WO2001075957A1 - Procede de preparation d'un film poreux sog - Google Patents

Procede de preparation d'un film poreux sog Download PDF

Info

Publication number
WO2001075957A1
WO2001075957A1 PCT/JP2001/002885 JP0102885W WO0175957A1 WO 2001075957 A1 WO2001075957 A1 WO 2001075957A1 JP 0102885 W JP0102885 W JP 0102885W WO 0175957 A1 WO0175957 A1 WO 0175957A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
porous
surfactant
organic silane
dielectric constant
Prior art date
Application number
PCT/JP2001/002885
Other languages
English (en)
French (fr)
Inventor
Hirohiko Murakami
Chiaki Tanaka
Masaaki Hirakawa
Original Assignee
Ulvac, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000357808A external-priority patent/JP4856307B2/ja
Priority claimed from JP2001045276A external-priority patent/JP2001351911A/ja
Priority claimed from JP2001046797A external-priority patent/JP4982012B2/ja
Priority claimed from JP2001046727A external-priority patent/JP2002252225A/ja
Priority claimed from JP2001046728A external-priority patent/JP5102920B2/ja
Application filed by Ulvac, Inc. filed Critical Ulvac, Inc.
Priority to KR1020017015575A priority Critical patent/KR100816698B1/ko
Priority to EP01917803A priority patent/EP1189267B1/en
Priority to US09/926,671 priority patent/US6919106B2/en
Publication of WO2001075957A1 publication Critical patent/WO2001075957A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02359Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the surface groups of the insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02362Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment formation of intermediate layers, e.g. capping layers or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31695Deposition of porous oxides or porous glassy oxides or oxide based porous glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/7682Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing the dielectric comprising air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1005Formation and after-treatment of dielectrics
    • H01L2221/1042Formation and after-treatment of dielectrics the dielectric comprising air gaps
    • H01L2221/1047Formation and after-treatment of dielectrics the dielectric comprising air gaps the air gaps being formed by pores in the dielectric

