WO2001065550A1 - Appareil a disque optique - Google Patents

Appareil a disque optique Download PDF

Info

Publication number
WO2001065550A1
WO2001065550A1 PCT/JP2001/001570 JP0101570W WO0165550A1 WO 2001065550 A1 WO2001065550 A1 WO 2001065550A1 JP 0101570 W JP0101570 W JP 0101570W WO 0165550 A1 WO0165550 A1 WO 0165550A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical disk
optical pickup
optical
amplitude
disk medium
Prior art date
Application number
PCT/JP2001/001570
Other languages
English (en)
French (fr)
Inventor
Mitsuteru Fujimoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to PCT/JP2001/001570 priority Critical patent/WO2001065550A1/ja
Priority to US09/959,610 priority patent/US6678221B2/en
Publication of WO2001065550A1 publication Critical patent/WO2001065550A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0945Methods for initialising servos, start-up sequences

Definitions

  • the present invention relates to an optical disk device for recording or reproducing information on or from an optical disk, and more particularly, when starting an optical disk medium mounted on the optical disk device, accurately and efficiently adjusting a track error signal, and has a boot time.
  • an optical disk device for recording or reproducing information on or from an optical disk, and more particularly, when starting an optical disk medium mounted on the optical disk device, accurately and efficiently adjusting a track error signal, and has a boot time.
  • FIG. 14 is a block diagram showing the configuration of a conventional optical disk device.
  • reference numeral 2 denotes an optical disk medium having an information recording track, such as a CD, CD-ROM, DVD, or MO
  • 1 denotes a semiconductor laser condensed and irradiated to a target position on the optical disk medium 2.
  • An optical pickup for recording and reproducing information comprising an optical system and a drive system. The optical system focuses laser light on the surface of the optical disk medium 2 and detects a deviation between the irradiation position of the laser light and a target position on the optical disk medium 2. It is composed of a beam splitter, a photo diode, etc. (all not shown).
  • the drive system performs focus control that causes the objective lens to follow surface runout on the optical disc medium 2 or tracking control that follows the track runout, and moves the target position and the laser beam spot on the optical disc medium 2. It is driven to maintain a constant relationship, and is mainly composed of magnets, coils, and support members (all not shown).
  • This drive system is an actuator that drives the lens group of the optical system.
  • Reference numeral 3 designates an optical pickup 1, and various kinds of return light amount signals from the optical disk medium 2 detected by a plurality of divided photo diodes.
  • An operational amplifier that performs arithmetic processing.
  • the focus error signal (hereinafter referred to as the FE signal), which is the amount of defocus of the laser light spot on the optical disk medium 2, and the track of the laser light spot on the optical disk medium 2.
  • a track error signal (hereinafter, referred to as a TE signal), which is an amount of positional deviation with respect to, and a reproduction signal (hereinafter, referred to as an RF signal), which is information recorded on the optical disk medium 2 as a change in light reflectance. Is output.
  • a focus control circuit 6 for driving the data processor 6 is a microprocessor (hereinafter, referred to as an MPU) as an arithmetic processing unit. The ON / OFF of the focus control operation described above is operated according to a command from the MPU 6.
  • the 7 is composed of an offset control circuit 7 1 and a variable gain amplifier 7 2, receives the TE signal output from the operational amplifier 3, and adjusts the gain and offset according to the settings from the MPU 6 to adjust An adjustment circuit that outputs a subsequent track error signal (hereinafter referred to as a TEA signal).
  • the input 8 receives the TEA signal and controls the laser beam irradiation position to follow the track of the optical disk medium 2.
  • the tracking control circuit 9 is a tracking drive circuit that drives the objective lens of the optical pickup 1 while being controlled by the tracking control circuit 8, and the ONZO FF of this tracking control operation is operated by a command from the MPU 6.
  • Reference numeral 10 denotes a control output signal (hereinafter referred to as a TRO signal) output from the tracking control circuit 8, and the irradiation position of the laser beam of the optical pickup 1 follows the spiral track on the optical disk medium 2.
  • a traverse control circuit that generates a T VO signal, which is a control signal for causing the optical pickup 1 itself to follow the optical disk 2 in the radial direction, and a traverse control circuit 11 that receives the T VO signal and drives a traverse motor 12 described later
  • a drive circuit 12 is a traverse motor for moving the optical pickup 1 in the radial direction of the optical disk medium 2. 13 is output from the operational amplifier 3.
  • 1 is a spindle motor control circuit that inputs the SYNC signal extracted from the signal processing circuit 13 and outputs a DMO signal that controls the rotation speed of the optical disk medium 2.
  • 15 is a DMO signal that is input from the spindle motor control circuit 14.
  • a spindle motor drive circuit drives a spindle motor, which will be described later.
  • Reference numeral 16 denotes a spindle motor for rotating the optical disk medium 2, and the FG signal representing the number of revolutions is input to the spindle motor control circuit 14 so that the S YN Apart from the C signal, the rotation of the spindle motor 16 can be controlled at a predetermined rotation speed.
  • the MPU 6 initializes the position of the optical pickup 1 (step S902). Specifically, the traverse motor 12 is driven so that the optical pickup 1 is forcibly moved to the inner circumference side of the optical disk medium 2, and is moved until the innermost switch (not shown) is pressed (Ste S903). Alternatively, if there is no innermost switch, the traverse motor 12 is kept driven for a time during which the optical pickup 1 moves to the limit of the movable range in which the optical pickup 1 can move to the inner circumference. After moving the optical pickup 1 to the innermost peripheral position of the optical disk medium 2 in this way, a predetermined outer peripheral side is set so that the optical pickup 1 is located at the position where the track exists on the optical disk medium 2. (Step S904).
  • Fig. 16 shows the radial area structure of an optical disc medium such as a general compact disc (hereinafter referred to as CD), a recordable CD-R, and a rewritable CD-RW.
  • CD general compact disc
  • CD-R recordable CD-R
  • a rewritable CD-RW rewritable CD-RW
  • the innermost part is a clamp area A1 for mounting a disc, and an information area A2 where a track exists outside the clamp area A1.
  • the inner and outer peripheries of this information area A 2 There are specular areas A30, A31 where the emissive layer is formed but no tracks exist, and substrate areas A40, A41 consisting only of a transparent substrate. Therefore, the optical pickup 1 is located in the information area A2 of the optical disk medium 2 by performing the initialization operation of the position of the optical pickup 1 described above.
  • step S905 the amount of return light from the optical disk medium 2 when the objective lens of the optical pickup 1 is moved up and down in the focus direction is detected from the level of the RF signal, and the presence or absence of the disk is determined (step S905).
  • the optical disk medium 2 is rotated by driving the spindle motor 16 (step S906), and the focus control of the optical pickup 1 is further performed. Is turned on (step S907).
  • the focused laser light spot crosses tracks on the optical disk medium 2 due to the eccentricity of the optical disk medium 2 itself or the center shift during mounting.
  • This state is called the track cross state.
  • the TE signal in the track cross state has a substantially sinusoidal waveform as shown in Fig. 17, but the difference in the reflectivity of the optical disk medium 2, the difference in the sensitivity of the photo diode, and the unmatched shape of the track groove
  • the signal amplitude and signal offset may change depending on the character. Therefore, the gain and offset of the TE signal are adjusted by the offset adjustment circuit 71 and variable gain amplifier 72, which constitute the adjustment circuit 7, based on the settings from the MPU 6, and the adjustment as shown in Fig. 17
  • a TEA signal which is a subsequent track error signal, is generated (step S908).
  • the tracking control is turned on (step S909), and then the laser spot of the optical pickup 1 is placed on the optical disk medium 2 Traverse tracking control to follow a spiral track Turn ON (step S910).
  • the conventional optical disk device configured as described above transports the optical pickup medium at a predetermined speed in the radial direction while maintaining the position of the objective lens of the optical pickup, and generates a substantially predetermined track cross frequency.
  • the accuracy of adjusting the amplitude and offset of the track error signal is improved.
  • the above-mentioned conventional optical disk device has the following problems.
  • the position of the optical pickup 1 at the time of startup is the position of the track on the optical disk medium 2. It is necessary to perform the movement operation to the initialization position even though it is in the existing information area. Therefore, the optical disk device is started up until the information from the optical disk medium 2 is read and the information is recorded and reproduced. There was a problem that time would be long.
  • the present invention has been made to solve the above-mentioned problems of the related art, and it is an object of the present invention to obtain an optical disk device capable of shortening a start-up time by reliably and efficiently adjusting a track error signal.
  • the purpose is. Disclosure of the invention
  • an optical device comprises: an optical pickup for recording or reproducing information on an optical disk medium having an information recording track; and a focus control means for controlling the optical pickup so that a light beam is focused on the optical disk medium.
  • a tracking actuator that drives the optical pickup so that the light beam irradiation position follows the information recording track, and a track error that detects a deviation of the light beam irradiation position from the track position.
  • the optical disk device having An amplitude detecting means, and a transfer means for transferring the optical pickup in a radial direction of the optical disk medium, wherein the focus control means focuses a light beam emitted from the optical pickup onto the optical disk medium, and If the amplitude of the track error signal detected by the detecting means is equal to or larger than a preset value, the adjusting means adjusts the gain and offset of the track error signal, and the track error detected by the amplitude detecting means is adjusted. If the amplitude of the signal is less than a preset value, the optical pickup is moved to a preset position.
  • the starting time can be greatly reduced.
  • An optical disc device is an optical disc drive for recording or reproducing information on or from an optical disc medium having an information recording track, and a light beam focused on the optical disc medium.
  • Focus control means for controlling the optical pickup; a tracking actuator for driving the optical pickup so that the light beam irradiation position follows the information recording track; and a track for the light beam irradiation position.
  • a track error detecting means for detecting a deviation from the position, and a gain and offset of a track error signal output by the track error detecting means.
  • An optical disc device comprising: an adjustment unit for adjusting the amplitude of the track error signal; and a tracking drive unit for driving the tracking actuator in accordance with an output signal of the adjustment unit.
  • Focus control means focuses the light beam emitted from the optical pickup onto the optical disk medium, and shifts the objective lens of the optical pickup toward the outer periphery of the optical disk medium by the objective lens shift means.
  • 1st track detected by the amplitude detection means The first comparison result of comparing the amplitude of the difference signal with a preset value, and the above-mentioned condition in which the objective lens of the optical pickup is shifted toward the inner circumference of the optical disk medium by the objective lens shifting means.
  • the first comparison result and the second comparison result are both determined in advance. If the value is equal to or greater than the set value, the gain and offset of the track error signal are adjusted. If the first comparison result is equal to or greater than the preset value and the second comparison result is less than the preset value, The optical pickup is transported in the outer peripheral direction of the optical disk medium. If the first comparison result is less than a preset value and the second comparison result is greater than a preset value, the optical pickup is moved up. If the first comparison result and the second comparison result are both less than a preset value, the optical pickup is transported to a predetermined position. It is a feature.
  • the optical pickup it is determined whether or not the optical pickup needs to be moved before performing the operation of adjusting the track error signal, and the optical pickup is moved in the optimal direction even when it is determined that the optical pickup needs to be further moved.
  • An optical disc device is an optical disc drive for recording or reproducing information on or from an optical disc medium having an information recording track, and a light beam focused on the optical disc medium.
  • Focus control means for controlling the optical pickup; a tracking actuator for driving the optical pickup so that the light beam irradiation position follows the information recording track; and a track for the light beam irradiation position.
  • Track error detecting means for detecting deviation from the position; adjusting means for adjusting the gain and offset of the track error signal output by the track error detecting means; and the tracking actuator according to the output signal of the adjusting means
  • Optical disc device equipped with a tracking drive means for driving Amplitude detection means for detecting the amplitude of the track error signal; objective lens shift means for supplying a signal to the tracking drive means to shift the objective lens of the optical pickup in the radial direction of the optical disc medium; and Transfer means for transferring the optical pickup in a radial direction of the optical disk medium, the transfer means transferring the optical pickup in an outer circumferential direction of the optical disk medium, and the focus control means on the optical disk medium from the optical pickup.
