WO2001066289A1 - Tour a commande numerique et procede d'usinage de pieces a l'aide de ce tour a commande numerique - Google Patents

Tour a commande numerique et procede d'usinage de pieces a l'aide de ce tour a commande numerique Download PDF

Info

Publication number
WO2001066289A1
WO2001066289A1 PCT/JP2000/001466 JP0001466W WO0166289A1 WO 2001066289 A1 WO2001066289 A1 WO 2001066289A1 JP 0001466 W JP0001466 W JP 0001466W WO 0166289 A1 WO0166289 A1 WO 0166289A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
axis direction
axis
spindle
headstock
Prior art date
Application number
PCT/JP2000/001466
Other languages
English (en)
French (fr)
Inventor
Hiroshi Shinohara
Yuji Miyazaki
Original Assignee
Citizen Watch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co., Ltd. filed Critical Citizen Watch Co., Ltd.
Priority to PCT/JP2000/001466 priority Critical patent/WO2001066289A1/ja
Priority to JP2001564930A priority patent/JP4677062B2/ja
Priority to TW089104316A priority patent/TW457151B/zh
Priority to US10/220,802 priority patent/US6971294B1/en
Priority to EP00907997A priority patent/EP1275454B1/en
Priority to CN008192928A priority patent/CN1216708C/zh
Publication of WO2001066289A1 publication Critical patent/WO2001066289A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B3/00General-purpose turning-machines or devices, e.g. centre lathes with feed rod and lead screw; Sets of turning-machines
    • B23B3/30Turning-machines with two or more working-spindles, e.g. in fixed arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q39/00Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation
    • B23Q39/04Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being arranged to operate simultaneously at different stations, e.g. with an annular work-table moved in steps
    • B23Q39/048Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being arranged to operate simultaneously at different stations, e.g. with an annular work-table moved in steps the work holder of a work station transfers directly its workpiece to the work holder of a following work station
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T82/00Turning
    • Y10T82/10Process of turning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T82/00Turning
    • Y10T82/16Severing or cut-off
    • Y10T82/16016Processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T82/00Turning
    • Y10T82/25Lathe
    • Y10T82/2502Lathe with program control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T82/00Turning
    • Y10T82/25Lathe
    • Y10T82/2524Multiple

