WO2001073375A1 - Capteur de deplacement - Google Patents

Capteur de deplacement Download PDF

Info

Publication number
WO2001073375A1
WO2001073375A1 PCT/JP2001/002860 JP0102860W WO0173375A1 WO 2001073375 A1 WO2001073375 A1 WO 2001073375A1 JP 0102860 W JP0102860 W JP 0102860W WO 0173375 A1 WO0173375 A1 WO 0173375A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
measurement
optical system
light
image acquisition
Prior art date
Application number
PCT/JP2001/002860
Other languages
English (en)
French (fr)
Inventor
Nobuharu Ishikawa
Yoshihiro Yamashita
Hirotaka Nakashima
Masahiro Kawachi
Koji Shimada
Hitoshi Oba
Original Assignee
Omron Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corporation filed Critical Omron Corporation
Priority to EP01917782.3A priority Critical patent/EP1197728B1/en
Priority to JP2001571050A priority patent/JP3624887B2/ja
Priority to US09/980,310 priority patent/US6747745B2/en
Publication of WO2001073375A1 publication Critical patent/WO2001073375A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light

Definitions

  • the present invention relates to an optical displacement sensor that measures, for example, a displacement in a height direction of an object to be measured by a principle such as a light section method or a triangulation method.
  • the present invention relates to an optical displacement sensor capable of observing the properties of an elephant object surface on an image monitor screen.
  • a is the sensor head unit
  • b is the measurement light projected obliquely downward from the sensor head unit in the specified mounting posture toward the object to be measured (for example, a spot-shaped section or a section line).
  • Red laser beam c is the measurement light that is reflected on the surface of the object to be measured and then goes diagonally upward and is taken into the sensor to the sensor.
  • D is a glass plate or a metal plate with a smooth surface.
  • the specular reflection type object to be measured, e is the diffusely reflected light of the measurement light generated on the surface of the object to be measured. Note that the optical axis of the measurement light b emitted from the unit a and the optical axis of the measurement light c incident on the unit a are symmetrically arranged at the same inclination angle.
  • a is the sensor head unit
  • d is the object to be measured whose surface is irregularly reflective
  • f is the measurement light (for example, a cross section) that is projected vertically downward from the sensor head unit toward the object to be measured.
  • g is the measurement light reflected by the surface of the object to be measured, then goes upward and enters the sensor to the sensor
  • h is the diffusion of the measurement light generated on the surface of the object to be measured. This is a reflection component.
  • the reflected light c and g of the measurement light captured by the sensor head unit a are coupled to the light receiving surface of an image sensor (for example, a one-dimensional CCD or two-dimensional CCD) via a light receiving optical system (lens assembly).
  • the image signal is converted into a video signal containing an irradiation light image (spot-like or line-like bright spot) of the measurement light by the photoelectric conversion action of the image sensor.
  • the video signal obtained in this way is sent to a controller unit (not shown), and is used for calculation for displacement measurement using the principle of triangulation.
  • the irradiation positions of the measurement lights b and f must exactly match the target measurement positions.
  • the measurement light is visible laser light (red laser light, etc.)
  • the matching between the target measurement position and the measurement light irradiation position is performed by observing the measurement light irradiation light image with the naked eye while performing the target measurement. This can be done through the operation of moving to a position.
  • Some displacement sensors using a conventional two-dimensional image sensor can display an irradiation light image of the measurement light captured by the two-dimensional image sensor on an image monitor.
  • the image appears extremely brighter than the surrounding surface of the measurement object. This is because the shape and pattern of the surface of the surrounding measurement object appear in the image used for measurement, which hinders the measurement.
  • the relationship between the amount of measurement light, the timing of the measurement light, and the timing of the shirt in the two-dimensional image sensor is designed so that the surface of the measurement object is relatively dark and hardly visible. is there.
  • the image monitor can observe the irradiation light image of the measurement light, the surrounding surface of the measurement object is not captured, so it is not possible to confirm the positional relationship between the irradiation light image and the measurement object surface on the image monitor. Can not.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to make it possible to confirm a positional relationship between an irradiation light image of measurement light and a surface of a measurement object by using an image monitor.
  • An object of the present invention is to provide an improved displacement sensor and its element technology.
  • a displacement sensor of the present invention that achieves the above object has a sensor head and a controller integrally or separately.
  • integrated means that the sensor head section and the controller section are housed in the same housing.
  • separatate body means that the sensor head and the control This means that the roller and the roller are housed in separate housings.
  • the image monitor for displaying the image from the displacement sensor of the present invention may have an independent housing, or may be built in, for example, the housing of the controller.
  • the sensor head is composed of a measurement projection optical system that can project measurement light from a predetermined direction toward the measurement position on the measurement target object, and a surrounding area including the measurement position on the measurement target object.
  • Image acquisition optical system that can acquire an image when viewed from a different angle from the measurement projection optical system, and photoelectrically convert the image acquired through the image acquisition optical system to output a video signal corresponding to the image.
  • a two-dimensional imaging element to be generated.
  • the “measurement light projecting optical system” may include a lens array for defining a light projecting optical path, and may include an optical element such as a mirror filter if necessary.
  • the light source for light projection may be built-in, or may be introduced by an optical fiber from another place.
  • a red laser diode can be cited.
  • the “projection angle” either the regular reflection optical system described above with reference to FIG. 43 or the irregular reflection optical system described with reference to FIG. 44 may be used.
  • the controller can control shooting conditions related to the brightness of an image as a video signal, and can operate in a measurement mode and an observation mode.
  • the controller When the controller is set to the measurement mode, the controller turns on the measurement light source, and the measurement light irradiation light image appears at an appropriate brightness, but the surrounding measurement object surface image is darker than the appropriate brightness. Adjust the imaging conditions so that there is no image, calculate the target displacement based on the video signal obtained from the two-dimensional image sensor, and when in the observation mode, the surrounding measurement object including the measurement position Make sure that the object surface is The shadow condition is adjusted, and an image of the surrounding area including the measurement position on the surface of the measurement object is displayed on the screen of the image monitor based on the video signal obtained from the two-dimensional imaging device.
  • the positional relationship between the irradiation light image of the measurement light and the measurement target can be confirmed on the image monitor. For this reason, when the sensor head covers the target measurement position, or when the target measurement position has fine irregularities that make it difficult to see the shape by direct observation with the naked eye, the measurement light is emitted to any part of the target measurement position. Even when it is difficult to confirm whether or not the light is being irradiated, it is possible to accurately align the illuminated light image of the measurement destination with the measurement position and reliably obtain a desired measurement result.
  • “Shooting conditions when setting the measurement mode” includes the brightness of the measurement light source and
  • the exposure time of the two-dimensional image sensor may be included.
  • the luminance of the measurement light source means an average brightness that is proportional to the product of the instantaneous luminance and the lighting time when the measurement light source is pulsed.
  • the controller may adjust the shooting conditions so that the measurement light irradiation light image is not captured at all or is darker than appropriate brightness when the observation mode is set.
  • the “photographing conditions when the observation mode is set” may include whether the measurement light source is turned on or off, the luminance of the measurement light source, and / or the exposure time of the two-dimensional image sensor.
  • the imaging condition may be such that the period during which the light is extinguished from to lighting is set as the exposure time of the two-dimensional image sensor.
  • the controller When the controller is set to the observation mode, the controller The measurement light source may be turned on, and the imaging conditions may be adjusted so that both the measurement light irradiation light image and the surrounding measurement object surface image can be captured with appropriate brightness.
  • a photographing condition "in mAY to include the exposure time of the luminance and / or two-dimensional image sensor of the measuring light source (and, in the displacement sensor of the present invention, first and second observation as an observation mode Mode the controller adjusts the shooting conditions so that the measurement light irradiation light image does not appear at all or is darker than appropriate brightness in the state set in the first observation mode.
  • the observation mode When the observation mode is set, the measurement light source is turned on, and the imaging conditions are adjusted so that both the measurement light irradiation light image and the surrounding measurement object surface image are captured with appropriate brightness.
  • the measurement light irradiation light image does not appear at all or appears only darker than appropriate brightness, and the surrounding measurement object including the measurement position is measured.
  • One or more shots under conditions that ensure that the object is captured with appropriate brightness, and the measurement light source is turned on.
  • the measurement light irradiation light image is captured with appropriate brightness, but the surrounding surface of the measurement object is One or more shootings may be alternately repeated under the condition that only darker than appropriate brightness is captured.
  • the controller may display the taken image on the screen of the image monitor every time the image is taken.
  • the controller may display an image obtained by superimposing two types of images having different shooting conditions on the screen of the image monitor. Also in this case, both the measurement light irradiation light image and the surrounding surface of the object to be measured can be displayed with appropriate brightness on the screen of the image monitor.
  • the controller may alternately repeat one or more shots in the measurement mode and one or more shots in the observation mode. Good. In this way, the displacement can be measured while displaying the surface image of the measurement object on the image monitor. At this time, the controller may not display, on the screen of the image monitor, the image shot in the measurement mode, but may display the image shot in the observation mode. With this configuration, displacement measurement can be performed while confirming the state of the measurement position from an image captured in the state set in the observation mode. Alternatively, the controller may select and display, on the screen of the image monitor, either an image captured in the measurement mode or an image captured in the observation mode. In this way, the state of the image actually used for measurement can be checked at any time.
  • the displacement sensor according to the present invention further includes an illuminator that illuminates a peripheral region including the measurement position on the measurement target object, and the controller turns on the illuminator in a state set in the observation mode. It may be.
  • the “photographing conditions at the time of setting the observation mode” may include the brightness of the illumination by the illuminator. According to such a configuration, when the brightness of the illumination of the surrounding environment is not sufficient, or when the distance between the measurement target and the sensor head is short, the sensor head covers the measurement target and is covered. As a result, even if the brightness of the surface of the object to be measured is not sufficient, a clear image can be obtained by illuminating it. Becomes
  • the light source used for the illuminator a light emitting diode, an incandescent lamp, or any other small light source can be adopted.
  • a specific example of the illumination light source is a green light emitting diode.
  • the illuminator preferably includes a light projecting optical system that irradiates a fixed area including the measurement position in a fixed shape (for example, a circle or a square).
  • the image acquisition optical system includes an oblique image acquisition optical system that can acquire an image of the surrounding area including the measurement position on the measurement target object as viewed obliquely;
  • a stereoscopic image acquisition optical system capable of acquiring an image of the peripheral area including the measurement position viewed from the front, and a two-dimensional image sensor photoelectrically converts an image acquired through the perspective image acquisition optical system.
  • the target displacement amount is calculated based on the video signal from the perspective image two-dimensional image sensor, and in the state where the observation mode is set, based on the video signal from the stereoscopic image two-dimensional image sensor.
  • Image around its including measurement position of the stomach measurement object surface may be a so as to be displayed on the screen of the image monitor.
  • the “perspective image acquisition optical system” includes a lens array for defining a light receiving optical path, and may include an optical element such as a mirror or a filter if necessary.
  • the phrase “observed diagonally” means “observed obliquely in the specified sensor mounting posture”. For example, assuming that the object to be measured is placed horizontally, This corresponds to this case. More specifically, the angle of incidence of the measuring optical system on the sensor head of the conventional displacement sensor will be a reference (c in Fig. 43, g in Fig. 44).
  • the “standard-view image acquisition optical system” can also include a lens array for defining the optical path for receiving light, and can include optical elements such as a mirror and a filter if necessary.
  • viewed from the front means “viewed from the front in the specified sensor mounting posture” .
  • the object to be measured is placed horizontally, it is viewed from directly above. It was more specifically c that may correspond thereto will exit angle of the light projecting optical system of diffused reflection object corresponding in head to the sensor of the conventional displacement sensor can be one of the reference (FIG. 4 4 f reference)
  • the measurement mode a highly reliable measurement operation is performed based on only the optical image from the perspective image acquisition optical system while eliminating the optical image from the stereoscopic image acquisition optical system. be able to.
  • the peripheral image without distortion is eliminated based on only the optical image from the stereoscopic image acquisition optical system while excluding the optical image from the perspective image acquisition optical system.
  • the image of the surrounding area can be displayed on the screen of the image monitor.
  • the controller corrects the magnification of the image acquired through the stereoscopic image acquisition optical system with the displacement amount calculated based on the perspective image acquired through the perspective image acquisition optical system, thereby obtaining the object to be measured.
  • An image processing mode for calculating the length and area appearing on the surface may be further provided.
  • the image acquisition optical system consists of an oblique image acquisition optical system that can acquire an image of the surrounding area including the measurement position on the measurement target object as viewed obliquely, and the surrounding area including the measurement position on the measurement target object.
  • a two-dimensional image sensor that is capable of acquiring an image viewed from the front, which is capable of acquiring an image viewed from the front.
  • the two-dimensional imaging device may be arranged at a position where the optical path of the perspective image acquisition optical system and the optical path of the stereoscopic image acquisition optical system intersect.
  • one image sensor can be shared for the photoelectric conversion of the oblique image and the photoelectric conversion of the stereoscopic image, and the screen of the image monitor is displayed based on the video signal obtained from the sensor head unit.
  • the function of displaying an image without distortion on the surface of the object to be measured can be realized at low cost without impairing the original displacement measurement function.
  • the outgoing optical axis of the measuring projection optical system and the incident optical axis of the oblique image acquisition optical system are symmetrically arranged at the same inclination angle, and the two-dimensional imaging device
  • the oblique image acquisition optical system disposed on the extension line may include an optical axis bending mechanism that bends an incident optical axis and causes the optical axis to enter the two-dimensional image sensor.
  • the present invention can be applied to both the surface regular reflection object and the surface irregular reflection object, and furthermore, the measurement projection optical system, the oblique image acquisition optical system, and the stereoscopic image acquisition are provided in the housing of the sensor head.
  • the optical system can be housed in a compact with good balance.
  • the optical axis bending mechanism forms an optical image of the measurement light that forms an image on the light receiving surface of the two-dimensional image sensor via the stereoscopic image acquisition optical system and an image on the light receiving surface of the two-dimensional image sensor via the perspective image acquisition optical system.
  • the light image of the measurement light may be configured to move on the light receiving surface of the two-dimensional image sensor in the same direction in accordance with a change in the measurement displacement.
  • any one of the first optical path to the two-dimensional imaging device via the perspective image acquisition optical system and the second optical path to the imaging device via the stereoscopic image acquisition optical system can be set by additionally providing a shirt which can be selectively shaded by manual or electric control.
  • the optical path of the stereoscopic image acquisition optical system may be shielded at regular time, and the optical path of the oblique image acquisition optical system may be shielded when the observation mode is set.
  • the first optical path leading to the imaging device via the perspective image acquisition optical system and the second optical path leading to the imaging device via the stereoscopic image acquisition optical system are alternatively selected.
  • distortion is prevented by blocking the perspective image to the image sensor during object observation. It is possible to observe the surface of the measurement object using an image without images.
  • the mounting position of the shutter means may be any one of the entrance of the optical path of the optical system, the middle of the optical path, and the end of the optical path.
  • shirts such as a mechanical one that closes the optical path with a shirt evening plate, one that uses an electro-optical element (such as liquid crystal or PZT) that electrically controls transparency and opacity, and a variety of other structures. Things can be adopted. Further, “alternative” does not mean that it is sufficient to realize such a function as a result, and that both optical paths can be both opened and closed.
  • an illuminator that illuminates a peripheral area including a measurement position on a measurement target object and a first optical path that leads to an imaging device via a perspective image acquisition optical system.
  • a first optical filter having a band-pass characteristic that mainly transmits measurement light, and a second optical path that passes through the stereoscopic image acquisition optical system to the image sensor and mainly transmits illumination light.
  • a second optical filter having a transmission characteristic, and the controller may turn on the illuminator in a state set in the observation mode.
  • examples of the measurement light source, the illumination light source, the first optical filter, and the second optical filter include a red laser diode as the measurement light source, a green light emitting diode as the illumination light source, and a first optical filter.
  • An optical bandpass filter having a narrow passband centered on the frequency component of the red laser, and an optical bandpass filter having a narrow passband centered on the frequency component of the green light emitting diode as the second optical filter be able to.
  • the controller includes an image acquired through the stereoscopic image acquiring optical system based on a displacement amount calculated based on the oblique image acquired through the oblique image acquiring optical system.
  • An image processing mode for calculating the length or area appearing on the surface of the measurement target object by correcting the magnification of the object may be further provided.
  • the sensor head of the present invention includes a measurement light projecting optical system capable of projecting measurement light from a predetermined direction toward a measurement position on the measurement target object, and a measurement light projection system including the measurement position on the measurement target object.
  • An oblique image acquisition optical system capable of acquiring an image of a peripheral region viewed obliquely
  • a stereoscopic image acquisition system capable of acquiring an image of a peripheral region including a measurement position on a measurement target object viewed from the front.
  • the acquisition optical system, the image viewed obliquely obtained via the perspective image acquisition optical system, and the image viewed from the front acquired via the standard-view image acquisition optical system are each subjected to photoelectric conversion into respective images.
  • a two-dimensional image sensor that generates a corresponding video signal.
  • the “measurement light projecting optical system” may include a lens array for defining a light projecting optical path, and may include an optical element such as a mirror or a filter as necessary.
  • the light source for light projection may be built-in, or may be introduced by an optical fiber from another place.
  • a red laser diode can be cited.
  • the “perspective image acquisition optical system” also includes a lens array for defining a light receiving optical path, and may include an optical element such as a mirror filter if necessary.
  • the phrase “obliquely viewed” means “observed diagonally in the prescribed sensor mounting posture” .For example, assuming that the object to be measured is placed horizontally, This is the case. More specifically, the incident angle of the light receiving optical system for measurement in the sensor head of the conventional displacement sensor will be a reference (see c in FIG. 43 and g in FIG. 44).
  • the “emergent vision image acquisition optical system” can also include a lens array for defining the optical path for receiving light, and can include optical elements such as a mirror filter if necessary.
  • the phrase “viewed from the front” means “viewed from the front in the specified sensor mounting posture” .For example, assuming that the object to be measured is placed horizontally, it is viewed from directly above. More specifically, the output angle of the projection optical system corresponding to the irregularly-reflected object in the sensor head of the conventional displacement sensor would be a reference (f in Fig. 44). See).
  • video signals corresponding to an image of the surface of the measurement target viewed from an oblique direction and an image of the measurement target viewed from the front can be obtained.
  • the video signal obtained from the sensor head can be obtained without impairing the original displacement measurement function. Based on this, it is possible to display an image without distortion on the surface of the measurement target object on the screen of the image monitor.
  • the two-dimensional image sensor is used for the optical path emmetropic image acquisition optical system of the perspective image acquisition optical system. You may make it arrange
  • one image sensor can be shared for the photoelectric conversion of the oblique image and the photoelectric conversion of the stereoscopic image, and the screen of the image monitor is displayed based on the video signal obtained from the sensor head unit.
  • the function of displaying an image without distortion on the surface of the object to be measured can be realized at low cost without impairing the original displacement measurement function.
  • the emission optical axis of the measurement projection optical system and the incident optical axis of the oblique image acquisition optical system are symmetrically arranged at the same inclination angle, and the two-dimensional image sensor is on an extension of the incident optical axis of the standard vision image acquisition optical system.
  • the oblique image acquisition optical system may include an optical axis bending mechanism that bends the incident optical axis and causes the optical axis to enter the two-dimensional image sensor.
  • the present invention can be applied to both the surface regular reflection object and the surface irregular reflection object, and furthermore, the measurement projection optical system, the oblique image acquisition optical system, and the stereoscopic image acquisition are provided in the housing of the sensor head.
  • the optical system can be housed in a compact with good balance.
  • the optical axis bending mechanism forms an optical image of measurement light that forms an image on the light receiving surface of the two-dimensional image sensor via the stereoscopic image acquisition optical system and an image on the light receiving surface of the two-dimensional image sensor via the oblique image acquisition optical system
  • the light image of the measurement light may be configured to move on the light receiving surface of the two-dimensional image sensor in the same direction in accordance with a change in the measurement displacement.
  • Either the first optical path to the two-dimensional image sensor via the perspective image acquisition optical system or the second optical path to the image sensor via the stereoscopic image acquisition optical system can be manually or remotely controlled. Shut the evening, which can be shaded May be provided.
  • the first optical path leading to the imaging device via the perspective image acquisition optical system and the second optical path leading to the imaging device via the stereoscopic image acquisition optical system are alternatively selected.
  • distortion is prevented by blocking the perspective image to the image sensor during object observation. It is possible to observe the surface of the measurement object using an image without images.
  • the sensor head of the present invention may further include an illuminator that illuminates a peripheral area including a measurement position on the measurement target object. According to such a configuration, when the brightness of the illumination of the surrounding environment is not sufficient, or because the distance between the measurement target and the sensor head is short and the sensor head covers the measurement target, Even when the brightness of the surface of the measurement object is not sufficient, it is possible to acquire a clear image by illuminating the surface.
  • a first optical filter which is interposed in a first optical path to an imaging element via a perspective image acquisition optical system and has a bandpass characteristic of mainly passing measurement light is provided.
  • a second optical filter interposed in the second optical path to the imaging device via the stereoscopic image acquisition optical system and having a band-pass characteristic of mainly transmitting illumination light.
  • FIG. 1 is an external view of an entire displacement sensor system to which the present invention is applied.
  • FIG. 2 is a block diagram showing an electrical hardware configuration of the entire displacement sensor system to which the present invention is applied.
  • FIG. 3 is a block diagram showing the internal functional configuration of the controller unit.o
  • FIG. 4 is a diagram showing the internal configuration of the sensor head unit.
  • FIG. 5 is a general flow chart schematically showing the operation of measuring the displacement of the control unit.
  • FIG. 6 is a diagram for explaining the operation of the displacement sensor of the present invention in the measurement mode.
  • FIG. 7 is an explanatory diagram of an image picked up by CCD in the sensor head unit.
  • FIG. 8 is an explanatory diagram of the measurement point extraction processing within the measurement range.
  • FIG. 9 is an explanatory diagram showing a relationship between a captured image by CCD and a line bright waveform.
  • FIG. 10 is an explanatory diagram of a threshold value determining method.
  • FIG. 11 is an explanatory diagram of the measurement point coordinate extraction processing.
  • FIG. 12 is an explanatory diagram of a monitor screen generation method.
  • FIG. 13 is a diagram showing an example of a monitor screen in the measurement mode of the displacement sensor of the present invention.
  • FIG. 14 is a diagram showing a change in the light receiving optical path when the measurement object moves up and down in the displacement sensor of the present invention.
  • FIG. 15 is a diagram for explaining the operation of the displacement sensor of the present invention in the observation mode.
  • FIG. 16 shows the operation in the observation mode using the measurement optical path.
  • FIG. 17 is a diagram showing a comparison of the monitor screens in the observation mode between the displacement sensor of the present invention and the conventional displacement sensor.
  • FIG. 18 is a view showing a modified example of the sensor head of the present invention.
  • FIG. 19 is a diagram showing the inside of the sensor head unit with the case side surface opened.
  • FIG. 20 is a diagram for explaining the structure of a sensor unit case with a shutter unit.
  • FIG. 21 is a diagram for explaining the structure of the shirt unit.
  • FIG. 22 is a diagram showing the operation of the measurement laser, the illumination LED, and the CCD for comparison in the measurement mode and the observation mode.
  • FIG. 23 is a diagram for explaining an example of an application of the displacement sensor of the present invention.
  • FIG. 24 is a block diagram showing an electric configuration of the displacement sensor of the present invention.
  • C FIG. 25 is a diagram showing an optical system of a sensor head of the displacement sensor of the present invention.
  • FIG. 26 is a time chart showing a process of superposing a slit light image on a work surface image.
  • FIG. 27 is a diagram illustrating an example of a monitor image.
  • FIG. 28 is a block diagram showing an electrical configuration of the displacement sensor of the present invention.
  • FIG. 29 is a diagram showing another example of the optical system of the sensor head in the displacement sensor of the present invention.
  • FIG. 30 is a time chart showing a process of superimposing the slit light image and the work surface image.
  • FIG. 31 is a diagram schematically illustrating a pixel array on a light receiving surface of an image sensor of a sensor head unit.
  • Fig. 32 is a diagram showing the relationship between the photosensitive pixel area and the optical black pixel area in the image sensor of the sensor head part by the actual screen aspect ratio.
  • C Fig. 33 is the charge transfer in the image sensor.
  • FIG. 3 is a block diagram illustrating a circuit.
  • FIG. 34 is a diagram showing the internal configuration of the transfer pulse generator.
  • FIG. 35 is a time chart showing the output form of the horizontal transfer pulse (TP 2).
  • FIG. 36 shows the contents of the transfer specification table.
  • FIG. 37 is a diagram illustrating the meanings of Ll, L2, and 0E.
  • FIG. 38 is a flowchart showing the operation of the transfer control unit.
  • FIG. 39 is a time chart illustrating an example of driving the imaging device.
  • FIG. 40 is a view for explaining a main part of the time chart of FIG.
  • FIG. 41 is a diagram for explaining a main part of the time chart of FIG.
  • FIG. 42 is a diagram showing, in a table form, a data configuration for one screen in one driving example of the image sensor.
  • FIG. 43 is an explanatory diagram of an optical system of a displacement sensor for a regular reflection object.
  • FIG. 44 is an explanatory diagram of an optical system of a displacement sensor for a diffuse reflection object.
  • the conventional sensor head regardless of whether it is a regular reflection object type or a diffuse reflection object type, forms an image on the light receiving surface of the built-in two-dimensional image sensor.
  • the image is a somewhat distorted image obtained by observing the measurement position on the measurement object obliquely from above, so that the surface of the measurement object around the measurement light irradiation light image can be captured with appropriate brightness.
  • the problem of the image distortion becomes more serious in a sensor head unit compatible with a regular reflection object when the measurement distance L is short.
  • the present inventors have developed not only an image obtained when the measurement position on the measurement target object is looked down obliquely from above, but also an image obtained when the measurement position on the measurement target object is looked down from directly above.
  • the sensor head includes a measurement light projecting optical system that can project measurement light from a predetermined direction toward a measurement position on the measurement target object, and a peripheral area including the measurement position on the measurement target object.
  • An oblique image acquisition optical system capable of acquiring an image of the object viewed obliquely
  • a frontal image acquisition optical system capable of acquiring an image of the surrounding area including the measurement position on the measurement object viewed from the front
  • Generate an image signal corresponding to each image by photoelectrically converting an image viewed from an oblique direction obtained through a perspective image obtaining optical system and an image viewed from the front side obtained through a stereoscopic image obtaining optical system.
  • a two-dimensional image pickup device as described above.
  • the image monitor screen can be obtained by using the video signal obtained from the sensor head itself without preparing a special camera or the like separately. Above, the state of the surface of the object to be measured can be projected.
  • the images projected on the screen of the image monitor include (1) an image of the surface of the object to be measured in a state where the measuring light is not irradiated, and (2) an image of the surface of the object to be measured in a state where the measuring light is irradiated.
  • FIG. 1 is an external view of an entire displacement sensor system to which the present invention is applied
  • FIG. 2 is a block diagram showing an electric hardware configuration of the entire displacement sensor system to which the present invention is applied.
  • the displacement sensor system 10 includes a sensor head unit 1, a controller unit 2, a console unit 3, an image monitor 4, and a synchronization sensor 5.
  • the external device 6 represents a PLC (programmable controller) controlled using the displacement data output D1 and the judgment output D2 output from the controller unit 2.
  • the sensor head unit 1, the control unit unit 2, the console unit 3, and the image monitor 4 have separate housings, respectively, but this is only an example.
  • the sensor head unit 1 and the controller unit 2 are housed in the same housing, the controller unit 2 and the console unit 3 are housed in the same housing, and furthermore, the controller unit 2 and the console unit are housed.
  • the housing configuration can be arbitrarily modified, such as housing 3 and the image monitor 1 in the same housing.
  • the measurement light is directed toward the measurement position on the measurement target object, as will be described later in detail with reference to FIGS. 6 and 14 to 21.
  • a measurement projection optical system for projecting light a perspective image acquisition optical system for acquiring an image of the surrounding area including the measurement position on the measurement object as viewed obliquely, and a measurement position on the measurement object.
  • At least an imaging means for photoelectrically converting an image viewed from the front and generating a video signal corresponding to each image is provided at least.