Definitions

  • the present invention relates to a method for producing a porous SOGJp, and more particularly, to a method for producing a porous SOG film by subjecting an organic silane to hydrolysis and performing a heat treatment in the presence of a surfactant.
  • the present invention solves the above-mentioned disadvantages of the prior art, and is an interlayer insulating film having a low relative dielectric constant, which is further laminated thereon by a CVD process or the like after the formation of the interlayer insulating film.
  • the first object is to provide a method for producing a porous SOG film whose relative dielectric constant does not change (first invention).
  • the characteristics of the porous membrane obtained by the above-mentioned conventional method are Since moisture is adsorbed due to the hygroscopicity caused and the wiring such as A1 is corroded, the hydrophilic ⁇ H group remaining on the porous film is replaced with hydrophobic CH 3 to improve the hygroscopicity.
  • a chemical treatment method has been proposed in which the surface of the film inside the pores is made hydrophobic by substituting with a group or the like or oxidizing the ⁇ H group to form SiO 2 .
  • the pores of the obtained porous Si 2 film are oriented perpendicularly to the substrate, and therefore, penetration of moisture such as water vapor from the film surface may become a problem.
  • the inorganic SOG film contains a large amount of ⁇ H groups, and unreacted ⁇ H groups may remain even after firing. Therefore, there is a problem that moisture in the atmosphere adsorbs to the residual OH groups, and corrodes wiring such as A1. Furthermore, the above chemical treatment has a problem that its process control is difficult.
  • the present invention prevents moisture intrusion from the film surface, suppresses moisture absorption, and has a low relative dielectric constant.
  • the second objective is to provide a method for fabricating 0 G films
  • the present invention also provides an interlayer insulating film having a low dielectric constant by removing residual OH groups from a porous SG film when unreacted OH groups remain as described above, It is a third object to provide a method for producing a porous SOG film whose relative dielectric constant does not change even if a film is further laminated thereon by a CVD process or the like after the formation of the interlayer insulating film (third object). Invention).
  • the present invention further discloses a porous material having a low specific permittivity, in which ⁇ H groups are not present at least on the inner wall surface of the pores.
  • the fourth object is to provide an easy method (fourth invention). Disclosure of the invention
  • the present inventors have found that the dielectric constant of the interlayer insulating film from the viewpoint of preferably as low, by spin Nkoto method for obtaining a porous S I_ ⁇ 2 film having a low dielectric constant, and select the various materials, suitable We have been working hard to find materials and reaction conditions.
  • a surfactant to the reaction system using organic silane, a porous Si ⁇ 2 film with a low dielectric constant is formed, and a laminated film is further formed on it in the semiconductor process after film formation.
  • the present inventors succeeded in obtaining a porous Si ⁇ 2 film in which the relative dielectric constant did not change, and achieved the first object of the present invention.
  • the method for producing a porous SOG film of the first invention uses an organic silane liquid containing an organic silane, water, and an alcohol, and subjecting the organic silane to acid hydrolysis or alkali hydrolysis, in the presence of a surfactant in consists in obtaining a porous S I_ ⁇ 2 film by heat treatment.
  • a porous S i 0 2 film is obtained by adding a surfactant to a reaction system using an organic silane, and then this step is repeated at least once to obtain a porous S i 0 2 film obtained in the step.
  • a porous Si 2 film By further forming a porous Si 2 film on the two films to form a multilayer, or by interposing a specific hydrophobic film between each porous film, or by forming a porous film.
  • the present inventors succeeded in obtaining an interlayer insulating film composed of a hydrophobic porous Si 2 film having no change in the relative dielectric constant, thereby achieving the second object of the present invention.
  • the first step of obtaining the porous S ′ i O 2 film is repeated at least once, and the method is performed on the porous S i ⁇ 2 film obtained in the first step. Moreover it consists of sequentially forming a porous S I_ ⁇ 2 film.
  • the surface of the porous SiO 2 film obtained in the first step may be formed on the surface of the SiO 2 film, SiO x film or SiO x Ny film by a CVD method or a sputtering method.
  • a second step of forming the surface and capping the surface may be performed, or the first step and the second step may be repeated at least once.
  • the moisture content is higher than that of a porous membrane uncapped with a hydrophobic membrane. Infiltration and moisture absorption are further suppressed, and the relative dielectric constant does not change even if a laminated film is formed thereon in a later semiconductor process.
  • the present inventors have made intensive developments to remove residual OH groups of the porous SiO 2 film obtained as described above. Consequently, by adding a surfactant to the reaction system and the angular organosilane, to obtain a porous S I_ ⁇ 2 film, then oxygen plasma treatment on the obtained multi-porous S i 0 2 film, By performing either the electron beam irradiation treatment or the ultraviolet irradiation treatment, the unreacted OH groups remaining in the porous film were successfully removed, and the porous SiO 2 film having a low relative dielectric constant was successfully obtained. Thus, in a semiconductor process after film formation, a hydrophobic Si 2 film having no change in relative dielectric constant even when a laminated film is formed thereon is obtained, and the third object of the present invention is achieved. It has been achieved.
  • an organic silane liquid containing an organic silane, water, and an alcohol is used, the organic silane is subjected to acid hydrolysis or alkali hydrolysis, and the presence of a surfactant subjected to heat treatment under treatment, to obtain a porous S I_ ⁇ 2 film, then oxygen plasma treatment the porous S i 0 2 film, electron beam irradiation treatment ⁇ other by either the ultraviolet irradiation treatment to, consists of removing unreacted OH groups remaining porous S I_ ⁇ 2 film.
  • the removal of the ⁇ H group is because the following reaction occurs by the above treatment.
  • the above reaction removes residual H groups as H 2, and prevents moisture in the atmosphere from adsorbing to the porous film, so that a porous film with a low relative dielectric constant can be obtained, and wiring such as A 1 ' Corrosion is suppressed.
  • this hydrophobic porous SiO 2 film is formed in a half of the subsequent process. Even if a laminated film is formed thereon in the conductor process, there is no change in the relative dielectric constant.
  • the present inventors have conducted extensive development to obtain a nonexistent porous S I_ ⁇ 2 film residual unreacted OH groups.
  • a porous S I_ ⁇ 2 film by adding a surface active agent to the reaction system using an organic silane, by the row Ukoto the heat treatment in two steps, the porous membrane hydrophobic particular success, a lower porous S I_ ⁇ 2 film dielectric constant, no hydrophobic change its top relative dielectric constant to form a laminated film in a semiconductor process after film forming porous S give 1_Rei 2 film, which resulted in the fourth achieving the object of the present invention.
  • the method for producing the porous SOG film of the fourth invention is to use an organic silane liquid containing an organic silane, water and an alcohol, subject the organic silane to acid hydrolysis or alkali hydrolysis, and form a surfactant.
  • a way to obtain a porous S I_ ⁇ 2 film by heat treatment in the presence the heat treatment, first, a first heat treatment step conducted at a temperature which largely evaporate the water and alcohol, then The second step is performed at a temperature at which the temperature is raised so that at least the inner wall surfaces of the pores of the obtained porous Si 2 film are covered with a hydrophobic portion (hereinafter referred to as a hydrophobic group) of the surfactant. And a heat treatment step.
  • the inner wall surface of the pores of the porous membrane becomes hydrophobic, so that moisture in the atmosphere does not adsorb to the porous membrane, so that a porous membrane having a low relative dielectric constant can be obtained. Corrosion of wiring such as 1 can be suppressed.
  • the relative dielectric constant of the hydrophobic porous Si ⁇ 2 film does not change even if a laminated film is formed thereon in a subsequent semiconductor process.
  • the relative permittivity is unlikely to decrease, and if it exceeds 450 ° C., the surfactant evaporates too much, and the resulting porous film loses hydrophobic groups. The film structure may be destroyed.
  • an organic silane, water, an alcohol, and an acid or alkali are mixed, and an organic silane liquid to which a surfactant is further added is spin-coated on a semiconductor substrate, followed by heat treatment.
  • Te it is possible to obtain water, alcohol, a surfactant, a porous S I_ ⁇ 2 film by is evaporated to.
  • the surface of the porous Si 2 film obtained by the above heat treatment is coated with Si 0 2 film, forming one of the S i 'N x film or S i O x N y film, a step you cap the surface, or rather still low and the step of the cap and the heat treatment step By repeating this step once to form a multilayer film, a porous SiO 2 film can be obtained.
  • the oxygen bra Zuma processing the resulting porous S I_ ⁇ 2 film in the heat treatment, subjected to one of the electron beam irradiation treatment or ultraviolet irradiation treatment, the porous S I_ ⁇ 2 to remove the unreacted OH groups remaining film can be obtained a hydrophobic porous S I_ ⁇ 2 film.
  • the above heat treatment is first performed at a temperature of 200 to 350 ° C.
  • hydrophilic group the hydrophilic portion of the least surfactant into the pores inside the membrane surface also of the resulting porous S I_ ⁇ 2 film (hereinafter, referred to as hydrophilic group) attached to A second heat treatment step of terminating the formation of the film in this state, and covering the inner wall surface of the pore with the hydrophobic group of the surfactant, thereby forming a hydrophobic porous Si 2 film.
  • the surfactant evaporates appropriately, and at least the wall surface inside the pores becomes hydrophobic.
  • the organic silane used in the first to fourth inventions is a hydrolyzable organic oxysilane such as TEOS (tetramethyl orthosilicate) and TMOS (tetramethoxysilane), and the surfactant is a cationic surfactant.
  • TEOS tetramethyl orthosilicate
  • TMOS tetramethoxysilane
  • Surfactants especially ranium chloride, alkyltrimethylammonium bromide, cetyltrimethylammonium chloride, cetyltrimethylammonium bromide, stearyltrimethylammonium chloride, alkyldimethylethylammonium chloride, alkyldimethylethyl Ammonium bromide, cetyl dimethyl methylammonium bromide, octadecyl dimethyl ethyl ammonium bromide, or methyl dodecyl benzyl trimethyl ammonium chloride
  • a plasminogen alkyl trimethyl ammonium Niu beam based cationic surfactants Preferably a plasminogen alkyl trimethyl ammonium Niu beam based cationic surfactants.
  • the amount of each raw material used is 8 to 15 moles of water, 0.5 to 1.5 moles of acid or alkali for acid hydrolysis or alkali hydrolysis, and 1 mole of organic silane. It is preferred to use 0.1 to 0.4 mol of the agent. Water less than 8 moles If the relative dielectric constant of the resulting film does not decrease and exceeds 15 mol, a solid of SiO 2 is deposited. If the amount of the acid or alkali is less than 0.5 mol, the predetermined reaction does not proceed. If the amount exceeds 1.5 mol, the reaction system hardens. When the amount of the surfactant is less than 0.1 mol, the relative permittivity of the obtained film becomes high, and when the amount exceeds 0.4 mol, the film quality deteriorates. The alcohol is added to adjust the concentration of the whole reaction solution, and the amount thereof is adjusted according to the viscosity of the reaction solution so as to facilitate application. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic cross-sectional view of a processing chamber used for oxygen plasma processing according to the present invention
  • FIG. 2 (A) is a cross-sectional view of a porous Si 2 film obtained according to the prior art.
  • SEM scanning electron micrograph
  • SE M figure Ri scanning electron microscope
  • FIG. 3 is an FT-IR spectrum of the porous film obtained according to the present invention.
  • an organic silane liquid containing an organic silane, water, and an alcohol is squared, A solution obtained by subjecting silane to acid hydrolysis or alkali hydrolysis to which a surfactant has been added is coated on a semiconductor substrate, and heated in the presence of the surfactant to obtain water, alcohol.
  • a porous SiO 2 film is produced while evaporating the surfactant and removing almost any other organic substance or the like when the reaction system contains the organic substance or the like. As the surfactant evaporates, a large number of voids (porosity: about 60% or more) are generated in the film, and thus a porous film is obtained.
  • any decomposable organic oxysilane as described above can be used without particular limitation.
  • any alcoholic solvent such as ethyl alcohol and isopropyl alcohol can be used without any particular limitation.
  • the hydrolysis may be hydrolysis with an acid or hydrolysis with an alkali.For the hydrolysis, use an inorganic acid such as nitric acid or hydrochloric acid, an organic acid such as formic acid, or an alkali such as ammonia. Can be.
  • a surfactant It is preferable to use a surfactant.
  • surfactants for example, dimethyl chloride, trimethyldodecylammonium bromide, aryldibutyldodecylammonium bromide, getylacetonyl dodecylammonium bromide and the like can be used.
  • the amount of the raw material used is 8 to 15 moles for water, 0.5 to 1.5 moles for acid or alkali, and 1 to
  • the activator is preferably in the range of 0.1 to 0.4 mol.
  • the organic silane liquid obtained as described above is applied onto a semiconductor substrate by a normal application method such as a spin coating method, and then heated and treated using a known infrared heating furnace or the like, and then a water-alcohol solvent, In addition, a surfactant and other organic substances are evaporated to form a porous SiO 2 film.
  • the heat treatment conditions in this case are not particularly limited as long as the solvent and the surfactant can be evaporated to obtain a porous film. In order to obtain a porous film having a low relative dielectric constant, it is preferable to first treat at a temperature of about 200 to 350 ° C. in air to mainly evaporate the solvent.
  • the temperature that can emitted vapor and surfactant other organic substances e.g., 2 5 0 to 5 0 0 ° C, preferably 3 5 0-4 5 0 C., more preferably 380 to 450, for a period of time during which the structure of the obtained porous membrane is not destroyed.
  • the porous S I_ ⁇ 2 film obtained when measuring the specific dielectric constant and vapor wearing electrodes such as aluminum electrodes, the porous SOG film that suits the purpose of the present invention is obtained I understand. That is, it is possible to obtain an interlayer insulating film having a low relative dielectric constant and hardly increasing the relative dielectric constant even when a film is stacked thereon in the semiconductor process after the formation of the SOG film.
  • an organic silane such as TE ⁇ S or TMOS
  • a porosity for example, when it reaches about 80%, the contribution to the relative permittivity based on the physical properties of the material constituting the insulating film decreases, and the influence of air becomes dominant.
  • An interlayer insulating film is obtained. From such a viewpoint, even when a hydrolyzable alkoxide is used in place of the organic silane, a porous film as a low dielectric constant interlayer insulating film can be produced as in the case of the organic silane.
  • alkoxides for example, alcohols such as Zr ( ⁇ C 3 H 7 ) 4 , Zr ( ⁇ C 4 H 9 ) 4 and the like belonging to Group 8 of the periodic table such as Zr are used.
  • the step (first step) of obtaining the porous Si 2 film as described above is repeated at least once, further forming a porous S I_ ⁇ 2 film on the porous S I_ ⁇ 2 film obtained in said first step.
  • the surfactant evaporates, a large number of voids (porosity: about 60% or more) are generated in the film, and thus a porous film is obtained.
  • each porous film is set to be smaller than the thickness of the single porous film in the case of the first invention. It is necessary to.
  • each porous membrane is preferably set to about 0.5 m.
  • the raw material silane, alcohol, acid and alkali for hydrolysis, and surfactant those similar to those in the first invention can be used. Further, the amount of the raw material used is preferably in the above range. By suitably selecting the heating treatment conditions and amount of surfactant used, it is possible to selectively form a multilayer film S I_ ⁇ '2 film having a desired dielectric constant. .
  • the organosilane solution obtained as described above was coated by the coating method of such conventional a spin one preparative technique on a semiconductor substrate, is treated as described above Seisuru create a porous S I_ ⁇ 2 film process Repeat at least once to form a multilayer porous membrane.
  • the heat treatment conditions in this case are as described above.
  • a confirmation test was performed on the hygroscopicity from the side surface of the film as follows. The top and side surfaces of the porous Si 2 film formed on the Si substrate were covered with a polyimide film. It issued a cross-section of the porous S I_ ⁇ 2 film by cutting off the four sides of one sample out of two samples coated with polyimide film.