  • the amount of movement of the optical pickup at the time of startup can be greatly reduced, so that the startup time can be significantly reduced.
  • An optical disc device is an information recording device.
  • An optical pickup for recording or reproducing information on or from an optical disk medium having a rack; a focus control means for controlling the optical pickup so that a light beam is focused on the optical disk medium; A tracking actuator for driving the optical pickup so as to follow the information recording track; a track error detecting means for detecting a deviation of a light beam irradiation position from the track position; and a track error detecting means.
  • An optical disc device comprising: an adjusting unit for adjusting a gain and an offset of a track error signal to be output; and a tracking driving unit for driving the tracking actuator according to an output signal of the adjusting unit.
  • Amplitude detecting means for detecting the amplitude of the An objective lens shift means for supplying a signal to the driving means for shifting the objective lens of the optical pickup in the radial direction of the optical disk medium, and a transfer means for transferring the optical pickup in the radial direction of the optical disk medium.
  • the transfer means transfers the optical pickup in an inner circumferential direction of the optical disk medium, and the focus control means focuses a light beam emitted from the optical pickup onto the optical disk medium, and the objective lens shift.
  • the means is shifted by the amplitude detecting means with the objective lens of the optical pickup shifted in the inner circumferential direction of the optical disc medium. Stop the shift of the objective lens and adjust the gain and offset of the track error signal by the adjustment means described above. There, if the amplitude detecting means less than the value at which the amplitude of the detected track error signal is set in advance by, the optical Pikkuappu is characterized in that for transferring the outer circumference of the optical disk medium.
  • the amount of movement of the optical pickup at the time of startup can be greatly reduced, so that the startup time can be significantly reduced.
  • An optical disk device is the optical disk device according to any one of claims 1 to 4, wherein the amplitude detecting means detects the amplitude of the track error signal.
  • the time period for detecting The method is characterized in that the operation is performed for one or more rotations in synchronization with the rotation of the optical disk medium.
  • the amplitude of the track error signal is surely increased. Can be detected.
  • An optical disc device is an optical disc drive for recording or reproducing information on or from an optical disc medium having an information recording track, and a light beam focused on the optical disc medium.
  • Focus control means for controlling the optical pickup; a tracking actuator for driving the optical pickup so that the light beam irradiation position follows the information recording track; and a track for the light beam irradiation position.
  • Track error detecting means for detecting deviation from the position; adjusting means for adjusting the gain and offset of the track error signal output by the track error detecting means; and the tracking actuator according to the output signal of the adjusting means
  • Optical disc device equipped with a tracking drive means for driving Return light amount detection means for detecting the return light amount from the optical disk medium, amplitude detection means for detecting the amplitude of the output signal of the return light amount detection means, and transfer for transferring the optical pickup in the radial direction of the optical disk medium
  • the focus control means focuses the light beam from the optical pickup on the optical disk medium, and if the amplitude of the return light amount signal detected by the amplitude detection means is equal to or greater than a preset value.
  • the gain and offset of the track error signal are adjusted by the adjusting means. If the amplitude of the return light amount signal detected by the amplitude detecting means is smaller than a preset value, the optical pickup is determined in advance. It is transported to a designated position.
  • An optical disc device is an optical disc device for recording or reproducing information on or from an optical disc medium having an information recording track, and a light beam focused on the optical disc medium.
  • Focus control means for controlling the optical pickup; a tracking actuator for driving the optical pickup so that the light beam irradiation position follows the information recording track; and a track for the light beam irradiation position.
  • Track error detecting means for detecting deviation from the position; adjusting means for adjusting the gain and offset of the track error signal output by the track error detecting means; and the tracking actuator according to the output signal of the adjusting means
  • Optical disc device equipped with a tracking drive means for driving Returning light amount detecting means for detecting the returning light amount from the optical disk medium, amplitude detecting means for detecting the amplitude of the output signal of the returning light amount detecting means, and providing a signal to the tracking driving means;
  • Objective lens shifting means for shifting the optical pickup in the radial direction of the optical disk medium, and transfer means for shifting the optical pickup in the radial direction of the optical disk medium, wherein the focus control means is provided on the optical disk medium.
  • the focus of the light beam emitted from the optical pickup is adjusted, and the first object detected by the amplitude detecting means in a state where the objective lens of the optical pickup is shifted in the outer peripheral direction of the optical disk medium by the objective lens shifting means.
  • the first comparison result of comparing the amplitude of the return light amount signal of In the state where the objective lens of the optical pickup is shifted in the inner circumferential direction of the optical disk medium by the shift means, the amplitude of the second return light amount signal detected by the amplitude detecting means and the preset value are determined.
  • the gain and offset of the track error signal are adjusted, and the first If the comparison result of (2) is equal to or more than a preset value and the second comparison result is less than the preset value, the optical pickup is moved in the outer peripheral direction of the optical disk medium, and the first comparison result is the preset value. Is less than the preset value. If this is the case, the optical pickup is transferred in the inner circumferential direction of the optical disk medium, and if the first comparison result and the second comparison result are both smaller than a preset value, the optical pickup is set in advance. It is characterized in that it is transported to a specified location.
  • the optical pickup it is determined whether or not the optical pick-up needs to be moved before performing the operation of adjusting the track error signal, and if the optical pickup needs to be further moved, the optical pickup is moved in the optimum direction.
  • the optical pickup can be optimized even if the optical pickup is located at the boundary of the area on the optical disk medium where the track exists at the time of startup. It is possible to realize a significant shortening.
  • An optical disc device is an optical disc drive for recording or reproducing information on or from an optical disc medium having an information recording track, and a light beam focused on the optical disc medium.
  • Focus control means for controlling the optical pickup; a tracking actuator for driving the optical pickup so that the light beam irradiation position follows the information recording track; and a track for the light beam irradiation position.
  • Track error detecting means for detecting deviation from the position; adjusting means for adjusting the gain and offset of the track error signal output by the track error detecting means; and the tracking actuator according to the output signal of the adjusting means
  • Optical disc device equipped with a tracking drive means for driving Returning light amount detecting means for detecting the returning light amount from the optical disk medium, amplitude detecting means for detecting the amplitude of the output signal of the returning light amount detecting means, and providing a signal to the tracking driving means;
  • Objective lens shifting means for shifting the optical pickup in the radial direction of the optical disk medium, and transfer means for shifting the optical pickup in the radial direction of the optical disk medium, the transfer means transferring the optical pickup to the optical disk medium.
  • the focus control means focuses the light beam from the optical pickup on the optical disk medium, and the objective lens shift means moves the optical beam toward the outer circumference of the optical disk medium. If the amplitude of the return light amount signal detected by the amplitude detecting means with the objective lens of the cup shifted is greater than or equal to a preset value, the shift of the objective lens is stopped and the track error is adjusted by the adjusting means. The gain and offset of the signal are adjusted, and if the amplitude of the return light amount signal detected by the amplitude detecting means is smaller than a preset value, the optical pickup is moved in the inner circumferential direction of the optical disk medium. It is characterized by the following.
  • the moving amount of the optical pickup at the time of startup can be greatly reduced, so that the startup time can be significantly reduced.
  • An optical disc device is an optical disc device for recording or reproducing information on or from an optical disc medium having an information recording track, and a light beam focused on the optical disc medium.
  • Focus control means for controlling the light pickup; a tracking actuator for driving the light pickup so that the light beam irradiation position follows the information recording track; and a track for the light beam irradiation position.
  • Track error detecting means for detecting deviation from the position; adjusting means for adjusting the gain and offset of the track error signal output by the track error detecting means; and the tracking actuator according to the output signal of the adjusting means
  • Optical disc device equipped with a tracking drive means for driving Returning light amount detecting means for detecting the returning light amount from the optical disk medium, amplitude detecting means for detecting the amplitude of the output signal of the returning light amount detecting means, and providing a signal to the tracking driving means;
  • Objective lens shifting means for shifting the optical pickup in the radial direction of the optical disk medium, and transfer means for shifting the optical pickup in the radial direction of the optical disk medium, wherein the transfer means connects the optical pickup to the optical disk medium.
  • the light beam emitted from the optical pickup is focused on the optical disc medium by the focus control means, and the inner peripheral direction of the optical disc medium is focused by the objective lens shift means.
  • the shift of the objective lens is stopped, and the gain and offset of the track error signal are adjusted by the adjusting means. If the amplitude of the return light amount signal detected in step (1) is less than a preset value, the optical pickup is moved in the outer peripheral direction of the optical disk medium.
  • the amount of movement of the optical pickup at the time of startup can be greatly reduced, so that the startup time can be significantly reduced.
  • An optical disk device is the optical disk device according to any one of claims 6 to 9, wherein the optical disk device is returned by the amplitude detecting means. It is characterized in that the period for detecting the amplitude of the light amount signal is performed for one or more rotations in synchronization with the rotation of the optical disk medium.
  • the amplitude of the track error signal is reliably detected even if the state of the return light amount signal changes due to the eccentricity of the optical disk medium itself, the center deviation at the time of mounting, or the vibration of the objective lens of the optical pickup. can do.
  • FIG. 1 is a block diagram showing a configuration of an optical disk device according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart illustrating an operation of the optical disc device according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing a configuration of an optical disc device according to Embodiments 2 to 4 of the present invention.
  • FIG. 4 is a flowchart showing an operation of the optical disk device according to the second embodiment of the present invention.
  • FIG. 5 is a flowchart showing an operation of the optical disc device according to Embodiment 3 of the present invention.
  • FIG. 6 is a diagram showing a flowchart for explaining the operation of the optical disc device according to Embodiment 4 of the present invention.
  • FIG. 7 is a block diagram showing a configuration of an optical disk device according to Embodiment 6 of the present invention.
  • FIG. 8 is a diagram showing a flowchart for explaining the operation of the optical disc device according to Embodiment 6 of the present invention.
  • FIG. 9 is a diagram showing an RF signal and a TE signal in a track cross state of a recorded portion and an unrecorded portion.
  • FIG. 10 is a block diagram showing a configuration of an optical disk device according to Embodiments 7 to 9 of the present invention.
  • FIG. 11 is a diagram showing a flowchart for explaining the operation of the optical disk device according to the seventh embodiment of the present invention.
  • FIG. 12 is a diagram showing a flowchart for explaining the operation of the optical disc device according to the eighth embodiment of the present invention.
  • FIG. 13 is a diagram showing a flowchart for explaining the operation of the optical disc device according to Embodiment 9 of the present invention.
  • FIG. 14 is a block diagram showing the configuration of a conventional optical disk device.
  • FIG. 15 is a flowchart showing the operation of a conventional optical disk device.
  • FIG. 16 is a diagram showing a configuration of an area on an optical disk medium.
  • FIG. 17 is a diagram showing the TE signal and the TEA signal in the track cross state.
  • FIG. 1 is a block diagram showing a configuration of an optical disk device according to Embodiment 1 of the present invention.
  • reference numeral 2 denotes information such as CD, CD-ROM, DVD, and MO.
  • An optical pickup having information recording tracks, 1 is an optical pickup for condensing a semiconductor laser and irradiating a target position on the optical disc medium 2 to record and reproduce information, and comprises an optical system and a drive system. Be composed.
  • the optical system focuses laser light on the surface of the optical disk medium 2 and detects a deviation between the irradiation position of the laser light and a target position on the optical disk medium 2, and includes a semiconductor laser, lenses, and the like. , Beam splitter, photo diode, etc. (all not shown).
  • the drive system performs focus control for causing the objective lens to follow surface runout on the optical disc medium 2 or tracking control for following the track runout, and determines the target position on the optical disc medium 2 and the laser light spot. It is driven to maintain a constant positional relationship between the magnets, and is mainly composed of magnets, coils, and support members (all not shown).