Definitions

  • the present invention provides a numerically controlled lathe having two opposed headstocks, a spindle supported by each of the two headstocks, and a tool rest equipped with a tool for processing a workpiece held by each of the spindles. And a method of machining a workpiece by the numerically controlled lathe.
  • NC numerical control lathe
  • FIG. 12 is a plan view for explaining a schematic configuration of an NC lathe disclosed in Japanese Patent Application Publication No. 10-5017758.
  • a first headstock 220 and a second headstock 230 are arranged to face the bed 210 of the lathe 200.
  • the first headstock 220 and the second headstock 230 rotatably support the spindles 221, 231, respectively, which are parallel to the Z-axis of the lathe 200.
  • These spindles 2 2 1 and 2 3 1 are arranged so as to be shifted in the X-axis direction.
  • a chuck (not shown) is provided at the tip of each of the spindles 221, 231, and the workpieces Wl, W2 are gripped by the chuck.
  • the first headstock 220 is fixed to the bed 210.
  • the bed 210 is provided with a guide rail 240 extending in a direction parallel to the Z axis of the NC lathe 200.
  • a saddle 250 is placed on the guide rail 240, and the saddle 250 is parallel to the Z-axis while being guided by the guide rail 240 by a driving unit such as a servo motor (not shown). Move in the Z1 axis direction.
  • a guide rail 270 is provided on the saddle 250 in a direction parallel to the X axis of the NC lathe 200.
  • a carriage 255 that reciprocates along the guide rail 270 is placed on the guide rail 270.
  • the tool rest 260 is mounted on the carriage 255.
  • the second headstock 230 and the first tool rest 260 are integrated and parallel to the X axis while being guided by guide rails 270 by the driving of a driving body such as a servo motor (not shown). Move in the X1 axis direction.
  • the first tool rest 260 has a rotatable evening reticle face plate 261, which is indexed and rotatable on one side.
  • a plurality of tools T1 for processing the work W1 gripped by the spindle 2221 of the first headstock 220 are mounted on the evening let plate 261.
  • the tool T1 is positioned and moved with respect to the workpiece W1 by a combination of the movement of the saddle 250 in the Z1 direction and the movement of the first tool post 260 in the X1 direction. Meanwhile, the work W1 is processed.
  • a second tool rest 280 is provided so as to face the spindle 2 31 of the second spindle head 230.
  • an indexable and rotatable evening let face plate 281 is provided on one side of the second tool rest 280.
  • a plurality of tools T2 for processing the work W2 gripped by the main spindle 231 of the second headstock 230 are mounted on the evening let face plate 281.
  • the second turret 280 is parallel to the X-axis on the bed 210 along a guide rail 282 provided in the X-axis direction parallel to the X-axis of the NC lathe 200. It is moving in the X-axis direction.
  • the NC lathe 200 as described above can perform the same or different machining on a plurality of workpieces Wl and W2 at the same time, but has the following disadvantages.
  • the feed speed of the tool T1 in the Z-axis direction is determined by the moving speed of the saddle 250 in the Z1-axis direction, which limits the machining forms of the workpieces W1 and W2 that can be processed simultaneously. Is done.
  • two turrets 260 and 280 are required to process the two workpieces W l and W 2, and the NC lathe 200 becomes complicated, large, and costly.
  • An object of the present invention is to provide an NC lathe capable of simultaneously performing a wide variety of machining on a first spindle-side work and a second spindle-side work, and a control method therefor.
  • An object of the present invention is to provide an NC lathe whose configuration is simplified by enabling at least one turret to perform the above-mentioned machining, and a control method thereof. Disclosure of the invention
  • a numerically controlled lathe comprises: a first headstock and a second headstock arranged opposite to each other; and a first headstock and a second headstock supported by the first headstock.
  • a tool rest provided with a tool for processing a workpiece gripped by the first spindle and the second spindle, a rotation of the first spindle, a rotation of the second spindle,
  • a numerical control device for controlling a relative movement of the tool rest relative to the first head stock or the second head stock, wherein the tool rest is gripped by the first spindle.
  • the second headstock is movable in the Z1 axis direction and the X1 axis direction orthogonal thereto, and the second headstock is
  • the numerical controller is capable of moving in the X2 axis direction and the Z2 axis direction parallel to the X1 axis and the Z1 axis of the workpiece, and the numerical control device uses the second tool to hold the workpiece held by the second spindle.
  • the movement in the X2 axis direction necessary for processing can be superimposed on the movement in the X1 axis direction, and the work held by the second main spindle is processed by the second tool.
  • the movement in the Z2 axis direction necessary for the movement can be superimposed on the movement in the Z1 axis direction.
  • the numerical control device includes: a first control system that controls the movement of the tool rest in the X1 axis direction and the movement of the tool post in the Z1 axis direction; and the movement of the second headstock in the X2 axis direction. And a second control system for controlling the movement in the Z2 axis direction.
  • the work of the first headstock is processed by the first tool while the tool rest moves in the X1-axis direction and the Z1-axis direction.
  • the second headstock is in the same direction as the tool post W
  • the final movement of the second headstock can be determined by superimposing the movement of the second headstock in the Z2 axis direction necessary for machining the workpiece with the second tool on the movement of the second headstock. it can.
  • machining of the first spindle work by the first tool and machining of the second spindle work by the second tool can be performed simultaneously.
  • the machining of the workpiece may be different between the workpiece on the first spindle side and the workpiece on the second spindle side.
  • the distance between the cutting edge of the first tool and the cutting edge of the second tool in the X-axis direction is larger than the maximum value of the moving distance in the X-axis direction when the first tool processes the workpiece.
  • the edge position of the second tool is more distant from the tool post than the edge position of the first tool, and the edge of the first tool and the edge of the second tool.
  • the distance in the Z-axis direction is the maximum value of the movement distance in the Z-axis direction when processing the workpiece with the first tool and the movement in the Z-axis direction when processing the workpiece with the second tool.
  • the distance between the machining origin of the first spindle-side work and the machining origin of the second spindle-side work in the X-axis direction and the Z-axis direction is set to be larger than the sum of the maximum values of the distances. Corresponding to the distance between the first tool and the edge of the second tool. Then good.
  • the second method it is possible to minimize the size of the headstock to prevent interference, prevent the output of the spindle from becoming insufficient, uneven rotation and pulsation, and maximize the work that can be processed. We don't make monsters smaller.
  • the mechanical rigidity of the turret 160 can be maintained high, causing vibrations of the tool and fluctuations in the position of the cutting edge during machining. It is possible to prevent the accuracy from being lowered.
  • the second headstock is moved following the turret, and the movement of the second headstock is superimposed on the movement of the turret in order to process the work held by the second spindle.
  • the method of processing a workpiece by the numerically controlled lathe of the present invention includes: a first headstock and a second headstock that are arranged to face each other; a first spindle supported by the first headstock; A numerically controlled lathe comprising: a second spindle supported by the second spindle head; and a tool rest having a tool for processing a workpiece gripped by the first spindle and the second spindle.
  • the tool rest is moved in the Z 1 axis direction parallel to the spindle axis of the first spindle and the X 1 axis direction orthogonal thereto, and the second spindle head is moved in the X 1 axis of the tool rest.
  • the movement of the second headstock in the X2 axis direction required for machining the work by the tool is superimposed on the movement in the X1 axis direction, and the movement of the second headstock required for machining the work by the second tool is performed.
  • the movement of the second headstock in the Z2 axis direction is superimposed on the movement of the second headstock in the Z1 axis direction, and the second headstock is moved in the X2 axis direction and the Z2 axis direction.
  • the method is a method for simultaneously processing the work of the first spindle with the first tool and processing the work of the second spindle with the second tool.
  • the movement in the X2 axis direction of the tool rest is superimposed on the movement in the X2 axis direction of the second headstock required for machining of the workpiece by the second tool, and It is possible to superimpose the Z2 axis movement of the second headstock necessary for machining the workpiece with the second tool on the Z1 axis movement of the table, and the first spindle with the first tool.
  • the machining of the workpiece and the machining of the workpiece of the second spindle by the second tool can be performed at the same time.
  • the position of any one of the set of the X1 axis and the X2 axis and the set of the Z1 axis and the Z2 axis to be superimposed is set to a first position.
  • the superposition of the one set is performed, and the position of the axis of the other set is set in advance in a state where the axis of the one set that has completed the superposition is positioned at the first position.
  • the second set is preferably positioned at the second position so that the other set is overlapped.
  • the second method has an advantage that the programmer who creates the machining program can easily grasp the positional relationship between the tool and the workpiece.
  • the stroke can be shorter than the X1 axis, which has a long stroke including the retraction stroke when changing the tool on the turret.
  • the size of the NC lathe can be reduced. More preferably, a procedure for superimposing the set of the X1 axis and the X2 axis or the procedure of superimposing the set of the Z1 axis and the Z2 axis is defined in advance, and the set of the X1 axis and the X2 axis is defined in advance.
  • FIG. 1 is a plan view illustrating a schematic configuration of an NC lathe according to the present invention.
  • FIG. 2 is a view for explaining a positional relationship between a tool of a tool rest and a work mounted on two main spindles facing each other in the NC lathe of FIG.
  • FIG. 3 is a control block diagram of the control device for a numerically controlled lathe according to the present invention.
  • FIG. 4 is a control block diagram of another control device of the numerical control lathe of the present invention.
  • FIG. 5 is an explanatory view of the operation of the NC lathe according to the present invention, wherein (a) is an initial state before the start of machining, and (b) is a schematic view showing a simultaneous machining state of a work mounted on two spindles. .
  • FIG. 6 is a view showing still another example of the form of machining a workpiece by the numerically controlled lathe of the present invention.
  • FIG. 7 is a plan view illustrating a schematic configuration of an NC lathe according to a second embodiment of the present invention.
  • FIG. 8 is a control block diagram of a control device in the NC lathe in FIG.
  • FIG. 9 is a flowchart for explaining the processing method of the present invention.
  • FIG. 10 is a flowchart illustrating a procedure of superimposing the Z1 axis and the Z2 axis.
  • FIG. 11 is a flowchart illustrating a procedure of superimposing the X1 axis and the X2 axis.
  • FIG. 12 is a plan view illustrating a schematic configuration of an NC lathe according to a conventional example of the present invention. You. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a plan view illustrating a schematic configuration of an NC lathe according to a first embodiment of the present invention
  • FIG. 2 is a plan view illustrating a positional relationship between a tool post and two opposed headstocks. It is the elements on larger scale of FIG.
  • a first headstock 120 and a second headstock 130 are arranged to face each other.
  • the first headstock 120 rotatably supports the first spindle 122
  • the second headstock 130 rotatably supports the second spindle 131.
  • Chucks (not shown) are provided at the tips of the first spindle 12 1 and the second spindle 13 1, respectively, so that the workpieces W 1 and W 2 can be gripped by the chucks.
  • the first headstock 120 is fixed to the bed 110.
  • the bed 110 is provided with a guide rail 140 in a direction parallel to the Z axis.
  • a saddle 150 is mounted on the guide rail 140.
  • the saddle 50 moves in the Z2 axis direction parallel to the Z axis while being guided by the guide rail 140 by the driving of a motor (not shown) as a driving body.
  • a guide rail 170 is provided on the saddle 150 in a direction parallel to the X axis orthogonal to the Z axis.
  • the second headstock 130 is mounted on this guide rail 170, and is moved in the X-axis direction parallel to the X-axis while being guided by the guide rail 1 ⁇ 0 by driving of a driving body (not shown). I do.
  • the bed 110 is provided with a guide rail 144 parallel to the guide rail 140.
  • a saddle 155 is placed on the guide rail 145.
  • the saddle 155 moves in a Z1 axis direction parallel to the Z axis while being guided by a guide rail L45 by a servomotor (not shown) as a driving body.
  • a guide rail 175 is provided on the upper surface of the saddle 155 in a direction parallel to the X axis.
  • the tool post 160 is mounted on this guide rail 175, When the servo motor is not driven, it moves in the XI axis direction while being guided by the guide rail 175.
  • the tool rest 160 includes a rotatable evening let face plate 161 indexed to one side.
  • a plurality of tools T1 for processing the work W1 gripped by the first spindle 122 are mounted on the evening face plate 161.
  • the tool T1 is positioned at a predetermined position with respect to the workpiece W1 while moving with respect to the workpiece W1. Add work W1.
  • the evening plate face plate 16 1 is used to machine the workpiece W 2 gripped by the second spindle 13 1 at the same position (same station) as the mounting position of the tool T 1 as the first tool.
  • a second tool, tool T2 is mounted.
  • the tool T2 is a feed in the X2-axis direction of the second headstock 130, in which the feed speed in the X-axis direction for processing the workpiece W2 is superimposed on the feed speed in the X1-axis direction of the tool post 160, and The feed rate in the Z-axis direction for machining the workpiece W2 is superimposed on the feed rate in the Z-axis direction for the tool post 160 in the Z-axis direction.
  • the workpiece W2 is processed while being positioned with respect to the workpiece.
  • Fig. 2 shows an enlarged view of the main part of the tool rest 160.
  • the tool T1 and the tool T2 are mounted on the faceplate 161 via the tool holder 165.
  • the tool holder 165 is composed of a holder body 165a fixed to the evening plate face plate 161 with bolts and the like, and a holder 165 mounted on a surface of the holder body 165a on the first headstock 120 side. b, and a holder 165 c attached to a surface of the holder main body 165 a on the second headstock 130 side. Then, the tool T1 is mounted on the holder 165b, and the tool T2 is mounted on the holder 165c.
  • the holder 165b and the holder 165c are used when the work W1 is machined by the tool T1 and the work W2 is machined by the tool T2 at the same time.
  • the dimensions of the part are determined so as not to interfere with the work (eg, the work W2), the other tool (eg, the tool T2), the holder (eg, the holder 165c), or the holder body 165a.
  • the distance in the Z-axis direction between the cutting edge of the tool T1 and the surface of the holder body 165a is longer than the processing length 11 of the workpiece W1. Is determined.
  • the tool rest 160 has a stroke in the X1 axis direction of the tool rest 160 and the second spindle, without interference between the second spindle rest 130 and the tool rest 160.
  • the escape portion 167 is formed so that the stroke of the platform 130 in the X2 axis direction can be made as large as possible.
  • the positional relationship between the tool T1 and the tool T2 is preferably located at a position farther from the tool rest 160 than the tip of the tip tool T1 of the tool T2.
  • the distance HI in the X-axis direction between the cutting edges of the tool T1 and the tool T2 is larger than the maximum amount of addition h1 in the X1-axis direction when machining the tool T1 force workpiece W1. It is good to do so.
  • the rigidity of the second headstock 130 can be kept high.
  • the rigidity of the turret 160 is also affected by the clearance of the escape portion 167. Therefore, the turret 160 is determined by the distance between the cutting edges of the tool 1 and the tool 2 in the X-axis direction. Can be maintained high.
  • the distance L1 + L2 in the Z-axis direction between the cutting edges of tool 1 and tool 2 is the maximum travel in the Z1 direction when tool T1 processes workpiece W1 1 1 + s1 and tool T2 Should be larger than the sum of the maximum movement amount 1 2 + s 2 in the Z2 axis direction when machining the workpiece W 2.
  • FIG. 3 is a control block diagram of a control device in the NC lathe 100.
  • the control device 190 includes a central processing unit (CPU) 191, a first arithmetic processing circuit 192 a that controls movement of the tool rest 160 in the Z1-axis direction and the X1-axis direction according to a command from the CPU 191, Speed processing circuits 192b and 192c for outputting speed signals in the XI axis direction and Z1 axis direction based on the output signal from the first arithmetic processing circuit 192a; and the speed processing circuits 192b and 192c And servo processing circuits 192 d and 192 e for driving the servomotors 163 and 162 to move the tool post 160 at predetermined speeds in the XI axis direction and the Z1 axis direction based on the output signals from have.
  • CPU central processing unit
  • Speed processing circuits 192b and 192c for outputting speed signals in the XI axis direction and Z
  • a second arithmetic processing circuit 193a that controls the movement of the second headstock 130 in the Z2-axis direction and the X2-axis direction by a command from the CPU 191 and a second arithmetic processing circuit 193a
  • Speed processing circuits 193 b and 193 c that output speed signals in the X-axis direction and Z-axis direction based on output signals from the speed control circuits 193 b and 193 c.
  • servo processing circuits 193 d and 193 e for driving the servomotors 133 and 134 to move the second headstock 130 at a predetermined speed in the X2 axis direction and the Z2 axis direction.
