WO2001096957A1 - Procede de creation d'un etage de circuit integre ou coexistent des motifs fins et larges - Google Patents

Procede de creation d'un etage de circuit integre ou coexistent des motifs fins et larges Download PDF

Info

Publication number
WO2001096957A1
WO2001096957A1 PCT/FR2001/001850 FR0101850W WO0196957A1 WO 2001096957 A1 WO2001096957 A1 WO 2001096957A1 FR 0101850 W FR0101850 W FR 0101850W WO 0196957 A1 WO0196957 A1 WO 0196957A1
Authority
WO
WIPO (PCT)
Prior art keywords
patterns
resin
mask
layer
integrated circuit
Prior art date
Application number
PCT/FR2001/001850
Other languages
English (en)
Inventor
Simon Deleonibus
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to US10/296,197 priority Critical patent/US6727179B2/en
Priority to DE60102376T priority patent/DE60102376T2/de
Priority to JP2002511022A priority patent/JP4680477B2/ja
Priority to EP01945431A priority patent/EP1290498B1/fr
Publication of WO2001096957A1 publication Critical patent/WO2001096957A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823456MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different shapes, lengths or dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0277Electrolithographic processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/942Masking
    • Y10S438/948Radiation resist
    • Y10S438/95Multilayer mask including nonradiation sensitive layer

