WO2001097363A1 - Moteur synchrone a aimant permanent - Google Patents

Moteur synchrone a aimant permanent Download PDF

Info

Publication number
WO2001097363A1
WO2001097363A1 PCT/JP2001/005084 JP0105084W WO0197363A1 WO 2001097363 A1 WO2001097363 A1 WO 2001097363A1 JP 0105084 W JP0105084 W JP 0105084W WO 0197363 A1 WO0197363 A1 WO 0197363A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor
synchronous motor
magnet synchronous
motor according
Prior art date
Application number
PCT/JP2001/005084
Other languages
English (en)
French (fr)
Inventor
Hiroshi Murakami
Noriyoshi Nishiyama
Taro Kishibe
Naruhiko Kado
Toshiyuki Tamamura
Hisakazu Kataoka
Masayuki Shinto
Osaaki Morino
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP01938675A priority Critical patent/EP1298773A4/en
Priority to US10/311,522 priority patent/US6936945B2/en
Publication of WO2001097363A1 publication Critical patent/WO2001097363A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • the present invention relates to an embedded magnet type synchronous motor having a concentrated winding stay.
  • FIG. 11 shows an example of a conventional embedded magnet type synchronous motor with a concentrated winding stage.
  • 1 indicates a concentrated winding stage
  • 2 indicates a rotor
  • 3 indicates a slit provided in the rotor
  • 4 indicates a permanent magnet embedded inside the slit.
  • the motor stay structure is a three-phase, four-pole, six-slot concentrated winding stage.
  • the windings are individually wound on individual teeth as shown in Fig.
  • Two coils are placed at opposite positions.
  • a plate-shaped pit is provided inside the rotor, and a permanent magnet having the same shape as the slit is inserted into the slot.
  • the concentrated winding motor applies individual windings to each tooth, so the coil end is smaller than that of the distributed winding stage, in which winding is performed over multiple teeth.
  • the feature is that the winding resistance is reduced, and the copper loss, which is the heat loss of the winding due to the current flowing through the motor, can be suppressed. As a result, it is possible to realize a highly efficient motor with small loss.
  • the present invention provides a synchronous motor having a concentrated winding stage and a magnetic core of the stage core.
  • An object of the present invention is to provide an opening that can reduce bundle density and copper loss and iron loss. Disclosure of the invention
  • the present invention relates to a rotor structure of a permanent magnet type synchronous motor having a concentrated winding stay structure, in which a slit provided in a cross section of the rotor stacked in the rotation axis direction is formed in an arc shape or an arc shape.
  • the protrusions face the outer periphery of the rotor, and permanent magnets are inserted into the slits.
  • the magnetic saliency is smaller than that of the conventional rotor structure.
  • the magnetic flux density of the core can be reduced, and a highly efficient module with small loss can be provided.
  • a similar effect can be obtained by providing a V-shaped slit instead of a bow-shaped or arc-shaped slit, and disposing the V-shaped slit at the tip of the ⁇ corner on the outer peripheral side of the rotor.
  • two flat magnets can be used to reduce the manufacturing cost of the magnets and provide a low-cost, highly efficient motor. It is possible.
  • the magnet used in the present invention is effective irrespective of the type of magnet, such as a ferrite magnet or a rare earth magnet.However, particularly when a rare earth magnet having a strong magnetic force is used, the structure is such that iron loss can be reduced. A great effect can be obtained.
  • the structure in which the rare earth magnet is divided into a plurality of pieces in the axial direction can reduce the eddy current loss flowing on the magnet surface, so that a more efficient rotating machine can be provided.
  • Fig. 1 is a cross-sectional view of the electric motor of the first embodiment
  • Fig. 2 is a partially enlarged view of the rotor of the first embodiment
  • Fig. 3 is an enlarged view of a tooth portion of the first embodiment
  • Fig. 4 is an embodiment.
  • Fig. 5 shows the magnetic flux density of the conventional motor.
  • Fig. 5 shows the magnetic flux density of the conventional motor.
  • Fig. 6 compares the iron loss of the conventional motor with that of the first embodiment.
  • Fig. 8 shows a magnet
  • Fig. 8 shows a conventional motor
  • Fig. 9 shows a cross-sectional view of the motor of the second embodiment
  • Fig. 10 shows a cross-sectional view of the compressor of the third embodiment
  • Fig. 11 shows Sectional view showing a conventional motor Diagram showing the winding specifications of the middle winding
  • FIG. 1 shows a first embodiment of the present invention.
  • 11 denotes a concentrated winding stage
  • 12 denotes a rotor
  • 13 denotes a slit provided in the rotor
  • .14 denotes a permanent magnet embedded in the slit.
  • each tooth has a single winding, and two coils are placed at positions 180 degrees opposite each other.
  • the concentrated winding station 1 1 1 has a plurality of magnetic steel sheets stacked in the direction of the rotation axis and a plurality of teeth.
  • the teeth 15 have a structure in which the ends are slightly jumped up as shown in FIG.
  • the distance r between the rotor facing surface 16 of the concentrated winding stay 1 mm and the center of the rotor 12 in the concentrated winding stay 1 is near the center of the teeth 15 from the center.