  • the CPU 191 adds the Z-axis direction and X-axis direction movement commands necessary for machining the workpiece W2 to the Z-axis direction and X-axis direction movement commands, and Direction, and the moving speed of the second headstock 130 is superimposed on the movement of the tool rest 160.
  • the above-described superposition can be performed by a control device having another configuration.
  • FIG. 4 is a control block diagram according to another embodiment of the control device in the NC lathe 100.
  • the control device 190 ′ includes a central processing unit (CPU) 191 ′, a first control system 192 that controls the movement of the tool rest 160 in the Z1 axis direction and the X1 axis direction according to a command from the CPU 191 ′, The second headstock 130 And a second control system 193 for controlling movement in the Z2-axis direction and the X2-axis direction.
  • the first control system 192 has a first arithmetic processing circuit 192a, a speed processing circuit 192b. 192c, and servo processing circuits 192d and 192e.
  • the second control system 193 has a first arithmetic processing circuit 193a, speed processing circuits 193, 193c, and servo processing circuits 193d, 193e.
  • the second control system 193 further includes superimposing circuits 195 and 196 between the speed processing circuits 193b and 193c and the servo processing circuits 193d and 193e.
  • the superimposing circuit 195 transmits a feed command in the X2 axis direction (a relative feed command between the workpiece W2 and the tool T2) of the second headstock 130 for processing the workpiece W2 with the tool T2. It is added to the X1-axis direction feed command of the headstock 160, and the result is output to the servo processing circuit 193d as the X2-axis direction feed command of the second headstock 130.
  • the superimposing circuit 196 transmits a feed command in the Z1 axis direction (a relative movement command between the workpiece W2 and the tool T2) of the second headstock 130 for processing the workpiece W2 with the tool T2. It is added to the Z1-axis direction feed command of the gantry 160, and the result is output to the servo processing circuit 193e as the Z2-axis direction feed command of the second headstock 130.
  • feed commands in the X 1 axis direction and the Z 1 axis direction of the tool T 1 for processing the workpiece W 1 are sent from the CPU 19 1 ′ to the first control system 192. It is output, and the feed command in the X1 axis direction and the Z1 axis direction of the tool T2 for processing the workpiece W2 (the relative movement command of the workpiece W2 and the tool T2) is sent from the CPU191 to the second control system. Output to 1 93.
  • the first control system 192 moves the tool T1 together with the tool rest 160 based on the output from the CPU 191 '.
  • the second control system 1993 adds the feed command of the tool post 160 to the feed command from the CPU 1991 ', superimposes the moving speed, and moves the second headstock 130. .
  • Fig. 5 (a) shows the positional relationship between each tool and each workpiece in the initial state before the start of machining
  • Fig. 5 (b) shows the positional relationship between each tool and each workpiece during machining.
  • the index plate 16 As shown in Fig. 2, in the standby state, the index plate 16 The tool rest 160 is located away from the first headstock 120 and the second headstock 130 so that the tools Tl and T2 do not interfere with the workpieces Wl and W2.
  • first headstock 120 and the second headstock 130 are positioned so that the processing origin ⁇ 1 of the work W1 and the processing origin O2 of the work W2 are located at predetermined positions.
  • the machining origin ⁇ 2 force of the workpiece W2 and the machining origin O 1 of the workpiece W1 are positioned farther from the tool rest 160.
  • the position of the second headstock 130 is determined.
  • the tool rest 160 moves in the X1 axis direction and the Z1 axis direction from the standby position in FIG. 2 to reach the initial position shown in FIG. 5 (a). Then, a movement command equal to the feed speed in the X1-axis direction and the feed speed in the Z1-axis direction of the tool post 160 is output from the first control system 192 to the second control system 193. This movement command enables the second headstock 130 to move at the same speed as the feed speed of the tool rest 160 and in the same direction as the moving direction of the tool rest 160.
  • the positional relationship between the tool T2 and the workpiece W2 can be kept constant.
  • the feed command of the tool post 160 in the X1-axis direction includes a command of moving the workpiece W2 in the X1-axis direction with respect to the tool T2 when machining the workpiece W2 with the tool T2.
  • the relative movement command of T2 and work W2) is added.
  • the movement command of the tool post 160 in the Z1 axis direction includes the movement command of the workpiece W2 in the Z1 axis direction for the tool T2 (the relative movement of the tool T2 and the workpiece W2). Movement command) is added.
  • the result is output to the motor 133 and the motor 134.
  • both the tool T1 as the first tool and the tool T2 as the second tool are cutting tools.
  • the outer peripheral surface of the work W1 is cut with the cutting tool T13, and the end face of the work W2 is drilled with the drill T23.
  • the cutting tool T13 is moved to the outer peripheral surface of the work W1, and the tool rest 160 is sent in the Z1 axis direction and the X1 axis direction to cut the outer peripheral surface of the work W1.
  • the feed rate in which the Z 1 axis feed rate for machining the workpiece W2 by the drill T23 is superimposed on the Z 1 axis feed rate of the tool post 1 60 and the X 1 axis feed rate X 2 The second headstock 130 is fed in the Z2-axis direction and the X2-axis direction at a feed speed in which the axial feed speed is superimposed, and a hole is formed in the end face of the workpiece W2.
  • the superposition of the Z1 axis and the Z2 axis in addition to the superposition of the XI axis and the X2 axis, the superposition of the Z1 axis and the Z2 axis, the superposition of the Z0 axis and the Z1 axis is added.
  • FIG. 7 is a plan view illustrating a schematic configuration of an NC lathe according to a second embodiment of the present invention
  • FIG. 8 is a control block diagram of a control device in the NC lathe.
  • the same parts and members as in the first embodiment are denoted by the same reference numerals as in FIGS. 1 and 3, and detailed descriptions of the parts and members are omitted. You.
  • the first headstock 120 'of the NC lathe 100' of the second embodiment is movable in the Z0-axis direction parallel to the Z-axis.
  • the movement of the first headstock 120 ′ in the Z0-axis direction is performed by driving a motor (not shown) that is a driving body.
  • a second tool post 180 is provided to face the tool post 160.
  • the second tool rest 18 [] is movable in the X3 axis direction parallel to the X axis along a guide rail 182 provided on the bed 110.
  • the second turret 180 moves in the X3 axis direction by driving a motor (not shown) which is a driving body.
  • the third tool T3 for processing the work W1 is mounted on the evening face plate 181 of the second turret 180.
  • Tool T3 is the second turret 1 80 X3 axis In the Z0-axis direction of the first headstock 120 ′ in the Z-axis direction, the workpiece W1 is positioned and moved with respect to the workpiece W1 to process the workpiece W1.
  • the control device 1 90 ⁇ of the NC lathe 100 ′ includes a third control system 1 97 for moving the first headstock 1 20 ′ in the Z0 axis direction and a second turret 1 80 for X3.
  • a fourth control system 198 for moving in the direction is further provided.
  • the third control system 197 and the fourth control system 198 include a first arithmetic processing circuit 197a, 198a, a speed processing circuit 197b, 198b, and a servo processing circuit, respectively. It has 1 98 cl. 1 98 cl.
  • a superimposing circuit 199 is provided between a speed processing circuit 192c in the Z1-axis direction and a servo processing circuit 192e in the Z1-axis direction. Then, the feed speed in the Z0-axis direction output from the speed processing circuit 197 b of the third control system 197 is input to the superposition circuit 199, and further, the output is output from the superposition circuit 199. The feed speed in the Z-axis direction is input to the superimposing circuit 196.
  • the feed speed in the Z0-axis direction of the tool rest 160 is superimposed on the feed speed in the Z0-axis direction of the first headstock 120 ', and the feed speed in the Z0-axis direction of the headstock 120' is superimposed.
  • the feed speed of the tool rest 160 in the Z1 axis direction and the feed speed of the second headstock 130 in the Z2 axis direction are superimposed.
  • the three sets of 210 and 21 axes, Z1 and Z2 axes, and X1 and X2 axes are stacked, and the three tools T l. T2 and T3 are used for work W1 and work W. 2 can be processed differently.
  • the movement of the second tool rest 180 and the like is controlled by the position, the speed, and the acceleration. Therefore, in order to superimpose these movements, the position and acceleration are also superimposed.
  • FIG. 9 is a front view illustrating a control procedure in the NC lathe and the machining method of the present invention. It's a chat.
  • the CPU 191 determines whether or not superposition is necessary from among the NC processing programs for processing the work W1 and the work W2 (step S1). If it is not necessary to superimpose, machining of the workpiece W1 by the tool T1 and machining of the workpiece W2 by the tool T2 are sequentially performed according to the NC machining program (step S8). If it is necessary to superimpose, it is determined whether the axis to be superimposed is the Z axis or the X axis (Step S2 and Step S5).
  • Step S4 If the axis to be superimposed is the Z axis ( ⁇ 1 axis and ⁇ 2 axis), perform positioning of axes 21 and 22 (Step S4), and then superimpose the Z1 axis and Z2 axis ( Step S5).
  • the axis to be superimposed is the X axis (axis 1 and 2), after positioning the axis 1 and 2 (step S6), the axis X and the axis X2 are superimposed (step S6). 7)
  • the purpose of positioning the superimposed axis when superimposing one axis is to make it difficult for the programmer who creates the machining program to understand the positional relationship between the tool and the workpiece.
  • step S8 the machining of the workpiece W1 by the tool T1 and the machining of the workpiece W2 by the tool T2 are simultaneously performed according to the NC machining program.
  • step S9 When the machining is completed (step S9), the superimposition is released (step S10), and the process waits until the next machining.
  • step S1 step S2
  • step S5 step S5
  • step S200 If there is a Z-axis superimposition command in the NC machining program (step S200), the program waits for the execution start timing of the Z1-axis and Z2-axis programs (step S20 1. S2 21).
  • the first control system (the system on the left side of the flowchart in FIG. 10), it is determined whether or not the XI axis, the Z1 axis and the C1 axis (the rotation axis around the Z1 axis) are used (step S). 2 0 2).
  • X 1 axis, Z 1 axis If any or all of C 1 axis is in use, the preparation work is interrupted for a predetermined time and waits (step S203), and the XI axis, Z 1 axis, Wait until C1 axis is no longer used.
  • Step S204 If none of the X1, Z1, and C1 axes are used, set new axes XI, Z1, and C1 for addition to the first control system (Step S204) .
  • step S205 the tool post 160 is moved backward as specified on the X1 axis. It is moved to the position (step S206) and waits for the second control system (step S207).
  • step S221 the system on the right side of the flowchart in Fig. 10
  • step S221 the system on the right side of the flowchart in Fig. 10
  • step S221 the system on the right side of the flowchart in Fig. 10
  • commands are issued to the X2 axis and Z2 axis.
  • the superimposed display is released (step S2222).
  • C2 axis (rotation axis around the Z2 axis) is used (step S223). If any or all of X2 axis, Z2 axis and C2 axis are in use, suspend for a predetermined time and wait (step S224), then use X2 axis, Z2 axis and C2 axis Wait until no more.
  • step S225 If none of the X2, Z2, and C2 axes are used, set new axes X2, Z2, and C2 in the second control system (step S225).
  • the process waits with the first control system (step S226).
  • the first control system controls the turret 1600 until the distance between the tool T1 and the workpiece W1 reaches a preset distance (positional relationship). Is moved in the X1 axis direction and the Z1 axis direction (step S208).
  • step S209 the prohibition of use in the other control systems of the XI axis and the Z1 axis and the C1 axis is released (step S209), and the system waits with the second control system (step S210).
  • step S228 In the second control system, after waiting (steps S207 and S226) is completed, use of the X'Z 2.C 2 axis in other control systems is prohibited (step S228). Soshi Then, the second headstock 130 is moved in the Z2 axis direction and the X2 axis direction so that the distance between the tool T2 and the work W2 becomes a predetermined distance (positional relationship) (step). S229). Then, the coordinate system of the workpiece W2 on the X2 axis at this position is set (step S230), and new axes Z2 and C2 are set in the second control system (step S231). As a result, the command for the X2 axis is invalidated, and the position of the peak W2 in the X2 axis direction is fixed.
  • step S233 After completion of the waiting (steps S210, 232), superimposition of the Z2 axis is started (step S233), and the coordinate system of the workpiece W2 on the Z2 axis is set (step S234).
  • step S235 The prohibition of use of the X2 axis, Z2 axis, and C2 axis in other control systems is released (step S235), and the system waits with the first control system (S236).
  • step S300 When an X-axis superimposition command is issued (step S300), the program execution timing is adjusted between the first control system and the second control system (steps S301 and S321).
  • the first control system determines whether the XI axis, Z1 axis, and C1 axis are being used (step S302), and if so, waits for a predetermined time (step S303). Wait until Z1, Axis1 and C1 axis are not used.
  • step S304 If not used, new axes X1, Z1, C1 are set in the first control system (step S304). Then, use in another control system is prohibited (step S305), and the system waits for the second control system (step S306).
  • step S321 After performing the program execution start timing adjustment (step S321), it is determined whether the X2 axis, the Z2 axis, and the C2 axis are used (step S322), and If it is in use, it waits for a predetermined time (step S323), and waits until the X2 axis, Z2 axis, and C2 axis are not used. .
  • step S324 If not, set new axes of X2, Z2 and C2 in the second control system (step S324), and prohibit use of these axes in other control systems (step S324). S 3 2 5). Thereafter, in the second control system, the coordinate positions of the cutting edge of the tool T1 and the cutting edge of the tool T2 are stored in the memory, and the distance H1 in the X2-axis direction of the coordinate position is stored in the memory ( Step S326). When these processes are completed, the process waits with the first control system (step S327).
  • step S330 the coordinates of the machining origin point ⁇ 1 of the work W1 are obtained (step S329), and the position of the second headstock 13 () is superimposed from this coordinate position. It is determined whether the position is appropriate (step S330). As a criterion for judging whether or not it is appropriate to superimpose, for example, whether or not the cutting edge of the tool T2 is further away from the tool post 160 in the X1 axis direction than the processing origin ⁇ 1 of the first workpiece W1 ( In the example shown in FIG. 2, it can be determined from whether or not it is below the axis of the first spindle 121, which passes through the machining origin Ol.
  • an alarm state is set (step S331). If the superposition is possible, the initial position of the second headstock 130 is determined.
  • the machining origin 02 of the workpiece W2 located on the spindle axis of the second spindle 1311) is used as the initial position of the workpiece W1 on the first headstock 120 side.
  • a first position located at a position away from the tool rest 160 by a distance H1 in the X2 axis direction from the load origin O1 and a second predetermined position irrespective of the workpiece Wl, W2 or the form of machining.
  • a third position which can be arbitrarily set by the operator, is prepared.
  • Which position to select from among the first position, the second position, and the third position can be determined, for example, by an argument attached to the NC program.
  • the existence of the X argument of the NC program is determined (step S332), the third position is selected, the existence of the D argument is determined (S333), and the first position (step S334).
  • one of the second positions (step S335) can be selected.
  • step S337 After selecting an appropriate position from among the first position, the second position and the third position, superimposition of the X2 axis is started (step S337), and the work axis of the X2 axis is set (step S337). S 338).
  • the above processing it waits for the first control system (step S307,
  • the above-described superimposition of the Z axis and the superimposition of the X axis may be set so that either one is performed first and then the other is performed, or the superimposition may be performed simultaneously.
  • the procedure for superimposing the Z-axis and the procedure for superimposing the X-axis may be macroprogrammed.
  • the machining program is simplified and the superimposition work can be easily performed.
  • the relative rotation of a workpiece with respect to a rotary tool such as a drill mounted on the tool rests 160 and 180 is performed by rotating the first spindle 121 or the second spindle 131.
  • the tool rests 160, 180 are equipped with a rotation drive mechanism to rotate the tools, and the tool rests 160, 180 are rotated by rotating tools such as drills and end mills. It is also possible to make it possible.
  • rotary tools such as drills and end mills are mounted on the tool rests 160 and 180, and drilling and keyway cutting are performed on the outer peripheral surfaces of the workpieces Wl and W2.
  • the versatility of machining by the NC lathe and the machining method of the present invention can be further improved.
  • the present invention it is possible to superimpose movement of at least two axes that are not in a parallel relationship, such as the X1 axis and the X2 axis and the Z1 axis and the Z2 axis.
  • a plurality of tools mounted on one turret it is possible to simultaneously perform a plurality of types of different machining on a plurality of workpieces gripped by a plurality of spindles. This not only shortens the machining time, but also makes the configuration of the numerically controlled lathe simple and compact, so that a small and inexpensive numerically controlled lathe can be obtained.
  • the present invention is not limited to a numerically controlled lathe having two headstocks and at least one turret, but is also applicable to a numerically controlled lathe having two or more turrets.
  • a rotary tool to the turret, it can be applied to groove cutting with an end mill and thread cutting with a tap.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turning (AREA)
  • Numerical Control (AREA)

