WO2002001249A1 - Detecteur d'images a faisceau corpusculaire a amplification gazeuse par electrodes ponctuelles - Google Patents

Detecteur d'images a faisceau corpusculaire a amplification gazeuse par electrodes ponctuelles Download PDF

Info

Publication number
WO2002001249A1
WO2002001249A1 PCT/JP2001/005165 JP0105165W WO0201249A1 WO 2002001249 A1 WO2002001249 A1 WO 2002001249A1 JP 0105165 W JP0105165 W JP 0105165W WO 0201249 A1 WO0201249 A1 WO 0201249A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
anode
strip
beam image
image detector
Prior art date
Application number
PCT/JP2001/005165
Other languages
English (en)
French (fr)
Inventor
Toru Tanimori
Atsuhiko Ochi
Original Assignee
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation filed Critical Japan Science And Technology Corporation
Priority to US10/069,237 priority Critical patent/US6822239B2/en
Priority to EP01941078A priority patent/EP1219975B1/en
Priority to DE60114132T priority patent/DE60114132T2/de
Publication of WO2002001249A1 publication Critical patent/WO2002001249A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/185Measuring radiation intensity with ionisation chamber arrangements

Definitions

  • the present invention relates to a particle beam image detector using gas amplification by a pixel electrode.
  • a strip type electrode detector MS GC microwave gas chamber
  • MS GC strip gas chamber
  • One of the features of this detector is that it has a very short dead time as a gas amplifier, in addition to its high positional resolution, and is expected to be a great detector for high-brightness particle beams.
  • the test using the X-ray per second, 1 it has been confirmed no trouble in operation even under the parallel mm per 1 0 7 count or more brightness.
  • FIG. 1 is an exploded perspective view of such a conventional MS GC.
  • the MS GC image element has an effective area of 1 O cm x i 0 cm, 1 is a substrate, and uses a polyimide thin film.
  • Reference numeral 2 denotes an anode strip formed on the substrate 1
  • reference numeral 3 denotes a strip-like cathode electrode (force source electrode), and the anode strip 2 and the strip-like cathode electrode 3 are arranged alternately.
  • Reference numeral 4 denotes a base substrate made of ceramic
  • reference numeral 5 denotes a back electrode formed on the base substrate 4 and located below the substrate 1.
  • a drift plate 6 is arranged on the element formed in this manner at a substantial interval, and for example, a chamber through which a gas composed of argon and ethane flows is formed (see, for example, Japanese Patent Application Laid-Open No. 10-3). No. 085656). Disclosure of the invention
  • one of the biggest difficulties in the practical application of MSGC described above is "" 3 electrode breakdown due to discharge between electrodes.
  • a voltage is applied between the electrodes at an interval of 50 ⁇ m or less. Frequent failures to conduct between the electrodes occurred, for example, when the electrode strips were cut or fragments were attached to the surface insulating layer.
  • the signal induced at the back electrode is used for two-dimensional reading, the signal of the back electrode 5 is about 20% of the signal by the anode on the surface, and this weak signal is read. It was necessary to use an expensive amplifier as a circuit system for this, or to further increase the gas amplification factor.
  • the present invention has been made in view of the above circumstances, and has as its object to provide a particle beam image detector using gas amplification by a pixel electrode, which has high sensitivity and can improve the reliability of an electrode portion. .
  • an anode strip formed on the back surface of a double-sided substrate, and an upper end surface of the anode strip is formed on the double-sided substrate. It is characterized by comprising a cylindrical anode electrode exposed on the surface, and a strip-shaped cathode electrode having a hole formed around the upper end surface of the cylindrical anode electrode.
  • the anode strip has a width of about 200 to 400 zm. .
  • FIG. 1 is an exploded perspective view of a conventional MS GC.
  • FIG. 2 is a perspective view of a main part of a particle beam image detector using gas amplification by a pixel electrode showing an embodiment of the present invention.
  • FIG. 3 is a plan view of a particle beam image detector showing an embodiment of the present invention.
  • FIG. 4 is an enlarged view of part A of FIG.
  • FIG. 5 is a diagram showing the operation principle of the particle beam image detector of the present invention.
  • FIG. 6 is a diagram showing a measured value of a correlation between an applied voltage and a gas amplification factor by a particle beam image detector.