  • the porous S I.Rei by comparing the dielectric constant after the test The presence or absence of moisture absorption from the side of the two membranes was examined.
  • the samples remain covered with the polyimide film, since the difference in dielectric constant after moisture absorption test of the sample out by cutting off the sides of the cross-section of the porous S I_ ⁇ 2 film was observed, porous the sides of quality S I_ ⁇ 2 film not exit the pores, the pores of the porous S I_ ⁇ 2 film, is understood that you are oriented perpendicular to the substrate.
  • a hydrophobic film having a thickness of, for example, 100 nm or less is formed on the porous film obtained in the first step by a CVD method or a sputtering method.
  • S I_ ⁇ 2 film forming one of the S i N x film or S i O x N y film, capping the porous membrane surface. If the thickness of the cap layer is too large, the total thickness of the capped insulating film becomes too large, which is a problem that goes against the trend of semiconductor process technology which is progressing toward thinning. Therefore, it is preferable to reduce the thickness as much as possible while considering the minimum film thickness that can suppress the hygroscopicity.
  • One or more cap layers may be provided. Then, if desired, the first step may be repeated to form a further porous film on the cap layer, or the first step and the cap layer forming step may be repeated a plurality of times. .
  • each porous film and the thickness of the cap layer are larger than the thickness of the single-layer porous film in the case of the first invention. It is necessary to set it so that it is thin. For example, in the case of a two-layer porous film and a two-layer cap layer, it is preferable to set each porous film to about 0.5111 and each cap layer to about 50 nm. In this way, it is possible to suppress the invasion of water by capping the porous membrane with a specific hydrophobic membrane. '
  • the raw material silane As the raw material silane, alcohol, acid and alkali for hydrolysis, and surfactant, the same as those described above can be used. Also, the amount of the above raw materials used Is preferably in the range described above.
  • the heat treatment conditions and the amount of surfactant used it is possible to selectively produce a hydrophobic S I_ ⁇ 2 film having a desired dielectric constant. - is applied by the method of coating, such as conventional Supinko preparative method on the semiconductor substrate and the resulting organic silane solution as described above, to create made porous S I_ ⁇ 2 film was processed as described above.
  • the heat treatment conditions in this case are as described above.
  • porous Si ⁇ ⁇ ⁇ 2 film obtained according to the second invention an electrode such as an aluminum electrode was deposited and the relative dielectric constant was measured, and it was found that a porous SOG film suitable for the purpose of the present invention was obtained. Understand. That is, it is possible to obtain a porous SOG film in which moisture does not enter the porous film, has improved hygroscopicity, and has a low relative dielectric constant. Further, with respect hydrophobized porous SOG film, in a semiconductor process, even if the by laminating another film on the CVD method or the like, increase in the dielectric constant of the porous S I_ ⁇ 2 film hardly An interlayer insulating film is obtained.
  • the second invention preferably, when an organic silane such as TEOS or TMOS is used, it is possible to produce an interlayer insulating film having a high porosity and a low dielectric constant as in the case of the first invention. is there.
  • the same alkoxide as in the first invention can be used instead of the organic silane.
  • a porous SiO 2 film is obtained as described above, followed by oxygen plasma treatment, electron beam irradiation treatment, or ultraviolet irradiation. Unreacted OH groups remaining on the obtained porous Si 2 film are removed by any of the treatments. As the surfactant evaporates, a number of voids (porosity: about 50% or more) are generated in the film, and thus a porous film is obtained.
  • the porous film is subjected to the above hydrophobic treatment. By doing so, residual OH groups are removed and moisture in the atmosphere is removed. Adsorption can be suppressed, and a hydrophobic porous SOG film with a modified surface can be obtained.
  • the raw material silane As the raw material silane, alcohol, acid and alkali for hydrolysis, and surfactant, those similar to those in the first invention can be used. Further, the amount of the raw material used is preferably in the above range. By appropriately selecting the amount of the surfactant used and the conditions of the heat treatment (firing), a hydrophobic porous SiO 2 film having a desired relative dielectric constant can be appropriately produced. ⁇ The above-mentioned manner (the organic silane solution obtained Strain applied by the method of coating, such as conventional Supinko preparative method on a semiconductor substrate, to create made porous S I_ ⁇ 2 film was processed as described above. The heat treatment conditions in this case are as described above.
  • the porous Si 2 film thus obtained was subjected to a confirmation test for moisture absorption from the side surface of the film, as in the case of the second invention.
  • a confirmation test for moisture absorption from the side surface of the film as in the case of the second invention.
  • quality S I_ ⁇ on a side surface of 2 film not exit the pores, the pores of the porous S I_ ⁇ 2 film, it can be seen that are oriented perpendicular to the substrate.
  • the porous Si 2 film is subjected to oxygen plasma treatment, electron beam irradiation treatment or ultraviolet irradiation treatment to make the porous film hydrophobic. Since the reaction that occurs at that time involves dehydration, the porous membrane may shrink and crack the membrane in a normal case, but the porous membrane obtained by the present invention has a porosity of 50% or more. Therefore, since the film structure itself absorbs the generation of stress due to the above reaction, phenomena such as film cracking are not observed.
  • an oxygen plasma treatment will be described below as a representative example.
  • the oxygen plasma processing can be performed by an oxygen plasma processing apparatus using ordinary microwave discharge. That is, as shown in FIG. 1, the processing chamber 1 is provided with a substrate holder 13 for mounting the substrate 2 to be processed, and the holder is provided with a heating means 4 such as a heater. Further, on the side wall of the processing chamber 1, there is provided an oxygen plasma generator 8 having a reactive gas inlet 5 composed of a discharge tube and a plasma generator 7 connected to a microphone mouth-wave power supply 6. I have.
  • This oxygen plasma generator 8 is a gas A reactive gas such as oxygen gas introduced from a source 9 or a gas mixed with a small amount of another gas (for example, Ar, Kr, Xe, etc.) is converted into a plasma by a microwave power source 6, and this is converted into a processing chamber 1. It is configured to be introduced into. After the processing chamber 1 is evacuated by a vacuum pump 10 through a vacuum exhaust port 11 provided on a side wall of the processing chamber, the processing chamber 1 is placed on a substrate holder 13 and formed on a heated substrate 2 to be processed. When oxygen plasma treatment is performed on the porous Si 2 film thus formed, residual ⁇ H groups are removed according to the above reaction formula.
  • a reactive gas such as oxygen gas introduced from a source 9 or a gas mixed with a small amount of another gas (for example, Ar, Kr, Xe, etc.) is converted into a plasma by a microwave power source 6, and this is converted into a processing chamber 1. It is configured to be introduced into. After the processing chamber 1 is evacuated by
  • This oxygen plasma treatment can be performed for a predetermined time at, for example, an oxygen-containing gas flow rate of 100 to 2000 S CCM, RF and microwave power of 300 to 3000 W, and a pressure of 0.2 to 2 Torr.
  • the above-mentioned plasma generator is of a downstream type, but other types of plasma generators such as a parallel plate electrode type and an ECR type can be used.
  • the means for exciting plasma is not particularly limited.
  • any treatment means that can remove residual OH groups of the porous film can be used.
  • an organic silane such as TEOS or TMOS
  • an interlayer insulating film having a high porosity and a low relative dielectric constant can be produced as in the first invention.
  • 'Alkoxides similar to those of the first invention can be used instead of the organosilane.
  • the heat treatment is first performed in air at a temperature of 200 to 350 ° C. Then, the temperature is raised to a temperature of 350 to 450 ° C. (preferably 380 to 450 ° C.) in a nitrogen gas atmosphere, preferably under vacuum. Heat treatment atmosphere By setting to such a state, at least the wall surface inside the pores of the obtained porous film is covered with the hydrophobic group, and the relative dielectric constant is also reduced. According to the present invention, as the surfactant evaporates, a large number of void portions (porosity: about 50% or more) are generated in the film, and thus a porous film is obtained.
  • the hydrophobic groups of the surfactant become empty. It exists in a state facing the opposite side to the film surface inside the hole (that is, from the film surface inside the hole toward the space direction of the hole), and the wall surface inside the hole is covered with a hydrophobic group. Will be. In this way, since at least the wall surface inside the pores becomes hydrophobic, adsorption of moisture in the atmosphere can be suppressed, and a hydrophobic porous membrane having a modified surface can be obtained.
  • the raw material silane, alcohol, acid and alkali for hydrolysis, and surfactant those similar to those in the first invention can be used. Further, the amount of the raw material used is preferably in the above range.
  • the heating treatment (firing treatment) conditions and usage of the surfactant it is possible to selectively form a hydrophobic porous S I_ ⁇ 2 film having a desired dielectric constant .
  • the heat treatment conditions in this case are preferably the above temperature conditions. That is, in order to obtain a hydrophobic porous membrane having a low relative dielectric constant, first, in air, 200-
  • the treatment is carried out at a temperature of about 350 to evaporate mainly the water-alcohol solvent, and then in a gas atmosphere having a small absolute dielectric constant, such as nitrogen gas, preferably
  • porous SOG film obtained according to the fourth invention when an electrode such as an aluminum electrode was deposited and the relative dielectric constant was measured, it was found that a hydrophobic porous SOG film suitable for the purpose of the present invention was obtained. Understand. In other words, it is a porous interlayer insulating film having a low relative dielectric constant with no adsorption of moisture, and has almost no rise in relative dielectric constant even if a film is further laminated thereon in the semiconductor process after the formation of the hydrophobic film. An insulating film is obtained.
  • an organic silane such as TEOS or TMOS
  • an interlayer insulating film having a high porosity and a low relative dielectric constant can be produced as in the first invention.
  • the same alkoxide as in the first invention can be used instead of the organic silane. .
  • the porous membrane is subjected to oxygen plasma treatment using a normal asher.
  • oxygen plasma treatment using a normal asher.
  • the residual ⁇ H group can be removed, so that the hydrophobicity of the porous film is further improved.
  • nitric acid 12 mol of H 2 , 15 mol of ethanol, and a predetermined amount of a surfactant were used as raw materials for preparing a reaction solution for producing a porous SiO 2 film per 1 mol of TEOS. It used to prepare the S I_ ⁇ 2 solution for porous SOG film.
  • a surfactant n-hexadecyltrimethylammonium chloride (manufactured by Kanto Chemical Co., Ltd., trade name: CTAC 1) was used in an amount of 0.1, 0.15, 0.2, 0 per mole of TEOS. 25 mol was added to prepare a coating solution.
  • each coating solution was spin-coated on a semiconductor substrate (sample numbers A1 to H1) under the condition of 3000 revolutions Z.
  • the substrates coated as shown in Table 1 first in air, then treated with 200-400, then in an atmosphere of 1 00 ⁇ 10- 5 P a, 400 ° C Baking process, porous A SiO 2 film was obtained.
  • the time for raising the temperature from the initial processing temperature of 200 ° C. to the processing temperature of the next step to 400 ° C. was set to 60 minutes, and the same heating rate was used in other cases.
  • the rate of temperature rise is not particularly limited, but the quality of the obtained film may be in a range such that film roughness is small and leak current is also a small value.
  • the holding time during the vacuum firing may be within a range that does not cause rupture of the film structure.
  • firing was performed while holding for 30 minutes. .
  • the scanning type was prepared in the case where the porous SOG film was formed on the substrate according to the above-described embodiment, and in the case where the porous Si 2 film was formed on the substrate by the conventional technique (method by the silylation of the inorganic SOG).
  • Figure 2 Take a cross-sectional photograph ( Figure 2) using an electron microscope (SEM), The film quality of each porous film was observed. From this SEM image, vacancies (several nm to tens of nm) having a large diameter were observed in the case of the conventional film (FIG. 2 (A)), but in the SOG film of the present invention, the pores were extremely small. In fact, it can be seen that the pores are smaller than 1 nm and cannot be observed by SEM (Fig. 2 (B)).
  • lauryltrimethylammonium chloride (manufactured by Kao Corporation, trade name)
  • the film forming step was repeated on the surface of the porous film (sample number A2 to H2, film thickness: 0.5 m) obtained according to the film forming method described in Example 1, and the same porous Si ⁇ Two films (film thickness: 0.5 im) were laminated to form an insulating film consisting of two porous films.
  • a Si 2 film and a Si Nx film were formed by a CVD method or a sputtering method.
  • a SiO x N y film (film thickness: 50 nm) was formed, and the surface of the multi-layer film was capped.
  • the first step and the cap layer forming step were repeated under the same conditions, and a porous film and a cap layer were sequentially formed again on the cap layer.
  • Example 1 Porous obtained according film forming method according S I_ ⁇ 2 film (Sample No. A3 ⁇ H3, thickness: 0. 5 m) on the surface of, by CVD or sputtering: S i monument 2 film, A SiNx film or a SiOxNy film (thickness: 50 nm) was formed, and the surface of the porous film was capped. An aluminum electrode was vapor-deposited on the thus obtained hydrophobic porous SiO 2 film, and after one week, the relative permittivity was measured using a relative permittivity measuring device (RF IMPEDANCE ANALYZER 4191A) manufactured by HP. Was measured. Table 3 shows the obtained relative dielectric constants.
  • RF IMPEDANCE ANALYZER 4191A relative permittivity measuring device manufactured by HP.
  • the relative dielectric constant A was measured for a sample in which a porous film was formed and an aluminum electrode was deposited without capping the hydrophobic film, and then left for one week in a room.
  • the ratio B was measured for a sample in which a porous film was formed, a hydrophobic film was capped, and an aluminum electrode was deposited, and the sample was allowed to stand indoors for one week.
  • a porous Si 2 film (sample number A4 to H4, film thickness: 0.7 m, porosity: 80%) obtained according to the film forming method described in Example 1 was subjected to ordinary microwave discharge. It was processed in an oxygen plasma processing apparatus. That is, the substrate 2 having the porous film formed thereon was placed on the substrate holder 13 provided in the oxygen plasma processing chamber 1 shown in FIG. 1 and heated by the heater 14. (100). On the other hand, oxygen gas 100 S CCM was introduced from a gas source 9 connected to a reactive gas introduction unit 5 composed of a discharge tube into an oxygen plasma generator 8 disposed on the side wall of the processing chamber 1 to generate plasma. The microwave power supply 6 (2.45 GHz) connected to the unit 7 was turned on to turn the oxygen gas into plasma.
  • This plasma was introduced onto the substrate 2 to be processed in the processing chamber 1, and oxygen plasma processing was performed for about 1 to 5 minutes.
  • the pressure in the processing chamber was 0.1 lTo r '.
  • H 2 ⁇ obtained as a result of the reaction was vaporized and evacuated from a vacuum exhaust port 11 by a vacuum pump 10.
  • the relative dielectric constant A was measured for a control sample on which an aluminum electrode was deposited without oxygen plasma treatment after forming a porous film and left indoors for one week.
  • the relative dielectric constant B was measured for a sample in which an aluminum electrode was vapor-deposited on a hydrophobized porous film that had been subjected to oxygen plasma treatment after forming a porous film, and allowed to stand indoors for one week.
  • the time required for the temperature to rise from the initial processing temperature of 200 ° C to the processing temperature of the next process to 400 ° C was 60 minutes, and the same heating rate was used in other cases.
  • the rate of temperature rise is not particularly limited, but the quality of the obtained film may be in a range such that film roughness is small and leak current is small.
  • the holding time during the vacuum firing may be within a range in which the film structure is not broken. In this embodiment, the holding is performed for 30 minutes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