Definitions

  • the subject of this invention is a method of creating an integrated circuit stage where fine patterns coexist and wide patterns, particularly semi ⁇ conductors.
  • Particle bombing on the contrary, allow patterns to be produced with great precision, but only expose the resin slowly, the beam having to be gradually displaced over the entire surface to be exposed.
  • the general use of particle bombardment however made necessary by the presence of fine patterns, leads to excessive manufacturing times. It is therefore useful to allow in this technical sector the joint use of radiation and bombardment of particles to respectively form the wide and fine patterns (typically, of 100 nm and 20 nm of respective widths) of the stage of integrated circuit, without the application of radiation having a harmful effect on the formation of fine patterns, and by reserving the bombardment of particles with fine patterns in order not to increase the manufacturing time of the stage more than it does is necessary.
  • Patent EP-A-0 779 556 relates to a method for creating an integrated circuit stage comprising patterns, in particular semiconductors, of which the first have widths greater than a threshold and the second have widths less than the threshold , consisting in depositing a layer of material of the patterns on a substrate, a mask on the layer of material of the patterns, then, an upper layer on the mask, a first resin which is exposed and developed while remaining only on the first patterns still to be to form, to etch the upper layer, to remove the first resin, to deposit a second resin which is exposed and developed while remaining on the second patterns still to be formed, to etch the mask where it is apparent, to etch the layer of material of the patterns, thus forming the first and second patterns, where it is apparent, and removing the second resin.
  • the first resin is generally sensitized by exposure to radiation and the second resin is sensitized by exposure to particle bombardment.
  • the exposed resin is developed.
  • the upper layer is advantageously made of the pattern material and completely removed when the pattern material layer is etched.
  • the second mask can form flanks around the remainders of the first mask deposited on the layer of material of the patterns, and these flanks remain until the layer of material of the patterns is engraved.
  • the first patterns can be formed with an enlarged base under the sides of the second mask, which is advantageous if these patterns are MOS transistors.
  • Another effect is that the sides maintain the width of the wide patterns by protecting against the lateral attacks which would have narrowed them to the engraving of the material layer of the patterns.
  • - Figures 1A to IF are the stages of a general process for creating wide and fine patterns, which the invention does not relate to, - Figures 2A and 2B are two views of typical patterns connected,
  • FIG. 1A it has been deposited on a substrate 1, which may consist of a barrier layer of silicon oxide (S.0 2 ), a semiconductor layer 2 which may be of polycrystalline silicon or silicon nitride in which must be engraved with patterns of a semiconductor grid, a hard mask 3 which may be made of silicon oxide has been deposited on the semiconductor layer 2 and an upper semiconductor layer 4, possibly of the same composition as layer 2, has been deposited on the hard mask 3.
  • a substrate 1A it has been deposited on a substrate 1, which may consist of a barrier layer of silicon oxide (S.0 2 ), a semiconductor layer 2 which may be of polycrystalline silicon or silicon nitride in which must be engraved with patterns of a semiconductor grid, a hard mask 3 which may be made of silicon oxide has been deposited on the semiconductor layer 2 and an upper semiconductor layer 4, possibly of the same composition as layer 2, has been deposited on the hard mask 3.
  • radiation-sensitive resin 5 is deposited, exposed and developed by remaining on the portions of the upper layer 4 which will overhang the large patterns to be
  • the radiation-sensitive resin 5 can then be removed by exposure for example to an oxygen plasma, before a particle-sensitive resin 6 is deposited on the hard mask 3, which has been previously exposed, then exposed and developed by remaining only above the fine patterns to be etched in layer 2. This is the state shown in FIG. 1D. Remains 4 'of the semiconductor layer 4 which remain above the wide patterns, are not or are only slightly attacked when the resin 6 is developed and then removed.
  • FIG. 1E shows that the next step consists in etching the hard mask 3 where it is apparent, leaving it to remain only at the locations of the future broad and fine patterns of the semiconductor layer 2; there form residuals, 3 'and 3' 'respectively, which are respectively protected by the residuals 4' of the semiconductor layer 4 and by the particle-sensitive resin 6.
  • FIG. IF illustrates the state obtained at the end of the process, after the resin 6 has then been removed, for example by an oxygen plasma, then finally after the semiconductor material has been etched, leaving it to remain only 'with wide patterns 2' and fine 2 '' under the remainders 3 'and 3''of the hard mask, which are also allowed to remain so that they produce electrical insulation in the integrated circuit whose manufacture will be continued by other steps.
  • the remainders 3 ′ of the large patterns 2 ′ may in practice have been somewhat attacked and therefore remain thinner than the remainders 3 ′′; however, this is acceptable.
  • the wide and fine patterns 2 'and 2' ' can perfectly be joined. It would be useful then for the particle-sensitive resin 6 deposited in the step of FIG. 1D to overlap somewhat the remainders 4 ′, which has been shown by the portion 7 of FIG. 2B. The difference in level between the remaining 3 'and 3' 'is then separated from the junction of the patterns 2' and 2 '' by a guard distance 8, which offers a better connection.
  • FIG. 3A is obtained from the state of FIG. 1C after an etching of the hard mask 3 which has left only the remainders 3 '.
  • the radiation-sensitive resin 5 is then removed, and a second mask 9 is deposited on the entire structure then obtained; it forms a horizontal layer, except in substantially vertical sides 10 which surround the remainders 3 'and 4' at the locations of the wide patterns, as illustrated in FIG. 3B.
  • FIG. 3C shows that the particle-sensitive resin 6 is then deposited above the fine patterns and on the second mask 9, before the latter is removed elsewhere by an appropriate etching, except, however, sidewalls 10 which have remained sheltered, according to the state of FIG. 3D.
  • the final stages of the process consist in removing the resin sensitive to particles 6 and in etching the semiconductor material, which removes the residue 4 'and especially the portions of layer 2 which were not covered with the hard masks.
  • a certain attack of the hard masks is however produced, which makes all or part of the sides 10 disappear while leaving at least a portion of the remainders 3 'on the wide patterns 2' and 9 '' on the fine patterns 2 ''; in the same way, the wide patterns 2 '' have an enlarged base 11 under the locations of the old sides 10. This enlarged base 11 can be useful if the wide patterns 2 'are intended to form high voltage OS transistors for example . Otherwise, it may be best to remove it, what can be done 'by extending some etching of the semiconductor material.
  • An essential advantage of the second mask 9 and especially of its sides 10 is to protect the patterns, large 2 ′ of lateral attacks produced during etching by reflections of the radiation against which it is impossible to protect and which would have narrowed the wide patterns 2 'of an amount that is difficult to predict: the sides 10 therefore guarantee that the wide patterns 2' are maintained at the desired width.
  • the selectivity of the engravings that is to say their ability to attack only one of the exposed materials while sparing the others, and which is only partial in practice, is of particular importance because of the large number of materials different employees: the thicknesses of the masks 3 and 9 and of the upper layer 4 will be sufficient to arrive at the illustrated states for the materials and the engraving modes chosen, taking care above all to avoid that the remainders such as 3 ', 4 'and 3''do not disappear accidentally, after excessive burning.
  • the etching of the semiconductor layer 2 will be fast enough to leave a sufficient thickness of the hard masks 3 and 9 in the remainders 3 'and 9''.
  • the first hard mask 3 must continue to resist even if the sides 10 of the second hard mask 9 have disappeared. All these conditions can impose choices on the materials, their thicknesses and the processes used but the possibilities are numerous enough to offer solutions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