  • FIG. 2 is a perspective view of a main part of a particle beam image detector using gas amplification by a pixel electrode showing an embodiment of the present invention
  • FIG. 3 is a plan view of the particle beam image detector
  • FIG. FIG. 3 is an enlarged view of a part A of FIG.
  • the lower part of the double-sided printed circuit board is drawn as a separate body to make it easier to see the arrangement of the anode (anode) strips, but is composed of a double-sided printed circuit board.
  • 1 is a particle beam image detector
  • 2 is a pixel chamber 1 (300 mm aperture)
  • 1 is an anode (anode) strip (where d is 300 / m in width, Approximately 200 am to 400 / zm)
  • 12 is a cylindrical anode electrode implanted on the anode strip 11 (where d 2 is 50 zm in diameter, but approximately 4 may be 0 / m ⁇ 6 0 / zm)
  • the 1 3 a double-sided printed circuit board
  • a thickness d 3 is about the thickness of 1 0 0 ⁇ M.
  • Reference numeral 14 denotes a strip-shaped cathode electrode (force source electrode) formed on the surface of the double-sided printed circuit board 13, and reference numeral 21 denotes a drift electrode.
  • the strip-shaped cathode electrodes 1 4 on the surface of the double-sided printed circuit board 1 3 the anode strips 1 1 is arranged in a d 5 4 0 0 intervals on the back surface
  • the strip-shaped cathode electrode 14 has holes 15 at regular intervals. At the center of this hole 15 is a pixel consisting of a cylindrical anode electrode 12 connected to the anode strip 11 on the back.
  • D e diameter of the hole 1 5 on the strip-shaped cathode electrodes 1 4 is 2 5 0 ⁇ M, it may also be a 2 0 0 am ⁇ 3 0 0 ⁇ M Rere.
  • the pixels of the anode electrode 12 may have a force diameter of 40 zm to 60 Ozm, here a diameter of 50 / m.
  • the height d 4 of the anode electrode 1 2 has a cylindrical shape of about 1 0 0 / m (a thickness of about two-sided printed circuit board 1 3).
  • the height of the anode electrode 12 is not limited to this, and can be appropriately set in the range of 50 m to 150 m according to the height of the double-sided printed circuit board.
  • this double-sided printed circuit board 13 is placed in a pixel chamber 12, that is, a gas atmosphere based on a rare gas, and as shown in FIG.
  • a drift electrode 21 By arranging the drift electrode 21 at the position (actually, several mm to several cm), radiation image measurement similar to that of MS GC can be performed.
  • FIG. 5 is a view showing the operation principle of the particle beam image detector of the present invention.
  • the electrons e ⁇ ionized in the gas by the incident particle beam are drifted to the pixel of the anode electrode 12 in the direction of the detector surface by the drift electric field.
  • electrons undergo gas avalanche amplification due to the voltage between the anode and the cathode (eg, 420 V) and the strong electric field created by the point-like electrode shape.
  • the resulting + ions quickly drift to the surrounding strip-shaped cathode electrode 14.
  • the cathode surrounds the anode in a circular shape, the electric field at the end of the cathode is much smaller than that of the anode, so that electrons do not easily jump out of the cathode and discharge does not easily occur.
  • this particle beam image detector basically uses the technology of manufacturing a printed circuit board, a large-area one can be manufactured at low cost.
  • Fig. 6 is a graph showing the actual measurement of the correlation between the applied voltage and the gas amplification rate by the particle beam image detector.
  • the horizontal axis represents the applied voltage (V) between the cathode and the anode
  • the vertical axis represents the gas amplification rate ( (A logarithmic scale), wherein a is a characteristic diagram in the present invention, and b is a conventional characteristic diagram.
  • the amplification rate can be achieved up to about 1000 times. Further, when the device was operated for about two consecutive days at an amplification factor of about 1000, no discharge phenomenon occurred. Occasionally, discharge was observed at a higher amplification rate, but no problem occurred in the operation of the detector thereafter.
  • this particle beam image detector basically uses the technology of manufacturing a printed circuit board, a large-area one can be manufactured at low cost.
  • the particle beam image detector using gas amplification by the pixel electrode of the present invention is suitable for the field of radiation detection, that is, fields such as radiation monitor, X-ray image analysis, medical X-ray image, and new gamma-ray image. is there.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)