明 細 書 多孔質 SO G膜の作製方法 技術分野
本発明は、 多孔質 SOGJpの作製方法に関し、 特に有機シランを加水分解に付 し、 界面活性剤の存在下で加熱処理して多孔質 S OG膜を作製する方法に関する。 背景技術
近年、 LS Iの分野において銅 (Cu) やアルミニウム (A 1 ) などの配線が 導入されると共に、 配線構造や層間絶縁膜などについての研究開発が行われてい る。 Cuなどの配線を用いるだけでは配線遅延を効果的に減少することが困難で あるため、 半導体プロセスにおいて層間絶縁膜として低比誘電率酸化物膜 (S i 〇2膜) を用い、 さらに比誘電率の低い膜を得るという観点から、 この酸化物膜を 多孔質にすることが提案されている。 例えば、 従来の S〇G (spin on glass)の塗 布法を利用して、 無機 SOGのシリル化により低比誘電率の多孔質 S i〇2膜を形 成することが提案されている。 また、 プラズマ CVDを利用し、 有機シランを用 いてプラズマ重合し、 低比誘電率の S i 02膜を形成することも提案されている。 従来の方法による S i〇2膜の形成後に、 CVDプロセスなどの半導体プロセス においてその上にさらに膜を積層させると、 比誘電率が上昇してしまうという問 題があ.る。 無機 SOGを用いて形成した多孔質 S i〇2膜の場合は、 空孔の径が大 きくなり過ぎてしまい、 微細な細孔を形成して比誘電率を低い値にすることが困 難であること、 また、 有機シランを用いて形成した S i〇2膜の場合は、 膜質の点 で十分でなく、 また、 耐熱温度が低い (450 以下) という問題もある。
従って、 本発明は、 上記従来技術の欠点を解消するものであり、 低比誘電率の 層間絶縁膜であって、 この層間絶縁膜形成後の CVDプロセスなどによりその上 にさらに膜を積層させても、 比誘電率が変化しない多孔質 SO G膜の作製方法を ' 提供することを第 1の目的としている (第 1発明) 。
また、 上記従来の方法により得られた多孔質膜の特性とじて、 その多孔質性に 起因する吸湿性のために水分が吸着され、 A 1などの配線が腐食されることから、 その吸湿性を改善するために、 多孔質膜に残留する親水性〇H基を疎水性の C H 3基などで置換したり、 〇H基を酸化処理して S i 02にすることにより、 空孔内 部の膜表面を疎水化する化学的処理方法が提案されている。
低比誘電率の層間絶縁膜を形成させた後の C V Dプロセスなどによりその上に さらに別の膜を積層させる際に、 比誘電率が変化しない多孔質 S O G膜の作製方 法の場合であっても、 得られた多孔質 S i〇2膜は、 その空孔が基板に対して垂直 に配向しているので、 膜表面からの水蒸気などの水分の侵入が問題になることが ある。 また、 無機 S O G膜は多量の〇H基を含んでおり、 焼成後でも未反応の〇 H基が残留することがある。 そのため、 この残留 O H基に雰囲気中の水分が吸着 ' し、 A 1などの配線を腐食するという問題がある。 さらにまた、 上記化学的処理 は、 そのプロセス制御が困難であるという問題もある。
従って、 本発明は、 上記したような膜表面からの水蒸気などの水分の侵入、 吸 湿の問題を解消するために、 膜表面からの水分の侵入を防ぎ、 吸湿を抑えた、 低 比誘電率の層間絶縁膜であって、 この層間絶縁膜形成後の C V Dプロセスなどに よりその上にさらに膜を積層させても、 比誘電率が変化しない多層の多孔質 S O G膜や単層の多孔質 S 0 G膜の作製方法を提供することを第 2の目的としている
(第 2発明) 。 .
本発明はまた、 上記したように未反応の O H基が残留している場合に、 多孔質 S〇 G膜から残留 O H基を除去することにより、 低比誘電率の層間絶縁膜であつ て、 この層間絶縁膜形成後の C V Dプロセスなどによりその上にさらに膜を積層 させても、 比誘電率が変化しない多孔質 S O G膜を作製する方法を提供すること を第 3の目的としている (第 3発明) 。
本発明はさらにまた、 上記したような未反応の〇H基が残留するという問題を 解消するために、 少なくとも空孔内部の壁面に〇H基が存在していない、 低比誘 電率の多孔質層間絶縁膜であって、 この層間絶縁膜形成後の C V Dプロセスなど によりその上にさらに膜を積層させても、 比誘電率が変化しない多孔質 S〇G膜 を作製するためのプロセス制御の容易な方法を提供することを第 4の目的として いる (第 4発明) 。 発明の開示
本発明者らは、 層間絶縁膜の比誘電率は低い程好ましいという観点から、 スピ ンコート法により低比誘電率の多孔質 S i〇2膜を得るために、 各種材料を選択し、 好適な材料および反応条件を見出すべく鋭意開発を行ってきた。 その結果、 有機 シランを用いる反応系に界面活性剤を添加することにより、 比誘電率の低い多孔 質 S i〇2膜であって、 膜形成後の半導体プロセスにおいてさらにその上に積層膜 を形成しても比誘電率に変化のない多孔質 S i〇2膜を得ることに成功し、 本発明 の第 1の目的を達成するに至った。
第 1発明の多孔質 S O G膜作製方法は、 有機シランと、 水と、 アルコールとを 含む有機シラン液を用い、 該有機シランを酸加水分解またはアルカリ加水分解に 付し、 界面活性剤の存在下で加熱処理することにより多孔質 S i〇2膜を得ること からなる。
また、 本発明者らは、 上記のようにして得られた多孔質 S i〇2膜の表面からの 水蒸気などの水分の侵入、 吸湿を抑えるべく鋭意開発を行ってきた。 その結果、 有機シランを用いる反応系に界面活性剤を添加することにより多孔質 S i 02膜を 得、 次いで、 この工程を少なくとも一回繰り返して、 該工程で得られた多孔質 S i 02膜の上にさらに多孔質 S i〇2膜を形成して多層にすることによって、 また は、 各多孔質膜の間に特定の疎水性膜を介在させることによって、 または、 多孔 質膜の表面を特定の疎水性膜でキャップする、 すなわち被覆することによって、 比誘電率の低い多孔質 S i〇2膜であって、 膜形成後の半導体プロセスにおいてさ らにその上に積層膜を形成しても比誘電率に変化のない疎水化された多孔質 S i 〇 2膜からなる層間絶縁膜を得ることに成功し、 本発明の第 2の目的を達成するに 至った。
第 2発明の多孔質 S O G膜作製方法は、 前記多孔質 S ' i O 2膜を得る第一工程を 少なくとも一回繰り返して、 該第一工程で得られた多孔質 S i〇2膜の上にさらに 多孔質 S i〇2膜を順次形成することからなる。 このように多孔質膜を多層に積層 することにより、 多孔質膜の吸湿が抑えられると共に、 後工程の半導体プロセス においてその上に積層膜を形成しても比誘電率に変化のない多孔質 S i〇2膜を得 ることが きる。 積層することにより、 基板に対して垂直に配向した各膜中の空 孔が相互にずれた状態で膜同士が重なり合って、 最上詹の膜中の空孔と最下層の 膜中の空孔との間のつながりがほとんどなくなるので、 多層膜には貫通孔がほと んどなく、 その結果、 積層された多孔質膜の吸湿が抑えられる。
また、 前記第一工程で得られた多孔質 S i 02膜の表面に、 CVD法またはスパ ッ夕法により、 S i〇2膜、 S i Nx膜または S i〇xNy膜のいずれかを形成し、 該表面をキャップする第二工程を行ってもよく、 あるいは、 該第一工程と第二ェ 程とをきらに少なくとも一回繰り返してもよい。 このように疎水性の膜でキヤッ プされた単層の多孔質膜の場合も、 あるいは、 多層の多孔質膜の場合も、 疎水性 の膜でキャップしていない多孔質膜と比べて、 水分の侵入、 吸湿がさらに抑^ら れると共に、 後工程の半導体プロセスにおいてその上に積層膜を形成しても比誘 電率に変化がない。
さらに、 本発明者らは、 上記のようにして得られた多孔質 S i 02膜の残留 OH 基を除去すべく鋭意開発を行ってきた。 その結果、 有機シランを角いる反応系に 界面活性剤を添加することによって、 多孔質 S i〇2膜を得、 次いで、 得られた多 孔質 S i 02膜に対して酸素プラズマ処理、 電子線照射処理または紫外線照射処理 のいずれかを行うことにより、 該多孔質膜に残留する未反応 OH基を除去するこ とに成功し、 比誘電率の低い多孔質 S i 02膜であって、 膜形成後の半導体プロセ スにおいてその上に積層膜を形成しても比誘電率に変化のない疎水化された多孔 質 S i〇2膜を得て、 本発明の第 3の目的を達成するに至った。
第 3発明の多孔質 S OG膜作製方法は、 有機シランと、 水と、 アルコールとを 含む有機シラン液を用い、 該有機シランを酸加水分解またはアルカリ加水分解に 付し、 界面活性剤の存在下で加熱処理して、 多孔質 S i〇2膜を得、 次いで、 該多 孔質 S i 02膜を酸素プラズマ処理、 電子線照射処理 ^たは紫外線照射処理のいず れかにより処理して、 該多孔質 S i〇2膜に残留する未反応 OH基を除去すること からなる。 この〇H基の除去は、 上記処理により下記の反応が起こるためである。
(OS i〇H)2〇 → 2 S i〇2 + H20
上記反応により残留〇H基が H2〇として除去され、 雰囲気中の水分が多孔質膜に 吸着することがなくなるので、 比誘電率の低い多孔質膜が得られ、 さらに A 1'な どの配線の腐食が抑えられる。 また、 この疎水性多孔質 S i O 2膜は、 後工程の半 導体プロセスにおいてその上に積層膜を形成しても比誘電率に変化がない。
さらにまた、 本発明者らは、 残留未反応 O H基の存在しない多孔質 S i〇2膜を 得るべく鋭意開発を行ってきた。 その結果、 有機シランを用いる反応系に界面活 性剤を添加することによって多孔質 S i〇2膜を得る際に、 加熱処理を二工程で行 うことにより、 多孔質膜を疎水性にすることに成功し、 比誘電率の低い多孔質 S i〇2膜であって、 膜形成後の半導体プロセスにおいてその上に積層膜を形成して も比誘電率に変化のない疎水性多孔質 S 1〇2膜を得 、 本発明の第 4の目的を達 成するに至った。
第 4発明の多孔質 S O G膜,の作製方法は、 有機シランと、 水と、 アルコールと を含む有機シラン液を用い、 該有機シランを酸加水分解またはアルカリ加水分解 に付し、 界面活性剤の存在下で加熱処理することにより多孔質 S i〇2膜を得る方 法であって、 該加熱処理を、 まず、 主として該水およびアルコールを蒸発させる 温度で行う第一加熱処理工程と、 次いで、 昇温して、 得られる多孔質 S i〇2膜の 少なくとも空孔内部の壁面が該界面活性剤の疎水性部分 (以下、 疎水基と称す) . で覆われるようにする温度で行う第二加熱処理工程とからなる。 これにより、 多 孔質膜の空孔内部の壁面が疎水性となるため、 雰囲気中の水分が多孔質膜に吸着 することがなくなるので、 比誘電率の低い多孔質膜が得られ、 さらに A 1などの 配線の腐食が抑えられる。 また、 この疎水性多孔質 S i〇2膜は、 後工程の半導体 プロセスにおいてその上に積層膜を形成しても比誘電率に変化がない。 前記空孔 内部の壁面が疎水基で覆われるようにするには、 まとして水、 アルコールなどの 溶媒を蒸発させた後、' 3 5 0〜4 5 0 °Cの温度でさらに焼成することが好ましい。
3 5 0 未満であると比誘電率が低くなり難く、 また、 4 5 0 °Cを超えると界面 活性剤が蒸発しすぎてしまい、 得られる多孔質膜から疎水基がなくなつてしまう と共に、 膜構造が破壊される恐れがある。
さらに、 第 1発明によれば、 有機シランと、 水と、 アルコールと、 酸またはァ ルカリとを混合し、 さらに界面活性剤を添加した有機シラン液を半導体基板上に スピンコートし、 加熱処理して、 該水、 アルコール、 界面活性剤,を蒸発せしめる ことにより多孔質 S i〇2膜を得ることができる。 第 2発明によれば、 上記加熱処 理で得られた多孔質 S i〇2膜の表面に、 C V D法またはスパッタ法により、 S i 0 2膜、 S i' N x膜または S i O x N y膜のいずれかを形成し、 該表面をキャップす る工程により、 あるいは、 該加熱処理工程と該キャップする工程とをさらに少な くとも一回繰り返して多層膜を形成する工程により多孔質 S i 0 2膜を得ることが できる。 第 3発明によれば、 上記加熱処理で得られた多孔質 S i〇2膜を酸素ブラ ズマ処理、 電子線照射処理または紫外線照射処理のいずれかに付して、 該多孔質 S i〇2膜に残留する未反応 O H基を除去し、 疎水性多孔質 S i〇2膜を得ること ができる。 第 4発明によれば、 上記加熱処理を、 まず、 2 0 0〜 3 5 0 °Cの温度 で処理して、 主として水およびアルコールを蒸発させる第一加熱処理工程と、 次 いで、 3 5 0〜4 5 0 °Cの温度で処理して、 得られる多孔質 S i〇2膜の少なくと も空孔内部の膜表面に界面活性剤の親水性部分 (以下、 親水基と称す) を付着さ せた状態で膜形成を終了させ、 該空孔内部の壁面が該界面活性剤の疎水基で覆わ れるようにする第二加熱処理工程とにより行って、 疎水性多孔質 S i〇2膜を得る ことができる。 これにより、 界面活性剤が適度に蒸発して、 少なくとも空孔内部 の壁面が疎水性になる。
. 上記第 1〜4発明において用いられる有機シランは、 T E O S (テトラメチル オルソシリケ一ト) 、 T M O S (テトラメトキシシラン) などのような加水分解 可能な有機ォキシシランであり、 界面活性剤は、 陽イオン性界面活性剤、 特にラ ニゥムクロライド、 アルキルトリメチルアンモニゥムブロマイド、 セチルトリメ チルアンモニゥムクロライド、 セチルトリメチルアンモニゥムブロマイド、 ステ ァリルトリメチルアンモニゥムクロライド、 アルキルジメチルェチルアンモニゥ ムクロライド、 アルキルジメチルェチルアンモニゥムブロマイド、 セチルジメチ ルェチルアンモニゥムブロマイド、 ォクタデシルジメチルェチルアンモニゥムブ 口マイド、 またはメチルドデシルペンジルトリメチルアンモニゥムクロライドな どのようなハロゲン化アルキルトリメチルアンモニゥム系陽イオン性界面活性剤 であることが好ましい。
また、 各原料の使用量は、 有機シラン 1モルに対して、 水 8〜1 5モル、 酸加 水分解またはアルカリ加水分解のための酸やアルカリ 0 . 5〜1 . 5モル、 界亩 活性剤 0 . 1〜0 . 4モルを用いることが好ましい。 水が 8モル未満であると得 られる膜の比誘電率が小さくならず、 1 5モルを超えると S i O 2の固体が析出す る。 酸やアルカリが 0 . 5モル未満であると所定の反応が進行せず、 1 . 5モル を超えると反応系が固まってしまう。 界面活性剤が 0 . 1モル未満であると得ら れる膜の比誘電率は高くなり、 0 . 4モルを超えると膜質が悪くなる。 なお、 ァ ルコールは、 反応液全体の濃度を調整するために添加されるものであり、 反応液 の粘性に応じて、 塗布しやすいように、 その量を調節して^加される。 図面の簡単な説明
第 1図は、 本発明に従って酸素プラズマ処理するために用いる処理室の模式的 断面図であり、 第 2 (A)図は、 従来技術に従って得られた多孔質 S i〇2膜の断面 についての走査型電子顕微鏡 (S E M) 写真であり、 第 2 (B )図は、 本発明に従 つて得られた多孔 S i〇2膜の断面についての走査型電子顕微鏡(S.E M)写真であ り、 第 3図は、 本発明に従って得られた多孔質膜の F T— I Rスペクトルである。 発明を実施するための最良の形態 · 第 1発明の多孔質 S O G膜作製方法の一つの実施の形態によれば、 有機シラン と、 水と、 アルコールとを含む有機シラン液を角い、 この有機シランを酸加水分 解またはアルカリ加水分解に付することにより得た液に界面活性剤を添加したも のを、 半導体基板上に塗布し、 界面活性剤の存在下で加熱して、 水、 アルコール、 界面活性剤を蒸発させながら、 また、 反応系にその他の有機物質などが含まれて いる場合にほその物質を取り除くことにより、 多孔質 S i 02膜を作製する。 界面 活性剤が蒸発するにつれて、 膜内に多数の空隙部分 (空隙率:約 6 0 %以上) が 生じ、 かくして多孔質膜が得られる。
原料シランとしては、 上記したような分解可能な有機ォキシシランであれば、 特に制限されることなく用いられる。 アルコールとしては、 エチルアルコール、 イソプロピルアルコールなどのアルコール系溶媒であれば、 特に制限されること なく用いられる。 加水分解は、 酸による加水分解であってもアルカリによる加水 分解であってもよく、 その加水分解のために、 硝酸や塩酸などの無機酸、 ギ酸な どの有機酸、 アンモニアなどのアルカリを用いることができる。 界面活性剤とし 界面活性剤を用いることが好ましい。 その他の界面活性剤として、 例えばジメチ ゥムクロライド、 トリメチルドデシルアンモニゥムブロマイド、 ァリルジブチル ドデシルアンモニゥムブロマイド、 ジェチルァセトニルドデシルアンモニゥムク 口ライドなどを用いることもできる。
原料の使用量は、 上記したように、 '原料有機シラン 1モルに対して、 水につい ては 8〜1 5モルであり、 酸やアルカリについては 0 . 5〜1 . 5モルであり、 界面活性剤については 0 . 1〜0 . 4モルであることが好ましい。 この界面活性 剤の使用量と加熱処理条件とを適宜選択することにより、 所,望の比誘電率を有す る多孔質 S i〇2膜を選択的に作製することが可能である。
