WO2001068925A1 - Verfahren zum herstellen von nichtkornorientiertem elektroblech - Google Patents

Verfahren zum herstellen von nichtkornorientiertem elektroblech Download PDF

Info

Publication number
WO2001068925A1
WO2001068925A1 PCT/EP2001/002974 EP0102974W WO0168925A1 WO 2001068925 A1 WO2001068925 A1 WO 2001068925A1 EP 0102974 W EP0102974 W EP 0102974W WO 0168925 A1 WO0168925 A1 WO 0168925A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip
hot
rolled
hot strip
rolling
Prior art date
Application number
PCT/EP2001/002974
Other languages
English (en)
French (fr)
Inventor
Karl Ernst Friedrich
Brigitte Hammer
Rudolf Kawalla
Olaf Fischer
Jürgen Schneider
Carl-Dieter Wuppermann
Original Assignee
Thyssenkrupp Stahl Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE10015691A priority Critical patent/DE10015691C1/de
Priority to AT01933708T priority patent/ATE303454T1/de
Priority to PL357413A priority patent/PL197691B1/pl
Priority to BR0109285-5A priority patent/BR0109285A/pt
Priority to US10/221,685 priority patent/US6767412B2/en
Priority to DE50107281T priority patent/DE50107281D1/de
Application filed by Thyssenkrupp Stahl Ag filed Critical Thyssenkrupp Stahl Ag
Priority to KR1020027012196A priority patent/KR100771253B1/ko
Priority to EP01933708A priority patent/EP1263993B1/de
Priority to MXPA02008528A priority patent/MXPA02008528A/es
Priority to JP2001567404A priority patent/JP5265835B2/ja
Priority to AU2001260127A priority patent/AU2001260127A1/en
Publication of WO2001068925A1 publication Critical patent/WO2001068925A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling

