WO2010113682A1 - 放射線画像検出器 - Google Patents

放射線画像検出器 Download PDF

Info

Publication number
WO2010113682A1
WO2010113682A1 PCT/JP2010/054836 JP2010054836W WO2010113682A1 WO 2010113682 A1 WO2010113682 A1 WO 2010113682A1 JP 2010054836 W JP2010054836 W JP 2010054836W WO 2010113682 A1 WO2010113682 A1 WO 2010113682A1
Authority
WO
WIPO (PCT)
Prior art keywords
image detector
gas
ultraviolet
scintillator
radiation
Prior art date
Application number
PCT/JP2010/054836
Other languages
English (en)
French (fr)
Inventor
健太郎 福田
澄人 石津
範明 河口
敏尚 須山
彰 吉川
健之 柳田
有為 横田
秀利 窪
達 谷森
洋之 関谷
Original Assignee
株式会社トクヤマ
国立大学法人東北大学
国立大学法人京都大学
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ, 国立大学法人東北大学, 国立大学法人京都大学, 国立大学法人東京大学 filed Critical 株式会社トクヤマ
Priority to RU2011143855/28A priority Critical patent/RU2011143855A/ru
Priority to EP10758456A priority patent/EP2416176A1/en
Priority to CA2757216A priority patent/CA2757216A1/en
Priority to CN2010800142178A priority patent/CN102365561A/zh
Priority to JP2011507097A priority patent/JP5554322B2/ja
Priority to US13/256,594 priority patent/US20120018642A1/en
Publication of WO2010113682A1 publication Critical patent/WO2010113682A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/28Measuring radiation intensity with secondary-emission detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/49Pick-up adapted for an input of electromagnetic radiation other than visible light and having an electric output, e.g. for an input of X-rays, for an input of infrared radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J47/00Tubes for determining the presence, intensity, density or energy of radiation or particles
    • H01J47/02Ionisation chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation

Definitions

  • the present invention relates to a novel radiation image detector.
  • the radiation image detector can be suitably used in medical fields such as positron tomography and X-ray CT, industrial fields such as various nondestructive inspections, and security fields such as radiation monitors and personal belongings inspections.
  • Radiological image detector is an elemental technology that occupies an important position in radiation utilization technology.
  • detection sensitivity position resolution with respect to the incident position of radiation, or count rate characteristics. Is required.
  • the particle beam image detector detects electrons generated by ionization of gas molecules by the incident particle beam with a pixel-type electrode, has excellent position resolution and count rate characteristics, and can easily enlarge the sensitive area. And it has the advantage that it can be manufactured at low cost.
  • the gas used since the gas used has a small atomic weight, it has poor stopping power against high energy photons such as hard X-rays and gamma rays, and therefore has a problem of low detection sensitivity for these photons. .
  • the present inventors have already developed a method of converting incident radiation into ultraviolet rays using a scintillator made of a chemical substance having a large atomic weight, and detecting the ultraviolet rays with a gas amplification type detector having positional resolution. Proposed (see Patent Document 2). In addition, attempts to detect radiation by the same method have been made by others (see Non-Patent Document 1). However, in these methods, since the ultraviolet rays generated from the scintillator detect electrons generated by ionizing gas molecules, the range of the ultraviolet rays has a spread corresponding to the thickness of the gas layer. As a result, when used as a radiographic image detector, there is a problem that the position resolution and the count rate characteristics are degraded.
  • Non-Patent Document 2 it is necessary to use chemically unstable gas molecules, which may cause problems such as deterioration of gas molecules themselves or adhesion of gas molecules to detector electrodes, making it difficult to operate stably over a long period of time.
  • Non-Patent Document 3 when detecting ultraviolet rays generated from a scintillator by radiation, a method has been attempted in which ultraviolet rays are converted into electrons using a photoelectric conversion substance, and the electrons are detected by a gas amplification type detector (see Non-Patent Document 3). ). According to such a method, although it is considered that the problems relating to the degradation of the position resolution and count rate characteristics and the stability of the operation can be avoided, the amplification rate when the electrons are amplified by the gas amplification type detector is sufficiently increased. Was not done. As a result, extremely weak ultraviolet rays generated from the scintillator cannot be detected with high sensitivity, and no attempt has been made to produce a device capable of detecting a radiation image by a method using such a photoelectric conversion substance. there were.
  • the present invention can detect radiation such as hard X-rays and ⁇ -rays with high sensitivity, has excellent position resolution and count rate characteristics, and converts the incident radiation into ultraviolet rays, and converts ultraviolet rays into electrons.
  • Another object of the present invention is to provide a radiation image detector configured by combining with a novel gas amplification type ultraviolet image detector that amplifies and detects such electrons.
  • the present inventors paid attention to the gas amplification type ultraviolet image detector constituting the radiation image detector and conducted various studies on a method for detecting extremely weak ultraviolet rays generated from the scintillator with high sensitivity.
  • a gas amplification type ultraviolet image detector composed of a photoelectric conversion material, a gas electronic amplifier, and a pixel type electrode
  • ultraviolet light generated from the scintillator is converted into electrons by the photoelectric conversion material, and then the electrons are gasified. It was found that radiation can be detected with high sensitivity by amplification using an electronic amplifier and then detection using a pixel-type electrode.
  • a radiation image detector comprising a scintillator for converting incident radiation into ultraviolet rays and a gas amplification type ultraviolet image detector, wherein the gas amplification type ultraviolet image detector comprises a photoelectric conversion substance, a gas electronic amplifier, and a pixel.
  • a radiation image detector is provided that is composed of a mold electrode.
  • the scintillator is a metal fluoride crystal containing neodymium, praseodymium, thulium or erbium.
  • the photoelectric conversion material is cesium iodide or cesium telluride.
  • the gas electronic amplifier is 2 It is preferable that there are three or three sheets.
  • the radiation image detector of the present invention is extremely valuable in fields such as medical, industrial, and security because the sensitive area can be easily enlarged and manufactured at low cost.
  • This figure is a schematic diagram of the radiation image detector of the present invention.
  • This figure is a schematic diagram of the radiation image detector of the present invention.
  • This figure is a schematic diagram of the radiation image detector of the present invention.
  • This figure is a schematic diagram of the radiation image detector of the present invention.
  • This figure is a schematic diagram of a gas electronic amplifier used in the present invention.
  • This figure is a radiographic image obtained in Example 1.
  • This figure is a radiographic image obtained in Example 2.
  • This figure is a radiographic image obtained in Example 3.
  • This figure is a radiographic image obtained in Example 3.
  • This figure is a radiographic image obtained in Example 3.
  • This figure is a profile of the radiation detection frequency in the radiographic image obtained in Example 3.
  • the scintillator that is a component of the radiation image detector of the present invention can be used without particular limitation as long as it is a scintillator that generates ultraviolet rays upon incidence of radiation, but in view of photoelectric conversion efficiency from ultraviolet rays to electrons in a photoelectric conversion material, It is particularly preferable to use a scintillator that generates vacuum ultraviolet rays having a wavelength of 200 nm or less among ultraviolet rays.
  • any radiation such as X-rays, ⁇ -rays, ⁇ -rays, ⁇ -rays, or neutrons can be detected.
  • a scintillator made of a chemical substance having a large atomic weight is preferable because it can efficiently detect high-energy photons such as hard X-rays and ⁇ -rays.
  • high-energy photons such as hard X-rays and ⁇ -rays.
  • the form of these scintillators is not particularly limited, and a form such as a crystal, glass, or ceramic can be used as appropriate. From the viewpoint of conversion efficiency from radiation to ultraviolet light, it is preferable to use crystals.
  • a metal fluoride can be preferably used as the scintillator generating the vacuum ultraviolet ray. Since vacuum ultraviolet rays have the property of being absorbed by many materials, there is a problem that the scintillator itself absorbs vacuum ultraviolet rays caused by the incidence of radiation, but metal fluorides have the property that they are exceptionally difficult to absorb vacuum ultraviolet rays. Therefore, it can be suitably used in the present invention.
  • the type of the metal fluoride is not particularly limited, and any conventionally known metal fluoride can be arbitrarily used as a scintillator that generates vacuum ultraviolet rays.
  • the scintillator it is preferable to use as the scintillator a compound containing a luminescent center element that causes a radiation transition in the ultraviolet region.
  • the luminescent center element is not particularly limited as long as it emits ultraviolet light by radiation transition. Those exhibiting 5d-4f transition emission due to electron transition from the 5d level to the 4f level are particularly preferable because of their short emission lifetime and high-speed response.
  • As the luminescent center element exhibiting such 5d-4f transition emission praseodymium (Pr), neodymium (Nd), erbium (Er), thulium (Tm) and the like can be preferably used.
  • the content of the luminescent center element varies depending on the type of scintillator or the type of luminescent center element, but is usually preferably in the range of 0.005 to 20 wt%.
  • the addition amount 0.005 wt% or more the intensity of light emission of the scintillator can be increased.
  • the addition amount 20 wt% or less attenuation of the light emission of the scintillator due to concentration quenching can be suppressed. .
  • a preferable example of a scintillator containing a luminescent center element is a crystal made of the above-mentioned metal fluoride, metal oxide, or metal phosphorous oxide, and the luminescent center element exhibiting the 5d-4f transition luminescence is described above. Including crystals.
  • a scintillator made of a chemical substance having a high density and a large effective atomic number in order to increase the detection sensitivity for high energy photons such as hard X-rays and ⁇ rays.
  • the effective atomic number is an index defined by the following formula [1] and affects the stopping power against hard X-rays and ⁇ -rays. As the effective atomic number is larger, the stopping power against hard X-rays and ⁇ -rays increases, and as a result, the sensitivity of the scintillator to hard X-rays and ⁇ -rays improves.
  • Effective atomic number ( ⁇ W i Z i 4 ) 1/4 [1] (In the formula, W i and Z i represent the mass fraction and atomic number of the i-th element among the elements constituting the scintillator, respectively.)
  • the shape of the scintillator is not particularly limited, it has an ultraviolet emission surface (hereinafter also simply referred to as an ultraviolet emission surface) facing the gas amplification type ultraviolet image detector described later, and the ultraviolet emission surface is optically polished. It is preferable. By having such an ultraviolet emission surface, ultraviolet rays generated by the scintillator can be efficiently incident on the gas amplification type ultraviolet image detector.
  • the shape of the ultraviolet light exit surface is not limited, and a shape according to the application such as a square having a side length of several mm to several hundreds mm square and a circle having a diameter of several mm to several hundred mm can be appropriately selected.
  • the thickness of the scintillator with respect to the radiation incident direction varies depending on the type and energy of the radiation to be detected, but is generally several hundred ⁇ m to several hundred mm.
  • an ultraviolet reflecting film made of aluminum, Teflon, or the like on the surface not facing the gas amplification type ultraviolet image detector in terms of preventing the dissipation of ultraviolet rays generated by the scintillator.
  • the positional resolution of the radiation image detector can be remarkably increased by using a large number of scintillators provided with such an ultraviolet reflecting film.
  • the manufacturing method of a scintillator is not specifically limited, It can manufacture with a well-known manufacturing method.
  • a metal fluoride crystal which is a suitable scintillator in the present invention, it is preferably produced by a melt growth method such as the Czochralski method or the Bridgman method.
  • a melt growth method such as the Czochralski method or the Bridgman method.
  • an annealing operation may be performed after the production of the crystal for the purpose of removing crystal defects caused by thermal strain or the like.
  • the obtained metal fluoride crystal has good processability, and is processed into a desired shape and used as a scintillator.
  • a known cutting machine such as a blade saw or wire saw, a grinding machine, or a polishing machine can be used without any limitation.
  • the gas amplification type ultraviolet image detector included in the radiation image detector of the present invention is basically composed of a photoelectric conversion substance, a gas electronic amplifier, and a pixel type electrode.
  • the gas amplification type ultraviolet image detector will be specifically described.
  • the photoelectric conversion material functions to convert ultraviolet rays generated from the scintillator into primary electrons.
  • the type is not particularly limited as long as it has this function. Specific examples include cesium iodide (CsI), cesium telluride (CsTe), and the like. Among these, cesium iodide is preferable from the viewpoints of photoelectric conversion efficiency when converting ultraviolet light into electrons, and chemical stability.