  • FIG. 4 is a block diagram showing the electrical internal configuration of the c-sensor headunit 1, which is a linear irradiation light image of the generated measurement light. As shown in the figure, inside the sensor head unit 1, there is a light emitting system element (LD drive circuit 111, LD 112, etc.) for projecting the measurement light to the measurement target object 7.
  • LD drive circuit 111, LD 112, etc. a light emitting system element for projecting the measurement light to the measurement target object 7.
  • a light receiving system element for capturing an image of the object 7 to be measured (CCD control circuit 121, CCD 122, amplification circuit 123, HPF 124, P / H circuit 125, AG C amplifier circuit 126) and illumination system elements (LED drive circuit 131, LED 132, etc.) for illuminating the periphery including the measurement position on the measurement object 7 in a circular shape, for example.
  • CCD control circuit 121, CCD 122, amplification circuit 123, HPF 124, P / H circuit 125, AG C amplifier circuit 126) and illumination system elements (LED drive circuit 131, LED 132, etc.) for illuminating the periphery including the measurement position on the measurement object 7 in a circular shape, for example. Have been.
  • the timing signal generating circuit 101 generates an LD driving pulse signal P 1 for causing a laser diode (hereinafter referred to as LD) 112 to emit light.
  • the LD drive circuit 1 1 1 causes the LD 1 1 2 to emit a pulse of light.
  • the timing signal generation circuit .101 controls the peak power of the pulsed laser light via the LD drive circuit 111.
  • the pulsed laser light emitted from the LD 112 is emitted as measurement light 81 to the surface of the measurement object 7 via a measurement projection optical system (not shown).
  • a linear light image (light image of a line beam) 83 (see FIG. 1) is formed on the surface of the measurement object 7 by the irradiation of the measurement light 81.
  • the light receiving system elements will be described.
  • the line beam reflected on the surface of the measurement target object 7 passes through one of two image acquisition optical systems (not shown) (a perspective image acquisition optical system and a stereoscopic image acquisition optical system) to form a two-dimensional CCD 1
  • the light is incident on the light receiving surface 22.
  • the perspective image acquisition optical system is an optical system for acquiring an image of the surrounding area including the measurement position on the measurement object 7 as viewed obliquely, and is a stereoscopic image acquisition optical system.
  • the system is an optical system for acquiring an image of the surrounding area including the measurement position on the measurement object 7 as viewed from the front.
  • reference numeral 82a is the metering light reflected obliquely upward on the surface of the measurement target object 7
  • 82b is the measurement light reflected directly above the surface of the measurement target object 7,
  • 150 is the reflected light thereof It shows a mechanical shutter for taking in either one of 82 a and 82 b alternatively.
  • the measurement projection is performed so that the irradiation light image position of the line beam on the light receiving surface of the CCD 122 changes according to the target displacement (for example, the distance between the sensor head unit 1 and the measurement object 7).
  • the positional relationship between the optical optical system and the perspective image acquisition optical system has been determined. For the determination of the positional relationship, for example, a light cutting method using a triangulation method is used.
  • the video signal output from the CCD 122 is amplified by the amplifying circuit 123 for each pixel, and then is amplified by the high-pass filter (HPF) 124 and the peak hold (P / H) circuit 125 for each pixel.
  • HPF high-pass filter
  • P / H peak hold circuit 125 for each pixel.
  • the fluctuation of the zero-level signal appearing in is removed, and each pixel signal is shaped so as to correctly represent the amount of received light. Thereafter, the magnitude of the signal value is appropriately controlled by the AGC amplifier circuit 126, and is sent to the controller unit 2 as the video signal Vs.
  • the driving mode of the CCD 122 including the shirt evening time is controlled via the CCD control circuit 122.
  • high-pass filter (HPF) 124 filter timing, peak hold circuit (P / H) 125 peak hold evening, AGC amplifier circuit 1 using pulse signals P3 to P5 The gain of 26 and its switching timing are controlled.
  • a pulse signal P 6 output from the evening timing signal generation circuit 101 is output.
  • the LED driving circuit 13 1 is controlled by the pulse driving of the LED 13 2 constituting the illuminator, and the surrounding area including the measurement position on the surface of the measurement target object 7 is illuminated in a circular shape, for example. .
  • a red laser diode is used as the laser diode 112 constituting the light source for measurement
  • a green light emitting diode is used as the LED 132 constituting the illuminator, for example.
  • reference numeral 84 denotes illumination light
  • 128 denotes a mirror.
  • the measurement condition storage unit 14 1 stores the measurement conditions consisting of the CCD 1 22 shutter time, the LD 1 12 emission time, the LD 1 12 peak power, the AGC amplifier circuit 1 26 gain, etc.
  • the light-emitting time of the LEDs 132 constituting the light source of the illuminator is stored, and the optimum measurement conditions and imaging conditions are selected by the control signal CONT from the controller unit 2.
  • FIG. 3 is a block diagram showing the internal functional configuration of the controller unit 2.
  • the controller unit 2 is roughly composed of a control unit 210 and a measurement unit 220.
  • the measuring section 220 includes an interface section 221 for the sensor head unit 1 and an image calculation section 222 for processing image data taken from the sensor head unit 1 via the interface section 221. It is included.
  • GUI graphic user interface
  • the image processing unit 2 12 that applies appropriate processing to the incoming image data and sends it to the GUI unit 2 1 1, and the displacement data output D 1 and judgment output D 2 described above It includes an external output interface unit 214 for sending out to the device and a control processing unit 213 for overall control of the entire device.
  • the sensor head control unit 221 B included in the sensor unit 221 is a light source for measurement so that the amount of light received by the CCD 122 built into the sensor head unit 1 is appropriate.
  • the light amount of the laser diode 112 is controlled, and the light amount of the LED 132, which is a light source for illumination, is controlled.
  • the sensor head controller 221 B controls the built-in electronic shirting mechanism so that the exposure time of the CCD 122, which is the image sensor, is appropriate.
  • the image data D 3 captured by the CCD 122 in the unit 1 is captured into the measuring unit 220 by the operation of the image capturing unit 222 A.
  • the image data captured by the measuring unit 220 in this way is converted to the image calculating unit 220
  • the image transfer unit 222A sends the image data D3 coming from the image capture unit 222A to the image processing unit 212 in the control unit 210. Further, the measurement processing section 222B performs measurement processing based on the image data D3, obtains the displacement amount data D1 and the judgment output D2, and stores these data D7 in the control section 210. It is sent to the control processing unit 2 13.
  • the control processing unit 2 13 in the control unit 210 obtains the line beam direction measurement point coordinate data D 8 based on the data D 7 sent from the measurement processing unit 2 2 B, and this is used as an image processing unit.
  • Send to 2 1 2 The image processing unit 212 sends data D4 including image data and line brightness to the GUI unit 211.
  • the GUI unit 211 receives various commands from the console unit 3, edits display data, and sends the edited data to the image monitor 4 as a monitor output D 5.
  • the controller unit 2 shown in this embodiment is provided with a measurement mode and first and second observation modes. And, when the measurement mode is set, While the optical path of the optical system is shielded by means of a shirt (for example, a mechanical shirt 150 is equivalent to this), the measurement light source (for example, laser diode 112 is equivalent to this) is turned on and an illuminator is used. (E.g., LED 132 is equivalent to this), and the measurement light irradiation light image appears at an appropriate brightness, but the surrounding measurement object surface image is only darker than the appropriate brightness.
  • the light source for measurement is turned off, the illuminator is turned on, and the measurement position including the measurement position is kept while the optical path of the oblique image acquisition optical system is blocked by the shirt means.
  • a control operation for displaying an image around the position including the position on a screen of an image monitor (for example, the image monitor 4 corresponds to this) is executed.
  • the light source for measurement and the illuminator are turned on while the optical path of the oblique image acquisition optical system is shielded from light by the shirt, and the measurement light irradiation light image and its surroundings are turned on.
  • the metering irradiation light on the surface of the measurement object is automatically adjusted while adjusting the shooting conditions so that both the surface image of the measurement object is captured with appropriate brightness.
  • the control operation to display the surrounding image including the image on the screen of the image monitor is executed.
  • the automatic extraction processing of the measurement point coordinates and the displacement amount measurement processing required for the three control operations are mainly realized by the measurement processing unit 222B, and the display data editing process is mainly performed by the image processing unit 2 12 and the GUI unit 211, and the imaging condition adjustment processing is mainly realized by the sensor head control unit 22B.
  • the console unit 3 is of a handy type, and on its surface, in addition to various function keys, four-directional keys for moving a cursor are arranged.
  • the console unit 3 is connected to the controller unit 2 via a predetermined electric cord.
  • Image monitor 4 is the monitor output output from controller unit 2.
  • Display data and display the corresponding image on the screen.c
  • any commercial display such as a CRT display or a liquid crystal display can be adopted. I have.
  • FIG. 6 is a diagram for explaining the operation of the displacement sensor of the present invention in the measurement mode
  • FIG. 15 is a diagram for explaining the operation of the displacement sensor of the present invention in the observation mode.
  • the housing of the sensor head unit 1 includes a measuring light emitting optical system for projecting the measuring light 81 obliquely downward toward the measuring position on the object 7 to be measured.
  • the system (in this example, it is composed of a lens assembly 113 containing one or more lens arrays) and an image of the surrounding area including the measurement position on the object 7 to be measured viewed obliquely from above
  • a perspective image acquisition optical system (in this example, this is composed of a lens assembly 127a and a mirror 128) to acquire the image, and its surrounding area including the measurement position on the measurement object 7 is true.
  • a stereoscopic image acquisition optical system (in this example, composed of a lens assembly 127 b) for acquiring an image viewed from above, an optical path of the perspective image acquisition optical system, and a path of the stereoscopic image acquisition optical system.
  • Two-dimensional image sensor placed at the intersection of And a shirt means for selectively blocking light from a perspective image acquisition optical system and a stereoscopic image acquisition gloss system (in this example, reciprocating as indicated by arrow 91).
  • a mechanical shirt that selectively blocks two light paths) and a light source for illumination.
  • An illuminator (in this example, a green light emitting diode 132 with a built-in lens function) that illuminates a peripheral area including a measurement position on the measurement target object 7 with light is included.
  • the outgoing optical axis (reference numeral 81) of the measuring projection optical system and the incident optical axis (reference numeral 82a) of the oblique image acquisition optical system are shown in FIG. As clearly shown in FIG. 6, they are arranged symmetrically at the same inclination angle, thereby forming a so-called specular object-compatible optical system. Therefore, the sensor head unit 1 can be applied to not only a surface irregularly reflecting object but also a surface regular reflecting object such as glass.
  • the image sensor C C D 122 located at the top inside the housing is
  • the lens assembly 1 27 b constituting the stereoscopic image acquisition optical system is positioned on the extension of the incident optical axis.
  • the oblique image acquisition optical system has an optical axis bending mechanism (in this example, one optical axis bending mechanism) that bends the incident optical axis (designated by reference numeral 82a) and causes the optical axis to enter the CCD 122, which is the imaging device.
  • Mira 1 is composed of 1 2 8). Therefore, the CCD 122 constituting the image sensor can receive both the image acquired by the normal-view image acquisition optical system and the image acquired by the oblique-view image acquisition optical system. In other words, the cost is reduced because only one image sensor is required for two image acquisition optical systems.
  • the green light emitting diode 132 constituting the illuminator preferably has a certain degree of beam function.
  • a circular irradiation light image 85 of a predetermined size is formed on the upper surface of the measurement object 7 existing at the reference distance.
  • the measurement object 7 shown in this example is a plate-like object having a flat surface. At the approximate center of the plate-shaped object 7, a circular hole 71 penetrating the front and back is formed.
  • the plate-like object forming the measurement target object 7 has a step corresponding to the thickness of the plate.
  • a step corresponding to the plate thickness is detected as a displacement amount in a state where the irradiation light image 83 of the line beam is aligned with the circular hole 71.
  • FIG. 1 An example of a more specific arrangement of each optical element in the sensor head unit 1 is shown in FIG. The figure shows the inside of the sensor head unit with the case side open.
  • 1 12 is a red laser diode element constituting a measurement light source
  • 1 13 is a lens assembly constituting a measurement projection optical system
  • 1 27 a is a measurement position on a measurement object.
  • 128 is a mirror that bends the optical axis of the lens assembly 127 A
  • 1 2 7b is a lens assembly that constitutes a stereoscopic image acquisition optical system for acquiring an image of the surrounding area including the measurement position on the object to be measured, as viewed from the front
  • 122 is an optical system for acquiring a perspective image.
  • Two-dimensional CCD as an imaging unit that photoelectrically converts an obliquely-obtained image acquired through a stereoscopic image acquisition optical system and an image viewed from the front, and generates a video signal corresponding to each image. Element.
  • these optical elements (112, 113, 127a, 127b, 128 and 122) are well-balanced in the sensor head housing. It is housed in a compact.
  • FIG. 20 An example of a more specific mechanical structure of the mechanical shirt 150 is shown in FIG. 20 and FIG.
  • a flat plate-shaped shutdown unit 150A is screwed into the lower surface opening of the sensor unit case 1A.
  • the shutter unit 150A has a light-emitting window 151, an obliquely upward capturing window 152, a directly upward capturing window 153, and lighting.
  • Four windows, consisting of windows 1 5 and 4 are open.
  • the measuring light 81 is emitted from the light emitting window 15 1. From the obliquely upward capturing window 15 2, measurement reflected light corresponding to an image of the surrounding area including the measurement position on the measurement object viewed obliquely from above is incident. Measurement reflection light corresponding to an image of the surrounding area including the measurement position on the measurement object viewed from directly above is incident from the window 1503 for directly facing upward.
  • the illumination window 84 emits illumination light 84 from the illumination green light emitting diode 132.
  • a shutter plate 157 is slidably provided inside the shirt unit 150A.
  • the width of the shutter plate 157 in the slide direction is set slightly larger than the diameter of the windows 152, 153, 154, and the slide stroke is shown in Fig. 21 (b).
  • the shirt evening board 157 is in a position to block the window 1503 facing directly upward, the lighting window 154 is also closed at the same time, thereby blocking the illumination light.
  • a shutter plate operation knob 1555 protrudes from a shutter plate guide slot 1556 provided on the side of the shirt unit 150A.
  • the knob 15 5 5 is pinched with a finger and moved back and forth to select the diagonally upward window 15 2 and the diagonally upward window 15 3 via the shirt evening plate 15 7. It is possible to block all of them.
  • FIG. 6 is a diagram illustrating the operation of the displacement sensor of the present invention in the measurement mode. As shown in the figure, when the measurement mode is set, the optical path of the stereoscopic image acquisition optical system (including the lens assembly 127 b) is moved along the shirt path (mechanical shirt section 150).
  • FIG. 5 is a general chart showing the displacement measurement operation in the controller unit 2.
  • an image photographed by the CCD 122 in the sensor head 1 is taken into the controller unit 1 (step 501).
  • FIG. 7 is an explanatory diagram of an image captured by the CCD 122 in the sensor head 1.
  • the CCD 122 built in the sensor head 1 has an elongated rectangular field of view 122a.
  • the X direction along the long side of this field of view is the displacement direction
  • the ⁇ direction along the short side is the line beam direction (hereinafter also simply referred to as the line direction).
  • a line beam image (irradiation light image) A1 is drawn as a zigzag straight line in the sensor's field of view 122a.
  • the left side in the figure is the direction near the sensor head
  • the right side is the direction far from the sensor head.
  • a feature point extraction process within the measurement range is executed (step 502).
  • An explanatory diagram of the measurement point extraction processing within the measurement range is shown in FIG.
  • a measurement range A4 is shown in the sensor's field of view 122a by two parallel dotted lines A2 and A3 extending in the horizontal direction in the figure.
  • a predetermined feature point extraction algorithm is used within this measurement range (measurement point extraction range) A4 to arrange the peak positions (P x, P y). Then, the bottom position (Bx, By) is extracted.
  • the start line A2 and the end line A3 that specify the measurement range (measurement point extraction range) A4 are set in advance by the user.
  • FIG. 9 is an explanatory diagram showing the relationship between the image picked up by the CCD and the line-bright waveform.
  • the light receiving luminance of each pixel is extracted on the line including the peak position indicated by the dashed line in the figure, and this is arranged in the displacement direction.
  • the line-bright waveform A5 is drawn on rectangular coordinates with the horizontal axis representing the displacement direction and the vertical axis representing the gradation.
  • the measurement point coordinates on the line-bright waveform are extracted according to a predetermined extraction algorithm (step 504).
  • the extraction of the measurement point coordinates is performed through a threshold value determination process and a measurement point coordinate extraction process.
  • FIG. 10 is an explanatory diagram showing an example of the threshold value determining method. As shown in the figure, the threshold value TH is determined as a% with respect to the luminance Vp of the pixel PP indicating the peak value. That is, TH is automatically determined as Vp X a%.
  • An explanatory diagram of the measurement point coordinate extraction process is shown in FIG. In this example, three types of measurement point coordinate extraction methods are provided: a centroid mode, an edge center mode, and a one-sided edge mode.
  • a measurement point is obtained as a gray-scale center of gravity of a portion exceeding a threshold value TH indicated by hatching in the figure.
  • a measurement point is obtained as the center of two edges, which is the intersection of the line bright waveform and the threshold value TH.
  • the measurement point is determined as one side edge of the line brightness waveform and the threshold value TH.
  • the amount of displacement is calculated from the coordinates of the measurement point (step 505).
  • X is a displacement direction coordinate
  • A, B, and C are multipliers respectively determined by the optical system.
  • the obtained displacement amount (judgment output if necessary) is output to the image monitor 4 and the external device 6 (Step 506) o
  • FIG. 12 c An explanatory diagram of a method of generating an image on a monitor screen is shown in FIG. 12 c.
  • the image memory (0) contains the raw image captured from the sensor head
  • the image memory (1) contains the screen frame judgment values and the fixed frame screen
  • the image memory (2) contains the line brightness.
  • the measured values can be stored in the image memory (3) in terms of the displacement amount and the criterion.
  • the data on these image memories (0) to (3) are read out, superimposed, arranged side by side, or independently, by the action of the GUI unit 122 and the image processing unit 122.
  • FIG. 13 shows an example of a monitor screen in the measurement mode of the displacement sensor of the present invention.
  • the display screen 41 of the image monitor is provided with a graph display area 42 and a numerical value display area 43.
  • a line-bright waveform A5 and a cross symbol A6 indicating the determined measurement point are displayed.
  • the numerical value display area 43 displays a numerical value A8 indicating the measured displacement amount and a character A9 indicating the output port.
  • the table In the top frame of the display screen 41, a character A7 indicating that the operation mode is the "measurement mode" is displayed.
  • the position of the light image on the light receiving surface of the two-dimensional CCD 122 moves in the left-right direction.
  • the light image arrival position on the light receiving surface of the CCD 122 moves to the right as it moves away from the surface of the target object, and the light receiving surface of the two-dimensional CCD 122 moves as the surface of the target object approaches.
  • the light image arrival position at the top moves to the left. Therefore, the displacement amount of the target object surface can be accurately measured based on the displacement direction coordinates of the optical image on the CCD 122.
  • the observation mode has the first observation mode and the second observation mode.
  • the controller unit 2 uses the perspective image acquisition optical system (in this example, the lens assembly 127 a and the lens assembly 127 a). Turn off the measurement light source (red laser diode 112 in this example) while the light path of the mirror 128 is shielded by shirting means (mechanical shirt 150 in this example). At the same time, the illuminator (in this example, the green light emitting diode 13 2) is turned on, and the shooting conditions are automatically adjusted so that the surface image of the measurement object around it including the measurement position is captured with appropriate brightness.
  • the perspective image acquisition optical system in this example, the lens assembly 127 a and the lens assembly 127 a.
  • the surrounding image including the measurement light irradiation position on the surface of the measurement object is imaged. Execute the control operation to be displayed on the monitor screen.
  • the brightness of the light source can be reduced or the shirt of the two-dimensional
  • the imaging conditions so that the period (charge accumulation period) does not include the lighting period of the measurement light source, it is possible to prevent the measurement light irradiation light image from appearing at all or being darker than appropriate brightness.
  • the automatic adjustment of the imaging condition at the first observation mode set value includes the luminance adjustment of the illuminator and / or the exposure time adjustment of the two-dimensional image sensor. That is, as described above with reference to FIG. 3, by transmitting the control signal CONT from the sensor head control unit 22 1 B to the sensor head unit 1, the optimum condition is obtained from the measurement condition storage unit 14 1. By reading out the various image acquisition conditions and controlling the CCD control circuit 121 and the LED drive circuit 131 via the timing signal generation circuit 101 based on this, the shirt of the CCD 122 is read. The brightness of the illuminator and / or the exposure time of the CCD can be adjusted by changing the evening time and the peak brightness and lighting time of the LED 13 2.c According to this first observation mode, it is not shown.
  • the controller unit 2 is configured to control the optical path of the perspective image acquisition optical system (in this example, the optical path includes the lens assembly 127 a and the mirror 128).
  • the measurement light source red laser diode 112 in this example
  • the illuminator green light-emitting diode 1 in this example
  • 3 2 is turned on, and the shooting conditions are automatically adjusted so that both the measurement light irradiation light image 83 and the surrounding surface of the measurement object are captured with appropriate brightness.
  • the surrounding area including the measurement light irradiation light image 83 Control operation to display the image on the screen of the image monitor.
  • the light source for measurement in this example, the red
  • the optimum image acquisition conditions are obtained from the storage section 141, and the LD drive circuit 1 1 1, CCD control circuit 1 2 1 and LED drive circuit 1 3 1 are passed through the timing signal generation circuit 101 and By changing the lighting time and peak brightness of the laser diode 111, the shirt evening time of the CCD 122, and the lighting time and peak brightness of the light emitting diode 132 by appropriately controlling, the optimal shooting conditions can be set. Ask.
  • FIG. 15 (b) shows a view of the upper surface of the measurement target in the second observation mode as viewed from directly above.
  • 7 is the object to be measured
  • 71 is a circular through hole provided in the object to be measured
  • 83 is an irradiation light image formed by irradiating a line beam
  • 85 is a light beam generated by irradiation with illumination light 84. This is a circular illumination image.
  • the optimum imaging conditions in the first observation mode described above include a state in which a circular hole 71 in a circular image 85 generated by being illuminated with the illumination light 84 is clearly displayed.
  • FIG. 17 shows an example of a monitor screen in observation mode using the stereoscopic image acquisition optics, and an example of a monitor screen in observation mode using the oblique image acquisition optical system (measurement optical path).
  • the figures are shown side by side.
  • the monitor screen shown in Fig. 17 (a) corresponds to the light receiving optical path shown in Fig. 15 (a)
  • the monitor screen shown in Fig. 17 (b) corresponds to Fig. 16 (a).
  • a stereoscopic image acquisition optical system (corresponding to the lens assembly 127a), which can acquire an image of the surrounding area including the measurement position on the measurement target object from directly above )
  • the oblique image acquisition optical system consisting of lens assembly 127 a and mirror 128, alone, as shown in Figure 17 (b)
  • the image A10-2 which corresponds to a circular hole, is distorted into an elliptical shape. Therefore, the positional relationship between the line beam irradiation light image 83 and the circular hole 71 cannot be confirmed accurately.
  • the image A10-1 corresponding to the circular hole 71 as shown in Fig. 17 (a) shows a true image without distortion. It is projected as a circular shape. Therefore, it is possible to accurately recognize the positional relationship between the irradiation image 83 of the line beam and the circular hole 71, and to use this to appropriately align the desired measurement point with the irradiation position of the line beam. .
  • the oblique image acquisition optical system is excluded while the light image from the stereoscopic image acquisition optical system (corresponding to the lens assembly 127 b) is excluded.
  • the peripheral image is excluded based on only the optical image from the stereoscopic image acquisition optical system while eliminating the light image from the perspective image acquisition optical system. And an image of the surrounding area) can be displayed on the screen of the image monitor 4.
  • the distance between the measurement target 7 and the sensor head 1 is short, and the sensor head 1 covers the measurement target object 7, so that the brightness of the surface of the measurement target is not sufficient. Also, by brightly illuminating the surface of the measurement object 7, a clear image can be displayed on the screen of the image monitor 4. Further, in the second observation mode, while removing the light image from the oblique image acquisition optical system (corresponding to the three-dimensional lens unit 127a and the mirror 128), the emmetropic image acquisition optical system (the lens assembly 1) is removed.
  • the undistorted peripheral image image of the measurement position on the surface of the measurement object and its surrounding area
  • the measurement light irradiation light image the measurement light on the measurement object surface
  • An image on which a spot-shaped or line-shaped light image generated by irradiation of light is superimposed can be displayed on the screen of the image monitor 4.
  • the brightness of the surface of the measurement target is not sufficient. Even in this case, a bright peripheral image can be displayed on the screen of the image monitor by illuminating the surface of the measurement target object 7 brightly.
  • the displacement sensor system of the present invention it is not always necessary to provide two types of observation modes as in the basic embodiment described above. That is, in the present invention, a combination of only the measurement mode and the first observation mode or a combination of only the measurement mode and the second observation mode can be arbitrarily adopted.
  • an illuminator is not an essential requirement as in the basic embodiment described above. Don't install illuminator In this case, the lack of brightness on the object to be measured is compensated by automatically adjusting the shooting conditions when setting the observation mode, adjusting the brightness of the measurement light source and / or adjusting the exposure time of the 2D image sensor. be able to.
  • the optical paths of the stereoscopic image acquisition optical system and the perspective image acquisition optical system should be understood as merely examples.
  • the CCD image sensor 122 is mounted at the position of the mirror 128, and the optical path of the stereoscopic image acquisition optical system is bent by a mirror to guide the CCD to the CCD placed on the extension of the perspective image acquisition optical system.
  • the optical path of the stereoscopic image acquisition optical system is bent by a mirror to guide the CCD to the CCD placed on the extension of the perspective image acquisition optical system.
  • a single two-dimensional imaging device be used in common for the perspective image acquisition optical system and the standard-view image acquisition optical system. It does not mean that. Different two-dimensional imaging devices may be provided for these two optical systems.
  • a CCD image sensor for a stereoscopic image acquisition optical system is provided at the position of the CCD image sensor 122 of the basic embodiment
  • a CCD image sensor for the perspective image acquisition optical system is provided around the position of the mirror 128. be able to.
  • the shirt it is not necessary for the shirt to selectively block the optical path of the oblique image acquisition optical system and the optical path of the standard image acquisition optical system.
  • the optical path of the stereoscopic image acquisition optical system may be shielded. In this case, if the measurement light is turned off in the observation mode, there is no problem that the optical image of the measurement light appears as a double copy.
  • the opening and closing of the shirt may be electrically controllable. Then, it is possible to automatically open and close the shirt according to the switching between the measurement mode and the observation mode. Remote control will be possible if necessary.
  • a mechanical shirt May be moved by a motor and a solenoid, or the shirt may be constituted by a transparent state and an opaque state of the liquid crystal panel.
  • two image acquisition optical systems are not essential requirements as in the basic embodiment described above. At least one image acquisition optical system is required. For example, only one of a perspective image acquisition optical system and a stereoscopic image acquisition optical system can be provided, and the image acquisition optical system can be commonly used for the measurement mode and the observation mode. Then, sensor head which illustrates a modification of the present invention sensor head is shown in this modified example c is shown in FIG. 1 8 has two features. The first feature is that the switching between the first optical path to the imaging device via the oblique image acquisition optical system and the second optical path to the imaging device via the stereoscopic image acquisition optical system is performed via an optical filter. This is done automatically.
  • the second feature is that the light image of the measurement light that forms an image on the light receiving surface of the image sensor via the stereoscopic image obtaining optical system and the light image that forms the image on the light receiving surface of the image sensor via the oblique image obtaining optical system.
  • Another feature is that an optical axis bending mechanism designed to move on the light receiving surface of the image sensor in the same direction according to a change in the measurement displacement is provided.
  • the measurement light (in this example, the light from the red laser diode 112) is supplied to the entrance of the lens assembly 127a constituting the perspective image acquisition optical system.
  • a first optical filter 161 having a band-pass characteristic for transmission is provided at the entrance of the lens assembly 127 b that constitutes the emmetropic image acquisition optical system.
  • a band-pass characteristic that transmits the illumination light in this example, the light from the green light emitting diode 13 2) 84 is provided.
  • a second optical filter 162 is provided.
  • the optical path can be automatically selected according to the nature of the light itself without operating the shutter mechanism by manual or electrical control.
  • the first optical filter may not be provided, and only the second optical filter may be provided.
  • the illuminator is not turned on in the measurement mode, it is possible to obtain an image suitable for measurement, which has almost no image other than the light image of the measurement light.
  • the measurement light is turned off in the observation mode, there is no problem that the optical image of the measurement light appears to be duplicated.
  • first mirror 1 28 that turns the optical path back toward the left side of the CCD 122. a is provided. Similarly, on the left side of the CCD 122, the optical axis turned back by the first mirror 128a is further turned back to form an image on the light receiving surface of the CCD 122. Two mirrors 1 2 8b are provided.
  • the optical image of the measurement light and the perspective image acquisition optical system are formed via the stereoscopic image acquisition optical system and the imaging element light receiving surface.
  • the light image formed on the light receiving surface of the image sensor means that the light image moves in the same direction on the light receiving surface of the image sensor according to a change in the measurement displacement.
  • the optical axis 8 2 a-1 when the target object surface is on the far side is compared with the optical axis 8 2 a-1 when the target object surface is on the near side.
  • the light image on the light receiving surface of the CCD 122 moves to the right as the surface of the target object approaches.
  • the optical axis 8 2 b-1 when the target object surface is on the far side and the optical axis 8 2 b-when the target object surface is on the near side As is clear from the comparison with FIG.
  • the light image on the light receiving surface of the CCD 122 moves to the right side as the surface of the target object approaches ⁇ in other words, as the surface of the target object approaches, Any light image formed on the light receiving surface of the CCD 122 via the respective optical systems moves rightward (accordingly, according to such a configuration, the oblique image and the normal image are superimposed.
  • the perspective image and the stereoscopic image move in the same direction as the measurement displacement fluctuates, so that the user does not feel uncomfortable.
  • the optical system is designed so that when the surface of the target object is displaced by a certain value, the amount of movement of the measurement light irradiation light image on the light receiving surface of the CCD 122 becomes the same between the oblique image and the stereoscopic image. Both images can be viewed as one.
  • a displacement sensor having the following observation modes can be configured.
  • the sensor head 1 and the controller unit 2 are integrated. Or it is provided separately.