Definitions

  • non-grain-oriented electrical sheet is understood here to mean electrical sheets falling under DIN EN 10106 ("final annealed electrical sheet") and DIN EN 10165 (“non-final annealed electrical sheet”).
  • DIN EN 10106 final annealed electrical sheet
  • DIN EN 10165 non-final annealed electrical sheet
  • more anisotropic grades are included as long as they are not considered grain-oriented electrical sheets.
  • Non-grain-oriented electrical sheets in the thickness range of 0.65 to 1 mm are used, for example, in the manufacture of motors that are only switched on for short operating times. Such motors are typically used in the field of household technology or as auxiliary drives in motor vehicles. Such motors are said to deliver high performance, whereas energy consumption plays only a subordinate role.
  • a first method for producing non-grain-oriented hot-rolled electrical sheet is known from DE 198 07 122 AI.
  • two or more forming passes are specifically carried out in the two-phase area austenite / ferrite. In this way, if necessary, cold-rolled and finally treated electrical sheet can be produced which saves time and energy and which has improved magnetic properties compared to conventional sheets of this type.
  • a slab or thin slab cast from a steel of a certain composition is usually pre-rolled to a preliminary strip.
  • This support strip is then hot rolled in several passes. If necessary, the hot rolled strip is annealed. Then it is coiled. After the coiling, pickling and further annealing of the hot strip are usually carried out, which is finally cold-rolled to final thickness in one or more steps with intermediate annealing. If necessary, additional skin pass rolling is carried out. If the end processor requests this, the cold-rolled strip is finally annealed.
  • cast pre-strips can also be used to produce electrical sheets.
  • cast pre-strips it is also possible to cast extremely thin strips, the dimensions of which Dimensions of the hot strip to be produced are approximated.
  • the magnetic properties of the final product are affected by each of the individual processing steps involved in the manufacture. For this reason, for example, during hot rolling, the sequence and the condition of the structure present in the hot strip for each pass depending on the steel's conversion behavior determined by the steel composition, the temperature at the start of rolling and the cooling performed between the individual pass passes so that the desired magnetic Properties of the end product can be achieved.
  • the properties of the end product are also determined by the annealing temperature, the coiling temperature and the deformations in the course of cold rolling.
  • the object of the invention is to provide a method with which, in particular, thicker, non-grain-oriented electrical sheets which have good magnetic properties can be produced inexpensively.
  • This object is achieved by a process for producing non-grain-oriented hot-rolled electrical sheet, in which a starting material, such as cast slabs, strips, pre-strips or thin slabs, is made from a steel with (in% by weight)
  • the steel used according to the invention can optionally contain up to a total of 1.5% of alloy additives, such as P, Sn, Sb, Zr, V, Ti, N, Ni, Co, Nb and / or B.
  • a strip cast from an austenite-forming steel is used from the casting heat and rolled into a hot strip.
  • the rolling conditions during hot rolling are chosen so that the complete ferrite conversion is not completed by the end of the rolling. Instead, at least the last pass is carried out in the austenite / ferrite mixing area, while all other passes are rolled in austenite.
  • the starting material is produced as a cast thin slab or cast strip and the hot rolling continuously follows the production of the starting material.
  • hot strips which are produced in the manner according to the invention from a primary material produced on a casting and rolling mill and continuously processed, have excellent properties.
  • the hot-rolled strip that has been hot-rolled and, if necessary, cooled is coiled.
  • the reel temperature is preferably at least 700 ° C.
  • a hot strip annealing can be saved completely or at least in part.
  • the hot strip is in fact already softened in the coil, whereby the characteristics determining its properties, such as grain size, texture and precipitations, are positively influenced.
  • Such an annealing, carried out from the coil heat "in-line", of the hot strip coiled at high temperature and not significantly cooled in the coil can completely replace a hot strip hood annealing which might otherwise be necessary. This way, annealed hot strips with particularly good magnetic and technological properties can be produced. The time and energy required for this is considerably less than with the hot strip annealing conventionally carried out to improve the properties of electrical sheet.
  • the strip can be annealed after the reeling. Regardless of the form in which the hot strip annealing is carried out, it can be advantageous to carry out the annealing in a conventional manner under an oxygen-reduced atmosphere.
  • the hot strip is rolled after rolling in the finishing season at a coiling temperature of less than 600 ° C, especially less than 550 ° C, coiled. Coiling at these temperatures leads to a solidified hot-strip state in the alloys concerned. Further improvements in the properties of such coiled and alloyed electrical sheets can be achieved in that the coiled hot strip is cooled immediately after coiling in the coil.
  • a further embodiment of the invention which takes this result into account, is therefore characterized in that the shape change ⁇ h achieved in the course of rolling in the austenite / ferrite mixing area is limited to 10% - 15%.
  • the “overall shape change ⁇ h ” is understood to mean the ratio of the decrease in thickness during rolling in the respective phase area to the thickness of the strip when it enters the relevant phase area.
  • a hot strip produced according to the invention has a thickness h 0, for example after rolling in the austenite area. In the course of subsequent rolling in the two-phase mixing area, the thickness of the hot strip is reduced to h_.
  • the hot strip is pickled after coiling.
  • both annealing treatments can be carried out either in the hood furnace or in the continuous furnace.
  • a further improvement in the processability of the electrical hot strip produced and delivered according to the invention can be achieved in that the pickled hot strip is rolled smooth with a degree of deformation of up to 3%. With this rolling there are bumps of the strip surface is smoothed, without there being any appreciable influence on the structural state produced in the course of hot rolling.
  • the dimensional stability and surface quality of the hot-rolled strip produced according to the invention can be further improved by the fact that the pickled hot strip is skin-pass rolled with a degree of deformation of more than 3% to 15%.
  • This re-rolling also does not lead to structural changes which would be comparable to the changes which are usually brought about in a targeted manner in cold rolling because of the high degrees of deformation achieved in the process.
  • Hot rolling takes place in the mixing area with lubrication.
  • Hot rolling with lubrication results in less shear deformation on the one hand, so that the rolled strip as a result obtains a more homogeneous structure across the cross section.
  • the rolling forces are reduced by the lubrication, so that a greater reduction in thickness is possible over the respective rolling pass.
  • the final thickness of the hot strip is preferably 0.65 mm to 1 mm. There is a high demand for strips of this thickness which are produced inexpensively and can therefore be marketed at low cost.
  • the method according to the invention is particularly suitable for processing such steels which have a Si content of at most 1% by weight. Have such steels a pronounced austenite phase, so that the transition from the austenite phase to the austenite / ferrite mixed phase can be controlled particularly precisely.
  • the hot strip is decarburized prior to assembly and delivery.
  • J2500 denotes the magnetic polarization at magnetic field strengths of 2500 A / m, 5000 A / m and 10000 A / m.
  • Reverse magnetization loss understood with a polarization of 1.0 T or 1.5 T and a frequency of 50 Hz.
  • melts formed in accordance with the compositions given in Table 1 were continuously cast to a preliminary strip, which was also continuously fed into a hot rolling mill comprising several roll stands.
  • Tables 2a - 2c show the magnetic properties J 2500 , J 5ooo / J ⁇ oooo > p ⁇ , o and P 15 for three electrical sheets AI - A3 and Bl - B3 produced from steels A and B, respectively.
  • the focus of the deformation was placed in the area in which the respective strip was in the austenitic state.
  • the mixed area austenite / ferrite, however, only one roll pass was carried out.
  • the total deformation ⁇ H achieved was less than 35%, in particular 30%.
  • the hot strips were coiled at a reel temperature of 750 ° C.
  • the hot strips have been assembled directly into commercially available electrical sheets after cooling and have been delivered to the end user.
  • the hot strips are pickled before they are delivered to the end user and additionally subjected to a smoothing stitch. With this smoothing stitch, a deformation ⁇ H of at most 3% has been achieved.
  • the strips A3, B3 (Table 2c) were each passaged before they were delivered after pickling.
  • the properties of the sheets a, b, c produced according to the invention differ only slightly from the properties of the conventionally produced electrical sheet. This shows that with the optimization of the rolling strategy chosen in hot rolling according to the invention, high-quality, marketable electrical sheets can be produced while saving on expensive cold rolling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Metal Rolling (AREA)
  • Winding, Rewinding, Material Storage Devices (AREA)
  • Cereal-Derived Products (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Herstellen von nichtkornorientiertem warmgewalzten Elektroblech, bei dem aus einem Vormaterial, wie gegossenen Brammen, Bändern, Vorbändern oder Dünnbrammen, das aus einem Stahl mit (in Gewichts-%) C: 0,0001 - 0,05 %, Si: ≤ 1,5 %, Al: ≤ 0,5 %, wobei [%Si] + 2[%Al] ≤ 1,8, Mn: 0,1 - 1,2 %, gegebenenfalls bis insgesamt 1,5 % an Legierungszusätzen, wie P, Sn, Sb, Zr, V, Ti, N, Ni, Co, Nb und / oder B, Rest Eisen sowie übliche Verunreinigungen, hergestellt ist, in einer Fertigwalzstaffel bei oberhalb der Arl-Temperatur liegenden Temperaturen ein Warmband mit einer Dicke ≤ 1,5 mm gewalzt wird, wobei mindestens der letzte Umformstich des Warmwalzens im Mischgebiet Austenit / Ferrit durchgeführt wird und die gesamte im Zuge des Walzens im Mischgebiet Austenit / Ferrit erreichte Formänderung εH< 35 % ist. Mit dem erfindungsgemäßen Verfahren lassen sich insbesondere dickere, nichtkornorientierte Elektrobleche kostengünstig herstellen, die gute magnetische Eigenschaften besitzen.