  • the part is wider (the broken line extending in contact with the rotor facing surface 16 in FIG. 3 is a certain distance r from the center of the rotor 12).
  • the reason for this is that since the stay is a concentrated winding stay, adjacent teeth have different polarities and the inductance is large, and the demagnetizing field is easily applied to the rotor 12.
  • the structure in which the portion is flipped up increases the air gap at the end of the teeth to suppress the demagnetization side from flowing to the rotor 1.
  • the slit 13 inside the rotor 12 has an arc shape that is convex on the outer peripheral side of the rotor 12.
  • the distance between the slit 13 and the ⁇ circumference of the rotor 1 2 is very narrow at the center of the slit 13, but becomes wider toward the end of the slit. Then, at the outermost end, the distance between the outer periphery of the rotor 12 and the slit 13 again becomes smaller. I'm wearing
  • the permanent magnet 14 is embedded in the slit 13, but the outermost end of the slit 13 is left as a non-magnetic portion as a gap. This is because a leakage magnetic flux prevention portion is provided at the extreme end of the slit 13 so that no leakage magnetic flux is generated between adjacent permanent magnets. Note that the non-magnetic portion does not have to be a void, but may be filled with a resin.
  • the shape of the permanent magnet 14 is such that the central portion A of the permanent magnet protrudes to the outer peripheral side of the rotor 13 from a line passing through the end B of the permanent magnet and the end B. .
  • the interval between the permanent magnets 14 and the rotor 12 is wider at the interval b between the permanent magnets 14 than at the interval a at the center of the permanent magnets 14. It has a configuration. With such a configuration, the path width of the q-axis flux path of the rotor 12 of the present embodiment is much narrower than the rotor structure of the conventional example.
  • Fig. 4 shows the magnetic flux density distribution of the rotor of the present invention under load
  • Fig. 5 shows a comparison of the magnetic flux density distribution of the conventional example.
  • the magnetic flux density of the stator and yoke portions of the stator core is lower than that of the conventional rotor. Since the iron loss increases as the frequency and the magnetic flux density increase, the motor of the present invention can obtain a particularly great effect at the time of load or high-speed rotation.
  • FIG. 6 is a diagram comparing iron loss generated by the conventional example and the rotor of the present invention.
  • the horizontal axis shows the number of rotations of the motor
  • the vertical axis shows the iron loss generated by the motor.
  • the rotor of the present invention can reduce iron loss as compared with the conventional example, so that it is possible to provide a highly efficient motor with small iron loss.
  • the effect of reducing iron loss increases as the rotation speed increases. In particular, the effect can be particularly enhanced at high speed rotation of 300 Or / min or more.
  • Example 1 In the permanent magnet of Example 1, one permanent magnet piece is embedded in each slit. However, an eddy current is likely to be generated in a concentrated winding stator. As a result, eddy current loss can be greatly reduced. This reduction of eddy current is effective in rare earth magnets.
  • FIG. 9 shows a second embodiment of the present invention.
  • 21 denotes a concentrated winding stage
  • 22 denotes a rotor
  • 23 denotes a slit provided in the rotor
  • 24 denotes a permanent magnet buried inside the slit.
  • the slit shape of the rotor shown in FIG. 9 is V-shaped, and the top of the V-shape is provided in the direction facing the outer peripheral surface of the rotor. Even with the rotor having this structure, the width of the q-axis flux path can be reduced as in the first embodiment, so that the same effect of reducing iron loss can be obtained. Furthermore, as shown in Fig.
  • the permanent magnet embedded in the slit is divided into two magnets, and two low-cost flat plate-shaped magnets are inserted into the slit, resulting in an expensive circle as shown in Fig. 1.
  • a low-cost, high-efficiency motor can be constructed without using arc-shaped magnets.
  • V-shaped magnet of FIG. 9 two permanent magnet pieces are inserted into one slit, so that there is a gap between the permanent magnets forming the V-shape.
  • This V-shaped magnet utilizes two permanent magnet pieces, and these two magnets form one magnetic pole.
  • FIG. 10 is a cross-sectional view in which the permanent magnet synchronous motor according to the first embodiment is mounted on a compressor.
  • the compressor consists of a rotor 1 2, a permanent magnet 14, an accumulator 31, and a compression mechanism 32 1.
  • a compressor has a small motor length, including the coil end, and is highly efficient. Therefore, it is particularly suitable for an air conditioner compressor for an electric vehicle that has limited power consumption and storage space.
  • the present invention relates to a motor having a structure in which an embedded magnet type rotor having a concentrated winding stage is combined, wherein the distance between the outer periphery of the rotor and the permanent magnet embedded hole is larger than the extreme portion of the permanent magnet embedded hole. Since the pole center is narrower, the magnetic flux density of the core can be reduced, and a high-efficiency motor with smaller iron loss than the conventional type can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