  • the sensor head 1 includes a measurement light projecting optical system (lens assembly 113) capable of projecting the measurement light 81 obliquely downward toward the measurement position on the measurement target object 7. And a perspective image acquisition optical system that can acquire an image of the surrounding area including the measurement position on the measurement object 7 as viewed obliquely from above.
  • a measurement light projecting optical system (lens assembly 113) capable of projecting the measurement light 81 obliquely downward toward the measurement position on the measurement target object 7.
  • a perspective image acquisition optical system that can acquire an image of the surrounding area including the measurement position on the measurement object 7 as viewed obliquely from above.
  • a stereoscopic image acquisition optical system (corresponding to a lens assembly 127b) that can acquire an image of an area viewed from directly above, and a two-dimensional image sensor (two-dimensional C) common to the two image acquisition optical systems
  • An illuminator that illuminates the surrounding area including the measurement position on the measurement target object 7 with light from an illumination light source (equivalent to a green light emitting diode 132), and a perspective image acquisition optics
  • the first part of the image sensor (corresponding to the two-dimensional CCD 122) via the system (including the lens assembly 127a, the first mirror 128a, and the second mirror 128b)
  • a first optical filter 161 which is interposed in the optical path and has a band-pass characteristic of mainly passing measurement light (light from the red laser diode 112), and a stereoscopic image acquisition optical system (lens assembly 127b )
  • the controller unit 2 is provided with a measurement mode and first and second observation modes. Switching of these observation modes can be performed, for example, by operating the console 3.
  • the measurement light source (equivalent to the red laser diode) is turned on, the illuminator (equivalent to the green light emitting diode 132) is turned off, and the measurement light irradiation light image 83 is set to the appropriate value.
  • the target displacement can be determined based on the video signal Vs equivalent to a perspective image obtained from a two-dimensional image sensor (equivalent to a two-dimensional CDD122).
  • the control operation to be calculated is executed.
  • the measurement light source (corresponding to the red laser diode 112) is turned off and the illuminator (green light emitting diode) is turned off.
  • 2D image sensor (2D CCD) while automatically adjusting the shooting conditions so that the surface image of the object to be measured, including the measurement position, is captured with appropriate brightness.
  • a control operation is performed to display an image of the surroundings including the measurement light irradiation position on the surface of the measurement target on the screen of the image monitor.
  • both the measurement light source corresponding to red laser diode 112
  • the illuminator corresponding to green light emitting diode 132
  • the two-dimensional image sensor two-dimensional CCD 1 Based on the video signal Vs obtained from 22
  • a control operation is performed to display an image of the surroundings including the measurement light irradiation light image 83 on the surface of the measurement object on the screen of the image monitor.
  • the automatic adjustment of the photographing conditions when the measurement mode is set may be performed by using the brightness adjustment of the measurement light source and / or the exposure time adjustment of the two-dimensional image sensor.
  • the luminance adjustment of the illuminator and / or the exposure time adjustment of the two-dimensional image sensor may be used.
  • the brightness adjustment of the measurement light source, the brightness adjustment of the illuminator, and / or the exposure time adjustment of the two-dimensional image sensor may be used.
  • a peripheral image without distortion is projected together with the irradiation light image 83 of the line beam on the screen of the image monitor as necessary, By utilizing this, it is possible to easily perform positioning adjustment at the time of installation. In addition, when adjusting the distance at the time of installation, etc., the irradiation image 83 of the line beam and the surrounding image move together as the displacement fluctuates. There is an advantage that the usability is good.
  • FIG. 22 shows a preferred example of the automatic adjustment of the photographing conditions in the photographing using both the measurement light and the illumination light.
  • the emission current of the measurement laser is set to a high value, the illumination LED is turned off, and the light-receiving element (CCD) is opened and closed by the shirt. Set too high. With such a configuration, it is possible to obtain a video signal optimal for measurement including a clear illumination light image of the measurement light.
  • observation mode on the other hand, the emission current of the measurement laser is set lower, the illumination LED is turned on, and the light-receiving element (CCD) is opened and closed. Set a shorter period.
  • the luminance of the illumination light is increased, the luminance of the measurement light source is reduced, and the exposure time of the light receiving element is shortened.
  • a sharply contained video signal can be obtained.
  • the laser for measurement and / or the LED for illumination may be pulsed. In this case, the average luminance can also be adjusted depending on the length of the lighting time.
  • FIG. 23 shows an example of an application of the displacement sensor of the present invention.
  • W is a workpiece that is sequentially conveyed on a conveyor or the like
  • 170 is a drill that is provided in the middle of the transport line and that can drill various holes with different hole diameters on the workpiece W.
  • 171 is a drill blade storage space for placing a drill blade used by the drill 170
  • 171 is a sensor head unit of the present invention
  • 2 is a control run unit of the present invention.
  • a predetermined drilling process is performed using a drill 170, and the sensor head 1 and the controller unit 2 are formed. It is used to check whether the correct drilling has been performed.
  • confirmation of the hole diameter in the sensor head 1 can be performed by counting the number of pixels of a circular image in an image captured via the stereoscopic image acquisition optical system.
  • the thickness of the work W changes variously, the position of the sensor head 1 and the upper surface of the work W also changes, so that the correct hole diameter cannot be confirmed only by counting the number of pixels.
  • the distance and the area on the measurement target object can be measured based on the image formed on the CCD 122 via the stereoscopic image acquisition optical system. And by correcting this with the original displacement measurement result, highly accurate area calculation and distance calculation become possible.
  • the controller unit 2 determines whether the controller unit 2 operates in the measurement mode or the observation mode is determined by an instruction input from the console unit 3.
  • the displacement sensor of the basic embodiment can be used as follows.
  • the console unit 3 is operated to set the control unit 2 to the first observation mode or the second observation mode, and the shirt 150 is a perspective image.
  • the optical path of the acquisition optical system is shielded from light, the sensor head unit 1 is aligned with the measurement object 7 so that the measurement light 81 irradiates near the position to be measured, and the image monitor 4 Adjust the position of the sensor head unit 1 and the measurement target object 7 while viewing the image near the measurement position displayed in.
  • the measurement mode is set and the shirt 150 is moved to a position where the light from the optical system for acquiring a stereoscopic image is blocked, and the measurement is executed. While operating in the measurement mode, the controller unit 2 can display the image acquired on the image monitor 4 via the perspective image acquisition optical system.
  • the measurement light source is turned on, and the imaging conditions are adjusted so that both the measurement light irradiation light image and the surrounding surface of the measurement object surface image are captured with appropriate brightness.
  • the embodiment of the second observation mode can be modified as follows.
  • the controller unit 2 depends on the condition that the measurement light irradiation light image is not captured at all or only appears darker than appropriate brightness, and the surrounding surface of the measurement object including the measurement position is captured with appropriate brightness.
  • the shooting and the light source for measurement are turned on, and the measurement light irradiation light image is captured with appropriate brightness, but the surrounding surface of the object to be measured is only darker than the appropriate brightness. .
  • the captured image is displayed on the image monitor 4 each time the image is captured.
  • an image in which only the surface image of the object to be measured is substantially reflected and an image in which only the measurement light irradiation light image is captured are quickly and alternately displayed. Recognize as reflected. In this case, instead of alternately shooting each condition once, it is possible to alternately shoot a plurality of times continuously under one condition. If the cycle of switching the photographing conditions is appropriately long, it is possible to observe the images under each photographing condition as separate images and to understand the positional relationship between the two.
  • Another display mode is to take images alternately under two conditions as in the above case, combine those images into one image in the controller unit 2, and then display them on the image monitor 4.
  • both the measurement light irradiation light image and the surrounding measurement object surface image can be displayed with appropriate brightness.
  • the console unit 3 is operated to switch between the measurement mode and the observation mode.
  • the control unit 2 performs the operation as the measurement mode and the operation as the observation mode. It is also possible to configure so as to perform the division. That is, the controller unit 2 of this embodiment alternates between one or more shootings in the measurement mode and one or more shootings in the observation mode. Repeat. With this configuration, the displacement can be measured while displaying the surface image of the measurement object on the image monitor.
  • the state of the measurement position in the stereoscopic image will be displayed. Displacement measurement can be performed while checking.
  • FIG. 24 is a block diagram showing an electrical hardware configuration of a displacement sensor according to another embodiment of the present invention.
  • the displacement sensor system 10 captures the surface of the measurement target object 7 irradiated with the measurement light from an angle at which the position of the measurement light irradiation light image changes according to the measurement target displacement.
  • a sensor head unit 1 serving as an imaging unit and a controller unit 2 serving as an image processing unit that calculates a displacement to be measured and outputs it as displacement data by processing an image obtained from the sensor head unit 1.
  • the sensor head unit 1 is based on an oscillator (OSC) 201 and a transfer specification table stored in a register 231 in the control unit 2. It generates the necessary timing signal and sends it to the CCD drive 121 and the slit light source (measuring projection optical system) 112a.
  • the slit light source 112a is composed of a laser diode (light source for measurement) 112 and a slit 208, as described later, and emits cutting light (measurement light) in a so-called light cutting method. Generates and irradiates the object 7 to be measured. By the irradiation of the measurement light, a measurement light irradiation light image (linear bright line) 83 is formed on the surface of the detection target object 7.
  • the surface of the detection target object from which the linear bright line is detected is photographed by the CCD 122, which is a two-dimensional image sensor.
  • the transfer of the CCD 122 is controlled by transfer pulses TP1 to TP3 sent from the CCD drive 121 as described later.
  • the video signal read from the CCD 122 is smoothly shaped by the sample-and-hold circuit 125a, and sent to the control unit 2 as a video signal.
  • the optical system of sensor head unit 1 is shown in FIG.
  • 1 1 2 is a laser diode
  • 1 1 2-1 is a slit
  • 1 1 2-2 is a projection lens
  • 83 is a measurement light irradiation light image
  • 1 22-1 is a light receiving lens
  • 1 2 2 Is the CCD
  • 7 is the object to be measured
  • 7A is the stage where the object is placed.
  • the laser beam emitted from the laser diode 112 is formed into a cross-sectional linear beam (so-called line beam) through the slit 112-1, and then the light projecting lens 112 is formed. Irradiates the surface of the measurement object 7 via the.
  • the controller unit 2 includes a CPU 232, which is a one-chip microcomputer, a display LED 233, an operation switch 234, an input / output circuit (I / O) 235, and an arithmetic unit 23.
  • BUS 1 is a synchronous bus
  • BUS 2 is a CPU bus.
  • the CPU 232 constituting the one-chip microcomputer controls the whole of the controller unit 2.
  • the operation unit 236 is a dedicated hardware circuit that performs various operations required for image processing.
  • the operation unit 236 performs various processes on image data captured via the A / D converter 242. .
  • the image processed here is stored in the frame buffer 238 via the memory control unit 237 and, if necessary, as an NTSC image via a D / A converter 239 to an external image monitor such as a CRT display. Sent.
  • the register 231 stores a transfer specification table required for the operation of the sensor head unit 200.
  • the contents of the transfer specification table are stored in each horizontal direction as described later with reference to FIG.
  • the code signals LI, L2, and OE are set according to the period count value.
  • the display LED 233 is for externally displaying the operation state of the controller unit 2, and the operation switch 234 is for giving various instructions to the controller unit 2.
  • the input / output circuit (1 / /) 235 is used to output the displacement data measured by the controller unit 2 to the outside or to input the signal of the synchronization sensor 5 from outside. .
  • the displacement data includes not only the measured value itself, but also the measured value and the reference value.
  • a switching signal indicating the result of the comparison is also included.
  • the operation of the controller unit 2 is controlled by a synchronization signal obtained via an oscillator (0SC) 241 and a synchronization signal generator 240.
  • Figure 26 shows an evening chart showing the process of superimposing the slit light image (line beam irradiation light image) and the work surface image.
  • VD is a vertical reference signal
  • VBLK is a signal indicating the presence or absence of an image in a video signal
  • transfer pulse TP1 transfers charges from each light receiving pixel to a vertical transfer shift register VR (details will be described later). Pulse to perform.
  • the shirt evening opens. That is, the charge accumulated by the photoelectric conversion up to that point is discarded, and the charge accumulation is newly started.
  • the laser diode 112 is turned on for a short time.
  • the shirts continue to open.
  • the shirt evening is then closed at the beginning of the third cycle.
  • a transfer pulse TP1 is generated.
  • the electric charge accumulated in the pixel is transferred to the vertical shift register VR.
  • the third period (3) an image in which the raw image of the surface of the object to be measured and the light image irradiated by the measuring laser beam overlap is obtained as the effective image.
  • the slit light image and the workpiece surface image are obtained by turning on the laser diode 112 briefly at the beginning of the first cycle while keeping the shirt open for two vertical cycles. It is possible to monitor an image in which the images overlap. This is an example of the second observation mode described in the above embodiment.
  • the opening period of the shirt is limited to the light emitting period of the laser diode, it is possible to obtain a slit light image in which the raw image hardly includes the image of the work surface.
  • shirt If the evening opening period is excluded from the laser diode emission period and the shirt evening opening period is similarly set to be longer than two periods, a slit surface image that does not include a slit light image can be obtained. This is an example of the first observation mode o
  • FIG. Figure (a) is a slit light image that does not include the work surface image.
  • FIG. 4B is a work surface image that does not include a slit light image.
  • FIG. 11C is an image in which the slit light image and the work surface image are overlapped.
  • the sensor head unit 1 has a built-in illuminator including a lighting control section 151 and a light emitting diode 152 for lighting. As shown in FIG. 29, the light-emitting diodes 15 2 for illumination are mounted in the head unit 1 of the sensor and illuminate the object 7 to be measured.
  • the lighting timing of the light-emitting diode 152 is shown in FIG.
  • the shirt opens and at the same time the laser diode 112 turns on for a short time, and the light emitting diode 152 also turns on. Thereafter, the light emitting diode 152 is continuously turned on during the first cycle (1).
  • the shirt is closed.
  • the transfer pulse TP1 is output, and the charge accumulated in the first cycle (1) is transferred to the vertical shift register VR and output as a valid image. Is done.
  • the illumination of the illumination surface by adding the illumination light emitting diode 152 increases the brightness of the work surface, and a work surface image of sufficient brightness can be obtained only in one cycle of the shirt sunset period.
  • the slit light image is formed by appropriately combining the opening period of the shirt and the lighting period of the illumination light emitting diode 152.
  • the measurement state can be monitored by appropriately acquiring the image, the workpiece surface image, and the superimposed image of the two.
  • the monitor function can be realized at low cost.
  • the monitor image is obtained from the same viewpoint as when the measurement was taken, if the measured value had a problem, the cause (for example, the presence or absence of disturbance light) was accurately determined from the superimposed image. be able to.
  • the CCD 122 of FIGS. 24 and 28 has a novel configuration proposed by the present inventors. An example of a pixel array on the light receiving surface of the CCD image sensor is schematically shown in FIG. It should be noted that the pixel size is considerably exaggerated from the actual size.
  • Ph is a light receiving pixel group arranged in a matrix of 788 rows vertically and 107 columns horizontally, corresponding to the field of view of a digital still camera which is a standard imaging device.
  • Each light-receiving pixel and VR are vertical shift registers for transferring the output of each light-receiving pixel Ph constituting the light-receiving pixel group in the vertical direction for each column, and HR is a charge transferred from the vertical shift register VR for each column.
  • the horizontal shift register Aout is an output buffer for outputting the charges transferred from the horizontal shift register HR to the outside.
  • the light receiving pixel P h 2 shaded by hatching in the figure is a so-called optical black pixel (OB pixel), and the white light receiving pixel P h which is not shaded by hatching in the figure. 1 is a photosensitive pixel.
  • Each of the light receiving pixels P hi and P h2 has a device structure based on a photodiode.
  • the vertical and horizontal shift resistors V R and H R have a CCD-based device structure.
  • the optical black pixel P h 2 is not allowed to receive light with a light-shielding mask, or is prevented from accumulating charge even when light is received. Or, it is a light-receiving pixel whose charge accumulated by light reception cannot be taken out, and its output is always fixed to a specified dark level (equivalent to almost zero charge) regardless of the amount of received light.
  • the photosensitive pixel P h1 is a normal light receiving pixel that does not employ such a special structure, and its output is a light level corresponding to the amount of received light.
  • a structure in which a photoelectric conversion element (for example, a photodiode, a phototransistor, or the like) constituting a target light-receiving pixel is covered with a light-shielding mask can be given.
  • a light-shielding mask can be realized by forming a metal mask that does not transmit light on a photodiode constituting a light-receiving pixel.
  • a light-shielding mask can also be achieved by attaching a mask that does not transmit light (for example, aluminum foil) on the light-receiving surface of the device at the stage after the semiconductor manufacturing process (for example, after the product purchase). can do.
  • a third method is to cut a charge transfer path from a photodiode constituting a target light-receiving pixel to a vertical shift register in a semiconductor manufacturing process.
  • the light receiving pixel group arranged in a matrix has a number of lines (680 lines) that is sufficiently smaller than the total number of horizontal lines (788 lines). It is divided into one pixel group and a second pixel group that does not belong to the specific horizontal line band HLB.
  • the 60 horizontal lines leading to the seventh horizontal line are defined as a specific horizontal line band HLB, and the pixel group included in the specific horizontal line band HLB is defined as a first pixel group. Also, seven horizontal line bands from the top of the screen to the first horizontal line to the seventh horizontal line, and the 78th and eighth horizontal lines from the 68th horizontal line to the bottom The group of pixels included in one horizontal line band up to 7 is defined as the second pixel group.
  • All or most of the pixels Ph constituting the first pixel group are light-sensitive pixels Ph1, and all or most of the pixels Ph constituting the second pixel group (in this example, , All) are optical black pixels P h 2.
  • pixels belonging to 60 horizontal lines that make up the specific horizontal line band HLB pixels belonging to three vertical lines near the left edge of the screen and 4 pixels near the right edge of the screen All pixels belonging to 0 vertical lines are optical black pixels P h2.
  • the pixels belonging to the 104 vertical lines located at the center between the three vertical lines on the left edge and the 40 vertical lines on the right edge are all photosensitive pixels P h1. Have been.
  • the photosensitive pixel area 60 rows ⁇ 10 34 columns
  • the outline of the effective image area is clarified.
  • FIG. 32 The relationship between the size of the photosensitive pixel area and the size of the optical black pixel area in the CCD image sensor is shown in FIG. 32 in terms of the actual screen aspect ratio. Same figure It is understood that the photosensitive pixel area (60 rows ⁇ 1034 columns) occupies only a part of the entire light receiving surface (788 rows ⁇ 1077 columns) as shown in FIG. It can also be understood that the specific horizontal line band HLB constituting the photosensitive pixel area is arranged close to the top of the screen where the horizontal shift register HR exists. Furthermore, it can be understood that a large part of the entire light receiving surface (7788 rows X 1077 columns) is occupied by the optical black pixel area. '
  • this drive control unit includes the timing signal generation unit 101 and the CCD drive 122.
  • the timing signal generator 101 includes a transfer pulse generator PG (see FIG. 34) and a transfer controller (see the flowchart in FIG. 38).
  • the transfer control unit determines the number of lines of image data to be transferred in one horizontal period, and outputs the third transfer pulse TP3 in each horizontal period for one horizontal line image. This is for setting whether or not to output image data to the outside by outputting an equivalent number of elements.
  • the set number of transfer lines is converted into a 2-bit transfer line number signal Ll, L2.
  • the presence / absence of an external output is converted to an output presence / absence signal OE and output to the transfer pulse generator PG.
  • FIG. 34 shows the internal configuration of the generation unit of the first, second, and third transfer pulses TP1, TP2, and ⁇ 3 in the transfer pulse generation unit PG.
  • the first transfer pulse generator PG 1 includes an evening timing generator that generates and outputs a first transfer pulse ⁇ ⁇ 1 for pixel charge conversion in response to an externally applied vertical period start command XVD. TG 1 is included.
  • the second transfer pulse generator PG2 includes four evening generators TG21, TG22, TG23, TG24 and pulse trains from the respective timing generators 22a to 22d.
  • a multiplexer MP X for selectively outputting is included.
  • the timing generators TG 21 to TG 24 are used for transfer of 1, 2, 4, and 7 lines, respectively, and the corresponding transfer is performed within the same length as the horizontal period of the normal video standard. Outputs the second transfer pulse TP2 for the number of lines.
  • FIG. 35 shows an output form of the transfer pulse TP2 from each of the timing generators 22a to 22d.
  • the timing generator TG 2 1 for one-line transfer Outputs one pulse during the horizontal blanking period.
  • the evening timing generator TG22 for 2-line transfer outputs two pulses during the horizontal blanking period.
  • the timing generator TG23 for 4-line transfer outputs two pulses during the horizontal blanking period and two pulses outside the horizontal blanking period.
  • the timing generator TG24 for 7-line transfer outputs two pulses during the horizontal blanking period and five pulses outside the horizontal blanking period.
  • the multiplexer MPX selects a timing generator for the number of transfer lines indicated by the transfer line number signals L 1 and L 2 from among the timing generators TG 21 to TG 24, and switches the input path of the signal. Connect to the output path to CCD image sensor 1 2 2. As a result, the output pulse of the selected timing generation unit is adopted as the transfer pulse TP2, and given to the CCD image sensor 122.
  • the generation unit of the first transfer pulse TP1 is also configured by four timing generation units for the number of transfer lines and a multiplexer similarly to the above.
  • the timing generator for one-line transfer outputs one pulse signal at the timing based on the normal video standard
  • the timing generator for two- to seven-line transfer has a transfer line One pulse signal is output for each charge output period for one screen determined by the number.
  • the multiplexer selects the evening timing generator corresponding to the transfer line number signals L 1 and L 2 in the same manner as described above, so that the output pulse of the evening timing generator is output as the transfer pulse TP 1 and the CCD image sensor 1 2 given to 2.
  • the third transfer pulse generator PG 3 includes a timing generator TG 3 for generating and outputting third transfer pulses TP 3 for a number of pixels corresponding to one line, and a third generator PG 3 in response to the output presence / absence signal 0 E. Controls whether transfer pulse TP 3 can be externally output Gate circuit G is included. Gate G opens when the output presence / absence signal OE is “1”, and gate G closes when the output presence / absence signal OE is “0”. As described above with reference to FIG. 31, in the CCD imaging device 122 of this embodiment, 60 lines of 8 to 67 lines on the light receiving surface are photosensitive pixel areas (effective image areas).
  • the drive control unit is configured to control the signal for taking in signal charges from the light receiving pixels Ph into the vertical shift registers VR1 to VRn of each column at the beginning of each vertical period.
  • Charge take-up processing and support for the preceding optical black pixel area where the signal charges on the vertical shift registers VR1 to VRn of each column taken from the preceding optical black pixel area are dropped into the horizontal shift register HR Processing, and the vertical shift register of each column captured from the photosensitive pixel area
  • the signal charges on VR1 to VRn are transferred to the vertical shift registers VR1 to VRn and the horizontal shift register HR for each column.
  • the signal charge capture processing (A) means that at the beginning of each vertical period, In this process, signal charges are fetched from the element Ph (m, n) to the vertical shift registers VR1 to VRn in each column.
  • the preceding optical black pixel correspondence processing (B) is a horizontal shift of the signal charges on the vertical shift registers VR1 to VRn of each column taken from the preceding optical black pixel area (1 to 7 lines). This is the process of falling into the register HR.
  • the photosensitive pixel area processing (C) is defined as the vertical shift register for each column taken from the photosensitive pixel area (8 to 67 lines) and the signal charge on VRl to VRn for each column. This is a light-sensitive pixel area corresponding process in which the transfer of the shift register VR1 to VRn and the transfer of the horizontal shift register HR are appropriately linked and read out to the outside.
  • post-stage optical pixel region correspondence processing refers to the vertical shift register of each column taken in from the post-stage optical black pixel region (68 to 788 lines). This is the post-processing to make it fall into the HR.
  • the preceding stage optical black pixel region correspondence processing (B) includes, in this example, an operation of performing seven-stage continuous vertical transfer every one horizontal period.
  • the operation of performing the seven-stage continuous vertical transfer in each horizontal period is performed until the transfer of the horizontal shift register is stopped during the horizontal period (see FIGS. 39 and 40).
  • the photosensitive pixel area processing (C) consists of a two-stage continuous vertical transfer operation and a continuous horizontal transfer operation of the number of stages equivalent to the number of pixels in one horizontal line, before and after the time zone within one horizontal period. Includes processing that is performed with a shift. As described later, in this example, the two-stage continuous vertical transfer operation is performed within the horizontal blanking period (see FIGS. 39 and 41).
  • the transfer specification table used in this high-speed image reading method Figure 36 shows an example of this setting (stored in this application). As shown in the figure, the transfer specification table has a set value of the number of transfer lines in each horizontal period and the output presence / absence corresponding to the horizontal period counter value indicating the number of the horizontal period. Are stored in the form of transfer line number signals L 1 and L 2.
  • the video signal corresponding to the preceding optical black pixel area is transferred continuously for seven lines in one horizontal period, and the video signal corresponding to the following photosensitive pixel area is transferred two lines in each horizontal period.
  • the number of transfer lines in the first horizontal period is set to 7 and then the number of transfer lines in the first horizontal period is set to 2c.
  • the presence / absence of output is “none”, and the presence / absence of output in the second to third horizontal periods is “present”.
  • the transfer control unit (shown in the flowchart of FIG. 38) operates by reading the set values of the transfer line number signals L 1 and L 2 and the output presence / absence signal OE stored in the transfer specification table for each horizontal period. Then, each transfer line number signal L 1, L 2 and output presence / absence signal 0 E are set to a level corresponding to the set value, and output to the transfer pulse generator 2.
  • the transfer pulse generator 2 sets the output timing of the first transfer pulse based on the maximum value (“31” in FIG. 36) of the horizontal period counter set in the transfer specification table (that is, “1”). That is, the transfer pulse TP1 is output at a time interval of 31/878 of the vertical period of the video standard).
  • the transfer pulse generation unit 2 determines the number of outputs of the second transfer pulse TP 2 and the third transfer pulse TP 2 in each horizontal period based on the transfer line number signals L 1 and L 2 and the output presence / absence signal OE given by the transfer control unit. A series of controls for the CCD image sensor 122 are performed by setting the output of the transfer pulse TP3 of the above.
  • the controller unit 2 is configured to set the number of each transfer line in the transfer specification table and the value of the presence or absence of output according to the contents of image processing required for measurement.
  • the transfer specification table is referred to using the count value “1” as an argument, and the set values of the transfer line number signals L 1 and L 2 and the output presence / absence signal OE are read out. It is. As is clear from the conversion table in FIG. 37, at this time, the number of transfer lines is “7”, and the external output by horizontal transfer is “none” (step 1002).
  • the second transfer pulse for vertical transfer is not output without outputting the third transfer pulse for horizontal transfer.
  • Only seven transfer pulses are output from transfer pulse generator 2 in succession.
  • the apparatus is in a state of waiting for the arrival of the next horizontal period start signal HD.
  • the transfer specification table is referred to using the small count value “2” as an argument, whereby the set values of the transfer line number signals L 1 and L 2 and the output presence / absence signal OE are changed. Is read.
  • the number of transfer lines is “2”, and the external output by horizontal transfer is “present” (step 1002).
  • Each is set (step 803).
  • the transfer pulse generator 2 in the second horizontal period corresponding to the count value “2”, the transfer pulse generator 2 generates the second transfer pulse TP 2 for vertical transfer horizontally.
  • the third transfer pulse TP3 for horizontal transfer is output by the number corresponding to one horizontal line pixel after the horizontal blanking period ends.
  • the horizontal shift register HR stores the charge of 7 lines from 1 to 7 accumulated in each stage of the HR, and furthermore, 8 , 9 lines of charge are dropped, and 9 lines of 1 to 9 lines are superimposed as a whole.
  • the third transfer pulse TP3 for horizontal transfer is output in a number corresponding to one horizontal line pixel, the above-mentioned superimposed charges for 9 lines are output in the video signal.
  • the video signal portion on which the charges for the nine lines are superimposed is B Unnecessary video signal.
  • the process ends (step 1004 NO), and enters a state of waiting for the arrival of the next horizontal period start signal HD.
  • the transfer specification table 15 is referred to using the count value “3” as an argument, whereby the transfer line number signals L 1 and L 2 and the output presence / absence signal 0
  • the set value of E is read.
  • the number of transfer lines is also “2” at this time, and the external output by horizontal transfer is “present” (step 1002).
  • the transfer pulse generator 2 in the third horizontal period corresponding to the count value “3”, the transfer pulse generator 2 generates the second transfer pulse TP 2 for vertical transfer. After two signals are output during the horizontal blanking period, the third transfer pulse TP3 for horizontal transfer is output by the number corresponding to one horizontal line pixel after the horizontal blanking period ends.
  • the value of the line counter LC reaches the maximum value (step 1004 YE S), and the vertical period start command XV D is output (step 1005).
  • the content of the counter LC is cleared to "0" (step 1006).
  • the first transfer pulse TP1 for capturing the pixel charge is output from the transfer pulse generator 12 and thereafter, the signal charges of the 68 to 788 lines are transferred to the vertical shift register VR1.
  • the processing at the arrival of the first to third horizontal period start signals described above is repeated while leaving the signal on VRn.c
  • the transfer pulse TP1 for capturing the second and subsequent pixel charges is output.
  • each stage of the vertical shift registers VR1 to VRn located in the photosensitive pixel region is a wrinkle in which the charge transferred from the subsequent optical black pixel region exists.
  • the charge from the subsequent optical black pixel area is extremely small or equal to zero, even if the effective image charge is captured and superimposed thereon, the effective image due to the so-called double removal phenomenon occurs. Does not deteriorate. That is, even if the electric charge from the subsequent optical black pixel area is overwritten, the double take-off phenomenon does not occur.
  • FIG. 42 is a table showing image data for one screen obtained by adopting the high-speed image reading method. As shown in the figure, two lines of one or two lines are regarded as invalid images, and 29 lines of three to 31 lines are regarded as valid images.
  • image data for one screen is captured in about 1/25 of the normal time, so the time required for image input is greatly reduced, and processing efficiency is improved.
  • the electric charge does not saturate on the horizontal shift register HR, the image in the effective image area does not deteriorate due to the occurrence of smear due to the saturation.
  • image data with the same resolution as image data generated according to the normal video standard can be acquired, so that the accuracy of the measurement processing can be maintained.
  • the measurement result is compared with a preset reference value to determine the quality of the target object.
  • the measurement result and the determination result are output to an external device such as a monitor via the output unit 23.
  • the positional relationship between the irradiation light image of the measurement light and the surface of the object to be measured can be confirmed on the image monitor, so that the measurement light can be irradiated to the target measurement position and accurate measurement can be performed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