Description

Verfahren zum Herstellen von nichtkornorientiertem Elektroblech
Die Erfindung betrifft ein Verfahren zum Herstellen von nichtkornorientiertem Elektroblech. Unter dem Begriff "nichtkornorientiertes Elektroblech" werden hier unter die DIN EN 10106 ("schlußgeglühtes Elektroblech") und DIN EN 10165 ("nicht schlußgeglühtes Elektroblech") fallende Elektrobleche verstanden. Darüber hinaus werden auch stärker anisotrope Sorten einbezogen, solange sie nicht als kornorientierte Elektrobleche gelten.
Nichtkornorientierte Elektrobleche im Dickenbereich von 0,65 bis 1 mm finden beispielsweise Verwendung bei der Herstellung von Motoren, die jeweils nur für kurze Betriebszeiten eingeschaltet werden. Typischerweise werden solche Motoren im Bereich der Haushaltstechnik oder als Hilfsantriebe in Kraftfahrzeugen eingesetzt. Derartige Motoren sollen eine hohe Leistung liefern, wogegen der Energieverbrauch eine nur untergeordnete Rolle spielt.
Ein erstes Verfahren zum Herstellen von nichtkornorientiertem warmgewalzten Elektroblech ist aus der DE 198 07 122 AI bekannt. Bei dem bekannten Verfahren wird ein (in Masse-%) 0,001 bis 0,1 % C, 0,05 bis 3,0 % Si, bis 0,85 % AI, wobei %Si + 2A1 < 3,0 %, und 0,5 - 2,0 % Mn sowie als Rest Eisen und übliche Verunreinigungen enthaltendes Vormaterial direkt aus der Gießhitze oder nach einem Wiedererwärmen auf eine mindestens 900 °C betragende Temperatur warmgewalzt. Im Zuge des Warmwalzens werden dabei gezielt zwei oder mehr Umformstiche im Zweiphasengebiet Austenit/Ferrit durchgeführt. Auf diese Weise läßt sich bei Einsparung von Zeit und Energie ein erforderlichenfalls kaltgewalztes und schlußbehandeltes Elektroblech erzeugen, welches gegenüber herkömmlichen Blechen dieser Art verbesserte magnetische Eigenschaften besitzt.
Bei der herkömmlichen Herstellung von nichtkornorientiertem Elektroblech, wie sie beispielsweise in der EP 0 897 993 AI beschrieben ist, wird üblicherweise eine aus einem Stahl bestimmter Zusammensetzung gegossene Bramme oder Dünnbramme zu einem Vorband vorgewalzt. Dieses Vorband wird anschließend in mehreren Stichen warmgewalzt. Sofern erforderlich, wird das warmgewalzte Band geglüht. Anschließend wird es gehaspelt . Nach dem Haspeln erfolgt in der Regel ein Beizen und weiteres Glühen des Warmbandes, welches schließlich in einem Schritt oder in mehreren Schritten mit zwischengeschaltetem Glühen auf Enddicke kaltgewalzt wird. Erforderlichenfalls wird ein ergänzendes Dressierwalzen durchgeführt. Sofern der Endverarbeiter dies fordert, wird das kaltgewalzte Band schließlich auch noch schlußgeglüht .
Anstelle des Vorwalzens eines Vorbandes aus einer gegossenen Bramme können auch Dünnbrammen oder direkt eingesetzte, gegossene Vorbänder zum Erzeugen von Elektroblechen verwendet werden. Bei der Verwendung von gegossenen Vorbändern besteht zudem die Möglichkeit, extrem dünne Bänder zu gießen, deren Abmessungen den Abmessungen des zu erzeugenden Warmbandes angenähert sind. Indem das Gießen eines solchen Vorbands und das Warmwalzen dieses Bandes in einen kontinuierlichen Prozeß integriert werden, können technologische und kostenmäßige Vorteile erzielt werden.
Die magnetischen Eigenschaften des Endprodukts werden durch jeden der einzelnen bei der Herstellung durchlaufenen Verarbeitungsschritte beeinflußt. Daher werden beispielsweise beim Warmwalzen die Stichfolge und der Zustand des bei jedem Walzstich im Warmband vorhandenen Gefüges in Abhängigkeit vom durch die StahlZusammensetzung bestimmten Umwandlungsverhalten des Stahls über die Temperatur beim Beginn des Walzens und die zwischen den einzelnen Walzstichen durchgeführte Kühlung so eingestellt, daß die gewünschten magnetischen Eigenschaften des Endproduktes erreicht werden. Ebenso werden die Eigenschaften des Endprodukts durch die Glühtemperatüren, die Haspeltemperatur und die Verformungen im Zuge des Kaltwalzens bestimmt.
Die große Anzahl von Fertigungsschritten macht die Produktion von Elektroblechen technisch aufwendig und teuer. Dies erweist sich insbesondere bei größeren Blechdicken als nachteilig.
Die Aufgabe der Erfindung besteht darin, ein Verfahren anzugeben, mit dem sich insbesondere dickere nichtkornorientierte Elektrobleche kostengünstig herstellen lassen, die gute magnetische Eigenschaften besitzen. Diese Aufgabe wird durch ein Verfahren zum Herstellen von nichtkornorientiertem warmgewalzten Elektroblech gelöst, bei dem aus einem Vormaterial, wie gegossenen Brammen, Bändern, Vorbändern oder Dünnbrammen, das aus einem Stahl mit (in Gewichts-%)
0,0001 - 0,05 %,
Si < 1,5 %, AI < 0,5 %, wobei [%Si] + 2 [%A1] < 1,8, Mn 0,1 - 1,2 %,
Rest Eisen sowie übliche Verunreinigungen,
hergestellt ist, in einer Fertigwalzstaffel bei oberhalb der A^-Temperatur liegenden Temperaturen ein Warmband mit einer Dicke < 1,5 mm gewalzt wird, wobei mindestens der letzte Umformstich des Warmwalzens im Mischgebiet Austenit / Ferrit durchgeführt wird und die gesamte im Zuge des Walzens im Mischgebiet Austenit / Ferrit erreichte Formänderung εH < 35 % ist. Der erfindungsgemäß verwendete Stahl kann wahlweise bis insgesamt 1,5 % an Legierungszusätzen, wie P, Sn, Sb, Zr, V, Ti, N, Ni, Co, Nb und / oder B enthalten.
Erfindungsgemäß wird ein aus einem austenitbildenden Stahl gegossenes Band aus der Gießhitze direkt eingesetzt zu einem Warmband gewalzt. Dabei sind die Walzbedingungen während des Warmwalzens so gewählt, daß die vollständige Ferritumwandlung bis zum Ende des Walzens nicht abgeschlossen ist. Statt dessen wird mindestens der letzte Stich im Mischgebiet Austenit / Ferrit durchgeführt, während alle anderen Stiche im Austenit gewalzt werden. Indem das Erzeugen des Vormaterials und das Warmwalzen des Elektroblechs in einem erfindungsgemäßen Prozeß durchgeführt werden, können nichtkornorientierte Elektroblechbänder erzeugt werden, deren Dicke so gering ist, daß sie, ohne noch einmal zur Dickenreduzierung kaltgewalzt zu werden, dem Endverwender ausgeliefert werden können. Besonders gute Ergebnisse lassen sich mit einem erfindungsgemäßen Verfahren erreichen, wenn das Vormaterial als gegossene Dünnbramme oder gegossenes Band erzeugt wird und das Warmwalzen kontinuierlich auf die Erzeugung des Vormaterials folgt. So weisen Warmbänder, die in erfindungsgemäßer Weise aus einem auf einer Gießwalzanlage erzeugten und kontinuierlich weiterverarbeiteten Vormaterial hergestellt sind, hervorragende Eigenschaften auf .
