chamber When using the F CO F, the chamber one cleaning gas, the FCOF and 0 2, and a other gases as required, when the total amount of gas was 100 mol%, the content of the FC OF and 0 2 Is preferably 70 to 100 mol%, and more preferably 80 to 100 mol%.
  • inert gases such as N 2 , He, Ne, Ar, Kr, Xe, and Rn.
  • inert gases such as N 2 , He, Ne, Ar, Kr, Xe, and Rn.
  • the inert gas may be used singly or as a mixed gas of two or more types.
  • the chamber-cleaning gas containing FCOF may include CF 3 OCOF and Z or CF 3 OCF 2 OCOF as other gases.
  • Such CF 3 OC ⁇ F and CF 3 OCF 2 ⁇ COF are compounds that may be obtained as a mixture with FCOF depending on the production method and production conditions. When it is obtained as a mixture, it can be separated by a known method such as distillation, and the mixture can be used as a gas for cleaning the chamber.
  • CF 3 OCOF is used as the chamber-cleaning gas of the present invention without using FC OF and CF 3 OCF 2 OCOF together
  • CF 30 COF and ⁇ 2 and, if necessary, other gases are used. Can be included.
  • the value of the mixing molar ratio of the CF 3 OCOF and 0 2 is preferably 0. 4 ⁇ CF 3 OCOF / ⁇ 2 ⁇ 9, more preferably 0.5 ⁇ CF 3 ⁇ COF / 0 2 ⁇ 6, particularly preferably 0.6 ⁇ CF 3 OCOF / 0 2 ⁇ 4.
  • CF 3 OCF 2 OC ⁇ F is used as the chamber-cleaning gas of the present invention without using it together with FCOF and CF 3 OCOF, CF 3 OCF 2 ⁇ COF and ⁇ 2 and, if necessary, other Gas.
  • the value of the mixture molar ratio of CF 3 OCF 2 OCOF and O 2 is preferably 0.25 ⁇ CF 3 OCF 2 OCOF / 0 2 ⁇ 9, and Preferably, it is in the range of 0.3 ⁇ CF 3 OCF 2 ⁇ COF / 0 2 ⁇ 4, particularly preferably in the range of 0.4 ⁇ CF 3 OCF 2 OCOF / 0 2 ⁇ 2.5.
  • one cleaning gas of the present invention FCOF, and CF 3 OCOF and CF 3 at least one compound selected from the group consisting of OCF 2 OCOF and 0 2, and other gases as required It may include, when the total amount of gas is 100 molar%, the total content of the FCOF and 0 2, 70 to 100 mol%, it is desirable that good Mashiku is 80-100 mol%.
  • the same cleaning as C 2 F 6 conventionally used when the content of the gas and the mixture molar ratio are the amounts and values as described above, the same cleaning as C 2 F 6 conventionally used. It is possible to obtain a high-speed cleaning and to quickly remove deposits attached to the chamber.
  • the exhaust gas after the chamber cleaning includes a compound produced as a by-product of the decomposition of the cleaning gas.
  • the exhaust gas contains CF 4 having a long atmospheric life of 50,000 years and a large global warming potential.
  • the F CO F used in the present invention CF 3 OCOF Oyobi CF 3 OCF 2 OCOF readily reacts with water to decompose into HF and C0 2. Therefore, FCOF, CF 3 also OCOF and / or CF 3 OCF 2 OC OF is discharged as an exhaust gas remains undecomposed after the chamber one cleaning water disk is exhaust gas treatment system of a conventional Rubber in, it is possible to easily decomposed to HF and C0 2, without the need for a new combustion such decomposition treating apparatus to the post-processing, it is possible to suppress the equipment cost.
  • FCOF has a low boiling point (-83.C) and is a gas under semiconductor manufacturing conditions, so it is easy to handle in cleaning the chamber.
  • CF 3 OCOF has a boiling point of ⁇ 34 ° C and CF 3 OCF 2 OCOF has a boiling point of + 7 ° C.
  • FCOF it is a gas under semiconductor manufacturing conditions. Handling is easy in cleaning.
  • the method for producing the FCOF is not particularly limited.
  • the FCOF can be produced by reacting carbon monoxide with fluorine gas.
  • the method for producing CF 3 OC ⁇ F or CF 3 ⁇ CF 2 OCOF is not particularly limited, and a known method can be used.For example, it can be produced by the method described in US Pat. it can.
  • CF 3 OCOF and CF 3 OCF 2 OCOF can be obtained by reacting C 3 F 6 with oxygen gas.
  • the obtained compound can be obtained as a mixture of the above FCOF, fufHCF 3 OCOF and the above CF 3 OCF 2 OCOF, depending on the production conditions.
  • gases used in the present invention include N 2 , He, Ne, Ar, Kr,
  • An inert gas such as Xe or Rn is used.
  • the inert gas may be used singly or as a mixed gas of two or more types.
  • the second chamber one cleaning gas of the invention Ru with CF 3 C OF, when the total amount of gas is 100 mol%, and CF 3 COF, molarity sum 70-100 moles of ⁇ 2 %, Preferably 80 to 100 mol%.
  • the value of the mixing molar ratio (CF 3 COF / ⁇ 2 ) of CF 3 C ⁇ F and O 2 of the second chamber-cleaning gas according to the present invention is preferably 0.25 ⁇ CF 3 COF / 0 2 ⁇ 1.5, more preferably 0.4 ⁇ CF 3 COF / ⁇ 2 ⁇ l, particularly preferably 0.5 ⁇ CF 3 C ⁇ F / O 2 ⁇ 0.8.
  • the content of CF 3 CO F, ⁇ 2 content, the mixing ratio of the content and CF 3 COF and ⁇ 2 of other gases, if it is the amount and value as described above, have been conventionally used C it is possible to obtain a rate of about 70% of the chestnut-learning rate of 2 F 6, it is possible to rapidly remove the deposit attached to the chamber one.
  • the second Chillan bar cleaning gas of the invention Ru with C 3 F 7 COF, when the total amount of gas is 100 mol%, and C 3 F 7 COF, the molar concentration sum of the ⁇ 2 It is desirably 70 to 100 mol%, preferably 80 to 100 mol%. Further, the value of the mixture molar ratio (C 3 F 7 COF / O 2 ) of C 3 F 7 C ⁇ F and O 2 of the second chamber-cleaning gas according to the present invention is preferably 0.1. ⁇ C 3 F 7 COF / O 2 ⁇ 0. 7, more preferably 0. 15 ⁇ C 3 F 7 COF / O 2 ⁇ 0. 6, particularly preferably 0.
  • C 3 F 7 COF be 0.5, 0 2 content, the mixing ratio of the content and C 3 F 7 C oF and 0 2 of the other gases, as described above
  • the amount and the value it is possible to obtain a rate of about 70% of the cleaning rate of C 2 F 6 which has been conventionally used, and it is possible to quickly remove the deposit attached to the entire chamber.
  • the total gas amount is 100 mol%
  • the total molar concentration of CF 2 (COF) 2 and O 2 is It is desirably 70 to 100 mol%, preferably 80 to 100 mol%.
  • the value of CF 2 in the second gas chamber one cleaning according to the present invention (COF) mixing molar ratio of 2 and 0 2 (CF 2 (COF) 2/0 2) is the preferred properly 0 . 15 ⁇ CF 2 (COF) 2/ 0 2 ⁇ 1. 3, more preferably 0. 25 ⁇ CF 2 (COF) 2 /0 2 ⁇ 1, particularly preferably 0.
  • the exhaust gas after the chamber cleaning includes a compound produced as a by-product of the decomposition of the cleaning gas.
  • the exhaust gas contains CF 4 with a long atmospheric life of 50,000 years and a large global warming potential, but the CF 3 C ⁇ F and C 3 F If a second chamber-cleaning gas containing 7 COF or CF 2 (COF) 2 and 0 2 is used, while maintaining a cleaning rate of about 70% that of using C 2 F 6 , The content of CF 4 in the exhaust gas can be reduced as compared with the case where C 2 F 6 is used.
  • CF 3 C ⁇ F, C 3 F 7 COF and CF 2 (COF) 2 used in the present invention easily react with water and decompose into HF and CF 3 CO ⁇ H. For this reason, even if CF 3 COF, C 3 F 7 COF and CF 2 (COF) 2 are exhausted as exhaust gas without being decomposed by cleaning the chamber, the water scrubber, a conventional exhaust gas treatment facility, uses HF and CF. It can be easily decomposed into 3 COOH, and does not require a new combustion-type decomposer for post-processing, thus reducing equipment costs.
  • the method for producing CF 3 COF used in the present invention is not particularly limited.
  • it can be produced by reacting trifluoroethanol (CF 3 CH 2 OH) with fluorine gas.
  • C 3 F 7 C OF employed in the present invention can be used Sarezu, a known method, for example, be prepared by methods such as electrolytic fluorination of C 3 H 7 COF Can be. Also, commercially available C 3 F 7 COF can be used.
  • the method for producing CF 2 (C ⁇ F) 2 used in the present invention is not particularly limited, and a known method can be used.For example, CH 2 (COF) 2 can be used together with NaF and the like, together with fluorine gas and fluorine gas. It can be obtained by reacting.
  • the above-mentioned other gas may further contain a gas other than the above-mentioned inert gas as long as the object of the present invention is not impaired.
  • the gas other than the above inert gas include O 3 , H 2 , F 2 , C 1 F 3 , and Br F 3 .
  • chamber cleaning refers to removal of deposits adhering to chamber walls, jigs, pipes, and the like in a semiconductor manufacturing apparatus such as a CVD apparatus.
  • the mixed gas containing the above-mentioned fluorine-containing carbonyl compound and oxygen or the like can be used as a gas for cleaning a chamber such as a CVDD device.
  • the compound intended for chamber cleaning using such a fluorine-containing luponyl compound is, for example, the silicon-containing deposit (silicon) adhered to one wall of a CVD chamber or a jig of a CVD apparatus by a CVD method or the like. Contained deposits). Examples of such silicon-containing deposits include:
  • At least one can be mentioned among such, and more specifically, for example, refractory metal silicide such as WS i, S i, and the like S i 0 2, S i 3 N 4.
  • refractory metal silicide such as WS i, S i, and the like S i 0 2, S i 3 N 4.
  • the material of the chamber 1 using the cleaning gas according to the present invention is not particularly limited, and may be a known material.
  • a material for the chamber include stainless steel, aluminum, and alloys thereof.
  • the chamber cleaning gas according to the present invention hardly exerts an action such as corrosion on such a chamber, and the deposit attached to the chamber can be selectively and rapidly removed.
  • Known methods can be used to clean silicon-containing deposits in the chamber 1 using such a fluorine-based compound according to the present invention. Examples of such methods include plasma cleaning, remote plasma cleaning, and microwave cleaning. Various dry cleaning methods can be applied.