明細書
永久磁石同期電動機 技術分野
本発明は集中巻ステ一夕を有する埋め込み磁石型同期電動機に関するものであ る。 背景技術
図 1 1に従来の集中巻ステ一夕を持った埋め込み磁石型同期電動機の一例を示 す。 図 1 1において、 1は集中巻ステ一夕、 2は回転子、 3は回転子に設けられ たスリッ卜、 4はスリッ卜内部に埋設されている永久磁石を示す。 モータのステ —夕構造は、 3相 4極 6スロットの集中巻ステ一夕であり、 巻線は図 1 2に示す ように個別のテーイスに単独の巻線が施され、 各相 Ί 8 0度対向した位置に 2個 のコイルが配置されている。 回転子内部には平板状の リツ卜が設けられ、 スリ ッ卜内部にスリットと同形状の永久磁石が挿入されている。 集中巻モータは、 図 1 2に示すように各ティース毎に個別の巻線を施すため、 複数のティースにまた がって巻線を施す分布巻ステ一夕に比べてコイルェンドが小さくなリ、 巻線抵抗 が小さくなるのが特長で、 モータに流れる電流による巻線の発熱損失である銅損 を低く抑えることができる。 その結果、 損失が小さくなリ高効率なモータを実現 することが可能である。
集中巻ステ一夕は図 1 1に示すように各ティースに個別のコイルを巻き、 各相 のコイルが隣り合う位置にあるため、 インダクタンスが大きくなる。 また、 埋め 込み磁石型のロータと組み合わせることでロータに磁気的な突極性が発生し、 リ ラクタンストルクが利用できるが、 インダクタンスが大きくなるため、 図 1 1に 示すロータの内部に磁束を引き込む q軸フラックスパスに多くの磁束が流れ、 コ ァの磁束密度が非常に高くなる。 その結果、 銅損が低減しても鉄損が大幅に増大 するため効率ダウンしてしまい、集中巻の利点が小さくなつてくる。本件発明は、 このような課題に鑑み、 集中巻ステ一夕を有する同期電動機でステ一夕コアの磁 束密度を低減し、 銅損および鉄損を低減できる口一夕を提供することを目的とす る。 発明の開示
本件発明は、 集中巻のステ一夕構造を有する永久磁石型同期電動機の回転子構 造で、回転軸方向に積層された回転子断面に設けられたスリッ卜が円弧状または、 弓形状に形成されその凸部が回転子の外周側に向いており、 スリツ卜内部に永久 磁が挿入されていることを特徴としておリ、 従来の回転子構造に比べて磁気的な 突極性が小さくなるため、 コアの磁束密度を低減させ、 損失の小さい高効率なモ 一夕を提供することができる。
また、 弓形状や円弧状のスリットの代わりに V字型のスリットを設けて、 V字 スリツ卜の銳角部先端が回転子の外周側に配置させることで、 同様の効果を得る ことができる。
更に、 V字型のスリッ卜内部に挿入する永久磁石のを平板形状の磁石を 2枚挿 入することで、 磁石の製造コストが低減でき、 低価格で高効率なモータを提供す ることが可能である。
本発明で使用する磁石はフェライ卜磁石、 希土類磁石など、 磁石の種類に関わ らず有効であるが、 特に磁力の強い希土類系の磁石を使用する場合は鉄損低減で きる構造であるため最も大きな効果を得ることができる。
また、 希土類磁石を軸方向に複数分割する構造にすることで、 磁石表面に流れ る渦電流損失を低減できるので更に高効率な回転機が提供できる。 図面の簡単な説明
第 1図は実施例 1の電動機の断面図、第 2図は実施例 1の回転子の部分拡大図、 第 3図は実施例 1のティ一ス部の拡大図、 第 4図は実施例 1の電動機の磁束密度 を示す図第 5図は従来型の電動機の磁束密度を示す図、 第 6図は実施例 1と従来 型電動機の鉄損を比較した図、 第 7図は分割した永久磁石を示す図、 第 8図は従 来の電動機を示す図、 第 9図は実施例 2の電動機の断面図、 第 1 0図は実施例 3 の圧縮機の断面図、 第 1 1図は 従来の電動機を示す断面図第 1 2囡は従来の集 中巻の巻線仕様を示す図