Es hat sich gezeigt, daß sich bei Beachtung der erfindungsgemäß vorgesehenen Betriebsbedingungen warmgewalzte nichtkornorientierte Elektrobleche herstellen lassen, die in ihren Eigenschaften denjenigen Elektroblechen mindestens ebenbürtig sind, die in herkömmlicher Weise im Anschluß an die Warmbanderzeugung kaltgewalzt worden sind. Das erfindungsgemäße Verfahren ermöglicht es folglich, unter Einsparung kostenträchtiger und zeitaufwendiger Arbeitsschritte, die im Stand der Technik stets für erforderlich gehalten worden sind, hochwertige Elektrobleche mit guten magnetischen Eigenschaften kostengünstig herzustellen.
Üblicherweise wird das fertig warmgewalzte und erforderlichenfalls abgekühlte Warmband gehaspelt. Dabei beträgt die Haspeltemperatur vorzugsweise mindestens 700 °C. Erfahrungsgemäß kann bei Einhaltung dieser Haspeltemperatur eine Warmbandgluhung ganz oder zumindest zum wesentlichen Teil eingespart werden. Das Warmband wird nämlich schon im Coil entfestigt, wobei die seine Eigenschaften bestimmenden Merkmale, wie Korngröße, Textur und Ausscheidungen, positiv beeinflußt werden. Besonders vorteilhaft ist es in diesem Zusammenhang, wenn das Band unter Nutzung der Coilhitze einer passiven Glühung unterzogen wird. Eine solche aus der Coilhitze "in-line" ausgeführten Glühung des bei hoher Temperatur aufgehaspelten, im Coil nicht wesentlich abgekühlten Warmbandes kann eine andernfalls unter Umständen erforderliche Warmbandhaubenglühung vollständig ersetzen. So lassen sich geglühte Warmbänder mit besonders guten magnetischen und technologischen Eigenschaften herstellen. Der dazu erforderliche Zeit- und Energieaufwand ist erheblich geringer als bei der herkömmlicherweise zur Verbesserung der Eigenschaften von Elektroblech durchgeführten Warmbandgluhung.
Alternativ oder ergänzend zur "passiven" Glühung im Coil kann, sofern die einzustellenden Eigenschaften dies erforderlich machen, das Band im Anschluß an das Haspeln einer Glühung unterzogen werden. Unabhängig davon, in welcher Form die Warmbandgluhung durchgeführt wird, kann es vorteilhaft sein, die Glühung in herkömmlicher Weise unter einer Sauerstoffreduzierten Atmosphäre durchzuführen .
Gemäß einer anderen, insbesondere für die Verarbeitung eines Stahls mit einem Si-Gehalt von mindestens 0,7 Gew.-% besonders geeigneten Ausgestaltung der Erfindung wird das Warmband nach dem Walzen in der Fertigstaffel bei einer Haspeltemperatur von weniger als 600 °C, insbesondere weniger als 550 °C, gehaspelt. Das Haspeln bei diesen Temperaturen führt bei den betreffenden Legierungen zu einem verfestigten Warmbandzustand. Dabei können weitere Verbesserungen der Eigenschaften derart gehaspelter und legierter Elektrobleche dadurch erreicht werden, daß das gehaspelte Warmband unmittelbar anschließend an das Haspeln im Coil beschleunigt abgekühlt wird.
Praktische Versuche haben ergeben, daß sich Elektroblech- Warmband mit besonders guten Eigenschaften erzeugen läßt, wenn der Schwerpunkt der Verformung während des Warmwalzens deutlich im Austenitgebiet liegt. Daher ist eine weitere Ausgestaltung der Erfindung, die diesem Ergebnis Rechnung trägt, dadurch gekennzeichnet, daß die im Zuge des Walzens im Mischgebiet Austenit / Ferrit erreichte Formänderung εh auf 10 % - 15 % beschränkt ist.
Unabhängig davon, wie stark das Warmband im Mischgebiet γ/α verformt wird, kann durch eine geeignete Wahl des Verhältnisses von Umformgrad und Umformgeschwindigkeit, d.h. Ausnutzung der bei der Umformung entstehenden Wärme, eine optimale Temperaturführung im Sinne der Vermeidung einer Abkühlung des Walzgutes und damit eine vollständige Umwandlung in Ferrit vermieden werden.
Unter der "Gesamtformänderung εh" wird in diesem Zusammenhang das Verhältnis der Dickenabnahme während des Walzens im jeweiligen Phasengebiet zur Dicke des Bandes beim Eintritt in das betreffende Phasengebiet verstanden. Dieser Definition entsprechend weist ein gemäß der Erfindung hergestelltes Warmband beispielsweise nach dem Walzen im Austenitgebiet eine Dicke h0 auf. Im Zuge des darauffolgenden Walzens im Zweiphasenmischgebiet wird die Dicke des Warmbands auf h_ reduziert. Definitionsgemäß ergibt sich damit die beispielsweise während des Mischwalzens erreichte Gesamtformänderung εh zu (h0 - h_) I h0 mit h0 = Dicke beim Eintritt in das erste im Mischzustand Austenit / Ferrit durchlaufene Walzgerüst und _ = Dicke beim Verlassen des letzten im Mischzustand durchlaufenen Walzgerüsts.
Zur Verbesserung der Beschaffenheit der Bandoberfläche und der weiteren Verarbeitbarkeit ist es günstig, wenn das Warmband nach dem Haspeln gebeizt wird.
Fordert der Endverwender ein schlußgeglühtes Elektroblech, so ist es zweckmäßig, das Warmband nach dem Beizen bei einer Glühtemperatur von mindestens 740 °C zu einem schlußgeglühten Elektroband zu glühen. Wird dagegen das abschließende Glühen nach dem Beizen bei einer niedrigeren Glühtemperatur von mindestens 650 °C durchgeführt, so wird ein nichtschlußgeglühtes Elektroband erhalten, welches erforderlichenfalls einer Schlußglühung beim Endverwender unterzogen werden kann. Beide Glühbehandlungen können, abhängig von den Eigenarten der jeweiligen Legierung, den gewünschten Eigenschaften des Elektroblechs und den zur Verfügung stehenden Einrichtungen, entweder im Haubenofen oder im Durchlaufofen durchgeführt werden.