  • the photoelectric conversion material is preferably a thin film in order to efficiently extract primary electrons converted from ultraviolet rays. Further, it is preferably formed on the inner surface of the ultraviolet incident window as will be described later or on the surface of the gas electronic amplifier that faces the ultraviolet incident window.
  • the gas electronic amplifier was developed by Sauli in 1997 and is known as Gas Electron Multiplier (GEM).
  • GEM Gas Electron Multiplier
  • the gas electronic amplifier for example, the technique described in JP-A-2006-302844 or JP-A-2007-234485 can be preferably used.
  • the gas electronic amplifier used in the present invention will be described in detail with reference to FIG.
  • the gas electronic amplifier is provided with a plate-like multilayer body composed of a resin-made plate-like insulating layer 12 and a planar metal layer 13 coated on both sides of the plate-like insulating layer, and the plate-like multilayer body.
  • the through hole 14 has an inner wall perpendicular to the plane of the metal layer.
  • the material of the plate-like insulating layer is preferably polyimide or liquid crystal polymer in view of processability and mechanical strength.
  • the thickness of the plate-like insulating layer is preferably 50 ⁇ m to 300 ⁇ m.
  • the material and thickness of the metal layer are not particularly limited. For example, a metal layer having a thickness of about 5 ⁇ m is suitable for the material being copper, aluminum, or gold.
  • the diameter of the through hole (d in FIG.
  • the through holes are not particularly limited, and is appropriately selected in consideration of the strength of the electric field generated in the through hole and the ease of processing.
  • a specific example of such a diameter is generally 50 to 100 ⁇ m.
  • the through holes are preferably provided at a predetermined pitch (P in FIG. 5) on the entire surface of the plate-like multilayer body in order to improve the uniformity of the generated electric field.
  • the pitch depends on the material and thickness of the plate-like insulating layer and the diameter of the through hole, but is generally about twice the diameter of the through hole.
  • a suitable range of the applied voltage varies depending on the thickness of the plate-like insulating layer, but is generally 200 V to 1000 V, and an amplification factor obtained at the applied voltage is generally several tens to several thousand.
  • the pixel-type electrode includes an anode strip formed on the back surface of the double-sided substrate, and a cylindrical anode electrode that is implanted in the anode strip and whose upper end surface is exposed on the surface of the double-sided substrate; A strip-like cathode electrode having a hole formed around the upper end surface of the cylindrical anode electrode.
  • the anode strip preferably has a width of 200 ⁇ m to 400 ⁇ m.
  • the anode strips are arranged at intervals of 400 ⁇ m, and holes having a diameter of 200 to 300 ⁇ m are formed at regular intervals in the strip-like cathode electrode.
  • a shape having a diameter of 40 to 60 ⁇ m and a height of 50 to 150 ⁇ m is particularly preferable.
  • a strong electric field is generated in the vicinity of the cylindrical anode electrode by applying a predetermined applied voltage between the cylindrical anode electrode of the pixel electrode and the strip-like cathode electrode. Secondary electrons accelerated by the electric field cause an electron avalanche and are amplified and detected from the cylindrical anode electrode. In this process, cationized gas molecules quickly drift to the surrounding strip-like cathode electrode. Therefore, since electric charges that can be observed on the electric circuit are generated in both the cylindrical anode electrode and the strip-like cathode electrode, by observing which strip of the anode / cathode has caused this amplification phenomenon, the incident occurs. Know the position of the particle beam.
  • As a signal processing circuit for reading out signals and obtaining a two-dimensional image conventionally known ones can be used without limitation.
  • a suitable range of the voltage applied to the bixel electrode varies depending on the type of gas used, but is generally 400V to 800V. Since the pixel-type electrode uses a pixel as an anode, a high electric field is easily generated and the amplification factor is large. Therefore, the amplification factor obtained at the applied voltage reaches several thousands to several tens of thousands. In addition, since the pixel type electrode has a very short drift distance of the cationized gas molecules, the dead time is shorter than that of other gas amplification type detectors, and about 5 ⁇ 10 6 count / (sec ⁇ mm 2 ). High count rate characteristics exceeding Further, since the pixel-type electrode can be manufactured by using a printed circuit board manufacturing technique, a large-area electrode can be provided at low cost.
  • a photoelectric conversion substance 2 a gas electronic amplifier 4, and a pixel-type electrode 6 are installed in a chamber 7 having an opening for incident ultraviolet light generated from the scintillator 1, from the side close to the opening. It is sealed with a window 8.
  • a material for the ultraviolet light incident window it is preferable to use lithium fluoride (LiF), magnesium fluoride (MgF 2 ), or calcium fluoride (CaF 2 ) having high transparency to ultraviolet light.
  • the chamber is filled with a predetermined gas.
  • the electron amplification gas a combination of a rare gas and a quencher gas is generally used.
  • the rare gas include helium (He), neon (Ne), argon (Ar), and xenon (Xe).
  • the quencher gas include carbon dioxide (CO 2 ), methane (CH 4 ), ethane (C 2 H 6 ), and tetrafluoromethane (CF 4 ).
  • the mixing amount of the quencher gas in the rare gas is preferably 5 to 30%.
  • the photoelectric conversion material is preferably a thin film in order to efficiently extract primary electrons converted from ultraviolet rays.
  • the thin film is preferably formed on the inner surface of the ultraviolet light incident window as shown in FIG. 1 or on the surface facing the ultraviolet light incident window of the gas electronic amplifier as shown in FIG.
  • a thin film of photoelectric conversion material is formed on the inner surface of the ultraviolet incident window, in order to efficiently supply electrons to the thin film and to provide a uniform electric field between the thin film and the gas electron amplifier, It is preferable to provide the electrode 9 which consists of a metal layer in the outer peripheral part.
  • the metal layer is made of gold and metal in order to avoid reaction between the metal layer of the gas electronic amplifier and the photoelectric conversion material. It is preferable to do. Furthermore, in view of the ease and production cost when laminating to the plate-like insulating layer, the metal layer is a multilayer metal layer laminated in the order of copper, nickel and gold from the side close to the plate-like insulating layer. Is most preferred.
  • the gas electronic amplifier and the pixel type electrode are installed in parallel to the ultraviolet incident window.
  • a plurality of gas electronic amplifiers are used, and are preferably installed in parallel with the ultraviolet incident window, and about two or three are particularly preferable.
  • the electrons are amplified in stages, and the overall gain obtained as a result can be greatly increased.
  • ion feedback can be effectively suppressed, and operational stability can be improved.
  • Ion feedback is a phenomenon in which cationic gas molecules generated secondary by the electron avalanche phenomenon are accumulated and the electric field is distorted. When such ion feedback occurs, the amplification factor and count rate characteristics become unstable. This will hinder the stability of operation.
  • the length of the gap (G 1 in FIG. 1) between the ultraviolet light incident window and the first stage gas electronic amplifier, the length of the gap between each gas electronic amplifier (G 2 in FIG. 1), and the last stage gas electronic amplifier As the length of the gap between the pixel electrode and the pixel electrode (G 3 in FIG. 1) is shorter, the count rate characteristics and the position resolution are improved. However, when the length is extremely short, it is difficult to install them so that they do not contact each other. It becomes. Accordingly, the preferred lengths of G 1 , G 2 , and G 3 are all about 1 mm to 5 mm.
  • the magnitude of the electric field generated in G 1 , G 2 , and G 3 is not particularly limited, and can be appropriately selected in view of the intended amplification factor, the effect of suppressing ion feedback, and the charge collection efficiency. . Specifically, a preferable range of the magnitude of the electric field is generally 0.3 to 10 kV / cm. By setting the magnitude of the electric field, a high amplification factor and suppression of the ion feedback can be achieved at the same time.
  • the gas electronic amplifier and pixel type electrodes are used.
  • an amplification factor exceeding 1 ⁇ 10 5 can be stably obtained, and an image can be formed by weak ultraviolet rays generated from the scintillator.
  • a high-voltage power supply for applying a voltage is connected to each of the photoelectric conversion substance, the gas electronic amplifier, and the pixel type electrode, and signal readout and two-dimensional image are applied to the pixel type electrode. Is connected to a signal processing circuit.
  • the position resolution can be particularly improved by using an anger-type signal processing circuit based on anger logic.
  • Anger logic is a method for specifying the incident position of radiation by obtaining the position of the center of gravity of the scintillation light when the scintillation light generated by the incidence of the radiation is detected with a spatial spread. .
  • the Anger type signal processing circuit is a readout circuit for reading out the intensity of the signal at each pixel of the pixel type electrode, a coincidence circuit for discriminating scintillation light generated by the incidence of individual radiation, and readout from each pixel.
  • the center of gravity calculation circuit for obtaining the position of the center of gravity of the scintillation light from the intensity of the received signal.
  • the anger type signal processing circuit only the signal generated by the incidence of a single radiation among the signals obtained from the readout circuit is discriminated by the coincidence counting circuit. Subsequently, the incident position of the radiation is specified by using the discriminated signal as a target and obtaining a weighted average of the intensity of the signal by a gravity center calculation circuit. According to such an anger type signal processing circuit, the position resolution can be improved to about 100 ⁇ m.
  • an ultraviolet reflecting film 10 is provided on a surface other than the ultraviolet light emitting surface of the scintillator, and the ultraviolet light emitting surface of the scintillator and the ultraviolet light incident window of the gas amplification type ultraviolet image detector are installed in close contact,
  • the grease 11 is filled between the ultraviolet light emitting surface and the ultraviolet light incident window.
  • the ultraviolet rays that have reached the ultraviolet emission surface from the inside of the scintillator can be led out to the outside without being reflected by the ultraviolet emission surface, and the incidence efficiency to the gas amplification type ultraviolet image detector can be increased.
  • a fluorine-based grease having a high refractive index and high transparency to ultraviolet rays For example, “Crytox” manufactured by DuPont can be suitably used.
  • the thickness of the scintillator with respect to the radiation incident direction is large and the position resolution is lowered due to the spread of ultraviolet rays in the scintillator, it has a small ultraviolet emitting surface as shown in FIG.
  • the opening of the chamber may be sealed with a scintillator instead of the ultraviolet incident window.
  • a scintillator instead of the ultraviolet incident window.
  • Example 1 Preparation of scintillator>
  • the scintillator used a lanthanum fluoride crystal containing neodymium as the luminescent center element.
  • the neodymium-containing lanthanum fluoride crystal was produced using a crystal production apparatus by the Czochralski method.
  • raw materials lanthanum fluoride and neodymium fluoride having a purity of 99.99% or more were used.
  • 2700 g of lanthanum fluoride and 300 g of neodymium fluoride were weighed, mixed well, and filled into a crucible.
  • the crucible filled with the above raw materials was set in the chamber of the crystal production apparatus, and the inside of the chamber was evacuated to 1.0 ⁇ 10 ⁇ 3 Pa or less using a vacuum evacuation apparatus, and then high purity tetrafluoromethane A gas mixture was introduced by introducing a mixed gas consisting of argon and argon into the chamber.
  • the pressure in the chamber after gas replacement was atmospheric pressure.