  • Kei-containing film for the etching gas according to the present invention FCOF, CF 3 OC OF, Kei-containing film for an etching gas containing at least one compound selected from the group consisting of CF 3 OCF 2 OC_ ⁇ _F It is.
  • the second etching gas for a silicon-containing film according to the present invention is an etching gas for a silicon-containing film containing CF 3 COF, C 3 F 7 COF or CF 2 (COF) 2 .
  • First Kei-containing film for the etching gas according to the present invention FCOF, gay-containing film for an etching gas containing at least one compound selected from CF3OC OF, the group consisting of CF 3 ⁇ _CF 2 OCOF.
  • FCOF can be preferably used.
  • the total amount of gas when the total amount of gas was 100 mol%, the FC OF and 0 2 It is desirable that the total amount is 70 to 100 mol%, preferably 80 to 100 mol%.
  • the value of the mixing molar ratio of FCOF and ⁇ 2 (FCOF / 0 2) is, l ⁇ FCOF / 0 2 ⁇ 9, preferably 1. 5 ⁇ FCOF / 0 2 ⁇ 6, more preferably 2. 3 ⁇ FCOF / It is desirable that 0 2 ⁇ 6.
  • etching gas for a silicon-containing film containing FCOF other gases that can be contained as necessary include N 2 , He, Ne, Ar, Kr, Xe, And an inert gas such as Rn.
  • the inert gas may be used singly or as a mixed gas of two or more types.
  • Kei-containing film for an etching gas containing F CO F as other gases may include CF 3 ⁇ COF and / or CF 3 OCF 2 OCOF.
  • Kei-containing film for the etching gas of the present invention in the case of using a CF 3 OC_ ⁇ _F FC OF, without combination with CF 3 OCF 2 OCOF, CF 3 and OCOF and ⁇ 2, other optionally Gas.
  • the value of the mixture molar ratio of CF 3 ⁇ COF and 0 2 is preferably 0.4 ⁇ CF 3 OCOF / 0 2 ⁇ 9, more preferably 0. 5 ⁇ CF 3 OCOF / 0 2 ⁇ 6, particularly preferably 0.6 ⁇ CF 3 OCOF / 0 2 ⁇ 4.
  • CF 3 OCF 2 OCO F is used as the etching gas for the silicon-containing film of the present invention without using it together with FCOF and CF 3 ⁇ C ⁇ F, CF 3 OCF 2 OCOF and ⁇ 2 are required.
  • Other gases can be included as appropriate.
  • the value of the mixture molar ratio of CF 3 OCF 2 OCOF and O 2 is preferably 0.25 ⁇ CF 3 OCF 2 OCOF / 0 2 ⁇ 9, and preferably 0. 3 ⁇ CF 3 OCF 2 OCOF / 0 2 ⁇ 4, it is desirable that particularly preferably in the range of 0. 4 ⁇ CF 3 OCF 2 OCOF / 0 2 ⁇ 2. 5.
  • FCOF, CF 3 and OCOF and CF 3 at least one compound selected from the group consisting of OCF 2 OCOF and 0 2, other gases as required when including bets, when the total amount of gas is 100 molar%, the total content of the F CO F and 0 2, 70: 100 mol%, favorable Mashiku is 80-100 mole% Is desirable.
  • the first silicon-containing film etching gas according to the present invention when the content of the gas and the mixture molar ratio are the above-described amounts and values, the same as that of the conventionally used C 2 F 6 It is possible to obtain an etching rate.
  • the exhaust gas after etching contains CF 4 having a large global warming potential as a by-product.
  • CF 4 having a large global warming potential as a by-product.
  • the content of CF 4 in the exhaust gas compared with the case of using C 2 F 6 can Rukoto significantly reduced.
  • F CO F used in the present invention react readily with moisture order to decompose the HF and C0 2, is easily decomposed, it is possible to suppress the equipment cost.
  • FCOF has a low boiling point (-83- ⁇ and is a gas under semiconductor manufacturing conditions, so it is easy to handle in etching.
  • CF 3 ⁇ COF has a boiling point of ⁇ 34 °.
  • C CF 30 CF 20 COF has a boiling point of +7 ° C and, like F COF, is a gas under semiconductor manufacturing conditions, and is easy to handle in etching silicon-containing films. .
  • the first etching gas according to the present invention has a good selectivity to a film to be processed, and is therefore sufficiently practical as a substitute gas such as C 2 F 6 .
  • the second etching gas for a silicon-containing film according to the present invention is characterized by containing CF 3 COF, C 3 F 7 COF or CF 2 (COF) 2 and O 2, and furthermore, if necessary. And other gases may be included.
  • gases used in the present invention N 2, He, Ne, Ar, Kr, Xe, include inert gases such as Rn.
  • the inert gas may be used singly or as a mixed gas of two or more types.
  • the second Kei-containing film for the etching gas of the invention CF 3 Ru with C OF, when the total amount of gas is 100 mol%, and CF 3 COF, molarity sum 70 of ⁇ 2 It is desirable that the content be 100 mol%, preferably 80 to 100 mol%. Furthermore, the value of the mixture molar ratio of CF 3 C ⁇ F and O 2 (CF 3 COF / O 2 ) of the second silicon-containing film etching gas according to the present invention is 0.25 ⁇ CF 3 COF / 0 2 ⁇ 1.5, preferably 0.4 ⁇ CF 3 COF / 0 2 ⁇ 1, more preferably 0.5 ⁇ CF 3 COF / O 2 ⁇ 0.8.
  • the second Kei-containing film for the etching gas of the invention Ru with C 3 F 7 C OF, when the total amount of gas is 100 mol%, and C 3 F 7 COF, moles of concentrated with 0 2 It is desirable that the total amount be 70 to 100 mol%, preferably 80 to 100 mol%. Further, the value of the mixture molar ratio (C 3 F 7 COF / O 2 ) of C 3 F 7 COF and O 2 of the second silicon-containing film etching gas according to the present invention is preferably 0.1. ⁇ C 3 F 7 COF / O 2 ⁇ 0. 7, more preferably 0. 15 ⁇ C 3 F 7 COF / O 2 0. 6, particularly preferably 0. 1 ⁇ C 3 F 7 COF / O 2 ⁇ 0 .5 is desirable.
  • each of the etching gases for C 2 F 6 was used. While maintaining an etching rate of 70%, the content of CF 4 in the exhaust gas can be reduced as compared with the case where C 2 F 6 is used.
  • CF 3 COF, C 3 F 7 COF and CF 2 (CO F) 2 used in the present invention easily react with moisture and decompose into HF and CF 3 COOH. For this reason, even if CF 3 COF, C 3 F 7 COF and CF 2 (COF) 2 are exhausted as exhaust gas without being decomposed by etching, HF and CF 3 It can be easily decomposed into CO OH, and does not require a new combustion-type decomposer for post-processing, and equipment costs can be reduced.
  • the boiling point of CF 3 COF is 1 59 ° C
  • the boiling point of C 3 F 7 COF is 2 to 5
  • the boiling point of CF 2 (COF) 2 is 18 ° C. Since it is a gas under semiconductor manufacturing conditions, handling in etching is easy.
  • the methods for producing and obtaining these CF 3 COF, C 3 F 7 COF and CF 2 (COF) 2 are the same as those described above.
  • the second etching gas according to the present invention has a good selectivity to a film to be processed, and is therefore sufficiently practical as a substitute gas such as C 2 F 6 .
  • the other gas may include a gas other than the inert gas as long as the object of the present invention is not impaired.
  • the gas other than the inert gases For example, ⁇ 3, H 2, F 2, C 1 F 3, B r F. And the like.
  • Examples of the target compound for etching include a silicon-containing thin film (silicon-containing film). Examples of such a silicon-containing film include:
  • S i film More specifically, for example, S i film, S i 0 2 film, S i 3 N 4 film, or a refractory metal silicide film such as WS i film.
  • etching such a silicon-containing film with the fluorine-containing compound according to the present invention known methods can be employed. Examples thereof include plasma etching, reactive ion etching, and microwave etching. Various dry etching methods can be applied. Known etching conditions can be adopted as the etching conditions for the silicon-containing film. Industrial applicability
  • the chamber cleaning gas according to the present invention by combining the above gases at a specific ratio, maintains an excellent cleaning speed almost the same as that of C 2 F 6 used conventionally, and even after cleaning. However, it has a low global warming potential and can significantly reduce the production of CF 4 , an harmful exhaust gas for the environment that contributes to global warming. Moreover, the chamber cleaning gas according to the present invention is easy to handle and has excellent exhaust gas treatment properties, so that economic efficiency and workability can be improved.
  • the etching gas for a silicon-containing film according to the present invention by combining the above gases at a specific ratio, is an excellent etching gas which is almost the same as C 2 F 6 conventionally used. While maintaining the tuning speed, even after etching, it has a low global warming potential and can significantly reduce the production of CF 4 , an exhaust gas harmful to the environment, which contributes to global warming. Moreover, the etching gas according to the present invention is easy to handle and has excellent exhaust gas treatment properties, so that the economy and workability can be improved. In addition, the etching can be performed efficiently while removing the silicon-containing film efficiently and while maintaining the dimensional accuracy of the semiconductor pattern with high accuracy, and has excellent etching performance.
  • Example 1 Example 1
  • the obtained compound was confirmed to be CF 2 (COF) 2 by FT-IR and 19 F-NMR.
  • the yield was 10%.
  • Table 1 shows the results of cleaning for 0.5 minutes under the above conditions.
  • Table 3 shows the results of cleaning the Si ⁇ 2 film using the mixed gas obtained by mixing CF 3 COF and oxygen synthesized in Preparation Example 2 in the proportions shown in Table 2 under the same conditions as in Example 1. See Figure 2.
  • the SiO 2 film was cleaned under the same conditions as in Example 1 and the like by using a mixed gas obtained by mixing C 2 F 6 and oxygen at the ratios shown in Table 3. Table 3 shows the results.
  • Table 5 shows the CF 4 content in the exhaust gas obtained after cleaning.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Description