変位センサ
技術分野
この発明は、 光切断法又は三角測距法等の原理で計測対象物体の例え ば高さ方向変位等を計測する光学式の変位センサに係り、 特に、 計測対 糸田.
象物体表面の性状等を画像モニタの画面で観察可能とした光学式の変位 センサに関する。
背景技術
この種の光学式変位センサにおけるセンサへッ ドュニッ トの二つの例 が図 4 3 (正反射物体対応型) と図 4 4 (乱反射物体対応型) とに示さ れている。
図 4 3において、 aはセンサヘッ ドユニッ ト、 bは規定の取付姿勢に あるセンサへッ ドュニッ 卜から計測対象物体に向けて斜め下向きに投光 される計測光 (例えば、 断面スポッ ト状や断面ライン状の赤色レーザビ ーム) 、 cは計測対象物体の表面で反射されたのち、 斜め上向きに進ん でセンサへッ ドュニッ 卜に取り込まれる計測光、 dはガラス板や表面が 平滑な金属板等の正反射型の計測対象物体、 eは計測対象物体の表面で 生ずる計測光の拡散反射光である。 なお、 ユニッ ト aから出射される計 測光 bの光軸とュニッ ト aに入射される計測光 cの光軸とは、 同一傾斜 角度で対称的に配置されている。
図 4 4において、 aはセンサヘッ ドユニッ ト、 dは表面が乱反射型の 計測対象物体、 f はセンサへッ ドュニッ 卜から計測対象物体に向けて垂 直下向きに投光される計測光 (例えば、 断面スポッ ト状や断面ライン状 の赤色レーザビーム) 、 gは計測対象物体の表面で反射されたのち、 斜 め上向きに進んでセンサへッ ドュニッ 卜に取り込まれる計測光、 hは計 測対象物体の表面で生ずる計測光の拡散反射成分である。
センサヘッ ドユニッ ト aに取り込まれた計測光の反射光 c, gは、 受 光光学系 (レンズ組立体 ) を経由して撮像素子 (例えば、 一次元 C C Dや二次元 C C D ) の受光面上に結像され、 撮像素子の光電変換作用に より計測光の照射光像 (スポッ ト状やライン状の輝跡) を含む映像信号 に変換される。 こうして得られた映像信号は、 図示しないコントローラ ュニッ トへと送出されて、 三角測距原理を用いた変位計測のための演算 に供せられる。
計測対象物体上の所望位置の変位 (例えば、 高さ方向変位) を正確に 測定するためには、 計測光 b, f の照射位置を目的とする計測位置に正 確に一致させなければならない。 計測光が可視レーザ光 (赤色レーザ光 等) の場合、 目的とする計測位置と計測光の照射位置との整合は、 計測 光の照射光像を肉眼で観察しつつ、 これを目的とする計測位置に移動さ せる操作を通して行うことができる。
しかしながら、 従来の変位センサにおいては幾つかの問題点が指摘さ れている。
( 1 ) 計測対象物に細かな凹凸がある場合など、 計測対象とすべき場所 に正確に計測光が照射されるよう位置調整する作業や、 計測光が正確に 照射されていることを確認する作業が、 肉眼による直接観察では困難な ことがある。
( 2 ) 図 4 3及び 4 4において、 変位計測レンジである測定距離 Lが短 く、 センサヘッ ドユニッ ト aと計測対象物体 dとが近接していると、 セ ンサへッ ドュニッ ト aが目的とする計測位置の上に覆い被さってしまう ため、 作業者の視野がセンサへッ ドユニッ ト aに邪魔されて計測光の照 射光像が見えにく くなり、 計測光の照射位置と計測希望位置との位置合 わせ作業に支障を来す。
( 3 ) 従来の二次元撮像素子を使用した変位センサでは、 二次元撮像素 子で撮影した計測光の照射光像を画像モニタに表示できるようにしたも のがあるが、 計測光の照射光像はその周囲の計測対象物表面よりも極端 に明るく写る。 なぜなら、 計測に使用する画像に周囲の計測対象物表面 の形状や模様が写っていたのでは計測の妨げとなるため、 計測光の照射 光像が適切な明るさで写るようにしたときには、 周囲の計測対象物表面 が相対的に暗くてほとんど写らないように、 計測光の光量や計測光の点 灯タイ ミングと二次元撮像素子のシャツ夕タイ ミングとの関係が設計さ れているからである。 したがって、 画像モニタでは計測光の照射光像を 観察することはできるものの、 周囲の計測対象物表面は写らないから、 照射光像と計測対象物表面との位置関係を画像モニタで確認することは できない。
この発明は、 上述の問題点に着目してなされたもので、 その目的とす るところは、 計測光の照射光像と計測対象物表面との位置関係を画像モ 二夕で確認できるようにした変位センサ並びにその要素技術を提供する ことにある。
この発明の他の目的並びに作用効果については、 以下の記述を参照す ることにより、 当業者であれば容易に理解されるであろう。 発明の開示
上記の目的を達成する本発明の変位センサは、 センサへッ ドとコント ローラとを一体又は別体に有するものである。 ここで、 『一体』 とは、 センサへッ ト部とコントローラ部とが同一のハウジングに収容されてい ることを意味している。 また、 『別体』 とは、 センサヘッ ド部とコント ローラ部とが別々のハゥジングに収容されていることを意味している。 なお、 本発明変位センサからの映像を写し出す画像モニタに関しては、 独立したハウジングを有するものでもよいし、 例えばコントローラ部の ハウジングに内蔵されていてもよいであろう。
センサへッ ドは、 計測対象物体上の計測位置に向けて計測光を所定方 向から投光することができる計測用投光光学系と、 計測対象物体上の計 測位置を含むその周辺領域を計測用投光光学系とは異なる角度から視た 画像を取得することができる画像取得光学系と、 画像取得光学系を介し て取得される画像を光電変換して画像に対応する映像信号を生成する二 次元撮像素子と、 を含んでいる。
ここで、 『計測用投光光学系』 には、 投光用光路を定義するためのレ ンズ列を含むほか、 必要により ミラーゃフィルタ等の光学要素を含んで いてもよい。 なお、 投光用光源については、 内蔵してもよいし、 他の箇 所から光ファイバで導入するものであってもよい。 投光用光源の一例と しては、 赤色レーザダイオードを挙げることができる。 また、 『投光角 度』 については、 先に図 4 3を参照して説明した正反射光学系と、 図 4 4を参照して説明した乱反射光学系とのいずれでも差し支えない。
コントロ一ラは、 映像信号としての画像の明るさに関連する撮影条件 を制御することが可能であり、 かつ計測モードと観測モードとで動作可 能である。
そして、 コントローラは、 計測モードに設定された状態においては、 計測用光源を点灯し、 計測光照射光像は適切な明るさで写るもののその 周辺の計測対象物表面像は適切な明るさより暗く しか写らないように撮 影条件を調整し、 二次元撮像素子から得られる映像信号に基づいて目的 とする変位量を算出し、 観測モードに設定された状態においては、 計測 位置を含むその周辺の計測対象物表面像が適切な明るさで写るように撮 影条件を調整し、 二次元撮像素子から得られる映像信号に基づいて、 計 測対象物表面の計測位置を含むその周辺の画像を画像モニタの画面に表 示させる。
このような構成によれば、 計測光の照射光像と計測対象物の位置関係 を画像モニタで確認できる。 そのため、 センサヘッ ドが目的とする計測 位置の上に覆い被さっている場合や、 目的とする計測位置に肉眼による 直接観察では形状が見えにくいほど微細な凹凸等があってそのどの部分 に計測光が照射されているか確認しにくい場合であっても、 計測先の照 射光像を計測位置に正確に位置合わせして、 目的とする計測結果を確実 に得ることができる。
『計測モード設定時における撮影条件』 には、 計測用光源の輝度及び
/又は二次元撮像素子の露光時間が含まれるようにしてもよい。 ここで、 計測用光源の輝度というときは、 計測用光源がパルス点灯している場合 には、 その瞬時輝度と点灯時間との積に比例する平均の明るさを意味す る。
コントローラは、 観測モードに設定された状態においては、 計測光照 射光像が全く写らないか適切な明るさより暗く しか写らないように撮影 条件を調整するようにしてもよい。 このとき、 『観測モード設定時にお ける撮影条件』 には、 計測用光源が点灯か消灯か、 計測用光源の輝度及 び/又は二次元撮像素子の露光時間が含まれるようにしてもよい。
計測光照射光像が全く写らない適切な明るさより暗く しか写らないよ うにするためには、 例えば、 計測用光源を消灯する、 計測用光源の輝度 を小さくする、 計測用光源をパルス点灯し、 点灯から点灯までの間の消 灯している期間を二次元撮像素子の露光時間とする、 などの撮影条件と すればよい。
また、 コントローラは、 観測モードに設定された状態においては、 計 測用光源を点灯し、 計測光照射光像及びその周辺の計測対象物表面像の 双方が適切な明るさで写るように撮影条件を調整するようにしてもよい, このとき、 『観測モード設定時における撮影条件』 には、 計測用光源の 輝度及び/又は二次元撮像素子の露光時間が含まれるようにしてもよい ( さらに、 本発明の変位センサでは、 観測モードとして第 1及び第 2の 観測モードを用意し、 コントローラは、 第 1の観測モードに設定された 状態においては、 計測光照射光像が全く写らないか適切な明るさより暗 く しか写らないように撮影条件を調整し、 第 2の観測モードに設定され た状態においては、 計測用光源を点灯し、 計測光照射光像及びその周辺 の計測対象物表面像の双方が適切な明るさで写るように撮影条件を調整 するようにしてもよい。
さらにまた本発明の変位センサでは、 コントローラは、 観測モードに 設定された状態においては、 計測光照射光像が全く写らないか適切な明 るさより暗く しか写らず、 計測位置を含むその周辺の計測対象物が適切 な明るさで写るようにした条件による 1回又は複数回の撮影と、 計測用 光源を点灯し、 計測光照射光像は適切な明るさで写るもののその周辺の 計測対象物表面像は適切な明るさより暗く しか写らないようにした条件 による 1回又は複数回の撮影とを交互に繰り返すようにしてもよい。 このとき、 コントローラは、 撮影した画像を撮影の都度画像モニタの 画面に表示させるようにしてもよい。 実質的に計測対象物表面像だけが 写った画像と計測光照射光像だけが写った画像が素早く交互に表示され る場合には、 これを見る人は双方が適切な明るさで写っているように認 知する。 また、 1つの条件で複数回連続して撮影することを交互に行う ようにして、 撮影条件切替の周期を適当に長くすれば、 これを見る人は、 各撮影条件の画像を別々の画像として、 かつ、 両者の位置関係を理解し て親察することができる。 このとき、 コントローラは、 撮影条件の異なる 2種類の画像を重ね合 わせた画像を画像モニタの画面に表示させるようにしてもよい。 このよ うにしても、 画像モニタの画面に計測光照射光像及びその周辺の計測対 象物表面像の双方が適切な明るさで表示させることができる。
また、 コン トローラは、 計測モードに設定された状態での 1回又は複 数回の撮影と、 観測モードに設定された状態での 1回又は複数回の撮影 とを交互に繰り返すようにしてもよい。 このようにすれば、 計測対象物 表面像を画像モニタに表示しながら変位計測をすることができる。 この とき、 コントローラは、 画像モニタの画面に、 計測モードに設定された 状態で撮影した画像は表示させず、 観測モードに設定された状態で撮影 した画像は表示させるようにしてもよい。 このようにすれば、 観測モ一 ドに設定された状態で撮影した画像にて計測位置の状態を確認しながら 変位計測をすることができる。 あるいは、 コントローラは、 選択により、 計測モードに設定された状態で撮影した画像と観測モードに設定された 状態で撮影した画像のいずれかを画像モニタの画面に表示させるように してもよい。 このようにすれば、 実際に計測に使用されている画像の状 態を随時確認することができる。
本発明の変位センサにおいては、 計測対象物体上の計測位置を含むそ の周辺領域を照明する照明器をさらに具備し、 コントローラは、 観測モ 一ドに設定された状態において照明器を点灯するようにしてもよい。 このとき、 『観測モード設定時における撮影条件』 には、 照明器によ る照明の明るさが含まれているようにしてもよい。 このような構成によ れば、 周囲環境の照明の明るさが十分でない場合や、 計測対象物とセン サへッ ドとの距離が短く、 センサへッ ドが計測対象物の上に覆い被さつ ていることにより、 計測対象物表面の明るさが十分でないような場合で あっても、 これを照明することにより鮮明な画像を取得することが可能 となる。
ここで、 照明器に使用する光源としては、 発光ダイオード、 白熱電球、 その他、 任意の小型光源を採用することができる。 照明用光源の具体的 な一例としては、 緑色発光ダイオードを挙げることができる。 照明器に は、 計測位置を含む一定の小領域を一定形状 (例えば、 円形や正方形 等) に照射する投光光学系を含むことが好ましい。
本発明の変位センサでは、 画像取得光学系は、 計測対象物体上の計測 位置を含むその周辺領域を斜めから視た画像を取得することができる斜 視画像取得光学系と、 計測対象物体上の計測位置を含むその周辺領域を 正面から視た画像を取得することができる正視画像取得光学系とを含み、 二次元撮像素子は、 斜視画像取得光学系を介して取得される画像を光電 変換する斜視画像用二次元撮像素子と、 正視画像取得光学系を介して取 得される画像を光電変換する正視画像用二次元撮像素子とを含み、 コン トローラは、 計測モードに設定された状態においては、 斜視画像用二次 元撮像素子からの映像信号に基づいて目的とする変位量を算出し、 観測 モードに設定された状態においては、 正視画像用二次元撮像素子からの 映像信号に基づいて計測対象物表面の計測位置を含むその周辺の画像を 画像モニタの画面に表示させるようにしてもよい。
『斜視画像取得光学系』 には、 受光用光路を定義するためのレンズ列 を含むほか、 必要により ミラ一やフィルタ等の光学要素を含むことがで きる。 また、 『斜めから視た』 とあるのは、 「規定のセンサ取付姿勢に おいて斜めから視た」 の意味であり、 例えば計測対象物体が水平に置か れている場合を想定すると、 斜め上から見た場合がこれに相当する。 よ り具体的には、 従前の変位センサのセンサへッ ドにおける計測用受光光 学系の入射角度が一つの参考となるであろう (図 4 3の c、 図 4 4の g 『正視画像取得光学系』 についても、 受光用光路を定義するためのレ ンズ列を含むほか、 必要により ミラーゃフィル夕等の光学要素を含むこ とができる。 また、 『正面から視た』 とあるのは、 「規定のセンサ取付 姿勢において正面から視た」 の意味であり、 例えば計測対象物体が水平 に置かれている場合を想定すると、 真上から見た場合がこれに相当する c より具体的には、 従前の変位センサのセンサへッ ドにおける乱反射物体 対応の投光光学系の出射角度が一つの参考となるであろう (図 4 4の f 参照)
このような構成によれば、 計測モードにおいては、 正視画像取得光学 系からの光像を排除しつつ、 斜視画像取得光学系からの光像のみに基づ いて、 信頼性の高い計測動作を行うことができる。 一方、 観測モードに おいては、 斜視画像取得光学系からの光像を排除しつつ、 正視画像取得 光学系からの光像のみに基づいて、 歪みのない周辺画像 (計測対象物体 の計測位置及びその周辺領域の画像) を画像モニタの画面上に表示させ ることができる。
コントローラには、 斜視画像取得光学系を介して取得された斜視画像 に基づいて算出された変位量により、 正視画像取得光学系を介して取得 された画像の倍率を補正することにより、 計測対象物体表面に表れた長 さや面積を算出する画像処理モ一ドがさらに設けられていてもよい。 画像取得光学系は、 計測対象物体上の計測位置を含むその周辺領域を 斜めから視た画像を取得することができる斜視画像取得光学系と、 計測 対象物体上の計測位置を含むその周辺領域を正面から視た画像を取得す ることができる正視画像取得光学系とを含み、 二次元撮像素子は、 それ ら 2つの画像取得光学系に共通な単一のものであるようにしてもよい。 このとき、 二次元撮像素子は、 斜視画像取得光学系の光路と正視画像 取得光学系の光路とが交叉する位置に配置されたものであってもよい。 このような構成によれば、 斜視画像の光電変換と正視画像の光電変換 とに 1個の撮像素子を共用可能となり、 センサへッ ドュニッ 卜から得ら れる映像信号に基づいて、 画像モニタの画面上に計測対象物体表面の歪 みのない画像を表示させる機能を、 本来の変位計測機能を損ねることな く、 低コス トで実現することができる。
このとき、 計測用投光光学系の出射光軸と斜視画像取得光学系の入射 光軸とは同一傾斜角度で対照的に配置され、 二次元撮像素子は正視画像 取得光学系の入射光軸の延長線上に配置され、 斜視画像取得光学系には 入射光軸を折り曲げて二次元撮像素子に入射させる光軸折り曲げ機構が 含まれているようにしてもよい。
このような構成によれば、 表面正反射物体と表面乱反射物体との双方 に適用が可能となり、 しかも、 センサヘッ ドのハウジング内に、 計測用 投光光学系と斜視画像取得光学系と正視画像取得光学系とを、 バランス よくコンパク 卜に収容可能となる。
光軸折り曲げ機構は、 正視画像取得光学系を経由して二次元撮像素子 受光面に結像する計測光の光像と斜視画像取得光学系を経由して二次元 撮像素子受光面に結像する計測光の光像とが、 計測変位の変化に応じて 同一方向へと二次元撮像素子受光面上に移動するように仕組まれている ようにしてもよい。
このような構成によれば、 斜視画像と正視画像とを重ねて画像モニタ の画面上に表示すると、 測定変位の変動に連れて斜視画像と正視画像と が同じ方向へと移動することとなり、 利用者に違和感を与えない。
本発明の変位センサでは、 斜視画像取得光学系を経由して二次元撮像 素子へ至る第 1の光路及び正視画像取得光学系を経由して撮像素子へ至 る第 2の光路のいずれかを、 手動又は電気的制御により、 択一的に遮光 することが可能なシャツ夕をさらに具備することにより、 計測モード設 定時には正視画像取得光学系の光路を遮光し、 観測モード設定時には斜 視画像取得光学系の光路を遮光することを可能にしてもよい。
このような構成によれば、 斜視画像取得光学系を経由して撮像素子へ 至る第 1の光路と、 正視画像取得光学系を経由して撮像素子へ至る第 2 の光路とを、 択一的に有効化することが可能となり、 変位計測中は撮像 素子への正視画像を遮断することにより外乱による計測ミスを回避する 一方、 物体観測中は撮像素子への斜視画像を遮断することにより、 歪み のない画像による計測物体表面の観察が可能となる。
シャツタ手段の取付位置は、 光学系の光路入口、 光路途中、 光路終端 のいずれであってもよい。 なお、 シャツ夕手段としては、 シャツ夕板で 光路を塞ぐ機械式のもの、 透明、 不透明を電気的に制御する電気光学素 子 (液晶や P Z T等) を使用するもの、 その他、 様々な構造のものを採 用することができる。 また、 『択一的』 とは、 結果としてそのような機 能を実現できれば足り、 双方の光路を共に開状態、 閉状態とできるもの を排除する意図ではない。
本発明の変位センサにあっては、 計測対象物体上の計測位置を含むそ の周辺領域を照明する照明器と、 斜視画像取得光学系を経由して撮像素 子へ至る第 1の光路に介在され、 主として計測光を透過する帯域通過特 性を有する第 1の光学フィル夕と、 正視画像取得光学系を経由して撮像 素子へ至る第 2の光路に介在され、 主として照明光を透過する帯域通過 特性を有する第 2の光学フィル夕と、 をさらに具備し、 コントローラは、 観測モ一ドに設定された状態において照明器を点灯するようにしてもよ い。
このような構成によれば、 計測光の波長と照明光の波長とを適切に設 定することにより、 特別なシャツ夕手段を用いることなく、 光路の選択 を自動的に行わせることができる。 ここで、 計測用光源、 照明用光源、 第 1の光学フィルタ、 第 2の光学 フィルタの一例としては、 計測用光源として赤色レーザダイオード、 照 明用光源として緑色発光ダイオード、 第 1の光学フィル夕として赤色レ —ザの周波数成分を中心とした狭い通過帯域を有する光学バンドパスフ ィル夕、 第 2の光学フィルタとして緑色発光ダイオードの周波数成分を 中心とした狭い通過帯域を有する光学バンドパスフィルタを挙げること ができる。
本発明の変位センサにあっては、 コントローラには、 斜視画像取得光 学系を介して取得された斜視画像に基づいて算出された変位量により、 正視画像取得光学系を介して取得された画像の倍率を補正することによ り、 計測対象物体表面に表れた長さや面積を算出する画像処理モードが さらに設けられるようにしてもよい。
次に、 本発明のセンサヘッ ドは、 計測対象物体上の計測位置に向けて 計測光を所定方向から投光することができる計測用投光光学系と、 計測 対象物体上の計測位置を含むその周辺領域を斜めから視た画像を取得す ることができる斜視画像取得光学系と、 計測対象物体上の計測位置を含 むその周辺領域を正面から視た画像を取得することができる正視画像取 得光学系と、 斜視画像取得光学系を介して取得される斜めから視た画像 と正視画像取得光学系を介して取得される正面から視た画像とをそれぞ れ光電変換して各画像に対応する映像信号を生成する二次元撮像素子と を、 少なくとも具備している。
ここで、 『計測用投光光学系』 には、 投光用光路を定義するためのレ ンズ列を含むほか、 必要によりミラ一やフィルタ等の光学要素を含んで いてもよい。 なお、 投光用光源については、 内蔵してもよいし、 他の箇 所から光ファイバで導入するものであってもよい。 投光用光源の一例と しては、 赤色レーザダイオードを挙げることができる。 また、 投光角度 については、 先に図 4 3を参照して説明した正反射光学系と、 図 4 4を 参照して説明した乱反射光学系とのいずれでも差し支えない。
『斜視画像取得光学系』 についても、 受光用光路を定義するためのレ ンズ列を含むほか、 必要により ミラーゃフィルタ等の光学要素を含むこ とができる。 また、 『斜めから視た』 とあるのは、 「規定のセンサ取付 姿勢において斜めから視た」 の意味であり、 例えば計測対象物体が水平 に置かれている場合を想定すると、 斜め上から見た場合がこれに相当す る。 より具体的には、 従前の変位センサのセンサヘッ ドにおける計測用 受光光学系の入射角度が一つの参考となるであろう (図 4 3の c、 図 4 4の g参照) 。
『正視画像取得光学系』 についても、 受光用光路を定義するためのレ ンズ列を含むほか、 必要により ミラーゃフィルタ等の光学要素を含むこ とができる。 また、 『正面から視た』 とあるのは、 「規定のセンサ取付 姿勢において正面から視た」 の意味であり、 例えば計測対象物体が水平 に置かれている場合を想定すると、 真上から見た場合がこれに相当する c より具体的には、 従前の変位センサのセンサへッ ドにおける乱反射物体 対応の投光光学系の出射角度が一つの参考となるであろう (図 4 4の f 参照) 。
このような構成によれば、 計測対象物体表面を斜めから視た画像と計 測対象物体を正面から視た画像とにそれぞれ対応する映像信号が得られ るため、 斜めから視た画像相当の映像信号を用いて変位計測を行う一方、 正面から視た画像相当の映像信号を用いて物体表面観測を行うことで、 本来の変位計測機能を損ねることなく、 センサへッ ドから得られる映像 信号に基づいて、 画像モニタの画面上に、 計測対象物体表面の歪みのな い画像を表示させることができる。
二次元撮像素子は、 斜視画像取得光学系の光路正視画像取得光学系の 光路とが交叉する位置に配置するようにしてもよい。
このような構成によれば、 斜視画像の光電変換と正視画像の光電変換 とに 1個の撮像素子を共用可能となり、 センサへッ ドュニッ 卜から得ら れる映像信号に基づいて、 画像モニタの画面上に計測対象物体表面の歪 みのない画像を表示させる機能を、 本来の変位計測機能を損ねることな く、 低コス トで実現することができる。
計測用投光光学系の出射光軸と斜視画像取得光学系の入射光軸とは同 一傾斜角度で対照的に配置され、 二次元撮像素子は正視画像取得光学系 の入射光軸の延長線上に配置され、 斜視画像取得光学系には入射光軸を 折り曲げて二次元撮像素子に入射させる光軸折り曲げ機構が含まれてい るようにしてもよい。
このような構成によれば、 表面正反射物体と表面乱反射物体との双方 に適用が可能となり、 しかも、 センサヘッ ドのハウジング内に、 計測用 投光光学系と斜視画像取得光学系と正視画像取得光学系とを、 バランス よくコンパク 卜に収容可能となる。
光軸折り曲げ機構が、 正視画像取得光学系を経由して二次元撮像素子 受光面に結像する計測光の光像と斜視画像取得光学系を経由して二次元 撮像素子受光面に結像する計測光の光像とが、 計測変位の変化に応じて 同一方向へと二次元撮像素子受光面上に移動するように仕組まれている ようにしてもよい。
このような構成によれば、 斜視画像と正視画像とを重ねて画像モニタ の画面上に表示すると、 測定変位の変動に連れて斜視画像と正視画像と が同じ方向へと移動することとなり、 利用者に違和感を与えない。
斜視画像取得光学系を経由して二次元撮像素子へ至る第 1の光路及び 正視画像取得光学系を経由して撮像素子へ至る第 2の光路のいずれかを、 手動又は遠隔制御により、 択一的に遮光することが可能なシャッ夕をさ らに具備するようにしてもよい。
このような構成によれば、 斜視画像取得光学系を経由して撮像素子へ 至る第 1の光路と、 正視画像取得光学系を経由して撮像素子へ至る第 2 の光路とを、 択一的に有効化することが可能となり、 変位計測中は撮像 素子への正視画像を遮断することにより外乱による計測ミスを回避する 一方、 物体観測中は撮像素子への斜視画像を遮断することにより、 歪み のない画像による計測物体表面の観察が可能となる。
本発明のセンサへッ ドにあっては、 計測対象物体上の計測位置を含む その周辺領域を照明する照明器をさらに具備するようにしてもよい。 このような構成によれば、 周囲環境の照明の明るさが十分でない場合 や、 計測対象物とセンサヘッ ドとの距離が短く、 センサヘッ ドが計測対 象物の上に覆い被さっていることにより、 計測対象物表面の明るさが十 分でないような場合であっても、 これを照明することにより鮮明な画像 を取得することが可能となる。
本発明のセンサヘッ ドにあっては、 斜視画像取得光学系を経由して撮 像素子へ至る第 1の光路に介在され、 主として計測光を通過する帯域通 過特性を有する第 1の光学フィルタと、 正視画像取得光学系を経由して 撮像素子へ至る第 2の光路に介在され、 主として照明光を透過する帯域 通過特性を有する第 2の光学フィルタと、 をさらに具備するようにして もよい。
このような構成によれば、 計測光の波長と照明光の波長とを適切に設 定することにより、 特別なシャツ夕手段を用いることなく、 光路の選択 を自動的に行わせることができる。
以上説明した本発明の各構成は、 技術的に可能である限り任意に組み 合わせることができる。 図面の簡単な説明
図 1は、 本発明が適用された変位センサシステム全体の外観図である 図 2は、 本発明が適用された変位センサシステム全体の電気的ハード ウェア構成を示すブロック図である。
図 3は、 コントローラユニッ トの内部機能構成を示すブロック図であ る o
図 4は、 センサへッ ドュニッ 卜の内部構成を示す図である。
図 5は、 コントロ一ラュニッ 卜の変位量測定動作を概略的に示すゼネ ラルフローチヤ一トである。
図 6は、 本発明変位センサの計測モード時の動作を説明するための図 である。
図 7は、 センサへッ ドュニッ ト内の C C Dで撮像された画像の説明図 である。
図 8は、 測定範囲内における測定点抽出処理の説明図である。
図 9は、 C C Dによる撮像画像とラインブライ ト波形との関係を示す 説明図である。
図 1 0は、 しきい値決定方法の説明図である。
図 1 1は、 測定点座標抽出処理の説明図である。 、
図 1 2は、 モニタ画面生成方法の説明図である。
図 1 3は、 本発明変位センサの計測モード時のモニタ画面の一例を示 す図である。
図 1 4は、 本発明変位センサにおいて計測対象物体が上下動した場合 における受光光路の変化を示す図である。
図 1 5は、 本発明変位センサの観測モード時の動作を説明するための 図である。
図 1 6は、 計測用光路を用いた観測モード時の動作を説明するための 図である。
図 1 7は、 本発明変位センサと従前の変位センサとで観測モード時の モニタ画面を比較して示す図である。
図 1 8は、 本発明センサヘッ ドの変形例を示す図である。
図 1 9は、 センサヘッ ドユニッ トのケース側面を開口してその内部を 示す図である。
図 2 0は、 シャヅ夕ュニッ ト付のセンサュニヅ トケースの構造を説明 するための図である。
図 2 1は、 シャツ夕ュニッ 卜の構造を説明するための図である。
図 2 2は、 計測用レーザ、 照明用 L E D及び C C Dの動作を計測モー ド時と観測モード時とで比較して示す図である。
図 2 3は、 本発明変位センサのアプリケ一ションの一例を説明するた めの図である。
図 2 4は、 本発明変位センサの電気的な構成を示すプロック図である c 図 2 5は、 本発明の変位センサのセンサヘッ ド部の光学系を示す図で ある。
図 2 6は、 スリッ ト光画像のワーク表面画像との重ね合わせ処理を示 すタイムチヤ一トである。
図 2 7は、 モニタ画像の例を示す図である。
図 2 8は、 本発明変位センサの電気的な構成を示すブロック図である。 図 2 9は、 本発明の変位センサにおけるセンサへッ ド部の光学系の別 の例を示す図である。
図 3 0は、 スリッ ト光画像とワーク表面画像との重ね合わせ処理を示 すタイムチヤ一トである。
図 3 1は、 センサヘッ ド部の撮像素子における受光面上の画素配列を 模式的に示す図である。 図 3 2は、 センサへッ ド部の撮像素子における光感応画素領域とォプ ティカルブラック画素領域との関係を実際の画面縦横比で示す図である c 図 3 3は、 撮像素子における電荷移送回路を説明するためのブロック 図である。
図 3 4は、 転送パルス発生部の内部構成を示す図である。
図 3 5は、 水平転送用パルス (T P 2 ) の出力態様を示すタイムチヤ —トである。
図 3 6は、 転送仕様テーブルの内容を示す図である。
図 3 7は、 L l, L 2 , 0 Eの意味内容を示す図である。
図 3 8は、 転送制御部の動作を示すフローチャートである。
図 3 9は、 撮像素子の一駆動例を示すタイムチャートである。
図 4 0は、 図 3 9のタイムチヤ一卜の要部を説明する図である。
図 4 1は、 図 3 9のタイムチャートの要部を説明する図である。
図 4 2は、 撮像素子の一駆動例における 1画面分のデータ構成を表に して示す図である。
図 4 3は、 正反射物体用変位センサの光学系説明図である。
図 4 4は、 乱反射物体用変位センサの光学系説明図である。 発明を実施するための最良の形態
以下に、 この発明の好適な実施の一形態を添付図面を参照しながら詳 細に説明する。
先に述べた問題のほかにも、 従前のセンサヘッ ドは、 正反射物体対応 型及び乱反射物体対応型のいずれの形式のものにあっても、 内蔵二次元 撮像素子の受光面に結像される画像は、 計測対象物体上の計測位置を斜 め上から見下ろした状態で得られる幾分歪んだ画像であるため、 たとえ 計測光照射光像の周囲の計測対象物表面が適切な明るさで写るように撮 影条件を調整したとしても、 計測希望位置と計測光照射光像との位置関 係を確認するには必ずしも適さないことが知見された。 特に、 この画像 歪みの問題は、 測定距離 Lが短い場合における正反射物体対応型のセン サへッ ドュニッ 卜において一層深刻なものとなる。