On recourt à l'utilisation successive d'une couche de résine sensible aux rayonnements aux emplacements (4') devant former les motifs semi-conducteurs larges dans une couche (2) encore intacte, sous au moins un masque dur (3'), puis d'une résine sensible aux bombardements de particules (6) au-dessus de motifs fins à former dans cette même couche (2), qui peuvent être juxtaposés aux précédents. Les motifs de la première résine sont exposés collectivement et rapidement par une insolation, alors que le bombardement d'électrons permet de former des motifs fins avec une grande précision. Un autre masque dur (9) a été déposé avant la seconde résine (6) et forme des flancs (10) autour des motifs larges, qui protègent ceux-ci d'attaques latérales à la gravure.

Description

PROCÉDÉ DE CRÉATION D'UN ETAGE DE CIRCUIT INTEGRE OU COEXISTENT DES MOTIFS FINS ET LARGES
DESCRIPTION
Le sujet de cette invention est un procédé de création d'un étage de circuit intégré où coexistent des motifs fins et des motifs larges, notamment semi¬ conducteurs .
Il est connu de graver des couches semi- conductrices pour ne laisser subsister que des motifs isolés qui feront partie du circuit intégré. On y parvient notamment en déposant un masque dur sur la couche semi-conductrice, qu'on fait ensuite disparaître sur les portions à graver de manière qu'il soustraie les motifs à préserver de la gravure. On recourt en général à une autre étape de gravure pour enlever le masque aux endroits inutiles, après avoir déposé de la résine sur les portions du masque qu'il convient de protéger. La résine est déposée en couche continue qui est exposée, c'est-à-dire soumise à des conditions qui la sensibilisent, soit sur les portions à protéger du masque, soit sur les autres portions, selon qu'on a affaire à une résine appelée « négative » ou « positive ». Une étape de développement de la résine enlève ensuite celle-ci ailleurs que sur les portions à protéger du masque. Enfin, le reste de la résine est enlevé quand le masque a été gravé.
Il existe deux procédés principaux pour exposer la résine : les rayonnements, notamment lumineux aux ultraviolets ou aux rayons X, et les bombardements de particules, notamment d'électrons ou aussi d'ions, etc. souvent réalisés par un balayage d'un faisceau. Selon leur composition, les résines sont en pratique sensibles à l'un ou l'autre de ces procédés. Les rayonnements permettent d'exposer la résine de manière collective et donc de tracer les motifs en une fois. Par contre, on constate qu'ils ne permettent pas d' obtenir ensuite des motifs semiconducteurs avec une grande précision de dimensions, ce qui les rend inadaptés quand les motifs qu'il faut faire apparaître sont fins, car les incertitudes deviennent alors excessives.
Les bombardements de particules . permettent au contraire de réaliser des motifs avec une grande précision mais n'exposent la résine que lentement, le faisceau devant être déplacé peu à peu au-dessus de toute la surface à exposer. Quand des motifs larges et fins coexistent, l'utilisation générale du bombardement de particules, pourtant rendu nécessaire par la présence des motifs fins, conduit à des temps de fabrication excessifs. II est donc utile de permettre dans ce secteur technique l'utilisation conjointe des rayonnements et des bombardements de particules pour former respectivement les motifs larges et fins (typiquement, de 100 nm et 20 nm de largeurs respectives) de l'étage de circuit intégré, sans que l'application du rayonnement n'ait d'effet néfaste sur la formation des motifs fins, et en réservant le bombardement de particules aux motifs fins afin de ne pas accroître le temps de fabrication de l'étage plus qu'il n'est nécessaire. Un article de Tedesco et autres « Resist process of hybrid (electron-beam / deep ultraviolet) lithography » paru dans le Journal of Vacuum Science and Technology, B16(β), novembre-décembre 1998, p.3676- 3683, mentionne la possibilité d'user d'une résine « mixte », pouvant être exposée à la fois aux rayonnements et aux faisceaux de particules ; mais de telles résines ne sont optimales ni pour un procédé d'exposition ni pour l'autre. L'utilisation de masques durs à la place de la résine a aussi été proposée pour permettre de graver des motifs fins avec précision ; mais les résines restent d'emploi plus commode.