発明を実施するための最良の形態
以下添付図面を参照して、 本発明の実施例について説明する。 なお、 以下の実 施例は本発明を具体ィ匕した 1例であって、 本発明の技術的範囲を限定するもので はない。
(実施例 1 )
図 1に本発明の実施例 1を示す。 図 1において 1 1は集中巻ステ一夕、 1 2は 回転子、 1 3は回転子に設けられたスリット、 .1 4はスリット内部に埋設されて いる永久磁石を示す。
3相 4極 6スロットの集中巻ステ一夕 1 1は、 それぞれのティースに単独の巻 線が施され、 各相 1 8 0度対向した位置に 2個のコイルが配置されている。 集中 巻ステ一夕 1 1は、 複数の電磁鋼板を回転軸方向に積層し、 複数のティースを備 えいる。 このティース 1 5は、 図 3に示すように端部が少し跳ね上がった構造と なっている。
詳細に説明すると、 集中巻ステ一夕 1 〗の回転子対向面 1 6と集中巻ステ一夕 の中にある回転子 1 2の中心との間隔 rは、 ティース 1 5の中央部よリ端部の方 が広がった構成となっている (図 3の回転子対向面 1 6に接して伸びている破線 は、回転子 1 2の中心から一定の距離 r )。 これは、ステ一夕が集中巻ステ一夕で あるため、隣接するティ一スが異極となってしまいィンダクタンスが大きくなリ、 減磁界が回転子 1 2にかかり易くなるため、、端部を跳ね上げた構造とすることで、 ティース端部におけるエア一ギャップを大きくして、 減磁側が回転子 1に流れる のを抑制する。
回転子 1 2内部のスリツ卜 1 3は回転子 1 2の外周側に凸の円弧形状になって いる。 スリット 1 3と回転子 1 2の^ ^周との間隔は、 スリット 1 3の中央部では 非常に狭くなつているが、 スリツ卜の端部へ向かうにしたがって広くなつていい く。 そして、 最外端で、 再び回転子 1 2の外周とスリット 1 3との間隔が狭くな つている。 永久磁石 1 4は、 スリット 1 3に埋め込むが、 スリツ卜 1 3の最外端 は非磁性部として空隙としておく。 これは、 隣り合う永久磁石間に漏れ磁束が発 生しないように、 スリット 1 3の最端部に漏れ磁束防止部を設けたためである。 なお、 非磁性部は空隙部としなくても、 樹脂を埋め込んでもよい。
図 2に示すように、 永久磁石 1 4の形状は、 永久磁石の端部 Bと端部 Bとを通 過する線より永久磁石の中央部 Aが回転子 1 3の外周側に突出している。 永久磁 石をこのような形状とすることで、 永久磁石 1 4と回転子 1 2との間隔は、 永久 磁石 1 4の中央である間隔 aより永久磁石 1 4の間隔 bの方が広がった構成とな つている。 このような構成とすることで、 本実施例の回転子 1 2の q軸フラック スパスのパス幅が、従来例のロータ構造に比べるとが非常に狭くなる。その結果、 q軸ィンダク夕ンスが小さくなり、 口一夕内部に流れる q軸磁束量を少なくする ことができ、 負荷時のステ一夕コアの磁束密度を低くすることが可能になる。 図 4に負荷時における本発明回転子の磁束密度分布、 図 5に従来例の磁束密度分布 の比較を示す。 本発明の回転子構造は従来例の回転子に比べてステ一タコァのテ ィース部、 ヨーク部の磁束密度が低くなつている。 鉄損は周波数と磁束密度が高 くなるほど大きくなるため、 本発明の電動機は加負荷時や高速回転時に特に大き な効果を得ることができる。