明 細 書 クリーニングガス及びェツチングガス 技術分野
本発明は、 チャンバ一クリーニング用ガス及びエッチングガスに関する。 さら に詳しくは、 地球温暖化の一因とされる環境に有害な C F4等の排ガスを生成し にくい C O F基を有するフッ素含有カルボニル系化合物からなる半導体基板製造 に好適な C V D装置等のチヤンバークリ一二ング用ガス及びェッチングガスに関 する。 背景技術
従来、 半導体製造等における薄膜デバイスの製造プロセス等においては、 C V D法等を用いて、 種々の薄膜、 厚膜の形成が行われている。 このような半導体用 の薄膜を形成する際、 膜を成膜させるべき目的物以外の反応容器内壁、 目的物を 担持する冶具、 配管等にも薄膜原料と同じものが付着してしまう。 このような付 着物は、 半導体製品への微粒子の混入原因となり、 高品質な薄膜製造が困難とな るとともに製品の歩留りの低下を招くこともあり、 随時除去することが必要であ り、 従来、 人手あるいはクリーニングガスなどにより付着物の除去が行われてい た。
また、 半導体等においては、 半導体回路を構成する各種の薄膜材料に回路パ夕 一ンを形成するため、 薄膜材料を部分的に除去するガスェッチングが用いられて いた。
このようなクリーニングガスあるいはエツチングガスに求められる基本的な性 能としては、 クリーニングガスの場合はクリーニング速度が速いこと、 エツチン グガスの場合は、 目的物に対するエッチング速度が速いこと、 選択性が高いこと などが挙げられる。 また、 両者に共通して、 環境に有害な排ガスを排出せず、 地 球環境にやさしいこと等が求められている。 従来、 このような付着物のクリーニングガスあるいは薄膜のエツチングガスと しては、 C F4、 C2 F6、 S F 6、 N F3などのフッ素系ガスが半導体の製造工程で 大量に用いられていた。
しかしながら、 これらのフッ素系ガスは、 大気中で寿命の長い安定な化合物で あり、 クリーニング後、 あるいはエッチング後の未分解のガスの処理が困難で、 その処理コストが高いという問題点があった。 また、 これらのフッ素系ガスは、 地球温暖化係数 (積分期間 1 0 0年値) が、 (:02と比較して、 C F4では 6 5 0 0倍、 (:2 6では9 2 0 0倍、 3 6では2 3 9 0 0倍、 N F3では8 0 0 0倍と 極めて大きく、 環境への悪影響が懸念されるという問題点もあった。 このため、 地球温暖化係数が小さく、 しかも半導体のケィ素を含有する付着物に対するクリ 一二ング性能、 あるいはケィ素を含有する膜に対するエッチング性能に優れた代 替ガスの開発が求められていた。
また、 さらに、 使用するガス自体は、 環境に対しさしたる影響が無い場合であ つても、 クリーニング後、 あるいはエッチング後に使用したガスが分解された結 果、 C F4等の大気寿命が長く環境に有害なガスを発生する場合もあり、 分解さ れたガスの性状も、 環境に対し悪影響をもたらさないような代替ガスの開発が求 められていた。
したがって、 本発明は、 温暖化係数が小さく、 地球温暖化の一因とされる環境 に有害な C F4等の排ガスを発生しにくく、 しかも排ガス処理性に優れるととも に取り扱いが容易であり、 また、 ゲイ素含有付着物に対するクリーニング性能に 優れた半導体製造に好適な C VD装置等のチャンバ一クリーニング用ガス及びケ ィ素含有膜に対するェッチング性能に優れたェツチングガスを提供することを目 的としている。 発明の開示
本願発明は、 上記問題を解決すべくなされたものであって、 本願発明者らは、 特定のフッ素含有カルボニル系化合物に酸素を混合したガスが、 温暖化係数が小 さく、 クリーニング後あるいはエッチング後においても、 地球温暖化に与える影 響の大きい C F4等の環境に有害な排ガスを発生しにくく、 また、 ケィ素含有付 着物あるいはケィ素含有膜に対し優れたクリ一ニング性能及びェッチング性能を 有していることを見出し、 本発明を完成するに至った。 具体的には以下のとおり である。
本発明に係る第一のチャンバ一クリーニング用ガスは、 ?じ〇?と02と、 必 要に応じてその他のガスとを含み、 全ガス量を 100モル%としたとき、 FCO Fと 02との含有量の合計が 70〜100モル%であることを特徴としている。 前記 FCOFと 02の混合モル比 (FCOF/02) の値は、 l≤FCOF/0 2≤ 9であることが好ましい。
本発明に係る第 1のチャンバ一クリーニング用ガスは、 CF3〇COFと02と、 必要に応じてその他のガスとを含むものであってもよい。 また、 CF3OCF20 COFと 02と、 必要に応じてその他のガスとを含むものであってもよい。
さらに、 本発明に係る第 1のチャンバ一クリーニング用ガスは、 FCOF、 C F3OCOFおよび CF3OCF2OCOFからなる群から選ばれる少なくとも 1種 のフッ素化合物と 02と、 必要に応じてその他のガスとを含み、 全ガス量を 10 0モル%としたとき、 FCOF、 CF3OCOFおよび CF3OCF2OCOFから なる群から選ばれる少なくとも 1種のフッ素化合物の合計含有量と o2の含有量 との合計が 70〜 100モル%であるガスであってもよい。
本発明に係る第 2のチヤンバークリーニング用ガスは、 C F3C O Fと 02と、 必要に応じてその他のガスとを含み、 全ガス量を 100モル%としたとき、 CF 3C OFと 02との含有量の合計が 70〜100モル%であることを特徴としてい る。
前記 CF3COFと 02の混合モル比 (CF3COF/02) の値は、 0. 25≤C F3COF/02≤ 1. 5であることが好ましい。
また、 本発明に係る第 2のチャンバ一クリーニング用ガスは、 C3F7COFと 02と、 必要に応じてその他のガスとを含み、 全ガス量を 100モル%としたと き、 C3F7COFと 02との含有量の合計が 70〜100モル%であるガスであ つてもよく、 さらに、 CF2 (COF) 2と 02と、 必要に応じてその他のガスと を含み、 全ガス量を 100モル%としたとき、 CF2 (COF) 2と 02との含有 量の合計が 70〜100モル%であるガスであってもよい。 前記その他のガスは、 N2, He, Ne, Ar, Kr, 6ぉょび 11から選 ばれる少なくとも 1種の不活性ガスであることが好ましい。
前記 FCOFを用いる場合、 前記その他のガスは、 。 3〇( 0 ぉょび ま たは〇?3〇。?20<30 を含んでぃてもょぃ。
前記チャンバ一クリーニング用ガスは、 CVD装置チャンバ一のクリーニング 用ガスであることが好ましい。
前記チャンバ一クリーニング用ガスは、 ケィ素含有付着物のクリーニング用ガ スであることが好ましく、 このケィ素含有付着物は、 (1) ケィ素、 (2) 酸素、 窒素、 フッ素および炭素のうちの少なくとも 1種と、 ケィ素とからなる化合物、 および (3) 高融点金属シリサイドからなる化合物
のうちの少なくとも 1種であることが好ましい。
本発明に係る第 1のケィ素含有膜用エッチングガスは、 FCOFと 02と、 必 要に応じてその他のガスとを含み、 全ガス量を 100モル%としたとき、 FCO Fと 02との含有量の合計が 70〜100モル%であることを特徴としている。 前記 FCOFと〇2の混合モル比 (FCOF/02) の値は、 l≤FCOF/0 2≤ 9であることが好ましい。
本発明に係る第 1のケィ素含有膜用エッチングガスは、 CF3OCOFと 02と、 必要に応じてその他のガスとを含むものであってもよい。 また、 CF3OCF20 COFと 02と、 必要に応じてその他のガスとを含むものであってもよい。
さらに、 FCOF、 CF3OCOFおよび CF3OCF2OCOFからなる群から 選ばれる少なくとも 1種のフッ素化合物と 02と、 必要に応じてその他のガスと を含み、 全ガス量を 100モル%としたとき、 FCOF、 CF3OC〇Fおよび CF3OCF2OC〇Fからなる群から選ばれる少なくとも 1種のフッ素化合物の 合計含有量と 02の含有量との合計が 70〜100モル%であるガスであっても よい。
本発明に係る第 2のケィ素含有膜用エッチングガスは、 じ 3( 0?と02と、 必要に応じてその他のガスとを含み、 全ガス量を 100モル%としたとき、 CF 3C OFと 02との含有量の合計が 70〜100モル%であることを特徴としてい る。 前記 CF3C〇Fと〇2の混合モル比 (CF3C〇F/02) の値は、 0. 25≤C F3COF/02≤l. 5であることが好ましい。
また、 本発明に係る第 2のゲイ素含有膜用エッチングガスは、 C3F7COFと 02と、 必要に応じてその他のガスとを含み、 全ガス量を 100モル%としたと き、 C3F7COFと 02との含有量の合計が 70〜100モル%であるガスであ つてもよい。 さらに、 CF2 (C〇F) 2と 02と、 必要に応じてその他のガスと を含み、 全ガス量を 100モル%としたとき、 CF2 (COF) 2と 02との含有 量の合計が 70〜100モル%であるガスであってもよい。
前記その他のガスは、 N2, He, Ne, Ar, K r , 6ぉょび ]1から選 ばれる少なくとも 1種の不活性ガスであることが好ましい。
ケィ素含有膜用エッチングガスとして F C O Fを用いる場合、 前記その他のガ スは、 CF3OCOFおよび/または CF3OCF2OCOFを含んでもよい。 前記ケィ素含有膜は、 (1) ケィ素膜、 (2) 酸素、 窒素、 フッ素および炭素 のうちの少なくとも 1種と、 ケィ素とからなる膜、 および (3) 高融点金属シリ サイド膜のうちの少なくとも 1種であることが好ましい。 発明を実施するための最良の形態
本発明に係るケィ素含有付着物のチャンバ一クリーニング用ガス及びケィ素含 有膜用エツチングガスは、 C O F基を有する特定のフッ素含有力ルポニル系化合 物に酸素を混合したガスである。 以下、 それぞれについて詳細に説明する。
[チャンバ一クリーニング用ガス]
本発明に係る第 1のチャンバ一クリーニング用ガスは、 FCOF、 CF3OC OF、 CF3OCF20 COFからなる群から選ばれる少なくとも 1種の化合物を 含むクリーニング用ガスである。
また、 本発明に係る第 2のチャンバ一クリーニング用ガスは、 CF3COF、 C3F7COFまたは CF2 (COF) 2を含むチャンバ一クリーニング用ガスであ る。 .
以下、 これらについて順次説明する。 く FCOF、 CF 〇C〇F、 CF,〇CF,,〇COFからなる群から選ばれる少 なくとも 1種の化合物を含むクリーニング用ガス >
本発明に係る第 1のチャンバ一クリーニング用ガスは、 FCOF、 CF3OC OF、 CF3OCF2OCOFからなる群から選ばれる少なくとも 1種の化合物を 含むクリーニング用ガスである。
これらのうちでは、 FCOFを好ましく用いることができる。