Description

明 細 書 ピクセル型電極によるガス増幅を用いた粒子線画像検出器 技術分野
本発明は、 ピクセル型電極によるガス増幅を用いた粒子線画像検出器に関する ものである。 背景技術
これまで、 高位置分解能 ·高入射粒子許容量を持ったガス増幅型粒子線検出器 として、 ストリップ型電極による検出器 MS G C (マイクロストリップガスチヤ ンバ一) が本願発明者等によって開発された。 この検出器の特徴として、 高い位 置分解能の他に、 ガス増幅器としては極めて不感時間が短いことが挙げられてお り、 高輝度の粒子線に対する検出器としても大きな期待が寄せられている。 現在、 X線を用いたテストでは毎秒、 1平行 mm当たり 1 0 7 カウント以上の輝度の下 でも動作に支障がないことが確かめられている。
第 1図はかかる従来の MS G Cの分解斜視図である。
この図に示すように、 MS G Cイメージ素子は 1 O c m x i 0 c mの有効面積 を有しており、 1は基板(サブストレート) であり、 ポリイミ ド薄膜を用いる。 2はその基板 1上に形成される陽極ストリップ、 3はストリップ状陰極電極(力 ソ一ド電極) であり、 その陽極ストリップ 2とストリツプ状陰極電極 3とは、 交 互に配置されている。
また、 4はセラミックからなるベース基板、 5はそのベース基板 4上に形成さ れるとともに、 基板 1の下層に位置する背面電極である。
更に、 このようにして形成される素子上にほぼ間隔 を隔てドリフト板 6が 配置され、 例えば、 アルゴンとェタンからなるガスが流通するチャンバ一が形成 されている (例えば、 特開平 1 0— 3 0 0 8 5 6号公報参照)。 発明の開示 しかしながら、 上記した MS G Cの実用化にあたっての最大の難問の一"" 3に、 電極間の放電による電極の破壊が挙げられる。 上記した MS G Cでは、 5 0〃m 以下の間隔の電極間に電圧をかけるため、 高いガス増幅率を得るために高い電圧 をかけると、 電極間に放電による大電流が流れ、 放電による熱で電極ストリップ が切断されたり、 その破片などが表面絶縁層に付着するなどして、 電極間を導通 させる障害が頻繁に起こっていた。
また、 二次元読み出しのために背面電極に誘起される信号を使っているために、 背面電極 5の信号は表面の陽極による信号の 2 0 %程度の大きさとなり、 この微 弱な信号を読み出すための回路系として高価な増幅器を使うか、 もしくはガスに よる増幅率をさらに増加させる必要があった。
本発明は、 上記状況に鑑みて、 高い感度を持ち、 かつ電極部の信頼性を向上さ せることができるピクセル型電極によるガス増幅を用いた粒子線画像検出器を提 供することを目的とする。
本発明は、 上記目的を達成するために、
〔1〕 ピクセル型電極によるガス増幅を用いた粒子線画像検出器において、 両 面基板の裏面に形成される陽極ストリップと、 この陽極ストリップに植設される とともに、 その上端面が前記両面基板の表面に露出する円柱状陽極電極と、 この 円柱状陽極電極の上端面の回りに穴が形成されるストリップ状陰極電極とを具備 することを特徴とする。
〔2〕 上記 〔1〕 記載のピクセル型電極によるガス増幅を用いた粒子線画像検 出器において、 前記陽極ストリップは約 2 0 0 zm〜4 0 0 zmの幅を有するこ とを特徴とする。
〔3〕 上記 〔1〕 記載のピクセル型電極によるガス増幅を用いた粒子線画像検 出器において、 前記陽極ストリップが約 4 0 0 / m間隔で配置され、 前記ストリ ップ状陰極電極には、 一定間隔で直径約 2 0 0〜3 0 0 mの穴が形成され、 前 記円柱状陽極電極は直径約 4 0〜6 0 z m、 高さ約 5 0 m〜l 5 0 / mの形状 であることを特徴とする。 図面の簡単な説明 第 1図は、 従来の MS G Cの分解斜視図である。