図 6は従来例と本発明の回転子が発生する鉄損を比較した図を示す。 この図は 横軸にモータの回転数、 縦軸にモータが発生する鉄損を示した図である。 図 6に 示すように本発明の回転子は従来例に比べて鉄損を小さくすることができるため、 鉄損の小さい高効率なモータを提供することが可能である。 またこの図より回転 数が高くなるほど鉄損の低減効果が高くなリ、 特に 3 0 0 O r/min以上の高速回 転では特にその効果が大きく得ることができる。
なお、 実施例 1の永久磁石は、 各スリットに一つの永久磁石片を埋め込んでい る。 しかし、 集中巻ステ一タでは渦電流が発生しやすいので、 函 7に示すように 永久磁石を回転軸方向に複数に分割して埋め込み、 磁石の表面に流れる渦電流の 経路を短くすることが可能になって渦電流損失を大きく低減することができる。 この渦電流の低減は、 希土類磁石において効果的である。
また、特開平 5— 3 0 4 7 3 7号公報に記載されている永久磁石電動機(図 8 ) と本実施例の形状は一見似ているが、 特開平 5— 3 0 4 7 3 7号公報のステ一夕 が分布巻方式である点で大きく異なる。 本実施例は、 集中巻ステ一夕であるため 極性の異なるコィルが隣リ合う位置にあリ、 そのためにィンダク夕ンスが大きく なることに鑑みて発明されたものである。 しかし、 分布巻ステ一夕においては、 集中巻ステ一夕のような課題はなく、 特開平 5— 3 0 4 7 3 7号公報から、 本件 発明が容易に想到されるものではな 、。
(実施例 2 )
図 9に本発明の実施例 2を示す。 図 9において 2 1は集中巻ステ一夕、 2 2は 回転子、 2 3は回転子に設けられたスリッ卜、 2 4はスリッ卜内部に埋設されて いる永久磁石を示す。 図 9に示す回転子のスリッ卜形状は V字型をしており、 V 字の頂点が回転子外周面を向く方向に設けられている。 この構造の回転子でも実 施例 1と同様に q軸フラックスパスの幅が小さくできるため、 鉄損を低減できる という同じ効果を得ることができる。 更に図 9に示すようにスリッ卜内部に埋め 込む永久磁石を磁石を 2分割して、 低コス卜な平板形状の磁石を 2枚スリッ卜に 挿入することで、 図 1のような高価な円弧状の磁石を使わずに、 低コストで高効 率なモータを構成することが可能となる。
なお、 図 9の V字型磁石は、 2枚の永久磁石片を一つのスリットに挿入してい るため、 V字形状を形成する永久磁石の間が空隙となっている。 この V字型磁石 は 2枚の永久磁石片を利用しておリ、この 2枚の磁石で一つの磁極部を形成する。
(実施例 3 )
図 1 0は、 実施例 1における永久磁石同期電動機をコンプレッサに搭載した断面 図である。
図に示すようにコンプレッサは、 集中巻ステ一夕 1 回転子 1 2、 永久磁石 1 4、 アキュムレータ 3 1、 圧縮機構 3 2からなる。 このようなコンプレッサは、 コイルエンドを含めたモータの長さが小さくなり、 かつ効率が高いため、 特に使 用電力や格納場所の限られた電動自動車用エアコンコンプレッサに最適である。 産業上の利用可能性
本発明は集中巻ステ一夕を有する埋め込み磁石型ロータを組み合わせた構造の モータにおいて、 回転子の外周と永久磁石埋め込み穴との間隔が、 永久磁石埋め 込み穴の極端部より永久磁石埋め込み穴の極中心部の方を狭くしているため、 コ ァの磁束密度を小さくすることができ、 従来型に比べて鉄損の小さい高効率モー 夕を実現することができる。