F CO Fを用いる場合、 チャンバ一クリーニングガスは、 FCOFと 02と、 必要に応じてその他のガスとを含み、 全ガス量を 100モル%としたとき、 FC OFと 02との含有量の合計が 70〜100モル%、 好ましくは 80〜100モ ル%であることが望ましい。
FCOFと 02との混合モル比 (FCOF/〇2) の値は、 l≤FCOF/02≤ 9、 好ましくは 1. 5≤FC〇F/02≤6、 さらに好ましくは 2. 3≤FCOF /02≤ 6であることが望ましい。
前記 F C〇 Fを含むチヤンバークリ一二ング用ガスにおいて、 必要に応じて含 むことができるその他のガスとしては、 N2, He, Ne, Ar, Kr, Xe, Rnなどの不活性ガスが挙げられる。 前記不活性ガスは、 一種単独で用いてもよ く、 また、 2種以上の混合ガスとして用いてもよい。
また、 前記 FCOFを含むチャンバ一クリーニング用ガスにおいては、 その他 のガスとして、 CF3OCOFぉょびZまたはCF3OCF2OCOFを含んでぃて もよい。
このょぅなCF3OC〇FぉょびCF3OCF2〇COFは、 製造方法、 製造条件 により、 FCOFとともに混合物として得られる場合がある化合物である。 混合 物で得られる場合は、 蒸留等公知の方法により分離することができ、 また、 混合 物をチャンバ一クリ一ニング用ガスとして用いることもできる。
また、 本発明のチャンバ一クリーニング用ガスとして、 CF3OCOFを FC OF、 CF3OCF2OCOFと併用せずに用いる場合は、 C.F30 C O Fと〇2と、 必要に応じてその他のガスとを含むことができる。
このような場合、 前記 CF3OCOFと 02の混合モル比 (CF3OCOF/〇2) の値は、 好ましくは 0. 4≤CF3OCOF/〇2≤9、 さらに好ましくは 0. 5 ≤CF3〇COF/02≤6、 特に好ましくは 0. 6≤CF3OCOF/02≤4の範 囲にあることが望ましい。
さらに、 本発明のチャンバ一クリーニング用ガスとして、 CF3OCF2OC〇 Fを FCOF、 CF3OCOFと併用せずに用いる場合は、 CF3OCF2〇COF と〇2と、 必要に応じてその他のガスとを含むことができる。
このような場合、 前記 CF3OCF2OCOFと 02の混合モル比 (CF3OCF2 OCOF/02) の値は、 好ましくは 0. 25≤CF3OCF2OCOF/02≤9、 さらに好ましくは 0. 3≤CF3OCF2〇COF/02≤4、 特に好ましくは 0. 4≤CF3OCF2OCOF/02≤2. 5の範囲にあることが望ましい。
本発明に係る第一のチャンバ一クリーニング用ガスとして、 FCOF、 CF3 OCOFおよび CF3OCF2OCOFからなる群から選ばれる少なくとも 1種の 化合物と 02と、 必要に応じてその他のガスとを含む場合、 全ガス量を 100モ ル%としたとき、 FCOFと 02との含有量の合計は、 70〜100モル%、 好 ましくは 80〜 100モル%であることが望ましい。
本発明に係る第一のチャンバ一クリーニング用ガスにおいて、 前記ガスの含有 量、 前記混合モル比が前記のような量および値であると、 従来使用されていた C 2F6と同等のクリ一ニング速度を得ることが可能であり、 チヤンバーに付着した 堆積物を迅速に除去することができる。
さらに、 チャンバ一クリーニング後の排ガスの中には、 前記クリーニングガス が分解して副生する化合物が含まれる。 例えば上記の C 2 F 6を用いてチャンバ一 クリーニングを行った場合、 排ガス中には、 大気寿命が 50000年と長く地球 温暖化係数が大きい C F4が含まれるが、 本発明に係る F COFと〇2とを含む第 1のチヤンバークリ一二ング用ガスを用いた場合は、 C 2 F 6の場合と同等のクリ —ニング速度を維持しながらも、 排ガス中の CF4の含有量を、 C2F6を用いた 場合と比較し、 顕著に減少させることができる。
本発明で用いられる前記 F CO F、 CF3OCOFぉょびCF3OCF2OCOF は、 水分と容易に反応し、 HFと C02に分解する。 このため、 FCOF、 CF3 OCOFおよび/または CF3OCF2OC OFがチャンバ一クリーニング後に未 分解のまま排ガスとして排出されても、 従来からの排ガス処理設備である水スク ラバーで、 HFと C02に容易に分解処理することが可能であり、 後処理に新た な燃焼式等分解処理装置を必要とせず、 設備コストを抑えることができる。
また、 もし、 仮に大気に排出されたとしても、 大気中の水分とも容易に反応し 分解するため、 大気寿命は 1年以下と推定でき、 地球温暖化係数も C02と同等 と考えられ、 C F4等に比べ非常に小さく地球温暖化への寄与が小さいと考えら れる。
FCOFは、 沸点 (-83. C) が低く、 半導体製造条件下では気体であること から、 チャンバ一クリーニングにおいて、 取扱いが容易である。
また、 たとえば、 CF3OCOFは、 沸点が—34°C、 CF3OCF2OCOFは、 沸点が +7 °Cであり、 FCOFと同様、 半導体製造条件下では気体であることか ら、 チャンバ一クリーニングにおいて、 取扱いが容易である。
前記 FCOFの製造方法については、 特に限定はされないが、 たとえば、 一酸 化炭素とフッ素ガスを反応させることにより製造することができる。
また、 CF3OC〇F、 CF3〇CF2OCOFの製造方法については、 特に限定 されず、 公知の方法を用いることができ、 たとえば、 米国特許第 3721696 号に記載の方法により製造することができる。 たとえば、 C3F6を酸素ガスと反 応させることで、 CF3OCOFと CF3OCF2OCOFとを得ることができる。 得られる化合物は、 製造条件にもよるが、 前記 FCOF、 fufHCF3OCOF 前記 CF3OCF2OCOFの混合物で得ることができる。
く CF C〇F、 C F7COF又は CF, (COF) ,を含むクリーニング用ガス > 本発明に係る第 2のチャンバ一クリーニング用ガスは、 CF3COF、 C3FrC
OFまたは CF2 (COF) 2と、 02とを含むことを特徴とし、 さらに必要に応 じてその他のガスを含んでもよい。
本発明で用いられるその他のガスとしては、 N2, He, Ne, Ar, Kr,
Xe, Rnなどの不活性ガスが挙げられる。 前記不活性ガスは、 一種単独で用い てもよく、 また、 2種以上の混合ガスとして用いてもよい。
本発明に係る第 2のチャンバ一クリーニング用ガスとして CF3C OFを用い る場合、 全ガス量を 100モル%としたとき、 CF3COFと、 〇2とのモル濃度 合計が 70〜100モル%、 好ましくは 80〜100モル%であることが望まし い。 また、 さらに、 本発明に係る第 2のチャンバ一クリーニング用ガスの CF3 C〇Fと 02の混合モル比 (CF3COF/〇2) の値は、 好ましくは 0. 25≤C F3COF/02≤ 1. 5、 さらに好ましくは 0. 4≤CF3COF/〇2≤l、 特に 好ましくは 0. 5≤CF3C〇F/O2≤0. 8であることが望ましい。 CF3CO Fの含有量、 〇2の含有量、 その他のガスの含有量および CF3COFと〇2との 混合比が、 上記のような量および値であると、 従来使用されていた C2F6のクリ 一二ング速度の約 70 %の速度を得ることが可能であり、 チャンバ一に付着した 堆積物を迅速に除去することができる。
本発明に係る第 2のチヤンバークリーニング用ガスとして C 3 F 7 C O Fを用い る場合、 全ガス量を 100モル%としたとき、 C3F7COFと、 〇2とのモル濃 度合計が 70〜 100モル%、 好ましくは 80〜100モル%であることが望ま しい。 また、 さらに、 本発明に係る第 2のチャンバ一クリーニング用ガスの C3 F7C〇Fと 02の混合モル比 (C3F7COF/02) の値は、 好ましくは 0. 1≤ C3F7COF/O2≤0. 7、 さらに好ましくは 0. 15≤C3F7COF/O2≤0. 6、 特に好ましくは 0. 25≤C3F7COF/O2≤0. 5であることが望ましい c C3F7COFの含有量、 02の含有量、 その他のガスの含有量および C3F7C OF と 02との混合比が、 上記のような量および値であると、 従来使用されていた C2 F6のクリーニング速度の約 70 %の速度を得ることが可能であり、 チャンバ一 に付着した堆積物を迅速に除去することができる。
本発明に係る第 2のチャンバ一クリーニング用ガスとして CF2 (COF) 2を 用いる場合、 全ガス量を 100モル%としたとき、 CF2 (COF) 2と、 02と のモル濃度合計が 70〜100モル%、 好ましくは 80〜 100モル%であるこ とが望ましい。 また、 さらに、 本発明に係る第 2のチャンバ一クリーニング用ガ スの CF2 (COF) 2と 02の混合モル比 (CF2 (COF) 2/02) の値が、 好ま しくは 0. 15≤CF2 (COF) 2/02≤ 1. 3、 さらに好ましくは 0. 25≤ CF2 (COF) 2/02≤1、 特に好ましくは 0. 3≤CF2 (COF) 2/O2≤0. 85であることが望ましい。 CF2 (COF) 2の含有量、 02の含有量、 その他 のガスの含有量および CF2 (COF) 2と 02との混合比が、 上記のような量お よび値であると、 従来使用されていた C2F6のクリーニング速度の約 70%の速 度を得ることが可能であり、 チヤンバーに付着した堆積物を迅速に除去すること ができる。
チャンバ一クリーニング後の排ガスの中には、 前記クリーニングガスが分解し て副生する化合物が含まれる。 例えば上記 C2F6を用いた場合、 排ガスには、 大 気寿命が 50000年と長く地球温暖化係数の大きい CF4が含まれるが、 本発 明に係る CF3C〇F、 C3F7COFまたは CF2 (COF) 2と 02とを含む第 2 のチャンバ一クリーニング用ガスを用いた場合は、 C2F6を用いた場合の約 7 0 %のクリーニング速度を維持しつつ、 排ガス中の CF4の含有量を、 C2F6を 用いた場合と比較し減少させることができる。
本発明で用いられる CF3C〇F、 C3F7COFおよび CF2 (COF) 2は、 水 分と容易に反応し、 HFと CF3CO〇Hに分解する。 このため、 CF3COF、 C3F7COFおよび CF2 (COF) 2がチャンバ一クリーニングで未分解のまま 排ガスとして排気されても、 従来からの排ガス処理設備である水スクラバーで、 HFと C F3C OOHに容易に分解処理することが可能であり、 後処理に新たな 燃焼式等分解処理装置を必要とせず、 設備コストを抑えることができる。
また、 もし、 仮に大気に排出されたとしても、 大気中の水分とも容易に反応し 分解するため、 大気寿命が 1年以下と推定でき、 地球温暖化係数も CF4等に比 ベ非常に小さく地球温暖化への寄与が小さいと考えられる。