Eine weitere Verbesserung der Verarbeitbarkeit des erfindungsgemäß erzeugten und ausgelieferten Elektrowarmbandes läßt sich dadurch erreichen, daß das gebeizte Warmband bei einem Umformgrad von bis zu 3 % glattgewalzt wird. Bei diesem Walzen werden Unebenheiten der Bandoberfläche geglättet, ohne daß es zu einer nennenswerten Beeinflussung des im Zuge des Warmwalzens erzeugten Gefügezustands kommt .
Alternativ oder ergänzend zu einem reinen Glättstich der voranstehend erläuterten Art kann die Maßhaltigkeit und Oberflächenbeschaffenheit des erfindungsgemäß erzeugten, warmgewalzten Bandes dadurch noch verbessert werden, daß das gebeizte Warmband bei einem Umformgrad von mehr als 3 % bis 15 % dressiergewalzt wird. Auch dieses Nachwalzen führt zu keinen Gefügeänderungen, die vergleichbar wären mit den Veränderungen, die beim Kaltwalzen wegen der dabei erzielten hohen Umformgrade üblicherweise gezielt herbeigeführt werden.
Eine weitere vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, daß das Warmwalzen im Mischgebiet mit Schmierung erfolgt. Durch das Warmwalzen mit Schmierung treten einerseits geringere Scherverformungen auf, so daß das gewalzte Band im Ergebnis eine homogenere Struktur über den Querschnitt erhält . Andererseits werden durch die Schmierung die Walzkräfte vermindert, so daß über dem jeweiligen Walzstich eine höhere Dickenabnahme möglich ist.
Vorzugsweise beträgt die Enddicke des Warmbandes 0,65 mm bis 1 mm. An kostengünstig produzierten und folglich preisgünstig vermarktbaren Bändern dieser Dicke besteht ein hoher Bedarf.
Besonders geeignet ist das erfindungsgemäße Verfahren zur Verarbeitung solcher Stähle, die einen Si-Gehalt von höchstens 1 Gew.-% aufweisen. Derartige Stähle besitzen eine ausgeprägte Austenitphase, so daß sich der Übergang von der Austenit- in die Mischphase Austenit / Ferrit besonders präzise steuern läßt.
Liegt der Kohlenstoffgehalt des Stahles über 0,005 Gew.-%, so ist es zweckmäßig, wenn das Warmband vor einer Konfektionierung und Auslieferung entkohlend geglüht wird.
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert:
"J2500", "J5000" bzw. "J10000" bezeichnen im folgenden die magnetische Polarisation bei magnetischen Feldstärken von 2500 A/m, 5000 A/m bzw. 10000 A/m.
Unter "P 1,0" bzw. "P 1,5" wird der
Ummagnetisierungsverlust bei einer Polarisation von 1,0 T bzw. 1,5 T und einer Frequenz von 50 Hz verstanden.
Die in den nachfolgenden Tabellen angegebenen magnetischen Eigenschaften sind jeweils an Einzelstreifen längs der Walzrichtung gemessen worden.
In Tabelle 1 sind für zwei zur erfindungsgemäßen Herstellung von Elektroblech verwendete Stähle die Gehalte der für die Eigenschaften wesentlichen Legierungsbestandteile in Gewichts-% angegeben.
Figure imgf000011_0001
Tabelle 1 Entsprechend den in Tabelle 1 angegebenen Zusammensetzungen gebildete Schmelzen sind in einer Gießwalzanlage kontinuierlich zu jeweils einem Vorband gegossen worden, welches ebenso kontinuierlich in eine mehrere Walzgerüste umfassende Warmwalzstaffel geleitet worden ist.
In den Tabellen 2a - 2c sind die magnetischen Eigenschaften J2500, J5ooo/ J ιoooo> p ι,o und P15 für jeweils drei aus den Stählen A bzw. B erzeugte Elektrobleche AI - A3 bzw. Bl - B3 angegeben. Beim Warmwalzen dieser Elektrobleche AI - A3 und Bl - B3 ist der Schwerpunkt der Verformung jeweils in den Bereich gelegt worden, in denen das jeweilige Band sich im austenitischen Zustand befand. Im Mischgebiet Austenit / Ferrit ist dagegen nur ein Walzstich durchgeführt worden. Die dabei erzielte Gesamtverformung εH betrug weniger als 35 %, insbesondere 30 %.
Im Anschluß an das Walzen sind die Warmbänder bei einer Haspeltemperatur von 750 °C gehaspelt worden.
Tabelle 2a
Tabelle 2b
Figure imgf000012_0001
Tabelle 2c
Figure imgf000013_0001
Im Fall der Beispiele AI, Bl (Tabelle 2a) sind die Warmbänder nach der Abkühlung direkt zu handelsüblichen Elektroblechen konfektioniert und an den Endverwender ausgeliefert worden. Im Fall der Beispiele A2 , B2 (Tabelle 2b) sind die Warmbänder vor ihrer Auslieferung an den Endverwender gebeizt und zusätzlich einem Glättstich unterworfen worden. Bei diesem Glättstich ist eine Verformung εH von maximal 3 % erreicht worden. Die Bänder A3, B3 (Tabelle 2c) sind vor ihrer Auslieferung nach einem Beizen jeweils dressiergewalzt worden.
Vergleichsuntersuchungen, die an 1 mm dicken, nach dem erfindungsgemäßen Verfahren erzeugten Elektroblechen und Elektroblechen durchgeführt worden sind, die in konventioneller Weise warm- und kaltgewalzt worden sind, zeigen, daß die erzielbaren Werte der magnetischen Polarisation und die erzielbaren Werte des spezifischen Ummagnetisierungsverlustes der erfindungsgemäß erzeugten Elektrobleche in engen Bereichen mit denjenigen Werten übereinstimmen, die für die betreffenden Eigenschaften an herkömmlich erzeugten Elektroblechen ermittelt werden konnten.
In Diagramm 1 ist logarithmisch für drei erfindungsgemäß erzeugte Elektrobleche a, b, c und ein in herkömmlicher Weise erzeugtes Blech d der jeweilige Verlauf der magnetischen Polarisation über die magnetische Feldstärke aufgetragen wurden. Das Blech a wurde direkt eingesetzt, Blech b geglättet und Blech c dressier . In Diagramm 2 ist logarithmisch für die drei erfindungsgemäß erzeugten Elektrobleche a, b, c und das in herkömmlicher Weise erzeugte Blech d der jeweilige Verlauf des spezifischen Ummagnetisierungsverlustes über der magnetischen Polarisation aufgetragen worden.
Es ist ohne weiteres erkennbar, daß die Eigenschaften der erfindungsgemäß erzeugten Bleche a,b,c nur geringfügig von den Eigenschaften des herkömmlich erzeugten Elektroblechs abweichen. Dies zeigt, daß sich mit der erfindungsgemäß vorgenommenen Optimierung der beim Warmwalzen gewählten Walzstrategie unter Einsparung des kostspieligen Kaltwalzens hochwertige, marktfähige Elektrobleche herstellen lassen.