  • This drive system is an actuator that drives the lens group of the optical system.
  • Numeral 3 denotes an arithmetic amplifier (track error detecting means) which performs various arithmetic processing on a return light amount signal from the optical disk medium 2 which is detected by a divided photodiode and constitutes the optical pickup 1.
  • a focus error signal (hereinafter, referred to as an FE signal), which is an amount of defocus of the spot on the optical disk medium 2, and a track error signal (hereinafter, referred to as an FE signal) which is an amount of displacement of the laser light spot with respect to a track on the optical disk medium 2.
  • a TE signal and a reproduction signal (hereinafter, referred to as an RF signal), which is information recorded on the optical disc medium 2 as a change in light reflectance.
  • a focus control circuit (focus control means) that focuses laser light emitted from the optical pickup 1 and focuses on the optical disk medium 2. 5 is controlled by the focus control circuit 4 while A focus drive circuit for driving the actuator of the objective lens of the optical pickup 1, a microprocessor (hereinafter, referred to as an MPU) as an arithmetic processing unit, and ONZOFF of the focus control operation described above according to a command from the MPU 6. Operate.
  • a tracking control circuit that inputs a signal and controls the irradiation position of the laser beam to follow the track on the optical disc medium 2.
  • a tracking control circuit 9 drives an objective lens actuator of the optical pickup 1 while being controlled by a tracking control circuit 8. This is a tracking drive circuit (tracking drive means), and ON / OFF of this tracking control operation is operated by a command from the MPU 6.
  • a traverse control circuit that generates a T VO signal, which is a control signal that causes the optical pickup 1 itself to follow the optical disk 2 in the radial direction, and a traverse control circuit 11 that inputs a TV O signal and drives a traverse motor 12 described later
  • a drive circuit 12 is a traverse motor (transfer means) for moving the optical pickup 1 in the radial direction of the optical disk medium 2.
  • Reference numeral 13 denotes a signal processing circuit which receives an RF signal output from the operational amplifier 3 and reproduces information from the optical disk medium 2, and extracts a SYNC signal as a synchronization signal from the RF signal.
  • Reference numeral 14 denotes a spindle motor control circuit that inputs a SYNC signal extracted from the signal processing circuit 13 and outputs a DMO signal that controls the rotation speed of the optical disk medium 2.
  • Reference numeral 15 denotes a DMO signal from the spindle motor control circuit 14. And a spindle motor drive circuit 16 for driving a spindle motor, which will be described later.
  • Reference numeral 16 denotes a spindle motor for rotating the optical disk medium 2, and an FG signal indicating the number of revolutions is input to the spindle motor control circuit 14. In addition to the SYNC signal, the rotation of the spindle motor 16 can be controlled at a predetermined rotation speed.
  • Reference numeral 17 denotes a signal amplitude detection circuit (amplitude detection means) for detecting the amplitude of the TE signal before adjustment, and outputs an output signal TEpp.
  • the signal amplitude detection circuit 17 includes a peak hold circuit (not shown), a bottom hold circuit, and a differential amplifier. Also not shown).
  • Reference numeral 18 denotes a comparator for comparing the level of the output signal TE pp output from the signal amplitude detection circuit 17 with a predetermined level signal TE ref set by the MPU 6, and the output signal S ig of the comparator 18 1 is input to MPU 6.
  • Fig. 17 (a) shows a diagram of the TE signal in the track cross state.
  • the level represented by TEpp is an output signal output from the signal amplitude detection circuit 17 described above.
  • the TE signal is approximately sinusoidal, but the signal amplitude and The signal offset may change. Therefore, the gain and offset of the TE signal are adjusted by the offset adjustment circuit 71 and the variable gain amplifier 72 constituting the adjustment circuit 7 according to the setting from the MPU 6.
  • FIG. 17 (b) shows the TEA signal, which is the track error signal after adjustment.
  • FIG. 2 is a flowchart for explaining the operation of the optical disk device according to Embodiment 1 of the present invention.
  • FIG. 16 is a diagram showing the area structure in the radial direction of the optical disk medium.
  • the innermost part A1 is a clamp area for mounting a disc
  • A2 is an information area where a track exists
  • A30 and A31 are mirror areas where no track exists
  • A4 Reference numerals 0 and 41 denote a substrate region consisting of only a transparent substrate.
  • Step S101 it is determined whether the optical disk apparatus has the optical disk medium 2.
  • Step S102 it is determined whether the optical disk apparatus has the optical disk medium 2.
  • the following operation is performed. First, the amount of return light from the optical disk medium 2 when the objective lens of the optical pickup 1 is moved up and down in the focus direction is detected from the level of the RF signal. If the optical disk medium 2 is mounted on the optical disk device, the position of the optical pickup 1 is determined to be in the information area A 2 and the mirror areas A 30, A 31 of the optical disk medium 2 shown in FIG.
  • the spindle motor 16 is forcibly accelerated for a certain period of time, the change in the number of revolutions of the spindle motor 16 is detected from the FG signal, and the inertia of the rotor of the spindle motor 16 is measured to measure the optical disk medium. The presence or absence of 2 is determined.
  • the position of the optical pickup 1 before startup is normally Since it is located in a different area from that of the abnormal state, the position of the optical pickup 1 is initialized and the processing is continued. Such discrimination of the presence or absence of the optical disk medium 2 is performed in step S102.
  • step S102 when it is determined that the optical disk medium 2 is present as a result of the determination in step S102, the rotation of the optical disk medium 2 is started by driving the spindle motor 16 (step S103), and the optical disk medium 2 starts rotating.
  • the focus control of the pickup 1 is turned on (step S104).
  • step S104 if it is determined in step S102 that the optical disk medium 2 is not present, the operation ends.
  • step S104 if the position of the optical pickup 1 is in the information area A2 where the track of the optical disk medium 2 exists, the focused laser light spot will Track crossing occurs due to misalignment during mounting.
  • the TE signal does not have a substantially sinusoidal waveform as shown in FIG. 17 but has a constant level.
  • the signal amplitude of the TE signal before the adjustment is detected by the signal amplitude detection circuit 17 (step S105), and the detected signal TEpp and the signal TEpp are generated due to scratches on the mirror surface of the optical disk medium 2.
  • the comparator 18 compares the predetermined amplitude signal level TE ref set to about the noise level on the TE signal with the comparator 18 to determine whether the amplitude is equal to or higher than the predetermined amplitude (step S 106). If the result of the determination is that the amplitude is equal to or greater than the predetermined amplitude, the comparator 18 outputs a high level "1" to the output signal Sig1 and proceeds to step S108.
  • step S106 determines whether the amplitude is less than the predetermined amplitude. If the result of determination in step S106 is that the amplitude is less than the predetermined amplitude, comparator 18 outputs a low level "0" as output signal Sig1 and proceeds to step S107.
  • step S108 if the MPU 6 has the signal Sig1 force S "1", the optical pickup 1 is in the information area A2 where the track of the optical disk medium 2 is present, and is in a normal track cross state. Then, the next track error signal is adjusted (step S108).
  • step S107 if the MPU 6 has the signal Sig1 force S "0", the optical pickup 1 is in the mirror surface areas A30, A31 where no tracks of the optical disc medium 2 exist, and the Judging that the optical pickup 1 is not in the track cross state, the position of the optical pickup 1 is initialized, the optical pickup 1 is moved to the information area A 2 where the tracks of the optical disk medium 2 exist, and the TE signal is adjusted. Step S108). However, in order to initialize the position of the optical pickup 1, first, the focus control is turned off, and then the focus control is turned on again at the end.
  • step S108 when the preparation for operating the tracking control accurately is performed by adjusting the TE signal, the tracking control is then turned on (step S109), and then the laser beam of the optical pickup 1 is turned on.
  • the traverse following control is turned on so that the spot follows the spiral track on the optical disk medium 2 (step S110). Therefore, the laser light spot of the optical pickup 1 is connected to the track on the optical disk medium 2. It is possible to accurately follow, and the information on the optical disk medium 2 can be reproduced (step S111).
  • the movement of the optical pickup 1 to the initialization position at the time of startup is performed when the optical pickup 1 at the time of startup is moved to an area other than the information area A 2 where the track on the optical disk medium 2 exists. Since it is not executed only when there is a certain time, in most cases, the startup time can be greatly reduced.
  • the conventional optical disc apparatus shown in FIG.
  • the signal amplitude detection circuit 17 and the comparator 18 are added, but the TEA signal is sampled by the MPU 6 with the initial value given to the adjustment circuit 7, and the amplitude of the TE signal is detected.
  • the MPU 6 realizes the amplitude detection means for performing the detection and the means for comparing the amplitude with the preset value, so that the first embodiment can be implemented without adding the signal amplitude detection circuit 17 and the comparator 18. You may make it implement
  • FIG. 3 is a block diagram showing a configuration of an optical disk device according to Embodiment 2 of the present invention.
  • reference numeral 19 denotes the tracking actuator of the optical pickup 1 by adding the output signal Sig 2 of the MPU 6 and the output signal TRO of the tracking control circuit 8 and outputting the result to the tracking drive circuit 9.
  • the adder 19 can forcibly shift the objective lens of the optical pickup 1 in the radial direction of the optical disk medium 2 by the output signal Sig 2 of the MPU 6.
  • symbol is attached
  • FIG. 4 is a flowchart for explaining the operation of the optical disk device according to the second embodiment of the present invention.
  • the optical disk medium 2 is loaded in the optical disk device or the optical disk When the power of the optical disk device is turned on (step S201), it is determined whether or not the optical disk device 2 has the optical disk medium 2 (step S202). The method of determining whether or not there is a difference is based on the RF signal level and the inertia, as described in the first embodiment, and thus the description is omitted. If it is determined in step S202 that the optical disk medium 2 is present, the spindle motor 16 is driven to start rotation of the optical disk medium 2 (step S203). Turn on the focus control of optical pickup 1 (Step S204). On the other hand, if it is determined in step S202 that the optical disk medium 2 is not present, the operation ends.
  • step S204 if the position of the optical pickup 1 is in the information area A2 where the track of the optical disc medium 2 shown in FIG. 16 exists, the focused laser light spot is Due to the eccentricity and the misalignment at the time of mounting, the track cross state as shown in Fig. 17 occurs.
  • the focus control operates normally but the tracks do not intersect.
  • the TE signal does not have a substantially sinusoidal waveform as shown in FIG. 17 but has a constant level.
  • the MPU 6 shifts the objective lens of the optical pickup 1 toward the outer peripheral side of the optical disk medium 2 according to the output signal Sig 2 (step S 205).
  • the signal amplitude of the TE signal before adjustment is detected by the signal amplitude detection circuit 17 (step S206), and the detected output signal TE pp is compared with the predetermined amplitude signal level TE ref by the comparator 1 Compare with 8.
  • the predetermined amplitude signal level TE ref is set to be substantially the same as a noise level on the TE signal generated by a scratch on the mirror surface of the optical disk medium 2 or the like.
  • the comparator 18 If the output signal TEp is equal to or higher than the predetermined amplitude signal level TEref as a result of the comparison by the comparator 18, the comparator 18 outputs the high level ⁇ 1 ⁇ as the output signal Sig1 and outputs If the signal TE pp is less than the predetermined amplitude signal level TE ref, the comparator 18 sets the output signal Sig 1 to the low level ⁇ 0 " Is output. The MPU 6 holds this detected value as a variable ⁇ (step S207).
  • the MPU 6 shifts the objective lens of the optical pickup 1 toward the inner peripheral side of the optical disk medium 2 by the output signal Sig 2 (step S 208).
  • the signal amplitude of the TE signal before the adjustment is detected by the signal amplitude detection circuit 17 (step S209), and the detected signal TE pp and the mirror surface of the optical disk medium 2 are detected.