さらに、 じ?3( 0?の沸点は一59^でぁり、 C3F7COFの沸点は 2〜5で であり、 CF2 (COF) 2の沸点は一 8 °Cであり、 いずれも沸点が低く、 半導体 製造条件下では気体であることから、 チャンパ一クリーニングにおける取扱いが 谷易であ 。
本発明で用いられる C F3C O Fの製造方法については、 特に限定はされない が、 たとえば、 トリフルォロエタノール (CF3CH2OH) とフッ素ガスとを反 応させることにより製造することができる。
本発明で用いられる C3F7C OFの製造方法については、 特に限定はされず、 公知の方法を用いることができ、 たとえば、 C3H7COFの電解フッ素化などの 方法により製造することができる。 また、 市販の C3F7COFを用いることもで きる。 本発明で用いられる CF2 (C〇F) 2の製造方法については、 特に限定はされ ず、 公知の方法を用いることができ、 たとえば、 CH2 (COF) 2を NaFなど とともに、 フッ素ガスと反応させて得ることができる。
ぐその他の任意成分 >
上記その他のガスには、 さらに、 本発明の目的を害さない範囲で、 上記不活性 ガス以外のガスを含んでもよい。 このような上記不活性ガス以外のガスとしては、 たとえば、 03、 H2、 F2、 C 1 F3、 B r F3などが挙げられる。
<チヤンバークリ一ニング>
本明細書においてチャンバ一クリーニングとは、 CVD装置等の半導体製造装 置内のチャンバ一壁あるいは冶具、 配管等に付着した付着物の除去を意味してい る。
上述したフッ素含有カルボニル系化合物と酸素等を含む混合ガスは、 C V D装 置等のチャンバ一クリーニング用ガスとして用いることができる。
このようなフッ素含有力ルポニル系化合物によるチヤンバ一クリーニングの目 的化合物としては、 CVD法等により、 CVDチャンバ一壁あるいは CVD装置 の冶具等に付着した、 前記ケィ素を含有する付着物 (ケィ素含有付着物) が挙げ られる。 このようなケィ素含有付着物としては、 たとえば、
(1) ゲイ素、
(2) 酸素、 窒素、 フッ素および炭素のうちの少なくとも 1種と、 ケィ素とから なる化合物、 および
(3) 高融点金属シリサイドからなる化合物
などのうちの少なくとも 1種が挙げられ、 より具体的には、 たとえば、 WS i等 の高融点金属シリサイド、 S i、 S i 02、 S i3N4などが挙げられる。
本発明に係るチャンバ一クリーニング用ガスを用いるチャンバ一の材料は特に 限定されず、 公知の材料が挙げられる。 このようなチャンバ一の材料としては、 たとえば、 ステンレス、 アルミニウム、 あるいはこれらの合金などが挙げられる。 本発明に係るチヤンバークリーニング用ガスは、 このようなチヤンバーに対し ては腐食等の作用を及ぼすことが少なく、 チヤンバーに付着した前記付着物を選 択的かつ迅速に除去することができる。 このような本発明に係るフッ素系化合物を用いて、 チャンバ一内のケィ素含有 付着物をクリーニングするには、 公知の方法が採用でき、 たとえば、 プラズマク リ一ニング、 リモートプラズマクリーニング、 マイクロ波クリーニングなどの各 種ドライクリーニング法が適用できる。
このような本発明に係るチヤンバークリーニング用ガスによれば、 ケィ素含有 付着物を除去することが可能である。
[ケィ素含有膜用エッチングガス]
本発明に係る第 1のケィ素含有膜用エッチングガスは、 FCOF、 CF3OC OF、 CF3OCF2OC〇Fからなる群から選ばれる少なくとも 1種の化合物を 含むケィ素含有膜用エッチングガスである。
また、 本発明に係る第 2のケィ素含有膜用エッチングガスは、 CF3COF、 C3F7COFまたは CF2 (COF) 2を含むケィ素含有膜用エッチングガスであ る。
以下、 これらについて順次説明する。
<FCOF、 CF OCOF、 C FsO C F,Q C O Fからなる群から選ばれる少 なくとも 1種の化合物を含むケィ素含有膜用エッチングガス〉
本発明に係る第 1のケィ素含有膜用エッチングガスは、 FCOF、 CF3OC OF、 CF3〇CF2OCOFからなる群から選ばれる少なくとも 1種の化合物を 含むゲイ素含有膜用エッチングガスである。
これらのうちでは、 FCOFを好ましく用いることができる。
FOCFを用いる場合、 ケィ素含有膜用エッチングガスは、 FCOFと 02と、 必要に応じてその他のガスとを含み、 全ガス量を 100モル%としたとき、 FC OFと 02との含有量の合計が 70〜100モル%、 好ましくは 80〜100モ ル%であることが望ましい。
FCOFと〇2との混合モル比 (FCOF/02) の値は、 l≤FCOF/02≤ 9、 好ましくは 1. 5≤FCOF/02≤6、 さらに好ましくは 2. 3≤FCOF /02≤ 6であることが望ましい。
前記 FCOFを含むケィ素含有膜用エッチングガスにおいて、 必要に応じて含 むことができるその他のガスとしては、 N2, He, Ne, Ar, Kr, Xe, Rnなどの不活性ガスが挙げられる。 前記不活性ガスは、 一種単独で用いてもよ く、 また、 2種以上の混合ガスとして用いてもよい。
また、 前記 F CO Fを含むケィ素含有膜用エッチングガスにおいては、 その他 のガスとして、 C F3〇 C O Fおよび/または C F3OCF2OCOFを含んでいて もよい。
このょぅな 30 〇 ぉょび ?30 ?20(:0?は、 製造方法、 製造条件 により、 FCOFとともに混合物として得られる場合がある化合物である。 混合 物で得られる場合は、 蒸留等公知の方法により分離することができ、 また、 混合 物をケィ素含有膜用エッチングガスとして用いることもできる。
また、 本発明のケィ素含有膜用エッチングガスとして、 CF3OC〇Fを FC OF、 CF3OCF2OCOFと併用せずに用いる場合は、 CF3OCOFと〇2と、 必要に応じてその他のガスとを含むことができる。
このような場合、 前記 CF3〇COFと 02の混合モル比 (CF3〇COF/〇2) の値は、 好ましくは 0. 4≤CF3OCOF/02≤9、 さらに好ましくは 0. 5 ≤CF3OCOF/02≤6, 特に好ましくは 0. 6≤CF3OCOF/02≤4の範 囲にあることが望ましい。
さらに、 本発明のケィ素含有膜用エッチングガスとして、 CF3OCF2OCO Fを FCOF、 CF3〇C〇Fと併用せずに用いる場合は、 CF3OCF2OCOF と〇2と、 必要に応じてその他のガスとを含むことができる。
このような場合、 前記 CF3OCF2OCOFと 02の混合モル比 (CF3OCF2 OCOF/02) の値は、 好ましくは 0. 25≤CF3OCF2OCOF/02≤9、 さらに好ましくは 0. 3≤CF3OCF2OCOF/02≤4、 特に好ましくは 0. 4≤CF3OCF2OCOF/02≤2. 5の範囲にあることが望ましい。
本発明に係る第一のケィ素含有膜用エッチングガスとして、 FCOF、 CF3 OCOFおよび CF3OCF2OCOFからなる群から選ばれる少なくとも 1種の 化合物と 02と、 必要に応じてその他のガスとを含む場合、 全ガス量を 100モ ル%としたとき、 F CO Fと 02との含有量の合計は、 70〜: 100モル%、 好 ましくは 80〜 100モル%であることが望ましい。 本発明に係る第一のケィ素含有膜用エッチングガスにおいて、 前記ガスの含有 量、 前記混合モル比が前記のような量および値であると、 従来使用されていた C 2F6と同等のエッチング速度を得ることが可能である。
さらに、 エッチング後の排ガスの中には、 例えば上記 C2F6を用いてエツチン グを行った場合、 排ガス中には、 副生物として、 地球温暖化係数の大きい CF4 が含まれるが、 FCOF、 。?30(30?ぉょび0?300 20じ〇?からなる群 から選ばれる少なくとも 1種の化合物と 02とを含む第 1のケィ素含有膜用ェッ チングガスを用いた場合、 C2F6の場合と同等のエッチング速度を維持しながら も、 排ガス中の CF4の含有量を、 C2F6を用いた場合と比較し顕著に減少させ ることができる。
本発明で用いられる F CO Fは、 水分と容易に反応し、 HFと C02に分解す るため、 分解処理が容易であり、 設備コストを抑えることができる。
また、 もし、 仮に大気に排出されたとしても、 大気中の水分とも容易に反応し 分解するため、 地球温暖化への寄与は小さいと考えられる。
前述の通り、 FCOFは、 沸点 (- 83-ΓΟ が低く、 半導体製造条件下では気 体であることから、 エッチングにおいて、 取扱いが容易である。 また、 CF3〇 C O Fは、 沸点が— 34 °C、 C F 30 C F 20 C O Fは、 沸点が + 7 °Cであり、 F COFと同様、 半導体製造条件下では気体であることから、 ケィ素含有膜のエツ チングにおいて、 取扱いが容易である。
これらの FCOF、 CF3OCOFおよび CF3OCF2OC〇Fの製造方法、 入 手方法は、 前述の方法と同じである。
また、 本発明に係る第 1のエッチングガスは、 被加工膜に対する選択性もよい ため、 C2F6等の代替ガスとして十分実用可能である。
く CF C〇Fを含むエッチングガス >
本発明に係る第 2のケィ素含有膜用エッチングガスは、 CF3COF、 C3F7C OFまたは CF2 (COF) 2と、 02とを含むことを特徴とし、 さらに必要に応 じてその他のガスを含んでもよい。 本発明で用いられるその他のガスとしては、 N2, He, Ne, Ar, Kr, Xe, Rnなどの不活性ガスが挙げられる。 前記不活性ガスは、 一種単独で用い てもよく、 また、 2種以上の混合ガスとして用いてもよい。
本発明に係る第 2のケィ素含有膜用エッチングガスとして CF3C OFを用い る場合、 全ガス量を 100モル%としたとき、 CF3COFと、 〇2とのモル濃度 合計が 70〜100モル%、 好ましくは 80〜100モル%であることが望まし い。 また、 さらに、 本発明に係る第 2のケィ素含有膜用エッチングガスの CF3 C〇Fと 02の混合モル比 (CF3COF/02) の値が、 0. 25≤CF3COF/ 02≤1. 5、 好ましくは 0. 4≤CF3COF/02≤ 1、 さらに好ましくは 0. 5≤CF3COF/O2≤0. 8であることが望ましい。 CF3COFの含有量、 02 の含有量、 その他のガスの含有量および CF3C OFと 02との混合比が、 上記の ような量および値であると、 従来使用されていた C 2 F 6のクリ一ニング速度の約 70%の速度を得ることが可能である。
本発明に係る第 2のケィ素含有膜用エッチングガスとして C3F7C OFを用い る場合、 全ガス量を 100モル%としたとき、 C3F7COFと、 02とのモル濃 度合計が 70〜100モル%、 好ましくは 80〜100モル%であることが望ま しい。 また、 さらに、 本発明に係る第 2のケィ素含有膜用エッチングガスの C3 F7COFと 02の混合モル比 (C3F7COF/02) の値は、 好ましくは 0. 1≤ C3F7COF/O2≤0. 7、 さらに好ましくは 0. 15≤C3F7COF/O2 0. 6、 特に好ましくは 0. 1≤C3F7COF/O2≤0. 5であることが望ましい。