上記したようにして得られた有機シラン液を半導体基板上に通常のスピンコー ト法などの塗布方法により塗布し、 次いで公知の赤外線加熱炉などを用いて加熱 · 処理し、 水 -アルコール系溶媒、 および界面活性剤その他の有機物質などを蒸発 せしめ、 多孔質 S i 02膜を作製する。 この場合の加熱処理条件は、 該溶媒および 界面活性剤などを蒸発せしめ、 多孔質膜を得ることができる条件であれば、 特に 制限はない。 比誘電率の低い多孔質膜を得るためには、 好ましくは、 まず、 空気 中で 2 0 0〜3 5 0 °C程度の温度で処理して主として溶媒を蒸発せしめ、 次いで、 例えば 1 0 0〜 1 0— 5 P a程度の真空中、 界面活性剤その他の有機物質などを蒸 発させることのできる温度 (例えば、 2 5 0〜5 0 0 °C、 好ましくは 3 5 0〜4 5 0 °C、 さらに好ましくは 3 8 0〜4 5 0 ) で、 得られる多孔質膜の構造が破 壊されない時間の間処理すればよい。
このようにして得られた多孔質 S i〇2膜について、 アルミ電極などの電極を蒸 着して比誘電率を測定すると、 本発明の目的に合った多孔質 S O G膜が得られて いることが分かる。 すなわち、 比誘電率が低く、 また、 S O G膜形成後の半導体 プロセスにおいてその上に膜を積層させても比誘電率の上昇がほとんどない層間 絶縁膜が得られる。
上記したように、 好ましくは T E〇S、 T M O Sなどの有機シランを用いると、 例えば空隙率 6 0 %以上の低比誘電率の層間絶縁膜を作製することが可能である。 空隙率が高くなるに従って、 例えば 8 0 %程に達すると、 絶縁膜を構成する材料 の物性に基づく比誘電率に対する寄与は少なくなり、 空気の影響が支配的になる ため、 低比誘電率の層間絶縁膜が得られる。 このような観点から、 有機シランの 代わりに加水分解可能なアルコキシドを用いても、 有機シランの場合と同様に、 低比誘電率層間絶縁膜としての多孔質膜を作製することができる。 このようなァ ルコキシドとしては、 例えば、 T i (〇C 3 H 7) 4、 Z r (〇C 4H 9) 4などの周期表 4八族に属する丁 Z rなどのアルコラ一卜が用いられ得る。 . ' 第 2発明の多孔質 S O G膜作製方法の一つの実施の形態によれば、 上記したよ うにして多孔質 S i〇2膜を得る工程 (第一工程) を少なくとも一回繰り返して、 該第一工程で得られた多孔質 S i〇2膜の上にさらに多孔質 S i〇2膜を形成する。 界面活性剤が蒸発するにつれて、 膜内に多数の空隙部分 (空隙率:約 6 0 %以 上) が生じ、 かくして多孔質膜が得られ、 また、 この多孔質膜を多層膜とするこ とにより水分の侵入を抑え、 吸湿性を改良することが可能となる。 この場合、 多 孔質膜の積層された絶縁膜が厚すぎると、 薄膜化の方向に進んでいる半導体プロ セスの技術の流れに逆行するという問題がある。 従って、 吸湿性を抑えることの 可能な膜厚を考慮しながらできるだけ薄くすることが好ましい。 このように第一 工程を複数回繰り返すわけであるが、 この場合、 各多孔質膜の膜厚を上記第 1発 明の場合の一層からなる多孔質膜の膜厚よりも薄くなるように設定することが必 要である。 例えば、 二層の多孔質膜の場合、 各多孔質膜を 0 . 5 m程度に設定 することが好ましい。
原料シラン、 アルコール、 加水分解用の酸およびアルカリ、 ならびに界面活性 剤としては、 上記第 1発明と同様のものを用いることができる。 また、 上記原料 の使用量は、 上記した範囲であることが好ましい。 界面活性剤の使用量と加熱処 理条件とを適宜選択することにより、 所望の比誘電率を有する S i〇'2膜の多層膜 を選択的に形成することが可能である。 .
上記したようにして得られた有機シラン液を半導体基板上に通常のスピンコ一 ト法などの塗布方法により塗布し、 上記したように処理して多孔質 S i〇2膜を作 製する工程を少なくとも一回繰り返し、 多層の多孔質膜を形成する。 この場合の 加熱処理条件は、 上記した通りである。 このようにして得られた多孔質 S i〇2膜について、 次のように膜側面からの吸 湿性について確認試験を行った。 S i基板上に作製した多孔質 S i〇2膜の上面、 側面をポリイミド膜により被覆した。 ポリイミド膜で被覆した 2つのサンプルの うち一方のサンプルの 4辺を切り落として多孔質 S i〇2膜の断面を出した。 被覆 した状態のままのものと、 多孔質 S i〇2膜の断面を出したサンプルとについて同 一条件で吸湿試験を行い、 試験後の比誘電率を比較することで多孔質 S i.〇2膜側 面からの吸湿の有無をみた。 その結果、 ポリイミド膜で被覆したままのサンプル と、 側面を切り落として多孔質 S i〇2膜の断面を出したサンプルとの吸湿試験後 の比誘電率に差が認められなかったことから、 多孔質 S i〇2膜の側面には空孔の 出口はなく、 この多孔質 S i〇2膜の空孔は、 基板に対して垂直に配向しているこ とが分かる。
また、 第 2発明の別の実施の形態によれば、 上記第一工程で得られた多孔質膜 上に、 C V D法またはスパッタ法により、 例えば膜厚 1 0 0 n m以下の疎水性の
S i〇2膜、 S i N x膜または S i O x N y膜のいずれかを形成し、 該多孔質膜表面 をキャップする。 キャップ層の膜厚が厚すぎると、 キャップされた絶縁膜として の総膜厚が厚くなりすぎてしまい、 薄膜化の方向に進んでいる半導体プロセスの 技術の流れに逆行するという問題がある。 従って、 吸湿性を抑えることの可能な 最小膜厚を考慮しながらできるだけ薄くすることが好ましい。 キヤップ層は一層 でもよいし、 複数層設けてもよい。 次いで、 所望により、 該第一工程を繰り返し てこのキャップ層の上にさらに多孔質膜を形成してもよいし、 また、 このような 第一工程およびキャップ層形成工程を複数回繰り返してもよい。 この場合にも、 前記第一の実施の形態の場合と同様に、 各多孔質膜の膜厚およびキャップ層の膜 厚を前記第 1発明の場合の一層からなる多孔質膜の膜厚よりも薄くなるように設 定することが必要である。 例えば、 二層の多孔質膜および二層のキャップ層の場 合、 各多孔質膜を 0 . 5 111程度、 各キャップ層を 5 0 n m程度に設定すること が好ましい。 このように多孔質膜を特定の疎水性膜でキヤップするこどにより水 分の侵入を抑えるこ 'とが可能となる。 '
原料シラン、 アルコール、,加水分解用の酸およびアルカリ、 ならびに界面活性 剤としては、 上記と同様のものを用いることができる。 また、 上記原料の使用量 は、 上記した範囲であることが好ましい。 界面活性剤の使用量と加熱処理条件と を適宜選択することにより、 所望の比誘電率を有する疎水性 S i〇2膜を選択的に 作製することが可能である。 - 上記したようにして得られた有機シラン液を半導体基板上に通常のスピンコー ト法などの塗布方法により塗布し、 上記したように処理して多孔質 S i〇2膜を作 製する。 この場合の加熱処理条件は、 上記した通りである。
このようにして得られた多孔質 S i〇2膜について'、 上記と同様に、 膜側面から の吸湿性について確認試験を行った。 その結果、 ポリイ ド膜で被覆したままの サンプルと、 側面を切り落として多孔質 S i〇2膜の断面を出したサンプルの吸湿 試験後の比誘電率に差が認められなかったことから、 多孔質 S i〇2膜の側面には 空孔の出口はなく、 この多孔質 S i〇2膜の空孔は、 基板に対して垂直に配向して いることが分かる。 · ,
第 2発明に従って得られた多孔質 S i〇2膜について、 アルミ電極などの電極を 蒸着して比誘電率を測定すると、 本発明の目的に合った多孔質 S O G膜が得られ ていることがわかる。 すなわち、 多孔質膜への水分の侵入のない、 吸湿性の改良 された、 比誘電率の低い多孔質 S O G膜が得られる。 さらに、 疎水化処理された 多孔質 S O G膜に対し、 半導体プロセスにおいて、 C V D法などによりその上に 他の膜を積層させても、 多孔質 S i〇2膜の比誘電率の上昇がほとんどない層間絶 縁膜が得られる。
第 2発明によれば、 好ましくは T E O Sまたは T M O Sなどの有機シランを用 いると、 第 1発明の場合と同様に、 高い空隙率を有する低比誘電率の層間絶縁膜 を作製することが可能である。 有機シランの代わりに第 1発明と同様のアルコキ シドを用いることもできる。
第 3発明の多孔質 S O G膜作製方法の一つの実施の形態によれば、 上記したよ うにして多孔質 S i 02膜を得、 次いで、 酸素プラズマ処理、 電子線照射処理また は紫外線照射処理のいずれかにより、 得られた多孔質 S i〇2膜に残留する未反応 OH基を除去する。 界面活性剤が蒸発するにつれて、 膜内に多数の空隙部分 (空 孔率:約 5 0 %以上) が生じ、 かくして多孔質膜が得られ、 この多孔質膜に対し ' て上記疎水化処理を行うことにより、 残留 O H基が除去され、 雰囲気中の水分の 吸着を抑えることが可能となり、 表面の改質された疎水性多孔質 S O G膜が得ら れる。
原料シラン、 アルコール、 加水分解用の酸およびアルカリ、 ならびに界面活性 剤としては、 上記第 1発明と同様のものを用いることができる。 また、 上記原料 の使用量は、 上記した範囲であることが好ましい。 界面活性剤の使用量と加熱処 理 (焼成処理) 条件とを適宜選択することにより、 所望の比誘電率を有する疎水 性多孔質 S i o 2膜を適宜作製することが可能である。 · 上記したよう (こして得られた有機シラン液を半導体基板上に通常のスピンコー ト法などの塗布方法により塗布し、 上記したように処理して多孔質 S i〇2膜を作 製する。 この場合の加熱処理条件は、 上記した通りである。
このようにして得られた多孔質 S i〇2膜について、 第 2発明の場合と同様に、 膜側面からの吸湿性について確認試験を行った。 その結果、 ポリイミド膜で被覆 したままのサンプルと、 側面を切り落として多孔質 S i 02膜の断面を出したサン プルの吸湿試験後の比誘電率に差が認められなかったことから、 多孔質 S i〇2膜 の側面には空孔の出口はなく、 この多孔質 S i〇2膜の空孔は、 基板に対して垂直 に配向していることが分かる。
次いで、 上記多孔質 S i〇2膜に対して酸素プラズマ処理、 電子線照射処理また は紫外線照射処理を行って多孔質膜を疎水化する。 その際に生じる反応は脱水を 伴うため、 通常の場合、 多孔質膜が収縮し、 膜にクラックが入る恐れがあるが、 本発明により得られる多孔質膜は 5 0 %以上の空孔率があるため、 上記反応によ る応力の発生をその膜構造自身が吸収するので、 膜割れなどの現象は観察されな い。
疎水化処理に関し、 酸素プラズマ処理を代表例として以下説明する。
酸素プラズマ処理は、 通常のマイクロ波放電を利用した酸素プラズマ処理装置 で行われ得る。 すなわち、 第 1図に示したように、 処理室 1には、 被処理基板 2 を载置するための基板ホルダ一 3が設けられ、 このホルダーは加熱ヒーターなど の加熱手段 4を備えている。 また、 処理室 1の側壁には、 放電管からなる反応性 ガスの導入部 5と、 マイク口波電源 6に接続したプラズマ発生部 7とを備えた酸 素プラズマ発生装置 8が配設されている。 この酸素プラズマ発生装置 8は、 ガス 源 9から導入される酸素ガスやこれに少量の他のガス(例えば、 Ar、 Kr、 X e など)を混入したガスなどの反応性ガスをマイクロ波電源 6でプラズマ化し、 これ を処理室 1内に導入するように構成されている。 上記処理室 1を真空ポンプ 10 により処理室の側壁に設けられた真空排気口 1 1を経て真空排気した後、 基板ホ ルダ一 3上に載厚され、 加熱された被処理基板 2上に形成されている多孔質 S i 〇2膜に対して酸素プラズマ処理を行うと、 上記反応式に従って残留〇H基が除去 される。 すなわち、 残留〇H基は H2〇となり、 気化して真空排気口 1 1から真空 ポンプ 10により排気される。 この酸素プラズマ処理は、 例えば、 酸素含有ガス 流量 100〜2000 S CCM、 RFおよびマイクロ波電力 300〜 3000 W、 圧力 0. &〜 2To r rで、 所定の時間行われ得る。
上記プラズマ発生装置はダウンストリーム型であるが、 これ以外にも平行平板 電極型、 ECR型などのプラズマ発生装置が利用可能である。 プラズマ化の励起 手段は特に制限されるものではない。 さらに、 上記酸素プラズマ処理以外にも、 多孔質膜の残留 OH基を除去できる処理手段であれば利用できる。 例えば、 多孔 質膜に対して、 通常の方法により、 電子ビーム銃を用いて電子線を照射したり、 または、 紫外線を照射したりして残留 OH基を除去することも可能である。
このようにして得られた多孔質 SOG膜について、 アルミ電極などの電極を蒸 着して比誘電率を測定すると、 本発明の目的に合った疎水性多孔質 SO G膜が得 られていることがわかる。 すなわち、 水分の吸着のない、 比誘電率の低い多孔質 層間絶縁膜であって、 疎水化処理後の半導体プロセスにおいてさらにその上に膜 を積層させても比誘電率の上昇がほとんどない層間絶縁膜が得られる。
上記したように、 好ましくは TEOSまたは TMOSなどの有機シランを用い ると、 第 1発明の場合と同様に、 高い空隙率を有する低比誘電率の層間絶縁膜を 作製することが可能である。'有機シランの代わりに第 1発明と同様のアルコキシ ドを用いることもできる。
第 4発明の多孔質 SOG膜作製方法の一つの実施の形態によれば、 多孔質 S i 02膜を得る際に、 上記加熱処理を、 まず、 空気中で 200〜350°Cの温度で行 い、 次いで、 昇温して、 窒素ガス雰囲気中で、 好ましくは、 真空下で、 350〜 450°C (好ましくは、 380〜450°C) の温度で行う。 加熱処理雰囲気をこ のような状態に設定することにより、 得られる多孔質膜の少なくとも空孔内部の 壁面が疎水基で覆われると共に、 比誘電率も低くなる。 この発明によれば、 界面 活性剤が蒸発するにつれて、 膜内に多数の空隙部分 (空孔率:約 5 0 %以上) が 生じ、 かくして多孔質膜が得られる。 空孔形成の熱処理プロセスにおいて、 空孔 内部の膜表面に界面活性剤の親水基が付着した状態で空孔形成 (すなわち、 多孔 質膜形成) を終了させると、 界面活性剤の疎水基は空孔内部の膜表面に対して反 対側を向いた状態 (すなわち、 空孔内部の膜表面から孔の空間方向に向いた状 態) で存在し、 空孔内部の壁面が疎水基で覆われることになる。 このようにして、 少なくとも空孔内部の壁面が疎水性になるために、 雰囲気中の水分の吸着を抑え ることが可能となり、 表面の改質された疎水性多孔質膜が得られる。
原料シラン、 アルコール、 加水分解用の酸およびアルカリ、 ならびに界面活性 剤としては、 上記第 1発明と同様のものを用いることができる。 また、 上記原料 の使用量は、 上記した範囲であることが好ましい。 界面活性剤の使用量と加熱処 理 (焼成処理) 条件とを適宜選択することにより、 所望の比誘電率を有する疎水 性多孔質 S i〇2膜を選択的に形成することが可能である。 '
上記したようにして得られた有機シラン液を半導体基板上に通常のスピンコ一 ト法などの塗布方法により塗布し、 上記したように処理して多孔質 S i〇2膜を作 製する。 この場合の加熱処理条件は、 上記温度条件であることが好ましい。 すな わち、 比誘電率の低い疎水性多孔質膜を得るためには、 まず、 空気中で 2 0 0〜
3 5 0 程度の温度で処理して、 主として水—アルコール系溶媒を蒸発せしめ、 次いで、 例えば窒素ガスなどの絶対誘電率の小さいガス雰囲気中で、 好ましくは
1 0 0〜1 0— 5 P a程度の真空中で、 界面活性剤その他の有機物質などを蒸発さ せることのできる温度で、 得られる多孔質膜の構造が破壊されない時間の間処理 する。 .
このようにして得られた多孔質 S i〇2膜について、 第 2発明の場合と 様に、 膜側面からの吸湿性について確認試験を行った。 その結果、 ポリイミド膜で被覆 .したままのサンプルと、 側面を切り落として多孔質 S i 02膜の断面を出したサン プルの吸湿試験後の比誘電率に差が認められなかったことから、 多孔質 S i〇2膜 の側面には空孔の出口はなく、 この多孔質 S i〇2膜の空孔は、 基板に対して垂直 に配向していることが分かる。
第 4発明に従って得られた多孔質 SOG膜について、 アルミ電極などの電極を 蒸着して比誘電率を測定すると、 本発明の目的に合った疎水性多孔質 SO G膜が 得られていることがわかる。 すなわち、 水分の吸着のない、 比誘電率の低い多孔 質層間絶縁腠であって、 疎水性膜形成後の半導体プロセスにおいてさらにその上 に膜を積層させても比誘電率の上昇がほとんどない層間絶縁膜が得られる。
上記したように、 好ましくは TE OSまたは TMOSなどの有機シランを用い ると、 第 1発明の場合と同様に、 高い空隙率を有する低比誘電率の層間絶縁膜を 作製することが可能である。 有機シランの代わりに第 1発明と同様のアルコキシ · ドを用いることもできる。 . .
本発明により得られる上記した多孔質膜について、 FT— I R分析によりスぺ クトル測定をしたところ、 OH基のピークはない。 .