Description

明 細 書 数値制御旋盤及びこの数値制御旋盤によるワークの加工方法 技術分野
本発明は、 対向する二つの主軸台と、 この二つの主軸台にそれぞれ支持された 主軸と、 前記各主軸に把持されたワークを加工するための工具を装着した刃物台 とを有する数値制御旋盤及びこの数値制御旋盤によるワークの加工方法に関する。 背景技術
対向する二つの主軸台と刃物台とを有し、 前記刃物台に装着した工具で、 前記 二つの主軸台の主軸に装着した二つのワークを同時に加工できるようにした数値 制御旋盤 (以下、 N C旋盤という) 力 例えば特表平 1 0— 5 0 1 7 5 8号公報 等で知られている。
第 1 2図は、 特表平 1 0— 5 0 1 7 5 8号公報で開示された N C旋盤の概略構 成を説明する平面図である。
旋盤 2 0 0のべッド 2 1 0には、 第 1の主軸台 2 2 0及び第 2の主軸台 2 3 0が対向して配置されている。第 1の主軸台 2 2 0及び第 2の主軸台 2 3 0は、 それぞれ、 旋盤 2 0 0の Z軸と平行な主軸 2 2 1 , 2 3 1を回転自在に支持 している。 これら主軸 2 2 1, 2 3 1は、 X軸方向に位置をずらして配置されて いる。 各主軸 2 2 1 , 2 3 1の先端には、 図示しないチャックが設けられていて、 このチャックによってワーク W l, W 2が把持される。
第 1の主軸台 2 2 0は、 べッド 2 1 0に固定されている。 べッド 2 1 0には、 N C旋盤 2 0 0の Z軸と平行な方向に延びるガイドレール 2 4 0が設けられる。 このガイドレール 2 4 0にはサドル 2 5 0が載置され、 このサドル 2 5 0は、 図 示しないサーボモー夕等の駆動体の駆動により、 ガイドレール 2 4 0に案内され ながら Z軸と平行な Z 1軸方向に移動する。
サドル 2 5 0の上には、 N C旋盤 2 0 0の X軸と平行な方向にガイドレール 2 7 0が設けられている。 このガイドレール 2 7 0には、 ガイドレール 2 7 0に沿 つて往復移動する往復台 2 5 5が載置されている。 第 2の主軸台 2 3 0及び第 1 の刃物台 2 6 0はこの往復台 2 5 5の上に載置される。 第 2の主軸台 2 3 0及び 第 1の刃物台 2 6 0は、 図示しないサーボモータ等の駆動体の駆動により、 ガイ ドレール 2 7 0に案内されながら、 一体になつて、 X軸と平行な X 1軸方向に移 動する。
第 1の刃物台 2 6 0は、 一側に割り出し回転自在な夕レツト面板 2 6 1を備え ている。 この夕レット面板 2 6 1には、 第 1の主軸台 2 2 0の主軸 2 2 1に把持 されたワーク W 1を加工するための工具 T 1が複数装着される。 そして、 サドル 2 5 0の Z 1軸方向の移動及び第 1の刃物台 2 6 0の X 1軸方向の移動の組み合 わせにより、 工具 T 1がワーク W 1に対して位置決めされるとともに移動しなが ら、 ワーク W 1を加工する。
第 2の主軸台 2 3 0の主軸 2 3 1に対向して、 第 2の刃物台 2 8 0が設けられ る。 この第 2の刃物台 2 8 0の一側には、 割り出し回転自在な夕レット面板 2 8 1が設けられている。 この夕レット面板 2 8 1には、 第 2の主軸台 2 3 0の主軸 2 3 1に把持されたワーク W 2を加工するための工具 T 2が複数装着される。 第 2の刃物台 2 8 0は、 N C旋盤 2 0 0の X軸と平行な X 2軸方向に設けられたガ ィドレール 2 8 2に沿って、 べッド 2 1 0上を X軸と平行な X 2軸方向に移動自 在である。
このような N C旋盤 2 0 0では、 第 1の刃物台 2 6 0と第 2の主軸台 2 3 0が 共通のサドル 2 5 0及び往復台 2 5 5の上に設けられているので、 ワーク W 1に 対する工具 T 1の Z 1軸方向の送りが、 ワーク W 2に対する工具 T 2の送りとな り、 同一の孔明け加工等を二つのワーク W l , W 2について同時に行うことが可 能である。
また、 工具 T 1の X 1軸方向の送りに同期させて工具 T 2を X 2軸方向に送り ながら、 工具 T 2に X 2軸方向の独自の送り速度を加えることで、 ワーク W 1 , W 2について異なる加工を同時に行うことが可能である。
上記したような N C旋盤 2 0 0は、 複数のワーク W l, W 2について同時に同 一又は異なる加工を行うことができるものの、 以下のような不都合が存在する。 すなわち、 工具 T 1の Z軸方向の送り速度は、 サドル 2 5 0の Z 1軸方向の移 動速度によって決定されるため、 同時加工することのできるワーク W 1, W 2の 加工形態が制限される。 また、 二つのワーク W l , W 2を加工するために二つの刃物台 2 6 0, 2 8 0 が必要になって、 N C旋盤 2 0 0が複雑、 大型化し、 コストも高くなる。 本発明の目的は、 第 1の主軸側のワークと第 2の主軸側のワークとで多種多様 の加工を同時に行うことが可能な N C旋盤及びその制御方法を提供すること、 及 び、 多種多様の加工を少なくとも一つの刃物台で行うことができるようにして構 成を簡素化した N C旋盤及びその制御方法を提供するところにある。 発明の開示
本発明の数値制御旋盤は、 対向して配置された第 1の主軸台及び第 2の主軸台 と、 前記第 1の主軸台に支持された第 1の主軸及び前記第 2の主軸台に支持され た第 2の主軸と, 前記第 1の主軸及び前記第 2の主軸に把持されたワークを加工 する工具を備えた刃物台と、 前記第 1の主軸の回転、 第 2の主軸の回転及び前記 第 1の主軸台又は前記第 2の主軸台に対する前記刃物台の相対的な移動を制御す る数値制御装置とを有する数値制御旋盤において、 前記刃物台は、 前記第 1の主 軸に把持されたワークを加工するための第 1の工具と、 前記第 2の主軸に把持さ れたワークを加工するための第 2の工具とを備えるとともに、 前記第 1の主軸の 主軸軸線と平行な Z 1軸方向及びこれに直交する X 1軸方向に移動自在で、 前記 第 2の主軸台は前記刃物台の X 1軸及び Z 1軸と平行な X 2軸方向及び Z 2軸方 向に移動自在で、 前記数値制御装置は、 前記第 2の主軸に把持させた前記ワーク を前記第 2の工具で加工するのに必要な前記 X 2軸方向の移動を前記 X 1軸方向 の移動に重畳可能にするとともに、 前記第 2の主軸に把持させた前記ワークを前 記第 2の工具で加工するのに必要な前記 Z 2軸方向の移動を前記 Z 1軸方向の移 動に重畳可能した構成としてある。
前記数値制御装置は、 前記刃物台の前記 X 1軸方向の移動及び前記 Z 1軸方向 の移動を制御する第 1の制御系と、 前記第 2の主軸台の前記 X 2軸方向の移動及 び前記 Z 2軸方向の移動を制御する第 2の制御系とを有するように構成してもよ い。
この構成によれば、 刃物台が X 1軸方向及び Z 1軸方向に移動しながら、 第 1 の工具で第 1の主軸台のワークを加工する。 第 2の主軸台は、 刃物台と同じ方向 W
4 である X 2軸方向及び Z 2軸方向に移動が可能であるので、 第 2の主軸台を前記 刃物台の移動に同期させることで、 前記刃物台に装着した第 2の工具と第 2の主 軸台のワークとの相対速度を 0にすることができる。
そして、 前記刃物台の X 1軸方向の移動に、 第 2の工具によるワークの加工に 必要な第 2の主軸台の X 2軸方向の移動を重畳させ、 かつ、 前記刃物台の Z 1軸 方向の移動に、 第 2の工具によるワークの加工に必要な第 2の主軸台の Z 2軸方 向の移動を重畳させることで、 第 2の主軸台の最終的な移動を決定することがで きる。
二れにより、 第 1の工具による第 1の主軸のワークの加工と、 第 2の工具によ る第 2の主軸のワークの加工を同時に行うことができる。 しかも、 このワークの 加工は、 第 1の主軸側のワークと第 2の主軸側のヮークとで異なるものであつて もよい。
好ましくは、 前記第 1の工具の刃先と前記第 2の工具の刃先の前記 X軸方向の 距離が、 前記第 1の工具によって前記ワークを加工する際の X軸方向の移動距離 の最大値よりも大きく、 かつ、 前記第 1の工具の刃先位置より前記第 2の工具の 刃先位置が前記刃物台よりも離れているようにし、 前記第 1の工具の刃先と前記 第 2の工具の刃先の前記 Z軸方向の距離が、 前記第 1の工具によって前記ワーク を加工する際の Z軸方向の移動距離の最大値と前記第 2の工具によって前記ヮー クを加工する際の Z軸方向の移動距離の最大値の和よりも大きくなるようにし、 前記第 1の主軸側のワークの加工原点と前記第 2の主軸側のワークの加工原点の X軸方向及び Z軸方向の距離が前記第 1の工具と前記第 2の工具の刃先間の距離 に对応するものであるようにするとよい。
二のようにすることで、 干渉を防止するための主軸台の小型化を最小限に抑制 することができ、 主軸の出力不足や回転ムラや脈動の発生を防止し、 加工可能な ワークの最大怪を小さくするということがない。 また、 刃物台の逃げ部 1 6 7を 大きくとる必要がないので、刃物台 1 6 0の機械剛性を高く維持することができ、 加工時における工具の振動や刃先位置の変動を招いて、 加工精度を低下させるよ うなことも防止できる。
さらに、 刃物台に追隨させて第 2の主軸台を移動させ、 さらに第 2の主軸に把 持されたワークを加工するために刃物台の移動に第 2の主軸台の移動を重畳させ ても、 刃物台と第 2の主軸台、 第 1の主軸に把持されたワークと第 2の主軸に把 持されたワークが干渉することも防止できる。 また、 本発明の数値制御旋盤によるワークの加工方法は、 対向して配置された 第 1の主軸台及び第 2の主軸台と、 前記第 1の主軸台に支持された第 1の主軸及 び前記第 2の主軸台に支持された第 2の主軸と、 前記第 1の主軸及び前記第 2の 主軸に把持されたワークを加工する工具を備えた刃物台とを有する数値制御旋盤 におけるワークの加工方法において、 前記刃物台に、 前記第 1の主軸に把持され たワークを加工するための第 1の工具と、 前記第 2の主軸に把持されたワークを 加工するための第 2の工具とを装着し、 この刃物台を前記第 1の主軸の主軸軸線 と平行な Z 1軸方向及びこれに直交する X 1軸方向に移動させ、 前記第 2の主軸 台を前記刃物台の X 1軸と平行な X 2軸及び Z 1軸と平行な Z 2軸方向に移動可 能にするとともに、 前記第 2の工具による前記ワークの加工に必要な前記第 2の 主軸台の前記 X 2軸方向の移動を、 前記 X 1軸方向の移動に重畳し、 前記第 2の 工具による前記ワークの加工に必要な前記第 2の主軸台の前記 Z 2軸方向の移動 を、 前記 Z 1軸方向の移動に重畳して、 前記第 2の主軸台を前記 X 2軸方向及び 前記 Z 2軸方向に移動させて、 前記第 1の工具による前記第 1の主軸のワークの 加工と、 前記第 2の工具による前記第 2の主軸のワークの加工を同時に行う方法 としてある。
この方法によれば、 前記刃物台の X 1軸方向の移動に、 第 2の工具によるヮー クの加工に必要な第 2の主軸台の X 2軸方向の移動を重畳させ、 かつ、 前記刃物 台の Z 1軸方向の移動に、 第 2の工具によるワークの加工に必要な第 2の主軸台 の Z 2軸方向の移動を重畳させることが可能で、 第 1の工具による第 1の主軸の ワークの加工と、 第 2の工具による第 2の主軸のワークの加工を同時に行うこと ができる。
好ましくは、 重畳を行う前記 X 1軸と前記 X 2軸の組及び前記 Z 1軸と前記 Z 2軸の組のうち、 いずれか一方の組の軸の位置を予め設定された第 1の位置に位 置決めして、 前記一方の組の重畳を行い、 重畳を完了した前記一方の組の軸を前 記第 1の位置に位置決めした状態で、 他方の組の軸の位置を予め設定された第 2 の位置に位置決めして、 前記他方の組の重畳を行うようにするとよい。 二のようにすることで、 加工プログラムを作成するプログラマーが、 工具とヮ ークの位置関係を把握しやすくなるという利点がある。 また、 X 2軸は X I軸の 加工領域及びその周辺でのみ重畳させることにより、 刃物台の工具交換時の退避 用のストローク等を含む長いストロークを持つ X 1軸に対して短いストロークで すみ、 N C旋盤の小型化を図ることができるという利点がある。 さらに好ましくは、 前記 X 1軸と前記 X 2軸の組の重畳又は前記 Z 1軸と前記 Z 2軸の組の重畳を行う手順を予め定義し、 前記 X 1軸と前記 X 2軸の組の重畳 又は前記 Z 1軸と前記 Z 2軸の組の重畳を行う指令が入力されたときに、 前記手 順を実行して重畳を行うようにするとよい。
このようにすることで、 加工プログラムの簡素化を図ることができる。 図面の簡単な説明
第 1図は、 本発明の N C旋盤の概略構成を説明する平面図である。
第 2図は、 第 1図の N C旋盤における刃物台の工具と対向する二つの主軸に装着 されたワークとの位置関係を説明する図である。
第 3図は、 本発明の数値制御旋盤の制御装置の制御プロック図である。
第 4図は、 本発明の数値制御旋盤の他の制御装置の例にかかり、 その制御ブロッ ク図である。
第 5図は、 本発明の N C旋盤の作用の説明図で、 (a ) は加工開始前の初期状態 を、 (b ) は二つの主軸に装着したワークの同時加工状態を示す概略図である。 第 6図は、 本発明の数値制御旋盤によるワークの加工形態のさらに他の例を示す 図である。
第 7図は、 本発明の第 2の実施形態にかかる N C旋盤の概略構成を説明する平面 図である。
第 8図は、 第 7図の N C旋盤における制御装置の制御プロック図である。
第 9図は、 本発明の加工方法を説明するためのフローチャートである。
第 1 0図は、 Z 1軸及び Z 2軸の重畳の手順を説明するフローチャートである。 第 1 1図は、 X 1軸及び X 2軸の重畳の手順を説明するフローチャートである。 第 1 2図は、 本発明の従来例にかかる N C旋盤の概略構成を説明する平面図であ る。 発明を実施する最良の形態
以下、 本発明の好適な実施形態を図面を参照しながら詳細に説明する。
まず、 第 1図及び第 2図にしたがって、 本発明の N C旋盤の概略構成を説明す 。
第 1図は本発明の N C旋盤の第 1の実施形態にかかり、 その概略構成を説明す る平面図、 第 2図は、 刃物台と対向する二つの主軸台との位置関係を説明する第 1図の部分拡大図である。
N C旋盤 1 0 0のベッド 1 1 0には、 第 1の主軸台 1 2 0及び第 2の主軸台 1 3 0が対向して配置されている。 第 1の主軸台 1 2 0は第 1の主軸 1 2 1を回転 自在に支持し、 第 2の主軸台 1 3 0は第 2の主軸 1 3 1を回転自在に支持してい る。 第 1の主軸 1 2 1及び第 2の主軸 1 3 1の先端には、 図示しないチャックが それぞれ設けられていて、 このチャックでワーク W l, W 2を把持できるように なっている。
この実施形態において、 第 1の主軸台 1 2 0は、 ベッド 1 1 0に固定されてい る。 べッド 1 1 0には、 Z軸と平行な方向にガイドレール 1 4 0が設けられてい る。 このガイドレール 1 4 0には、 サドル 1 5 0が載置されている。 このサドル 丄 5 0は、 駆動体である図示しないモー夕の駆動によって、 ガイドレ一ル 1 4 0 に案内されながら、 Z軸と平行な Z 2軸方向に移動する。