  • the comparator 18 compares a predetermined amplitude signal level TE re ⁇ set to about the noise level on the TE word generated due to a flaw or the like.
  • the comparator 18 If the output signal ⁇ ⁇ ⁇ ⁇ is equal to or greater than the predetermined amplitude signal level TE ref as a result of the comparison by the comparator 18, the comparator 18 outputs a high level ⁇ 1 ⁇ as the output signal S ig 1, If the output signal TEpp is less than the predetermined amplitude signal level TEref, the comparator 18 outputs a low level ⁇ 0 ⁇ as the output signal Sig1.
  • the MPU 6 holds the detected value as a variable j3 (Step S210), and releases the shift of the objective lens (Step S211).
  • the position of the optical pickup 1 is the boundary position P 0 which is the boundary between the information area A 2 where the track of the optical disk medium 2 shown in FIG.
  • the optical pickup 1 may have The laser light beam and the boundary position P0 or the boundary position P1 of the optical disk medium 2 intersect.
  • the TE signal does not become substantially sinusoidal but becomes a constant level. Therefore, if the TE signal is adjusted at this position, the original TE signal amplitude May not be detected, and the variable gain amplifier 72 constituting the adjustment circuit 7 may not be able to set an appropriate gain.
  • the track cross state is not improved. Detect the amplitude of the TE signal before adjustment at two positions beyond the range of the area where A detection result can be obtained by comparing the two detected values with a predetermined amplitude set in advance. Therefore, it is possible to determine a more detailed position of the optical pickup 1 and a position of the optical disk medium 2 based on the detected values of the variable ⁇ and the variable / 3.
  • the optical pickup 1 is located at the boundary position P 0 between the area A 2 and the mirror surface area A 30 where no track exists, so that the optical pickup 1 is slightly moved to the outer peripheral side to obtain a reliable track cross state.
  • step S2114 The movement is performed (step S2114) to adjust the TE signal
  • the optical pickup 1 is located at the boundary position P 1 between A 2 and the mirror surface area A 31 where no track exists, so that the optical pickup 1 is minutely moved to the inner peripheral side so as to obtain a reliable track cross state.
  • the operation of initializing the position of the optical pickup is performed.
  • Step S2 17 After the optical pickup 1 is moved to the information area A2 where the tracks of the optical disk medium 2 exist in the above-described steps S212 to S217, the TE signal is adjusted (step S211). 8).
  • the focus control is turned off at the beginning of the position initialization of the optical pickup 1, and the focus control is turned on again after the end of the position initialization operation.
  • the position of the optical pickup 1 is at the boundary between the mirror area A 30 and the substrate area A 40 or the boundary between the mirror area A 31 and the substrate area A 41 of the optical disk medium 2 shown in FIG. Also, if an error state occurs in the focus control due to the outer circumference shift operation and the inner circumference shift operation of the objective lens described above, the position of the optical pickup 1 is initialized and the optical pickup 1 is moved. After moving to the information area A2 where the track of the optical disc medium 2 exists, the TE signal is adjusted.
  • the tracking control is turned on (step S219), and then the laser spot of the optical pickup 1 is placed on the optical disk medium 2.
  • the traverse following control is turned ON so as to follow the spiral track (step S220). With these operations, the laser beam spot of the optical pickup 1 can accurately follow the track on the optical disk medium 2 and the information on the optical disk medium 2 can be reproduced (step S22).
  • the amplitude of the TE signal before the adjustment is detected, and the two detected values (variables ⁇ , and variable 0) are compared with the predetermined amplitude set in advance.
  • the position of the optical pickup 1 is completely located within the area where the track exists on the optical disk medium 2, located at the outer edge of the area where the track exists, or the inner circumference of the area where the track exists. ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Even if it is determined that further movement is necessary, it is possible to move in the optimal direction. Since the movement of the optical pickup 1 can be optimized even if the backup 1 is located at the boundary of the area on the optical disk medium 2 where the track exists, the startup time can be significantly reduced.
  • the conventional optical disc apparatus shown in FIG.
  • the signal amplitude detection circuit 17 and the comparator 18 are added, but the TEA signal is sampled by the MPU 6 with the initial value given to the adjustment circuit 7, and the amplitude of the TE signal is detected.
  • the MPU 6 realizes the amplitude detecting means for performing the comparison and the means for comparing with the preset value, so that the second embodiment can be implemented without adding the signal amplitude detecting circuit 17 and the comparator 18. You may make it implement
  • FIG. 3 is a block diagram showing a configuration of an optical disc device according to Embodiment 3 of the present invention. Each configuration in the figure has already been described in the second embodiment, and a description thereof will not be repeated.
  • FIG. 5 is a flowchart for explaining the operation of the optical disc device according to Embodiment 3 of the present invention.
  • Step S301 When the optical disk medium 2 is mounted on the optical disk apparatus or when the optical disk apparatus is turned on (step S301), it is determined whether the optical disk apparatus has the optical disk medium 2. (Step S302).
  • the method of determining whether the optical disk medium 2 is present in the optical disk device depends on the RF signal level and the inertia, as described in the first embodiment, and a description thereof will not be repeated. If it is determined in step S302 that the optical disk medium 2 is present, the spindle motor 16 is driven to start rotation of the optical disk medium 2 (step S303), and the optical pickup is started. 1 is slightly moved toward the outer circumference of the optical disk medium 2 (step S304).
  • the amount of movement in the outer circumferential direction at this time is limited by the optical distance from the limit position of the movable range where the optical pickup 1 can move to the inner circumferential side. This is the amount of movement until the track of the disk medium 2 enters the information area A2 where the track exists. If the position of the optical pickup 1 is in the information area A2 where the track of the optical disk medium 2 shown in FIG. 16 exists, the focused laser light spot will Due to the center shift and the like, a track cross state as shown in FIG. 17 is obtained. On the other hand, if the position of the optical pickup 1 is in the mirror areas A 30 and A 31 where no tracks of the optical disc medium 2 shown in FIG. 16 exist, the focus control operates normally but the tracks do not cross. However, the TE signal does not have a substantially sinusoidal waveform as shown in FIG. 17 but has a constant level.
  • the MPU 6 shifts the objective lens of the optical pickup 1 toward the outer periphery of the optical disk medium 2 by the output signal Sig 2 (step S305), and turns on the focus control (step S305). S306).
  • the position of the optical pickup 1 is located on the outer peripheral side of the outer peripheral mirror surface area A 31 of the optical disk medium 2 and an error state occurs in the focus control, it is not shown in FIG.
  • a series of error handling operations of adjusting the TE signal after performing the above-described initialization operation of the position of the optical pickup 1 is performed.
  • the signal amplitude of the TE signal is detected by the signal amplitude detection circuit 17 (step S307).
  • the comparator 18 compares the detected output signal TE pp with a predetermined amplitude signal level TE ref to determine whether or not the output signal TE pp is equal to or higher than the predetermined amplitude signal level TE ref. (Step S308).
  • the amplitude signal level TE ref is set to be substantially equal to the noise level on the TE signal generated by a scratch on the mirror surface of the optical disk medium 2 or the like.
  • step S308 If the result of determination in step S308 is that the output signal TEpp is equal to or greater than the predetermined amplitude signal level TEref, the comparator 18 outputs a high level signal "1" as the output signal Sig1. To step S310. On the other hand, if the result of determination in step S308 is that output signal TE pp is not equal to or greater than predetermined amplitude signal level TE ref, comparator 18 sets low as output signal Sig 1 The level "0" is output, and the flow advances to step S309.
  • the position of the optical pickup 1 is at the boundary position P 1 between the information area A 2 where the track exists on the optical disk medium 2 and the mirror area A 3 1 where the track does not exist as shown in FIG.
  • the laser light beam of the optical pickup 1 and the boundary position P 1 of the optical disc medium 2 intersect due to the eccentricity of the medium 2 and the center shift during mounting.
  • the TE signal does not become a substantially sinusoidal wave but remains at a constant level. If the TE signal is adjusted at this position, the amplitude of the original TE signal May not be detected, and the variable gain amplifier 72 constituting the adjustment circuit 7 may not be able to set an appropriate gain.
  • the area where the track cross state becomes uncertain is set. Since the laser light beam is emitted further to the outer peripheral side, the laser light beam surely enters the mirror surface portion A31, the detection signal Sig1 becomes the low level ⁇ 0 ⁇ , and the optical pickup 1 is moved to the optical disk medium. The optical pickup 1 is slightly moved to the inner peripheral side of 2 to surely move the optical pickup 1 into the information area A2 (step S309).
  • the position of the optical pickup 1 is slightly within the boundary position P 1 between the information area A 2 where the tracks of the optical disc medium 2 exist and the mirror area A 31 where the tracks do not exist as shown in FIG. If it is on the peripheral side, the TE signal amplitude detection is performed in a state where the track crossing state becomes uncertain because the objective lens of the optical pickup 1 is shifted to the outer peripheral side, Then, the outer peripheral shift of the objective lens is released (step S310), so that the laser light beam surely enters the information area A2.
  • step S 308 and step S 309 the TE signal is adjusted after the optical pickup 1 is moved to the information area A 2 where the track of the optical disk medium 2 exists (step S 311) .
  • step S 311 when the preparation for operating the tracking control accurately by adjusting the TE signal is completed, the tracking control is then turned on (step S 311). S 3 12) Then, the traverse tracking control is turned ON so that the laser spot of the optical pickup 1 follows the spiral track on the optical disk medium 2 (step S 3 13). .
  • the laser beam spot of the optical pickup 1 can accurately follow the track on the optical disk medium 2, and the information on the optical disk medium 2 can be reproduced.
  • the moving amount of the optical pickup 1 at the time of startup can be greatly reduced, so that the startup time can be significantly reduced.
  • the conventional optical disc apparatus shown in FIG. The signal amplitude detection circuit 17 and the comparator 18 are added, but the TEA signal is sampled by the MPU 6 with the initial value given to the adjustment circuit 7, and the amplitude of the TE signal is detected.
  • the present embodiment realizes the amplitude detection means for performing the detection and the comparison means for comparing the predetermined value with the MPU 6 without adding the signal amplitude detection circuit 17 and the comparator 18 to the present embodiment. 3 may be realized.
  • FIG. 3 is a block diagram showing a configuration of an optical disk device according to Embodiment 4 of the present invention. Each configuration in the figure has already been described in the second embodiment, and a description thereof will not be repeated.
  • FIG. 6 is a flowchart for explaining the operation of the optical disk device according to Embodiment 4 of the present invention.
  • step S401 When the optical disk medium 2 is mounted on the optical disk apparatus or the power of the optical disk apparatus is turned on (step S401), it is determined whether or not the optical disk apparatus has the optical disk medium 2 (step S401).
  • step S402) t
  • the method of determining whether or not the optical disk medium 2 is present in the optical disk device is the same as described in the first embodiment, with respect to the RF signal level and the inertia. The explanation is omitted here. If it is determined in step S402 that the optical disk medium 2 is present, the spindle motor 16 is driven to start rotation of the optical disk medium 2 (step S403), and the optical pickup 1 Is slightly moved in the inner circumferential direction of the optical disk medium 2 (step S404).
  • the amount of movement in the inner circumferential direction at this time is the amount of movement from the limit position of the movable range in which the optical pickup 1 can move to the outer circumferential side until the optical pickup 1 enters the information area A 2 where the track of the optical disk medium 2 exists. . Therefore, the position of the optical pickup 1 is located inside the information area A2 in FIG. 16 or on the inner peripheral side of the information area A2 by the above-described operation.
  • the MPU 6 shifts the objective lens of the optical pickup 1 toward the inner circumference of the optical disk medium 2 by the output signal Sig 2 (step S405), and turns on the focus control (step S405). 4 6).
  • the position of the optical pickup 1 is located on the inner peripheral side of the inner peripheral mirror area A 30 of the optical disk medium 2 and an error state occurs in focus control, it is not shown in the drawings.