Claims

請求の範囲
1 . · ティース部に導電性巻線を集中巻した固定子と、 7久磁石を埋め込み磁 極部を形成した回転子とを備え、
前記磁極部の中央部は、 前記磁極部の端部よリ前記回転子の外周側に突出し た形状である永久磁石同期電動機。
2 . ティース部に導電性巻線を集中巻した固定子と、 永久磁石を埋め込み磁 極部を形成した回転子とを備えた永久磁石同期電動機であリ、
前記回転子の外周と前記磁極部との間隔は、 磁極部の端部よリ磁極部の中心 部の方が狭い永久磁石同期電動機。
3 . 永久磁石埋め込み穴は、 回転子外側に凸の V字型形状である請求の範囲 第 1項記載の永久磁石同期電動機。
4 . 複数の平板状の永久磁石を V字型に並べ磁極部を形成した請求の範囲第 3項記載の永久磁石電動機。
5. 永久磁石埋め込み穴は、 回転子外側に凸の弓型形状である請求の範囲第
1項記載の永久磁石同期電動機。
6 . 永久磁石の材質が希土類系の高磁束密度磁石から構成されている請求の 範囲第 1項記載の永久磁石同期電動機。
7 . 永久磁石埋め込み穴に挿入した永久磁石は、 回転子の軸方向に複数枚分 割されている請求の範囲第 6項記載の永久磁石電動機。
8. 3 0 0 0 r p m以上の回転数で回転駆動する請求の範囲第 1項記載の永 久磁石同期電動機。
9 . 回転子の中心とティース部の回転子対向面との間隔は、 ティース部の中 央部よリ端部の方が広い請求の範囲第 1項記載の永久磁石同期電動機。
1 0 . リラクタンストルクを利用して回転駆動を行う請求の範囲第 1項記載の 永久磁石同期電動機。
1 1 . 第 1のティ一ス部に導伝性巻線を集中巻して設けた第 1のコイルと、 前 記第 1のティース部に隣接する第 2のティース部に導伝性巻線を集中巻して 設けた第 2のコイルとを備え、 前記導伝性巻線に通電すると前記第 1のコィ ルと前記第 2のコイルは、 異なる極性になる請求の範囲第 1項記載の永久磁 石同期電動機。
2. 請求の範囲第 1項の永久磁石同期電動機を駆動源とした圧縮機。
3 . 請求の範囲第 1 2項、記載の圧縮機を搭載した冷凍サイクル。
4 . 請求の範囲第 1 2項の圧縮機を自動車用空調機の駆動源とし搭載した自
PCT/JP2001/005084 2000-06-14 2001-06-14 Moteur synchrone a aimant permanent WO2001097363A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01938675A EP1298773A4 (en) 2000-06-14 2001-06-14 PERMANENT MAGNET SYSCHRONMOTOR
US10/311,522 US6936945B2 (en) 2000-06-14 2001-06-14 Permanent magnet synchronous motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-177951 2000-06-14
JP2000177951 2000-06-14