第 2図は、 本発明の実施例を示すピクセル型電極によるガス増幅を用いた粒子 線画像検出器の要部斜視図である。
第 3図は、 本発明の実施例を示す粒子線画像検出器の平面図である。
第 4図は、 第 3図の A部拡大図である。
第 5図は、 本発明の粒子線画像検出器の動作原理を示す図である。
第 6図は、 粒子線画像検出器による印加電圧とガス増幅率の相関を実測した図 である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面を参照しながら詳細に説明する。
第 2図は本発明の実施例を示すピクセル型電極によるガス増幅を用いた粒子線 画像検出器の要部斜視図、 第 3図はその粒子線画像検出器の平面図、 第 4図は第 3図の A部拡大図である。 なお、 第 2図においては、 両面プリント基板の下方は、 陽極 (アノード) ストリップの配置を見やすくするために、 別体のように描かれ ているがー体の両面基板から構成されている。
これらの図において、 1は粒子線画像検出器、 2はピクセルチャンバ一 (3 0 0 mm口) 、 1 1は陽極 (アノード) ストリップ(ここでは、 d は幅 3 0 0 / mであるが、 約 2 0 0 a m〜4 0 0 /z mでもよい) 、 1 2はその陽極ストリップ 1 1上に植設される円柱状陽極電極 (ここでは d 2 は直径 5 0 z mであるが、 約 直径 4 0 / m〜6 0 /zmでもよい) 、 1 3は両面プリント基板であり、 その厚さ d 3 は約厚さ 1 0 0〃mである。 1 4はその両面プリント基板 1 3の表面に形成 されるストリップ状陰極電極(力ソード電極) 、 2 1はドリフト電極である。 第 2図に示すように、 本発明の粒子線画像検出器は、 両面プリント基板 1 3の 表面にストリップ状陰極電極 1 4、 裏面に陽極ストリップ 1 1が d 5 4 0 0 間隔で配置してあり、 ストリップ状陰極電極 1 4には、 一定間隔に穴 1 5が空い ている。 この穴 1 5の中心には背面の陽極ストリップ 1 1と接続されている円柱 状陽極電極 1 2からなるピクセルがある。 ストリップ状陰極電極 1 4上の穴 1 5 の d e 直径は 2 5 0〃mであり、 2 0 0 am〜 3 0 0〃mであってもよレヽ。 また、 上記したように、 陽極電極 1 2のピクセルは、 ここでは、 直径 5 0 / m である力 直径 4 0 zm〜6 O z mであってもよい。 陽極電極 1 2の高さ d 4 は 約 1 0 0 / m (約両面プリント基板 1 3の厚さ) の円柱状の形状をしている。 な お、 陽極電極 1 2は高さはこれに限定されるものではなく、 両面プリント基板の 高さに応じて 5 0 m〜l 5 0〃mの範囲で適宜設定することができる。
実際の粒子線検出において、 この両面プリント基板 1 3は、 ピクセルチャンバ 一 2、 つまり、 希ガスをベースとしたガス雰囲気中に置かれ、 第 2図に示すよう に、 検出器に並行で適当な位置 (実際は数 mm〜数 c m) にドリフト電極 2 1を 配置することにより、 MS G Cと同様な放射線の画像計測ができる。
第 5図は本発明の粒子線画像検出器の動作原理を示す図である。
入射粒子線によりガス中で電離された電子 e— は、 ドリフト電場により検出器 表面方向の陽極電極 1 2のピクセルへドリフトされる。 円柱状陽極電極 1 2の近 傍では、 陽極'陰極間の電圧 (例えば、 4 2 0 V) と点状の電極形状により作ら れる強力な電場により、 電子はガス雪崩増幅を起こす。 この結果生じた +イオン は、 周囲のストリップ状陰極電極 1 4へ速やかにドリフトしていく。