Le brevet EP-A-0 779 556 concerne un procédé de création d'un étage de' circuit intégré comprenant des motifs, notamment semi-conducteurs, dont des premiers ont des largeurs supérieures à un seuil et des seconds ont des largeurs inférieures au seuil, consistant à déposer une couche de matière des motifs sur un substrat, un masque sur la couche de matière des motifs, puis, une couche supérieure sur le masque, une première résine qui est exposée et développée en subsistant seulement sur les premiers motifs encore à former, à graver la couche supérieure, à éliminer la première résine, à déposer une seconde résine qui est exposée et développée en subsistant sur les seconds motifs encore à former, à graver le masque où il est apparent, à graver la couche de matière des motifs, formant ainsi les premiers et les seconds motifs, où elle est apparente, et à enlever la seconde résine. Certains des premiers motifs peuvent être jointifs à certains des seconds motifs. Conformément à ce qu'on a déjà exposé, la première résine est en général sensibilisée par une exposition à un rayonnement et la seconde résine est sensibilisée par une exposition à un bombardement de particules. Avant de procéder à la gravure de la couche supérieure dans le premier cas, à la gravure de la couche de matière des motifs dans le deuxième cas, on procède au développement de la résine exposée.
La couche supérieure est avantageusement en la matière des motifs et complètement enlevée quand la couche de matière des motifs est gravée.
On entend perfectionner un procédé tel que celui de ce brevet EP-A-0 779 556 par des étapes qui consistent à graver le masque là où il est apparent après avoir gravé la couche supérieure, puis à déposer un second masque après avoir enlevé la première résine, et à graver le second masque là où il est apparent après avoir déposé la seconde résine.
En effet, le second masque peut former des flancs autour de reliquats du premier masque déposé sur la couche des matières des motifs, et ces flancs subsistent jusqu'à ce que la couche de matière des motifs est gravée.
Un effet de ce procédé particulier est que les premiers motifs peuvent être formés avec une base élargie sous les flancs du second masque, ce qui est avantageux si ces motifs sont des transistors MOS. Un autre effet est que les flancs maintiennent la largeur des motifs larges en les prémunissant contre les attaques latérales qui les auraient étrécis à la gravure de la couche de matière des motifs.
L' invention sera décrite plus en détail au moyen de réalisations pratiques exposées à titre non exhaustif dans les figures suivantes :
- les figures 1A à IF sont les étapes d'un déroulement d'un procédé général de création de motifs larges et fins, sur lequel l'invention ne porte pas, - les figures 2A et 2B sont deux vues de motifs typiques raccordés,
- et les figures 3A et 3E illustrent le déroulement d'un procédé caractéristique de 1' invention. Sur la figure 1A il a été déposé sur un substrat 1, pouvant consister en une couche d'arrêt en oxyde de silicium (S.02) , une couche semi-conductrice 2 pouvant être en silicium polycristallin ou nitrure de silicium dans laquelle devront être gravés des motifs d'une grille semi-conductrice, un masque dur 3 pouvant être en oxyde de silicium a été déposé sur la couche semi-conductrice 2 et une couche supérieure 4 semi- conductrice, éventuellement de même composition que la couche 2, a été déposée sur le masque dur 3. Ensuite, comme le montre la figure 1B, de la résine sensible aux rayonnements 5 est déposée, exposée et développée en subsistant sur les portions de la couche supérieure 4 qui surplomberont les motifs larges à graver dans la couche semi-conductrice 2. Une première gravure de la couche supérieure 4 est alors entreprise conformément à la figure 1C, sauf aux endroits où elle est recouverte par la résine sensible aux rayonnements 5.
La résine sensible aux rayonnements 5 peut alors être enlevée par une exposition par exemple à un plasma d'oxygène, avant qu'une résine sensible aux particules 6 ne soit déposée sur le masque dur 3, qui a été mis à nu précédemment, puis exposée et développée en ne subsistant qu'au-dessus des motifs fins à graver dans la couche 2. C'est l'état représenté à la figure 1D. Des reliquats 4' de la couche semi-conductrice 4 qui subsistent au-dessus des motifs larges, ne sont pas ou ne sont que peu attaqués quand la résine 6 est développée puis enlevée.
La figure 1E montre que l'étape suivante consiste en une gravure du masque dur 3 là où il est apparent, ne le laissant subsister qu'aux endroits des futurs motifs larges et fins de la couche semi- conductrice 2 ; il y forme des reliquats, respectivement 3' et 3' ' , qui sont respectivement protégés par les reliquats 4' de la couche semi- conductrice 4 et par la résine sensible aux particules 6.