C3F7COFの含有量、 02の含有量、 その他のガスの含有量および C3F7C OF と 02との混合比が、 上記のような量および値であると、 従来使用されていた C2 F6のエッチング速度の約 70 %の速度を得ることが可能であり、 チャンバ一に 付着した堆積物を迅速に除去することができる。
本発明に係る第 2のケィ素含有膜用エッチングガスとして CF2 (COF) 2を 用いる場合、 全ガス量を 100モル%としたとき、 CF2 (COF) 2と、 02と のモル濃度合計が 70〜100モル%、 好ましくは 80〜100モル%であるこ とが望ましい。 また、 さらに、 本発明に係る第 2のケィ素含有膜用エッチングガ スの CF2 (COF) 2と 02の混合モル比 (CF2 (COF) 2/0,) の値が、 好ま しくは 0. 15≤CF2 (C〇F) 2/02≤ 1. 3、 さらに好ましくは 0. 25≤ CF2 (COF) 2/02≤l、 特に好ましくは 0. 3≤CF2 (C〇F) 2/O2≤0. 85であることが望ましい。 CF2 (COF) 2の含有量、 02の含有量、 その他 のガスの含有量および CF2 (COF) 2と 02との混合比が、 上記のような量お よび値であると、 従来使用されていた C2F6のエッチング速度の約 70%の速度 を得ることが可能である。
エッチング後の排ガスの中には、 例えば上記 C2F6を用いた場合、 排ガスには、 大気寿命が 50000年と長く地球温暖化係数の大きい CF4が含まれるが、 本 発明に係る CF3C〇F、 C3F7COFまたは CF2 (COF) 2と 02とを含む第 2のゲイ素含有膜用ェツチングガスを用いた場合は、 C 2 F 6を用いた場合のそれ ぞれ約 70 %のエッチング速度を維持しつつ、 排ガス中の CF4の含有量を、 C2 F6を用いた場合と比較し減少させることができる。
前述の通り本発明で用いられる CF3COF、 C3F7COFおよび CF2 (CO F) 2は、 水分と容易に反応し、 HFと CF3COOHに分解する。 このため、 C F3COF、 C3F7COFおよび CF2 (COF) 2がエッチングで未分解のまま排 ガスとして排気されても、 従来からの排ガス処理設備である水スクラバーで、 H Fと C F3C O OHに容易に分解処理することが可能であり、 後処理に新たな燃 焼式等分解処理装置を必要とせず、 設備コストを抑えることができる。
また、 もし、 仮に大気に排出されたとしても、 大気中の水分とも容易に反応し 分解するため、 大気寿命が 1年以下と推定でき、 地球温暖化係数も CF4等に比 ベ非常に小さく地球温暖化への寄与が小さいと考えられる。
さらに、 C F3COFの沸点は一 59°Cであり、 C3F7COFの沸点は 2〜5 であり、 CF2 (COF) 2の沸点は一 8 °Cであり、 いずれも沸点が低く、 半導体 製造条件下では気体であることから、 エッチングにおける取扱いが容易である。 これら CF3COF、 C3F7COFおよび CF2 (COF) 2の製造方法、 入手方 法は、 前述の方法と同じである。
また、 本発明に係る第 2のエッチングガスは、 被加工膜に対する選択性もよい ため、 C2F6等の代替ガスとして十分実用可能である。
<その他の任意成分 > 上記その他のガスには、 本発明の目的を害さない範囲で、 上記不活性ガス以外 のガスを含んでもよい。 このような上記不活性ガス以外のガスとしては、 たとえ ば、 〇3、 H2、 F2、 C 1 F3、 B r F。などが挙げられる。 エッチングの目的化合物としては、 ケィ素を含有する薄膜等 (ケィ素含有膜) が挙げられる。 このようなケィ素含有膜としては、 たとえば、
( 1 ) ケィ素膜、
( 2 ) 酸素、 窒素、 フッ素および炭素のうちの少なくとも 1種と、 ケィ素とから なる膜、 および
( 3 ) 高融点金属シリサイド膜
などのうちの少なくとも 1種が挙げられる。
より具体的には、 たとえば、 S i膜、 S i 02膜、 S i 3N4膜、 或いは WS i 膜等の高融点金属シリサイド膜などが挙げられる。
このようなケィ素含有膜を、 本発明に係るフッ素含有力ルポニル系化合物によ りエッチングする方法は、 公知の方法が採用でき、 たとえば、 プラズマエツチン グ、 反応性イオンエッチング、 マイクロ波エッチングなどの各種ドライエツチン グ法が適用できる。 また、 ケィ素含有膜のエッチング条件は、 公知のエッチング 条件を採用できる。 産業上の利用可能性
本発明に係るチャンバークリーニング用ガスは、 上記ガスを特定の割合で組み 合わせることにより、 従来用いられていた C2F 6とほとんど変わらない優れたク リーニング速度を維持しつつも、 クリーニング後においても、 温暖化係数が小さ く、 また地球温暖化の一因とされる環境に有害な排ガスである C F4生成を顕著 に減少させることができる。 しかも本発明に係るチヤンバークリ一二ングガスは、 取り扱いが容易であり、 また、 排ガス処理性にも優れているため、 経済性および 作業性を向上させることができる。
本発明に係るケィ素含有膜用エツチングガスは、 上記ガスを特定の割合で組み 合わせることにより、 従来用いられていた C2F6とほとんど変わらない優れたェ ツチング速度を維持しつつも、 エッチング後においても、 温暖化係数が小さく、 また地球温暖化の一因とされる環境に有害な排ガスである CF4の生成を顕著に 減少させることができる。 しかも本発明に係るエッチングガスは、 取り扱いが容 易であり、 また、 排ガス処理性にも優れているため、 経済性および作業性を向上 させることができる。 また、 ケィ素含有膜の除去を効率的に、 しかも半導体パ夕 ーンの寸法精度を高精度に保ちながらエッチングが可能であり、 優れたエツチン グ性能を有している。 実施例
以下、 実施例に基づいて本発明をより詳細に説明するが、 これらの実施例によ り本発明は限定されるものではない。
【調製例 1】
[FCOFの合成]
乾燥した 100m 1の石英製の反応容器に一酸化炭素 (CO) 5.6 g (0. 2 mol) を装入し、 これに窒素ガスで 20モル%に希釈した希釈フッ素ガスを標準 状態 (0 :、 latm) 換算で 26リツトル (F2の量が 0.23 mol) 徐々に添加し て、 0°Cで 1時間反応させた。 反応生成物を分離精製して FC OFを 6. 6 g
(0. lmol) 得た。 得られた化合物をガスクロマトグラフィー及び FT— I Rで 分析し、 得られた化合物は FC OFであることを確認した。 収率は一酸化炭素を 基準とした場合 50 %であった。
【調製例 2】
[CF3COFの合成]
乾燥した 100mlの SUS 316製の反応容器にトリフルォロエタノール (CF3CH2OH) を 20 g (0. 2mol) 計りとり、 これに窒素ガスで 20モ ル%に希釈した希釈フッ素ガスを標準状態 (0 、 latm) 換算で 30リットル (F2の量が 0. 27mol) 添加して、 0 °Cで 5時間反応させた。 反応生成物を分 離精製して CF3COFを 9.2 g (0.08mol) 得た。 得られた化合物をガスク ロマ卜グラフィー及び FT— I Rで分析し、 得られた化合物は CF3C OFであ ることを確認した。 収率はトリフルォロエタノールを基準として 40%であった。 【調製例 3】
[CF2 (COF) 2の合成]
NaF18g (0.43mol) を仕込んだ 1Lモネル製の反応器に CH2 (C O F) 2を 12. lg (0.112mol) 凝縮させ、 0°Cに保持して内圧上昇を管理し、 フッ素ガスを 0. lg/hで徐々に吹き込み反応させた。 生成物による全圧が 0.44気圧になったと ころで、 フッ素ガスの吹き込みを終了させた。 反応生成物を分離精製して、 CF 2(COF)2 1.7g (0.0118mol) を得た。
得られた化合物は FT— I R及び19 F- NMRで CF2(COF)2であることを 確認した。 収率は 10%であった。
【実施例 1〜5、 比較例 1】
[チャンバ一クリーニング]
調製例 1で合成した FCOFおよび酸素を表 1に示す割合で混合した混合ガス を用いて、 圧力 250 Pa、 入力 R f電力 750W、 トータルガス流量 300 seem, 電極温度 300で、 電極間距離 5 Ommの条件下で、 S i〇2膜を堆積した シリコンウェハーを CVDチャンバ一内に置いて S i〇2膜をクリーニングした。 また、 クリーニング終了後に発生する排ガス中の CF4については、 排ガスを 1 5. 5リツトル 分の窒素で希釈し、 FT- IRにより測定した。
上記条件下で 0. 5分間クリーニングした結果を表 1に示す。
また、 クリーニング終了後に得られる排ガス中の CF4含量を表 1に示す。
表 1
Figure imgf000021_0001
【実施例 6〜 10】
[チャンバークリーニング] 調製例 2で合成した CF3COFおよび酸素を、 表 2に示す割合で混合した混 合ガスを用いて、 実施例 1等と同様の条件で、 S i〇2膜のクリーニングをした 結果を表 2に示す。
また、 クリーニング終了後に得られる排ガス中の CF4含量を表 2に示す。
表 2
Figure imgf000022_0001
【比較例 2 ~ 8】
;ークリーニング]
表 3に示す割合で C 2 F 6と酸素とを混合した混合ガスを用いて、 実施例 1等と 同様の条件で、 S i 02膜のクリーニングをした。 結果を表 3に示す。
また、 クリーニング終了後に得られる排ガス中の CF4含量を表 3に示す。
表 3
Figure imgf000022_0002
(注) 排ガス中の CF4量が多いと、 地球温暖化作用が大きくなるため好ましくな い。
【実施例 11〜: L 5】
[チャンバ一クリーニング]
市販の C3F7COF (シンクエストネ土製、 ヘプ夕フルォロブチリルフルオラィ ド 98%:カタログナンバー 2116- 2- 07) および酸素を、 表 4に示す割合で混 合した混合ガスを用いて、 実施例 1と同様の条件で、 S i〇2膜のクリーニング をした。
結果を表 4に示す。
また、 クリーニング終了後に得られる排ガス中の C F4含量を表 4に示す。
表 4
Figure imgf000023_0002
【実施例 1 6〜: L 9】
[チャンバークリーニング]
調製例 3で合成した C F2 ( C O F) 2および酸素を、 表 5に示す割合で混合し た混合ガスを用いて、 実施例 1と同様の条件で、 S i 02膜のクリーニングをし た。
結果を表 5に示す。
また、 クリーニング終了後に得られる排ガス中の C F4含量を表 5に示す。
表 5
Figure imgf000023_0001