そこで、 本発明者等は、 計測対象物体上の計測位置を斜め上から見下 ろした状態で得られる画像のみならず、 計測対象物体上の計測位置を真 上から見下ろした状態で得られる画像についても得ることが可能な新規 な構造のセンサヘッ ドを開発した。 すなわち、 このセンサヘッ ドは、 計 測対称物体上の計測位置に向けて計測光を所定方向から投光することが できる計測用投光光学系と、 計測対象物体上の計測位置を含むその周辺 領域を斜めから視た画像を取得することができる斜視画像取得光学系と、 計測対象物体上の計測位置を含むその周辺領域を正面から視た画像を取 得することができる正視画像取得光学系と、 斜視画像取得光学系を介し て取得される斜めから視た画像と正視画像取得光学系を介して取得され る正面から視た画像とをそれぞれ光電変換して各画像に対応する映像信 号を生成する二次元撮像素子とを、 少なくとも具備したことを特徴とす るものである。
斯かる新規な構造を有するセンサへッ ドを使用した光学式変位センサ によれば、 別途特別なカメラ等を用意せずとも、 センサヘッ ド自体から 得られる映像信号を利用して、 画像モニタの画面上に、 計測対象物体表 面の状態を映し出すことができる。
このとき、 画像モニタの画面に映し出される映像としては、 ( 1 ) 計 測光が照射されていない状態における計測対象物体表面の映像、 ( 2 ) 計測光が照射されている状態における計測対象物体表面の映像、 ( 3 ) 計測対象物体表面に照射された計測光の照射光像のみを浮き出させた映 像、 等を挙げることができる。 本発明が適用された変位センサシステム全体の外観図が図 1に、 また 本発明が適用された変位センサシステム全体の電気的ハ一ドウヱァ構成 を示すブロック図が図 2にそれぞれ示されている。
それらの図から明らかなように、 この変位センサシステム 1 0は、 セ ンサヘッ ドユニッ ト 1と、 コントローラユニッ ト 2と、 コンソールュニ ッ ト 3と、 画像モニタ 4と、 同期用センサ 5とを備えている。 尚、 外部 機器 6は、 コントローラユニッ ト 2から出力される変位量データ出力 D 1並びに判定出力 D 2を用いて制御される P L C (プログラマブル · コ ントローラ) 等を表している。
図 1に示されるように、 センサヘッ ドユニッ ト 1、 コント口一ラュニ ヅ ト 2、 コンソールユニッ ト 3、 及び画像モニタ 4は、 それぞれ別々の ハウジングを有するが、 これは単なる一例に過ぎない。 センサヘッ ドュ ニッ ト 1とコントローラユニッ ト 2とを同一のハウジングに収容したり、 コントローラュニヅ 卜 2とコンソールュニッ ト 3とを同一のハウジング に収容したり、 さらには、 コントローラユニッ ト 2とコンソールュニッ ト 3と画像モニタ 1 とを同一のハウジングに収容するなどのハウジング 構成の変形は、 任意に行うことが可能である。
この例に示されたセンサヘッ ドユニッ ト 1内には、 後に図 6 , 図 1 4 〜図 2 1などを参照して詳細に説明するように、 計測対象物体上の計測 位置に向けて計測光を投光する計測用投光光学系と、 計測対象物体上の 計測位置を含むその周辺領域を斜めから見た画像を取得するための斜視 画像取得光学系と、 計測対象物体上の計測位置を含むその周辺領域を正 面から見た画像を取得するための正視画像取得光学系と、 斜視画像取得 光学系を介して取得される斜めから見た画像と正視画像取得光学系を介 して取得される正面から見た画像とをそれぞれ光電変換して各画像に対 応する映像信号を生成する撮像手段とが少なく とも備えられている。 尚、 図 1において、 7は計測対象物体、 8 1は斜め下向きに投光され た計測光 (ラインビーム) 、 82 aは斜め上向きに反射された計測光、 83は計測対象物体 7の表面に生ずる計測光のライン状照射光像である c センサへッ ドュニッ ト 1の電気的な内部構成を示すプロック図が図 4 に示されている。 同図に示されるように、 センサヘッ ドユニッ ト 1の内 部には、 計測光を計測対象物体 7へと投光するための投光系要素 (LD 駆動回路 1 1 1、 LD 1 1 2など) と、 計測対象物体 7の画像を取り込 むための受光系要素 (C CD制御回路 1 2 1、 C CD 1 22、 増幅回路 1 2 3、 HP F 1 2 4、 P/H回路 1 2 5、 AG C増幅回路 1 2 6な ど) と、 計測物体 7上の計測位置を含むその周辺を例えば円形に照明す るための照明系要素 (LED駆動回路 1 3 1、 LED 1 32など) とが 含まれている。
投光系要素について説明する。 タイミング信号発生回路 1 0 1は、 レ 一ザダイオード (以下、 LDという) 1 1 2を発光させるための LD駆 動パルス信号 P 1を発生する。 LD駆動パルス信号 P 1に応答して LD 駆動回路 1 1 1が LD 1 1 2をパルス発光させる。 また、 タイ ミング信 号発生回路.1 0 1は L D駆動回路 1 1 1を介してパルス状レーザ光のピ ークパワーを制御する。 LD 1 1 2から出射されたパルス状レーザ光は、 図示しない計測用投光光学系を介して、 計測対象物体 7の表面に計測光 8 1として照射される。 これにより、 計測対象物体 7の表面には、 計測 光 8 1の照射による線状の光像 (ラインビームの光像) 8 3 (図 1参 照) が形成される。
受光系要素について説明する。 計測対象物体 7の表面で反射したライ ンビームは、 図示しない 2系統の画像取得光学系 (斜視画像取得光学系 と正視画像取得光学系) の何れかを通って撮像素子である 2次元 C CD 1 22の受光面へと入射される。 尚、 後に詳述するように、 斜視画像取得光学系とは、 計測対象物体 7 上の計測位置を含むその周辺領域を斜めから見た画像を取得するための 光学系であり、 正視画像取得光学系とは計測物体 7上の計測位置を含む その周辺領域を正面から見た画像を取得するための光学系である。 ちな みに、 符号 82 aが計測対象物体 7の表面で斜め上向きに反射された計 測光、 82 bが計測対象物体 7の表面で真上に反射された計測光、 1 5 0がそれら反射光 8 2 a, 82 bの何れか一方を択一的に取り込むため の機械的シャヅタをそれぞれ示している。
C CD 1 22の受光面上におけるラインビームの照射光像位置が、 目 的とする変位 (例えば、 センサヘッ ドユニッ ト 1と計測対象物体 7との 距離) に応じて変化するように、 計測用投光光学系と斜視画像取得光学 系との位置関係が決定されている。 この位置関係の決定には、 例えば、 三角測距方式応用の光切断法などが利用される。
C CD 1 22から出力される映像信号は、 各画素毎に増幅回路 1 23 で増幅された後、 ハイパスフィルタ (HP F) 1 24及びピークホール ド (P/H) 回路 1 25により各画素毎に現れる零レベル信号の揺らぎ が除去されて、 各画素信号が正しく受光量を表すように整形される。 そ の後、 AGC増幅回路 1 26により信号値の大きさが適切に制御され、 映像信号 V sとしてコントローラュニッ 卜 2へと送られる。
タイ ミング信号発生回路 1 0 1より出力されるパルス信号 P 2により、
C C D制御回路 1 2 1を介してシャツ夕時間を含む C C D 1 2 2の駆動 態様が制御される。 同様にして、 パルス信号 P 3〜P 5により、 ハイパ スフィルタ (HP F) 1 24のフィルタタイ ミング、 ピークホールド回 路 (P/H) 1 25のピークホールド夕イ ミング、 AG C増幅回路 1 2 6のゲインとその切替タイ ミングが制御される。
更に、 夕イ ミング信号発生回路 1 0 1から出力されるパルス信号 P 6 により、 L E D駆動回路 1 3 1が制御されて、 照明器を構成する L E D 1 3 2がパルス駆動されて、 計測対象物体 7の表面の計測位置を含むそ の周辺領域が例えば円形に照明される。
尚、 計測用光源を構成するレーザダイオード 1 1 2としては、 例えば 赤色レーザダイォードが使用され、 照明器を構成する L E D 1 3 2とし ては、 例えば緑色発光ダイオードが使用される。 図中符号 8 4は照明光、 1 2 8はミラーを示している。
計測条件格納部 1 4 1は、 C C D 1 2 2のシャツタ時間、 L D 1 1 2 の発光時間、 L D 1 1 2のピークパワー、 A G C増幅回路 1 2 6のゲイ ンなどからなる計測条件に加えて、 照明器の光源を構成する L E D 1 3 2の発光時間が格納されており、 コントローラユニッ ト 2からの制御信 号 C O N Tにより最適な計測条件や撮影条件等が選択される。
次に、 コントローラュニッ ト 2の内部機能構成を示すブロック図が図 3に示されている。 同図に示されるように、 このコントローラユニッ ト 2は、 制御部 2 1 0と計測部 2 2 0とから概略構成されている。 計測部 2 2 0内には、 センサヘッ ドユニッ ト 1用のインタフェース部 2 2 1と、 インタフェース部 2 2 1を介してセンサヘッ ドユニッ ト 1から取り込ま れた画像データを処理する画像演算部 2 2 2とが含まれている。
一方、 制御部 2 1 0内には、 コンソールユニッ ト 3並びに画像モニタ 4とのインタフェースとして機能するグラフィ ック ·ユーザ ' インタフ エース (G U I ) 部 2 1 1と、 計測部 2 2 0から送られてくる画像デ一 夕に対して適当な処理を加えて G U I部 2 1 1へと送り出す画像処理部 2 1 2と、 先ほど説明した変位量デ一夕出力 D 1並びに判定出力 D 2を 外部機器へと送り出すための外部出力インタフェース部 2 1 4と、 装置 全体を統括制御するための制御処理部 2 1 3とを含んでいる。
次に、 同装置におけるデータの流れについて説明する。 インタフヱ一 ス部 2 2 1に含まれるセンサへヅ ド制御部 2 2 1 Bは、 センサへッ ドュ ニッ ト 1に内蔵された C C D 1 2 2の受光量が適切となるように、 計測 用光源であるレーザダイオード 1 1 2の光量制御、 並びに、 照明用光源 である L E D 1 3 2の光量制御を行う。 同時に、 センサヘッ ド制御部 2 2 1 Bは、 撮像素子である C C D 1 2 2の露光時間が適切となるように、 内蔵された電子シャツ夕機構に対して、 シャツ夕時間制御を行う。 この 状態で、 センサへヅ ドュニッ ト 1内の C C D 1 2 2が撮影した画像デー 夕 D 3は、 画像取込部 2 2 1 Aの作用で、 計測部 2 2 0内に取り込まれ る
こう して計測部 2 2 0に取り込まれた画像データは、 画像演算部 2 2
2内の画像転送部 2 2 2 A並びに計測処理部 2 2 2 Bへと送られる。 画 像転送部 2 2 2 Aは、 画像取込部 2 2 1 Aから到来する画像データ D 3 を、 制御部 2 1 0内の画像処理部 2 1 2へと送出する。 又、 計測処理部 2 2 2 Bでは、 画像データ D 3に基づいて計測処理を行い、 変位量デー 夕 D 1や判定出力 D 2を求め、 これらのデータ D 7を制御部 2 1 0内の 制御処理部 2 1 3へと送出する。
制御部 2 1 0内の制御処理部 2 1 3は、 計測処理部 2 2 2 Bから送ら れてきたデータ D 7に基づき、 ラインビーム方向測定点座標データ D 8 を求め、 これを画像処理部 2 1 2へと送出する。 画像処理部 2 1 2は、 画像データ並びにラインブライ トを含むデータ D 4を G U I部 2 1 1へ と送出する。 G U I部 2 1 1はコンソールュニッ ト 3からの各種指令を 受け付けると共に、 表示用データを編集し、 これをモニタ出力 D 5とし て画像モニタ 4へと送出する。
後に詳細に説明するように、 この実施形態に示されるコントローラュ ニッ ト 2には、 計測モードと第 1及び第 2の観測モードとが用意されて いる。 そして、 計測モードに設定された状態においては、 正視画像取得 光学系の光路をシャツ夕手段 (例えば機械的シャツ夕 1 5 0がこれに相 当) で遮光したまま、 計測用光源 (例えばレーザダイオード 1 1 2がこ れに相当) を点灯すると共に照明器 (例えば、 L E D 1 3 2がこれに相 当) を消灯し、 かつ計測光照射光像は適切な明るさで写るものの、 その 周辺の計測対象物表面像は適切な明るさより暗く しか写らないように撮 影条件を自動調整しつつ、 2次元撮像素午 (例えば C C D 1 2 2がこれ に相当) から得られる斜視画像相当の映像信号 V sに基づいて目的とす る変位量を算出する制御動作を実行する。
また、 第 1の観測モードに設定された状態においては、 斜視画像取得 光学系の光路をシャツ夕手段で遮光したまま、 計測用光源を消灯すると 共に照明器を点灯し、 かつ計測位置を含むその周辺の計測対象物表面像 が適切な明るさで写るように撮影条件を自動調整しつつ、 2次元撮像素 子から得られる正視画像相当の映像信号に基づいて、 計測対象物表面の 計測光照射位置を含むその周辺の画像を画像モニタ (例えば、 画像モニ タ 4がこれに相当) の画面上に表示させる制御動作を実行する。
更に、 第 2の観測モードに設定された状態においては、 斜視画像取得 光学系の光路をシャツ夕手段で遮光したまま、 計測用光源及び照明器を 点灯し、 かつ計測光照射光像及びその周辺の計測対象物表面像の双方が 適切な明るさで写るように撮影条件を自動調整しつつ、 2次元撮像素子 から得られる正視画像相当の映像信号に基づいて、 計測対象物表面の計 測光照射光像を含むその周辺の画像を画像モニタの画面に表示させる制 御動作を実行する。
以上、 3つの制御動作に必要な、 測定点座標の自動抽出処理や変位量 測定処理は、 主として計測処理部 2 2 2 Bにて実現され、 表示デ一夕編 集処理は主として画像処理部 2 1 2や G U I部 2 1 1にて実現され、 撮 影条件調整処理は主としてセンサへッ ド制御部 2 2 1 Bにて実現される。 図 1及び図 2に戻って、 コンソールュニヅ ト 3はハンディタイプのも のであり、 その表面には各種ファンクションキーの他に、 カーソル移動 用の 4方向キーが配置されている。 このコンソールユニッ ト 3は、 所定 の電気コ一ドを介してコントローラュニッ ト 2に接続される。
画像モニタ 4は、 コントローラユニッ ト 2から出力されるモニタ出力
(表示データ) を受けて、 対応する画像を画面上に表示するものである c この画像モニタ 4としては、 C R T表示器、 液晶表示器などの任意の巿 販の表示器が採用可能となっている。
次に、 本発明にかかる変位センサュニッ ト 1の光学的構造について詳 細に説明する。 本発明変位センサの計測モード時の動作を説明するため の図が図 6に、 また本発明変位センサの観測モード時の動作を説明する ための図が図 1 5にそれぞれ示されている。
それらの図から明らかなように、 このセンサへッ ドュニッ ト 1のハウ ジングには、 計測対象物体 7上の計測位置に向けて計測光 8 1を斜め下 向きに投光する計測用投光光学系 (この例では、 1若しくは 2枚以上の レンズ列を含むレンズ組立体 1 1 3で構成される) と、 計測対象物体 7 上の計測位置を含むその周辺領域を斜め上から見た画像を取得するため の斜視画像取得光学系 (この例では、 レンズ組立体 1 2 7 aとミラ一 1 2 8とで構成される) と、 計測対象物体 7上の計測位置を含むその周辺 領域を真上から見た画像を取得するための正視画像取得光学系 (この例 では、 レンズ組立体 1 2 7 bで構成される) と、 斜視画像取得光学系の 光路と正視画像取得光学系の経路とが交差する位置に配置された 2次元 撮像素子 (この例では、 2次元 C C D 1 2 2で構成される) と、 斜視画 像取得光学系と正視画像取得光沢系とを択一的に遮光するシャツ夕手段 (この例では矢印 9 1のように往復移動して、 2つの光路を択一的に遮 光する機械的シャツ夕 1 5 0により構成される) と、 照明用光源からの 光により計測対象物体 7上の計測位置を含むその周辺領域を照明する照 明器 (この例では、 レンズ機能の組み込まれた緑色発光ダイオード 1 3 2で構成される) とが含まれている。
より具体的に説明すると、 計測用投光光学系の出射光軸 (符号 8 1が 付される) と斜視画像取得光学系の入射光軸 (符号 8 2 aが付される) とは、 図 6に明示されるように、 同一傾斜角度で対称的に配置されてお り、 これによりいわゆる正反射物体対応型の光学系が構成されている。 そのため、 このセンサヘッ ドユニッ ト 1は、 表面乱反射物体のみならず、 ガラスなどの表面正反射物体にも適用可能となされている。
ハウジング内の上部に配置された撮像素子である C C D 1 2 2は、 図
1 5に明示されるように、 正視画像取得光学系を構成するレンズ組立体 1 2 7 bの入射光軸の延長上に位置決めされている。 一方、 斜視画像取 得光学系には、 入射光軸 (符号 8 2 aが付される) を折り曲げて撮像素 子である C C D 1 2 2に入射させる光軸折り曲げ機構 (この例では、 1 枚のミラ一 1 2 8で構成される) が含まれている。 そのため、 撮像素子. を構成する C C D 1 2 2は、 正視画像取得光学系で取得された画像と斜 視画像取得光学系で取得された画像との双方を受光可能である。 すなわ ち、 2系統の画像取得光学系に対して撮像素子が 1個で済むことから、 コス トダウンが図られている。
照明器を構成する緑色発光ダイオード 1 3 2は、 好ましくはある程度 のビーム機能を有している。 この例では、 図 1 5に明示されるように、 基準距離に存在する計測物体 7の上面に、 所定サイズの円形照射光像 8 5を形成するようになっている。
尚、 図 6 ( b ) 並びに図 1 5 ( b ) に示されるように、 この例で示さ れる計測対象物体 7は、 表面が平坦な板状物体とされている。 この板状 物体 7のほぼ中央には、 表裏に貫通する円形穴 7 1が開けられている。 換言すれば、 計測対象物体 7を構成する板状物体には、 板の厚さに相当 する段差が存在する。 そして、 この変位センサでは、 円形穴 7 1の部分 に、 ラインビームの照射光像 8 3を位置合わせした状態で、 板厚分の段 差を変位量として検出するものとする。
センサへッ ドュニッ ト 1内における各光学的要素のより具体的な配置 の一例が図 1 9に示されている。 同図は、 センサヘッ ドユニッ トのケ一 ス側面を開口してその内部を示すものである。
図において、 1 1 2は計測用光源を構成する赤色レーザダイオード素 子、 1 1 3は計測用投光光学系を構成するレンズ組立体、 1 2 7 aは計 測対象物体上の計測位置を含むその周辺領域を斜めから見た画像を取得 するための斜視画像取得光学系を構成するレンズ組立体、 1 2 8はレン ズ組立体 1 2 7 aの光軸を折り曲げるためのミラー、 1 2 7 bは計測対 象物体上の計測位置を含むその周辺領域を正面から見た画像を取得する ための正視画像取得光学系を構成するレンズ組立体、 1 2 2は斜視画像 取得光学系を介して取得される斜めから見た画像と正視画像取得光学系 を介して取得される正面から見た画像とをそれぞれ光電変換して各画像 に対応する映像信号を生成する撮像手段としての 2次元 C C D素子であ る。
同図から明らかなように、 これらの光学要素 ( 1 1 2, 1 1 3, 1 2 7 a , 1 2 7 b , 1 2 8及び 1 2 2 ) は、 センサヘッ ドのハウジング内 に、 バランス良くコンパク トに収容されている。
機械的シャツ夕 1 5 0のより具体的な機械的構造の一例が図 2 0及び 図 2 1に示されている。 図 2 0 ( a ) に示されるように、 センサュニッ トケース 1 Aの下面開口には、 平板状のシャッ夕ュニッ ト 1 5 0 Aがね じ止めされている。 このシャヅ夕ユニッ ト 1 5 0 Aには、 投光用窓 1 5 1と、 斜め上向き取込用窓 1 5 2と、 真上向き取込用窓 1 5 3と、 照明 用窓 1 5 4とからなる 4つの窓が開けられている。 投光用窓 1 5 1から は計測光 8 1が出射される。 斜め上向き取込用窓 1 5 2からは、 計測対 象物体上の計測位置を含むその周辺領域を斜め上から見た画像に相当す る計測反射光が入射される。 真上向き取込用窓 1 5 3からは、 計測対象 物体上の計測位置を含むその周辺領域を真上から見た画像に相当する計 測反射光が入射される。 照明用窓 1 5 4からは照明用緑色発光ダイォ一 ド 1 3 2からの照明光 8 4が出射される。
図 2 1 ( a ) , ( b ) に示されるように、 シャツ夕ユニッ ト 1 5 0 A の内部にはシャッ夕板 1 5 7がスライ ド自在に設けられている。 このシ ャッ夕板 1 5 7のスライ ド方向の幅は、 窓 1 5 2 , 1 5 3, 1 5 4の直 径よりもやや大きめに設定され、 そのスライ ドス トロークは図 2 1 ( b ) に示されるように、 窓 1 5 2と窓 1 5 3との間を交互に往復移動 可能となされている。 また、 シャツ夕板 1 5 7が真上向き取込用窓 1 5 3を塞ぐ位置にあるとき、 照明用窓 1 5 4も同時に塞がれ、 これにより 照明光が遮断される。 シャツ夕ュニッ ト 1 5 O Aの側面に設けられたシ ャッ夕板ガイ ドスロッ ト 1 5 6からは、 シャッタ板操作用つまみ 1 5 5 が突出している。 このつまみ 1 5 5を指でつまんで、 往復移動させるこ とにより、 シャツ夕板 1 5 7を介して、 斜め上向き取込用窓 1 5 2と真 上向き取込用窓 1 5 3とを択一的に塞ぐことが可能となっている。
次に、 この変位センサにおける計測モード時の動作を図 5〜図 1 3を 参照しながら説明する。
本発明変位センサの計測モード時の動作を説明するための図が図 6に 示されている。 同図に示されるように、 計測モードに設定された状態に おいては、 正視画像取得光学系 (レンズ組立体 1 2 7 bを含む) の光路 をシャツ夕手段 (機械的シャツ夕 1 5 0 ) で遮光したまま、 計測用光源 (赤色レーザダイオード 1 1 2 ) を点灯すると共に照明器を消灯 (緑色 発光ダイオード 1 3 2の消灯またはシャツ夕板 1 5 7による照明用窓 1 5 4の遮光) し、 かつ計測光照射光像 8 3は適切な明るさで写るものの その周辺の計測対象物表面像はほとんど写らないように撮影条件を自動 調整しつつ、 2次元撮像素子 ( 2次元 C C D 1 2 2 ) から得られる斜視 画像相当の映像信号 V sに基づいて目的とする変位量を算出する制御動 作を実行する。
コントローラュニッ ト 2における変位量測定動作を概略的に示すゼネ ラルフ口一チャートが図 5に示されている。 同図において、 まず最初の ステップでは、 センサへッ ド 1内の C C D 1 2 2で撮影された画像をコ ントロ一ラユニッ ト 1へと取り込む (ステップ 5 0 1 ) 。
センサへヅ ド 1内の C C D 1 2 2で撮像された画像の説明図が図 7に 示されている。 同図に示されるように、 センサヘッ ド 1に内蔵された C C D 1 2 2は、 細長い長方形状の視野 1 2 2 aを有する。 この視野の長 辺に沿う X方向は変位方向とされており、 また短辺に沿う Ύ方向はライ ンビーム方向 (以下、 単にライン方向ともいう) とされている。 また、 センサの視野 1 2 2 a内には、 この例ではジグザグ状の直線としてライ ンビームの像 (照射光像) A 1が描かれている。 また、 変位方向におい て、 図中左側がセンサヘッ ドに近い方向、 逆に右側がセンサヘッ ドに遠 い方向とされている。
図 5に戻って、 次のステップとして、 測定範囲内の特徴点抽出処理を 実行する (ステップ 5 0 2 ) 。 測定範囲内における測定点抽出処理の説 明図が図 8に示されている。 同図に示されるように、 センサの視野 1 2 2 a内には、 図中左右方向へ延びる 2本の互いに平行な点線 A 2 , A 3 によって測定範囲 A 4が示されている。 そして、 この測定点抽出処理で は、 この測定範囲 (測定点抽出範囲) A 4内において、 所定の特徴点抽 出アルゴリズムを使用することにより、 ピーク位置 (P x , P y ) 並び にボトム位置 (Bx, B y) が抽出される。 尚、 後述するように、 測定 範囲 (測定点抽出範囲) A 4を特定する始点直線 A 2及び終点直線 A 3 は予めユーザによって設定されたものである。
図 5に戻って、 次のステップでは特徴点を含むラインのラインブライ トを抽出する (ステップ 503) 。 C CDによる撮像画像とラインブラ ィ ト波形との関係を示す説明図が図 9に示されている。 同図に示される ように、 このラインブライ ト抽出処理では、 図中一点鎖線で示されるピ ーク位置を含むライン上において、 各ピクセルの受光輝度が抽出され、 これが変位方向に配列されることによって図に示されるラインブライ ト 波形 A 5が生成される。 図 9に示されるように、 このラインブライ ト波 形 A 5は、 横軸を変位方向及び縦軸を階調とする直交座標上において描 かれている。
図 5に戻って、 次のステップでは、 所定の抽出アルゴリズムに従って、 ラインブライ ト波形上の測定点座標が抽出される (ステップ 504 ) 。 この測定点座標の抽出は、 しきい値決定処理と測定点座標抽出処理を経 て行われる。 しきい値決定方法の一例を示す説明図が図 1 0に示されて いる。 同図に示されるように、 しきい値 THの決定はピーク値を示すピ クセル P Pの輝度 Vpに対して a%として決定される。 すなわち、 TH = Vp X a%として自動的に決定される。 また、 測定点座標抽出処理の 説明図が図 1 1に示されている。 測定点座標抽出方法には、 この例では、 重心モ一ドとエツジ中心モ一ドと片側エツジモ一ドとの 3種類のモ一ド が用意されている。 重心モードにおいては、 図 1 0 (a) に示されるよ うに、 図中ハッチングで示されるしきい値 THを超える部分の濃淡重心 として測定点が求められる。 また、 エッジ中心モードにおいては、 図 1 0 (b) に示されるように、 ラインブライ ト波形としきい値 THとの交 点である 2つのエッジの中心として測定点が求められる。 更に、 片側ェ ッジモードにおいては、 図 1 0 (c) に示されるように、 ラインブライ ト波形としきい値 T Hとの片側エッジとして測定点が求められる。
図 5に戻って、 次のステップでは、 測定点座標から変位量が算出され る (ステップ 505 ) 。 この変位量算出処理は例えば光学系が三角測距 である場合、 変位量 Z=AxB/ (C XX) として求められる。 ここで、 Xは変位方向座標、 A, B, Cはそれぞれ光学系により決定される乗数 である。
図 5に戻って、 次のステップでは、 得られた変位量 (必要であれば判 定出力) を画像モニタ 4及び外部機器 6へと出力する (ステップ 5 0 6) o
モニタ画面上に画像を生成する方法の説明図が図 1 2に示されている c 同図に示されるように、 この実施の形態においては、 4枚 (層) の画像 メモリ ( 0 ) 〜 ( 3 ) が使用される。 それらのうちで、 画像メモリ (0) はセンサヘッ ドから取り込まれた生画像が、 画像メモリ ( 1 ) に は画面枠判定値や固定枠画面部分などが、 画像メモリ ( 2) にはライン ブライ ト並びに測定値が、 画像メモリ (3) には変位量並びに判定基準 などがそれそれ格納可能となされている。 そして、 これらの画像メモリ ( 0 ) 〜 ( 3 ) 上のデータは、 GU I部 1 2 1及び画像処理部 1 22の 作用により、 互いに重ねて、 並べて、 又は単独で読み出され、 モニタ出 力 (表示データ) D 5として画像モニタ 4へと送られる。
本発明変位センサの計測モ一ド時のモニタ画面の一例を示す図が図 1 3に示されている。 同図に示されるように、 画像モニタの表示画面 4 1 には、 グラフ表示領域 42と数値表示領域 43とが設けられる。 グラフ 表示領域 42には、 ラインブライ ト波形 A 5と決定された測定点を示す 十字記号 A 6とが表示される。 数値表示領域 43には、 測定された変位 量を示す数値 A 8と出力ポートを示す文字 A 9とが表示される。 尚、 表 示画面 4 1の頂部枠内には、 動作モ一ドが 『計測モード』 であることを 示す文字 A 7が表示される。
図 1 4に示されるように、 計測対象物体が近づいたり遠ざかつたりす ると、 遠ざかった場合の光路 8 2 a— 1並びに近づいた場合の光路 8 2 a— 2で示されるように、 撮像素子である 2次元 C C D 1 2 2の受光面 上における光像の位置は左右方向へ移動する。 具体的には、 対象物体表 面から遠ざかるにつれて、 C C D 1 2 2の受光面上における光像到達位 置は右方向へ移動し、 対象物体表面が近づくにつれて、 2次元 C C D 1 2 2の受光面上における光像到達位置は左方向へ移動する。 そのため、 C C D 1 2 2上における光像の変位方向座標に基づいて、 対象物体表面 の変位量を正確に測定することができる。
次に、 このコントローラュニッ トにおける観測モード時の動作を図 1 5を参照しながら説明する。 先に述べたように、 観測モードには第 1の 観測モードと第 2の観測モードとが用意されている。
そして、 コントローラユニッ ト 2は、 第 1の観測モードに設定された 状態においては、 図 1 5に明示されるように、 斜視画像取得光学系 (こ の例では、 レンズ組立体 1 2 7 aとミラー 1 2 8とで構成される) の光 路をシャツ夕手段 (この例では機械的シャツ夕 1 5 0 ) で遮光したまま、 計測用光源 (この例では赤色レーザダイオード 1 1 2 ) を消灯すると共 に、 照明器 (この例では、 緑色発光ダイオード 1 3 2 ) を点灯し、 かつ 計測位置を含むその周辺の計測対象物表面像が適切な明るさで写るよう に撮影条件を自動調整しつつ、 2次元撮像素子 (この例では、 2次元 C C D 1 2 2 ) から得られる正視画像相当の映像信号 v sに基づいて、 計 測対象物表面の計測光照射位置を含むその周辺の画像を画像モニタの画 面に表示させる制御動作を実行する。 もっとも、 計測用光源を点灯させ たままでも、 その輝度を小さく したり、 2次元撮像素子のシャツ夕開期 間 (電荷蓄積期間) が計測用光源の点灯期間を含まない撮影条件にする ことにより、 計測光照射光像が全く写らないか適切な明るさより暗く し か写らないようにすることは可能である。