サドル 1 5 0の上には、 Z軸と直交する X軸と平行な方向にガイドレール 1 7 0が設けられている。 第 2の主軸台 1 3 0は、 このガイドレール 1 7 0に載置さ れ、 図示しない駆動体の駆動によって、 ガイドレール 1 Ί 0に案内されながら X 軸と平行な X 2軸方向に移動する。
ベッド 1 1 0には、 ガイドレール 1 4 0と平行にガイドレール 1 4 5が設けら れている。 このガイドレール 1 4 5には、 サドル 1 5 5が載置されている。 この サドル 1 5 5は、 駆動体である図示しないサーボモー夕によって、 ガイドレール L 4 5に案内されながら Z軸と平行な Z 1軸方向に移動する。
サドル 1 5 5の上面には、 X軸と平行な方向にガイドレール 1 7 5が設けられ ている。 刃物台 1 6 0はこのガイドレール 1 7 5に載置され、 駆動体である図示 しないサーボモー夕の駆動によって、 ガイドレール 1 75に案内されながら X I 軸方向に移動する。
刃物台 1 60は、一側に割り出し回転自在な夕レット面板 1 6 1を備えている。 この夕レツト面板 16 1には、 第 1の主軸 1 2 1に把持されたワーク W1を加工 するための工具 T 1が複数装着される。 刃物台 160の X 1軸方向の移動及びサ ドル 1 55の Z 1軸方向の移動により、 工具 T 1がワーク W1に対して所定の位 置に位置決めされるとともにワーク W1に対して移動しながら、 ワーク W1を加 ェする。
また、 夕レット面板 1 6 1には、 第 1の工具である工具 T 1の取付位置と同じ 位置 (同じステーション) に、 第 2の主軸 1 3 1に把持されたワーク W2を加工 するための第 2の工具である工具 T 2が装着される。 工具 T2は、 刃物台 1 60 の X 1軸方向の送り速度にワーク W2を加工するための X軸方向の送り速度を重 畳した第 2の主軸台 1 30の X 2軸方向の送り、 及び、 刃物台 1 60の Z 1軸方 向の送り速度にワーク W2を加工するための Z軸方向の送り速度を重畳した第 2 の主軸台 1 30の Z 2軸方向の送りにより、 ワーク W2に対して位置決めされる とともに移動して、 ワーク W 2を加工する。
第 2図に刃物台 1 60の主要部の拡大図を示す。
工具 T 1及び工具 T 2は、 工具ホルダ 165を介して夕レツト面板 16 1に装 着される。 工具ホルダ 1 65は、 夕レット面板 16 1にボルト等で固定されるホ ルダ本体 165 aと、 このホルダ本体 1 65 aの第 1の主軸台 120側の面に取 り付けられたホルダ 1 65 bと、 ホルダ本体 165 aの第 2の主軸台 130側の 面に取り付けられたホルダ 1 65 cとから構成される。 そして、 ホルダ 165 b に工具 T 1が装着され、 ホルダ 1 65 cに工具 T 2が装着される。
ホルダ 1 65 bとホルダ 1 65 cとは、 工具 T 1によるワーク W 1の加工とェ 具 T 2によるワーク W2の加工とを同時に行う際に、 一方のワーク (例えばヮ一 ク W1) が他方のワーク (例えばワーク W2) 、 他方の工具 (例えば、 工具 T2) 、 ホルダ (例えば、 ホルダ 1 6 5 c) 又はホルダ本体 165 aと干渉しないように 部の寸法が決定される。
第 2図に示す工具ホルダ 1 65では、 工具 T 1の刃先とホルダ本体 1 65 aの 面までの Z軸方向の距離 L 3力 ワーク W1の加工長さ 1 1よりも大きくなるよ うに決定される。 また、 刃物台 1 6 0には、 第 2の主軸台 1 3 0と刃物台 1 6 0 とが干渉することなく、 刃物台 1 6 0の X 1軸方向のストロ一ク及び第 2の主軸 台 1 3 0の X 2軸方向のストロークを可能な限り大きくとることができるように、 逃げ部 1 6 7が形成されている。
工具 T 1と工具 T 2の位置関係は、 図示するように、 工具 T 2の先端工具 T 1 の先端よりも刃物台 1 6 0から離れた位置に位置させるのが好ましい。
より好ましくは、 工具 T 1と工具 T 2の刃先の X軸方向の距離 H Iが、 工具 T 1力ワーク W 1を加工する際の X 1軸方向の最大の追込み量 h 1よりも大きくな るようにするとよい。
この工具 1と工具 2の刃先の X軸方向の距離の分だけ、 刃物台 1 6 0の逃げ 部 1 6 7の逃げ量を大きくする必要がなくなり、 第 2の主軸台 1 3 0の刃物台 1 6 0側の幅を大きくして、 第 2の主軸台 1 3 0の剛性を高く維持することができ る。 また、 刃物台 1 6 0についても、 逃げ部 1 6 7の逃げ量によって剛性が影響 を受けるため、 このような工具 1と工具 2の刃先の X軸方向の距離によって、 刃 物台 1 6 0の剛性も高く維持することができる。
このようにすると、 第 2の主軸台 1 3 0を小型にしたり刃物台 1 6 0の逃げ部 1 6 7を大きくする必要なく、 N C旋盤の小型化を図ることができる。
工具 1と工具 2の刃先の Z軸方向の距離 L 1 + L 2は、 工具 T 1がワーク W 1 を加工する際の Z 1軸方向の最大の移動量 1 1 + s 1と工具 T 2がワーク W 2を 加工する際の Z 2軸方向の最大の移動量 1 2 + s 2を加えた距離より大きくする とよい。
このようにすると、 重畳加工を行うワーク W 1とワーク W 2の干渉を防ぐこと ができる。
この構成の N C旋盤では、 第 1の主軸 1 2 1に把持されたワーク W 1の正面側 の加工終了後に、 第 2の主軸 1 3 1にワーク W 1を受け渡し、 背面側を加工する 加工方法が多く用いられる。 このため、 第 2の主軸 1 3 1の軸線を第 1の主軸 1 2 1の軸線に一致させる必要があるが、 刃物台 1 6 0に向かう第 2の主軸 1 3 1 の X軸方向のストロークは、 少なくとも第 1の主軸 1 2 1の軸線と同心にでき る位置まで持たせるとよい。 [制御装置の説明]
第 3図は、 この NC旋盤 100における制御装置の制御ブロック図である。 制御装置 190は、 中央処理部 (CPU) 191と、 この CPU 191からの 指令によって刃物台 160の Z 1軸方向及び X 1軸方向の移動を制御する第 1の 演算処理回路 192 aと、 この第 1の演算処理回路 192 aからの出力信号に基 づいて X I軸方向及び Z 1軸方向の速度信号を出力する速度処理回路 192 b, 1 92 cと、 この速度処理回路 192 b, 192 cからの出力信号に基づいて、 刃物台 160を XI軸方向及び Z 1軸方向に所定の速度で移動させるようにサー ボモ一夕 163, 162を駆動させるサ一ボ処理回路 192 d、 192 eとを有 している。
同様に、 CPU 191からの指令によって第 2の主軸台 130の Z 2軸方向及 び X 2軸方向の移動を制御する第 2の演算処理回路 193 aと、 この第 2の演算 処理回路 193 aからの出力信号に基づいて X 2軸方向及び Z 2軸方向の速度信 号を出力する速度処理回路 193 b, 193 cと、 この速度処理回路 193 b, 1 93 cからの出力信号に基づいて、 第 2の主軸台 130を X2軸方向及び Z 2 軸方向に所定の速度で移動させるようにサーボモ一夕 133, 134を駆動させ るサーボ処理回路 193 d、 193 eとを有している。
CPU 191は、 Z 1軸方向及び X 1軸方向の移動指令に、 ワーク W 2の加工 に必要な Z軸方向及び X軸方向の移動指令を加算して、 Z 2軸方向及び X 2軸方 向の移動の指令を行い、 刃物台 160の移動に第 2の主軸台 130の移動速度を 重畳させる。 上記したような重畳は、 他の構成の制御装置によっても可能である。
第 4図は、 この NC旋盤 100における制御装置の他の実施形態にかかり、 そ の制御ブロック図である。
第 4図において、 第 3図の制御装置と同一部位には同一の符号を付し、 詳しい 説明は省略する。
制御装置 190 ' は、 中央処理部 (CPU) 191 ' と、 この CPU 191 ' からの指令によって刃物台 160の Z 1軸方向及び X 1軸方向の移動を制御する 第 1の制御系 192と、 CPU 191からの指令によって第 2の主軸台 130の Z 2軸方向及び X 2軸方向の移動を制御する第 2の制御系 1 93とを有する。 第 1の制御系 1 92は、 第 1の演算処理回路 1 92 aと、 速度処理回路 192 b. 1 92 cと、 サーボ処理回路 1 92 d、 1 92 eとを有している。
同様に、 第 2の制御系 1 93は、 第 1の演算処理回路 1 93 a、 速度処理回路 1 93 , 1 93 c及びサーボ処理回路 1 93 d, 1 93 eを有している。 第 2の制御系 1 93には、 速度処理回路 1 93 b, 193 cとサーボ処理回路 1 93 d. 1 93 eとの間に、 重畳回路 1 95, 1 96がさらに設けられる。 重畳回路 1 95は、 ワーク W 2を工具 T 2で加工するための第 2の主軸台 13 0の X2軸方向の送り指令 (ワーク W2と工具 T 2の相対的な送り指令) を、 刃 物台 1 60の X 1軸方向の送り指令に加算し、 その結果を第 2の主軸台 130の X 2軸方向の送り指令として、 サーボ処理回路 1 93 dに出力する。
重畳回路 1 96は、 ワーク W 2を工具 T 2で加工するための第 2の主軸台 13 0の Z 1軸方向の送り指令 (ワーク W2と工具 T 2の相対的な移動指令) を、 刃 物台 1 60の Z 1軸方向の送り指令に加算し、 その結果を第 2の主軸台 130の Z 2軸方向の送り指令として、 サ一ボ処理回路 1 93 eに出力する。
上記制御装置 1 90 ' によれば、 ワーク W 1を加工するための工具 T 1の X 1軸方向及び Z 1軸方向の送り指令が C PU 1 9 1 ' から第 1の制御系 1 92 に出力され、 ワーク W2を加工するための工具 T2の X 1軸方向及び Z 1軸方向 の送り指令 (ワーク W 2と工具 T 2の相対的な移動指令) が CPU1 9 1から第 2の制御系 1 93に出力される。
第 1の制御系 1 92は、 C PU 1 9 1 ' からの出力に基づいて刃物台 1 60 とともに工具 T 1を移動させる。 第 2の制御系 1 9 3は、 C PU 1 9 1 ' から の送り指令に、 刃物台 1 60の送り指令を加算して、 移動速度を重畳させ、 第 2 の主軸台 1 30を移動させる。
次に、 第 1図〜第 5図を参照しながら、 上記構成の NC旋盤 1 00の作用を説 明する。
第 5図 (a) は、 加工開始前の初期状態における各工具と各ワークとの位置関 係を示す図、 第 5図 (b) は、 加工中における各工具と各ワークの位置関係を示 す図である。
第 2図に示すように、 待機状態では、 夕レツト面板 1 6 1の割り出し回転時に 工具 T l, T2とワーク Wl, W2が干渉しないように、 刃物台 160は第 1の 主軸台 120及び第 2の主軸台 1 30から離れた位置にある。
また、 第 1の主軸台 120及び第 2の主軸台 1 30は、 ワーク W 1の加工原点 〇 1及びワーク W2の加工原点 O 2が所定位置に位置するように位置決めされて いる。 この実施形態では、 ワーク W2の加工原点〇 2力、 ワーク W1の加工原点 O 1 (第 1の主軸 12 1の主軸軸線上にある) よりも刃物台 160から離れた位 置に位置するように、 第 2の主軸台 1 30の位置が決定される。
工具 T 1でワーク W1の加工を行うために、 第 2図の待機位置から刃物台 16 0が X 1軸方向及び Z 1軸方向に移動し、 第 5図 (a) に示す初期位置までくる と、 刃物台 1 60の X 1軸方向の送り速度及び Z 1軸方向の送り速度に等しい移 動指令が、 第 1の制御系 1 92から第 2の制御系 1 93に出力される。 この移動 指令は、 刃物台 160の送り速度と同速度で、 かつ、 刃物台 160の移動方向と 同方向に、 第 2の主軸台 1 30を移動可能にする。 これにより、 工具 T 1でヮ一 ク W1を加工するために刃物台 160が移動する際に、 工具 T2とワーク W2と 位置関係を一定に保つことができる。
重畳回路 1 95では、 刃物台 160の X 1軸方向の送り指令に、 工具 T 2によ つてワーク W2を加工する際の、 工具 T 2に対するワーク W2の X 1軸方向の移 動指令 (工具 T 2とワーク W2の相対的な移動指令) が加算される。 また、 重畳 回路 1 96では、 刃物台 1 60の Z 1軸方向の移動指令に、 工具 T 2に対するヮ ーク W2の Z 1軸方向の移動指令 (工具 T 2とワーク W 2の相対的な移動指令) が加算される。 そして、 この結果が、 モー夕 1 33及びモー夕 134に出力され る。
したがって、 第 5図 (b) に示すように、 工具 T 1によってヮ一ク W1の加工 を行いながら、 工具 T 2によって、 ワーク W1の加工とは全く異なる加工を、 ヮ ーク W 2に対して行うことができる。
第 2図及び第 5図で示した加工例は、 第 1の工具である工具 T 1及び第 2のェ 具である工具 T 2はともに切削用のバイトである。
本発明によれば、 第 1の工具又は第 2の工具として切削用のバイト以外の工具 を用いて、ワーク W1又はワーク W2に切削以外の加工を施すことが可能である。 [他の加工例]
本発明の NC旋盤を用いた他の加工の例を以下に説明する。
第 6図に示す加工例では、 バイト T 1 3でワーク W1に外周面の切削加工を施 し、 ドリル T23でワーク W 2の端面に孔明け加工を施す。
この場合は、 バイト T 1 3の切込み量及び送り量に応じて、 第 2の主軸台 1 3 0の Z 2軸方向及び X 2軸方向の送りを重畳させる必要がある。
加工の際には、 バイト T 1 3をワーク W1の外周面に移動させ、 刃物台 1 60 を Z 1軸方向及び X 1軸方向に送って、 ワーク W1の外周面を切削する。同時に、 刃物台 1 60の Z 1軸方向の送り速度に、 ドリル T23によるワーク W2の加工 のための Z 1軸方向の送り速度を重畳させた送り速度及び X 1軸方向の送り速度 に X 2軸方向の送り速度を重畳させた送り速度で、 第 2の主軸台 1 30を Z 2軸 方向及び X 2軸方向に送って、 ワーク W2の端面に孔明け加工を施す。
[第 2の実施形態]
以下に説明する第 2の実施形態では、 X I軸と X2軸及び Z 1軸と Z 2軸の重 畳の他に、 Z 0軸と Z 1軸の重畳を加えている。
第 7図に、 本発明の第 2の実施形態にかかる N C旋盤の概略構成を説明する平 面図を、 第 8図に、 この NC旋盤における制御装置の制御ブロック図を示す。 なお、 第 7図及び第 8図では、 第 1の実施形態と同一の部位、 同一の部材には 第 1図及び第 3図と同一の符号を付し、 当該部位及び部材の詳しい説明は省略す る。
第 2の実施形態の NC旋盤 1 00 ' の第 1の主軸台 1 20 ' は、 Z軸と平行 な Z 0軸方向に移動自在である。 第 1の主軸台 1 20 ' の Z 0軸方向の移動は、 駆動体である図示しないモー夕の駆動によつて行われる。
刃物台 1 60に対向して第 2の刃物台 1 80が設けられる。 この第 2の刃物台 1 8〔)は、 べッド 1 1 0上に設けられたガイドレール 1 82に沿って、 X軸と平 行な X 3軸方向に移動自在である。 第 2の刃物台 1 80は、 駆動体である図示し ないモー夕の駆動によって、 X 3軸方向に移動する。