Claims

請求の範囲
1. FCOFと 02と、 必要に応じてその他のガスとを含み、 全ガス量を 10 0モル%としたとき、 FCOFと 02との含有量の合計が 70〜100モル%で あることを特徴とするチヤンバークリーニング用ガス。
2. 前記 FCOFと 02の混合モル比 (FCOF/02) の値が、 l≤FCOF/ 02≤ 9であることを特徴とする請求項 1に記載のチヤンバークリ一ニング用ガ ス。
3. 0?30(3〇?と02と、 必要に応じてその他のガスとを含むことを特徴と するチャンバ一クリーニング用ガス。
4. CF3OCF2OCOFと 02と、 必要に応じてその他のガスとを含むこと を特徴とするチヤンバークリーニング用ガス。
5. FCOF, CF3OCOFおよび CF3OCF2OCOFからなる群から選ば れる少なくとも 1種のフッ素ィ匕合物と o2と、 必要に応じてその他のガスとを含 み、 全ガス量を 100モル%としたとき、 FCOF、 CF3OCOFおよび CF3 〇CF2OCOFからなる群から選ばれる少なくとも 1種のフッ素化合物の合計 含有量と 02の含有量との合計が 70〜100モル%であることを特徴とするチ ャンバークリーニング用ガス。
6. 3 0 と02と、 必要に応じてその他のガスとを含み、 全ガス量を 1 00モル%としたとき、 CF3COFと 02との含有量の合計が 70〜100モ ル%であることを特徴とするチャンバ一クリーニング用ガス。
7. 前記 CF3COFと 02の混合モル比 (CF3COF/〇2) の値が、 0. 25 ≤CF3COF/02≤ 1. 5であることを特徴とする請求項 6に記載のチャンバ 一クリーニング用ガス。
8. C3F7COFと 02と、 必要に応じてその他のガスとを含み、 全ガス量を 100モル%としたとき、 C3F7COFと 02との含有量の合計が 70〜100 モル%であることを特徴とするチヤンバークリ一二ング用ガス。
9. CF2 (COF) 2と〇2と、 必要に応じてその他のガスとを含み、 全ガス 量を 100モル%としたとき、 CF2 (COF) 2と〇2との含有量の合計が 70 ~100モル%であることを特徴とするチャンバ一クリーニング用ガス。
10. 前記その他のガスが、 N2, He, Ne, Ar, K r , Xeおよび Rn から選ばれる少なくとも 1種の不活性ガスであることを特徴とする請求項 1〜 9 のいずれかに記載のチヤンバークリ一二ング用ガス。
11. 前記その他のガスが、 CF3OC〇Fおよび Zまたは CF3OCF2OCO Fを含むことを特徴とする請求項 1に記載のチャンバ一クリーニング用ガス。
12. 前記チャンバ一クリーニング用ガスが、 CVD装置チャンバ一のクリー ニング用ガスであることを特徴とする請求項 1〜11のいずれかに記載のチャン バ一クリーニング用ガス。
13. 前記チャンバ一クリーニング用ガスが、 ケィ素含有付着物のクリーニン グ用ガスであることを特徴とする請求項 1〜 12のいずれかに記載のチヤンバー クリーニング用ガス。
14. 前記ケィ素含有付着物が、
(1) ケィ素、
(2) 酸素、 窒素、 フッ素および炭素のうちの少なくとも 1種と、 ケィ素とから なる化合物、 および
(3) 高融点金属シリサイドからなる化合物
のうちの少なくとも 1種であることを特徴とする請求項 13に記載のチャンバ一 クリーニング用ガス。
15. FCOFと 02と、 必要に応じてその他のガスとを含み、 全ガス量を 1 00モル%としたとき、 FC OFと 02との含有量の合計が 70〜100モル% であることを特徴とするケィ素含有膜用エッチングガス。
16. 前記 FCOFと 02の混合モル比 (FCOF/02) の値が、 1≤FC〇 F/〇2≤9であることを特徴とする請求項 15に記載のケィ素含有膜用エツチン グガス。
17. CF3OCOFと 02と、 必要に応じてその他のガスとを含むことを特徴 とするケィ素含有膜用エッチングガス。
18. CF3〇CF2OC〇Fと 02と、 必要に応じてその他のガスとを含むこ とを特徴とするケィ素含有膜用エッチングガス。
19. FC〇F、 CF3OCOFおよび CF3OCF2OCOFからなる群から選 ばれる少なくとも 1種のフッ素化合物と〇2と、 必要に応じてその他のガスとを 含み、 全ガス量を 100モル%としたとき、 FC〇F、 CF3OC〇Fおよび C F3OCF2OCOFからなる群から選ばれる少なくとも 1種のフッ素化合物の合 計含有量と〇2の含有量との合計が 70〜100モル%であることを特徴とする ケィ素含有膜用エツチングガス。
20. CF3COFと〇2と、 必要に応じてその他のガスとを含み、 全ガス量を 100モル%としたとき、 CF3COFと 02との含有量の合計が 70〜100モ ル%であることを特徴とするケィ素含有膜用エッチングガス。
21. 前記 CF3COFと 02の混合モル比 (CF3COF/02) の値が、 0. 2 5≤CF3COF/02≤l. 5であることを特徴とする請求項 19に記載のケィ 素含有膜用エッチングガス。
22. C3F7COFと 02と、 必要に応じてその他のガスとを含み、 全ガス量 を 100モル%としたとき、 C3F7COFと 02との含有量の合計が 70〜10 0モル%であることを特徴とするケィ素含有膜用エッチングガス。
23. CF2 (COF) 2と 02と、 必要に応じてその他のガスとを含み、 全ガ ス量を 100モル%としたとき、 CF2 (COF) 2と 02との含有量の合計が 7 0〜100モル%であることを特徴とするケィ素含有膜用エッチングガス。
24. 前記その他のガスが、 N2, He, Ne, Ar, K r, Xeおよび Rn から選ばれる少なくとも 1種の不活性ガスであることを特徴とする請求項 15〜 23のいずれかに記載のケィ素含有膜用エッチングガス。
25. 前記その他のガスが、 CF3OCOFおよび または CF3OCF2〇C〇 Fを含むことを特徴とする請求項 15に記載のゲイ素含有膜用エツチングガス。
26. 前記ゲイ素含有膜が、
(1) ケィ素膜、
(2) 酸素、 窒素、 フッ素および炭素のうちの少なくとも 1種と、 ゲイ素とから なる膜、 および (3) 高融点金属シリサイド膜
のうちの少なくとも 1種であることを特徴とする請求項 15〜25のいずれか k 記載のケィ素含有膜用エツチングガス。
PCT/JP2001/007782 2000-09-11 2001-09-07 Gaz de nettoyage et gaz d'attaque WO2002023608A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/129,115 US6787053B2 (en) 2000-09-11 2001-09-07 Cleaning gases and etching gases
EP01963514A EP1318542B1 (en) 2000-09-11 2001-09-07 Cleaning gasses and etching gases