  • the raw material was heated and melted with a heater, and the seed crystal was brought into contact with the melt of the molten raw material. Next, the seed crystal was pulled up while rotating to start crystal growth.
  • the crystal diameter was increased at a certain rate, and the crystal diameter was adjusted to 55 mm. After expanding the crystal diameter to 55 mm, the pulling rate was maintained at 3 mm / hr, and the pulling was continued continuously until the crystal length was about 100 mm.
  • the output of the heater was increased to separate the crystal from the raw material melt, and then gradually cooled to obtain a lanthanum fluoride crystal containing neodymium.
  • the crystal had a diameter of 55 mm and a length of about 100 mm, and was a high-quality crystal without white turbidity or cracks.
  • the content of neodymium was 5.9 wt% as a result of measurement using an energy dispersive X-ray analyzer.
  • the obtained crystal was processed into a 20 mm square cube shape by a wire saw equipped with a diamond wire, and then the entire surface was optically polished to obtain a scintillator.
  • One surface of the optically polished surface was used as an ultraviolet emitting surface, and the other surface was provided with an ultraviolet reflecting film made of Teflon (registered trademark).
  • An opening of 5 mm ⁇ 5 mm was provided in the central portion of the ultraviolet reflecting film provided on the opposite surface of the ultraviolet emitting surface to form a radiation incident port.
  • the wavelength of ultraviolet rays emitted by converting incident radiation was measured by the following method.
  • a scintillator was irradiated with X-rays using an encapsulated X-ray tube targeting tungsten.
  • the tube voltage and tube current when generating X-rays from the enclosed X-ray tube were set to 60 kV and 40 mA, respectively.
  • the ultraviolet rays generated from the ultraviolet emission surface of the scintillator were collected by a condenser mirror, monochromatic by a spectroscope, and the intensity of each wavelength was recorded to obtain the spectrum of the ultraviolet rays generated from the scintillator. As a result of the measurement, it was confirmed that this scintillator converts incident radiation into vacuum ultraviolet rays having a wavelength of 173 nm.
  • a gas amplification type ultraviolet image detector which is a component of the radiation image detector of the present invention was produced by the following method. As shown in FIG. 1, two gas electronic amplifiers and a pixel type electrode were installed in parallel in a chamber having an opening from the side close to the opening, and the opening was sealed with an ultraviolet incident window. The distance between the ultraviolet incident window and the first stage gas electronic amplifier was 2.5 mm, the distance between the first stage gas electronic amplifier and the rear stage gas electronic amplifier was 2 mm, and the distance between the rear stage gas electronic amplifier and the pixel electrode was 2 mm. .
  • the gas electronic amplifier has a plate-like multilayer body formed by depositing copper with a thickness of 5 ⁇ m as a metal layer on both sides of a polyimide plate-like insulating layer having a thickness of 50 ⁇ m, and has a diameter on the entire surface of the plate-like multilayer body.
  • cylindrical through-holes having a diameter of 70 ⁇ m are provided in an arrangement in which equilateral triangles are arranged at a pitch of 140 ⁇ m.
  • the pixel electrode uses a polyimide substrate having a thickness of 100 ⁇ m, and an anode strip having a width of 300 ⁇ m is provided on the back surface of the substrate, and cylindrical anode electrodes that are implanted in the anode strip and exposed on the surface of the substrate are spaced by 400 ⁇ m.
  • the strip-shaped cathode electrode provided with a hole having a diameter of 260 ⁇ m around the upper end surface of the cylindrical anode electrode was used.
  • the diameter of the cylindrical anode electrode was 50 ⁇ m at the portion embedded in the substrate, and 70 ⁇ m at the portion exposed on the surface of the substrate.
  • the height of the columnar anode electrode was 110 ⁇ m, and the upper end 10 ⁇ m was exposed on the surface.
  • MgF 2 having a diameter of 70 mm and a thickness of 5 mm is used for the ultraviolet incident window, and a thin film of cesium iodide is provided as a photoelectric conversion material on the inner surface of the ultraviolet incident window, and an outer peripheral portion on the cesium iodide thin film
  • An electrode made of an aluminum layer was provided. The applied voltage is applied to the electrode composed of an aluminum layer provided on the outer periphery of the cesium iodide thin film, both sides of the first stage gas electronic amplifier, both sides of the subsequent stage gas electronic amplifier, and the anode and cathode electrodes of the pixel type electrode.
  • a high-voltage power source for application was connected, and a signal processing circuit for reading signals and obtaining a two-dimensional image was connected to the anode electrode and the cathode electrode of the pixel electrode.
  • the chamber was filled with Ar gas mixed with 10% C 2 H 6 to obtain a gas amplification type ultraviolet image detector as a component of the present invention.
  • -1035 V is applied to an electrode made of an aluminum layer provided on the outer periphery of the cesium iodide thin film, and 280 V is applied between the metal layers on both sides of each of the two gas electronic amplifiers. 490 V was applied between the anode electrode and the cathode electrode of the pixel electrode.
  • the electric field between the ultraviolet incident window and the first stage gas electron amplifier is 0.5 kV / cm, the electric field between the first stage gas electronic amplifier and the latter stage gas electron amplifier is 1.25 kV / cm, The applied voltage was adjusted so that the electric field between the pixel-type electrodes was 2.95 kV / cm.
  • the total gain obtained by the two gas electronic amplifiers and the pixel-type electrode reaches 6.7 ⁇ 10 5 , and even at such a high gain, It was confirmed that no discharge occurred in the pixel-type electrode and the pixel-type electrode operated stably for a long time.
  • a radiation source was installed close to the scintillator, and ⁇ -rays generated from the radiation source were irradiated to the scintillator proximity surface.
  • a signal processing circuit connected to the pixel type electrode, a signal output from each anode electrode of the pixel type electrode was obtained to construct a two-dimensional image.
  • the shape of the scintillator can be captured as an image, and it was confirmed that the radiographic image detector of the present invention has sufficient sensitivity and excellent position resolution. It was confirmed that there was no problem in operation even when radiation was incident at a frequency of 2.6 MBq, and therefore the count rate characteristics were excellent.
  • Example 2 As the scintillator, the lanthanum fluoride crystal produced in Example 1 and containing neodymium as the luminescent center element was used.
  • a gas amplification type ultraviolet image detector was produced by the following method. As shown in FIG. 2, two gas electronic amplifiers and a pixel type electrode were installed in parallel in a chamber having an opening from the side close to the opening, and the opening was sealed with an ultraviolet incident window. The distance between the ultraviolet incident window and the first stage gas electronic amplifier was 2.5 mm, the distance between the first stage gas electronic amplifier and the rear stage gas electronic amplifier was 2 mm, and the distance between the rear stage gas electronic amplifier and the pixel electrode was 2 mm. .
  • the gas electronic amplifier of the first stage used a plate-like multilayer body in which a multilayer metal layer was coated on both sides of a liquid crystal polymer plate-like insulating layer (Kuraray, Bexter) having a thickness of 100 ⁇ m.
  • the multilayer metal layer was manufactured by vapor-depositing copper, nickel, and gold in thicknesses of 5 ⁇ m, 2 ⁇ m, and 0.2 ⁇ m in order from the side close to the plate-like insulating layer. Cylindrical through holes with a diameter of 70 ⁇ m were provided on the entire surface of the plate-like multilayer body in an arrangement in which equilateral triangles were arranged at a pitch of 140 ⁇ m to obtain a gas electronic amplifier.
  • the gas electronic amplifier at the latter stage was the same as that in Example 1.
  • a thin film of cesium iodide was provided as a photoelectric conversion material on the surface of the first stage gas electronic amplifier facing the ultraviolet light incident window.
  • the pixel type electrode was the same as in Example 1, and MgF 2 having a diameter of 70 mm and a thickness of 5 mm was used for the ultraviolet light incident window.
  • a high voltage power source for applying an applied voltage is connected to both sides of the first stage gas electronic amplifier, both sides of the latter stage gas electronic amplifier, and the anode electrode and the cathode electrode of the pixel electrode, and the anode electrode of the pixel electrode
  • a signal processing circuit for reading signals and obtaining a two-dimensional image was connected to the cathode electrode.
  • the chamber was filled with Ar gas mixed with 10% C 2 H 6 to obtain a gas amplification type ultraviolet image detector which is a component of the present invention.
  • the shape of the scintillator can be captured as an image, and it was confirmed that the radiographic image detector of the present invention has sufficient sensitivity and excellent position resolution. It has been confirmed that there is no problem in operation even when radiation is incident at a frequency of 2.6 MBq, and therefore the count rate characteristic is also excellent.
  • Example 3 Preparation of scintillator>
  • the scintillator the lanthanum fluoride crystal produced in Example 1 and containing neodymium as the luminescent center element was used.
  • This scintillator was processed into a 3 ⁇ 3 ⁇ 10 mm 3 rectangular parallelepiped shape with a wire saw equipped with a diamond wire, and then optically polished on the entire surface.
  • one surface of 3 ⁇ 3 mm 2 was used as an ultraviolet emitting surface, and an ultraviolet reflecting film made of Teflon was applied to four surfaces excluding the ultraviolet emitting surface and its opposite surface.
  • Nine such scintillators were prepared, and each scintillator was arranged so that the ultraviolet emission surface thereof was arranged in the same plane, and a 3 ⁇ 3 array scintillator array was produced.
  • a gas amplification type ultraviolet image detector was produced in the same manner as in Example 1.
  • ⁇ 1250 V is applied to an electrode made of an aluminum layer provided on the outer peripheral portion on the cesium iodide thin film, and each of the two gas electronic amplifiers is interposed between the metal layers on both sides. 300 V was applied, and 400 V was applied between the anode electrode and the cathode electrode of the pixel-type electrode.
  • the electric field between the ultraviolet incident window and the first stage gas electron amplifier is 0.8 kV / cm
  • the electric field between the first stage gas electronic amplifier and the latter stage gas electron amplifier is 1.25 kV / cm
  • the applied voltage was adjusted so that the electric field between the pixel-type electrodes was 3.0 kV / cm.
  • the total amplification factor obtained by the two gas electronic amplifiers and the pixel type electrode reached 6.0 ⁇ 10 5 . Even at such a high amplification factor, it was confirmed that the discharge on the front and back of the gas electronic amplifier and the discharge on the pixel-type electrode did not occur, and the operation was stable for a long time.
  • a radiation source was installed close to the scintillator, and ⁇ -rays generated from the radiation source were irradiated to the scintillator proximity surface.
  • evaluation was performed by individually irradiating the scintillators located at the lower left, the center, and the upper right of the 3 ⁇ 3 scintillator array with ⁇ rays. That is, the scintillator array was covered with a shield, and an opening was provided only in the scintillator to be irradiated among the shield, and only the scintillator to be irradiated was irradiated with ⁇ rays through the opening.
  • An image was constructed with a gray scale of 256 gradations, with the pixel having the highest radiation detection frequency being white and the pixel having the lowest detection frequency being black.
  • the position of the scintillator that is, the incident position of radiation can be identified.
  • the profile of the radiation detection frequency along the dashed-dotted line (horizontal straight line) of FIG.8, 9 and 10 is shown in FIG.
  • the position of the scintillator can be clearly identified from the profile of the radiation detection frequency, and it can be confirmed that the radiation image detector of the present invention has sufficient sensitivity and excellent position resolution.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measurement Of Radiation (AREA)