この過程にぉ 、て、 円柱状陽極電極 1 2とストリツプ状陰極電極 1 4の両方に、 電気回路上で観測可能な電荷が生じることになるので、 陽極 ·陰極のどのストリ ップでこの増幅現象が起きたかを観測することで、 入射粒子線の位置がわかる。 信号の読み出し、 及び 2次元画像を得るための回路系などについては、 従来の M S G C用に開発したものをそのまま用いることができる。
この粒子線画像検出器の特色は、 以下のとおりである。
( 1 ) 陽極としてピクセルを用いるので、 高電場が作り易く増幅率が大きい。
( 2 ) 陰極は、 陽極の周りを円状に囲んでいるため、 陰極の端部分の電場は陽 極に比べて遙に小さく、 陰極から電子が飛び出し難く、 放電が起こり難い。
( 3 ) 陽極から陰極にかけて、 距離に応じて急速に電場が弱まるので、 放電へ の進展が極めて起こり難い。
( 4 ) 陽極 ·陰極間に基板として絶縁体があるが、 陽極のストリップをストリ ップ状陰極電極の穴直径より大きくとっていることにより、 絶縁体表面の電気力 線の方向は常に上向きであり、 ガス増幅により生じた陽イオンが絶縁体上に溜ま つて電場を弱めるような静電場を生じる恐れが無レ、。
( 5 ) この粒子線画像検出器は、 基本的にはプリント回路基板作製の技術を用 いているため、 大面積のものが安価に作れる。
( 6 )放電を起こした場合でも、 致命的な損傷を受けにくい。 つまり、 局所 (ピクセル単位) の破壊で収まる。
( 7 ) ァノード電極、 及びドリフト電極の 2箇所のみの電圧印加で動作するの で、 必要な電源設備や結線が少なくて済む。
第 6図は粒子線画像検出器による印加電圧とガス増幅率の相関を実測した図で あり、 この図において、 横軸は陰極と陽極間の印加電圧(V)、 縦軸はガス増幅 率(対数目盛り) を示しており、 aは本発明における特性図、 bは従来の特性図 でめる。
この図から明らかなように、 増幅率は 1 0 0 0 0倍程度までは達成できる。 ま た、 増幅率 1 0 0 0倍程度で連続 2日ほど動作させたところ、 放電現象は一度も 起こらなかった。 またさらに高い増幅率で、 たまに放電が見られたが、 その後の 検出器の動作に問題は生じなかった。
なお、 本発明は上記実施例に限定されるものではなく、 本発明の趣旨に基づい て種々の変形が可能であり、 これらを本発明の範囲から排除するものではない。 以上、 詳細に説明したように、 本発明によれば、 以下のような効果を奏するこ とができる。
(A) MS G Cと同等の長所を持ち、 利得が大きく、 かつ電極部の信頼性を向 上させることができる。
( B) 陽極としてピクセルを用いるので、 高電場が作り易く増幅率が大きい。
(C) 陰極は、 陽極の周りを円状に囲んでいるため、 陰極の端部分の電場は陽 極に比べて遙に小さく、 陰極から電子が飛び出し難く、 放電が起こり難い。
(D) 陽極から陰極にかけて、 距離に応じて急速に電場が弱まるので、 放電へ の進展が極めて起こり難い。
(E) 陽極 ·陰極間に基板として絶縁体があるが、 陽極のストリップを陰極の 穴直径より大きくとっていることにより、 絶縁体表面の電気力線の方向は常に上 向きであり、 ガス増幅により生じた陽イオンが絶縁体上に溜まって、 電場を弱め るような静電場を生じる恐れが無レ、。
(F) この粒子線画像検出器は、 基本的にはプリント回路基板作製の技術を用 いているため、 大面積のものが安価に作れる。
(G)放電を起こした場合でも、 致命的な損傷を受け難い。 つまり、 局所(ピ クセル単位) の破壊で収まる。
(H) ァノ一ド電極、 及びドリフト電極の 2箇所のみの電圧印加で動作するの で、 必要な電源設備や結線が少なくて済む。 産業上の利用可能性
本発明のピクセル型電極によるガス増幅を用いた粒子線画像検出器は、 放射線 検出分野、 つまり、 放射線モニター、 X線画像解析、 医学用 X線画像、 さらに新 しいガンマ線画像などの分野に好適である。