この第 1の観測モード設定値における撮像条件の自動調整には、 照明 器の輝度調整及び/又は 2次元撮像素子の露光時間調整が含まれる。 す なわち、 図 3を参照して先に説明したように、 センサヘッ ド制御部 2 2 1 Bから制御信号 C O N Tをセンサへッ ドュニッ ト 1へ送ることにより、 計測条件格納部 1 4 1から最適な画像取得条件を読み出し、 これに基づ きタイ ミング信号発生回路 1 0 1を介して、 C C D制御回路 1 2 1並び に L E D駆動回路 1 3 1を制御することにより、 C C D 1 2 2のシャツ 夕時間や L E D 1 3 2のピーク輝度や点灯時間を変更することにより、 照明器の輝度調整及び/又は C C Dの露光時間調整を実現するのである c この第 1の観測モードによれば、 図示しないが、 画像モニタ 4の画面 上には、 計測対象物体 7の表面に存在する円形穴 7 1の像と、 これを円 形に囲んで照らす照明光の円形照射光像 8 5とが写し出される。 このと きには、 画像モニタ 4の画面上で計測光の光像を見ることはできないが、 画面の中心を計測位置と考えてセンサヘッ ドと計測対象物体との位置合 わせをすることができる。
次に、 第 2の観測モードに設定された状態における制御動作について 説明する。 コントローラユニッ ト 2は、 第 2の観測モードに設定された 状態においては、 斜視画像取得光学系 (この例では、 レンズ組立体 1 2 7 aとミラ一 1 2 8とで構成される) の光路をシャツ夕手段 (この例で は機械的シャツ夕 1 5 0 ) で遮光したまま、 計測用光源 (この例では、 赤色レーザダイオード 1 1 2 ) 及び照明器 (この例では、 緑色発光ダイ オード 1 3 2 ) を点灯し、 かつ計測光照射光像 8 3及びその周辺の計測 対象物表面像の双方が適切な明るさで写るように撮影条件を自動調整し つつ、 2次元撮像素子 (この例では、 2次元 C CD 1 2 2 ) から得られ る正視画像相当の映像信号 V sに基づいて、 計測対象物体表面の計測光 照射光像 83を含むその周辺の画像を画像モニタの画面に表示させる制 御動作を実行する。
このとき、 撮影条件の自動調整には、 計測用光源 (この例では赤色レ
—ザダイオード 1 1 2 ) の輝度調整、 照明器 (この例では、 緑色発光ダ ィオード 1 3 2) の輝度調整、 及び/又は 2次元撮像素子 (この例では、 2次元 C CD 1 2 2) の露光時間調整を含むことができる。 すなわち、 先に図 3を参照して説明したように、 センサへッ ド制御部 2 2 1 Bから 出力される制御信号 CONTを、 センサヘッ ドユニッ ト 1へ与えること により、 図 4に示される計測条件格納部 1 4 1から、 最適な画像取得条 件を求め、 タイ ミング信号発生回路 1 0 1を介して、 LD駆動回路 1 1 1、 C CD制御回路 1 2 1、 L E D駆動回路 1 3 1を適宜に制御するこ とにより、 レーザダイオード 1 1 1の点灯時間やピーク輝度、 C CD 1 22のシャツ夕時間、 発光ダイオード 1 32の点灯時間やピーク輝度を 変更することにより、 最適な撮影条件を求める。
図 1 5 (b) には、 この第 2の観測モード時における計測対象物上面 を真上から見た図が示されている。 同図において、 7は計測対象物体、 7 1は計測対象物体に設けられた円形の貫通穴、 83はラインビームが 照射してできた照射光像、 8 5は照明光 84が照射されて生じた円形照 射光像である。 そして、 先に述べた第 1の観測モード時における最適撮 影条件とは、 照明光 84で照らされて生じた円形像 85内の円形穴 7 1 が鮮明に画像表示される状態があり、 第 2の観測モード時における最適 撮影条件とは、 照明光 84で照らされて生じた円形像 85内において、 円形穴 7 1とラインビームの照射光像 83とが共に鮮明に写し出される 状態である。 図 1 7には、 正視画像取得光学を用いた観測モード時のモニタ画面の 一例を示す図と、 斜視画像取得光学系 (計測用光路) を用いた観測モー ド時のモニタ画面の一例を示す図が、 上下に並べて示されている。 尚、 図 1 7 (a) に示されるモニタ画面は図 1 5 (a) に示される受光光路 に対応しており、 図 1 7 (b) に示されるモニタ画面は、 図 1 6 (a) に示される光路に対応している。
それらの図から明らかなように、 計測対象物体上の計測位置を含むそ の周辺領域を真上から見た画像を取得することができる正視画像取得光 学系 (レンズ組立体 1 27 aに相当) を設けることなく、 斜視画像取得 光学系 (レンズ組立体 1 2 7 a及びミラ一 1 28で構成される) だけで 画像観測を行おうとすると、 図 1 7 (b) に示されるように、 円形穴に 相当する画像 A 1 0— 2は楕円形に歪んでしまう。 そのため、 ラインビ —ム照射光像 8 3と円形穴 7 1との位置関係を正確に確認することがで きない。
これに対して、 図 1 5 (a) に示されるように、 正視画像取得光学系
(レンズ組立体 1 2 7 bに相当) を用いて画像観測を行うと、 図 1 7 (a) に示されるように、 円形穴 7 1に相当する画像 A 1 0— 1は歪み のない真円形状として写し出される。 そのため、 ラインビームの照射光 像 83と円形穴 7 1との位置関係を正確に認識し、 これを用いて計測希 望点とラインビーム照射位置との位置合わせを適切に行うことが可能と なる。
以上説明した本発明変位センサの基本実施形態によれば、 計測モード においては、 正視画像取得光学系 (レンズ組立体 1 2 7 bに相当) から の光像を排除しつつ、 斜視画像取得光学系 (レンズ組立体 1 2 7 b及び ミラー 1 28に相当) からの光像のみに基づいて、 信頼性の高い計測動 作を行うことができる。 また、 第 1の観測モードにおいては、 斜視画像取得光学系からの光像 を排除しつつ、 正視画像取得光学系からの光像のみに基づいて歪みのな い周辺画像 (計測対象物体の計測位置及びその周辺領域の画像) を画像 モニタ 4の画面上に表示させることができる。 しかも、 計測対象物 7と センサヘッ ド 1 との距離が短く、 センサヘッ ド 1が計測対象物体 7の上 に覆い被さっていることにより、 計測対象物表面の明るさが十分でない ような場合であっても、 計測対象物体 7の表面を明るく照明 ることに より、 画像モニタ 4の画面上に鮮明な映像を表示させることができる。 更に、 第 2の観測モードにおいては、 斜視画像取得光学系 (レンズ組 立体 1 2 7 a及びミラー 1 2 8に相当) からの光像を排除しつつ、 正視 画像取得光学系 (レンズ組立体 1 2 7 bに相当) からの光像のみに基づ いて、 歪みのない周辺像 (計測対象物体表面の計測位置及びその周辺領 域の像) と計測光照射光像 (計測対象物体表面に計測光が照射されて生 ずるスポッ ト状やライン状の光像) とが重ねられた画像を、 画像モニタ 4の画面上に表示させることができる。 しかも、 計測対象物 7とセンサ へッ ド 1 との距離が短く、 センサへッ ド 1が計測対象物の上に覆い被さ つていることにより、 計測対象物表面の明るさが十分でないような場合 であっても、 計測対象物体 7の表面を明るく照明することにより、 画像 モニタの画面上に鮮明な周辺画像を表示させることができる。
本発明の変位センサシステムにおいては、 以上説明した基本実施形態 のように、 観測モードを必ずしも 2種類設ける必要はない。 すなわち、 本発明においては、 計測モードと第 1の観測モ一ドのみの組み合わせ、 または計測モ一ドと第 2の観測モ一ドのみの組み合わせを任意に採用可 能である。
また、 本発明の変位センサにおいては、 以上の基本実施形態のように、 照明器を設けることを必須の要件とするものではない。 照明器を設けな い場合には、 計測対象物体上の明るさ不足を、 観測モード設定時におけ る撮影条件を自動調整して、 計測用光源の輝度調整及び/又は 2次元撮 像素子の露光時間調整などで補うことができる。
更に、 以上の基本実施形態において、 正視画像取得光学系並びに斜視 画像取得光学系の光路は単なる一例として理解されるべきである。 例え ば、 C C D撮像素子 1 2 2をミラー 1 2 8の位置に取り付け、 正視画像 取得光学系の光路をミラーで折り曲げることによつて斜視画像取得光学 系の延長線上に置かれた C C Dに導くなどの変形は本発明の範囲と理解 されるべきである。
また、 本発明の変位センサにおいては、 以上の基本実施形態のように、 単一の二次元撮像素子を斜視画像取得光学系と正視画像取得光学系とに 共通して使用することを必須の要件とするものではない。 これら 2つの 光学系にそれぞれ別の二次元撮像素子を設けてもよい。 例えば、 正視画 像取得光学系用の C C D撮像素子を基本実施形態の C C D撮像素子 1 2 2の位置に設け、 斜視画像取得光学系用の C C D撮像素子をミラー 1 2 8の位置のあたりに設けることができる。
また、 シャツ夕は斜視画像取得光学系の光路及び正視画像取得光学系 の光路を択一的に遮光するものである必要はなく、 正視画像取得光学系 の光路だけを遮光可能なものとし、 計測モードのときに正視画像取得光 学系の光路を遮光するようにしてもよい。 この場合には、 観測モードの ときに計測光を消灯するようにすれば、 計測光の光像が二重写しに見え る問題は生じない。
シャツ夕は、 開閉が電気的に制御可能であるようにしてもよい。 そう すれば、 計測モードと観測モードとの切替に応じて、 自動的にシャツ夕 を開閉するように構成することが可能になる。 必要に応じて遠隔制御も 可能になる。 シャツ夕を電気的に制御するためには、 機械式のシャツ夕 をモータゃソレノィ ドで動かしてもよいし、 シャツ夕を液晶パネルの透 明状態と不透明状態とで構成してもよい。
また、 本発明の変位センサにおいては、 以上の基本実施形態のように、 2つの画像取得光学系を必須の要件とするものではない。 画像取得光学 系は少なくとも 1つあればよい。 例えば、 斜視画像取得光学系または正 視画像取得光学系のいずれか一方だけを備え、 その画像取得光学系を計 測モードと観測モードとに共通して使用するようにすることができる。 次に、 本発明センサヘッ ドの変形例を示す図が図 1 8に示されている c この変形例に示されるセンサヘッ ドは、 2つの特徴を有している。 第 1 の特徴は、 斜視画像取得光学系を経由して撮像素子へ至る第 1の光路と 正視画像取得光学系を経由して撮像素子へ至る第 2の光路との切替を光 学フィルタを介して自動的に行うようにした点にある。 第 2の特徴は、 正視画像取得光学系を経由して撮像素子受光面に結像する計測光の光像 と斜視画像取得光学系を経由して撮像素子受光面に結像する光像とが、 計測変位の変化に応じて同一方向へと撮像素子受光面上にて移動するよ うに仕組まれた光軸折り曲げ機構を設けた点にある。
すなわち、 図 1 8に示されるように、 斜視画像取得光学系を構成する レンズ組立体 1 2 7 aの入口には、 主として計測光 (この例では、 赤色 レーザダイオード 1 1 2からの光) を透過する帯域通過特性を有する第 1の光学フィルタ 1 6 1が設けられる。 また、 正視画像取得光学系を構 成するレンズ組立体 1 2 7 bの入口には、 照明光 (この例では、 緑色発 光ダイオード 1 3 2からの光) 8 4を透過する帯域通過特性を有する第 2の光学フィルタ 1 6 2が設けられる。
そのため、 赤色レーザダイオード 1 1 2と緑色発光ダイオード 1 3 2 とを共に点灯した状態においても、 斜視画像取得光学系を通過する光は 計測光に限られる一方、 正視画像取得系を通過する光も照明光に限られ る。 その結果、 基本実施形態のように、 手動や電気的制御によって、 シ ャッタ機構を作動させずとも、 光自体の性質によって、 光路を自動的に 選択させることができる。
光学フィル夕については、 第 1の光学フィルタを設けず、 第 2の光学 フィルタだけを設けるようにすることもできる。 この場合には、 計測モ 一ドのときに照明器を点灯しないようにすれば、 計測光の光像以外はほ とんど写っていない、 計測に適した画像を得ることができる。 また、 観 測モードのときに計測光を消灯するようにすれば、 計測光の光像が二重 写しに見える問題は生じない。
次に、 斜視画像取得光学系を構成するレンズ組立体 1 2 7 aの入射光 軸延長線上には、 光路を折り返して C C D 1 2 2よりも左側へ向けるた めの第 1のミラー 1 2 8 aが設けられる。 同様にして、 C C D 1 2 2の 左側には、 第 1のミラ一 1 2 8 aにて折り返された光軸を、 さらに折り 返して C C D 1 2 2の受光面上に結像させるための第 2のミラー 1 2 8 bが設けられる。
このような構成によれば、 対象物体表面が近づいたり遠ざかったり し た場合、 正視画像取得光学系を経由して撮像素子受光面に結像する計測 光の光像と斜視画像取得光学系を経由して撮像素子受光面に結像する光 像とは、 計測変位の変化に応じて同一方向へと撮像素子受光面上にて移 動することとなる。
より具体的には、 斜視画像取得光学系についてみると、 対象物体表面 が遠い側にあるときの光軸 8 2 a - 1 と近い側にあるときの光軸 8 2 a 一 2との比較から明らかなように、 対象物体表面が近づくにつれて、 C C D 1 2 2の受光光面上における光像は右側へ移動することが理解され る。 同様にして、 正視画像取得光学系についてみると、 対象物体表面が 遠い側にあるときの光軸 8 2 b - 1 と近い側にあるときの光軸 8 2 b— 2との比較から明らかなように、 対象物体表面が近づくにつれて、 C C D 1 2 2の受光面上における光像は、 右側へ移動することが理解される < つまり、 対象物体表面が近づくにつれて、 各光学系をそれぞれ経由して C C D 1 2 2の受光面上に結像される光像は、 何れも右方向へ移動する ( 従って、 このような構成によれば、 斜視画像と正視画像とを重ねて画 像モニタの画面上に表示すると、 測定変位の変動につれて斜視画像と正 視画像とが同じ方向へと移動することとなり、 利用者に違和感を与える ことがない。 '
さらに、 対象物体表面がある値だけ変位したときに、 C C D 1 2 2の 受光面上での計測光照射光像の移動量が斜視画像と正視画像とで同じに なるように光学系を設計すれば両画像を一体のものとして観察すること ができる。
当業者であれば容易に理解できるように、 図 1 8に示されるセンサへ ッ ドの変形例を用いた場合にも、 先の基本実施形態と同じように、 計測 モードと第 1及び第 2の観測モードとを有する変位センサを構成するこ とができる。
すなわち、 このように光学フィル夕を用いて光軸選択を行うようにし たセンサヘッ ドを用いた変位センサの具体的な一実施形態においては、 センサへッ ド 1 とコントローラュニッ ト 2とが一体又は別体に設けられ る。
そして、 センサヘッ ド 1には、 計測対象物体 7上の計測位置に向けて 計測光 8 1を斜め下向きに投光することができる計測用投光光学系 (レ ンズ組立体 1 1 3がこれに相当) と、 計測対象物体 7上の計測位置を含 むその周辺領域を斜め上から見た画像を取得することができる斜視画像 取得光学系 (レンズ組立体 1 2 7 a , 第 1のミラー 1 2 8 a, 第 2のミ ラー 1 2 8 bを含む) と、 計測対象物体 7上の計測位置を含むその周辺 領域を真上から見た画像を取得することができる正視画像取得光学系 (レンズ組立体 1 27 bに相当) と、 それら 2つの画像取得光学系に共 通な 2次元撮像素子 ( 2次元 C CD 1 22に相当) と、 照明用光源 (緑 色発光ダイォード 1 32に相当) からの光により計測対象物体 7上の計 測位置を含むその周辺領域を照明する照明器と、 斜視画像取得光学系 (レンズ組立体 1 2 7 a, 第 1のミラ一 1 28 a, 第 2のミラー 1 28 bを含む) を経由して撮像素子 ( 2次元 C CD 1 22に相当) へ至る第 1の光路に介在され、 主として計測光 (赤色レーザダイオード 1 1 2か らの光) を通過する帯域通過特性を有する第 1の光学フィルタ 1 6 1と、 正視画像取得光学系 (レンズ組立体 1 27 bを含む) を経由して撮像素 子 (2次元 C CD 1 22に相当) へ至る第 2の光路に介在され、 主とし て照明光 (緑色 LED 1 3 2からの光に相当) を透過する通過帯域特性 を有する第 2の光学フィルタ 1 6 2とが含まれている。 尚、 ここで言う 帯域通過特性とは、 計測光のみ、 あるいは照明光のみを通過できるもの であることが好ましい。
一方、 コントローラユニッ ト 2には、 計測モードと第 1及び第 2の観 測モードとが用意される。 これらの観測モードの切替えは、 例えばコン ツールュニッ ト 3の操作で行うことができる。
計測モードに設定された状態においては、 計測用光源 (赤色レーザダ ィオードに相当) を点灯すると共に、 照明器 (緑色発光ダイオード 1 3 2に相当) を消灯し、 かつ計測光照射光像 83が適切な明るさで写るよ うに撮影条件を自動調整しつつ、 2次元撮像素子 (2次元 CD D 1 2 2 に相当) から得られる斜視画像相当の映像信号 V sに基づいて目的とす る変位量を算出する制御動作を実行する。
第 1の観測モードに設定された状態においては、 計測用光源 (赤色レ 一ザダイオード 1 1 2に相当) を消灯すると共に照明器 (緑色発光ダイ オード 1 3 2に相当) を点灯し、 かつ計測位置を含むその周辺の計測対 象物表面像が適切な明るさで写るように撮影条件を自動調整しつつ、 2 次元撮像素子 ( 2次元 C C D 1 2 2に相当) から得られる映像信号 v s に基づいて、 計測対象物表面の計測光照射位置を含むその周辺の画像を 画像モニタの画面に表示させる制御動作を実行する。
第 2の観測モードに設定された状態においては、 計測用光源 (赤色レ —ザダイォ一ド 1 1 2に相当) 及び照明器 (緑色発光ダイォード 1 3 2 に相当) を共に点灯し、 かつ計測光照射光像 8 3及びその周辺の計測対 象物表面像 (例えば円形穴 7 1 ) の双方が適切な明るさで写るように撮 影条件を自動調整しつつ、 2次元撮像素子 ( 2次元 C C D 1 2 2 ) から 得られる映像信号 V sに基づいて、 計測対象物表面の計測光照射光像 8 3を含むその周辺の画像を画像モニタの画面に表示させる制御動作を実 行する。
尚、 計測モード設定時における撮影条件の自動調整は、 計測用光源の 輝度調整、 及び/又は 2次元撮像素子の露光時間調整を用いて行えばよ い。 また、 第 1の観測モード設定時における撮影条件の自動調整につい ては、 照明器の輝度調整及び/又は 2次元撮像素子の露光時間調整を使 用すればよい。 更に、 第 2の観測モード設定時における撮影条件の自動 調整には、 計測用光源の輝度調整、 照明器の輝度調整、 及び/又は 2次 元撮像素子の露光時間調整を使用すればよい。
以上説明した本発明変位センサの変形実施形態においても、 図 1 7に 示されるように、 画像モニタの画面上に、 歪みのない周辺映像を必要に よりラインビームの照射光像 8 3と共に写し出し、 これを利用して据付 時の位置決め調整などを手軽に行うことが可能となる。 しかも、 据付時 の距離調整などにおいては、 ラインビームの照射光像 8 3と周辺画像と が変位の変動につれて一緒に移動するため、 利用者に違和感を与えるこ となく使い勝手が良好であるという利点を有する。
計測光と照明光との双方を使用した撮影における撮影条件自動調整の 好適な例が図 2 2に示されている。 同図に示されるように、 計測モード においては、 計測用レーザの投光電流を高めに設定する一方、 照明用 L E Dは消灯し、 受光素子 (C C D ) のシャツ夕開閉状態についてシャツ 夕開期間を多めに設定する。 このような構成により、 計測光の鮮明な照 射光像を含む計測に最適な映像信号を得ることができる。 これに対して、 観測モードにあっては、 計測用レーザの投光電流を低めに設定する一方、 照明用 L E Dを点灯し、 受光素子 (C C D ) のシャツ夕開閉状態につい ては、 シャツ夕開期間を少なめに設定する。 このような制御態様によれ ば、 照明光の輝度を上げつつも、 計測用光源の輝度を下げ、 しかも受光 素子の露光時間を短くすることにより、 計測光の照射光像と周辺映像と が共に鮮明に含まれた映像信号を得ることができる。 計測用レーザ及び /又は照明用 L E Dはパルス点灯としてもよい。 この場合は点灯時間の 長さによっても平均輝度を調整することができる。
本発明変位センサのアプリケ一ションの一例を示すための図が図 2 3 に示されている。 同図において、 Wはコンベアなどに乗せて順次搬送さ れてくるワーク、 1 7 0は搬送ラインの途中に設けられて、 ワーク Wに 対して穴径の異なる様々な穴開け加工が可能なドリル、 1 7 1はドリル 1 7 0の使用する ドリル刃を置くためのドリル刃置き場 1 7 1、 1は本 発明のセンサへッ ドユニッ ト、 2は本発明のコントロ一ラュニッ トであ る
この例にあっては、 板厚の異なる様々なワーク Wが搬送される状態に おいて、 ドリル 1 7 0を用いて決められた穴開け加工を行い、 そのうち センサヘッ ド 1 とコントローラユニッ ト 2を用いて、 正しい穴開け加工 が行われたか否かを確認するようにしている。 ここで、 センサヘッ ド 1における穴径の確認は、 正視画像取得光学系 を経由して取り込まれた画像において、 円形像の画素数を数えることで 行うことができる。 もっとも、 ワーク Wの厚さが様々に変化すると、 セ ンサへッ ド 1 とワーク W上面との位置も変動するため、 単なる画素数の 計数だけでは正しい穴径を確認することはできない。 そこで、 この実施 形態においては、 斜視画像取得光学系を介してセンサへッ ド 1 とワーク Wの上面との距離を測定する一方、 この測定された距離に基づき画素数 計測結果を補正する処理を行うことによって、 ワーク Wの板厚がいかよ うに変化しょうとも、 正しい穴径計測を可能としている。
このように、 本発明の変位センサにおいては、 正視画像取得光学系を 経由して C C D 1 2 2に結像された画像に基づき、 計測対象物体上の距 離や面積なども計測することができ、 しかもこれを本来の変位測定結果 で補正することにより、 高精度の面積計算や距離計算が可能となるので
¾)る。
以上説明した各実施の形態において、 コントローラユニッ ト 2が計測 モ一ドとして動作するか観測モードとして動作するかは、 コンソールュ ニッ ト 3から入力する指示によって決定される。 基本実施形態の変位セ ンサは次のように使用することができる。
図 1, 図 6等を参照して、 まずコンソールユニッ ト 3を操作してコン トロ一ラュニッ ト 2を第 1の観測モードまたは第 2の観測モードに設定 するとともにシャツ夕 1 5 0を斜視画像取得光学系の光路を遮光する位 置とし、 計測光 8 1が計測したい位置の付近に照射されるようにセンサ へッ ドュニッ ト 1 と計測対象物体 7とを位置合わせし、 さらに画像モニ 夕 4に表示される計測位置付近の画像を見ながら、 センサへッ ドュニッ ト 1 と計測対象物体 7との位置の調整を行う。
次に、 コンソールュニッ ト 3を操作してコントローラュニヅ ト 2を計 測モードに設定するとともにシャツタ 1 5 0を正視画像取得光学系の光 を遮光する位置に動かし、 計測を実行する。 コントローラユニッ ト 2は、 計測モードとして動作している間は、 画像モニタ 4に斜視画像取得光学 系を介して取得された画像を表示させることができる。
基本実施形態の第 2の観測モードでは、 計測用光源を点灯し、 計測光 照射光像及びその周..辺の計測対象物表面像の双方が適切な明るさで写る ように撮影条件を調整したのであるが、 第 2の観測モードの実施形態は 次のように変形することができる。 すなわち、 コントローラユニッ ト 2 は、 計測光照射光像が全く写らないか適切な明るさより暗く しか写らず、 計測位置を含むその周辺の計測対象物表面像が適切な明るさで写るよう にした条件による撮影と、 計測用光源を点灯し、 計測光照射光像は適切 な明るさで写るもののその周辺の計測対象物表面像は適切な明るさより 暗く しか写らないようにした条件による撮影とを交互に繰り返す。 そし て、 撮影した画像を撮影の都度画像モニタ 4に表示させる。 そうすると、 実質的に計測対象物表面像だけが写った画像と計測光照射光像だけが写 つた画像が素早く交互に表示されることになるので、 これを見る人は双 方が適切な明るさで写っているように認知する。 この場合に、 各条件の 撮影を 1回ずつ交互にするのでなく、 1つの条件で複数回連続して撮影 することを交互に行うようにしてもよい。 撮影条件切替の周期が適当に 長ければ、 各撮影条件の画像を別々の画像として、 かつ、 両者の位置関 係を理解しつつ観察することができる。
また、 他の表示態様として、 上の場合と同様に 2つの条件で交互に撮 影し、 それらの画像をコントロ一ラユニッ ト 2において 1つの画像に合 成した後に画像モニタ 4に表示することによつても、 計測光照射光像及 びその周辺の計測対象物表面像の双方が適切な明るさで表示されるよう にすることができる。 基本実施形態では、 コンソールュニッ 卜 3の操作で計測モードと観測 モードとを切り換えるようにしたが、 他の実施形態として、 コント口一 ラュニッ ト 2が計測モードとしての動作と観測モードとしての動作を時 分割で行うように構成することも可能である。 すなわち、 この実施形態 のコントローラユニッ ト 2は、 計測モードに設定された状態での 1回又 は複数回の撮影と、 観測モードに設定された状態での 1回又は複数回の 撮影とを交互に繰り返す。 このようにすれば、 計測対象物表面像を画像 モニタに表示しながら変位計測をすることができる。 画像モニタ 4には、 計測モードに設定された状態で撮影した画像は表示させず、 観測モード に設定された状態で撮影した画像は表示させることにすれば、 正視画像 にて計測位置の状態を確認しながら変位計測をすることができる。 また、 計測モードに設定された状態で撮影した画像と観測モードに設定された 状態で撮影した画像のいずれを表示するかについて、 コンソ一ルュニッ ト 3を操作して選択をすることを可能に構成し、 選択された方の画像モ 二夕の画面に表示させることにすれば、 実際に計測に使用されている画 像の状態を随時確認することができる。
次に、 この発明の他の実施形態である変位センサの電気的なハードウ エア構成を示すプロヅク図が図 2 4に示されている。
同図に示されるように、 この変位センサシステム 1 0は、 計測光が照 射された計測対象物体 7の表面を計測対象変位に応じて計測光照射光像 位置が変化して見える角度から撮影する撮像部であるセンサへッ ドュニ ッ ト 1と、 センサヘッ ドユニッ ト 1から得られる画像を処理することに より、 計測対象変位を算出して変位データとして出力する画像処理部で あるコントローラユニッ ト 2とを、 主要構成として備えている。
センサヘッ ドユニッ ト 1は、 発振器 (O S C ) 2 0 1と、 コントロー ラュニヅ ト 2内のレジス夕 2 3 1に格納される転送仕様テーブルに基づ いて、 必要なタイ ミング信号を発生し、 これを C CD ドライブ 1 2 1並 びにスリッ ト光源 (計測用投光光学系) 1 1 2 aへと送り出す。 スリ ッ ト光源 1 1 2 aは、 後述するように、 レーザダイオード (計測用光源) 1 1 2とスリッ ト 208とから構成されており、 いわゆる光切断法にお ける切断光 (計測光) を発生して計測対象物体 7へと照射する。 この計 測光の照射によって検出対象物体 7の表面には計測光照射光像 (ライン 状輝線) 83が形成される。 このようにしてライン状輝線が検出された 検出対象物体の表面は二次元撮像素子である C CD 1 2 2によって撮影 される。 この C CD 1 22は後述するように、 C C D ドライブ 1 2 1か ら送られてくる転送パルス T P 1〜T P 3によって転送制御される。 C C D 1 2 2から読み出された映像信号は、 サンプルホールド回路 1 2 5 aにて滑らかに整形され映像信号としてコントロ一ラュニッ ト 2へと送 り出される。
センサヘッ ドユニッ ト 1の光学系が図 25に示されている。 同図にお いて、 1 1 2はレーザダイオード、 1 1 2— 1はスリッ ト、 1 1 2— 2 は投光レンズ、 83は計測光照射光像、 1 22— 1は受光レンズ、 1 2 2は C CD、 7は計測対象物体、 7 Aは計測対象物体の置かれたステー ジである。 このようにレーザダイォード 1 1 2から発せられたレーザビ —ムはスリッ ト 1 1 2— 1を通して断面線状の光線 (いわゆるラインビ ーム) に成形された後、 投光レンズ 1 1 2— 2を介して計測対象物体 7 の表面に照射される。 一方、 この照射により生じた計測光照射光像 83 は、 所定の角度から受光レンズ (画像取得光学系) 1 2 2— 1を介して C CD 1 22で撮影される。 よく知られているように、 C CD 1 22の 撮影角度は、 計測対象物体 7の高さ変化によって、 光像 83の位置が変 化するように位置決めされている。 尚、 C C D 1 22の詳細とその駆動 方法については後に説明することとする。 次に、 画像モニタ処理について説明する。 図 24に示されるように、 コントローラユニッ ト 2は、 ワンチップマイコンである CPU 232と、 表示用 LED 2 33と、 操作スィツチ 2 34と、 入出力回路 ( I/O) 235と、 演算部 23 6と、 メモリ制御部 23 7と、 フレームバッファ 238と、 D/ A変換器 239と、 レジスタ 23 1と、 同期信号発生部 240と、 発振器 (0 S C) 24 1とを備えている。 なお、 B U S 1は 同期バス、 B U S 2は C P Uバスである。
ワンチップマイコンを構成する CPU 23 2は、 コントローラュニヅ ト 2の全体を統括制御するものである。 演算部 236は画像処理に必要 な各種の演算を行う専用のハ一ドウエア回路であり、 この演算部 236 では A/D変換器 242を介して取り込まれた画像データに対し各種の 処理が行われる。 ここで処理された画像は、 メモリ制御部 23 7を介し てフレームバッファ 238に格納され、 その必要に応じて D/A変換器 239を介して NT S C画像として外部の C R Tディスプレイ等の画像 モニタに送られる。
レジスタ 23 1は、 センサへッ ド部 200の動作に必要とされる転送 仕様テーブルを格納するものであり、 この転送仕様テーブルの内容は後 に図 36を参照して説明するように、 各水平期間カウン夕値に対応させ てコード信号 L I , L 2 , OEを設定したものである。
表示用 LED 23 3は、 コントローラユニッ ト 2の動作状態を外部に 表示するものであり、 操作スィツチ 234はコントローラユニッ ト 2に 対して各種の指示を与えるためのものである。 又、 入出力回路 ( 1 / 〇) 23 5は、 コントローラユニッ ト 2にて計測された変位データを外 部へと出力したり、 外部から同期用センサ 5の信号を入力したりするも のである。
なお、 この変位データには計測値そのものの他に、 計測値と基準値と の比較結果を示すスィツチング信号も含まれる。 コントローラユニッ ト 2の動作は、 発振器 (0 S C ) 2 4 1及び同期信号発生部 2 4 0を介し て得られる同期信号によって制御される。
次に、 以上の構成よりなる変位センサシステム 1 0におけるモニタ処 理を具体的な例を挙げて説明する。