上記第 1〜 4発明により得られる多孔質膜に未反応の親水性 OH基が残留して いたとしても、 この多孔質膜に対して、 通常のアツシング装置を利用して酸素プ ラズマ処理を行ったり、 または、 公知の電子ビーム銃を用いた電子線照射処理や 紫外線照射処理を行ったりするならば、 残留〇 H基を除去することができるので、 多孔質膜め疎水性はさらに向上する。
【実施例】 .
以下、 本発明の実施例を図面を参照して説明する。
(実施例 1 :第 1発明)
多孔質 S i O 2膜作製のための反応液を調製する原料として、 TEOS 1モルに 対して、 硝酸 0. 7モル、 H2〇 12モル、 エタノール 15モル、 所定量の界面活 性剤を用い、 多孔質 SOG膜用の S i〇2液を調製した。 界面活性剤として、 n— へキサデシルトリメチルアンモニゥムクロライド (関東化学 (株) 製、 商品名: CTAC 1 ) を、 TEOS 1モルに対して 0. 1、 0. 15、 0. 2、 0. 25 モル添加して、 塗布液を調製した。 半導体基板 (試料番号 A 1〜H1) 上に各塗 布液を 3000回転 Z分の条件でスピンコートした。 公知の赤外線加熱炉を用い て、 塗布された各基板を表 1に示すように、 最初、 空気中、 200〜 400 で 処理し、 次いで 1 00〜10— 5P aの雰囲気中、 400°Cで焼成処理し、 多孔質 S i O 2膜を得た。 この場合、 最初の処理温度 200°Cから次工程の処理温度 40 0°Cへと昇温する時間を 60分とし、 その他の場合も同じ昇温速度とした。 この 昇温速度は特に制限される訳ではないが、 得られた膜の膜質について、 膜荒れが 少なく、 リーク電流も小さな値となるような範囲であればよい。 また、 真空焼成 中の保持時間は膜構造の破壌が生じない範囲であればよく、 本実施例では 30分 間保持して焼成した。 . このようにして得られた多孔質 S i〇2膜について、 アルミ電極を蒸着した後、 HP社製比誘電率測定装置(RF IMPEDANCE ANALYZER 4191A)を用いて、 1週間後に比 誘電率を測定した。 得られた比誘電率を表 1に示す。
(表 1)
Figure imgf000018_0001
表 1から明らかなように、 空気中 200〜 35 O で処理し、 次いで真空中 4 00 で処理した場合、 1. 0〜4. 0の範囲内の低い比誘電率を有する SOG 膜が得られた。 また、 得られた S.OG膜は、 半導体プロセスにおいて CVDなど によりその上にさらに別の膜を積層させた場合も、 比誘電率の上昇がほとんどな かった。
上記実施例に従って基板上に多孔質 SOG膜を作製した場合と、'従来技術 (無 機 SOGのシリル化による方法) により基板上に多孔質 S i〇2膜を作製した場合 とについて、 走査型電子顕微鏡 (SEM) によりその断面写真 (第 2図) をとり、 各多孔質膜の膜質状態を観測した。 この SEM像から、 従来膜の場合、 大きな径. の空孔 (数 nm〜数十 nm) が観測されたが (第 2 (A)図) 、 本発明の SOG膜 では極めて小さな空孔であり、 実際、 S EM観測できない 1 nm以下の空孔であ ることがわかる(第 2 (B)図)。
また、 界面活性剤として、 n—へキサデシルトリメチルアンモニゥムクロライ ドの代わりにラウリルトリメチルアンモニゥムクロライド (花王 (株)製、 商品名
:コ一夕ミン 24 P) を使用した場合も、 上記と同様な結果が得られた。
(実施例 2 :第 2発明)
実施例 1記載の成膜方法に従って得た多孔質膜 (試料番号 A 2〜H 2、 膜厚: 0. 5 m) の表面上に、 該成膜工程を繰り返して、 同様の多孔質 S i〇2膜 (膜 厚: 0. 5 im) を積層し、 二層の多孔質膜からなる絶縁膜を形成した。
このようにして得られた多層の多孔質 S i〇2膜について、 アルミ電極を蒸着し た後、 HP社製比誘電率測定装置(RF IMPEDANCE ANALYZER 4191A)を用いて、 1週間 後に比誘電率を測定した。 得られた比誘電率を表 2に示す。
(表 2)
Figure imgf000019_0001
表 2から明らかなように、 空気中 200〜350 で処理し、 次いで真空中 4 00°Cで処理した場合、 1. 5〜2. 9の範囲内の低い比誘電率を有する SOG 膜が得られた。 また、 得られた SOG膜は、 半導体プロセスにおいて CVDなど によりその上にさらに別の膜を積層させた場合も、 比誘電率の上昇がほとんどな かった。 また、 強度的にも何ら問題はなく、 むしろ一層の場合よりも、 同じ膜厚 の場合、 強度的には向上していた。
上記実施例に従って基板上に一層からなる多孔質 SOG膜を作製した場合と、 従来技術 (無機 SOGのシリル化による方法) により基板上に多孔質 S i〇2膜を 作製した場合とについて、 走査型電子顕微鏡 (SEM) によりその断面写真をと り、 各多孔質膜の膜質状態の傾向を観測した。 この SEM像から、 実施例 1の場 合と同様に、 従来膜の場合、 大きな径の空孔 (数 nm〜数十 nm) が観測された が、 本発明の SO G膜では極めて小さな空孔であり、 実際、 SEM観測できない 1 nm以下の空孔であることがわかった。 SEMでは、 本実施例の場合、 一層だ けからなる膜について観測したが 多層膜の場合も同様な傾向を示すことは明ら かである。
また、 界面活性剤として、 n—へキサデシルトリメチルアンモニゥムクロライ ドの代わりにラウリルトリメチルアンモニゥムクロライド (花王(株)製、 商品名 :コ一夕ミン 24 P) を使用した場合も、 上記と同様な結果が得られた。
(実施例 3 :第 2発明)
実施例 2の第一工程で得られた多孔質 S i' 02膜 (膜厚: 0. 5 zm) の表面に、 CVD法またはスパッ夕法により、 S i〇2膜、 S i Nx膜または S i OxNy膜 (膜 '厚: 50 nm)を形成し、 該多扎質膜の表面をキャップした。 次いで、 該第一工程 およびキャップ層形成工程を同様の条件で繰り返して、 このキャップ層の上に再 度多孔質膜およびキャップ層を順次形成した。
このようにして得られた多層の多孔質膜について、 アルミ電極を蒸着した後、 HP社製比誘電率測定装置(RF IMPEDANCE ANALYZER 419.1A)を用いて比誘電率を測定 したところ、 表 2の比誘電率と同様の値が得られたことから、 このような多層の 多孔質膜も有用な層間絶縁膜となる。
(実施例 4 :第 2発明)
実施例 1記載の成膜方法に従って得た多孔質 S i〇2膜 (試料番号 A3〜H3、 膜厚: 0. 5 m) の表面に、 CVD法またはスパッタ法により: S iひ 2膜、 S i Nx膜または S i OxNy膜 (膜厚: 50 nm) を形成し、 該多孔質膜の表面をキ ヤップした。 このようにして得られた疎水性多孔質 S i 02膜について、 アルミ電極を蒸着し た後、 HP社製比誘電率測定装置(RF IMPEDANCE ANALYZER 4191A)を用いて、 1週間 後に比誘電率を測定した。 得られた比誘電率を表 3に示す。
(表 3)
Figure imgf000021_0001
表 3中、 比誘電率 Aは、 多孔質膜を形成した後、 疎水性膜をキャップすること なくアルミ電極を蒸着した試料について、 1週間室内放置した後に測定したもの であり、 また、 比誘電率 Bは、 多孔質膜を形成した後、 疎水性膜をキャップした ものにアルミ電極を蒸着した試料について、 1週間室内放置した後に測定したも のである。
表 3'から明らかなように、 空気中 200〜350 で処理し、 次いで真空中 4 00°Cで処理した場合、 1. 0〜4. 0の範囲内の低い比誘電率 Aを有する SO G膜が得られ、 また、 比誘電率 Bもほとんど変化しなかった。 さらに、 得られた 疎水性多孔質 SOG膜は、 半導体プロセスにおいて CVDなどによりその上にさ らに別の膜を積層させた場合も、 比誘電率の上昇がほとんどなかった。
上記実施例に従って基板上に多孔質 SOG膜を作製した場合と、 従来技術 (無 機 SOGのシリル化による方法) により基板上に多孔質 S i〇2膜を作製した場合 とについて、 走査型電子顕微鏡 (SEM) によりその断面写真をとり、 各多孔質 膜の膜質状態を観測した。 この SEM像から、 実施例 1の場合と同様に、 従来膜 の場合、 大きな径の空孔 (数 nm〜数十 nm) が観測されたが、 本発明の S〇G 膜では極めて小さな空孔であり、 実際、 S EM観測できない 1 nm以下の空孔で あることがわかった。
また、 界面活性剤として、 n—へキサデシルトリメチルアンモニゥムクロライ ドの代わりにラウリルトリメチルアンモニゥムクロライド (花王 (株)製、 商品名 :コ一夕ミン 24P) を使用した場合も、 上記と同様な結果が得られた。
(実施例 5.:第 3発明) . '
実施例 1記載の成膜方法に従って得た多孔質 S i〇2膜 (試料番号 A4〜H4、 膜厚: 0. 7 m、 空孔率: 80%) を、 通常のマイクロ波放電を利用した酸素 プラズマ処理装置で処理した。 すなわち、 第 1図に示した酸素プラズマ処理室 1 内に設けられた基板ホルダ一 3上に、 多孔質膜の作製されている被処理基板 2を 載置すると共に、 加熱ヒータ一 4により加熱した (100 ) 。 一方、 該処理室 1の側壁に配設された酸素プラズマ発生装置 8に、 放電管からなる反応性ガス導 入部 5に接続したガス源 9から、 酸素ガス 100 S CCMを導入し、 プラズマ発 生部 7に接続されたマイクロ波電源 6 (2. 45 GHz) を入れて該酸素ガスを プラズマ化した。 このプラズマを該処理室 1内の被処理基板 2上に導入して、 1 分〜 5分程度酸素プラズマ処理を行った。 該処理室の圧力は 0. lTo r r'にし た。 反応の結果得られた H2〇を気化して、 真空排気口 1 1から真空ポンプ 1 0に より排気した。
上記のようにして酸素プラズマ処理した多孔質膜について FT— I R分析によ りスペクトルを測定した (第 3図) 。 第 3図から明らかなように、 酸素プラズマ 処理していない多孔質膜の場合と異なり、 本実施例により酸素プラズマ処理した 多孔質膜の場合、 3400 cm—1付近に OH基のピークはなく、 残留〇H基が除 去されていることが分かる。
このようにして得られた疎水性多孔質 S i〇2膜および 照多孔質 S i〇2膜の それぞれについて、 アルミ電極を蒸着した後、 HP社製比誘電率測定装置 (RF IMPE DANCE ANALYZER 4191A)を用いて比誘電率を測定した。 得られた比誘電率を表 4に 示す
表 4中、 比誘電率 Aは、 多孔質膜を形成した後に酸素プラズマ処理をせずに、 アルミ電極を蒸着した対照試料について、 1週間室内放置した後に測定したもの であり、 また、 比誘電率 Bは、 多孔質膜を形成した後に酸素プラズマ処理をした 疎水化多孔質膜にアルミ電極を蒸着した試料について、 1週間室内放置した後に 測定したものである。
(表 4)
Figure imgf000023_0001
表 4から明らかなように、 空気中 200〜350°Cで処理し、 次いで真空中 4 00°Cで処理した場合、 1週間室内放置すると、 7. 2〜8. 5の範囲内の高い 比誘電率 (比誘電率 A) を有するようになるが、 酸素プラズマ処理して得られた 疎水化多孔質膜の場合、 1週間室内放置しても、 1. 5〜3. 8の範囲内の低い 比誘電率 (比誘電率 B) を有している。 このように、 比誘電率 Bの方が比誘電率 Aよりも低い値が測定されたということは、 残留 OH基が除去され、 水分吸着が なくなつたということを意味している。 このため、 A 1などの配線を腐食するこ とがなくなる。 さらに、 酸素プラズマ処理した疎水性多孔質 SOG膜は、 半導体 プロセスにおいて CVDなどによりその上にさらに別の膜を積層させた場合も、 比誘電率の上昇がほとんどなかった。
上記実施例に従って基板上に多孔質 SO G膜を作製した場合 (酸素プラズマ処 理せず) と、 従来技術 (無機 SOGのシリル化による方法) により基板上に多孔 質 S i〇2膜を作製した場合とについて、 走査型電子顕微鏡 (SEM) によりその 断面写真をとり、 各多孔質膜の膜質状態を観測した。 この SEM像から、 実施例 1の場合と同様に、 従来膜の場合、 大きな径の空孔 (数 nm〜数十 nm) が観測 されたが、 本発明の SOG膜では極めて小さな空孔であり、 実際、 SEM観測で きない 1 nm以下の空孔であることがわかった。
また、 界面活性剤として、 n—へキサデシルトリメチルアンモニゥムクロライ ドの代わりにラウリルトリメチルアンモニゥムクロライド (花王(株)製、 商品名 :コ一夕ミン 24 P) を使用した場合も、 上記と同様な結果が得られた。
(実施例 6 :第 4発明) ·
多孔質 S i〇2膜作製のための反応液を調製する原料として、 TEOS 1モルに 対して、 硝酸 7モル、 H2〇 12モル、 エタノール 1 5モル、 所定量の界面活 性剤を用い、 多孔質 SOG膜用の S i〇2液を調製した。 界面活性剤として、 n— へキザデシルトリメチルアンモニゥムクロライド (関東化学 (株) 製、 商品名: CTAC 1 ) を、 TEOS 1モルに対して 0. 1、 0. 15、 0. 2、 0. 25 モル添加して、 塗布液を調製した。 半導体基板上に各塗布液を 3000回転/分 の条件でスピンコートした。 公知の赤外線加熱炉を用いて、 塗布された各基板を、 表 5に示すように、 空気中 200〜400°Cで第一加熱処理工程を行い、 次いで、 100〜10— 5P aの雰囲気中 400 °Cで第二加熱処理(焼成処,理)工程を行って、 疎水性の多孔質 S i〇2膜を得た (試料番号 A 5〜H 5) 。 また、 表 6に示すよう に、 上記第一工程に次いで、 100〜10— 5P aの雰囲気中 350°C、 400°C、, 450°C、 500°Cで第二加熱処理工程を行って、 疎水性の多孔質 S i〇2膜を得 た (試料番号 I 5〜L 5) 。 ,
最初の処理温度 200°Cから次工程の処理温度 400°Cへと昇温する時間を 6 0分とし、 その他の場合も同じ昇温速度とした。 この昇温速度は特に制限される 訳ではないが、 得られた膜の膜質について、 膜荒れが少なく、 リーク電流も小さ. な値となるような範囲であればよい。 また、 真空焼成中の保持時間は膜構造の破 壊が生じない範囲であればよく、 本実施例では 30分間保持して焼成した。
このようにして得られた多孔質膜について FT— I R分析によりズぺクトルを 測定したところ、 第 3図の場合と同様に、 3400 cm— 1付近に OH基のピ一ク はなかった
上記のようにして得られた疎水性多孔質 S i〇2膜 (試料番号 A5〜L 5) につ いて、 アルミ電極を蒸着した後、 HP社製誘電率測定装置(RF IMPEDANCE ANALYZER 4191A)を用いて、 週間後に比誘電率を測定した。 得られた比誘電率を表 5およ び 6に示した。
(表 5)
Figure imgf000025_0001
表 5から明らかなように、 空気中 200〜350°Cで処理し、 次いで真空中 4 00°Cで処理した場合、 1. 0〜4. 0の範囲内の低い比誘電率を有する S OG 膜が得られた。 また、 得られた SOG膜は、 半導体プロセスにおいて CVDなど によりその上にさらに膜を積層させた場合も、 比誘電率の上昇がほとんどなかつ た。
(表 6) '
Figure imgf000025_0002
表 6から明らかなように、 最初に空気中 200〜 350°Cで処理し、 次いで真 空中 350〜450°Cで処理した場合、 4. 0以下の低い比誘電率を有する SO G膜が得られていることが分かる。
FT— I Rスペクトルから明らかなように、 OH基のピークはないが、 これは 〇H基に起囟する水分吸着がないということであり、 A 1などの配線を腐食する ことがないというごとを意味する。 さらに、 本実施例で得られた疎水性多孔質 S OG膜は、 半導体プロセスにおい,て CVDなどによりその上にさらに別の膜を積 層させた場合も、 比誘電率の上昇がほとんどなかった
本実施例に従って基板上に多孔質 S〇G膜を作製した場合 (試料番号 J 5) と、 従来技術 (無機 SOGのシリル化による方法) により基板上に多孔質 S i〇2膜を 作製した場合とについて、 走査型電子顕微鏡 (SEM) によりその断面写真をと り、 各多孔質膜の膜質状態を観測した。 この SEM像から、 実施例 1の場合と同 様に、 従来膜の場合、 大きな径の空孔 (数 nm.〜数十 nm) が観測されたが、 本 実施例の SOG膜では極めて小さな空孔であり、 実際、 SEM.観測できない I n m以下の空孔であることがわかった。
また、 界面活性剤として、 n—へキサデシルトリメチルアンモニゥムクロライ ドの代わりにラウリルトリメチルアンモニゥムクロライド (花王 (株)製、 商品名 :コ一夕ミン 24 P) を俾用した場合も、 上記と同様な結果が得られた。 産業上の利用可能性 . ' · . 以上のように、 本発明にかかる多孔質 SOG膜の作製方法は、 LS Iなどの半 導体プロセスの分野において層間絶縁膜を形成する際に有用である。