  • a series of error handling operations of adjusting the TE signal after the operation of initializing the position of the optical pickup 1 described in 1 is performed.
  • the signal amplitude of the TE signal is detected by the signal amplitude detection circuit 17 (step S407).
  • the comparator 18 compares the detected output signal TE pp with a predetermined amplitude signal level TE ref to determine whether or not the output signal TE pp is equal to or higher than the predetermined amplitude signal level TE ref (Ste S408).
  • the amplitude signal level TE ref is set to be about the noise level on the TE signal generated by a scratch on the mirror surface of the optical disk medium 2 or the like.
  • step S408 If the result of determination in step S408 is that output signal TE pp is greater than or equal to predetermined amplitude signal level TE ref, comparator 18 outputs high level ⁇ ⁇ 1 "as output signal Sig1. Proceed to step S410.On the other hand, as a result of the determination in step S408, the output signal TEpp is not higher than the predetermined amplitude signal level TEref. If it is, the comparator 18 outputs a low level ⁇ 0 ⁇ as the output signal Sig1, and proceeds to step S409.
  • the position of the optical pickup 1 is at the boundary position P 0 between the information area A 2 where the track of the optical disk medium 2 shown in FIG. 16 exists and the mirror area A 30 where the track does not exist as shown in FIG.
  • the boundary position P 0 of the laser beam of the optical pickup 1 and the optical disc medium 2 intersects due to the eccentricity of the medium 2 or the center shift during mounting.
  • the TE signal does not have a substantially sinusoidal shape but remains at a constant level. If the TE signal is adjusted at this position, the original TE signal amplitude will be reduced.
  • the gain cannot be set to an appropriate gain by the variable gain amplifier 72 constituting the adjustment circuit 7 (therefore, the amount by which the objective lens is shifted inward to the optical disc medium 2
  • the eccentricity is set to be larger than the amount of eccentricity caused by eccentricity or centering during mounting, so the laser light beam Almost enters the mirror portion A 30, the detection signal Sig 1 goes to the low level ⁇ 0 ⁇ , slightly moves the optical pickup 1 to the outer peripheral side, and surely moves the optical pickup 1 into the information area A 2 (Step S409)
  • the position of the optical pickup 1 is the boundary position between the information area A2 where the track of the optical disk medium 2 shown in Fig.
  • the TE signal amplitude detection is performed in a state where the track cross state becomes uncertain because the objective lens of the optical pickup 1 is shifted to the inside of the optical pickup 1 described above. In either case, the inner circumferential shift of the objective lens is released next (step S410), so that the laser beam reliably enters the information area A2.
  • the TE signal is adjusted after the optical pickup 1 is moved to the information area A2 where the tracks of the optical disk medium 2 exist (step S411). .
  • the tracking control is operated accurately by adjusting the TE signal.
  • the tracking control is set to ⁇ ⁇ N (step S 4 12), and then the laser spot of the optical pickup 1 follows the spiral track on the optical disc medium 2
  • the traverse following control is turned on (step S4 13).
  • the moving amount of the optical pickup 1 at the time of startup can be significantly reduced, so that the startup time can be significantly reduced.
  • the conventional optical disc apparatus shown in FIG.
  • the signal amplitude detection circuit 17 and the comparator 18 are added, the TEA signal is sampled by the MPU 6 with the initial value given to the adjustment circuit 7, and the amplitude of the TE signal is adjusted.
  • the present embodiment can be implemented without adding the signal amplitude detecting circuit 17 and the comparator 18 4 may be realized.
  • FIG. 17 shows the TE signal and the TEA signal in the track cross state, but also shows the period for detecting the amplitude of the TE signal before the adjustment of the optical disk device according to claim 5 of the present invention. It is what is.
  • the period for detecting the amplitude of the TE signal before adjustment is performed from t1 to t2 or more, that is, the period for detecting the amplitude of the TE signal Synchronized with rotation 1 If the rotation is performed for a period equal to or longer than the rotation, the laser light spot surely crosses the track on the optical disc medium 2 due to the eccentricity of the optical disc medium 2 or the eccentricity due to a center shift during mounting. Therefore, no error occurs in the detection of the signal amplitude.
  • the period for detecting the amplitude of the TE signal is performed for one or more rotations in synchronization with the rotation of the optical disk medium.
  • the amplitude can be detected.
  • FIG. 7 is a block diagram showing a configuration of an optical disk device according to Embodiment 6 of the present invention.
  • reference numeral 17 denotes a signal amplitude detection circuit which is a means for detecting the amplitude of an RF signal which is a return light amount signal from the optical disk medium 2, and outputs an output signal RFp. Further, the signal amplitude detection circuit 17 is composed of a peak hold circuit, a bottom hold circuit, and a differential amplifier (none is shown).
  • Reference numeral 18 denotes a comparator for comparing the level of the output signal RF pp output from the signal amplitude detection circuit 17 with a predetermined level signal RF ref set by the MPU 6, and the output signal S ig of the comparator 18 1 is input to MPU 6.
  • the other components having the same configuration as in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 8 is a flowchart for explaining the operation of the optical disk device according to Embodiment 6 of the present invention.
  • step S501 When the optical disk medium 2 is mounted on the optical disk apparatus or the power of the optical disk apparatus is turned on (step S501), it is determined whether the optical disk apparatus has the optical disk medium 2 (step S501). Step S502).
  • the method of determining whether or not the optical disk medium 2 is present in the optical disk device depends on the RF signal level and the inertia, as described in the first embodiment. The explanation is omitted here. If it is determined in step S502 that the optical disk medium 2 is present, the spindle motor 16 is driven to start the rotation of the optical disk medium 2 (step S503).
  • the focus control of the pickup 1 is set to ⁇ N (step S504).
  • the position of the optical pickup 1 is in the information area A2 where the tracks of the optical disk medium 2 shown in FIG. 16 exist, the focused laser light spot will be decentered or mounted on the optical disk medium 2.
  • the track error signal is in a track cross state as shown in FIG. 17 due to the shift of the center of time.
  • the position of the optical pickup 1 is in the mirror surface area A30 and the mirror surface area A31 where no track of the optical disk medium 2 shown in FIG. 16 exists, the focus control operates normally but the track is moved. Since they do not intersect, the TE signal does not have a substantially sinusoidal waveform as shown in Fig. 17 but has a constant level.
  • the optical disk medium 2 is a recordable optical disk medium such as CD_R or CD_RW, an unrecorded area exists even in the information area where the track exists.
  • Fig. 9 shows the RF and TE signals in the track cross state in the recorded and unrecorded areas.
  • the optical disk device of the present invention is a reproduction-only device that only reproduces the optical disk medium 2, it is not necessary to turn on the tracking control in the unrecorded part of the optical disk medium, so that the gain adjustment of the TE signal is not performed. It is preferable that the recording be performed in the recording unit.
  • step S504 after the focus control is turned on, the signal amplitude of the RF signal is detected by the signal amplitude detection circuit 17 (step S505).
  • the comparator 18 compares the detected output signal RF pp with a predetermined amplitude signal level RF ref to determine whether or not the output signal RF pp is greater than or equal to the predetermined signal amplitude level RF ref (step S506).
  • This amplitude signal level RFref is set to be higher than the level of the RF signal amplitude detected in the unrecorded portion of the optical disk medium 2. If the result of determination in step S506 is that the output signal RFpp is equal to or greater than the predetermined amplitude signal level RFref, the comparator 18 outputs the high level ⁇ 1 ⁇ as the output signal Sig1. To step S508. On the other hand, if the result of determination in step S506 is that output signal RF pp is not equal to or greater than predetermined amplitude signal level RF ref, comparator 18 outputs mouth level “0” as output signal S igl. Then, the process proceeds to step S507.
  • the MPU 6 determines that the optical pickup 1 is in the recording area of the information area A2 where the track of the optical disc medium 2 exists.
  • the next track error signal is adjusted (step S508). If the signal Sig1 is ⁇ 0 ⁇ , the optical pickup 1 is set to the optical disk medium. The optical pickup position was initialized by judging that it was not in the normal track cross state because it was in the unrecorded part of the information area A2 where the two tracks exist or in the mirror areas A30 and A31. After that (step S507), the TE signal is adjusted (step S508). However, the focus control is turned off at the beginning of the position initialization of the optical pickup 1, and the focus control is turned on at the end of the position initialization.
  • step S508 it is ready to operate the tracking control accurately by adjusting the TE signal.
  • the tracking control is set to ⁇ N (step S509), and then the optical pickup 1 is controlled.
  • the traverse following control is turned on so that the laser beam spot follows the spiral track on the optical disk medium 2 (step S510). Therefore, the laser light spot of the optical pickup 1 accurately tracks the track on the optical disk medium 2. Since it is possible to follow the information, the information on the optical disk medium 2 can be reproduced (step S511).
  • the movement of the optical pickup 1 to the initialization position at the time of startup is performed when the position of the optical pickup 1 at the time of startup is the information area A where the track on the optical disk medium 2 exists. Since it is not performed when it exists in the recording section of 2, the start-up time can be greatly reduced in most cases.
  • the conventional optical disc apparatus shown in FIG. The signal amplitude detection circuit 17 and the comparator 18 are added, but the TEA signal is sampled by the MPU 6 with the initial value given to the adjustment circuit 7, and the amplitude of the TE signal is detected.
  • the present embodiment realizes the amplitude detection means for performing the detection and the comparison means for comparing the predetermined value with the MPU 6 without adding the signal amplitude detection circuit 17 and the comparator 18 to the present embodiment. 6 may be realized.
  • FIG. 10 is a block diagram showing a configuration of an optical disk device according to Embodiment 7 of the present invention.
  • reference numeral 19 denotes an adder which adds the output signal Sig 2 of the MPU 6 and the output signal TRO of the tracking control circuit 8, and drives the tracking actuator of the optical pickup 1 by the tracking drive circuit 9.
  • the adder 19 can forcibly shift the objective lens of the optical pickup 1 in the radial direction of the optical disk medium 2 by the output signal Sig 2 of the MPU 6.
  • Other configurations 7, the same components as those in FIG. 7 are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 11 is a flowchart for explaining the operation of the optical disk device according to Embodiment 7 of the present invention.
  • the optical disk medium 2 is loaded in the optical disk device or the optical disk When the power of the storage device is turned on (step S601), it is determined whether or not the optical disk device 2 has the optical disk medium 2 (step S602).
  • the method of determining whether the optical disk medium 2 is present in the optical disk device depends on the RF signal level and the inertia, as described in the first embodiment, and a description thereof will not be repeated. If it is determined in step S602 that the optical disk medium 2 is present, the spindle motor 16 is driven to start the .II rotation of the optical disk medium 2 (step S603), and Turn on the focus control of optical pickup 1 (Step S604).
  • step S602 if it is determined in step S602 that the optical disk medium 2 is not present, the operation ends.
  • step S604 with the focus control of the optical pickup 1 turned ON, if the position of the optical pickup 1 is in the information area A2 where the track of the optical disc medium 2 shown in FIG. 16 exists, the light is focused. The laser light spot enters a track cross state as shown in FIG. 17 due to the eccentricity of the optical disk medium 2 and the center shift during mounting.
  • the position of the optical pickup 1 if the position of the optical pickup 1 is in the mirror areas A 30 and A 31 where no tracks exist in the optical disk medium 2 shown in FIG. 16, the focus control operates normally but the tracks do not intersect.
  • the TE signal does not have a substantially sinusoidal waveform as shown in FIG. 17 but has a constant level. Further, as shown in FIG. 9, in the information area A2, the RF signal amplitude and the TE signal amplitude are different between the recorded portion and the unrecorded portion.
  • the MPU 6 shifts the objective lens of the optical pickup 1 toward the outer peripheral side of the optical disk medium 2 by the output signal Sig 2 (step S605).