Abstract

【課題】硬X線やγ線等の放射線を高感度で検出することができ、位置分解能及び計数率特性に優れた、新規な放射線画像検出器を提供することを目的とする。 【解決手段】ネオジムを含有するフッ化ランタン結晶などの入射した放射線を紫外線に変換するシンチレーターと、紫外線を電子に変換し、かかる電子をガス電子雪崩現象を利用して増幅し、検出するガス増幅型紫外線画像検出器とを組み合わせた放射線画像検出器であって、ガス増幅型紫外線画像検出器が、ヨウ化セシウムやテルル化セシウムなどの紫外線を電子に変換する光電変換物質、電子をガス電子雪崩現象を利用して増幅するガス電子増幅器、及び増幅機能と検出機能を有するピクセル型電極より基本構成されることを特徴とする放射線画像検出器である。

Description

放射線画像検出器
 本発明は、新規な放射線画像検出器に関する。該放射線画像検出器は、陽電子断層撮影、X線CT等の医療分野、各種非破壊検査等の工業分野、及び放射線モニターや所持品検査等の保安分野において好適に使用できる。
 放射線利用技術は、陽電子断層撮影、X線CT等の医療分野、各種非破壊検査等の工業分野、及び放射線モニターや所持品検査等の保安分野など多岐にわたり、現在も目覚しい発展を続けている。
 放射線画像検出器は、放射線利用技術の重要な位置を占める要素技術であって、放射線利用技術の発展に伴い、検出感度、放射線の入射位置に対する位置分解能、或いは計数率特性について、より高度な性能が求められている。また、放射線利用技術の普及に伴い、放射線画像検出器の低コスト化、及び有感領域の大面積化も求められている。
 上記放射線画像検出器に対する要求に応えるべく、ピクセル型電極によるガス増幅を用いた粒子線画像検出器が開発された(特許文献1参照)。当該粒子線画像検出器は、入射粒子線がガス分子を電離して生成した電子をピクセル型電極で検出するものであり、位置分解能及び計数率特性に優れ、有感領域を容易に大型化でき、かつ安価に製作できるという利点を有する。しかしながら、使用されるガスは原子量が小さいため、硬X線やガンマ線のような高いエネルギーをもった光子に対する阻止能に乏しく、従って、これらの光子に対しては検出感度が低いという問題があった。
 かかる問題に鑑みて、本発明者らは既に、原子量の大きい化学物質からなるシンチレーターを用いて入射した放射線を紫外線に変換し、該紫外線を位置分解能を有するガス増幅型検出器によって検出する方法を提案した(特許文献2参照)。また、同様の方法によって放射線を検出する試みは、他者においてもなされている(非特許文献1参照)。しかしながら、これらの方法においては、シンチレーターより生じる紫外線がガス分子を電離して生成した電子を検出するため、紫外線の飛程がガス層の厚さ分に相当する拡がりを有する。その結果、放射線画像検出器として用いた際に、位置分解能及び計数率特性が低下するという問題があった。また、化学的に不安定なガス分子を用いる必要があるため、ガス分子そのものが劣化したり、ガス分子が検出器の電極に付着したりする問題があり、長期にわたって安定に動作させることが困難であった(非特許文献2参照)。
 一方、放射線によってシンチレーターから生じる紫外線を検出する際に、光電変換物質を用いて紫外線を電子に変換し、該電子をガス増幅型検出器によって検出する方法が試みられている(非特許文献3参照)。かかる方法によれば、前記位置分解能及び計数率特性の低下や動作の安定性にかかる問題は回避できると考えられるものの、電子をガス増幅型検出器によって増幅する際の増幅率を充分に高めることができていなかった。その結果、シンチレーターより生じるきわめて微弱な紫外線を感度良く検出することができず、かかる光電変換物質を用いる方法によって、放射線画像を検出できる装置を作製しようとする試みは為されていないのが現状であった。
特許第3354551号公報 特開2008-202977号公報
P. Schotanus, et al., "Detection of LaF3:Nd3+ Scintillation Light in a Photosensitive Multiwire Chamber" Nuclear Instruments and Methods in Physics Research, A272, 913-916(1988). J. Va’vra, "Wire Aging of Hydrocarbon Gases with TMAE Additions" IEEE Transactions on Nuclear Science, NS-34, 486-490(1987). J. van der Marel, et al., "A LaF3:Nd(10%) Scintillation Detector with Microgap Gas Chamber Read-out for the Detection of γ-rays" Nuclear Instruments and Methods in Physics Research, A392, 310-314(1997).
 本発明は、硬X線やγ線等の放射線を高感度で検出することができ、位置分解能及び計数率特性に優れた、入射した放射線を紫外線に変換するシンチレーターと、紫外線を電子に変換し、かかる電子を増幅して検出する新規なガス増幅型紫外線画像検出器とを組み合わせて構成される放射線画像検出器を提供することを目的とする。
 本発明者等は、放射線画像検出器を構成するガス増幅型紫外線画像検出器に着目し、シンチレーターより生じるきわめて微弱な紫外線を感度良く検出する方法について種々検討を重ねた。
 その結果、光電変換物質、ガス電子増幅器、及びピクセル型電極より構成されるガス増幅型紫外線画像検出器を用いて、シンチレーターより生じた紫外線を光電変換物質で電子に変換し、次いで当該電子をガス電子増幅器によって増幅した後、ピクセル型電極を用いて検出することにより、放射線を感度良く検出できることを見出した。また、当該シンチレーターとガス増幅型紫外線画像検出器を組み合わせてなる放射線画像検出器によって、放射線画像を取得することに成功し、本発明を完成するに至った。
 即ち、本発明によれば、
入射した放射線を紫外線に変換するシンチレーター、及びガス増幅型紫外線画像検出器を具備してなる放射線画像検出器であって、ガス増幅型紫外線画像検出器が、光電変換物質、ガス電子増幅器、及びピクセル型電極より構成されることを特徴とする放射線画像検出器が提供される。
 上記放射線画像検出器の発明において、
(1)シンチレーターが、ネオジム、プラセオジウム、ツリウムまたはエルビウムを含有する金属フッ化物結晶であること
(2)光電変換物質が、ヨウ化セシウムまたはテルル化セシウムであること(3)ガス電子増幅器が、2枚又は3枚存在すること
が好適である。
 本発明によれば、シンチレーターにより放射線から変換されて生じるきわめて微弱な紫外線を感度よく検出することができるので、位置分解能及び計数率特性に優れた放射線画像検出器を提供できる。また、本発明の放射線画像検出器は、有感領域を容易に大型化でき、かつ安価に製作できるため、医療、工業、及び保安等の分野において極めて価値が高い。
本図は、本発明の放射線画像検出器の模式図である。 本図は、本発明の放射線画像検出器の模式図である。 本図は、本発明の放射線画像検出器の模式図である。 本図は、本発明の放射線画像検出器の模式図である。 本図は、本発明で用いるガス電子増幅器の模式図である。 本図は、実施例1で得られた放射線画像である。 本図は、実施例2で得られた放射線画像である。 本図は、実施例3で得られた放射線画像である。 本図は、実施例3で得られた放射線画像である。 本図は、実施例3で得られた放射線画像である。 本図は、実施例3で得られた放射線画像における放射線検出頻度のプロファイルである。
〔動作原理〕
 本発明の放射線画像検出器の動作原理について、図1を用いて説明する。まず、入射した放射線をシンチレーター1によって紫外線に変換する。次いで、生じた紫外線を光電変換物質2によって一次電子3に変換する。当該一次電子3を、高電場下におけるガス電子雪崩現象による増幅作用を利用したガス電子増幅器4で増幅し、二次電子5を得た後、二次電子5をピクセル型電極6でさらに増幅しながら検出する。このピクセル型電極で検出された電子に基づく信号を外部回路で処理することにより、放射線の入射位置を特定することができ、放射線画像を得ることが可能となる。以下、本発明の放射線画像検出器についてより詳細に説明する。
〔シンチレーター〕
 本発明の放射線画像検出器の構成要素であるシンチレーターは、放射線の入射によって紫外線を生じるシンチレーターであれば、特に制限無く使用できるが、光電変換物質における紫外線から電子への光電変換効率に鑑みて、紫外線の中でも波長が200nm以下の真空紫外線を生じるシンチレーターを用いることが特に好ましい。
 検出対象となる放射線の種類に応じて、用いるシンチレーターを選択することにより、X線、α線、β線、γ線、或いは中性子線等の何れの放射線も検出可能となる。特に、原子量の大きい化学物質からなるシンチレーターは、放射線の中でも、硬X線やγ線等の高エネルギーの光子を効率よく検出できるので好ましい。
 放射線の入射によって生じた紫外線を、シンチレーター自身が吸収することなく出射せしめるためには、紫外線を吸収し難いシンチレーターを使用することが好ましい。かかる紫外線を吸収し難いシンチレーターとしては、後述する金属フッ化物;アルミナ(Al)、アルミン酸イットリウム(YAlO)、アルミン酸ルテチウム(LuAl12)等の金属酸化物;リン酸ルテチウム(LuPO)、リン酸イットリウム(YPO)等の金属リン酸化物;或いは一部の金属ホウ酸化物等からなるシンチレーターが挙げられる。
 これらシンチレーターの形態は特に限定されず、結晶、ガラス、またはセラミック等の形態のものが適宜使用できる。放射線から紫外線への変換効率の観点から、結晶を使用することが好ましい。
 前記真空紫外線を生じるシンチレーターとしては、金属フッ化物が好適に使用できる。真空紫外線は多くの材料に吸収される性質を有するため、放射線の入射によって生じた真空紫外線をシンチレーター自身が吸収するという問題があるが、金属フッ化物は例外的に真空紫外線を吸収し難い特性を有するため、本発明において好適に用いることができる。
 該金属フッ化物の種類は特に限定されず、真空紫外線を生じるシンチレーターとして従来公知の金属フッ化物を任意に用いることができる。具体的には、フッ化リチウム、フッ化マグネシウム、フッ化カルシウム、フッ化スカンジウム、フッ化チタン、フッ化クロム、フッ化マンガン、フッ化鉄、フッ化コバルト、フッ化ニッケル、フッ化銅、フッ化亜鉛、フッ化ガリウム、フッ化ゲルマニウム、フッ化アルミニウム、フッ化ストロンチウム、フッ化イットリウム、フッ化ジルコニウム、フッ化バリウム、フッ化ランタン、フッ化セリウム、フッ化プラセオジム、フッ化ネオジム、フッ化ユーロピウム、フッ化ガドリニウム、フッ化テルビウム、フッ化エルビウム、フッ化ツリウム、フッ化イッテルビウム、フッ化ルテシウム、フッ化ハフニウム、フッ化タンタル、フッ化鉛などの金属フッ化物が例示される。
 本発明において、紫外線領域において輻射遷移を生じる発光中心元素を含有する化合物をシンチレーターとして用いることが好ましい。発光中心元素は、輻射遷移によって紫外線の発光を呈するものであれば、特に限定されない。5d準位から4f準位への電子遷移による5d-4f遷移発光を呈するものが、発光寿命が短く高速応答性を有するため、特に好ましい。かかる5d-4f遷移発光を呈する発光中心元素としては、プラセオジウム(Pr)、ネオジム(Nd)、エルビウム(Er)、ツリウム(Tm)等が好適に使用できる。
 上記発光中心元素を含有するシンチレーターにおいて、発光中心元素の含有量は、シンチレーターの種類または発光中心元素の種類によって異なるが、通常、0.005~20wt%の範囲とすることが好ましい。添加量を0.005wt%以上とすることによって、シンチレーターの発光の強度を高めることができ、一方、20wt%以下とすることによって、濃度消光に由来するシンチレーターの発光の減衰を抑制することができる。
 発光中心元素を含有するシンチレーターの好ましいものを例示すれば、前出の金属フッ化物、金属酸化物、或いは金属リン酸化物からなる結晶であって、前記5d-4f遷移発光を呈する発光中心元素を含む結晶が挙げられる。
 本発明において、硬X線やγ線等の高エネルギーの光子に対する検出感度を高めるため、高密度で且つ有効原子番号の大きい化学物質からなるシンチレーターを用いることが好ましい。有効原子番号とは、下式〔1〕で定義される指標であって、硬X線やγ線に対する阻止能に影響する。該有効原子番号が大きいほど、硬X線やγ線に対する阻止能が増大し、その結果、シンチレーターの硬X線やγ線に対する感度が向上する。
  有効原子番号=(ΣW 1/4    〔1〕
 (式中、W及びZは、それぞれシンチレーターを構成する元素のうち
  のi番目の元素の質量分率及び原子番号を表す。)
 シンチレーターの形状は、特に限定されないが、後出のガス増幅型紫外線画像検出器に対向する紫外線出射面(以下、単に紫外線出射面ともいう)を有し、当該紫外線出射面は光学研磨が施されていることが好ましい。かかる紫外線出射面を有することによって、シンチレーターで生じた紫外線を効率よくガス増幅型紫外線画像検出器に入射できる。
 紫外線出射面の形状は限定されず、一辺の長さが数mm~数百mm角の四角形、直径が数mm~数百mmの円形など、用途に応じた形状を適宜選択することができる。シンチレーターの放射線入射方向に対する厚さは、検出対象とする放射線の種類及びエネルギーによって異なるが、一般に数百μm~数百mmである。
 また、ガス増幅型紫外線画像検出器に対向しない面に、アルミニウム或いはテフロン等からなる紫外線反射膜を施すことは、シンチレーターで生じた紫外線の散逸を防止することができる点で好ましい。更にかかる紫外線反射膜が施されたシンチレーターを多数配列して用いることにより、放射線画像検出器の位置分解能を顕著に高めることができる。