Claims

P A T E N T A N S P R Ü C H E
1. Verfahren zum Herstellen von nichtkornorientiertem warmgewalzten Elektroblech, bei dem aus einem Vormaterial, wie gegossenen Brammen, Bändern, Vorbändern oder Dünnbrammen, das aus einem Stahl mit (in Gewichts-%)
C: 0, 0001 - 0,05 %,
Si: < 1,5 %,
AI: < 0,5 %, wobei [%Si] + 2 [%A1] < 1,8,
Mn : 0,1 - 1,2 %,
Rest Eisen sowie übliche Verunreinigungen,
hergestellt ist, in einer Fertigwalzstaffel bei oberhalb der A^-Temperatur liegenden Temperaturen ein Warmband mit einer Dicke < 1,5 mm gewalzt wird, wobei mindestens der letzte Umformstich des Warmwalzens im Mischgebiet Austenit / Ferrit durchgeführt wird und die gesamte im Zuge des Walzens im Mischgebiet Austenit / Ferrit erreichte Formänderung εH < 35 % ist .
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, d a ß der Stahl bis insgesamt 1,5 % an Legierungszusätzen, wie P, Sn, Sb, Zr, V, Ti, N, Ni, Co, Nb und / oder B enthält.
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, d a ß das Vormaterial als gegossene Dünnbramme oder gegossenes Band erzeugt wird und d a ß das Warmwalzen kontinuierlich auf die Erzeugung des Vormaterials folgt.
4. Verfahren nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a ß Warmband gehaspelt wird.
5. Verfahren nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t, d a ß die Haspeltemperatur mindestens 700 °C beträgt.
6. Verfahren nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, d a ß das Warmband unter Nutzung der Coilhitze einer passiven Glühung unterzogen wird.
7. Verfahren nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, d a ß das Warmband im Anschluß an das Haspeln geglüht wird.
8. Verfahren nach einem der Ansprüche 4 bis 7, d a d u r c h g e k e n n z e i c h n e t, d a ß die Warmbandgluhung unter einer Sauerstoffreduzierten Atmosphäre durchgeführt wird.
9. Verfahren nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t, d a ß die Haspeltemperatur < 600 °C beträgt.
10. Verfahren nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t, d a ß das gehaspelte Warmband unmittelbar anschließend an das Haspeln im Coil beschleunigt abgekühlt wird.
11. Verfahren nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a ß die gesamte Formänderung εH während des Walzens im Mischgebiet Austenit / Ferrit 10 % - 15 % beträgt.
12. Verfahren nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a ß das Warmband nach dem Haspeln gebeizt wird.
13. Verfahren nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a ß das Warmband bei einer Glühtemperatur von mindestens 740 °C zu einem schlußgeglühten Elektroband geglüht wird.
14. Verfahren nach Anspruch 1 oder 12, d a d u r c h g e k e n n z e i c h n e t, d a ß das Warmband bei einer Glühtemperatur von mindestens 650 °C zu einem nichtschlußgeglühten Elektroband geglüht wird.
15. Verfahren nach Anspruch 13 oder 14, d a d u r c h g e k e n n z e i c h n e t, d a ß das Glühen im Haubenofen durchgeführt wird.
16. Verfahren nach Anspruch 13 oder 14, d a d u r c h g e k e n n z e i c h n e t, d a ß das Glühen im Durchlaufofen durchgeführt wird.
17. Verfahren nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a ß das Warmband ohne kaltgewalzt zu werden konfektioniert und ausgeliefert wird.
18. Verfahren nach einem der Ansprüche 1 bis 16, d a d u r c h g e k e n n z e i c h n e t, d a ß das Warmband bei einem Umformgrad von < 3 % glattgewalzt wird.
19. Verfahren nach Anspruch 18, d a d u r c h g e k e n n z e i c h n e t, d a ß das glattgewalzte Band konfektioniert und ausgeliefert wird.
20. Verfahren nach einem der Ansprüche 1 bis 16, d a d u r c h g e k e n n z e i c h n e t, d a ß das Warmband bei einem Umformgrad von > 3 % - 15 % dressiergewalzt wird.
21. Verfahren nach Anspruch 20, d a d u r c h g e k e n n z e i c h n e t, d a ß das dressierte Band konfektioniert und ausgeliefert wird.
22. Verfahren nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a ß die Enddicke des Warmbandes 0,65 bis 1 mm beträgt.
23. Verfahren nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a ß das Warmwalzen im Mischgebiet mit Schmierung erfolgt
24. Verfahren nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a ß der Si -Gehalt des Stahles höchstens 1 Gew.-% beträgt,
25. Verfahren nach einem der Ansprüche 17, 19 oder 21, d a d u r c h g e k e n n z e i c h n e t, d a ß der C-Gehalt des Stahles mehr als 0,005 Gew.-% beträgt und d a ß das Warmband vor seiner Konfektionierung und Auslieferung entkohlend geglüht wird.
PCT/EP2001/002974 2000-03-16 2001-03-15 Verfahren zum herstellen von nichtkornorientiertem elektroblech WO2001068925A1 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
DE10015691A DE10015691C1 (de) 2000-03-16 2000-03-29 Verfahren zum Herstellen von nichtkornorientiertem Elektroblech
PL357413A PL197691B1 (pl) 2000-03-16 2001-03-15 Sposób wytwarzania blachy ze stali magnetycznej o niezorientowanym ziarnie
BR0109285-5A BR0109285A (pt) 2000-03-16 2001-03-15 Processo para produção de chapa elétrica não orientada em grãos
US10/221,685 US6767412B2 (en) 2000-03-16 2001-03-15 Method for producing non-grain-oriented magnetic steel sheet
DE50107281T DE50107281D1 (de) 2000-03-16 2001-03-15 Verfahren zum herstellen von nichtkornorientiertem elektroblech
AT01933708T ATE303454T1 (de) 2000-03-16 2001-03-15 Verfahren zum herstellen von nichtkornorientiertem elektroblech
KR1020027012196A KR100771253B1 (ko) 2000-03-16 2001-03-15 무방향성 전기강판 제조 방법
EP01933708A EP1263993B1 (de) 2000-03-16 2001-03-15 Verfahren zum herstellen von nichtkornorientiertem elektroblech
MXPA02008528A MXPA02008528A (es) 2000-03-16 2001-03-15 Metodo para la produccion de chapa de acero magnetica sin orientacion de grano.
JP2001567404A JP5265835B2 (ja) 2000-03-16 2001-03-15 無方向性電磁鋼板の製造方法
AU2001260127A AU2001260127A1 (en) 2000-03-16 2001-03-15 Method for producing non grain-oriented electric sheets