  • the signal amplitude of the RF signal is detected by the signal amplitude detection circuit 17 (step S606), and the detected signal RFpp is compared with the predetermined amplitude signal level RFref by the comparator 18 To compare.
  • the predetermined amplitude signal level RF ref is set to be higher than the level of the RF signal amplitude detected in the unrecorded portion of the optical disk medium 2.
  • the output signal RFpp is equal to or higher than the predetermined amplitude signal level RFref.
  • the comparator 18 outputs a high level ⁇ 1 ⁇ as the output signal S igl. If the output signal RF pp is less than the predetermined amplitude signal level RF ref, the comparator 18 outputs the output signal S ig 1 Output a low level ⁇ 0 ⁇ .
  • the MPU 6 stores this detected value as a variable ⁇ (step S607).
  • the MPU 6 shifts the objective lens of the optical pickup 1 toward the inner peripheral side of the optical disk medium 2 according to the output signal Sig 2 (step S608).
  • the signal amplitude of the RF signal is detected by the signal amplitude detecting circuit 17 (step S609), and the detected signal RFpp and the level of the RF signal amplitude detected in the unrecorded portion of the optical disk medium 2 are used.
  • the comparator 18 compares the predetermined amplitude signal level RF ref which is set to a large value.
  • the comparator 18 As a result of the comparison by the comparator 18, if the output signal RF pp is equal to or higher than the predetermined amplitude signal level RF ref, the comparator 18 outputs a high level ⁇ 1 ⁇ as the output signal S ig 1, If the output signal RFp is lower than the predetermined amplitude signal level RFref, the comparator 18 outputs a low level ⁇ 0 ⁇ as the output signal Sig1.
  • the detected value is held as a variable by the MPU 6 (step S610), and the shift of the objective lens is released (step S611).
  • the position of the optical pickup 1 is the boundary position P 0, which is the boundary between the information area A 2 where the track of the optical disk medium 2 shown in FIG. 16 exists and the mirror area A 30 where no track exists, or the position of the track is When it exists at any one of the boundary positions P 1 which is the boundary between the existing information area A 2 and the mirror surface area A 31, the laser of the optical pickup 1 due to the eccentricity of the optical disk medium 2 or the center shift at the time of mounting.
  • the light beam and the boundary position P0 or the boundary position P1 of the optical disk medium 2 intersect.
  • the TE signal does not become substantially sinusoidal but becomes a constant level.
  • the outer peripheral shift amount and the inner peripheral shift amount of the objective lens described above are set to be larger than the eccentric shift amount caused by the eccentricity of the optical disc medium 2 or the center shift at the time of mounting.
  • the optical disk medium 2 is a recordable optical disk medium 1 such as CD-R or CD-RW
  • a variable a which is a detected value is used.
  • the area that can be determined by the parameter and the variable is a recorded area and an unrecorded area in the information area A2 of the optical disc medium 2.
  • the TE signal is adjusted at this location (step S618)
  • the optical pickup 1 is located at the boundary between the section and the unrecorded section. Therefore, the optical pickup 1 is slightly moved to the inner circumference side so that a reliable track cross state is obtained (step S6 16).
  • the TE signal is adjusted (step S61). 8).
  • the focus control is turned OFF, and after the position initialization operation, the focus control is turned ON again.
  • the position of the optical pickup 1 is at the boundary position between the mirror surface area A 30 and the substrate region A 40 or the boundary position between the mirror surface region A 31 and the substrate region A 41 shown in FIG. Yes, even if an error occurs in the focus control due to the outer and inner peripheral shift operations of the objective lens described above, the position of the optical pickup 1 is initialized, and the optical pickup 1 is moved to the optical disk medium.
  • the TE signal is adjusted (step S218).
  • the tracking control is turned on (step S619), and then, the laser beam spot of the optical pickup 1 is placed on the optical disk medium 2.
  • the traverse following control is turned ON so as to follow the spiral track (step S620).
  • the optical disc device detects the amplitude of the RF signal, and compares the two detected values (variables ⁇ and) 3) with the predetermined amplitude set in advance. Whether the position is completely located at the recording part in the area where the track exists on the optical disk medium, at the outer end of the recording part, at the inner end of the recording part, or By judging whether or not the optical pickup is completely located outside the unit, it is determined whether or not the optical pickup needs to be moved before performing the track error signal adjustment operation. Even when it is determined that movement is necessary, the optical pickup can be moved in the optimum direction, so that the movement of the optical pickup can be optimized at the time of startup, so that the startup time can be significantly reduced.
  • the conventional optical disc apparatus shown in FIG.
  • the signal amplitude detection circuit 17 and the comparator 18 are added, the TEA signal is sampled by the MPU 6 with the initial value given to the adjustment circuit 7, and the amplitude of the TE signal is detected.
  • the seventh embodiment is realized without adding the signal amplitude detecting circuit 17 and the comparator 18 You may make it.
  • FIG. 10 is a block diagram showing a configuration of an optical disk device according to Embodiment 8 of the present invention. Note that each configuration in the figure has already been described in the seventh embodiment, and a description thereof will be omitted.
  • FIG. 12 is a flowchart for explaining the operation of the optical disk device according to Embodiment 8 of the present invention.
  • Step S701 When the optical disk medium 2 is mounted on the optical disk apparatus or the power of the optical disk apparatus is turned on (step S701), it is determined whether the optical disk apparatus has the optical disk medium 2. (Step S702).
  • the method of determining whether the optical disk medium 2 is present in the optical disk device depends on the RF signal level and the inertia, as described in the first embodiment, and a description thereof will not be repeated. If it is determined in step S702 that the optical disk medium 2 is present, rotation of the optical disk medium 2 is started by driving the spindle motor 16 (step S703), and the optical pickup is started. 1 is slightly moved in the outer peripheral direction (step S704).
  • the amount of movement in the outer peripheral direction is limited to the position of the optical disk medium 2 from the limit position of the movable range in which the optical pickup 1 can move inward. This is the amount of movement before entering the information area A2 where the lock exists.
  • the position of the optical pickup 1 is located in the information area A2 where the track of the optical disk medium 2 shown in FIG. 16 exists or on the outer peripheral side of the information area A2.
  • the MPU 6 shifts the objective lens of the optical pickup 1 to the outer peripheral side by the output signal Sig 2 (step S705), and turns on the focus control (step S706).
  • the position of the optical pickup 1 is located on the outer peripheral side of the outer peripheral mirror area A 31 of the optical disk medium 2 and an error state occurs in the focus control, although not shown, the position of the optical pickup 1 is not shown.
  • the optical pickup 1 is in the information area A2 or the mirror area A31 and the focus control is ON, the signal amplitude of the RF signal is detected by the signal amplitude detection circuit 17 (step S707).
  • the comparator 18 compares the detected output signal RF pp with a predetermined amplitude signal level RF ref to determine whether or not the output signal RF pp is equal to or higher than the predetermined amplitude signal level RF ref (Ste S708).
  • This amplitude signal level R F ref is set to be higher than the level of the R F signal amplitude detected in the unrecorded portion of the optical disc medium 2. If the result of determination in step S708 is that the output signal RFpp is equal to or greater than the predetermined amplitude signal level RFref, the comparator 18 outputs a high level "1" as the output signal Sig1. To step S710.
  • step S708 if the result of determination in step S708 is that the output signal RF pp is not equal to or greater than the predetermined amplitude signal level RF ref, the comparator 18 sets the mouth level ⁇ 0 ⁇ as the output signal S ig 1 Output and go to step S709.
  • the eccentricity and mounting of the optical disk medium 2 The laser light beam of the optical pickup 1 intersects the boundary position P 1 of the optical disc medium 2 due to a center shift at the time.
  • the TE signal If the TE signal is adjusted at this position, the amplitude of the original TE signal cannot be detected, and the variable gain amplifier 7 Due to 2, there is a possibility that the gain cannot be set to an appropriate value.
  • the track cross state becomes uncertain. Since the laser light beam is emitted to the outer periphery side from the area where the laser beam is emitted, the laser light beam surely enters the unrecorded area, the detection signal Sig1 becomes low level ⁇ 0 ⁇ , and the optical pickup 1 The optical pickup 1 is slightly moved to the circumferential side, and the optical pickup 1 is surely moved into the information area A2 (step S709).
  • the RF signal amplitude detection is performed in a state where the track cross state becomes uncertain.
  • the laser beam reliably enters the recording area of the information area A2.
  • step S711 After the outer peripheral shift of the objective lens is released in step S710, the TE signal is adjusted (step S711).
  • step S711 if the preparation for operating the tracking control accurately is made by adjusting the TE signal, then the tracking control is turned on (step S712), and then the laser of the optical pickup 1 is turned on.
  • the traverse following control is turned on so that the optical spot follows the spiral track on the optical disk medium 2 (step S713).
  • the moving amount of the optical pickup at the time of startup can be greatly reduced.
  • the time can be significantly reduced.
  • the conventional optical disc apparatus shown in FIG.
  • the signal amplitude detection circuit 17 and the comparator 18 are added, the TEA signal is sampled by the MPU 6 with the initial value given to the adjustment circuit 7, and the amplitude of the TE signal is detected.
  • the embodiment 8 is realized without adding the signal amplitude detection circuit 17 and the comparator 18 You may make it.
  • FIG. 10 is a block diagram showing a configuration of an optical disk device according to Embodiment 9 of the present invention. Note that each configuration in the figure has already been described in the seventh embodiment, and a description thereof will be omitted.
  • FIG. 13 is a flowchart for explaining the operation of the optical disk device according to Embodiment 9 of the present invention.
  • Step S810 When the optical disk medium 2 is mounted on the optical disk apparatus or the power of the optical disk apparatus is turned on (step S810), it is determined whether the optical disk apparatus has the optical disk medium 2. (Step S802).
  • the method of determining whether the optical disk medium 2 is present in the optical disk device depends on the RF signal level and the inertia, as described in the first embodiment, and a description thereof will not be repeated. If it is determined in step S802 that the optical disk medium 2 is present, the spindle motor 16 is driven to start the rotation of the optical disk medium 2 (step S803), and The pickup 1 is slightly moved in the inner circumferential direction (step S804).
  • the amount of movement in the inner circumferential direction at this time is the amount of movement from the limit position of the movable range in which the optical pickup 1 can move to the outer circumferential side until the optical pickup 1 enters the information area A 2 where the track of the optical disc medium 2 exists. . Therefore, the position of the optical pickup 1 by the operation described above is changed to the information area in FIG. It is located inside A2 or on the inner circumference side from the information area A2. Subsequently, the MPU 6 shifts the objective lens of the optical pickup 1 toward the inner circumference of the optical disc medium 2 by the output signal Sig 2 (step S805), and turns on the focus control (step S805). 8 6).
  • the position of the optical pickup 1 is located on the inner peripheral side of the inner peripheral mirror area A 30 of the optical disk medium 2 and an error state occurs in the focus control, it is not shown in the figure.
  • a series of error processing operations of adjusting the ⁇ E signal after performing the initialization operation of the position of are performed.
  • the optical pickup 1 is in the information area A2 or the mirror area A30 and the force control is ON, the signal amplitude of the RF signal is detected by the signal amplitude detection circuit 17 (step S800). 7).
  • the comparator 18 compares the detected output signal RF p P with a predetermined amplitude signal level RF ref to determine whether or not the output signal RF pp is equal to or higher than the predetermined amplitude signal level RF ref (Ste S808).
  • This amplitude signal level RFref is set to be higher than the level of the RF signal amplitude detected in the unrecorded portion of the optical disc medium 2. If the result of determination in step S808 is that the output signal RF pp is equal to or greater than the predetermined amplitude signal level RF ref, the comparator 18 outputs a high-level signal “1” as the output signal Sig 1 and outputs Proceed to step S810.
  • step S808 if the result of determination in step S808 is that the output signal RF pp is not greater than or equal to the predetermined amplitude signal level RF ref, the comparator 18 outputs a low level “0” as the output signal Sig 1 and Proceed to S809.