 シンチレーターの製造方法は特に限定されず、公知の製造方法によって製造することができる。本発明において好適なシンチレーターである金属フッ化物結晶を製造する際には、チョクラルスキー法、或いはブリッジマン法等の融液成長法によって製造することが好ましい。融液成長法で製造することにより、透明性等の品質に優れた金属フッ化物結晶を製造することができ、また、直径が数インチの大型結晶を安価に製造することが可能となる。
 金属フッ化物結晶の製造に際して、熱歪等に起因する結晶欠陥を除去する目的で、結晶の製造後にアニール操作を行っても良い。得られた金属フッ化物結晶は良好な加工性を有しており、所望の形状に加工してシンチレーターとして用いる。加工に際しては、公知のブレードソー、ワイヤーソー等の切断機、研削機、或いは研磨盤を何ら制限無く用いる事ができる。
 本発明の放射線画像検出器が具備するガス増幅型紫外線画像検出器は、光電変換物質、ガス電子増幅器、及びピクセル型電極より基本構成される。以下、当該ガス増幅型紫外線画像検出器について、具体的に説明する。
〔光電変換物質〕
 光電変換物質は、シンチレーターより生じた紫外線を一次電子に変換する働きをなす。この機能を有するものであれば、その種類は特に制限されない。具体的には、ヨウ化セシウム(CsI)、テルル化セシウム(CsTe)などを例示することができる。これらの中でも、紫外線を電子に変換する際の光電変換効率、及び化学的安定性の観点から、ヨウ化セシウムが好ましい。
 光電変換物質は、紫外線から変換された一次電子を効率よく取り出すため、薄膜とすることが好ましい。また、後述するように紫外線入射窓の内面に形成するか、或いは、ガス電子増幅器の紫外線入射窓に対向する面上に形成することが好ましい。
〔ガス電子増幅器〕
 次いで、上記光電変換物質より生じた一次電子をガス電子増幅器によって増幅する。当該ガス電子増幅器は、1997年にSauliによって開発され、Gas Electron Multiplier(GEM)として知られている。本発明において、当該ガス電子増幅器としては、例えば、特開2006-302844号公報、或いは特開2007-234485号公報に記載の技術が好適に使用できる。以下、本発明で使用するガス電子増幅器について、図5を用いて詳細に説明する。
 ガス電子増幅器は、樹脂製の板状絶縁層12とこの板状絶縁層の両面に被覆された平面状の金属層13とにより構成された板状多層体と、この板状多層体に設けられた、金属層の平面に垂直な内壁を有する貫通孔14により構成される。当該ガス電子増幅器においては、金属層に所定の印加電圧を印加し、貫通孔の内部に電界を発生させることにより、貫通孔構造の内部に侵入した一次電子が加速され、電子雪崩現象を生じて、位置情報を保持したまま、多数の二次電子へと増幅される。板状絶縁層の材質は、加工性及び機械的強度に鑑みて、ポリイミド或いは液晶高分子等であることが好ましい。
 板状絶縁層の厚さ(図5中のD)が厚いほど、表面と裏面の金属層の間での放電を抑制することができるため、より高い印加電圧を印加して高い増幅率を得ることができる。しかし、極度に厚い場合には、貫通孔を設ける際の加工が困難となる。したがって、当該板状絶縁層の厚さは、50μm~300μmとすることが好ましい。金属層の材質及び厚さ(図5中のD)は特に制限されないが、例えば、材質を銅、アルミニウム、或いは金とし、厚さを5μm程度とした金属層が好適である。
 貫通孔の直径(図5中のd)は、特に制限されず、貫通孔の内部に生じる電界の強さと加工の容易さ等を考慮して、適宜選択される。かかる直径を具体的に例示すれば、一般に50~100μmである。なお、貫通孔は、生成される電界の一様性を高めるため、板状多層体の全面に所定のピッチ(図5中のP)で設けることが好ましい。当該ピッチは、板状絶縁層の材質や厚さ、及び貫通孔の直径にもよるが、一般には貫通孔の直径の約2倍程度である。また、貫通孔を設ける際には、図5に示すように、正三角形を配列した配置とすることが好ましい。かかる配置とすることによって、板状多層体の面積に対する貫通孔の開口率を高めることができるため、高い増幅率を得ることができ、更に後述するイオンフィードバックを抑制することができる。
 ガス電子増幅器の動作において、印加電圧が高いほど高い増幅率が得られるが、印加電圧が極端に高い場合には、ガス電子増幅器の表裏の金属層の間で放電が生じて安定動作が困難となる。当該印加電圧の好適な範囲は、板状絶縁層の厚さによって異なるが、一般には200V~1000Vであって、かかる印加電圧において得られる増幅率は、一般に数十~数千である。
〔ビクセル型電極〕
 ガス電子増幅器によって増幅された二次電子は、ピクセル型電極を用いてさらに増幅されて検出される。ピクセル型電極については、前記特許文献1に詳細に開示されているので、これに開示された技術に準じて作製すればよい。
 具体的には、ピクセル型電極は、両面基板の裏面に形成される陽極ストリップと、この陽極ストリップに植設されるとともに、その上端面が前記両面基板の表面に露出する円柱状陽極電極と、この円柱状陽極電極の上端面の回りに穴が形成されるストリップ状陰極電極とを具備している。陽極ストリップは200μm~400μmの幅を有することが好ましく、さらに、陽極ストリップが400μm間隔で配置され、ストリップ状陰極電極には、一定間隔で直径200~300μmの穴が形成され、円柱状陽極電極は直径40~60μm、高さ50μm~150μmの形状であることが特に好ましい。
 ピクセル型電極の円柱状陽極電極とストリップ状陰極電極の間に所定の印加電圧を印加することにより、円柱状陽極電極の近傍に強い電界が発生する。当該電界によって加速された二次電子は電子雪崩を生じ、増幅された後に円柱状陽極電極より検出される。この過程において陽イオン化したガス分子は、周囲のストリップ状陰極電極へ速やかにドリフトしていく。したがって、円柱状陽極電極とストリップ状陰極電極の両方に、電気回路上で観測可能な電荷が生じることになるので、陽極・陰極のどのストリップでこの増幅現象が起きたかを観測することで、入射粒子線の位置がわかる。信号の読み出し、及び2次元画像を得るための信号処理回路については、従来公知のものを制限なく用いることができる。
 ビクセル電極の印加電圧の好適な範囲は、使用するガスの種類によって異なるが、一般に400V~800Vである。ピクセル型電極は、陽極としてピクセルを用いるので、高電界が作り易く増幅率が大きい。したがって、上記印加電圧において得られる増幅率は、数千から数万にも達する。また、ピクセル型電極は、陽イオン化したガス分子がドリフトする距離が極めて短いため、他のガス増幅型検出器に比較して不感時間が短く、約5×10count/(sec・mm)を超える高い計数率特性を有する。さらに、ピクセル型電極は、プリント回路基板の作製技術を用いて製造することができるため、大面積のものを安価に提供できる。
〔ガス増幅型紫外線画像検出器〕
 以下、前記光電変換物質、ガス電子増幅器、及びピクセル型電極を用いて、ガス増幅型紫外線画像検出器を構成する際の好適な態様について、図1を用いて詳細に説明する。
 シンチレーター1より生じた紫外線を入射するための開口部を有するチャンバー7内に、開口部に近い側から光電変換物質2、ガス電子増幅器4、及びピクセル型電極6が設置され、開口部は紫外線入射窓8で封止されている。この紫外線入射窓の材料としては、紫外線に対して高い透過性を有するフッ化リチウム(LiF)、フッ化マグネシウム(MgF)、或いはフッ化カルシウム(CaF)を用いることが好ましい。
 チャンバー内には、所定のガスが充填されている。この電子増幅用のガスとしては、一般に希ガスとクエンチャーガスの組合せが使用される。希ガスとしては、例えばヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、キセノン(Xe)等がある。また、クエンチャーガスとしては、例えば、二酸化炭素(CO)、メタン(CH)、エタン(C)、四フッ化メタン(CF)等が挙げられる。希ガス中へのクエンチャーガスの混合量は、5~30%が好適である。
 光電変換物質は、紫外線から変換された一次電子を効率よく取り出すため、薄膜とすることが好ましい。当該薄膜は、図1に示すように、紫外線入射窓の内面に形成するか、或いは図2に示すように、ガス電子増幅器の紫外線入射窓に対向する面上に形成することが好ましい。
 光電変換物質の薄膜を紫外線入射窓の内面に形成する場合には、当該薄膜に電子を効率よく供給するため、且つ当該薄膜とガス電子増幅器との間に一様な電界を与えるため、薄膜上の外周部に金属層からなる電極9を設けることが好ましい。光電変換物質の薄膜をガス電子増幅器の紫外線入射窓に対向する面上に形成する場合には、ガス電子増幅器の金属層と光電変換物質との反応を避けるため、当該金属層の材質を金とすることが好ましい。さらに、板状絶縁層へ積層する際の容易さや製作コストに鑑みて、金属層を板状絶縁層に近い側から、銅、ニッケル及び金の順で積層された、多層の金属層とすることが最も好ましい。
 ガス電子増幅器及びピクセル型電極は、それぞれ紫外線入射窓に平行に設置される。ガス電子増幅器は、増幅率及び動作の安定性の観点から、複数枚使用して、同様に紫外線入射窓に平行に設置することが好ましく、2枚または3枚程度設置することが特に好ましい。複数枚のガス電子増幅器とピクセル型電極の各々で電子を増幅することによって、段階的に電子が増幅され、結果として得られる総合的な増幅率を大幅に高めることができる。また、複数枚のガス電子増幅器を用いることによって、イオンフィードバックを効果的に抑制することができ、動作の安定性を高めることができる。イオンフィードバックとは、電子雪崩現象で副次的に生成した陽イオン性のガス分子が蓄積され、電界を歪める現象であって、かかるイオンフィードバックが生じると、増幅率や計数率特性が不安定となり、動作の安定性に支障をきたす。
 紫外線入射窓と初段のガス電子増幅器とのギャップ(図1中のG)の長さ、各ガス電子増幅器間のギャップ(図1中のG)の長さ、及び最後段のガス電子増幅器とピクセル型電極とのギャップ(図1中のG)の長さは、短いほど計数率特性及び位置分解能が向上するが、極端に短い場合には互いが接しないように設置することが困難となる。したがって、当該G、G、及びGの好適な長さは、ともに約1mm~5mmである。
 上記G、G、及びGに生じせしめる電界の大きさは、特に制限されず、所期の増幅率、イオンフィードバックの抑制効果、及び電荷の収集効率に鑑みて適宜選択することができる。当該電界の大きさの好ましい範囲を具体的に例示すれば、一般に0.3~10kV/cmである。かかる電界の大きさとすることによって、高い増幅率と前記イオンフィードバックの抑制を同時に達成することができる。
 本発明者らの検討によれば、2枚のガス電子増幅器とピクセル型電極を組み合わせ、ガス電子増幅器及びピクセル型電極に印加する印加電圧を最適化することによって、ガス電子増幅器及びピクセル型電極による総合的な増幅率として1×10を超える増幅率を安定に得ることができ、シンチレーターから生じた微弱な紫外線によって画像を形成することが可能となった。
〔放射線画像検出器〕
 本発明の放射線画像検出器において、前記光電変換物質、ガス電子増幅器、及びピクセル型電極には、それぞれ電圧を印加するための高圧電源が接続され、ピクセル型電極には信号の読み出し及び2次元画像を得るための信号処理回路が接続されている。なお、ピクセル型電極より信号を読み出し2次元画像を得る際に、アンガーロジックに基づくアンガー型信号処理回路を用いることによって、位置分解能を特に向上することができる。アンガーロジックとは、放射線の入射によって生じたシンチレーション光が、空間的な拡がりを以って検出された場合に、当該シンチレーション光の重心位置を求めることによって、放射線の入射位置を特定する手法である。
 アンガー型信号処理回路は、ピクセル型電極の各ピクセルでの信号の強度を読み出すための読み出し回路、個々の放射線の入射によって生じたシンチレーション光を弁別するための同時計数回路、及び各ピクセルから読み出された信号の強度からシンチレーション光の重心位置を求めるための重心演算回路より構成される。当該アンガー型信号処理回路においては、読み出し回路より得られた信号の内、単一の放射線の入射によって生じた信号のみを同時計数回路によって弁別する。次いで、かかる弁別された信号を対象とし、当該信号の強度についての荷重平均を、重心演算回路によって求めることにより、放射線の入射位置を特定する。かかるアンガー型信号処理回路によれば、位置分解能を約100μmまで向上することができる。
 以下、前記シンチレーター及びガス増幅型紫外線画像検出器を用いて、本発明の放射線画像検出器を構成する際の好適な態様について、図1を用いて詳細に説明する。
 図1に示すように、シンチレーターの紫外線出射面以外の面に紫外線反射膜10を設け、シンチレーターの紫外線出射面とガス増幅型紫外線画像検出器の紫外線入射窓とを密接して設置し、好ましくは、紫外線出射面と紫外線入射窓の間にグリース11を充填する。グリースを充填することにより、シンチレーター内部より紫外線射出面に到達した紫外線を、紫外線射出面で反射させること無く外部に導出でき、ガス増幅型紫外線画像検出器への入射効率を高めることができる。当該グリースとしては、屈折率が高く、また紫外線に対する透明性が高いフッ素系グリースを用いることが好ましく、例えば、デュポン社製「クライトックス」等が好適に使用できる。
 シンチレーターの放射線入射方向に対する厚さが厚く、シンチレーター内での紫外線の拡がりによって位置分解能が低下する場合には、図3のように小さな紫外線出射面を有し、紫外線出射面以外の面に紫外線反射膜が施されたシンチレーターを多数配列することによって、紫外線の拡がりを抑えることができる。
 本発明の放射線画像検出器の別の態様として、図4に示すように、紫外線入射窓に替えて、シンチレーターによってチャンバーの開口部を封止してもよい。かかる態様により、紫外線入射窓における紫外線の拡がりに起因する位置分解能の低下を回避することができ、しかも、構造を簡素化することができるため、好ましい。
 以下、本発明の実施例を挙げて具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。また、実施例の中で説明されている特徴の組み合わせすべてが本発明の解決手段に必須のものとは限らない。
 実施例1