Claims

請 求 の 範 囲
1 . 有機シランと、 水と、 アルコールとを含む有機シラン液を用い、 該有機シラ ンを酸加水分解またはアルカリ加水分解に付し、 界面活性剤の存在下で加熱処理 することにより多孔質 S i〇2膜を ることを特徴とする多孔質 S O G膜の作製方 法。
2 . 前記多孔質 S i 02膜を得る第一工程を少なくとも一回繰り返して、 該第一ェ 程で得られた多孔質 S i〇2膜の上にさらに多孔質 S i o 2膜を順次形成して多層 膜を形成する工程を含むことを特徴とする請求の範囲第 1項記載の多孔質 S O G 膜の作製方法。 ,
3 . 前記第一工程で得られた多孔質 S i〇2膜の表面に、 C V D法またはスパッ夕 法により、 S i〇2膜、 S i N x膜または S i O xN y膜のいずれかを形成し、 該表 面をキャップする寧二工程、 次いで、 該第一工程と第二工程とを少なくとも一回 繰り返して多層膜を形成する工程を含むことを特徴とする請求の範囲第 2項記載 の多孔質 S O G膜の作製方法。
4 . 前記多孔質 S i〇2膜を得た後、 C V D法またはスパッタ.法により、 該多孔質 S i〇2膜の表面に S i〇2膜、 S i N x膜または S i O xN y膜のいずれかを形成し、 該表面をキャップして、 多孔質 S i〇2膜を得ることを特徴とする請求の範囲第 1 項記載の多孔質 S 0 G膜の作製方法。
5 . 前記多孔質 S i〇 2膜を得た後、 該多孔質 S i〇2膜を酸素プラズマ処理、 電 子線照射処理または紫外線照射処理のいずれかに付して、 該多孔質 S i〇2膜に残 留する未反応 O H基を除去し、 多孔質 S i〇2膜を得ることを特徴とする請求の範 囲第' 1項記載の多孔質 S O G膜の作製方法。
6 . 前記加熱処理を、 まず、 主として水およびアルコールを蒸発させる温度で行 う第一加熱処理工程と、 次いで、 昇温して、 得られる多孔質 S i〇2膜の少なくと も空孔内部の壁面が界面活性剤の疎水性部分で覆われるようにする温度で.行う第 二加熱処理工程とにより行って、 多孔質 S i〇2膜を得るこ iを特徴とする請求の 範囲第 1項記載の多孔質 S 0 G膜の作製方法。
7. 前記第二加熱処理工程が、 350〜450°Cで行われることを特徴とする請 求の範囲第 6項記載の多孔質 S 0 G膜の作製方法。 .
8. 有機シランと、 水と、 アルコールと、 酸またはアルカリとを混合し、 さらに 界面活性剤を添加した有機シラン液を半導体基板上にスピンコートし、 加熱処理 して、 該水、 アルコール、 界面活性剤を蒸発せしめることにより多孔質 S i〇2膜 を得ることを特徴とする多孔質 S 0 G膜の作製方法。
9. 前記加熱処理で得られた多孔質 S i 02膜の表面に、 CVD法またはスパッタ 法により、 S i 02膜、 S i Nx膜または S i OxNy膜のいずれかを形成し、 該表 面をキャップする工程、 次いで、 該加熱処理と該キャップする工程とを少なくと も一回繰り返して多層膜を形成する工程を含むことを特徴とする請求の範囲第 8 項記載の多孔質 SO G膜の作製方法。 .
10. 前記多孔質 S i〇2膜を得た後、 CVD法またはスパッタ法により、 該多孔 質 S i 02膜の表面に S i〇2膜、 S i Nx膜または S i OxNy膜のいずれかを形成 し、 該表面をキャップして多孔質 S i〇2膜を得ることを特徴とする請求の範囲第 8項記載の多孔質 S O G膜の作製方法。
1 1. 前記多孔質 S i〇2膜を得た後、 該多孔質 S i 02膜を酸素プラズマ処理、 電子線照射処理または紫外線照射処理のいずれかに付して、 該多孔質 S i〇2膜に 残留する未反応 OH基を除去し、 多孔質 S i〇2膜を得ることを特徴とする請求の 範囲第 8項記載の多孔質 SO G膜の作製方法。 ' '
12. 前記加熱処理を、 まず、 200〜350°Cの温度で処理して、 主として水 およびアルコールを蒸発させる第一加熱処理工程と、 次いで、 350〜450°C の温度で処理して、 得られる多孔質 S i 02膜の少なくとも空孔内部の膜表面に界 面活性剤の親水性部分を付着させた状態で膜形成を終了させ、 該空孔内部の壁面 が該界面活性剤の疎水性部分で覆われるようにする第二加熱処理工程とにより行 つて、 多孔質 S iO2膜を得ることを特徴とする請求の範囲第 8項記載の多孔質 S OG膜の作製方法。
13. 前記有機シランが加水分解可能な有機ォキシシランであり、 界面活性剤が 陽イオン性界面活性剤であることを特徴とする請求の範囲第 1〜 12項のいずれ かに記載の多孔質 S OG膜の作製方法。
1 4 . 前記有機シランが T E〇S、 TMO Sであり、 界面活性剤がラウリルトリ メチルアンモニゥムクロライド、 n—へキサデシル卜リメチルアンモニゥムクロ ライド、 アルキルトリメチルアンモニゥムブロマイド、 セチルトリメチルアンモ ニゥムクロライド、 セチルトリメチルアンモニゥムブロマイド、 ステアリルトリ メチルアンモニゥムクロライド、 アルキルジメチルェチルアンモニゥムクロライ ド、 アルキルジメチルェチルアンモニゥムブロマイド、 セチルジメチルェチルァ ンモニゥムブ口マイド、 ォクタデシルジメチルェチルアンモニゥムブロマイド、 またはメチルドデシルべンジルトリメチルアンモニゥムクロライドなどのハロゲ ン化アルキルトリメチルアンモニゥム系陽イオン性界面活性剤であることを特徴 とする請求の範囲第 1〜 1 3項のいずれかに記載の多孔質 S O G膜の作製方法。
1 5 . 前記有機シラン 1モルに対して、 水 8〜 1 5モル、 酸加水分解またはアル 力リ加水分解のための酸やアル力リ 0 . 5〜 1 . 5'モル、 界面活性剤 0 . 1〜 0 . 4モルを用いることを特徴とする請求の範囲第 1〜 1 4項のいずれかに記載の多 孔質 S O G膜の作製方法。
PCT/JP2001/002885 2000-04-03 2001-04-03 Procede de preparation d'un film poreux sog WO2001075957A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020017015575A KR100816698B1 (ko) 2000-04-03 2001-04-03 다공성 sog 필름의 제조방법
EP01917803A EP1189267B1 (en) 2000-04-03 2001-04-03 Method for preparing porous sio2 film
US09/926,671 US6919106B2 (en) 2000-04-03 2001-04-03 Method for preparing porous SOG film