第 2の刃物台 1 80の夕レツト面板 1 8 1には、 ワーク W1を加工するための 第 3の工具 T 3が装着されている。 工具 T3は、 第 2の刃物台 1 80の X 3軸方 向の移動と、 第 1の主軸台 1 20 ' の Z 0軸方向の移動とによって、 ヮ一ク W 1 に対して位置決めされるとともに移動して、 ワーク W1の加工を行う。
この N C旋盤 1 00 ' の制御装置 1 90〃 は、 第 1の主軸台 1 20 ' を Z 0 軸方向に移動させるための第 3の制御系 1 97と、 第 2の刃物台 1 80を X3方 向に移動させるための第 4の制御系 198をさらに有している。
第 3の制御系 1 97及び第 4の制御系 1 98は、 それぞれ、 第 1の演算処理回 路 1 97 a, 1 98 a、 速度処理回路 1 97 b, 1 98 b及びサ一ボ処理回路 1 9 7 d. 1 98 clを有している。
この実施形態の第 1の制御系 1 92" には、 Z 1軸方向の速度処理回路 1 9 2 cと Z 1軸方向のサーボ処理回路 192 eの間に、 重畳回路 1 99が設けられ る。 そして、 この重畳回路 1 99に、 第 3の制御系 1 97の速度処理回路 1 97 bから出力された Z 0軸方向の送り速度が入力され、 さらに、 重畳回路 1 99か ら出力された Z 1軸方向の送り速度が、 重畳回路 1 96に入力される。
これにより、 第 1の主軸台 1 20 ' の Z 0軸方向の送り速度に刃物台 1 60 の Z 1軸方向の送り速度が重畳され、 主軸台 1 20 ' の Z 0軸方向の送り速度 に、 刃物台 1 60の Z 1軸方向の送り速度と第 2の主軸台 1 30の Z 2軸方向の 送り速度が重畳される。
以上により、 ∑ 0軸と21軸、 Z 1軸と Z 2軸及び X 1軸と X2軸の 3組の重 畳が行われ、 3つの工具 T l. T2, T3で、 ワーク W1及びワーク W 2に異な る加工を施すことが可能になる。 以上の説明では、 速度の重畳のみについて述べてきたが、 第 2の主軸台 1 30 や刃物台 1 60. 第 2の刃物台 180等の移動は位置と速度と加速度とで制御さ れる。 したがって、 これらの移動を重畳するためには、 位置や加速度についても 同様に重畳する。
[重畳の手順]
本発明の NC旋盤では、 所定の手順にしたがって重畳が行われる。 以下、 その 手順を、 第 1図〜第 3図及び第 9図〜第 1 1図を参照しながら説明する。
第 9図は、 本発明の N C旋盤及び加工方法における制御の手順を説明するフ口 一チヤ一卜である。
C PU 1 9 1は、 ワーク W 1及びワーク W2を加工するための NC加工プログ ラムの中から重畳の必要性があるかどうかを判断する (ステップ S 1) 。 重畳さ せる必要がない場合には、 NC加工プログラムにしたがって、 工具 T 1によるヮ ーク W1の加工と工具 T 2によるワーク W2の加工を順次行う (ステップ S 8)。 重畳させる必要がある場合には、 重畳させる軸が Z軸であるか X軸であるかを 判断する (ステップ S 2及びステップ S 5) 。
重畳させる軸が Z軸 (∑ 1軸と∑ 2軸) である場合には、 21軸及び22軸の 位置決めを行った後に (ステップ S 4) 、 Z 1軸と Z 2軸の重畳を行う (ステツ ブ S 5) 。
重畳させる軸が X軸 ( 1軸と 2軸) である場合には、 1軸及び 2軸の 位置決めを行った後に (ステップ S 6) 、 X 1軸と X2軸の重畳を行う (ステツ プ S 7) 。
このように、 一方の軸の重畳を行う際に重畳する軸を位置決めするのは、 加工 プログラムを作成するプログラマーに、 工具とワークの位置関係を把握しゃすく するためである。
これら重畳が完了すれば、 NC加工プログラムにしたがって、 工具 T 1による ワーク W1の加工と、 工具 T 2によるワーク W2の加工とを同時に行う (ステツ フ S 8 ) 。
加工が終了すれば (ステップ S 9) 、 重畳を解除し (ステップ S 1 0) 、 次の 加工まで待機する。
なお、 重畳の有無をステップ S 1、 ステップ S 2, ステップ S 5で確認するも のとして説明したが、 この確認は省略することもできる。
次に、 第 1 0図及び第 1 1図のフローチャートにしたがって、 ∑ 1軸と∑ 2軸 及び X 1軸と X 2軸の重畳の具体的な手順を説明する。
以下の説明では、 Z 1軸と Z 2軸及び X 1軸と X 2軸の 2組の重畳を行うもの とし、 Z 1軸と Z 2軸の重畳を完了させた後に、 X 1軸と X 2軸の重畳を行うも のとして説明する。
L Z軸重畳] NC加工プログラムの中に Z軸重畳指令があると (ステップ S 2 0 0) 、 Z 1 軸と Z 2軸のプログラムの実行開始タイミングを待ち合わせる (ステップ S 20 1. S 2 2 1) 。
第 1の制御系 (第 1 0図のフローチャートの左側の系) では、 X I軸, Z 1軸. C 1軸 (Z 1軸周りの回転軸) を使用しているかどうかを判断する (ステップ S 2 0 2) 。 X 1軸, Z 1軸. C 1軸のいずれか又は全部が使用中の場合には、 準 備作業を所定時間中断して待機し (ステップ S 2 0 3) 、 X I軸, Z 1軸, C 1 軸が使用されなくなるまで待つ。
X 1軸, Z 1軸, C 1軸のいずれも使用されていなければ、 第 1の制御系に加 ェのための新たな軸 X I, Z 1 , C 1を設定する (ステップ S 2 04) 。
この後、 X I軸, Z 1軸. C 1軸を他の制御系で使用することを禁止し (ステ ップ S 2 0 5) 、 刃物台 1 6 0を X 1軸上で指定された後退位置まで移動させて (ステップ S 2 0 6) 、 第 2の制御系と待ち合わせる (ステップ S 2 0 7) 。 第 2の制御系 (第 1 0図のフローチャートの右側の系) では、 NC加工プログ ラムの実行開始のタイミング合わせ (ステップ S 2 2 1) を行った後、 X2軸及 び Z 2軸に指令されている重畳を解除する (ステップ S 2 2 2) 。 次いで、 X2 軸. Z 2軸. C 2軸 (Z 2軸周りの回転軸) を使用しているかどうかを判断する (ステップ S 2 2 3) 。 X 2軸. Z 2軸, C 2軸のいずれか又は全部が使用中の 場合には、 所定時間中断して待機し (ステップ S 2 24) 、 X2軸, Z 2軸. C 2軸が使用されなくなるまで待つ。
X2軸, Z 2軸, C 2軸がいずれも使用されていなければ、 第 2の制御系に新 たな軸 X 2, Z 2, C 2を設定する (ステップ S 2 2 5) 。
以上の処理が完了すれば、 第 1の制御系と待ち合わせる (ステップ S 2 2 6) 。 待ち合わせ (ステップ S 2 0 7, S 2 2 6) 完了後に、 第 1の制御系は工具 T 1 とワーク W1との距離が予め設定された距離 (位置関係) になるまで、 刃物台 1 6 0を X 1軸方向及び Z 1軸方向に移動させる (ステップ S 2 0 8) 。
二の後、 X I軸, Z 1軸. C 1軸の他の制御系での使用禁止を解除し (ステツ フ S 2 0 9) 、 第 2の制御系と待ち合わせる (ステップ S 2 1 0) 。
第 2の制御系では、 待ち合わせ (ステップ S 2 0 7, S 2 26) 完了後に、 X ' Z 2. C 2軸の他の制御系での使用を禁止する (ステップ S 2 2 8) 。 そし て、 第 2の主軸台 1 30を Z 2軸方向及び X 2軸方向に移動させて、 工具 T2と ワーク W2との距離が予め決定された距離 (位置関係) になるようにする (ステ ップ S 229) 。 そして、 この位置の X 2軸上におけるワーク W2の座標系を設 定し (ステップ S 230) 、 第 2の制御系に新たな軸 Z 2, C2を設定する (ス テツプ S 23 1) 。 これにより、 X 2軸に対する指令を無効にし、 ヮ一ク W 2の X 2軸方向の位置を固定する。
この後、 第 1の制御系と待ち合わせる (ステップ S 232) 。
待ち合わせ(ステップ S 2 1 0, 232) 完了後に、 Z 2軸の重畳を開始し (ス テツプ S 233) 、 Z 2軸におけるワーク W2の座標系を設定する (ステップ S 234) 。 X2軸, Z 2軸, C 2軸の他の制御系での使用の禁止を解除し (ステ ップ S 235 ) 、 第 1の制御系と待ち合わせる (S 236) 。
待ち合わせ (ステップ S 2 1 1, S 236) が完了すれば、 Z 1軸と Z 2軸の 重畳が完了する。
[X軸重畳]
X軸の重畳指令があると (ステップ S 300) 、 第 1の制御系と第 2の制御系 とでプログラムの実行タイミングを合わせる (ステップ S 30 1, S 32 1) 。 第 1の制御系では、 X I軸、 Z 1軸、 C 1軸を使用しているかどうかを判断し (ステップ S 302) 、 使用中の場合には所定時間待機し (ステップ S 303) 、 X I軸、 Z 1軸、 C 1軸が使用されなくなるまで待つ。
使用していなければ、第 1の制御系に新たな軸 X 1, Z 1, C 1を設定する(ス テツプ S 304) 。 そして、 他の制御系での使用を禁止し (ステップ S 305) 、 第 2の制御系と待ち合わせる (ステップ S 306) 。
第 2の制御系では、 プログラムの実行開始タイミング合わせ (ステップ S 32 1 ) を行った後、 X2軸, Z 2軸, C 2軸を使用しているかどうかを判断し (ス テツプ S 322) 、 使用中の場合には所定時間待機し (ステップ S 323) 、 X 2軸、 Z 2軸、 C 2軸が使用されなくなるまで待つ。 。
使用していなければ、第 2の制御系に X 2, Z 2, C 2の新たな軸を設定し(ス テツプ S 324) 、 これらの軸の他の制御系での使用を禁止する (ステップ S 3 2 5) 。 この後、 第 2の制御系では、 工具 T 1の刃先と工具 T 2の刃先の座標位置をメ モリに格納するとともに、 この座標位置の X 2軸方向の距離 H 1をメモリに格納 する (ステップ S 326) 。 これらの処理が終了すれば、 第 1の制御系と待ち合 わせる (ステップ S 327) 。
待ち合わせ (ステップ S 306, S 327) 完了後に、 ワーク W1の加工原点 点〇 1の座標を求め (ステップ S 329) 、 この座標位置から第 2の主軸台 1 3 ()の位置が重畳するのに適切な位置かどうかを判断する (ステップ S 330) 。 重畳させるのに適切かどうかの判断の基準としては、 例えば、 工具 T 2の刃先 が第 1のワーク W1の加工原点〇 1よりも、 X 1軸方向に刃物台 1 60から離れ ているかどうか (第 2図の例では、 加工原点 O lを通る、 第 1の主軸 1 2 1の軸 線よりも下方にあるかどうか) で判断することができる。
具体的には、 工具 T 2の刃先が第 1の主軸 1 2 1の主軸軸線よりも上にあると きは、 第 2の主軸台 1 30の X2軸の可動範囲外であるとして、 重畳するには不 適切であると判断する。
したがって、 このような場合には、 アラーム状態とする (ステップ S 33 1) 。 重畳可能であれば、 第 2の主軸台 130の初期位置を決定する。 この実施形態 では、 第 2の主軸台 1 30の初期位置として、 ワーク W2の加工原点 02 (第 2 の主軸 1 3 1の主軸軸線上にある) 力 第 1の主軸台 120側のワーク W1の加 ェ原点 O 1よりも、 X 2軸方向に距離 H 1だけ刃物台 160から離れた位置にあ る第 1の位置、 ワーク Wl, W 2や加工の形態にかかわらず予め決定された第 2 の位置、 作業者が任意に設定することのできる第 3の位置が準備されている。 これら第 1の位置、 第 2の位置及び第 3の位置の中からどの位置を選択するか は、 例えば、 NCプログラムに付される引数によって決定することができる。 前 記 NCプログラムの X引数の有無を判断して (ステップ S 332) 、 第 3の位置 を選択し、 D引数の有無を判断して (S 333) 、 第 1の位置 (ステップ S 33 4) 又は第 2の位置 (ステップ S 335) のいずれかを選択するようにすること ができる。
第 1の位置、 第 2の位置又は第 3の位置の中から適当な位置を選択した後に、 X 2軸の重畳を開始し (ステップ S 337) 、 X2軸のワーク軸を設定する (ス テツプ S 338) 。 以上の処理が終了すれば、 第 1の制御系と待ち合わせる (ステップ S 3 0 7,
S 3 3 9 ) 。
待ち合わせ完了後に、 各軸の他の制御系での使用禁止を解除し (ステップ S 3 0 8 . S 3 4 0 ) 、 互いに待ち合わせて (ステップ S 3 0 9, S 3 4 1 ) 、 X I 軸と X 2軸の重畳を完了する。
上記した Z軸の重畳と X軸の重畳は、 いずれか一方を先に行ってから他方を行 うように設定してもよいが、 同時に行うように設定してもよい。
また、 好ましくは、 Z軸重畳の手順及び X軸重畳の手順をマクロプログラム化 するとよい。 マクロプログラム化することで、 加工プログラムが簡素化し、 重畳 作業も容易に行えるようになる。
本発明の好適な実施形態を説明してきたが、 本発明は上記の実施形態により何 ら限定されるものではない。
例えば、 刃物台 1 6 0, 1 8 0に装着したドリル等の回転工具に対するワーク の相対回転は、 第 1の主軸 1 2 1又は第 2の主軸 1 3 1を回転させることによつ て行うものとして説明したが、 刃物台 1 6 0, 1 8 0に工具を回転させるための 回転駆動機構を設けて、 刃物台 1 6 0 , 1 8 0に装着したドリルやエンドミル等 の回転工具を回転させることができるようにすることも可能である。 このように 構成すれば、 刃物台 1 6 0, 1 8 0にドリルやエンドミル等の回転工具を装着し て、 ワーク W l , W 2の外周面に、 孔明けやキー溝切削等の加工を施すことが可 能になり、 本発明の N C旋盤及び加工方法による加工の汎用性をさらに向上させ ることができる。 本発明によれば、 X 1軸と X 2軸及び Z 1軸と Z 2軸のように、 平行関係には ない少なくとも 2軸以上の軸の移動の重畳を行うことが可能になり、 少なくとも 一つの刃物台に装着した複数の工具によって、 複数の主軸に把持させた複数のヮ ークに、 複数種類の異なる加工を同時に施すことが可能になる。 これにより加工 時間の短縮を図ることができるほか、 数値制御旋盤の構成を簡素かつコンパクト なものにして、 小型で低廉な価格の数値制御旋盤を得ることができる。
さらに、 二つの主軸に把持させたワークに対して、 これまで以上に多種多様の 加工を同時に行うことが可能であるので、 加工時間の短縮を図ることができるほ 力、 数値制御旋盤の価格及び数値制御旋盤によるワークの加工コストを大幅に低 下させることができる。 産業上の利用可能性
本発明は、 二つの主軸台と、 少なくとも一つの刃物台を有する数値制御旋盤に 限らず、 二つ以上の刃物台を備えた数値制御旋盤にも適用が可能である。 また、 し刀削加工ゃ孔明け加工に限らず、 刃物台に回転工具を取り付けることで、 エンド ミルによる溝切り加工や、 タップによるねじ切り加工にも適用が可能である。