〈シンチレーターの作製〉
 本実施例において、シンチレーターは発光中心元素としてネオジムを含有するフッ化ランタン結晶を用いた。当該ネオジムを含有するフッ化ランタン結晶は、チョクラルスキー法による結晶製造装置を用いて製造した。原料としては、純度が99.99%以上のフッ化ランタン及びフッ化ネオジムを用いた。まず、フッ化ランタン2700g及びフッ化ネオジム300gをそれぞれ秤量し、よく混合して坩堝に充填した。
 次いで、上記原料を充填した坩堝を結晶製造装置のチャンバー内にセットし、真空排気装置を用いてチャンバー内を1.0×10-3Pa以下まで真空排気した後、高純度の四フッ化メタンとアルゴンからなる混合ガスをチャンバー内に導入してガス置換を行った。ガス置換後のチャンバー内の圧力は大気圧とした。 ガス置換操作を行った後、ヒーターで原料を加熱して溶融せしめ、溶融した原料の融液に種結晶を接触せしめた。次いで種結晶を回転させながら引き上げ、結晶の育成を開始した。
 結晶を引き上げながら、一定の割合で結晶径を拡大し、結晶径を55mmに調整した。結晶径を55mmまで拡大せしめた後、引き上げ速度を3mm/hrに維持して、結晶の長さが約100mmとなるまで連続的に引き上げを続けた。次いでヒーターの出力を上げて結晶を原料融液から切り離し、その後徐冷することによって、ネオジムを含有するフッ化ランタン結晶を得た。該結晶は直径が55mm、長さが約100mmであり、白濁やクラックの無い良質な結晶であった。ネオジムの含有量は、エネルギー分散型X線分析装置を用いて測定した結果、5.9wt%であった。
 得られた結晶を、ダイヤモンドワイヤーを備えたワイヤーソーによって、20mm角の立方体状に加工した後、全面に光学研磨を施してシンチレーターとした。光学研磨された面の一面を紫外線出射面とし、他の面にはテフロン(商標登録)からなる紫外線反射膜を施した。紫外線出射面の対面に施した紫外線反射膜に、中央部に5mm×5mmの開口部を設け、放射線入射口とした。このシンチレーターについて、入射した放射線を変換して出射される紫外線の波長を以下の方法によって測定した。
 タングステンをターゲットとする封入式X線管球を用いて、X線をシンチレーターに照射した。なお、封入式X線管球よりX線を発生させる際の管電圧及び管電流はそれぞれ60kV及び40mAとした。シンチレーターの紫外線出射面より生じた紫外線を集光ミラーで集光し、分光器にて単色化し、各波長の強度を記録してシンチレーターより生じた紫外線のスペクトルを得た。測定の結果、このシンチレーターは、入射した放射線を波長が173nmの真空紫外線に変換することが確認された。
〈ガス増幅型紫外線画像検出器の作製〉
 本発明の放射線画像検出器の構成要素であるガス増幅型紫外線画像検出器を以下の方法によって作製した。
 図1に示すように、開口部を有するチャンバー内に、開口部に近い側から2枚のガス電子増幅器、及びピクセル型電極をそれぞれ平行に設置し、開口部を紫外線入射窓で封止した。紫外線入射窓と初段のガス電子増幅器との距離は2.5mm、初段のガス電子増幅器と後段のガス電子増幅器との距離は2mm、後段のガス電子増幅器とピクセル型電極との距離は2mmとした。
 ガス電子増幅器は、厚さが50μmのポリイミド製の板状絶縁層の両側に、金属層として5μmの厚さで銅を蒸着して板状多層体とし、当該板状多層体の全面に、直径が70μmの円柱状の貫通孔を、140μmのピッチで、正三角形を配列した配置にて設けたものを用いた。
 ピクセル型電極は、厚さが100μmのポリイミド基板を用い、当該基板の裏面に幅が300μmの陽極ストリップを設け、この陽極ストリップに植設され、基板の表面に露出する円柱状陽極電極を400μm間隔で配置し、この円柱状陽極電極の上端面の回りに直径が260μmの穴が形成されたストリップ状陰極電極を設けたものを用いた。円柱状陽極電極の直径は、基板内に埋設された部分を50μmとし、基板の表面に露出した部分を70μmとした。円柱状陽極電極の高さは110μmとし、上端部10μmが表面に露出した構造とした。
 紫外線入射窓には、直径が70mm、厚さが5mmのMgFを用い、当該紫外線入射窓の内面には光電変換物質としてヨウ化セシウムの薄膜を設け、さらに当該ヨウ化セシウム薄膜上の外周部にアルミニウム層からなる電極を設けた。ヨウ化セシウム薄膜上の外周部に設けられたアルミニウム層からなる電極、初段のガス電子増幅器の両面、後段のガス電子増幅器の両面、及びピクセル型電極の陽極電極と陰極電極には、印加電圧を印加するための高圧電源を接続し、ピクセル型電極の陽極電極と陰極電極には、信号の読み出し及び2次元画像を得るための信号処理回路を接続した。
 前記チャンバー内には、10%のCを混合したArガスを充填し、本発明の構成要素であるガス増幅型紫外線画像検出器を得た。
 当該ガス増幅型紫外線画像検出器において、ヨウ化セシウム薄膜上の外周部に設けられたアルミニウム層からなる電極に-1035Vを印加し、2枚のガス電子増幅器のそれぞれについて、両面の金属層間に280Vを印加し、ピクセル型電極の陽極電極と陰極電極との間に490Vを印加した。なお、紫外線入射窓と初段のガス電子増幅器の間の電界が0.5kV/cm、初段のガス電子増幅器と後段のガス電子増幅器の間の電界が1.25kV/cm、後段のガス電子増幅器とピクセル型電極の間の電界が2.95kV/cmとなるように印加電圧を調整した。
 上記印加電圧下において、2枚のガス電子増幅器とピクセル型電極によって得られる総合的な増幅率は6.7×10に達し、かかる高い増幅率においても、ガス電子増幅器の表裏での放電やピクセル型電極における放電は生じず、長期間安定に動作することが確認された。
〈放射線画像検出器の作成と評価〉
 上述の方法で作製したシンチレーターの紫外線出射面と、ガス増幅型紫外線画像検出器の紫外線入射窓とを図1に示すように密接して設置し、本発明の放射線画像検出器を得た。なお、前記紫外線出射面と紫外線入射窓の間にはフッ素系グリースとしてデュポン社製「クライトックス」を充填した。
 放射線画像検出器の性能を評価するため、2.6MBqの放射能を有する
241Am同位体を放射線源とし、該放射線源より生じる放射線に対する放射線画像検出器の応答を評価した。放射線源をシンチレーターに近接して設置し、放射線源より生じるα線をシンチレーター近接面に照射した。ピクセル型電極に接続された信号処理回路を用いて、ピクセル型電極の各陽極電極から出力される信号を取得し、2次元画像を構成した。その結果、図6に示すように、シンチレーターの形状を画像としてとらえることができ、本発明の放射線画像検出器が充分な感度と優れた位置分解能を有することが確認された。なお、2.6MBqの頻度での放射線の入射に対しても動作に支障はなく、従って、計数率特性にも優れていることが確認された。
 実施例2
〈シンチレーター〉
 シンチレーターは、実施例1で製造した、発光中心元素としてネオジムを含有するフッ化ランタン結晶を用いた。
〈ガス増幅型紫外線画像検出器の作製〉
 ガス増幅型紫外線画像検出器を以下の方法によって作製した。
 図2に示すように、開口部を有するチャンバー内に、開口部に近い側から2枚のガス電子増幅器、及びピクセル型電極をそれぞれ平行に設置し、開口部を紫外線入射窓で封止した。紫外線入射窓と初段のガス電子増幅器との距離は2.5mm、初段のガス電子増幅器と後段のガス電子増幅器との距離は2mm、後段のガス電子増幅器とピクセル型電極との距離は2mmとした。初段のガス電子増幅器は、厚さが100μmの液晶高分子製の板状絶縁層(クラレ製、ベクスター)の両側に、多層の金属層を被覆した板状多層体を用いた。多層の金属層は、板状絶縁層に近い側から順に、銅、ニッケル、及び金をそれぞれ5μm、2μm、及び0.2μmの厚さで蒸着して製作した。板状多層体の全面に、直径が70μmの円柱状の貫通孔を、140μmのピッチで、正三角形を配列した配置にて設けて、ガス電子増幅器とした。後段のガス電子増幅器は、実施例1と同様のものを用いた。
 本実施例においては、図2に示すように、初段のガス電子増幅器の紫外線入射窓に対向する面上に、光電変換物質としてヨウ化セシウムの薄膜を設けた。ピクセル型電極には、実施例1と同様のものを用い、前記紫外線入射窓には、直径が70mm、厚さが5mmのMgFを用いた。
 前記初段のガス電子増幅器の両面、後段のガス電子増幅器の両面、及びピクセル型電極の陽極電極と陰極電極には、印加電圧を印加するための高圧電源を接続し、ピクセル型電極の陽極電極と陰極電極には、信号の読み出し、及び2次元画像を得るための信号処理回路を接続した。チャンバー内に10%のCを混合したArガスを充填し、本発明の構成要素であるガス増幅型紫外線画像検出器を得た。
 このガス増幅型紫外線画像検出器において、2枚のガス電子増幅器のそれぞれについて、両面の金属層間に300Vを印加し、ピクセル型電極の陽極電極と陰極電極との間に400Vを印加した。なお、紫外線入射窓と初段のガス電子増幅器の間の電界が0.48kV/cm、初段のガス電子増幅器と後段のガス電子増幅器の間の電界が1.25kV/cm、後段のガス電子増幅器とピクセル型電極の間の電界が2.5kV/cmとなるように印加電圧を調整した。
 上記印加電圧下において、2枚のガス電子増幅器とピクセル型電極によって得られる総合的な増幅率は1.3×10に達した。かかる高い増幅率においても、ガス電子増幅器の表裏での放電やピクセル型電極における放電は生じず、長期間安定に動作することが確認された。
〈放射線画像検出器の作製と評価〉
 作製したシンチレーターの紫外線出射面と、ガス増幅型紫外線画像検出器の紫外線入射窓とを図2に示すように密接して設置し、本発明の放射線画像検出器を得た。なお、前記紫外線出射面と紫外線入射窓の間にはフッ素系グリースとしてデュポン社製「クライトックス」を充填した。
 放射線画像検出器の性能の評価は、実施例1と同様に2.6MBqの放射能を有する241Am同位体を放射線源とし、該放射線源より生じる放射線に対する放射線画像検出器の応答を評価することにより行った。その結果、図7に示すように、シンチレーターの形状を画像としてとらえることができ、本発明の放射線画像検出器が充分な感度と優れた位置分解能を有することが確認された。なお、2.6MBqの頻度での放射線の入射に対しても動作に支障はなく、従って計数率特性にも優れることが確認された。
 実施例3
〈シンチレーターの作製〉
 シンチレーターは、実施例1で製造した、発光中心元素としてネオジムを含有するフッ化ランタン結晶を用いた。このシンチレーターを、ダイヤモンドワイヤーを備えたワイヤーソーによって、3×3×10mmの直方体状に加工した後、全面に光学研磨を施した。当該光学研磨された面の内、3×3mmの一面を紫外線出射面とし、当該紫外線出射面及びその対面を除く4面にテフロンからなる紫外線反射膜を施した。かかるシンチレーターを9個用意し、各々のシンチレーターを、その紫外線出射面が同一面内に配置するように並べ、3×3配列のシンチレーターアレイを作製した。
〈ガス増幅型紫外線画像検出器の作製〉
 ガス増幅型紫外線画像検出器を実施例1と同様の方法によって作製した。
 当該ガス増幅型紫外線画像検出器において、前記ヨウ化セシウム薄膜上の外周部に設けられたアルミニウム層からなる電極に-1250Vを印加し、2枚のガス電子増幅器のそれぞれについて、両面の金属層間に300Vを印加し、ピクセル型電極の陽極電極と陰極電極との間に400Vを印加した。なお、紫外線入射窓と初段のガス電子増幅器の間の電界が0.8kV/cm、初段のガス電子増幅器と後段のガス電子増幅器の間の電界が1.25kV/cm、後段のガス電子増幅器とピクセル型電極の間の電界が3.0kV/cmとなるように印加電圧を調整した。
 上記印加電圧下において、2枚のガス電子増幅器とピクセル型電極によって得られる総合的な増幅率は6.0×10に達した。かかる高い増幅率においても、ガス電子増幅器の表裏での放電やピクセル型電極における放電は生じず、長期間安定に動作することが確認された。
〈放射線画像検出器の作製と評価〉
 シンチレーターアレイの紫外線出射面と、ガス増幅型紫外線画像検出器の紫外線入射窓とを図3のように密接して設置し、本発明の放射線画像検出器を得た。なお、前記紫外線出射面と紫外線入射窓の間にはフッ素系グリースとしてデュポン社製「クライトックス」を充填した。
 本発明の放射線画像検出器の性能を評価するため、8kBqの放射能を有する241Am同位体を放射線源とし、該放射線源より生じる放射線に対する放射線画像検出器の応答を評価した。放射線源をシンチレーターに近接して設置し、放射線源より生じるα線をシンチレーター近接面に照射した。本実施例においては、3×3配列のシンチレーターアレイの内、左下、中央、及び右上に位置するシンチレーターに、個別にα線を照射して評価を行った。すなわち、シンチレーターアレイを遮蔽体で覆い、当該遮蔽体の内、照射の対象とするシンチレーターの箇所のみに開口部を設け、当該開口部を通じて照射の対象とするシンチレーターのみにα線を照射した。ピクセル型電極に接続された信号処理回路を用いて、ピクセル型電極の各陽極電極から出力される信号を取得し、2次元画像を構成した。
 3×3配列のシンチレーターアレイの内、左上、中央、及び右下に位置するシンチレーターに個別に照射した場合の結果を、それぞれ図8、9、及び10に示す。なお、これらの図において、破線部(四角線)はシンチレーターアレイを設置した位置を示す。放射線の検出頻度が最も高かったピクセルを白、最も低かったピクセルを黒とし、256階調のグレースケールにて画像を構成した。これらの結果から本発明の放射線画像検出器によれば、シンチレーターの位置、すなわち放射線の入射位置を識別可能であることが分かる。
 また、図8、9、及び10の一点鎖線(水平直線)に沿った放射線検出頻度のプロファイルを、図11に示す。当該放射線検出頻度のプロファイルからシンチレーターの位置を明確に識別でき、本発明の放射線画像検出器が充分な感度と優れた位置分解能を有することを確認できる。
 1 シンチレーター
 2 光電変換物質
 3 一次電子
 4 ガス電子増幅器
 5 二次電子
 6 ピクセル型電極
 7 チャンバー
 8 紫外線入射窓
 9 電極
 10 紫外線反射膜
 11 グリース
 12 板状絶縁層
 13 金属層
 14 貫通孔