La figure IF illustre l'état obtenu à la fin du procédé, après que la résine 6 a été ensuite enlevée par exemple par un plasma d'oxygène, puis enfin que la matière semi-conductrice a été gravée, en ne la laissant subsister qu'aux motifs larges 2' et fins 2'' sous les reliquats 3' et 3'' du masque dur, qu'on laisse aussi subsister pour qu'ils produisent une isolation électrique dans le circuit intégré dont la fabrication sera poursuivie par d'autres étapes. On peut employer une gravure chimique anisotrope avec un des produits suivants : HBr, Cl2, 02 ou CF402. Les reliquats 3' des motifs larges 2' peuvent avoir en pratique été quelque peu attaqués et restent alors moins épais que les reliquats 3' ' ; cela est pourtant acceptable.
Comme on le voit aux figures 2A et 2B, les motifs larges et fins 2' et 2'' peuvent parfaitement être jointifs. Il serait utile alors que la résine sensible aux particules 6 déposée à l'étape de la figure 1D chevauche quelque peu les reliquats 4', ce qu'on a figuré par la portion 7 de la figure 2B. La dénivellation entre les reliquats 3' et 3'' est alors séparée de la jonction des motifs 2' et 2'' d'une distance de garde 8, ce qui offre un meilleur raccordement.
Une réalisation de l'invention sera maintenant décrite à l'aide des figures 3A à 3E.
La figure 3A est obtenue à partir de l'état de la figure 1C après une gravure du masque dur 3 qui n'a laissé subsister que les reliquats 3'. La résine sensible aux rayonnements 5 est alors enlevée, et un second masque 9 est déposé sur toute la structure obtenue alors ; il forme une couche horizontale, sauf en des flancs 10 sensiblement verticaux qui entourent les reliquats 3' et 4' aux emplacements des motifs larges, ce qu'illustre la figure 3B. La figure 3C montre que la résine sensible aux particules 6 est ensuite déposée au-dessus des motifs fins et sur le second masque 9, avant que celui-ci ne soit enlevé ailleurs par une gravure appropriée, sauf toutefois aux flancs 10 qui sont restés abrités, selon l'état de la figure 3D. Les étapes finales du procédé consistent à enlever la résine sensible aux particules 6 et à graver la matière semi-conductrice, ce qui fait disparaître les reliquats 4' et surtout les portions de la couche 2 qui n'étaient pas recouvertes des masques durs. Une certaine attaque des masques durs est cependant produite, qui fait disparaître tout ou partie les flancs 10 tout en laissant subsister une portion au moins des reliquats 3' sur les motifs larges 2' et 9'' sur les motifs fins 2'' ; de la même façon, -les motifs larges 2 ' ' présentent une base élargie 11 sous les emplacements des anciens flancs 10. Cette base élargie 11 peut être utile si les motifs larges 2' sont destinés à former des transistors OS à haute tension par exemple. Sinon, il peut être préférable de l'enlever, ce qu'on peut accomplir' en prolongeant un peu la gravure de la matière semi-conductrice.
Un avantage essentiel du second masque 9 et surtout de ses flancs 10 est de protéger les motifs, larges 2' d'attaques latérales produites à la gravure par des réflexions du rayonnement contre lesquelles il est impossible de se prémunir et qui auraient étréci les motifs larges 2' d'une quantité difficile à prévoir : les flancs 10 garantissent donc le maintien des motifs larges 2' à la largeur voulue.
Dans ce procédé, la sélectivité des gravures, c'est-à-dire leur faculté de n'attaquer qu'un des matériaux exposés en épargnant les autres, et qui n'est que partielle en pratique, revêt une importance particulière en raison du nombre important de matériaux différents employés : les épaisseurs des masques 3 et 9 et de la couche supérieure 4 seront suffisantes pour qu'on arrive aux états illustrés pour les matériaux et les modes de gravure choisis, en veillant surtout à éviter que les reliquats tels que 3', 4' et 3'' ne disparaissent accidentellement, après une gravure excessive. En d'autres termes, la gravure de la couche semi-conductrice 2 sera assez rapide pour laisser une épaisseur suffisante des masques durs 3 et 9 aux reliquats 3' et 9''. De plus, le premier masque dur 3 doit continuer de résister même si les flancs 10 du second masque dur 9 ont disparu. Toutes ces conditions peuvent imposer des choix sur les matériaux, leurs épaisseurs et les procédés employés mais les possibilités sont assez nombreuses pour offrir des solutions .