スリッ ト光画像 (ラインビーム照射光像) とワーク表面画像との重ね 合わせ処理を示す夕ィムチャートが図 2 6に示されている。 同図におい て、 V Dは垂直基準信号、 V B L Kは映像信号中に画像の有無を示す信 号、 転送パルス T P 1は各受光画素から垂直転送シフ トレジス夕 V R (詳細は後述) へと電荷を転送するためのパルスである。
最初の周期 ( 1 ) の開始と共にシャツ夕が開く。 すなわち、 それまで の光電変換により蓄積されていた電荷を捨て、 新たに電荷蓄積を開始す る。 同時に、 レーザダイオード 1 1 2が短時間 O Nされる。 その後 2番 目の周期 ( 2 ) においてもシャツ夕は開き続ける。 その後 3番目の周期 の開始と共にシャツ夕は閉じられる。 同時に、 転送パルス T P 1が発生 する。 すると、 画素に蓄積された電荷は垂直シフ トレジスタ V Rへと転 送される。 その結果、 3番目の周期 ( 3 ) になると、 計測対象物体の表 面の生画像と計測用レーザ光による照射光像とが重なった画像が有効画 像として得られる。 このように、 この実施形態においては、 2垂直周期 にわたつてシャツ夕を開き続ける一方、 最初の周期の始めにレーザダイ オード 1 1 2を短時間オンすることによって、 スリッ ト光画像とワーク 表面画像とが重なった画像をモニタすることができる。 これは先の実施 形態において説明した第 2の観測モードの一例である。
他の実施形態として、 シャツ夕の開期間をレーザダイォ一ドの発光期 間に限定すれば生画像をワーク表面の画像を殆ど含まないスリッ ト光画 像を得ることができる。 これは計測モードの一例である。 また、 シャツ 夕の開期間をレーザダイオードの発光期間から外しかつシャツ夕の開期 間を同様に 2周期程度に長めに設定すればスリッ ト光画像を含まないヮ —ク表面画像を得ることができる。 これは第 1の観測モ一ドの一例であ る o
このようにして得られた画像の例が図 2 7にまとめて示されている。 同図 ( a ) はワーク表面画像を含まないスリ ッ ト光画像である。 同図 ( b ) はスリツ ト光画像を含まないワーク表面画像である。 同図 ( c ) はスリッ ト光画像とワーク表面画像とが重なった画像である。
尚、 周囲の環境が暗いような場合にはワーク表面を照明することが好 ましい。 このような例が図 2 8〜 3 0に示されている。 図 2 8のブロッ ク図に示されるようにセンサへッ ドュニッ ト 1には新たに照明コント口 —ル部 1 5 1 と照明用発光ダイオード 1 5 2とからなる照明器が内蔵さ れる。 図 2 9に示されるように照明用発光ダイオード 1 5 2はセンサへ ッ ドュニッ ト 1内に取り付けられて計測対象物体 7を照明する。
照明用発光ダイォード 1 5 2の点灯タイ ミングが図 3 0に示されてい る。 最初の周期 ( 1 ) の開始と共にシャツ夕が開き同時にレーザダイォ ード 1 1 2が短時間点灯し、 加えて照明用発光ダイオード 1 5 2も点灯 する。 その後照明用発光ダイオード 1 5 2は最初の周期 ( 1 ) の間継続 的に点灯される。 最初の周期 ( 1 ) の終了と共にシャツ夕は閉じられ、 同時に転送パルス T P 1が出力されて最初の周期 ( 1 ) に蓄積された電 荷は垂直シフ トレジスタ V Rへと転送され、 有効画像として出力される。 この例では照明用発光ダイォード 1 5 2による照明を加えたことでヮー ク表面の明るさが増し、 1周期分のシャツ夕開期間だけで充分な輝度の ワーク表面画像が得られる。
このように、 本実施形態ではシャツ夕の開期間と照明用発光ダイォー ド 1 5 2の点灯期間とを適宜に組み合わせることによってスリ ッ ト光画 像とワーク表面画像と両者の重ね合わせた画像とを適宜に取得して、 計 測状態のモニタを行うことができる。 しかも計測用の撮像素子とモニタ 用の撮像素子とを兼用しているため、 低コス トにモニタ機能を実現する ことができる。 その上、 モニタ画像は計測時と同じ視点で得られたもの であるから、 計測値に不具合が生じたような場合重ね合わせ画像からそ の原因 (例えば外乱光の有無など) を的確に判断することができる。 図 2 4および図 2 8の C C D 1 2 1は、 本発明者が提案した新規な構 成を有する。 C C D撮像素子の受光面の画素配列の一例が図 3 1に模式 的に示されている。 なお、 画素の大きさは実際よりもかなり誇張して描 かれていることに注意されたい。
同図において、 P hは標準的な撮像装置であるデジタルスチルカメラ の視野に対応して垂直方向 7 8 8行 X水平方向 1 0 7 7列のマトリクス 状に配列された受光画素群を構成する各受光画素、 V Rは受光画素群を 構成する各受光画素 P hの出力を各列毎に垂直方向へと移送する垂直シ フ トレジスタ、 H Rは各列の垂直シフ トレジスタ V Rから移送されてく る電荷を受け取ると共にこれを水平方向へと移送する水平シフ トレジス 夕、 A o u tは水平シフ トレジスタ H Rから移送されてくる電荷を外部 へ出力するための出力バッファである。
受光画素 P hの中で図中ハッチングにて塗りつぶされた受光画素 P h 2は所謂オプティカルブラヅク画素 (O B画素) であり、 図中ハツチン グにて塗りつぶされていない白抜きの受光画素 P h 1は光感応画素であ る。 それらの受光画素 P h i , P h 2はいずれもフォ トダイオードを基 本とする素子構造を有する。 垂直並びに水平シフ トレジス夕 V R, H R は C C Dを基本とする素子構造を有する。
先に述べたように、 オプティカルブラック画素 P h 2とは遮光マスク により受光不能としたり、 受光しても電荷が蓄積されないようにしたり、 或いは、 受光により蓄積された電荷が取り出せないようにした受光画素 のことで、 その出力は受光量に拘わらず常に規定の暗レベル (殆どゼロ 電荷相当) に固定されている。 光感応画素 P h 1 とはそのような特別の 構造を採用しない通常の受光画素のことで、 その出力は受光量に応じた 明レベルとなる。
目的とする画素を、 光感応画素 P h 1ではなくて、 オプティカルブラ ック画素 P h 2とするための方法としては、 様々な方法が考えられる。 第 1の方法としては、 目的とする受光画素を構成する光電変換素子 (例 えば、 フォトダイオード、 フォト トランジスタ等) を遮光マスクで覆つ た構造とすることが挙げられる。 具体的には、 半導体製造プロセスにお いて、 受光画素を構成するフォ トダイォ一ドの上に光を透過しないメタ ルマスクを形成することで遮光マスクを実現することができる。 半導体 製造プロセスの終了後の段階 (例えば、 製品購入後の段階) において、 デバイスの受光面上に光を透過しないマスク (例えば、 アルミ箔等) を 張り付けることによつても、 遮光マスクを実現することができる。
第 2の方法としては、 半導体製造プロセスにおいて、 目的とする受光 画素を構成するフォ トダイォードの素子構造それ自体を改変することで、 当該素子を受光不可乃至光電変換作用不能とすることが挙げられる。 第 3の方法としては、 半導体製造プロセスにおいて、 目的とする受光 画素を構成するフォ トダイォ一ドから垂直シフ トレジスタへの電荷移動 路を切断することが挙げられる。
第 1乃至第 3のいずれの方法を採用したとしても、 計測用の細長い長 方形視野に合うような、 水平ライン総数の少ない (例えば、 6 0〜 7 0 本程度) 専用の C C D撮像素子を初めから設計し直す場合よりは、 設計 費用と設計時間を大幅に節減することができる。 なお、 第 1乃至第 3の 方法の併用も可能であることは言うまでもない。 図 3 1に戻って、 マトリクス状に配列された受光画素群は、 水平ライ ン総数 ( 7 8 8本) に比べて十分に少ないライン本数 ( 6 0本) の特定 水平ライン帯 H L Bに属する第 1の画素群と、 特定水平ライン帯 H L B に属さない第 2の画素群とに分けられている。
すなわち、 この例では、 画面最上段から第 8番目の水平ラインから第
6 7番目の水平ラインに至る 6 0本の水平ラインが特定水平ライン帯 H L Bとされ、 この特定水平ライン帯 H L Bに含まれる画素群が第 1の画 素群とされている。 また、 画面最上段から第 1番目の水平ラインから第 7番目の水平ラインに至る 7本の水平ライン帯、 並びに、 第 6 8番目の 水平ラインから最下段である第 7 8 8番目の水平ラインに至る 7 2 1本 の水平ライン帯に含まれる画素群が第 2の画素群とされている。
第 1の画素群を構成する画素 P hの全部又は大部分は光感応画素 P h 1とされており、 かつ前記第 2の画素群を構成する画素 P hの全部又は 大部分 (この例では、 全部) はオプティカルブラック画素 P h 2とされ ている。
より厳密に言えば、 特定水平ライン帯 H L Bを構成する 6 0本の水平 ラインに属する画素の中で、 画面左縁部近傍の 3本の垂直ラインに属す る画素と画面右縁部近傍の 4 0本の垂直ラインに属する画素は全てォプ ティカルブラック画素 P h 2とされている。 それら左縁部 3本の垂直ラ ィン並びに右縁部 4 0本の垂直ラインに挟まれた中央部に位置する 1 0 3 4本の垂直ラインに属する画素は全て光感応画素 P h 1とされている。 その結果、 光感応画素領域 ( 6 0行 X 1 0 3 4列) は、 その周囲をォプ ティカルブラック画素領域により囲まれ、 有効画像領域の輪郭が明確化 される。
同 C C D撮像素子における光感応画素領域とオプティカルブラック画 素領域との大小関係が実際の画面縦横比で図 3 2に示されている。 同図 に示されるように、 光感応画素領域 (60行 X 1 034列) は、 受光面 全体 ( 788行 X 1 077列) のほんの一部を占めるに過ぎないことが 理解される。 また、 光感応画素領域を構成する特定水平ライン帯 HLB は、 水平シフ トレジスタ HRの存在する画面最上段に近接して配置され ていることも理解される。 さらに、 受光面全体 ( 7 8 8行 X 1 0 7 7 列) の大部分はォプティカルブラック画素領域により占められているこ とも理解される。 '
このような C CD撮像素子において、 図 33に示されるように、 外部 から第 1の転送パルス TP 1が与えられると、 各垂直ラインに属する受 光画素 P hの出力 (光感応画素 P h 1の場合は電子シャツタ開期間の蓄 積電荷、 又ォプティカルブラック画素 P h 2の場合には規定の暗レベル 相当のほぼゼロ電荷) は隣接する垂直シフ ト レジス夕 VRの該当ステー ジへと転送される。 外部から第 2の転送パルス TP 2が与えられると、 各垂直シフ トレジスタ VRは図中上方へ 1ステージ分だけシフ 卜され、 各垂直シフ トレジスタ VRの先頭ステージに格納された電荷は水平シフ ト レジス夕 HRの該当ステージへと転送される。 外部から第 3の転送パ ルス TP 3が与えられると、 水平シフ トレジスタ HRは 1ステージ分だ け図中左方へシフ 卜され、 水平シフ トレジスタ HRの先頭ステージに格 納された電荷は出力部 A o u tを介して外部へと出力される。
以上説明した C C D撮像素子の駆動制御部の構成について説明する。 この駆動制御部は、 図 24及び図 2 &を参照して説明したように、 タイ ミング信号発生部 1 0 1と C CD ドライブ 1 2 1とを含んでいる。 タイ ミング信号発生部 1 0 1内には、 転送パルス発生部 PG (図 34参照) と転送制御部 (図 38のフローチャート参照) とが含まれている。
転送制御部は、 1水平期間内に何ライン分の画像データを転送するか、 並びに、 各水平期間において第 3.の転送パルス TP 3を 1水平ライン画 素相当数だけ出力して外部へ画像データを出力するか否かを設定するた めのもので、 設定された転送ライン数は 2ビッ ト構成の転送ライン数信 号 L l, L 2に変換され、 又外部出力の有無は出力有無信号 OEに変換 され、 転送パルス発生部 P Gに出力される。
転送ライン数毎の転送ライン数信号 L 1, L 2並びに外部出力有無信 号〇 Eのデータ構成が図 3 7 (a) , (b) にそれぞれ示されている。 同図に示されるように、 1 , 2, 4, 7の各転送ライン数について、 そ れぞれ 「00」 , 「 1 0」 , 「0 1」 , 「 1 1」 のコードが割り当てら れており、 そのコードの上位ビッ トが L 1として、 下位ビッ トが L 2と して、 それぞれ設定されている。 また、 出力有無信号 OEについては、 TP 3出力無しが 「0」 又 TP 3出力有りが 「 1」 に設定されている。 転送パルス発生部 P Gにおける第 1、 第 2、 第 3の転送パルス TP 1、 TP 2、 Τ Ρ 3の生成部の内部構成が図 34に示されている。 そのうち、 第 1の転送パルス生成部 P G 1には、 外部から与えられる垂直期間開始 指令 XV Dに応答して画素電荷転用の第 1の転送パルス Τ Ρ 1を生成出 力する夕イ ミング発生部 T G 1が含まれている。
第 2の転送パルス生成部 P G 2には、 4個の夕イ ミング発生部 TG 2 1, T G 2 2 , T G 23 , TG 24と、 各タイミング発生部 2 2 a〜 2 2 dからのパルス列を選択的に出力するマルチプレクサ MP Xとが含ま れている。
各タイミング発生部 TG 2 1〜TG 24は、 それぞれ 1 , 2, 4 , 7 ライン分の転送用に用いられるもので、 通常のビデオ規格の水平期間と 同じ長さの期間内に、 対応する転送ライン数分の第 2の転送パルス TP 2を出力する。 各夕イ ミング発生部 22 a〜2 2 dからの転送パルス T P 2の出力態様が図 35に示されている。
同図に示されるように、 1ライン転送用のタイ ミング発生部 TG 2 1 は、 水平ブランキング期間内に 1個のパルスを出力する。 2ライン転送 用の夕イミング発生部 T G 2 2は、 水平ブランキング期間内に 2個のパ ルスを出力する。 4ライン転送用のタイ ミング発生部 T G 2 3は、 水平 ブランキング期間内に 2個のパルスを、 また水平ブランキング期間外に 2個のパルスを出力する。 7ライン転送用のタイ ミング発生部 T G 2 4 は、 水平ブランキング期間内に 2個のパルスを、 また水平ブランキング 期間外に 5個のパルスを出力する。
マルチプレクサ M P Xは、 これら夕イ ミング発生部 T G 2 1〜T G 2 4の中から転送ライン数信号 L 1 , L 2の示す転送ライン数用のタイミ ング発生部を選択し、 その信号の入力経路を C C D撮像素子 1 2 2への 出力経路に接続する。 これにより選択されたタイ ミング発生部の出力パ ルスが転送パルス T P 2として採用され、 C C D撮像素子 1 2 2へと与 えられる。
なお、 ここでは図示しないが、 第 1の転送パルス T P 1の生成部も、 上記と同様に、 各転送ライン数用の 4個のタイ ミング発生部とマルチプ レクサとにより構成される。 このうち 1ライン転送用のタイ ミング発生 部は、 通常のビデオ規格に基づくタイミングでパルス信号を 1個出力す るのに対し、 2ライン〜 7ライン転送用の各タイ ミング発生部は、 転送 ライン数で定まる 1画面分の電荷の出力期間毎にパルス信号を 1個出力 する。 マルチプレクサが前記と同様に転送ライン数信号 L 1, L 2に対 応する夕イミング発生部を選択することにより、 その夕イミング発生部 の出力パルスが転送パルス T P 1として出力され、 C C D撮像素子 1 2 2に与えられる。
第 3の転送パルス生成部 P G 3には、 1ライン画素相当数分の第 3の 転送パルス T P 3を生成出力するタイ ミング発生部 T G 3と、 出力有無 信号 0 Eに応答して第 3の転送パルス T P 3の外部出力可否を制御する ゲート回路 Gが含まれている。 出力有無信号 OEが 「 1」 のときにゲー ト Gは開き、 出力有無信号 OEが 「0」 のとき、 ゲート Gは閉じる。 図 3 1を参照して先に説明したように、 この実施形態の C C D撮像素 子 1 2 2にあっては、 受光面上の 8〜67ラインの 60ラインが光感応 画素領域 (有効画像領域と) とされ、 1〜 7ラインの 7ライ ン並びに 6 8〜 7 88の 7 20ラインが前段及び後段のォプティカルブラック画素 領域 (不要画像領域) とされる。 応答性の良好なビジュアル計測装置を 実現するためには、 このような一画面分の画像データ (信号電荷) を、 有効画像領域のデータを壊すことなく、 できる限り速やかに読み出す必 要がある。
本実施形態で採用している高速画像読出方式では、 前記駆動制御部は、 毎垂直期間の初めに、 受光画素 P hから各列の垂直シフ トレジスタ VR 1〜VRnへと信号電荷を取り込ませる信号電荷取込処理と、 前段ォプ ティカルブラック画素領域から取り込まれた各列の垂直シフ トレジスタ VR 1〜VR n上の信号電荷を水平シフ トレジス夕 HRへと落し込ませ る前段オプティカルブラック画素領域対応処理と、 光感応画素領域から 取り込まれた各列の垂直シフ トレジス夕 VR 1〜VRn上の信号電荷を、 各列の垂直シフ ト レジスタ VR 1〜VRnの転送と水平シフ ト レジスタ HRの転送とを適宜に連繋して外部に読み出させる光感応画素領域対応 処理とを、 後段オプティカルブラック画素領域から取り込まれた各列の 垂直シフ トレジス夕 VR 1〜VRn上の信号電荷を水平シフ トレジスタ HRへと落し込ませる後段オプティカルブラック画素領域対応処理を途 中に挟むことなく繰り返すように構成され、 それにより、 後段ォプティ カルブラック画素領域対応処理を行わない分だけ、 1画面読出周期を短 縮する。
ここで、 信号電荷取込処理 (A) とは、 毎垂直期間の初めに、 受光画 素 Ph (m, n) から各列の垂直シフ トレジスタ VR 1〜VR nへと信 号電荷を取り込ませる処理である。
また、 前段オプティカルブラック画素対応処理 (B) とは、 前段ォプ ティカルブラック画素領域 ( 1〜7ライン) から取り込まれた各列の垂 直シフ トレジスタ VR 1〜 VR n上の信号電荷を水平シフ トレジスタ H Rへと落し込ませる処理である。
また、 光感応画素領域対応処理 (C) とは、 光感応画素領域 (8〜6 7ライン) から取り込まれた各列の垂直シフ トレジス夕 VR l〜VRn 上の信号電荷を、 各列の垂直シフ トレジス夕 VR 1〜VRnの転送と水 平シフ トレジス夕 HRの転送とを適宜に連繋して外部に読み出させる光 感応画素領域対応処理である。
さらに、 後段オプティカル画素領域対応処理 (D) とは、 後段ォプテ ィカルブラック画素領域 (68〜788ライン) から取り込まれた各列 の垂直シフトレジス夕 VR 1〜VR n上の信号電荷を水平シフ トレジス 夕 HRへと落し込ませる後処理である。
前段オプティカルブラック画素領域対応処理 (B) は、 この例では、 1水平期間毎に 7段の連続垂直転送を行う動作を含んでいる。 そして、 この 1水平期間毎に 7段の連続垂直転送を行う動作は、 水平シフ トレジ スタの転送を当該水平期間中に停止したまで行なわれる (図 39,図 4 0参照) 。
光感応画素領域対応処理 (C) は、 この例では、 2段の連続垂直転送 動作と 1水平ライン画素数に相当する段数の連続水平転送動作とを、 1 水平期間内において時間帯を前後にずらして行わせる処理を含んでいる。 後述するように、 この例では、 2段の連続垂直転送動作は水平ブランキ ング期間内に行われる (図 39, 図 41参照) 。
この高速画像読出方式にて使用される転送仕様テーブル (後述するレ ジス夕 1 0 9に格納される) の設定例が図 3 6に示されている。 同図に 示されるように、 この転送仕様テーブルには、 何度目の水平期間である かを示す水平期間カウンタ値に対応させて、 それぞれその水平期間にお ける転送ライン数並びに出力有無の設定値が、 転送ライン数信号 L 1 , L 2の形式により記憶されている。
この例は、 前段オプティカルブラック画素領域に対応する映像信号を 1水平期間に 7ライン連続して転送し、 続く光感応画素領域に対応する 映像信号を 1水平期間毎に 2ラインずつ転送するように設定した例であ つて、 最初の 1回の水平期間における転送ライン数を 7ラインとした後、 2〜3 1番目の水平期間における転送ラインを 2ラインに設定している c また、 水平転送による出力の有無については、 最初の 1回の水平期間に おける出力有無は 『無し』 、 その後、 2〜3 1番目の水平期間における 出力有無は 『有り』 とされる。
転送制御部 (図 3 8のフローチャートに動作が示される) は、 各水平 期間毎に転送仕様テーブルに記憶された各転送ライン数信号 L 1, L 2 並びに出力有無信号 O Eの設定値を読み込んで、 各転送ライン数信号 L 1 , L 2並びに出力有無信号 0 Eをその設定値に応じたレベルに設定し、 転送パルス発生部 2に出力する。 転送パルス発生部 2は、 転送仕様テ一 ブルにセッ トされた水平期間カウンタの M A X値 (図 3 6では 「 3 1」 ) に基づき第 1の転送パルスの出力タイ ミングを設定する (すなわ ち、 ビデオ規格の垂直期間の 3 1 / 7 8 8の時間間隔で転送パルス T P 1を出力することになる) 。
転送パルス発生部 2は、 各水平期間毎に、 転送制御部より与えられた 転送ライン数信号 L l, L 2並びに出力有無信号 O Eに基づき第 2の転 送パルス T P 2の出力回数並びに第 3の転送パルス T P 3の出力有無を 設定して、 C C D撮像素子 1 2 2に対する一連の制御を実施する。 なお、 コントローラユニッ ト 2は、 計測に必要な画像処理の内容に応 じて転送仕様テーブルの各転送ライン数並びに出力有無の値を設定する ように構成される。
転送制御部において実行される転送制御処理の概略が図 38のフロー チャートに示されている。 なお、 この転送制御処理は、 転送パルス発生 部 2から到来する水平期間開始信号 HD (図 39参照) の到来に応答し て起動される。 その後の一連の動作は、 転送制御部に内蔵される水平期 間カウンタ L Cの値に基づき周期的に繰り返される。
今仮に、 水平期間カウンタ L Cがクリアされていると想定する。 この 状態において、 水平期間開始信号 HDが到来すると、 図 38の処理が起 動されて、 水平期間カウンタ L Cの値は 「0」 から 「1」 へとカウント アップされる (ステップ 1001) 。
水平期間カウンタ L Cの値が 「 1」 になると、 カウント値 「 1」 を引 数として転送仕様テーブルが参照され、 これにより転送ライン数信号 L 1 , L 2並びに出力有無信号 OEの設定値が読み出される。 図 37の換 算表から明らかように、 このとき、 転送ライン数は 「7」 となり、 水平 転送による外部出力は 「無し」 とされる (ステップ 1002)
転送仕様テ一ブルから読み出された設定値の内容に応じて、 転送ライ ン数信号 L I , L 2並びに水平転送有無信号 OEの値は、 L l = l, L 2 = 1 , 0 E = 0にそれぞれ設定される (ステヅプ 1003 ) 。 すると、 図 39並びに図 40に示されるように、 カウント値 「1」 に対応する最 初の水平期間では、 水平転送用の第 3の転送パルスを出力することなく、 垂直転送用の第 2の転送パルスだけが 7個連続して転送パルス発生部 2 から出力される。 その結果、 映像信号中にはなにも出力されない (空状 態) ものの、 水平シフ トレジス夕 HRの各ステージには、 1〜7ライン の 7ライン分の電荷が落とし込まれて重畳される。 その後、 処理は終了 して (ステップ 1 004 NO) 、 次の水平期間開始信号 HDの到来を待 機する状態となる。
2番目の水平期間開始信号 HDが到来すると、 図 38の処理が起動さ れて、 水平期間カウンタ L Cの値は 「 1」 から 「2」 へとカウントアツ プされる (ステップ 1 00 1 ) 。
水平期間カウンタ L Cの値が 「2」 になると、 カウン小値 「2」 を引 数として転送仕様テーブルが参照され、 これにより転送ライン数信号 L 1, L 2並びに出力有無信号 OEの設定値が読み出される。 図 3 6の換 算表から明らかように、 このとき、 転送ライン数は 「2」 となり、 水平 転送による外部出力は 「有り」 とされる (ステップ 1 002) 。
転送仕様テーブルから読み出された設定値の内容に応じて、 転送ライ ン数信号 L I , L 2並びに水平転送有無信号 OEの値は、 L 1 = 0 , L 2 = 1, 0 E = 1にそれぞれ設定される (ステップ 803) 。 すると、 図 39並びに図 4 1に示されるように、 カウント値 「2」 に対応する 2 番目の水平期間では、 転送パルス発生部 2からは、 垂直転送用の第 2の 転送パルス T P 2が水平ブランキング期間中に 2個出力されたのち、 水 平ブランキング期間の終了を待って、 水平転送用の第 3の転送パルス T P 3が 1水平ライン画素相当数だけ出力される。
第 2の転送パルス TP 2が水平ブランキング期間中に 2個出力される と、 水平シフ トレジス夕 HRの各ステージに蓄積された 1〜7ラインの 7ライン分の電荷の上に、 さらに、 8, 9ラインの 2ライン分の電荷が 落とし込まれ、 全体として 1〜9ラインの 9ライン分の電荷が重畳され る。 その後、 水平転送用の第 3の転送パルス T P 3が 1水平ライン画素 相当数だけ出力されると、 上記の重畳された 9ライン分の電荷は映像信 号中に出力される。 図 39にハッチングにて又図 4 1に点線で囲んで示 されるように、 この 9ライン分の電荷が重畳された映像信号部分は、 〇 B不要映像信号となる。 結果として、 映像信号中の最初の 2ラインは無 効画像部分となる。 その後、 処理は終了して (ステップ 1 0 0 4 N O ) 、 次の水平期間開始信号 H Dの到来を待機する状態となる。
3番目の水平期間開始信号 H Dが到来すると、 図 3 8の処理が起動さ れて、 水平期間カウンタ L Cの値は 「2」 から 「3」 へとカウントアツ プされる (ステップ 1 0 0 1 ) 。
水平期間カウン夕 L Cの'値が 「3」 になると、 カウント値 「3」 を引 数として転送仕様テーブル 1 5が参照され、 これにより転送ライン数信 号 L 1 , L 2並びに出力有無信号 0 Eの設定値が読み出される。 図 3 6 の換算表から明らかように、 このときも転送ライン数は 「2」 となり、 水平転送による外部出力は 「有り」 とされる (ステップ 1 0 0 2 ) 。 転送仕様テーブルから読み出された設定値の内容に応じて、 転送ライ ン数信号 L l, L 2並びに水平転送有無信号 O Eの値は、 L 1 = 0, L 2 = 1, 0 E = 1にそれそれ設定される (ステツプ 1 0 0 3 ) 。 すると、 図 3 9並びに図 4 1に示されるように、 カウント値 「3」 に対応する 3 番目の水平期間では、 転送パルス発生部 2からは、 垂直転送用の第 2の 転送パルス T P 2が水平ブランキング期間中に 2個出力されたのち、 水 平ブランキング期間の終了を待って、 水平転送用の第 3の転送パルス T P 3が 1水平ライン画素相当数だけ出力される。
第 2の転送パルス T P 2が水平ブランキング期間中に 2個出力される と、 水平シフ トレジスタ H Rの空の状態にある各ステージには、 1 0 , 1 1ラインの 2ライン分の電荷が落とし込まれて重畳される。 このとき、 水平シフ トレジス夕 H Rの各ステージ上の電荷は、 2ライン分が重畳さ れているとは言え、 未だ、 原画像の特徴を十分に残している。 その後、 水平転送用の第 3の転送パルス T P 3が 1水平ライン画素相当数だけ出 力されると、 上記の重畳された 2ライン分の電荷は映像信号中に出力さ れる。 図 39および図 4 1に示されるように、 この 1 0〜1 1の 2ライ ン分の電荷が重畳された映像信号部分は、 有効映像信号となる。
以後、 4番目〜 3 1番目の水平期間開始信号 HDが到来したときの動 作は、 3番目の垂直期間開始信号 H Dが到来したときの動作と同様であ る。 そのため、 4番目〜 3 1番目の垂直期間開始信号 HDの到来に際し ては、 図 3 9および図 4 1に示されるように、 1 2, 1 3ライン、 14 : 1 5ライン、 〜6 6, 6 7ラインの各 2ラインが重畳された映像信号が 順次に出力される。
3 1番目の水平期間開始信号が到来すると、 ラインカウンタ L Cの値 が最大値に達して (ステップ 1 004 YE S) 、 垂直期間開始指令 XV Dが出力され (ステップ 1 005 ) 、 その後、 水平期間カウンタ L Cの 内容は 「0」 にクリアされる (ステップ 1 006 ) 。 この垂直期間開始 指令 XV Dを受けて、 転送パルス発生部 1 2から画素電荷取込用の第 1 の転送パルス T P 1が出力され、 以後、 68〜 788ラインの信号電荷 は垂直シフ トレジスタ VR 1〜VRn上に取り残したまま、 以上説明し た 1番目乃至 3 1番目の水平期間開始信号到来時の処理が繰り返される c 2番目以降の画素電荷取込用の転送パルス TP 1が出力されると、 各 受光画素 P h (m, n) から各列の垂直シフ トレジスタ VR 1〜VR n に対して、 再び、 信号電荷が取り込まれる。 このとき、 光感応画素領域 に位置する垂直シフ トレジスタ VR 1〜VRnの各ステージには、 後段 オプティカルブラック画素領域から転送されてきた電荷が存在する笞で ある。 しかし、 この後段オプティカルブラック画素領域からの電荷は極 めて僅か若しくはゼロに等しいものであるから、 その上に有効画像電荷 が取り込まれて重畳されたとしても、 所謂二重取り現象のために有効画 像が劣化する虞はない。 すなわち、 後段オプティカルブラック画素領域 からの電荷の上に上書きしても二重取り現象は生じないのである。 したがって、 この高速画像読出方式によれば、 6 8〜 7 8 8ラインの 信号電荷を垂直シフ トレジス夕 V R l〜V R n上に取り残したまま、 次 の撮影に移ることができるため、 単位時間毎の撮影コマ数を増加させて、 所謂高速撮影が可能となる。
この高速画像読出方式を採用して取得された 1画面分の画像データが 図 4 2に表にして示されている。 同図に示されるように、 1〜 2ライン の 2ライン分が無効画像とされ、 3〜 3 1ラインの 2 9ライン分が有効 画像とされる。
このとき、 1画面分の画像データは通常の約 1 / 2 5の時間で取り込 まれるので、 画像入力にかかる時間が大幅に短縮され、 処理効率が向上 する。 しかも、 水平シフ トレジスタ H R上で電荷が飽和することがない ため、 飽和によるスミヤ発生により有効画像領域の画像が劣化する虞も ない。 加えて、 詳細な処理が必要な有効画像領域については、 通常のビ デォ規格で生成された画像データと同様の解像度の画像データを取得で きるので、 計測処理の精度を維持できる。
その後、 さらに必要に応じてこの計測結果をあらかじめ設定された基 準値と比較して対象物の良否を判定する。 この計測結果や判定結果は、 出力部 2 3を介してモニタなどの外部装置に出力される。 産業上の利用可能性
本発明の変位センサによれば、 計測光の照射光像と計測対象物表面と の位置関係を画像モニタで確認できるから、 目的とする計測位置に計測 光を照射して、 正確な計測が可能となる。