Claims (4)

  1. 入射した放射線を紫外線に変換するシンチレーター、及びガス増幅型紫外線画像検出器を具備してなる放射線画像検出器であって、ガス増幅型紫外線画像検出器が、光電変換物質、ガス電子増幅器、及びピクセル型電極より構成されることを特徴とする放射線画像検出器。
  2. シンチレーターが、ネオジム、プラセオジウム、ツリウム、またはエルビウムを含有する金属フッ化物結晶であることを特徴とする請求項1に記載の放射線画像検出器。
  3. 光電変換物質が、ヨウ化セシウムまたはテルル化セシウムであることを特徴とする請求項1に記載の放射線画像検出器。
  4. ガス電子増幅器が、2枚又は3枚存在することを特徴とする請求項1に記載の放射線画像検出器。
PCT/JP2010/054836 2009-04-01 2010-03-19 放射線画像検出器 WO2010113682A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2011143855/28A RU2011143855A (ru) 2009-04-01 2010-03-19 Детектор радиографического изображения
EP10758456A EP2416176A1 (en) 2009-04-01 2010-03-19 Radiographic image detector
CA2757216A CA2757216A1 (en) 2009-04-01 2010-03-19 Radiographic image detector
CN2010800142178A CN102365561A (zh) 2009-04-01 2010-03-19 辐射线图像检测器
JP2011507097A JP5554322B2 (ja) 2009-04-01 2010-03-19 放射線画像検出器
US13/256,594 US20120018642A1 (en) 2009-04-01 2010-03-19 Radiographic image detector

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009089351 2009-04-01
JP2009-089351 2009-04-01
JP2009207779 2009-09-09
JP2009-207779 2009-09-09

Publications (1)

Publication Number Publication Date
WO2010113682A1 true WO2010113682A1 (ja) 2010-10-07

Family

ID=42827977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054836 WO2010113682A1 (ja) 2009-04-01 2010-03-19 放射線画像検出器

Country Status (8)

Country Link
US (1) US20120018642A1 (ja)
EP (1) EP2416176A1 (ja)
JP (1) JP5554322B2 (ja)
KR (1) KR20120004435A (ja)
CN (1) CN102365561A (ja)
CA (1) CA2757216A1 (ja)
RU (1) RU2011143855A (ja)
WO (1) WO2010113682A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032401A (ja) * 2013-07-31 2015-02-16 富士フイルム株式会社 ガス電子増倍器およびガス電子増倍装置
JP2019060843A (ja) * 2017-09-22 2019-04-18 慶造 石井 ストロンチウム90放射能測定装置、およびその測定方法
WO2024195804A1 (ja) * 2023-03-20 2024-09-26 学校法人東京理科大学 分析装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9594171B2 (en) 2012-06-08 2017-03-14 Siemens Aktiengesellschaft Detector for radiation, particularly high energy electromagnetic radiation
EP2843398A1 (en) * 2013-09-02 2015-03-04 Fenno-Aurum OY Electron source and X-ray fluorescence analyser using an electron source
TWI532056B (zh) 2013-10-15 2016-05-01 財團法人工業技術研究院 濾屏與中子束源
CZ306489B6 (cs) * 2014-11-03 2017-02-08 Crytur, Spol.S R.O. Zařízení pro koincidenční zobrazování sekundárními elektrony
US9880291B2 (en) 2015-03-02 2018-01-30 Beamocular Ab Ionizing radiation detecting device
KR101742432B1 (ko) * 2016-03-31 2017-05-31 이화여자대학교 산학협력단 가스 전자 증폭 검출기를 이용한 에너지 필터 방식의 이중 에너지 x-선 영상 촬영 시스템 및 그 x-선 영상 생성방법
US11105936B2 (en) * 2017-05-03 2021-08-31 Heikki Sipila Oy Gas drift detector
US10525285B1 (en) * 2018-08-06 2020-01-07 Integrated Sensors, Llc Ionizing-radiation beam monitoring system
US10828513B2 (en) * 2018-08-06 2020-11-10 Integrated Sensors, Llc Ionizing-radiation beam monitoring system
US11027152B1 (en) 2018-08-06 2021-06-08 Integrated Sensors, Llc Ionizing-radiation beam monitoring system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140068A (ja) * 1993-05-17 1995-06-02 Bodenseewerk Perkin Elmer & Co Gmbh 原子吸収分光光度計
JP2001004555A (ja) * 1999-06-18 2001-01-12 Hamamatsu Photonics Kk 容器検査方法
JP3354551B2 (ja) 2000-06-27 2002-12-09 科学技術振興事業団 ピクセル型電極によるガス増幅を用いた粒子線画像検出器
JP2006302844A (ja) 2005-04-25 2006-11-02 Univ Of Tokyo ガス電子増幅器、その製造方法及びガス電子増幅器を使用した放射線検出器
JP2007234485A (ja) 2006-03-02 2007-09-13 Institute Of Physical & Chemical Research ガス電子増幅器およびそれに用いるガス電子増幅フォイルの製造方法ならびにガス電子増幅器を使用した放射線検出器
JP2008202977A (ja) 2007-02-16 2008-09-04 Tokuyama Corp 放射線検出装置及び放射線の検出方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3704716A1 (de) * 1987-02-14 1988-08-25 Kernforschungsanlage Juelich Ortsempfindlicher detektor
DE10014311C2 (de) * 2000-03-23 2003-08-14 Siemens Ag Strahlungswandler
SE528236C2 (sv) * 2004-10-05 2006-10-03 Xcounter Ab Detektor för joniserande strålning som registrerar elektroner och ljus alstrat av strålningen
EP1916697B1 (en) * 2005-07-29 2013-06-19 Japan Science and Technology Agency Microchannel plate, gas proportional counter and imaging device
KR100716495B1 (ko) * 2005-11-23 2007-05-10 창원대학교 산학협력단 기체전자증폭기를 이용한 디지털 영상 광 검출장치
JP4280833B2 (ja) * 2006-08-09 2009-06-17 大学共同利用機関法人 高エネルギー加速器研究機構 ガス電子増幅器および放射線測定装置
JP5082096B2 (ja) * 2007-01-25 2012-11-28 国立大学法人神戸大学 ピクセル型電極構造のガス放射線検出器
CN201130252Y (zh) * 2007-11-30 2008-10-08 中核(北京)核仪器厂 组合式γ计数器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140068A (ja) * 1993-05-17 1995-06-02 Bodenseewerk Perkin Elmer & Co Gmbh 原子吸収分光光度計
JP2001004555A (ja) * 1999-06-18 2001-01-12 Hamamatsu Photonics Kk 容器検査方法
JP3354551B2 (ja) 2000-06-27 2002-12-09 科学技術振興事業団 ピクセル型電極によるガス増幅を用いた粒子線画像検出器
JP2006302844A (ja) 2005-04-25 2006-11-02 Univ Of Tokyo ガス電子増幅器、その製造方法及びガス電子増幅器を使用した放射線検出器
WO2006115249A1 (ja) * 2005-04-25 2006-11-02 The University Of Tokyo ガス電子増幅器、その製造方法及びガス電子増幅器を使用した放射線検出器
JP2007234485A (ja) 2006-03-02 2007-09-13 Institute Of Physical & Chemical Research ガス電子増幅器およびそれに用いるガス電子増幅フォイルの製造方法ならびにガス電子増幅器を使用した放射線検出器
JP2008202977A (ja) 2007-02-16 2008-09-04 Tokuyama Corp 放射線検出装置及び放射線の検出方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. VAN DER MAREL ET AL.: "A LaF3:Nd (10%) Scintillation Detector with Microgap Gas Chamber Read-out for the Detection of y-rays", NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH, vol. A392, 1997, pages 310 - 314
J. VA'VRA: "Wire Aging of Hydrocarbon Gases with TMAE Additions", IEEE TRANSACTIONS ON NUCLEAR SCIENCE, vol. NS-34, 1987, pages 486 - 490
P. SCHOTANUS ET AL.: "Detection of LaF3:Nd3+ Scintillation Light in a Photosensitive Mutiwire Chamber", NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH, vol. A272, 1988, pages 913 - 916

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032401A (ja) * 2013-07-31 2015-02-16 富士フイルム株式会社 ガス電子増倍器およびガス電子増倍装置
JP2019060843A (ja) * 2017-09-22 2019-04-18 慶造 石井 ストロンチウム90放射能測定装置、およびその測定方法
JP7148916B2 (ja) 2017-09-22 2022-10-06 慶造 石井 ストロンチウム90放射能測定装置、およびその測定方法
WO2024195804A1 (ja) * 2023-03-20 2024-09-26 学校法人東京理科大学 分析装置

Also Published As

Publication number Publication date
RU2011143855A (ru) 2013-05-10
EP2416176A1 (en) 2012-02-08
CA2757216A1 (en) 2010-10-07
JPWO2010113682A1 (ja) 2012-10-11
KR20120004435A (ko) 2012-01-12
CN102365561A (zh) 2012-02-29
JP5554322B2 (ja) 2014-07-23
US20120018642A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
JP5554322B2 (ja) 放射線画像検出器
JP5460067B2 (ja) 放射線検出装置
Van Eijk Inorganic scintillators in medical imaging
JP4685042B2 (ja) 放射線検出装置及び放射線の検出方法
Aprile et al. Proportional light in a dual-phase xenon chamber
JP6991501B2 (ja) 中性子検出器及び中性子測定装置
WO2012032816A1 (ja) 放射線画像検出器
Oed Detectors for thermal neutrons
JP5575123B2 (ja) シンチレーター
JP2010286316A (ja) 光検出器
JP2002082171A (ja) 放射線検出器およびこれを用いたx線診断装置
Kamada et al. Growth and scintillation properties of Ce doped Gd2Si2O7/SiO2 eutectics
Koshimizu et al. Timing property of undoped BaCl2 single crystal scintillator
JP2012185025A (ja) 放射線画像検出器
JP7150693B2 (ja) 放射線検出材料及び放射線検出装置
JP2008298656A (ja) Petのための新規ガンマ線検出器
Roos Scintillation Detectors
Benson Ionising Radiation Detectors
Belushkin Modern trends in the development of position sensitive neutron detectors for condensed matter research
Wang et al. Micro-columnar CsBr: Eu storage phosphor for high-efficiency high energy photon radiography panels
Thompson X-Ray Data Booklet Section 4.5 X-RAY DETECTORS
Heaton et al. Radiation measurement
Shumakov et al. Modern detectors for radiation monitors
Zimmerman The Developing Technology of Imaging Detectors
Kurosawa et al. A Novel Position-Sensitive Radiation Detector Using a Gaseous Photomultiplier and a UV Scintillator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080014217.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758456

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011507097

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13256594

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010758456

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2757216

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20117023024

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011143855

Country of ref document: RU

Kind code of ref document: A