  • the position of the optical pickup 1 is on the boundary between the recorded area and the unrecorded area of the information area A where the track of the optical disk medium 2 shown in FIG. 16 exists, the eccentricity and mounting of the optical disk medium 2
  • the laser light beam of the optical pickup 1 and the boundary position P 0 of the optical disk medium 2 intersect due to a center shift at the time.
  • the TE signal has a larger amplitude than the recorded area.
  • the TE signal is adjusted at this position, the TE signal of the recorded area that performs the original operation Cannot be detected by the variable gain amplifier 72 that constitutes the adjustment circuit 7. May not be able to be set. Therefore, by setting the amount by which the objective lens shifts to the inner peripheral side larger than the amount of eccentricity caused by the eccentricity of the optical disc medium 2 or the center eccentricity at the time of mounting, the track cross state becomes uncertain.
  • the detection signal Sig 1 becomes the aperture level ⁇ 0 ⁇ , and the optical pickup 1
  • the optical pickup 1 is slightly moved to the outer peripheral side (step S809), and the optical pickup 1 is surely moved into the information area A2.
  • the position of the optical pickup 1 is slightly outside the boundary position P 0 between the recorded area and the unrecorded area with the information area A 2 where the tracks of the optical disk medium 2 shown in FIG. 16 exist. Since the objective lens of the optical pickup 1 described above is shifted to the inner circumference side, the RF signal amplitude detection is performed in a state where the track cross state becomes uncertain. By releasing the inner peripheral shift of the objective lens (step S810), the laser beam surely enters the information area A2.
  • step S808 and step S809 described above after the optical pickup 1 is moved to the information area A2 where the track of the optical disk medium 2 exists, the TE signal is adjusted (step S811). .
  • step S 811 if the TE signal is adjusted to prepare for accurate tracking control operation, then the tracking control is turned on (step S 8 1 2).
  • the traverse tracking control is turned on so that the spot follows the spiral track on the optical disc medium 2 (step S813).
  • the moving amount of the optical pickup at the time of startup can be greatly reduced, so that the startup time can be significantly reduced.
  • the amplitude detection method for detecting the amplitude of the TE signal is described.
  • a signal amplitude detection circuit 17 and a comparator 18 are added to the conventional optical disk device shown in FIG.
  • the MPU 6 samples the TEA signal with the MPU 6 in a state where the initial value is given to the adjustment circuit 7, and also uses the MPU 6 with amplitude detection means for detecting the amplitude of the TE signal and means for comparing the amplitude with the preset value.
  • the ninth embodiment may be realized without adding the signal amplitude detection circuit 17 and the comparator 18.
  • FIG. 9 shows an RF signal and a TE signal in a track cross state of a recorded portion and an unrecorded portion, and detects the amplitude of the RF signal of the optical disc device according to claim 10 of the present invention. The period is also shown.
  • Embodiments 6 to 9 of the invention described above when the period for detecting the amplitude of the TE signal before adjustment is performed in the period from t10 to t20 in FIG. 9, the laser light spot Since they do not cross completely, an error occurs in the detection of the signal amplitude.
  • the period of time from t1 to t2 in FIG. 9, that is, the period for detecting the amplitude of the RF signal is performed for a period of one or more rotations in synchronization with the rotation of the optical disk medium 2, The laser light spot surely crosses the track on the optical disk medium 2 due to eccentricity due to eccentricity or eccentricity during mounting, so that no error occurs in signal amplitude detection.
  • the amplitude of the RF signal is detected for at least one rotation in synchronization with the rotation of the optical disk medium, so that the amplitude of the track error signal can be reliably detected. It becomes possible to do.
  • optical disk devices In the optical disk devices according to the first to tenth embodiments, an optical disk device performing only information reproduction has been described as an example. However, the present invention is also applicable to an optical disk device capable of recording information, such as a CD-R or a CD-RW. It has the same effect as these embodiments.
  • Industrial applicability is also applicable to an optical disk device capable of recording information, such as a CD-R or a CD-RW. It has the same effect as these embodiments.
  • the optical disk device according to the present invention is suitable for recording or reproducing information on an optical disk.

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)

Description

明 細 書 光ディスク装置 技術分野
本発明は、 光ディスクに対し情報の記録あるいは再生を行ぅ光デイス ク装置に関し、特に光ディスク媒体が本装置に装着されて起動する際に、 トラック誤差信号の調整を確実かつ効率よく行い、 起動時間を短縮でき るようにしたものに関する。 背景技術
以下に従来の光ディスク装置について説明する。
第 1 4図は従来の光ディスク装置の構成を示すプロック図である。 第 1 4図において、 2は C D , C D - R O M , D V D , M Oなどの, 情報記録用 トラックを有する光ディスク媒体、 1は半導体レーザを集光 して、 光ディスク媒体 2上の目標の位置に照射し、 情報の記録及び再生 を行う光ピックアップであり、 光学系と駆動系とから構成される。 光学 系は、 光ディスク媒体 2の面上にレーザ光を集光させたり、 レーザ光の 照射位置と光ディスク媒体 2上の目標位置とのずれを検出したりするも のであり、 半導体レーザ、 レンズ類、 ビームスプリ ッタ、 フォ トダイォ ードなど (いずれも図示せず) から構成される。 一方、 駆動系は、 対物 レンズを光ディスク媒体 2上の面振れに追従させるフォーカス制御、 あ るいはトラック振れに追従させる トラッキング制御を行い、 光ディスク 媒体 2上の目標位置とレーザ光スポッ トとの位置関係を一定に維持する ために駆動するものであり、 主にマグネッ ト、 コイル、 支持部材 (いず れも図示せず) から構成される。 この駆動系は光学系のレンズ群等を駆 動するァクチユエータとなっている。
3は光ピックアップ 1を構成する, 複数に分割されたフォ トダイォー ドによって検出された、 光ディスク媒体 2からの戻り光量信号に各種の 演算処理を行う演算アンプであり、 レーザ光スポッ トの光ディスク媒体 2上での焦点ずれ量であるフォーカスエラー信号 (以下、 F E信号と称 する) と、 レーザ光スポッ トの光ディスク媒体 2上の トラックに対する 位置ずれ量である トラック誤差信号 (以下、 T E信号と称する) と、 光 ディスク媒体 2上に光の反射率の変化と して記録された情報である再生 信号 (以下、 R F信号と称する) とを出力する。 4は光ピックアップ 1 から照射されるレーザ光を集光し、 光ディスク媒体 2に焦点を合わせる フォーカス制御を行うフォーカス制御回路、 5はフォーカス制御回路 4 に制御されながら、 光ピックアップ 1の対物レンズのァクチユエ一タを 駆動するフォーカス駆動回路、 6は演算処理装置であるマイクロプロセ ッサ (以下、 MP Uと称する) であり、 前述したフォーカス制御動作の ON O F FはこのMPU 6の指令によって動作する。 7はオフセッ ト 制御回路 7 1 と可変ゲインアンプ 7 2 とから構成され、 演算アンプ 3か ら出力される T E信号を入力し、 MP U 6からの設定によってゲインと オフセッ トとが調整され、 調整後の トラック誤差信号 (以下、 T E A信 号と称する) を出力する調整回路、 8は T EA信号を入力し、 光デイ ス ク媒体 2の トラックにレーザ光の照射位置が追従するよ うに制御する ト ラッキング制御回路、 9は トラッキング制御回路 8に制御されながら、 光ピックアップ 1の対物レンズを駆動する トラッキング駆動回路であり、 この トラッキング制御動作の ONZO F Fは、 MP U 6の指令によって 動作する。