Claims

請 求 の 範 囲
1 . 対向して配置された第 1の主軸台及び第 2の主軸台と、 前記第 1の主軸台 に支持された第 1の主軸及び前記第 2の主軸台に支持された第 2の主軸と、 前記 第 1の主軸及び前記第 2の主軸に把持されたワークを加工する工具を備えた刃物 台と、 前記第 1の主軸の回転、 第 2の主軸の回転及び前記第 1の主軸台又は前記 第 2の主軸台に対する前記刃物台の相対的な移動を制御する数値制御装置とを有 する数値制御旋盤において、
前記刃物台は、 前記第 1の主軸に把持されたワークを加工するための第 1のェ 具と、 前記第 2の主軸に把持されたワークを加工するための第 2の工具とを備え るとともに、 前記第 1の主軸の主軸軸線と平行な Z 1軸方向及びこれに直交する X 1軸方向に移動自在で、
前記第 2の主軸台は前記刃物台の X 1軸及び Z 1軸と平行な X 2軸方向及び Z 2軸方向に移動自在で、
前記数値制御装置は、 前記第 2の主軸に把持させた前記ワークを前記第 2のェ 具で加工するのに必要な前記 X 2軸方向の移動を前記 X 1軸方向の移動に重畳可 能にするとともに、 前記第 2の主軸に把持させた前記ワークを前記第 2の工具で 加工するのに必要な前記 Z 2軸方向の移動を前記 Z 1軸方向の移動に重畳可能に を特徴とする数値制御旋盤。
2 . 前記数値制御装置は、 前記刃物台の前記 X 1軸方向の移動及び前記 Z 1軸 方向の移動を制御する第 1の制御系と、 前記第 2の主軸台の前記 X 2軸方向の移 動及び前記 Z 2軸方向の移動を制御する第 2の制御系とを有することを特徴とす る請求の範囲第 1項に記載の数値制御旋盤。
3 . 前記第 2の工具の刃先位置と前記第 1の工具の刃先位置との関係が所定の 位置関係を有するように前記第 1の工具及び前記第 2の工具を前記刃物台に装着 するとともに、 前記第 2の制御系は、 前記第 1の主軸に把持された前記ワークの 加工原点に対する第 2の主軸に把持された前記ワークの加工原点の位置が、 前記 第 1の工具と第 2の工具の前記位置関係に基づいて設定されるように、 前記第 2 の主軸台の初期位置を決定することを特徴とする請求の範囲第 1項又は第 2項に 記載の数値制御旋盤。
4 . 前記第 1の工具の刃先と前記第 2の工具の刃先の前記 X軸方向の距離が、 前記第 1の工具によって前記ワークを加工する際の X軸方向の移動距離の最大値 よりも大きく、 かつ、 前記第 1の工具の刃先位置より前記第 2の工具の刃先位置 が前記刃物台よりも離れているようにし、 前記第 1の工具の刃先と前記第 2のェ 具の刃先の前記 Z軸方向の距離が、 前記第 1の工具によって前記ワークを加工す る際の Z軸方向の移動距離の最大値と前記第 2の工具によって前記ワークを加工 する際の Z軸方向の移動距離の最大値の和よりも大きくなるようにし、 前記第 1 の主軸側のワークの加工原点と前記第 2の主軸側のワークの加工原点の X軸方向 及び Z軸方向の距離が前記第 1の工具と前記第 2の工具の刃先間の前記 X軸方向 及び Z軸方向の距離に対応するものであることを特徴とする請求の範囲第 3項に 記載の数値制御旋盤。 δ . 前記第 1の主軸に把持された前記ワークを加工するための第 3の工具を備 えた第 2の刃物台を有し、 前記第 1の主軸台を、 少なくとも前記第 1の主軸の主 軸軸線に沿った Ζ 0軸方向に移動可能にし、 前記第 1の制御系は、 少なくとも、 前記第 1の主軸に把持させた前記ワークを前記第 1の工具で加工するのに必要な 前記 Ζ 1軸方向の移動を前記 Ζ 0軸方向の移動に重畳可能であることを特徴とす る請求の範囲第 2項〜第 4項のいずれかに記載の数値制御旋盤。
6 . 対向して配置された第 1の主軸台及び第 2の主軸台と、 前記第 1の主軸台 に支持された第 1の主軸及び前記第 2の主軸台に支持された第 2の主軸と、 前記 第 1の主軸及び前記第 2の主軸に把持されたワークを加工する工具を備えた刃物 台とを有する数値制御旋盤におけるワークの加工方法において、
前記刃物台に、 前記第 1の主軸に把持されたワークを加工するための第 1のェ 具と、 前記第 2の主軸に把持されたワークを加工するための第 2の工具とを装着 し、 この刃物台を前記第 1の主軸の主軸軸線と平行な Z 1軸方向及びこれに直交す る X 1軸方向に移動させ、
前記第 2の主軸台を前記刃物台の X 1軸と平行な X 2軸及び Z 1軸と平行な Z 2軸方向に移動可能にするとともに、 前記第 2の工具による前記ワークの加工に 必要な前記第 2の主軸台の前記 X 2軸方向の移動を、 前記 X 1軸方向の移動に重 畳し、 前記第 2の工具による前記ワークの加工に必要な前記第 2の主軸台の前記 Z 2軸方向の移動を、 前記 Z 1軸方向の移動に重畳して、 前記第 2の主軸台を前 記 X 2軸方向及び前記 Z 2軸方向に移動させて、
前記第 1の工具による前記第 1の主軸のワークの加工と、 前記第 2の工具によ る前記第 2の主軸のワークの加工を同時に行うこと、
を特徴とする数値制御旋盤におけるワークの加工方法。
7 . 前記第 2の工具の刃先位置と前記第 1の工具の刃先位置との関係が所定の 位置関係を有するように前記第 1の工具及び前記第 2の工具を前記刃物台に装着 するとともに、 前記第 1の主軸に把持された前記ワークの加工原点に対する第 2 の主軸に把持された前記ワークの加工原点の位置が、 前記第 1の工具と第 2のェ 具の前記位置関係に等しくなるように、 前記第 2の主軸台の加工開始位置を決定 したことを特徴とする請求の範囲第 6項に記載の数値制御旋盤におけるワークの 加工方法。
8 . 前記第 1の工具の刃先と前記第 2の工具の刃先の前記 X軸方向の距離が、 前記第 1の工具によって前記ワークを加工する際の前記 X軸方向の移動距離の最 大値よりも大きく、 かつ、 前記第 1の工具の刃先位置より前記第 2の工具の刃先 位置が前記刃物台より離れているようにし、 前記第 1の工具の刃先と前記第 2の 工具の刃先の前記 Z軸方向の距離が、 前記第 1の工具によって前記ワークを加工 する際の Z軸方向の移動距離の最大値と前記第 2の工具によって前記ワークを加 ェする際の Z軸方向の移動距離の最大値の和より大きくなるようにし、 前記第 1 の主軸側のワークの加工原点と前記第 2の主軸側のワークの加工原点の X軸方向 及び Z軸方向の距離が前記第 1の工具と前記第 2の工具の刃先間の前記 X軸方向 及び前記 Z軸方向の距離に対応するものであることを特徴とする請求の範囲第 7 項に記載の数値制御旋盤におけるワークの加工方法。
9 . 重畳を行う前記 X 1軸と前記 X 2軸の組及び前記 Z 1軸と前記 Z 2軸の組 のうち、 いずれか一方の組の軸の位置を予め設定された第 1の位置に位置決めし て、 前記一方の組の重畳を行い、 重畳を完了した前記一方の組の軸を前記第 1の 位置に位置決めした状態で、 他方の組の軸の位置を予め設定された第 2の位置に 位置決めして、 前記他方の組の重畳を行うことを特徴とする請求の範囲第 6項〜 第 8項のいずれかに記載の数値制御旋盤におけるワークの加工方法。
1 0 . 前記 X 1軸と前記 X 2軸の組の重畳又は前記 Z 1軸と前記 Z 2軸の組の 重畳を行う手順を予め定義してマクロプログラム化し、 前記 X 1軸と前記 X 2軸 の組の重畳又は前記 Z 1軸と前記 Z 2軸の組の重畳を行う指令が入力されたとき に、 前記マクロプログラムを実行して重畳を行うようにしたことを特徴とする請 求の範囲第 6項〜第 9項のいずれかに記載の数値制御旋盤におけるワークの加工 方法。
PCT/JP2000/001466 2000-03-10 2000-03-10 Tour a commande numerique et procede d'usinage de pieces a l'aide de ce tour a commande numerique WO2001066289A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2000/001466 WO2001066289A1 (fr) 2000-03-10 2000-03-10 Tour a commande numerique et procede d'usinage de pieces a l'aide de ce tour a commande numerique
JP2001564930A JP4677062B2 (ja) 2000-03-10 2000-03-10 数値制御旋盤及びこの数値制御旋盤によるワークの加工方法
TW089104316A TW457151B (en) 2000-03-10 2000-03-10 NC lathe and method for machining workpiece with the same
US10/220,802 US6971294B1 (en) 2000-03-10 2000-03-10 Numerically controlled lathe and method of machining work using this numerically controlled lathe
EP00907997A EP1275454B1 (en) 2000-03-10 2000-03-10 Numerically controlled lathe and method of machining work using this numerically controlled lathe
CN008192928A CN1216708C (zh) 2000-03-10 2000-03-10 数控机床以及数控机床对制品的加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/001466 WO2001066289A1 (fr) 2000-03-10 2000-03-10 Tour a commande numerique et procede d'usinage de pieces a l'aide de ce tour a commande numerique