Claims

請 求 の 範 囲
1 .
( a ) 両面基板の裏面に形成される陽極ストリップと、
( b ) 該陽極ストリップに植設されるとともに、 その上端面が前記両面基板の表 面に露出する円柱状陽極電極と、
( c ) 該円柱状陽極電極の上端面の回りに穴が形成されるストリップ状陰極電極 とを具備することを特徴とするピクセル型電極によるガス増幅を用いた粒子線画 像検出 ¾f。
2. 請求項 1記載のピクセル型電極によるガス増幅を用いた粒子線画像検出器に おいて、 前記陽極ストリップは約 2 0 0 /m〜4 0 0 z mの幅を有することを特 徵とするピクセル型電極によるガス増幅を用レ、た粒子線画像検出器。
3. 請求項 1記載のピクセル型電極によるガス増幅を用いた粒子線画像検出器に おいて、 前記陽極ストリップが約 4 0 0〃m間隔で配置され、 前記ストリップ状 陰極電極には、 一定間隔で直径約 2 0 0〜3 0 0 mの穴が形成され、 前記円柱 状陽極電極は直径約 4 0〜6 0〃m、 高さ約 5 0〃π!〜 1 5 0〃mの形状である ことを特徴とするピクセル型電極によるガス増幅を用いた粒子線画像検出器。
PCT/JP2001/005165 2000-06-27 2001-06-18 Detecteur d'images a faisceau corpusculaire a amplification gazeuse par electrodes ponctuelles WO2002001249A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/069,237 US6822239B2 (en) 2000-06-27 2001-06-18 Corpuscular beam image detector using gas amplification by pixel type electrodes
EP01941078A EP1219975B1 (en) 2000-06-27 2001-06-18 Corpuscular beam image detector using gas amplification by pixel type electrodes
DE60114132T DE60114132T2 (de) 2000-06-27 2001-06-18 Kopruskularstrahlbilddetektor mit hilfe von gasverstärkung und bildelektroden

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-191994 2000-06-27
JP2000191994A JP3354551B2 (ja) 2000-06-27 2000-06-27 ピクセル型電極によるガス増幅を用いた粒子線画像検出器

Publications (1)

Publication Number Publication Date
WO2002001249A1 true WO2002001249A1 (fr) 2002-01-03

Family

ID=18691188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005165 WO2002001249A1 (fr) 2000-06-27 2001-06-18 Detecteur d'images a faisceau corpusculaire a amplification gazeuse par electrodes ponctuelles

Country Status (5)