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10012838.6 2000-03-16
DE10012838 2000-03-16
DE10015691.6 2000-03-29
DE10015691A DE10015691C1 (de) 2000-03-16 2000-03-29 Verfahren zum Herstellen von nichtkornorientiertem Elektroblech

Publications (1)

Publication Number Publication Date
WO2001068925A1 true WO2001068925A1 (de) 2001-09-20

Family

ID=26004861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/002974 WO2001068925A1 (de) 2000-03-16 2001-03-15 Verfahren zum herstellen von nichtkornorientiertem elektroblech

Country Status (12)

Country Link
US (1) US6767412B2 (de)
EP (1) EP1263993B1 (de)
JP (1) JP5265835B2 (de)
KR (1) KR100771253B1 (de)
AT (1) ATE303454T1 (de)
AU (1) AU2001260127A1 (de)
BR (1) BR0109285A (de)
DE (2) DE10015691C1 (de)
ES (1) ES2248329T3 (de)
MX (1) MXPA02008528A (de)
PL (1) PL197691B1 (de)
WO (1) WO2001068925A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004101831A1 (en) * 2003-05-14 2004-11-25 Ak Properties, Inc. Improved method for production of non-oriented electrical steel strip
WO2006068399A1 (en) * 2004-12-21 2006-06-29 Posco Co., Ltd. Non-oriented electrical steel sheets with excellent magnetic properties and method for manufacturing the same
CN1302131C (zh) * 2001-10-31 2007-02-28 蒂森克鲁伯钢铁股份公司 规定用于制造非晶粒取向的电工钢片的热轧钢带及其制造方法
US7501028B2 (en) * 2002-05-15 2009-03-10 Thyssenkrupp Stahl Ag Non-grain oriented magnetic steel strip or magnetic steel sheet and method for its production
KR101130725B1 (ko) * 2004-12-21 2012-03-28 주식회사 포스코 자기적 특성이 우수한 무방향성 전기강판 및 그 제조방법
DE102019216240A1 (de) * 2019-10-22 2021-04-22 Muhr Und Bender Kg Verfahren und Vorrichtung zur Herstellung eines nicht-kornorientierten Elektrobands

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1415008A1 (de) * 2001-08-11 2004-05-06 ThyssenKrupp Stahl AG Nichtkornorientiertes elektroblech oder -band und verfahren zu seiner herstellung
DE10253339B3 (de) * 2002-11-14 2004-07-01 Thyssenkrupp Stahl Ag Verfahren zum Herstellen eines für die Verarbeitung zu nicht kornorientiertem Elektroband bestimmten Warmbands, Warmband und daraus hergestelltes nicht kornorientiertes Elektroblech
KR101067478B1 (ko) * 2003-12-23 2011-09-27 주식회사 포스코 자기적 특성이 우수한 무방향성 전기강판 및 그 제조방법
KR100721864B1 (ko) * 2005-12-19 2007-05-28 주식회사 포스코 자기적 특성이 우수한 무방향성 전기강판의 제조방법
KR100721926B1 (ko) * 2005-12-19 2007-05-28 주식회사 포스코 자기적 특성이 우수한 무방향성 전기강판 및 그 제조방법
KR100721818B1 (ko) * 2005-12-19 2007-05-28 주식회사 포스코 자기적 특성이 우수한 무방향성 전기강판 및 그 제조방법
KR100721865B1 (ko) * 2005-12-19 2007-05-28 주식회사 포스코 자기적 특성이 우수한 무방향성 전기강판 및 그 제조방법
US8333923B2 (en) * 2007-02-28 2012-12-18 Caterpillar Inc. High strength gray cast iron
JP5317552B2 (ja) * 2008-06-26 2013-10-16 オーエスジー株式会社 転造ダイス
JP5423629B2 (ja) * 2010-09-21 2014-02-19 新日鐵住金株式会社 磁束密度の高い無方向性電磁熱延鋼帯の製造方法
KR101917468B1 (ko) 2016-12-23 2018-11-09 주식회사 포스코 박물 열연 전기강판 및 그 제조방법
DE102017208146B4 (de) * 2017-05-15 2019-06-19 Thyssenkrupp Ag NO-Elektroband für E-Motoren
WO2020094230A1 (de) 2018-11-08 2020-05-14 Thyssenkrupp Steel Europe Ag Elektroband oder -blech für höherfrequente elektromotoranwendungen mit verbesserter polarisation und geringen ummagnetisierungsverlusten
DE102021115174A1 (de) 2021-06-11 2021-11-11 Technische Universität Bergakademie Freiberg, Körperschaft des öffentlichen Rechts Verfahren zur Herstellung eines höherpermeablen, nichtkornorientierten Elektrobleches und dessen Verwendung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE659612A (de) * 1964-02-24 1965-05-28
EP0263413A2 (de) * 1986-09-29 1988-04-13 Nippon Kokan Kabushiki Kaisha Nicht-orientierte Elektrobleche und Herstellung nicht-orientierter Elektrobleche
JPH06220537A (ja) * 1993-01-26 1994-08-09 Kawasaki Steel Corp 無方向性電磁鋼板の製造方法
EP0779369A1 (de) * 1994-06-24 1997-06-18 Nippon Steel Corporation Verfahren zur herstellung von elektromagnetisch nicht orientierten stahlplatten mit hoher magnetischer flussdichte und geringem eisenverlust
DE19807122A1 (de) * 1998-02-20 1999-09-09 Thyssenkrupp Stahl Ag Verfahren zur Herstellung von nichtkornorientiertem Elektroblech