Claims

REVENDICATIONS
1. Procédé de création d'un étage de circuit intégré comprenant des motifs, notamment semiconducteurs, dont des premiers (2' ) ont des largeurs supérieures à un seuil et des seconds (2'') ont des largeurs inférieures au seuil, consistant à déposer une couche de matière (2) des motifs sur un substrat (1), un masque (3) sur la couche de matière des motifs, puis une couche supérieure (4) sur le masque, une première résine (5) , qui est exposée et développée en subsistant seulement sur les premiers motifs encore à former ; à graver la couche supérieure (4) où elle est apparente, à enlever la première résine, à déposer une seconde résine, qui est exposée et développée en subsistant sur les seconds motifs encore à former, à graver le masque (3) où il est apparent, à graver la couche de matière (2) des motifs, formant ainsi les premiers et les seconds motifs, où elle est apparente, et à enlever la seconde résine (6) ; caractérisé en ce qu'il consiste encore à graver le masque (3) où il est apparent après avoir gravé la couche supérieure, à déposer un second masque (9) après avoir enlevé la première résine (5), à graver le second masque où il est apparent après avoir déposé, exposé et développé la seconde résine (6) .
2. Procédé de création d'un étage de circuit intégré selon la revendication 1, caractérisé en ce que le second masque forme des flancs (10) autour de reliquats (3' ) du masque (3) déposé sur la couche de matière (2) des motifs, qui ne sont enlevés que quand la couche de matière des motifs est gravée.
3. Procédé de création d'un étage de circuit intégré selon la revendication 2, caractérisé en ce qu'il est réglé de façon que les premiers motifs soient formés avec une base élargie (11) sous les flancs du second masque.
4. Procédé de création d'un étage de circuit intégré selon la revendication 1, caractérisé en ce que la première résine (5) est exposée par un rayonnement et la seconde résine (6) est exposée par à un rayonnement de particules.
5. Procédé de création d'un . étage de circuit intégré selon la revendication 4, caractérisé en ce que le rayonnement est lumineux et les particules sont des électrons .
6. Procédé de création d'un étage de circuit intégré selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la seconde résine (5) est exposée par un balayage d'un faisceau.
7. Procédé de création d'un étage de circuit intégré selon l'une quelconque des revendications 1 à 6, caractérisé en ce que certains des premiers motifs (2' ) sont jointifs à certains des seconds motifs (2'').
8. Procédé de création d'un étage de circuit intégré selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la couche supérieure (4) est en la matière des motifs et est complètement enlevée quand la couche de matière des motifs est gravée.
PCT/FR2001/001850 2000-06-16 2001-06-14 Procede de creation d'un etage de circuit integre ou coexistent des motifs fins et larges WO2001096957A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/296,197 US6727179B2 (en) 2000-06-16 2001-06-14 Method for creating an integrated circuit stage wherein fine and large patterns coexist
DE60102376T DE60102376T2 (de) 2000-06-16 2001-06-14 Verfahren zur herstellung einer schicht in einem integrierten schaltkreis mit feinen und breiten strukturen
JP2002511022A JP4680477B2 (ja) 2000-06-16 2001-06-14 微細パターンとワイドパターンとが混在する集積回路ステージを形成するための方法
EP01945431A EP1290498B1 (fr) 2000-06-16 2001-06-14 Procede de creation d'un etage de circuit integre ou coexistent des motifs fins et larges