Country Link
US (1) US6822239B2 (ja)
EP (1) EP1219975B1 (ja)
JP (1) JP3354551B2 (ja)
DE (1) DE60114132T2 (ja)
WO (1) WO2002001249A1 (ja)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080017805A1 (en) * 2004-01-09 2008-01-24 Hiroyuki Takahashi Particle Detection Device And Particle Detection Method
US7332726B2 (en) * 2004-06-19 2008-02-19 Integrated Sensors, Llc Plasma panel based ionizing radiation detector
JP4391391B2 (ja) * 2004-11-12 2009-12-24 大日本印刷株式会社 放射線検出器の製造方法
EP1891464A4 (en) * 2005-06-16 2013-02-13 Integrated Sensors Llc IONIZING PHOTONIC RADIATION DETECTOR BASED ON A PLASMA SCREEN
JP4765506B2 (ja) * 2005-09-16 2011-09-07 大日本印刷株式会社 放射線検出パネルの製造方法、放射線検出パネル
JP4365844B2 (ja) 2006-09-08 2009-11-18 三菱電機株式会社 荷電粒子線の線量分布測定装置
JP5082096B2 (ja) * 2007-01-25 2012-11-28 国立大学法人神戸大学 ピクセル型電極構造のガス放射線検出器
JP5540471B2 (ja) * 2008-04-28 2014-07-02 大日本印刷株式会社 ガス増幅を用いた放射線検出器
JP5471051B2 (ja) 2008-06-23 2014-04-16 大日本印刷株式会社 ガス増幅を用いた放射線検出器、及び放射線検出器の製造方法
WO2010113682A1 (ja) 2009-04-01 2010-10-07 株式会社トクヤマ 放射線画像検出器
US20100265078A1 (en) 2009-04-20 2010-10-21 Integrated Sensors, Llc Plasma panel based ionizing-particle radiation detector
JP5604751B2 (ja) * 2010-05-23 2014-10-15 国立大学法人神戸大学 高抵抗電極を用いたピクセル型電極による粒子線画像検出器
JP2012013483A (ja) * 2010-06-30 2012-01-19 Dainippon Printing Co Ltd ガス増幅を用いた放射線検出器、及びその製造方法
JP5853370B2 (ja) * 2011-01-25 2016-02-09 大日本印刷株式会社 ガス増幅を用いた放射線検出器
JP2012168170A (ja) * 2011-01-25 2012-09-06 Dainippon Printing Co Ltd ガス増幅を用いた放射線検出器
JP2013181800A (ja) * 2012-03-01 2013-09-12 Kyocera Corp 粒子線位置検出器
JP6035798B2 (ja) * 2012-03-16 2016-11-30 大日本印刷株式会社 ガス増幅を用いた放射線検出器
JP5987594B2 (ja) * 2012-09-24 2016-09-07 大日本印刷株式会社 ガス増幅を用いた放射線検出器の製造方法
JP5987592B2 (ja) * 2012-09-24 2016-09-07 大日本印刷株式会社 ガス増幅を用いた放射線検出器の製造方法
JP5987591B2 (ja) * 2012-09-24 2016-09-07 大日本印刷株式会社 ガス増幅を用いた放射線検出器の製造方法
JP5987593B2 (ja) * 2012-09-24 2016-09-07 大日本印刷株式会社 ガス増幅を用いた放射線検出器の製造方法
JP5360281B2 (ja) * 2012-09-28 2013-12-04 大日本印刷株式会社 ガス増幅を用いた放射線検出器の製造方法
JP6281268B2 (ja) * 2013-12-06 2018-02-21 大日本印刷株式会社 ガス増幅を用いた放射線検出器
JP6428318B2 (ja) * 2015-01-30 2018-11-28 大日本印刷株式会社 ガス増幅を用いた放射線検出器
WO2016166970A1 (ja) * 2015-04-13 2016-10-20 大日本印刷株式会社 ガス増幅を用いた放射線検出器、ガス増幅を用いた放射線検出器の製造方法、及びガス増幅を用いた放射線検出器による放射線検出方法
JP6780649B2 (ja) * 2015-09-30 2020-11-04 大日本印刷株式会社 放射線画像形成装置
JP6733677B2 (ja) 2015-09-30 2020-08-05 大日本印刷株式会社 核医学検査装置及び核医学検査方法
JP6844175B2 (ja) * 2015-09-30 2021-03-17 大日本印刷株式会社 放射線検出装置
WO2017061336A1 (ja) * 2015-10-08 2017-04-13 大日本印刷株式会社 検出素子
JP6696162B2 (ja) * 2015-12-03 2020-05-20 大日本印刷株式会社 放射線検出素子及び放射線検出装置
JP6323531B2 (ja) * 2016-10-26 2018-05-16 大日本印刷株式会社 ガス増幅を用いた放射線検出器
JP6645528B2 (ja) * 2018-02-28 2020-02-14 大日本印刷株式会社 検出素子、検出素子の製造方法、および検出装置
JP6555380B2 (ja) * 2018-04-09 2019-08-07 大日本印刷株式会社 ガス増幅を用いた放射線検出器
JP7032738B2 (ja) 2018-09-13 2022-03-09 国立大学法人京都大学 検出素子、放射線検出装置、およびコンプトンカメラ
JP6747487B2 (ja) 2018-10-26 2020-08-26 大日本印刷株式会社 放射線検出装置
JP6737316B2 (ja) 2018-10-26 2020-08-05 大日本印刷株式会社 放射線検出素子
CN111077561B (zh) * 2019-12-18 2022-02-18 中国科学院近代物理研究所 一种残留气体带电粒子束流监测装置及其方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09508750A (ja) * 1994-11-25 1997-09-02 サントル ナショナル ドゥ ラ ルシエルシュ シアンティフィック 比例マイクロカウンタを有する電離放射線検出器
JPH10300856A (ja) * 1997-04-30 1998-11-13 Kagaku Gijutsu Shinko Jigyodan イメージングマイクロストリップガスチャンバー