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2000101478 2000-04-03
JP2000-101478 2000-04-03
JP2000357808A JP4856307B2 (ja) 2000-11-24 2000-11-24 多孔質sog膜の疎水化処理方法
JP2000-357808 2000-11-24
JP2001-045276 2001-02-21
JP2001045276A JP2001351911A (ja) 2000-04-03 2001-02-21 多孔質sog膜の作製方法
JP2001-046728 2001-02-22
JP2001-046727 2001-02-22
JP2001-046797 2001-02-22
JP2001046797A JP4982012B2 (ja) 2001-02-22 2001-02-22 疎水性多孔質sog膜の作製方法
JP2001046727A JP2002252225A (ja) 2001-02-22 2001-02-22 疎水化多孔質sog膜の作製方法
JP2001046728A JP5102920B2 (ja) 2001-02-22 2001-02-22 多孔質sog膜の多層膜形成方法

Publications (1)

Publication Number Publication Date
WO2001075957A1 true WO2001075957A1 (fr) 2001-10-11

Family

ID=27554753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002885 WO2001075957A1 (fr) 2000-04-03 2001-04-03 Procede de preparation d'un film poreux sog

Country Status (5)

Country Link
US (1) US6919106B2 (ja)
EP (1) EP1189267B1 (ja)
KR (1) KR100816698B1 (ja)
CN (1) CN1271691C (ja)
WO (1) WO2001075957A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003003440A1 (en) * 2001-06-29 2003-01-09 Rohm Co., Ltd. Semiconductor device and production method therefor
JP2003017487A (ja) * 2001-06-29 2003-01-17 Rohm Co Ltd 半導体装置およびその製造方法
JP2003017486A (ja) * 2001-06-29 2003-01-17 Rohm Co Ltd 半導体装置およびその製造方法
WO2003075335A1 (fr) * 2002-03-04 2003-09-12 Rohm Co., Ltd. Procede de formation d'une couche mince
CN100367474C (zh) * 2002-08-27 2008-02-06 爱发科股份有限公司 一种多孔氧化硅膜的制备方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6913796B2 (en) * 2000-03-20 2005-07-05 Axcelis Technologies, Inc. Plasma curing process for porous low-k materials
US7011868B2 (en) 2000-03-20 2006-03-14 Axcelis Technologies, Inc. Fluorine-free plasma curing process for porous low-k materials
US6451712B1 (en) * 2000-12-18 2002-09-17 International Business Machines Corporation Method for forming a porous dielectric material layer in a semiconductor device and device formed
KR20030094432A (ko) * 2002-06-04 2003-12-12 삼성전자주식회사 다공성 절연막의 박막 특성을 개선시키는 방법
JP4056347B2 (ja) * 2002-09-30 2008-03-05 ローム株式会社 半導体発光装置およびその製造方法
US7404990B2 (en) * 2002-11-14 2008-07-29 Air Products And Chemicals, Inc. Non-thermal process for forming porous low dielectric constant films
KR100533538B1 (ko) * 2002-12-03 2005-12-05 삼성전자주식회사 새로운 기공형성물질을 포함하는 다공성 층간 절연막을형성하기 위한 조성물
TWI240959B (en) 2003-03-04 2005-10-01 Air Prod & Chem Mechanical enhancement of dense and porous organosilicate materials by UV exposure
US7098149B2 (en) * 2003-03-04 2006-08-29 Air Products And Chemicals, Inc. Mechanical enhancement of dense and porous organosilicate materials by UV exposure
JP2004292641A (ja) * 2003-03-27 2004-10-21 Shin Etsu Chem Co Ltd 多孔質膜形成用組成物、多孔質膜の製造方法、多孔質膜、層間絶縁膜、及び半導体装置
JP3666751B2 (ja) * 2003-11-28 2005-06-29 東京エレクトロン株式会社 絶縁膜の形成方法及び絶縁膜形成システム
US20070026642A1 (en) * 2004-04-20 2007-02-01 Shingo Hishiya Surface modification method and surface modification apparatus for interlayer insulating film
KR100613350B1 (ko) * 2004-12-23 2006-08-21 동부일렉트로닉스 주식회사 반도체 소자의 제조 방법 및 그 반도체 소자
KR20060080038A (ko) * 2005-01-04 2006-07-07 삼성전자주식회사 액정 표시 장치용 박막 트랜지스터 기판 및 그 제조 방법
US8067065B2 (en) * 2005-12-08 2011-11-29 Toyota Motor Engineering & Manufacturing North America, Inc. Fibrillar, nanotextured coating and method for its manufacture
JP4949692B2 (ja) * 2006-02-07 2012-06-13 東京応化工業株式会社 低屈折率シリカ系被膜形成用組成物
US20080242118A1 (en) * 2007-03-29 2008-10-02 International Business Machines Corporation Methods for forming dense dielectric layer over porous dielectrics
CN102046699B (zh) * 2008-05-26 2012-09-05 巴斯夫欧洲公司 制备多孔材料的方法和通过该方法制备的多孔材料
CN104736649B (zh) * 2012-10-31 2017-06-30 荷兰联合利华有限公司 疏水涂层
US20140120739A1 (en) * 2012-10-31 2014-05-01 Sba Materials, Inc. Compositions of low-k dielectric sols containing nonmetallic catalysts
BR112015007655B1 (pt) * 2012-10-31 2021-10-13 Unilever Ip Holdings B.V. Processo para fabricar uma composição de revestimento, composição de revestimento, método para formar um revestimento hidrofóbico sobre uma superfície e método para tratar uma superfície dura
US9538586B2 (en) 2013-04-26 2017-01-03 Applied Materials, Inc. Method and apparatus for microwave treatment of dielectric films
CN104269355A (zh) * 2014-09-05 2015-01-07 京东方科技集团股份有限公司 处理氧化硅的方法,薄膜晶体管的制造方法及薄膜晶体管

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280812A (ja) * 1991-03-08 1992-10-06 Fuji Davison Chem Ltd 基材上への多孔質シリカ被膜の形成法
JPH09213797A (ja) * 1996-02-07 1997-08-15 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JPH09227249A (ja) 1996-02-28 1997-09-02 Toyota Central Res & Dev Lab Inc 高密度多孔体及びその製造方法
JPH09227113A (ja) * 1996-02-28 1997-09-02 Agency Of Ind Science & Technol 無機多孔質膜の製造方法
JPH11284189A (ja) * 1998-03-30 1999-10-15 Seiko Epson Corp 薄膜半導体装置およびその製造方法、ならびにアクティブマトリックス基板およびその製造方法、液晶装置
JP2000058540A (ja) * 1998-08-03 2000-02-25 Sony Corp 低誘電率絶縁膜形成用組成物および低誘電率絶縁膜形成方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3192947B2 (ja) * 1995-11-16 2001-07-30 東京応化工業株式会社 シリカ系被膜形成用塗布液の製造方法
US6586104B2 (en) * 1996-06-24 2003-07-01 Catalysts & Chemicals Industries Co., Ltd. Coating liquid for forming a transparent coating and substrate with a transparent coating
US6395651B1 (en) * 1998-07-07 2002-05-28 Alliedsignal Simplified process for producing nanoporous silica
DE19834265A1 (de) * 1998-07-30 2000-02-17 Thomas Gesner Verfahren zur Herstellung von Aerogelen und Anlage zur Herstellung von Aerogelschichten auf Substraten oder aus Aerogelen bestehenden Produkten
US6204202B1 (en) * 1999-04-14 2001-03-20 Alliedsignal, Inc. Low dielectric constant porous films
US6268457B1 (en) * 1999-06-10 2001-07-31 Allied Signal, Inc. Spin-on glass anti-reflective coatings for photolithography
US6368400B1 (en) * 2000-07-17 2002-04-09 Honeywell International Absorbing compounds for spin-on-glass anti-reflective coatings for photolithography

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280812A (ja) * 1991-03-08 1992-10-06 Fuji Davison Chem Ltd 基材上への多孔質シリカ被膜の形成法
JPH09213797A (ja) * 1996-02-07 1997-08-15 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JPH09227249A (ja) 1996-02-28 1997-09-02 Toyota Central Res & Dev Lab Inc 高密度多孔体及びその製造方法
JPH09227113A (ja) * 1996-02-28 1997-09-02 Agency Of Ind Science & Technol 無機多孔質膜の製造方法
JPH11284189A (ja) * 1998-03-30 1999-10-15 Seiko Epson Corp 薄膜半導体装置およびその製造方法、ならびにアクティブマトリックス基板およびその製造方法、液晶装置
JP2000058540A (ja) * 1998-08-03 2000-02-25 Sony Corp 低誘電率絶縁膜形成用組成物および低誘電率絶縁膜形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1189267A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003003440A1 (en) * 2001-06-29 2003-01-09 Rohm Co., Ltd. Semiconductor device and production method therefor
JP2003017487A (ja) * 2001-06-29 2003-01-17 Rohm Co Ltd 半導体装置およびその製造方法
JP2003017486A (ja) * 2001-06-29 2003-01-17 Rohm Co Ltd 半導体装置およびその製造方法
US7075170B2 (en) 2001-06-29 2006-07-11 Rohm Co., Ltd. Semiconductor device and production method therefor
US7385276B2 (en) 2001-06-29 2008-06-10 Rohm Co., Ltd. Semiconductor device, and method for manufacturing the same
WO2003075335A1 (fr) * 2002-03-04 2003-09-12 Rohm Co., Ltd. Procede de formation d'une couche mince
US7105459B2 (en) 2002-03-04 2006-09-12 Rohm Co., Ltd. Method for forming thin film
CN1327497C (zh) * 2002-03-04 2007-07-18 罗姆股份有限公司 薄膜的形成方法
CN100367474C (zh) * 2002-08-27 2008-02-06 爱发科股份有限公司 一种多孔氧化硅膜的制备方法

Also Published As

Publication number Publication date
KR20020020903A (ko) 2002-03-16
CN1366709A (zh) 2002-08-28
US20030087042A1 (en) 2003-05-08
EP1189267A1 (en) 2002-03-20
EP1189267B1 (en) 2012-05-23
CN1271691C (zh) 2006-08-23
EP1189267A4 (en) 2005-04-20
KR100816698B1 (ko) 2008-03-27
US6919106B2 (en) 2005-07-19

Similar Documents

Publication Publication Date Title
WO2001075957A1 (fr) Procede de preparation d'un film poreux sog
US20060251825A1 (en) Low dielectric constant insulating film and method of forming the same
JP2004143029A (ja) 多孔質シリカ膜の形成方法
US20120028011A1 (en) Self-passivating mechanically stable hermetic thin film
TW200836294A (en) Method for fabricating semiconductor device
US20090206453A1 (en) Method for Preparing Modified Porous Silica Films, Modified Porous Silica Films Prepared According to This Method and Semiconductor Devices Fabricated Using the Modified Porous Silica Films
WO2006137384A1 (ja) 層間絶縁膜および配線構造と、それらの製造方法
JP2008527757A5 (ja)
CN1877841A (zh) 半导体器件及其制造方法
US7102236B2 (en) Carbon containing silicon oxide film having high ashing tolerance and adhesion
JP2007062305A (ja) 透明ガスバリア基板
JP4856307B2 (ja) 多孔質sog膜の疎水化処理方法
US8088686B2 (en) Method of remedying deterioration of insulating film
JP4982012B2 (ja) 疎水性多孔質sog膜の作製方法
Yasuhara et al. Structure-designable method to form super low-k SiOC film (k= 2.2) by neutral-beam-enhanced chemical vapour deposition
JP5102920B2 (ja) 多孔質sog膜の多層膜形成方法
JP2001351911A (ja) 多孔質sog膜の作製方法
TW509997B (en) Method for preparing porous SOG film
WO2015184573A1 (zh) 一种超低介电常数绝缘薄膜及其制备方法
KR20030001254A (ko) 반도체 소자 제조 방법
JP4210581B2 (ja) 半導体素子の多孔性物質膜を形成する方法
Ito et al. Reduction of water in inorganic spin on glass
JP4814054B2 (ja) 積層構造体、その製造方法、及び積層体構造を用いてなる半導体装置
JP2002252225A (ja) 疎水化多孔質sog膜の作製方法
JP2007158066A (ja) 絶縁膜、その製造方法及びその絶縁膜を用いた多層配線構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 01801032.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 09926671

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001917803

Country of ref document: EP

Ref document number: 1020017015575

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001917803

Country of ref document: EP