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000275647 2000-09-11
JP2000-275647 2000-09-11
JP2001-261471 2001-08-30
JP2001261471A JP4112198B2 (ja) 2000-09-11 2001-08-30 クリーニングガス及びエッチングガス、並びにチャンバークリーニング方法及びエッチング方法

Publications (1)

Publication Number Publication Date
WO2002023608A1 true WO2002023608A1 (fr) 2002-03-21

Family

ID=26599696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007782 WO2002023608A1 (fr) 2000-09-11 2001-09-07 Gaz de nettoyage et gaz d'attaque

Country Status (4)

Country Link
US (1) US6787053B2 (ja)
EP (1) EP1318542B1 (ja)
JP (1) JP4112198B2 (ja)
WO (1) WO2002023608A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332628B2 (en) * 2003-03-14 2008-02-19 National Institute Of Advanced Industrial Science And Technology Process for producing carbonyl fluoride
US10453986B2 (en) 2008-01-23 2019-10-22 Solvay Fluor Gmbh Process for the manufacture of solar cells

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4264479B2 (ja) * 2003-03-14 2009-05-20 キヤノンアネルバ株式会社 Cvd装置のクリーニング方法
JP4801709B2 (ja) * 2003-03-14 2011-10-26 キヤノンアネルバ株式会社 Cvd装置を用いた成膜方法
US20050011859A1 (en) * 2003-07-15 2005-01-20 Bing Ji Unsaturated oxygenated fluorocarbons for selective aniostropic etch applications
JP2005142198A (ja) * 2003-11-04 2005-06-02 Taiyo Nippon Sanso Corp クリーニングガス及びクリーニング方法
US7581549B2 (en) 2004-07-23 2009-09-01 Air Products And Chemicals, Inc. Method for removing carbon-containing residues from a substrate
JP4686157B2 (ja) 2004-09-29 2011-05-18 株式会社東芝 成膜装置のクリーニング方法
CN101080362B (zh) 2004-12-16 2011-02-02 旭硝子株式会社 碳酰氟的制造方法
US20090047447A1 (en) * 2005-08-02 2009-02-19 Sawin Herbert H Method for removing surface deposits and passivating interior surfaces of the interior of a chemical vapor deposition reactor
TW200735317A (en) * 2006-03-14 2007-09-16 Novatek Microelectronics Corp Tape
JP4596287B2 (ja) * 2008-09-19 2010-12-08 カシオ計算機株式会社 シリコンを含む膜のドライエッチング方法
JP5310409B2 (ja) * 2009-09-04 2013-10-09 東京エレクトロン株式会社 プラズマエッチング方法
JP2013508990A (ja) * 2009-10-26 2013-03-07 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング Tftマトリックスを製造するためのエッチングプロセス
JP5691163B2 (ja) * 2009-12-01 2015-04-01 セントラル硝子株式会社 クリーニングガス
JP5655296B2 (ja) 2009-12-01 2015-01-21 セントラル硝子株式会社 エッチングガス
JP5514129B2 (ja) 2010-02-15 2014-06-04 東京エレクトロン株式会社 成膜方法、成膜装置、および成膜装置の使用方法
US8450219B2 (en) * 2011-09-29 2013-05-28 Atomic Energy Council—Institute of Nuclear Research Method of fabricating Al2O3 thin film layer
JP7177344B2 (ja) * 2017-11-14 2022-11-24 セントラル硝子株式会社 ドライエッチング方法
JP7265109B2 (ja) * 2020-05-26 2023-04-26 豊田合成株式会社 半導体装置の製造方法
CN112557130B (zh) * 2021-02-28 2021-04-30 中国工程物理研究院核物理与化学研究所 一种气体探测器充入气体的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3721696A (en) 1970-11-27 1973-03-20 Montedison Spa Polyoxyperfluoromethylene compounds and process of their preparation
JPH06132259A (ja) * 1992-10-22 1994-05-13 Sony Corp レジストの除去方法
JPH08139010A (ja) * 1993-12-29 1996-05-31 Toshiba Corp 洗浄機能付き荷電ビーム装置および荷電ビーム装置の洗浄方法
JPH08291299A (ja) * 1995-04-21 1996-11-05 Central Glass Co Ltd クリーニングガス、エッチングガス
JPH10312991A (ja) * 1997-05-12 1998-11-24 Sony Corp 有機系反射防止膜のプラズマエッチング方法
EP0924282A1 (en) * 1997-12-18 1999-06-23 Central Glass Company, Limited Gas for removing a deposit and its use
JP2000265275A (ja) * 1999-03-15 2000-09-26 Central Glass Co Ltd クリーニング方法
JP2001028362A (ja) * 1999-07-15 2001-01-30 Toshiba Corp 半導体装置の製造方法及び製造装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2972786B2 (ja) * 1996-11-05 1999-11-08 工業技術院長 ドライエッチング用ガス
JPH10223614A (ja) * 1997-02-12 1998-08-21 Daikin Ind Ltd エッチングガスおよびクリーニングガス
US6107192A (en) * 1997-12-30 2000-08-22 Applied Materials, Inc. Reactive preclean prior to metallization for sub-quarter micron application
JP2002280376A (ja) * 2001-03-22 2002-09-27 Research Institute Of Innovative Technology For The Earth Cvd装置のクリーニング方法およびそのためのクリーニング装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3721696A (en) 1970-11-27 1973-03-20 Montedison Spa Polyoxyperfluoromethylene compounds and process of their preparation
JPH06132259A (ja) * 1992-10-22 1994-05-13 Sony Corp レジストの除去方法
JPH08139010A (ja) * 1993-12-29 1996-05-31 Toshiba Corp 洗浄機能付き荷電ビーム装置および荷電ビーム装置の洗浄方法
JPH08291299A (ja) * 1995-04-21 1996-11-05 Central Glass Co Ltd クリーニングガス、エッチングガス
JPH10312991A (ja) * 1997-05-12 1998-11-24 Sony Corp 有機系反射防止膜のプラズマエッチング方法
EP0924282A1 (en) * 1997-12-18 1999-06-23 Central Glass Company, Limited Gas for removing a deposit and its use
JP2000265275A (ja) * 1999-03-15 2000-09-26 Central Glass Co Ltd クリーニング方法
JP2001028362A (ja) * 1999-07-15 2001-01-30 Toshiba Corp 半導体装置の製造方法及び製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1318542A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332628B2 (en) * 2003-03-14 2008-02-19 National Institute Of Advanced Industrial Science And Technology Process for producing carbonyl fluoride
US10453986B2 (en) 2008-01-23 2019-10-22 Solvay Fluor Gmbh Process for the manufacture of solar cells

Also Published As

Publication number Publication date
EP1318542B1 (en) 2013-04-03
US20030001134A1 (en) 2003-01-02
EP1318542A4 (en) 2006-10-25
EP1318542A1 (en) 2003-06-11
US6787053B2 (en) 2004-09-07
JP2002158181A (ja) 2002-05-31
JP4112198B2 (ja) 2008-07-02

Similar Documents

Publication Publication Date Title
WO2002023608A1 (fr) Gaz de nettoyage et gaz d&#39;attaque
JP3878972B2 (ja) 反応器の内部をクリーニングするため、ならびにケイ素含有化合物の膜をエッチングするためのガス組成物
CN100480170C (zh) 用于制备含f2气体的方法和装置以及用于制品表面改性的方法和装置
JP5655296B2 (ja) エッチングガス
CN1119385C (zh) 去除沉积物的气体和使用该气体的去除方法
TWI411662B (zh) Cleaning gas
JPH07508313A (ja) プラズマ処理装置内の残留物を除去するためのプラズマクリーニング方法
JP2004536448A (ja) 蒸気反応器用のクリーニングガス、エッチングガス、およびドーピングガスとしてのペルフルオロケトンの使用
JP2010529670A (ja) 半導体適用のための非可燃性溶媒
US20040231695A1 (en) Cleaning gas for semiconductor production equipment and cleaning method using the gas
JP4320389B2 (ja) Cvdチャンバーのクリーニング方法およびそれに用いるクリーニングガス
KR100562514B1 (ko) 세정 가스 및 식각 가스
JP3865113B2 (ja) クリーニングガス及びエッチングガス
JP3014368B2 (ja) クリーニングガス
JP2002184765A (ja) クリーニングガス
JP2003218100A (ja) 混合クリーニングガス組成物
JP2000173937A (ja) クリーニングガス
JPH1081950A (ja) 薄膜形成装置内の付着物を除去する方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 10129115

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001963514

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001963514

Country of ref document: EP