Claims

請 求 の 範 囲
1 . センサへッ ドとコントローラとを一体又は別体に有するものであつ て、
センサへッ ドは、
計測対象物体上の計測位置に向けて計測光を所定方向から投光するこ とができる計測用投光光学系と、
計測対象物体上の計測位置を含むその周辺領域を計測用投光光学系と は異なる角度から視た画像を取得することができる画像取得光学系と、 画像取得光学系を介して取得される画像を光電変換して画像に対応す る映像信号を生成する二次元撮像素子と、 を含み、
コントローラは、
映像信号としての画像の明るさに関連する撮影条件を制御することが 可能であり、
計測モードと観測モードとで動作可能であり、
計測モードに設定された状態においては、 計測用光源を点灯し、 計測 光照射光像は適切な明るさで写るもののその周辺の計測対象物表面像は 適切な明るさより暗く しか写らないように撮影条件を調整し、 二次元撮 像素子から得られる映像信号に基づいて目的とする変位量を算出し、 観測モードに設定された状態においては、 計測位置を含むその周辺の 計測対象物表面像が適切な明るさで写るように撮影条件を調整し、 二次 元撮像素子から得られる映像信号に基づいて、 計測対象物表面の計測位 置を含むその周辺の画像を画像モニタの画面に表示させる、
ように構成されている変位センサ。
2 . 計測モード設定時における撮影条件には、 計測用光源の輝度及び/ 又は二次元撮像素子の露光時間が含まれている、 請求項 1に記載の変位 センサ。
3 . コントローラは、 観測モードに設定された状態においては、 計測光 照射光像が全く写らないか適切な明るさより暗く しか写らないように撮 影条件を調整する、 請求項 1に記載の変位センサ。
4 . 観測モード設定時における撮影条件には、 計測用光源が点灯か消灯 か、 計測用光源の輝度及び/又は二次元撮像素子の露光時間が含まれて いる、 請求項 3に記載の変位センサ。
5 . コントローラは、 観測モードに設定された状態においては、 計測用 光源を点灯し、 計測光照射光像及びその周辺の計測対象物表面像の双方 が適切な明るさで写るように撮影条件を調整する、 請求項 1に記載の変 位センサ。
6 . 観測モード設定時における撮影条件には、 計測用光源の輝度及び/ 又は二次元撮像素子の露光時間が含まれている請求項 5に記載の変位セ ンサ。
7 . 観測モードとして第 1及び第 2の観測モードが用意されており、 コントローラは、 第 1の観測モードに設定された状態においては、 計 測光照射光像が全く写らないか適切な明るさより暗く しか写らないよう に撮影条件を調整し、 第 2の観測モードに設定された状態においては、 計測用光源を点灯し、 計測光照射光像及びその周辺の計測対象物表面像 の双方が適切な明るさで写るように撮影条件を調整する、 請求項 1に記 載の変位センサ。
8 . コントローラは、 観測モードに設定された状態においては、 計測光 照射光像が全く写らないか適切な明るさより少し暗く しか写らず、 計測 位置を含むその周辺の計測対象物が適切な明るさで写るようにした条件 による 1回又は複数回の撮影と、 計測用光源を点灯し、 計測光照射光像 は適切な明るさで写るもののその周辺の計測対象物表面像は適切な明る さより暗く しか写らないようにした条件による 1回又は複数回の撮影と を交互に繰り返す、 請求項 1に記載の変位センサ。
9 . コントローラは、 撮影した画像を撮影の都度画像モニタの画面に表 示させる、 請求項 8に記載の変位センサ。
1 0 . コントローラは、 撮影条件の異なる 2種類の画像を重ね合わせた 画像を画像モニタの画面に表示させる、 請求項 8に記載の変位センサ。
1 1 . コントローラは、 計測モードに設定された状態での 1回又は複数 回の撮影と、 観測モ一ドに設定された状態での 1回又は複数回の撮影と を交互に繰り返す、 請求項 1に記載の変位センサ。
1 2 . コントローラは、 画像モニタの画面に、 計測モードに設定された 状態で撮影した画像は表示させず、 観測モードに設定された状態で撮影 した画像は表示させる、 請求項 1 1に記載の変位センサ。
1 3 . コントローラは、 選択により、 計測モードに設定された状態で撮 影した画像と観測モードに設定された状態で撮影した画像のいずれかを 画像モニタの画面に表示させる請求項 1 1に記載の変位センサ。
1 4 . 計測対象物体上の計測位置を含むその周辺領域を照明する照明器 をさらに具備し、
コントローラは、 観測モードに設定された状態において照明器を点灯 する、 請求項 1から 1 2のいずれかに記載の変位センサ。
1 5 . 観測モード設定時における撮影条件には、 照明器による照明の明 るさが含まれている請求項 1 4に記載の変位センサ。
1 6 . 画像取得光学系は、 計測対象物体上の計測位置を含むその周辺領 域を斜めから視た画像を取得することができる斜視画像取得光学系と、 計測対象物体上の計測位置を含むその周辺領域を正面から視た画像を取 得することができる正視画像取得光学系とを含み、
二次元撮像素子は、 斜視画像取得光学系を介して取得される画像を光 電変換する斜視画像用二次元撮像素子と、 正視画像取得光学系を介して 取得される画像を光電変換する正視画像用二次元撮像素子とを含み、 コントローラは、 計測モードに設定された状態においては、 斜視画像 用二次元撮像素子からの映像信号に基づいて目的とする変位量を算出し、 観測モードに設定された状態においては、 正視画像用二次元撮像素子か らの映像信号に基づいて計測対象物表面の計測位置を含むその周辺の画 像を画像モニタの画面に表示させる、
請求項 1から 1 3のいずれかに記載の変位センサ。
1 7 . コントローラには、 斜視画像取得光学系を介して取得された斜視 画像に基づいて算出された変位量により、 正視画像取得光学系を介して 取得された画像の倍率を補正することにより、 計測対象物体表面に表れ た長さや面積を算出する画像処理モードがさらに設けられている、 請求 項 1 6に記載の変位センサ。
1 8 . 画像取得光学系は、 計測対象物体上の計測位置を含むその周辺領 域を斜めから視た画像を取得することができる斜視画像取得光学系と、 計測対象物体上の計測位置を含むその周辺領域を正面から視た画像を取 得することができる正視画像取得光学系とを含み、
二次元撮像素子は、 それら 2つの画像取得光学系に共通な単一のもの である、
請求項 1から 1 3のいずれかに記載の変位センサ。
1 9 . 二次元撮像素子は、 斜視画像取得光学系の光路と正視画像取得光 学系の光路とが交叉する位置に配置された、 請求項 1 8に記載の変位セ ンサ。
2 0 . 計測用投光光学系の出射光軸と斜視画像取得光学系の入射光軸と は同一傾斜角度で対照的に配置され、 二次元撮像素子は正視画像取得光 学系の入射光軸の延長線上に配置され、 斜視画像取得光学系には入射光 軸を折り曲げて二次元撮像素子に入射させる光軸折り曲げ機構が含まれ ている、 請求項 1 9に記載の変位センサ。
2 1 . 光軸折り曲げ機構は、 正視画像取得光学系を経由して二次元撮像 素子受光面に結像する計測光の光像と斜視画像取得光学系を経由して二 次元撮像素子受光面に結像する計測光の光像とが、 計測変位の変化に応 じて同一方向へと二次元撮像素子受光面上に移動するように仕組まれて いる、 請求項 2 0に記載の変位センサ。
2 2 . 斜視画像取得光学系を経由して二次元撮像素子へ至る第 1の光路 及び正視画像取得光学系を経由して撮像素子へ至る第 2の光路のいずれ かを、 手動又は電気的制御により、 択一的に遮光することが可能なシャ ッタをさらに具備することにより、 計測モード設定時には正視画像取得 光学系の光路を遮光し、 観測モ一ド設定時には斜視画像取得光学系の光 路を遮光することを可能にした、 請求項 1 8に記載の変位センサ。
2 3 . 計測対象物体上の計測位置を含むその周辺領域を照明する照明器 と、
斜視画像取得光学系を経由して撮像素子へ至る第 1の光路に介在され、 主として計測光を透過する帯域通過特性を有する第 1の光学フィルタと、 正視画像取得光学系を経由して撮像素子へ至る第 2の光路に介在され、 主として照明光を透過する帯域通過特性を有する第 2の光学フィルタと、 をさらに具備し、
コントロ一ラは、 観測モ一ドに設定された状態において照明器を点灯 する、
請求項 1 8に記載の変位センサ。
2 4 . コントローラには、 斜視画像取得光学系を介して取得された斜視 画像に基づいて算出された変位量により、 正視画像取得光学系を介して 取得された画像の倍率を補正することにより、 計測対象物体表面に表れ た長さや面積を算出する画像処理モードがさらに設けられている、 請求 項 1 8に記載の変位センサ。
2 5 . 計測対象物体上の計測位置に向けて計測光を所定方向から投光す ることができる計測用投光光学系と、
計測対象物体上の計測位置を含むその周辺領域を斜めから視た画像を 取得することができる斜視画像取得光学系と、
計測対象物体上の計測位置を含むその周辺領域を正面から視た画像を 取得することができる正視画像取得光学系と、
斜視画像取得光学系を介して取得される斜めから視た画像と正視画像 取得光学系を介して取得される正面から視た画像とをそれぞれ光電変換 して各画像に対応する映像信号を生成する二次元撮像素子とを、 少なく とも具備した光学式変位センサのセンサへッ ド。
2 6 . 二次元撮像素子は、 斜視画像取得光学系の光路正視画像取得光学 系の光路とが交叉する位置に配置された、 請求項 2 5に記載の光学式変 位センサのセンサヘッ ド。
2 7 . 計測用投光光学系の出射光軸と斜視画像取得光学系の入射光軸と は同一傾斜角度で対照的に配置され、 二次元撮像素子は正視画像取得光 学系の入射光軸の延長線上に配置され、 斜視画像取得光学系には入射光 軸を折り曲げて二次元撮像素子に入射させる光軸折り曲げ機構が含まれ ている、 請求項 2 6に記載の光学式変位センサのセンサヘッ ド。
2 8 . 光軸折り曲げ機構が、 正視画像取得光学系を経由して二次元撮像 素子受光面に結像する計測光の光像と斜視画像取得光学系を経由して二 次元撮像素子受光面に結像する計測光の光像とが、 計測変位の変化に応 じて同一方向へと二次元撮像素子受光面上に移動するように仕組まれて いる、 請求項 2 7に記載の光学式変位センサのセンサへッ ド。
2 9 . 斜視画像取得光学系を経由して二次元撮像素子へ至る第 1の光路 及び正視画像取得光学系を経由して撮像素子へ至る第 2の光路のいずれ かを、 手動又は遠隔制御により、 択一的に遮光することが可能なシャツ 夕をさらに具備する、 請求項 2 5から 2 8のいずれかに記載の光学式変 位センサのセンサへッ ド。
3 0 . 計測対象物体上の計測位置を含むその周辺領域を照明する照明器 をさらに具備する、 請求項 2 5から 2 8のいずれかに記載の光学式変位 センサのセンサへッ ド。
3 1 . 斜視画像取得光学系を経由して撮像素子へ至る第 1の光路に介在 され、 主として計測光を通過する帯域通過特性を有する第 1の光学フィ ルタと、
正視画像取得光学系を経由して撮像素子へ至る第 2の光路に介在され、 主として照明光を透過する帯域通過特性を有する第 2の光学フィルタと、 をさらに具備する、 請求項 3 0に記載の光学式変位センサのセンサへ ヅ ド。
PCT/JP2001/002860 2000-03-31 2001-04-02 Capteur de deplacement WO2001073375A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01917782.3A EP1197728B1 (en) 2000-03-31 2001-04-02 Displacement sensor
JP2001571050A JP3624887B2 (ja) 2000-03-31 2001-04-02 変位センサ
US09/980,310 US6747745B2 (en) 2000-03-31 2001-04-02 Displacement sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000136413 2000-03-31
JP2000-136413 2000-03-31
JP2001015125 2001-01-23
JP2001-15125 2001-01-23

Publications (1)

Publication Number Publication Date
WO2001073375A1 true WO2001073375A1 (fr) 2001-10-04

Family

ID=26591570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002860 WO2001073375A1 (fr) 2000-03-31 2001-04-02 Capteur de deplacement

Country Status (4)

Country Link
US (1) US6747745B2 (ja)
EP (1) EP1197728B1 (ja)
JP (1) JP3624887B2 (ja)
WO (1) WO2001073375A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170724A (ja) * 2004-12-14 2006-06-29 Omron Corp 光学式変位センサのセンサヘッド
JP2008032724A (ja) * 2006-07-28 2008-02-14 Mitsutoyo Corp 非接触プローブ制御インタフェース
JP2009085971A (ja) * 2009-01-26 2009-04-23 Omron Corp 光学式変位センサのセンサヘッド
US11073376B2 (en) 2019-11-08 2021-07-27 Keyence Corporation Optical displacement meter
WO2022172465A1 (ja) * 2021-02-12 2022-08-18 オムロン株式会社 光学式センサ

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289614A (ja) * 2000-01-31 2001-10-19 Omron Corp 変位センサ
US7408683B2 (en) * 2002-07-15 2008-08-05 Brother Kogyo Kabushiki Kaisha Image sensor for reading image and image reading apparatus including the image sensor
JP2005003385A (ja) * 2003-06-09 2005-01-06 Mitsutoyo Corp 画像測定方法、および画像測定装置
EP1517115B1 (en) * 2003-09-19 2016-05-11 Omron Corporation Multiple sensor system
KR100595939B1 (ko) * 2004-10-11 2006-07-05 삼성전자주식회사 휴대용 무선단말기의 액정 셔터를 갖는 카메라 모듈
JP4940800B2 (ja) * 2006-07-12 2012-05-30 オムロン株式会社 変位センサ
JP5072336B2 (ja) * 2006-12-07 2012-11-14 株式会社キーエンス 光学式変位センサ及び光学式変位計
EP2136178A1 (en) * 2007-04-05 2009-12-23 Nikon Corporation Geometry measurement instrument and method for measuring geometry
EP2023078B1 (en) * 2007-08-06 2017-06-14 Kabushiki Kaisha Kobe Seiko Sho Tire shape measuring system
TWI353885B (en) * 2009-06-26 2011-12-11 Primax Electronics Ltd Thickness detecting mechanism
CN101819024B (zh) * 2010-03-22 2011-06-15 中南大学 一种基于机器视觉的二维位移检测方法
US9186770B2 (en) 2010-04-29 2015-11-17 Black & Decker Inc. Oscillating tool attachment feature
US8925931B2 (en) 2010-04-29 2015-01-06 Black & Decker Inc. Oscillating tool
US9073195B2 (en) 2010-04-29 2015-07-07 Black & Decker Inc. Universal accessory for oscillating power tool
JP5310680B2 (ja) * 2010-09-10 2013-10-09 オムロン株式会社 変位センサ
US9149923B2 (en) 2010-11-09 2015-10-06 Black & Decker Inc. Oscillating tools and accessories
JP5810540B2 (ja) * 2011-02-04 2015-11-11 セイコーエプソン株式会社 頭部装着型表示装置および頭部装着型表示装置の制御方法
JP5494597B2 (ja) * 2011-09-16 2014-05-14 株式会社安川電機 ロボットシステム
TW201331547A (zh) * 2011-11-01 2013-08-01 尼康股份有限公司 形狀測定裝置、構造物製造系統、形狀測定方法、構造物製造方法、程式及記錄媒體
USD832666S1 (en) 2012-07-16 2018-11-06 Black & Decker Inc. Oscillating saw blade
US9013716B2 (en) * 2012-11-27 2015-04-21 Third Dimension Software Limited Positioning device for an optical triangulation sensor
DE102015108389A1 (de) 2015-05-27 2016-12-01 Carl Zeiss Industrielle Messtechnik Gmbh Beleuchtungssteuerung beim Einsatz von optischen Messgeräten
JP6728842B2 (ja) * 2016-03-24 2020-07-22 オムロン株式会社 光学計測装置
US10265778B2 (en) 2017-01-16 2019-04-23 Black & Decker Inc. Accessories for oscillating power tools
USD814900S1 (en) 2017-01-16 2018-04-10 Black & Decker Inc. Blade for oscillating power tools
DK3367054T3 (da) * 2017-02-28 2020-07-13 Phenospex B V System til optisk registrering af objekter
US11691264B2 (en) 2017-06-02 2023-07-04 Pixart Imaging Inc. Mobile robot performing multiple detections using image frames of same optical sensor
US11752635B2 (en) 2017-06-02 2023-09-12 Pixart Imaging Inc. Mobile robot performing multiple detections using image frames of same optical sensor
US10627518B2 (en) * 2017-06-02 2020-04-21 Pixart Imaging Inc Tracking device with improved work surface adaptability
JP2021167774A (ja) * 2020-04-10 2021-10-21 株式会社キーエンス 光学式変位センサ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122211U (ja) * 1987-02-02 1988-08-09
JPH03237311A (ja) * 1990-02-14 1991-10-23 Mitsubishi Electric Corp 画像入力装置
JP2001108418A (ja) * 1999-10-05 2001-04-20 Canon Inc 3次元形状測定方法および装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122211A (ja) 1986-11-12 1988-05-26 Nec Corp 分子線発生装置
JPH0652171B2 (ja) * 1987-02-10 1994-07-06 株式会社オカダ 光学式非接触位置測定装置
US5583602A (en) * 1994-04-07 1996-12-10 Kyocera Corporation Autofocus single-lens reflex camera
US5764785A (en) * 1995-08-21 1998-06-09 Jones; Mark F. Object identification system
JPH09184971A (ja) * 1995-12-28 1997-07-15 Olympus Optical Co Ltd 外光式自動焦点合わせ機能を有するカメラ
PT822389E (pt) * 1996-07-29 2003-08-29 Elpatronic Ag Processo e dispositivo para determinacao e verificacao do contorno de um rebordo
US5933240A (en) * 1997-02-12 1999-08-03 Jurca; Marius Christian Method and apparatus for determining the distance between a base and a specular surface by means of radiation reflected at the surface

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122211U (ja) * 1987-02-02 1988-08-09
JPH03237311A (ja) * 1990-02-14 1991-10-23 Mitsubishi Electric Corp 画像入力装置
JP2001108418A (ja) * 1999-10-05 2001-04-20 Canon Inc 3次元形状測定方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1197728A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170724A (ja) * 2004-12-14 2006-06-29 Omron Corp 光学式変位センサのセンサヘッド
JP2008032724A (ja) * 2006-07-28 2008-02-14 Mitsutoyo Corp 非接触プローブ制御インタフェース
JP2009085971A (ja) * 2009-01-26 2009-04-23 Omron Corp 光学式変位センサのセンサヘッド
US11073376B2 (en) 2019-11-08 2021-07-27 Keyence Corporation Optical displacement meter
JP7399686B2 (ja) 2019-11-08 2023-12-18 株式会社キーエンス 光学式変位計
WO2022172465A1 (ja) * 2021-02-12 2022-08-18 オムロン株式会社 光学式センサ

Also Published As

Publication number Publication date
JP3624887B2 (ja) 2005-03-02
EP1197728A1 (en) 2002-04-17
EP1197728A4 (en) 2009-06-17
US20030067613A1 (en) 2003-04-10
EP1197728B1 (en) 2017-07-12
US6747745B2 (en) 2004-06-08

Similar Documents

Publication Publication Date Title
WO2001073375A1 (fr) Capteur de deplacement
US7006142B2 (en) Three-dimensional image capturing device
US7119842B2 (en) Image capturing device including a spectrally-selectively transmissive diaphragm
JP3129245B2 (ja) 撮像装置
US6933962B2 (en) Electronic endoscope with three-dimensional image capturing device
EP0657767B1 (en) Visual axis detecting apparatus
CN100520286C (zh) 三维形状测量装置及方法
US7006126B2 (en) Color analyzing apparatus with polarized light source
US20110134293A1 (en) Camera
US20090122135A1 (en) Endoscope processor and endoscope system
KR20010040321A (ko) 개선된 영상 시스템을 구비한 전자 제품 조립 장치
WO2001069169A1 (fr) Detecteur de deplacement
CN101464745B (zh) 一种背投光源式触摸识别装置及其触摸识别方法
JPH0795152B2 (ja) 内視鏡装置
JPH09305312A (ja) 投影表示装置
JP2001251648A (ja) 3次元画像検出装置の焦点調節機構
JP2000278597A (ja) デジタルカメラ
US11893756B2 (en) Depth camera device
JPH07143469A (ja) 撮像表示一体装置
KR100803042B1 (ko) 영상취득장치 및 방법
CN101957496A (zh) 适于相移分析的探头的条纹投射系统和方法
JP7215472B2 (ja) 撮像装置および撮像方法
JP5521429B2 (ja) 発光量制御装置および発光量制御方法
JP3309496B2 (ja) カメラ方向制御装置
JP2001343224A (ja) 変位センサ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2001 571050

Country of ref document: JP

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

REEP Request for entry into the european phase

Ref document number: 2001917782

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2001917782

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09980310

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001917782

Country of ref document: EP