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/07718 2000-06-16
FR0007718A FR2810447B1 (fr) 2000-06-16 2000-06-16 Procede de creation d'un etage de circuit integre ou conexistent des motifs fins et larges

Publications (1)

Publication Number Publication Date
WO2001096957A1 true WO2001096957A1 (fr) 2001-12-20

Family

ID=8851345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/001850 WO2001096957A1 (fr) 2000-06-16 2001-06-14 Procede de creation d'un etage de circuit integre ou coexistent des motifs fins et larges

Country Status (6)

Country Link
US (1) US6727179B2 (fr)
EP (1) EP1290498B1 (fr)
JP (1) JP4680477B2 (fr)
DE (1) DE60102376T2 (fr)
FR (1) FR2810447B1 (fr)
WO (1) WO2001096957A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664173B2 (en) * 2002-01-09 2003-12-16 Intel Corporation Hardmask gate patterning technique for all transistors using spacer gate approach for critical dimension control
FR2870043B1 (fr) 2004-05-07 2006-11-24 Commissariat Energie Atomique Fabrication de zones actives de natures differentes directement sur isolant et application au transistor mos a simple ou double grille
US7115525B2 (en) * 2004-09-02 2006-10-03 Micron Technology, Inc. Method for integrated circuit fabrication using pitch multiplication
KR100641980B1 (ko) * 2004-12-17 2006-11-02 동부일렉트로닉스 주식회사 반도체 소자의 배선 및 그 형성방법
DE102005010550B4 (de) * 2005-03-04 2007-03-22 Neoperl Gmbh Sanitärer Wasserauslauf
US7923373B2 (en) 2007-06-04 2011-04-12 Micron Technology, Inc. Pitch multiplication using self-assembling materials
CN103390584A (zh) * 2012-05-09 2013-11-13 中国科学院微电子研究所 半导体器件的制造方法
KR101421789B1 (ko) * 2012-05-31 2014-07-22 주식회사 엘지화학 패턴의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612274A (en) * 1985-11-18 1986-09-16 Motorola, Inc. Electron beam/optical hybrid lithographic resist process in acoustic wave devices
EP0779556A2 (fr) * 1995-12-11 1997-06-18 Kabushiki Kaisha Toshiba Procédé de fabrication d'un dispositif semi-conducteur
US5670423A (en) * 1995-05-05 1997-09-23 Taiwan Semiconductor Manufacturing Company, Ltd. Method for using disposable hard mask for gate critical dimension control

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4299680A (en) * 1979-12-31 1981-11-10 Texas Instruments Incorporated Method of fabricating magnetic bubble memory device having planar overlay pattern of magnetically soft material
JPH02262319A (ja) * 1989-04-03 1990-10-25 Toshiba Corp パターン形成方法
JPH05343535A (ja) * 1992-06-04 1993-12-24 Nec Corp 微細配線の形成方法
JP3263870B2 (ja) * 1993-04-20 2002-03-11 ソニー株式会社 微細パターン導電層を有する半導体装置の製造方法
US5891784A (en) * 1993-11-05 1999-04-06 Lucent Technologies, Inc. Transistor fabrication method
JP3607022B2 (ja) * 1995-12-11 2005-01-05 株式会社東芝 半導体装置の製造方法
JP3392616B2 (ja) * 1996-01-31 2003-03-31 株式会社東芝 半導体装置の製造方法
US5776821A (en) * 1997-08-22 1998-07-07 Vlsi Technology, Inc. Method for forming a reduced width gate electrode
US5966618A (en) * 1998-03-06 1999-10-12 Advanced Micro Devices, Inc. Method of forming dual field isolation structures
US6416933B1 (en) * 1999-04-01 2002-07-09 Advanced Micro Devices, Inc. Method to produce small space pattern using plasma polymerization layer
JP2001168191A (ja) * 1999-12-13 2001-06-22 Matsushita Electronics Industry Corp 半導体装置及びその製造方法
US6720249B1 (en) * 2000-04-17 2004-04-13 International Business Machines Corporation Protective hardmask for producing interconnect structures
WO2001084459A2 (fr) * 2000-04-28 2001-11-08 Pe Diagnostik Gmbh Procede de determination de pertes de densite osseuse importantes
US6350695B1 (en) * 2000-06-16 2002-02-26 Chartered Semiconductor Manufacturing Ltd. Pillar process for copper interconnect scheme
US6482726B1 (en) * 2000-10-17 2002-11-19 Advanced Micro Devices, Inc. Control trimming of hard mask for sub-100 nanometer transistor gate
US6429052B1 (en) * 2000-11-13 2002-08-06 Advanced Micro Devices, Inc. Method of making high performance transistor with a reduced width gate electrode and device comprising same
JP2002324787A (ja) * 2001-04-26 2002-11-08 Mitsubishi Electric Corp 半導体装置の製造方法
US6521138B2 (en) * 2001-06-01 2003-02-18 Silicon Integrated Systems Corporation Method for measuring width of bottom under cut during etching process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612274A (en) * 1985-11-18 1986-09-16 Motorola, Inc. Electron beam/optical hybrid lithographic resist process in acoustic wave devices
US5670423A (en) * 1995-05-05 1997-09-23 Taiwan Semiconductor Manufacturing Company, Ltd. Method for using disposable hard mask for gate critical dimension control
EP0779556A2 (fr) * 1995-12-11 1997-06-18 Kabushiki Kaisha Toshiba Procédé de fabrication d'un dispositif semi-conducteur