Publications (1)

Publication Number Publication Date
WO2001097363A1 true WO2001097363A1 (fr) 2001-12-20

Family

ID=18679470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005084 WO2001097363A1 (fr) 2000-06-14 2001-06-14 Moteur synchrone a aimant permanent

Country Status (4)

Country Link
US (1) US6936945B2 (ja)
EP (1) EP1298773A4 (ja)
CN (1) CN1215628C (ja)
WO (1) WO2001097363A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271187A (ja) * 2005-02-22 2006-10-05 Mitsubishi Electric Corp 回転電機
JP2011177022A (ja) * 2005-02-22 2011-09-08 Mitsubishi Electric Corp 回転電機

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4668721B2 (ja) 2004-11-30 2011-04-13 日立オートモティブシステムズ株式会社 永久磁石式回転電機
US20100013345A1 (en) * 2006-06-26 2010-01-21 Battelle Energy Alliance, Llc Bi-metal coil
US7688036B2 (en) * 2006-06-26 2010-03-30 Battelle Energy Alliance, Llc System and method for storing energy
US20090295520A1 (en) * 2006-06-26 2009-12-03 Battelle Energy Alliance, Llc Magnetic structure
US20090295253A1 (en) * 2006-06-26 2009-12-03 Battelle Energy Alliance, Llc Motor/generator
US7683518B2 (en) * 2007-02-28 2010-03-23 Panasonic Corporation Motor
CN101617457B (zh) * 2007-03-15 2012-05-30 大金工业株式会社 励磁系统
US7932658B2 (en) * 2007-03-15 2011-04-26 A.O. Smith Corporation Interior permanent magnet motor including rotor with flux barriers
JP4932620B2 (ja) * 2007-07-06 2012-05-16 日本電産サンキョー株式会社 ロータ、ロータの製造方法、およびモータ
US9705366B2 (en) * 2014-04-08 2017-07-11 Mitsubishi Electric Corporation Embedded permanent magnet rotary electric machine
GB2564263B (en) * 2016-03-25 2023-02-01 Mitsubishi Electric Corp Rotor, motor, compressor, and refrigeration air conditioner
CN113162270A (zh) * 2020-12-30 2021-07-23 宁波安信数控技术有限公司 一种内置式永磁电机的转子结构
JP2023082880A (ja) * 2021-12-03 2023-06-15 山洋電気株式会社 埋込磁石形同期電動機の回転子
CN116014936A (zh) * 2022-12-20 2023-04-25 青岛硕能科技有限公司 一种永磁同步电机及其功率密度的提高方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0352573A1 (en) * 1988-07-27 1990-01-31 Siemens Aktiengesellschaft Synchronous machine rotor lamination
WO1999013556A1 (fr) * 1997-09-08 1999-03-18 Matsushita Electric Industrial Co., Ltd. Moteur synchrone a aimant permanent
JP2000116172A (ja) * 1998-09-29 2000-04-21 Toshiba Tec Corp 多相モータ
JP2000134836A (ja) * 1998-10-26 2000-05-12 Toshiba Corp 永久磁石形モータの回転子およびその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824413B2 (ja) * 1985-06-05 1996-03-06 株式会社日立製作所 永久磁石を有する回転子
JPS63140645A (ja) 1986-12-03 1988-06-13 Fuji Electric Co Ltd 永久磁石付回転子
JPH05111204A (ja) * 1991-10-09 1993-04-30 Toshiba Corp インナーロータ形モータ
JPH05304737A (ja) 1992-02-26 1993-11-16 Toshiba Corp 永久磁石形モータ
JPH08331784A (ja) * 1995-03-24 1996-12-13 Hitachi Metals Ltd 永久磁石界磁方式回転機
EP0823771B1 (en) 1996-02-23 2006-04-26 Matsushita Electric Industrial Co., Ltd. Motor
ATE197360T1 (de) * 1996-05-21 2000-11-15 Siemens Ag Dauermagneterregte synchronmaschine
JPH09327140A (ja) 1996-06-07 1997-12-16 Hitachi Ltd 永久磁石回転型回転電機及びその製造方法
US6133662A (en) * 1996-09-13 2000-10-17 Hitachi, Ltd. Permanent magnet dynamoelectric rotating machine and electric vehicle equipped with the same
JP3509508B2 (ja) * 1997-02-21 2004-03-22 アイシン・エィ・ダブリュ株式会社 永久磁石式同期モータ
JPH11220846A (ja) 1998-02-03 1999-08-10 Hitachi Ltd 磁石回転子およびそれを用いた回転電機
US6274960B1 (en) * 1998-09-29 2001-08-14 Kabushiki Kaisha Toshiba Reluctance type rotating machine with permanent magnets
JP3797122B2 (ja) * 2001-03-09 2006-07-12 株式会社日立製作所 永久磁石式回転電機
JP2002354727A (ja) * 2001-05-21 2002-12-06 Hitachi Ltd 永久磁石を埋設した回転子および回転電機
JP4680442B2 (ja) * 2001-08-10 2011-05-11 ヤマハ発動機株式会社 モータの回転子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0352573A1 (en) * 1988-07-27 1990-01-31 Siemens Aktiengesellschaft Synchronous machine rotor lamination
WO1999013556A1 (fr) * 1997-09-08 1999-03-18 Matsushita Electric Industrial Co., Ltd. Moteur synchrone a aimant permanent
JP2000116172A (ja) * 1998-09-29 2000-04-21 Toshiba Tec Corp 多相モータ
JP2000134836A (ja) * 1998-10-26 2000-05-12 Toshiba Corp 永久磁石形モータの回転子およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1298773A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271187A (ja) * 2005-02-22 2006-10-05 Mitsubishi Electric Corp 回転電機
JP2011177022A (ja) * 2005-02-22 2011-09-08 Mitsubishi Electric Corp 回転電機