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4177091A (en) * 1978-08-16 1979-12-04 General Electric Company Method of producing silicon-iron sheet material, and product
JPS5638422A (en) * 1979-09-05 1981-04-13 Kawasaki Steel Corp Manufacture of cold-rolled lower electromagnetic steel plate
JPH07116514B2 (ja) * 1990-11-15 1995-12-13 新日本製鐵株式会社 無方向性電磁鋼板の熱間圧延方法
JP3348802B2 (ja) * 1993-06-30 2002-11-20 新日本製鐵株式会社 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法
JP3379622B2 (ja) * 1996-12-04 2003-02-24 新日本製鐵株式会社 磁束密度が高いホットファイナル無方向性電磁鋼板の製造方法
JP3388119B2 (ja) * 1996-12-04 2003-03-17 新日本製鐵株式会社 磁束密度の高い低級無方向性電磁鋼板の製造方法
JPH10251752A (ja) * 1997-03-13 1998-09-22 Kawasaki Steel Corp 磁気特性に優れる熱延電磁鋼板の製造方法
JP2001123225A (ja) * 1999-10-27 2001-05-08 Nippon Steel Corp 磁束密度が高く、鉄損の低い熱延珪素鋼板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE659612A (de) * 1964-02-24 1965-05-28
EP0263413A2 (de) * 1986-09-29 1988-04-13 Nippon Kokan Kabushiki Kaisha Nicht-orientierte Elektrobleche und Herstellung nicht-orientierter Elektrobleche
JPH06220537A (ja) * 1993-01-26 1994-08-09 Kawasaki Steel Corp 無方向性電磁鋼板の製造方法
EP0779369A1 (de) * 1994-06-24 1997-06-18 Nippon Steel Corporation Verfahren zur herstellung von elektromagnetisch nicht orientierten stahlplatten mit hoher magnetischer flussdichte und geringem eisenverlust
DE19807122A1 (de) * 1998-02-20 1999-09-09 Thyssenkrupp Stahl Ag Verfahren zur Herstellung von nichtkornorientiertem Elektroblech

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 018, no. 591 (C - 1272) 11 November 1994 (1994-11-11) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302131C (zh) * 2001-10-31 2007-02-28 蒂森克鲁伯钢铁股份公司 规定用于制造非晶粒取向的电工钢片的热轧钢带及其制造方法
US7658807B2 (en) * 2001-10-31 2010-02-09 Thyssenkrupp Steel Ag Hot-rolled strip intended for the production of non-grain oriented electrical sheet and a method for the production thereof
US7501028B2 (en) * 2002-05-15 2009-03-10 Thyssenkrupp Stahl Ag Non-grain oriented magnetic steel strip or magnetic steel sheet and method for its production
CN1813074B (zh) * 2003-05-08 2012-07-11 Ak资产公司 制备非取向电工钢带的改进方法
WO2004101831A1 (en) * 2003-05-14 2004-11-25 Ak Properties, Inc. Improved method for production of non-oriented electrical steel strip
US7377986B2 (en) 2003-05-14 2008-05-27 Ak Steel Properties, Inc. Method for production of non-oriented electrical steel strip
WO2006068399A1 (en) * 2004-12-21 2006-06-29 Posco Co., Ltd. Non-oriented electrical steel sheets with excellent magnetic properties and method for manufacturing the same
US7846271B2 (en) 2004-12-21 2010-12-07 Posco Co., Ltd. Non-oriented electrical steel sheets with excellent magnetic properties and method for manufacturing the same
KR101130725B1 (ko) * 2004-12-21 2012-03-28 주식회사 포스코 자기적 특성이 우수한 무방향성 전기강판 및 그 제조방법
DE102019216240A1 (de) * 2019-10-22 2021-04-22 Muhr Und Bender Kg Verfahren und Vorrichtung zur Herstellung eines nicht-kornorientierten Elektrobands

Also Published As

Publication number Publication date
JP5265835B2 (ja) 2013-08-14
US6767412B2 (en) 2004-07-27
KR20030011794A (ko) 2003-02-11
DE10015691C1 (de) 2001-07-26
BR0109285A (pt) 2002-12-17
EP1263993B1 (de) 2005-08-31
US20030188805A1 (en) 2003-10-09
PL197691B1 (pl) 2008-04-30
AU2001260127A1 (en) 2001-09-24
EP1263993A1 (de) 2002-12-11
JP2003527483A (ja) 2003-09-16
MXPA02008528A (es) 2004-05-17
ES2248329T3 (es) 2006-03-16
ATE303454T1 (de) 2005-09-15
DE50107281D1 (de) 2005-10-06
PL357413A1 (en) 2004-07-26
KR100771253B1 (ko) 2007-10-30

Similar Documents

Publication Publication Date Title
DE10015691C1 (de) Verfahren zum Herstellen von nichtkornorientiertem Elektroblech
EP1194600B1 (de) Verfahren zum herstellen von nichtkornorientiertem elektroblech
EP2690183B1 (de) Warmgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
EP1056890B1 (de) Verfahren zur herstellung von nichtkornorientiertem elektroblech
EP1192287B1 (de) Verfahren zum herstellen von nicht kornorientiertem elektroblech
DE10221793C1 (de) Nichtkornorientiertes Elektroband oder -blech und Verfahren zu seiner Herstellung
DE3220307C2 (de) Verfahren zum Herstellen von kornorientiertem Siciliumstahlblech oder -band
EP1440173B1 (de) Für die herstellung von nichtkornorientiertem elektroblech bestimmtes, warmgewalztes stahlband und verfahren zu seiner herstellung
EP1453984B1 (de) Verfahren zum herstellen von warmband oder -blech aus einem mikrolegierten stahl
EP1444372B1 (de) Verfahren zur herstellung von nichtkornorientiertem elektroblech
DE60015434T2 (de) Verfahren zur Herstellung von Tiefziehblechen durch Direktgiessen von dünnen Stahlbändern
EP1194599B1 (de) Verfahren zum herstellen von nicht kornorientiertem elektroblech
DE10220282C1 (de) Verfahren zum Herstellen von kaltgewalztem Stahlband mit Si-Gehalten von mindestens 3,2 Gew.-% für elektromagnetische Anwendungen
DE69023291T2 (de) Verfahren zum Herstellen kornorientierter Elektrobleche aus Stangguss durch Warmwalzen.
DE10253339B3 (de) Verfahren zum Herstellen eines für die Verarbeitung zu nicht kornorientiertem Elektroband bestimmten Warmbands, Warmband und daraus hergestelltes nicht kornorientiertes Elektroblech
DE10139699C2 (de) Nichtkornorientiertes Elektroblech oder -band und Verfahren zu seiner Herstellung
EP1415008A1 (de) Nichtkornorientiertes elektroblech oder -band und verfahren zu seiner herstellung
DE10159501A1 (de) Nichtkornorientiertes Elektroblech oder -band und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001933708

Country of ref document: EP

Ref document number: IN/PCT/2002/923/KOL

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/008528

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2001 567404

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020027012196

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001933708

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10221685

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020027012196

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2001933708

Country of ref document: EP