Publications (1)

Publication Number Publication Date
WO2001066289A1 true WO2001066289A1 (fr) 2001-09-13

Family

ID=11735779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001466 WO2001066289A1 (fr) 2000-03-10 2000-03-10 Tour a commande numerique et procede d'usinage de pieces a l'aide de ce tour a commande numerique

Country Status (6)

Country Link
US (1) US6971294B1 (ja)
EP (1) EP1275454B1 (ja)
JP (1) JP4677062B2 (ja)
CN (1) CN1216708C (ja)
TW (1) TW457151B (ja)
WO (1) WO2001066289A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1180407A1 (de) * 2000-08-17 2002-02-20 Index-Werke Gmbh & Co. Kg Hahn & Tessky Werkzeugmaschine
CN1319686C (zh) * 2003-10-03 2007-06-06 津上精密机床(浙江)有限公司 车床
JP2012208845A (ja) * 2011-03-30 2012-10-25 Citizen Holdings Co Ltd 工作機械用制御装置
JP2019107765A (ja) * 2017-12-19 2019-07-04 百正創新科技股▲分▼有限公司 Cncシングルタレットダブルスピンドル二倍加工効率の金属加工機
JPWO2019188220A1 (ja) * 2018-03-30 2021-04-01 シチズン時計株式会社 工作機械
CN112996617A (zh) * 2018-11-22 2021-06-18 星精密株式会社 车床
WO2022102237A1 (ja) 2020-11-10 2022-05-19 中村留精密工業株式会社 Nc工作機械の重畳加工の制御方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW590830B (en) * 2001-05-15 2004-06-11 Citizen Watch Co Ltd Numerically controlled lathe and tooling method using the same
CN102089102B (zh) * 2008-07-10 2013-05-08 西铁城精机宫野股份有限公司 工件加工装置及工件加工方法
CN102259195A (zh) * 2011-07-09 2011-11-30 山东新安凯科控科技有限公司 一种用细长棒料毛坯加工工件的数控机床
CN105074595B (zh) * 2013-02-22 2017-05-17 三菱电机株式会社 数控装置以及加工方法
US10007247B2 (en) 2013-04-30 2018-06-26 Mitsubishi Electric Corporation Numerical control device with plurality of spindles and associated synchronous tapping
WO2015194043A1 (ja) * 2014-06-20 2015-12-23 株式会社牧野フライス製作所 工作機械の制御装置
CN107442779A (zh) * 2017-08-22 2017-12-08 南京肯迈得机床制造有限公司 非同轴调面车削中心及其工作方法
JP7073387B2 (ja) * 2017-09-12 2022-05-23 シチズン時計株式会社 工作機械
CN108788182A (zh) * 2018-06-04 2018-11-13 津上精密机床(浙江)有限公司 一种摇动切削方法及应用该摇动切削方法的走心车床
JP7156897B2 (ja) * 2018-10-10 2022-10-19 シチズン時計株式会社 工作機械
JP7036071B2 (ja) * 2019-03-18 2022-03-15 ブラザー工業株式会社 数値制御装置、数値制御プログラム、及び、数値制御プログラムを記憶した記憶装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01121103A (ja) * 1987-10-30 1989-05-12 Okuma Mach Works Ltd 背面加工装置を有する複合加工旋盤
JPH01316102A (ja) * 1988-06-13 1989-12-21 Mori Seiki Seisakusho:Kk 旋盤工作機
JPH06703A (ja) 1992-06-20 1994-01-11 Star Micronics Co Ltd 数値制御自動旋盤
JPH07185901A (ja) 1993-12-28 1995-07-25 Mori Seiki Co Ltd 重畳加工制御方法及びその数値制御装置
JPH08126901A (ja) 1994-10-27 1996-05-21 Okuma Mach Works Ltd 対向主軸旋盤

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856701A (ja) * 1981-09-30 1983-04-04 Miyano Tekkosho:Kk 工作機械
US4612832A (en) * 1984-04-27 1986-09-23 Kabushiki Kaisha Miyano Tekkosho Multiple-function machine tool with two spindles
WO1989010814A1 (fr) * 1988-05-02 1989-11-16 Kashiwara Machine Mfg. Co., Ltd. Procede de coupe de la surface de rouleaux
JP2878690B2 (ja) * 1988-08-09 1999-04-05 シチズン時計株式会社 数値制御旋盤の制御方法
US5127140A (en) * 1989-12-18 1992-07-07 Hitachi Seiki Co., Ltd. Numerically-controlled lathe, numerically-controlled device therefor and processing procedure thereby
US5105694A (en) * 1990-10-25 1992-04-21 The Olofsson Corporation Adjustable multiple spindle machine tool
DE19513963C2 (de) 1995-04-13 1998-05-28 Gildemeister Ag Numerisch gesteuerte Drehmaschine mit einer Gegenspindel
JPH09323201A (ja) * 1996-06-04 1997-12-16 Dainichi Kinzoku Kogyo Kk 旋削加工方法および該方法に用いる旋盤装置
WO2002024385A1 (fr) * 2000-09-22 2002-03-28 Citizen Watch Co., Ltd. Tour a commande numerique et procede de decoupage de pieces sur un tour a commande numerique
WO2002025388A1 (fr) * 2000-09-22 2002-03-28 Citizen Watch Co., Ltd. Tour a commande numerique et son procede de commande

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01121103A (ja) * 1987-10-30 1989-05-12 Okuma Mach Works Ltd 背面加工装置を有する複合加工旋盤
JPH01316102A (ja) * 1988-06-13 1989-12-21 Mori Seiki Seisakusho:Kk 旋盤工作機
JPH06703A (ja) 1992-06-20 1994-01-11 Star Micronics Co Ltd 数値制御自動旋盤
JPH07185901A (ja) 1993-12-28 1995-07-25 Mori Seiki Co Ltd 重畳加工制御方法及びその数値制御装置
JPH08126901A (ja) 1994-10-27 1996-05-21 Okuma Mach Works Ltd 対向主軸旋盤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1275454A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1180407A1 (de) * 2000-08-17 2002-02-20 Index-Werke Gmbh & Co. Kg Hahn & Tessky Werkzeugmaschine
US6622600B2 (en) 2000-08-17 2003-09-23 Index-Werke Gmbh & Co. Kg Hahn & Tessky Machine tool
CN1319686C (zh) * 2003-10-03 2007-06-06 津上精密机床(浙江)有限公司 车床
JP2012208845A (ja) * 2011-03-30 2012-10-25 Citizen Holdings Co Ltd 工作機械用制御装置
JP2019107765A (ja) * 2017-12-19 2019-07-04 百正創新科技股▲分▼有限公司 Cncシングルタレットダブルスピンドル二倍加工効率の金属加工機
JPWO2019188220A1 (ja) * 2018-03-30 2021-04-01 シチズン時計株式会社 工作機械
JP7195305B2 (ja) 2018-03-30 2022-12-23 シチズン時計株式会社 工作機械
CN112996617A (zh) * 2018-11-22 2021-06-18 星精密株式会社 车床
WO2022102237A1 (ja) 2020-11-10 2022-05-19 中村留精密工業株式会社 Nc工作機械の重畳加工の制御方法

Also Published As

Publication number Publication date
US6971294B1 (en) 2005-12-06
CN1216708C (zh) 2005-08-31
JP4677062B2 (ja) 2011-04-27
EP1275454A4 (en) 2010-01-13
EP1275454A1 (en) 2003-01-15
EP1275454B1 (en) 2012-05-23
TW457151B (en) 2001-10-01
CN1450941A (zh) 2003-10-22

Similar Documents

Publication Publication Date Title
JP4677062B2 (ja) 数値制御旋盤及びこの数値制御旋盤によるワークの加工方法
JP5005874B2 (ja) 数値制御旋盤及びこの数値制御旋盤によるワークの加工方法
JP4090888B2 (ja) 数値制御旋盤及びこの数値制御旋盤によるワークの加工方法
JP4316850B2 (ja) 複合加工工作機械における加工方法
JP4997240B2 (ja) 複数の刃物台を備える自動旋盤
JP3316003B2 (ja) 数値制御自動旋盤と数値制御自動旋盤による加工方法
JP2828232B2 (ja) 対向主軸旋盤
JP2000117506A (ja) 自動旋盤
JP4527926B2 (ja) 工具ホルダ
JP3439237B2 (ja) 旋盤及び旋盤による加工方法
JPH0716805B2 (ja) 数値制御複合旋盤
JP2678838B2 (ja) 複合加工nc旋盤
JP4392913B2 (ja) 数値制御自動旋盤及びこの数値制御自動旋盤による被加工物の加工方法
JPH0255161B2 (ja)
JPH05154701A (ja) 2主軸nc旋盤
JPH08118203A (ja) Nc旋盤の制御方法及び制御装置
JP2005125483A (ja) 旋盤
WO2022102237A1 (ja) Nc工作機械の重畳加工の制御方法
JPH10328901A (ja) 対向主軸旋盤
JPH0661642B2 (ja) 数値制御自動旋盤
JPS62124802A (ja) 数値制御自動旋盤
JP2003089038A (ja) 複合nc旋盤のワーク加工方法
JPH06277902A (ja) 対向2軸旋盤
JPS62124804A (ja) 数値制御自動旋盤
JPH05237705A (ja) Nc自動旋盤の工具送り方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 564930

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 008192928

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2000907997

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10220802

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000907997

Country of ref document: EP