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925233B1 (ja) * 1968-08-26 1974-06-28
FR2431185A1 (fr) * 1978-07-12 1980-02-08 Commissariat Energie Atomique Dispositif de detection et de localisation de rayonnements
US6046454A (en) * 1995-10-13 2000-04-04 Digirad Corporation Semiconductor radiation detector with enhanced charge collection
JP2000075037A (ja) * 1998-08-31 2000-03-14 Toshiba Corp 放射線検出器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09508750A (ja) * 1994-11-25 1997-09-02 サントル ナショナル ドゥ ラ ルシエルシュ シアンティフィック 比例マイクロカウンタを有する電離放射線検出器
JPH10300856A (ja) * 1997-04-30 1998-11-13 Kagaku Gijutsu Shinko Jigyodan イメージングマイクロストリップガスチャンバー

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1219975A4 *

Also Published As

Publication number Publication date
JP3354551B2 (ja) 2002-12-09
DE60114132T2 (de) 2006-05-18
US20020134945A1 (en) 2002-09-26
US6822239B2 (en) 2004-11-23
EP1219975A1 (en) 2002-07-03
EP1219975A4 (en) 2003-04-23
EP1219975B1 (en) 2005-10-19
JP2002006047A (ja) 2002-01-09
DE60114132D1 (de) 2006-03-02

Similar Documents

Publication Publication Date Title
WO2002001249A1 (fr) Detecteur d'images a faisceau corpusculaire a amplification gazeuse par electrodes ponctuelles
JP5082096B2 (ja) ピクセル型電極構造のガス放射線検出器
Bencivenni et al. The μ-RWELL layouts for high particle rate
WO2000062095A1 (en) Radiation detector and an apparatus for use in radiography
KR20140063729A (ko) 사태 입자 검출기용 검출기-판독 인터페이스
IL123975A (en) High resolution detector of high ionized particle currents
WO2010091695A2 (en) Protected readout electrode assembly
CA2393534C (en) A method and an apparatus for radiography and a radiation detector
JP2011247602A (ja) 高抵抗電極を用いたピクセル型電極による粒子線画像検出器
US20080251732A1 (en) Radiation Detector
US6365902B1 (en) Radiation detector, an apparatus for use in radiography and a method for detecting ionizing radiation
Nagayoshi et al. Performance of large area micro pixel chamber
AU2001296123B2 (en) Gaseous-based detector for ionizing radiation and method in manufacturing the same
EP0782762A4 (en) MAGNETIC SENSOR DEVICE BY MEANS OF FIELD EMISSION MATRIX
WO2002001598A1 (fr) Chambre a gaz a micro-bandes
Bashkirov et al. A novel detector for 2D ion detection in low-pressure gas and its applications
Mattern et al. A New approach for constructing sensitive surfaces: The gaseous Pixel chamber
JP3479230B2 (ja) 導電型キャピラリープレートによるガス放射線検出器
US7639783B1 (en) Parallax free and spark protected X-ray detector
JP6844175B2 (ja) 放射線検出装置
Sharma A comparison of micropattern gas avalanche detectors
Salomon et al. Gas-microstrip detectors based on flexible printed circuit technology
Bencivenni et al. High space resolution µ-RWELL for high rate applications
Bellazzini et al. A two-stage, high gain micro-strip detector
Cho et al. Designing and Performance Testings of Microdot Detectors

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 10069237

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001941078

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001941078

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001941078

Country of ref document: EP