Also Published As

Publication number Publication date
US6936945B2 (en) 2005-08-30
CN1436389A (zh) 2003-08-13
EP1298773A4 (en) 2005-05-11
EP1298773A1 (en) 2003-04-02
CN1215628C (zh) 2005-08-17
US20030168924A1 (en) 2003-09-11

Similar Documents

Publication Publication Date Title
US7233090B2 (en) Electric machine, in particular brushless synchronous motor
JP5491484B2 (ja) スイッチドリラクタンスモータ
US7598645B2 (en) Stress distributing permanent magnet rotor geometry for electric machines
US20070057589A1 (en) Interior permanent magnet rotor and interior permanent magnet motor
JP5259927B2 (ja) 永久磁石式回転電機
EP1401083A3 (en) Permanent magnet and reluctance type rotating machine
WO2014046228A1 (ja) 永久磁石埋込型電動機
JP4844570B2 (ja) 永久磁石型モータ
JP2008136298A (ja) 回転電機の回転子及び回転電機
CN108475971B (zh) 磁化方法、转子、电动机以及涡旋压缩机
US8026648B2 (en) Electric machine
WO2001097363A1 (fr) Moteur synchrone a aimant permanent
US20110163618A1 (en) Rotating Electrical Machine
JP2003088071A (ja) リラクタンス型回転電機
EP1744437B1 (en) Self magnetizing motor and stator thereof
JP4113353B2 (ja) 回転電機
JP7299531B2 (ja) 回転子、モータ
KR100680201B1 (ko) 영구자석형 모터
US20220109339A1 (en) Electric motor having stacked different rotor segments and method for designing the same
JP7047337B2 (ja) 永久磁石式回転電機
JP2003088019A (ja) 永久磁石電動機
JP2000316241A (ja) 永久磁石埋め込み式モータ
JPH11136892A (ja) 永久磁石電動機
JP4080273B2 (ja) 永久磁石埋め込み型電動機
JPH09308198A (ja) 永久磁石モータ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 511456

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 018109489

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001938675

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001938675

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10311522

Country of ref document: US