Also Published As

Publication number Publication date
US20030077899A1 (en) 2003-04-24
FR2810447A1 (fr) 2001-12-21
EP1290498B1 (fr) 2004-03-17
EP1290498A1 (fr) 2003-03-12
DE60102376D1 (de) 2004-04-22
FR2810447B1 (fr) 2003-09-05
US6727179B2 (en) 2004-04-27
DE60102376T2 (de) 2005-02-24
JP4680477B2 (ja) 2011-05-11
JP2004503927A (ja) 2004-02-05

Similar Documents

Publication Publication Date Title
JP4781723B2 (ja) 半導体パターン形成方法
EP2577395B1 (fr) Procede de lithographie a dedoublement de pas
EP0223780B1 (fr) Procede de fabrication de transistors mos a electrodes de siliciure metallique
JP4767475B2 (ja) 深いサブコレクタ領域を有する半導体デバイスの製造方法
EP1959481B1 (fr) Procédé de réalisation de transistor
KR20010029859A (ko) 반도체 장치의 제조 방법
EP0351316A1 (fr) Procédé de fabrication d'une cellule de mémoire intégrée
US20180299765A1 (en) Extreme ultraviolet lithography (euvl) reflective mask
EP1290498B1 (fr) Procede de creation d'un etage de circuit integre ou coexistent des motifs fins et larges
EP2706565A1 (fr) Dispositif microélectronique à tranchées d'isolation débordant sous une zone activé
EP2577723B1 (fr) Procede de lithographie pour la realisation de reseaux de conducteurs relies par des vias
EP0441450B1 (fr) Procédé de réalisation par autoalignement, d'un dispositif semiconducteur intégré, comprenant au moins la formation d'un premier contact d'électrode encapsulé et muni d'espaceurs et d'un second contact d'électrode autoaligné sur celui-ci
JP2004273483A (ja) 配線構造の形成方法
FR2734403A1 (fr) Isolement plan dans des circuits integres
EP0675544A1 (fr) Procédé de fabrication d'un transistor à effet de champ à grille isolée de longueur de canal réduite, et transistor correspondant
EP0035416A2 (fr) Procédé d'isolement des interconnexions de circuits intégrés
WO2012010812A1 (fr) Procede de realisation d'un circuit integre
US6911374B2 (en) Fabrication method for shallow trench isolation region
EP3038149A1 (fr) Procede de realisation d'un circuit integre en trois dimensions
EP4053883B1 (fr) Procédé de gravure d'une couche diélectrique tridimensionnelle
US11817484B2 (en) Method for manufacturing an electronic device
WO2004057671A2 (fr) Procede de formation de motifs alignes de part et d'autre d'un film mince
JP2000208612A (ja) トレンチ素子分離領域を有する半導体装置の製造方法
EP1627422B1 (fr) Procede de delimitation d'un element conducteur dispose sur une couche isolante
FR2679379A1 (fr) Procede de fabrication de circuits integres avec electrodes tres etroites.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001945431

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10296197

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001945431

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001945431

Country of ref document: EP