1 0は トラッキング制御回路 8から出力される制御出力信号 (以下、 TRO信号と称する) を入力し、 光ピックアップ 1のレーザ光の照射位 置が光ディスク媒体 2上のスパイラル状トラックを追従していく時に光 ピックアップ 1 自体を光ディスク 2の半径方向に追従移動させる制御信 号である T VO信号を発生する トラバース制御回路、 1 1は T VO信号 を入力し、 後述する トラバースモータ 1 2を駆動させる トラバース駆動 回路、 1 2は光ピックアップ 1を光ディスク媒体 2の半径方向に移動さ せる トラバースモータである。 また、 1 3は演算アンプ 3から出力され る R F信号を入力し、 光ディスク媒体 2からの情報を再生する信号処理 回路であり、 R F信号から同期信号である S YN C信号を抽出する。 1 は信号処理回路 1 3から抽出された S Y N C信号を入力し光ディスク 媒体 2の回転数を制御する DMO信号を出力するスピン ドルモータ制御 回路、 1 5はス ピン ドルモータ制御回路 1 4から DMO信号を入力し、 後述するスピン ドルモータを駆動するスピン ドルモータ駆動回路、 1 6 は光ディスク媒体 2を回転させるスピン ドルモータであり、 回転数を表 す F G信号をスピンドルモータ制御回路 1 4に入力することによって、 S YN C信号とは別に、 所定の回転数でスピン ドルモータ 1 6の回転を 制御することもできる。
次に、 従来の光ディスク装置に光ディスク媒体 2が装着されて起動す る時に行う トラック誤差信号の調整動作について第 1 5図のフローチヤ 一トを用いて説明する。
光ディスク装置に光ディスク媒体 2が装着されるかあるいは電源が O Nされると (ステップ S 9 0 1 ) 、 MPU 6は光ピックアップ 1の位置 を初期化する (ステップ S 9 0 2 ) 。 具体的には、 光ピックアップ 1を 強制的に光ディスク媒体 2の内周側へ移動するように トラバースモータ 1 2を駆動し、 最内周スィ ッチ (図示せず) が押されるまで移動させる (ステップ S 9 0 3) 。 あるいは、 最内周スィッチがない場合には、 光 ピックアップ 1が内周側へ移動できる可動範囲の限界まで確実に移動す る時間、 トラバースモータ 1 2を駆動し続ける。 このよ うにして光ディ スク媒体 2の最内周位置まで光ピックアップ 1を移動させた後、 光ディ スク媒体 2上の トラックが存在する位置に光ピックアップ 1が位置する ように外周側へ所定の時間移動させる (ステップ S 9 0 4) 。
第 1 6図に一般的なコンパク トディスク (以後 C Dと表す) や追記型 の CD— R、 書き換え可能型の C D— RWなどの光ディスク媒体の半径 方向の領域構造を示す。 第 1 6図に示されるように最内周部はディスク を装着するためのクランプ領域 A 1であり、 その外側に トラックの存在 する情報領域 A 2が存在する。 この情報領域 A 2の内周及ぴ外周には反 射層は形成されているが トラックが存在しない鏡面領域 A 3 0, A 3 1 と、 透明基板のみからなる基板領域 A 4 0, A 4 1が存在する。 従って、 前述した光ピックアップ 1 の位置を初期化動作することによって、 光ピ ックアップ 1は光ディスク媒体 2の情報領域 A 2に位置することになる。 次に、 光ピックアップ 1 の対物レンズをフォーカス方向に上下に動作 させた時の光ディスク媒体 2からの戻り光量を R F信号のレベルから検 出し、 ディスクの有無の判定を行う (ステップ S 9 0 5 ) 。 その際、 光 ディスク装置に実際に光ディスク媒体 2が装着されていれば所定の R F 信号レベルが得られることを利用する。 判定の結果、 光ディスク媒体 2 が装着されていると判断したならば、 スピン ドルモータ 1 6を駆動する ことによって光ディスク媒体 2を回転させ (ステップ S 9 0 6 ) 、 さ ら に光ピックアップ 1 のフォーカス制御を O Nにする(ステップ S 9 0 7 )。 集光されたレーザ光スポッ トは、 光ディスク媒体 2 自身の偏芯や装着 時の中心ずれなどによ り、 光ディスク媒体 2上の トラックを交差する。 この状態を トラックク ロス状態と呼ぶ。 トラックク ロス状態時の T E信 号は第 1 7図に示すよ うな略正弦波状となるが、 光ディスク媒体 2の反 射率の違いや、 フォ トダイオー ドの感度の違い、 トラック溝形状の非対 称性などによつて信号振幅や信号オフセッ トが変わることがある。 そこ で、 T E信号は調整回路 7を構成するオフセッ ト調整回路 7 1 と可変ゲ インアンプ 7 2によって M P U 6からの設定に基づきゲインとオフセッ トが調整され、 第 1 7図に示すよ うな調整後の トラック誤差信号である T E A信号が生成される (ステップ S 9 0 8 ) 。 このよ う に トラック誤 差信号の調整が行われることによって、 光ピックアップ 1のレーザ光ス ポッ トが光ディスク媒体 2上の トラックの中心を正確に トラッキングす るよ うに制御動作することが可能となる。
前述の トラック誤差信号の調整によって正確に トラッキング制御を動 作させる準備ができると、 トラッキング制御を O Nし (ステップ S 9 0 9 ) 、 続いて光ピックアップ 1のレーザ光スポッ トが光ディスク媒体 2 上のスパイラル状トラックを追従して行く よ うに トラバース追従制御を O Nさせる (ステップ S 9 1 0 ) 。
このよ うに光ディスク媒体 2上の トラックを光ピックアップ 1のレー ザ光スポッ トが正確に追従して行く ことが可能となるので、 光デイスク 媒体 2の情報を再生できるよ うになり (ステップ S 9 1 1 ) 、 光デイス ク装置の起動が完了する。
以上のよ うに構成されている従来の光デイスク装置は、 光ピックアツ プの対物レンズの位置を保持した状態で、 光ディスク媒体の径方向に所 定の速度で移送し、 略所定の トラックク ロス周波数を得ることによって トラック誤差信号の振幅およびオフセッ トの調整精度を向上させている。 しかしながら、 前述した従来の光ディスク装置では以下のよ うな問題 が生ずる。
即ち、 従来の光ディスク装置の場合には トラック誤差信号の調整を行 う前に、 光ピックアップ 1の位置を初期化する必要があり、 最内周位置 に光ピックアップ 1 を移動させる時に光ピックアップ 1 に衝撃が加わつ たり異音が発生することなく移動させるために、 数秒間かけて初期化位 置に移動させる必要があった。
従って、 光ピックアップ 1が暴走状態で電源を O F Fにした場合のよ うな, 異常な動作終了が発生したよ うな特殊な状況でない限り、 起動時 の光ピックアップ 1の位置は光ディスク媒体 2上の トラックの存在する 情報領域内にあるにもかかわらず、 初期化位置への移動動作を行う必要 があり、 このため、 光ディスク媒体 2からの情報を読み取り、 情報の記 録再生に至るまでの光ディスク装置の起動時間が長く なってしま う とい う問題点があった。
本発明は、 上記のよ うな従来のものの問題点を解決するためになされ たもので、 トラック誤差信号の調整を確実かつ効率よく行う ことによ り、 起動時間を短縮できる光ディスク装置を得ることを目的と している。 発明の開示
上述の課題を解決するために、 本発明の請求の範囲第 1項にかかる光 ディスク装置は、 情報記録用 トラックを有する光ディスク媒体に対し情 報の記録あるいは再生を行う光ピックアップと、 光ビームの焦点を上記 光ディスク媒体に合わせるよ うに上記光ピックアップの制御を行うフォ 一カス制御手段と、 光ビームの照射位置が上記情報記録用 トラックに追 従するよ うに上記光ピックァップを駆動する トラッキングァクチユエ一 タと、 光ビームの照射位置の トラック位置からのずれを検出する トラッ ク誤差検出手段と、 該 トラック誤差検出手段が出力する トラック誤差信 号のゲイン及びオフセッ トを調整する調整手段と、 該調整手段の出力信 号に応じて上記トラッキングァクチユエータを駆動する トラッキング駆 動手段とを備えた光ディスク装置において、 トラック誤差信号の振幅を 検出する振幅検出手段と、 上記光ピックァップを上記光ディスク媒体の 径方向に移送させる移送手段とを備え、 上記フォーカス制御手段は上記 光ディスク媒体上に上記光ピックアップから照射される光ビームの焦点 を合わせ、 上記振幅検出手段にて検出した トラック誤差信号の振幅が予 め設定した値以上ならば、 上記調整手段は トラック誤差信号のゲイン及 びオフセッ トの調整を行い、 上記振幅検出手段にて検出した トラック誤 差信号の振幅が予め設定した値未満ならば、 上記光ピックアップを予め 定められた位置に移送させることを特徴とするものである。
本発明によれば、 起動時における光ピックアップの初期化位置への移 動をほとんど無くすことができる為、 起動時間の大幅な短縮を実現しう るものとなる。
本発明の請求の範囲第 2項にかかる光ディスク装置は、 情報記録用 ト ラックを有する光ディスク媒体に対し情報の記録あるいは再生を行う光 ピックアップと、 光ビームの焦点を上記光ディスク媒体に合わせるよ う に上記光ピックアップの制御を行うフォーカス制御手段と、 光ビームの 照射位置が上記情報記録用 トラックに追従するよ うに上記光ピックアツ プを駆動する トラッキングァクチユエータと、 光ビームの照射位置の ト ラック位置からのずれを検出する トラック誤差検出手段と、 該 トラック 誤差検出手段が出力する トラック誤差信号のゲイン及びオフセッ トを調 整する調整手段と、 該調整手段の出力信号に応じて上記トラッキングァ クチユエータを駆動する トラッキング駆動手段とを備えた光ディスク装 置において、 トラック誤差信号の振幅を検出する振幅検出手段と、 上記 トラッキング駆動手段に信号を与え、 光ピックアップの対物レンズを上 記光ディスク媒体の径方向にシフ トさせる対物レンズシフ ト手段と、 上 記光ピックァップを上記光ディスク媒体の径方向に移送させる移送手段 とを備え、 上記フォーカス制御手段は上記光ディスク媒体上に上記光ピ ックァップから照射される光ビームの焦点を合わせ、 上記対物レンズシ フ ト手段によつて上記光ディスク媒体の外周方向に上記光ピックアップ の対物レンズをシフ ト させた状態で上記振幅検出手段にて検出した第 1 の トラック誤差信号の振幅と予め設定した値とを比較した第 1の比較結 果と、 上記対物レンズシフ ト手段によって上記光ディスク媒体の内周方 向に上記光ピックアップの対物レンズをシフ トさせた状態で上記振幅検 出手段にて検出した第 2の トラック誤差信号の振幅と上記予め設定した 値とを比較した第 2の比較結果とにより、 上記第 1 の比較結果と上記第 2の比較結果が共に予め設定した値以上ならば、 トラック誤差信号のゲ ィン及びオフセッ トの調整を行い、 上記第 1の比較結果は予め設定した 値以上で上記第 2の比較結果は予め設定した値未満ならば、 上記光ピッ クアップを上記光ディスク媒体の外周方向に移送させ、 上記第 1の比較 結果は予め設定した値未満で上記第 2の比較結果は予め設定した値以上 ならば、 上記光ピックァップを上記光ディスク媒体の内周方向に移送さ せ、 上記第 1 の比較結果と上記第 2の比較結果が共に予め設定した値未 満ならば、 上記光ピックアップを予め定められた位置に移送させること を特徴とするものである。
本発明によれば、 トラック誤差信号の調整動作を行う前に前記光ピッ クァップを移動する必要があるか否かを決め、 更に移動が必要と判断し た場合においても最適な方向に移動を行う ことができるよ うにしたので、 起動時に光ピックァップが光ディスク媒体上の トラックが存在する領域 の境界に位置したと しても光ピックァップの移動を最適化することがで きるため、 起動時間の大幅な短縮を実現できる。
本発明の請求の範囲第 3項にかかる光ディスク装置は、 情報記録用 ト ラックを有する光ディスク媒体に対し情報の記録あるいは再生を行う光 ピックアップと、 光ビームの焦点を上記光ディスク媒体に合わせるよ う に上記光ピックアップの制御を行うフォーカス制御手段と、 光ビームの 照射位置が上記情報記録用 トラックに追従するよ うに上記光ピックァッ プを駆動する トラッキングァクチユエータと、 光ビームの照射位置の ト ラック位置からのずれを検出する トラック誤差検出手段と、 該 トラック 誤差検出手段が出力する トラック誤差信号のゲイン及びオフセッ トを調 整する調整手段と、 該調整手段の出力信号に応じて上記トラッキングァ クチユエータを駆動する トラッキング駆動手段とを備えた光ディスク装 置において、 トラック誤差信号の振幅を検出する振幅検出手段と、 上記 トラッキング駆動手段に信号を与え、 光ピックァップの対物レンズを上 記光ディスク媒体の径方向にシフ トさせる対物レンズシフ ト手段と、 上 記光ピックァップを上記光ディスク媒体の径方向に移送させる移送手段 とを備え、 該移送手段は上記光ピックァップを上記光デイスク媒体の外 周方向へ移送し、 上記フォーカス制御手段は上記光ディスク媒体上に上 記光ピックアップから照射される光ビームの焦点を合わせ、 上記対物レ ンズシフ ト手段によって上記光ディスク媒体の外周方向に上記光ピック アップの対物レンズをシフ トさせた状態で上記振幅検出手段にて検出し た トラック誤差信号の振幅が予め設定した値以上ならば、 上記対物レン ズのシフ トを止めて上記調整手段は トラック誤差信号のゲイン及ぴオフ セッ トの調整を行い、 上記振幅検出手段にて検出した トラック誤差信号 の振幅が予め設定した値未満ならば、 上記光ピックァップを上記光ディ スク媒体の内周方向に移送させることを特徴とするものである。
本発明によれば、 起動時における光ピックァップの移動量を大幅に減 少させることができる為、 起動時間の大幅な短縮を実現しう るものとな る。
本発明の請求の範囲第 4項にかかる光ディスク装置は、 情報記録用 ト ラックを有する光ディスク媒体に対し情報の記録あるいは再生を行う光 ピックアップと、 光ビームの焦点を上記光ディスク媒体に合わせるよ う に上記光ピックアップの制御を行うフォーカス制御手段と、 光ビームの 照射位置が上記情報記録用 トラックに追従するよ うに上記光ピックァッ プを駆動する トラッキングァクチユエータ と、 光ビームの照射位置の ト ラック位置からのずれを検出する トラック誤差検出手段と、 該 トラック 誤差検出手段が出力する トラック誤差信号のゲイン及ぴオフセッ トを調 整する調整手段と、 該調整手段の出力信号に応じて上記 トラッキングァ クチユエータを駆動する トラッキング駆動手段とを備えた光ディスク装 置において、 トラック誤差信号の振幅を検出する振幅検出手段と、 上記 トラッキング駆動手段に信号を与え、 光ピックァップの対物レンズを上 記光ディスク媒体の径方向にシフ トさせる対物レンズシフ ト手段と、 上 記光ピックァップを上記光ディスク媒体の径方向に移送させる移送手段 とを備え、 該移送手段は上記光ピックアツプを上記光ディスク媒体の内 周方向へ移送し、 上記フォーカス制御手段は上記光ディスク媒体上に上 記光ピックァップから照射される光ビームの焦点を合わせ、 上記対物レ ンズシフ ト手段は上記光ディスク媒体の内周方向に上記光ピックアップ の対物レンズをシフ トさせた状態で上記振幅検出手段にて.検出した トラ ック誤差信号の振幅が予め設定した値以上ならば、 上記記対物レンズの シフ トを止めて上記記調整手段によ り トラック誤差信号のゲイン及びォ フセッ トの調整を行い、 前記振幅検出手段にて検出した トラック誤差信 号の振幅が予め設定した値未満ならば、 上記光ピックァップを上記光デ ィスク媒体の外周方向に移送させることを特徴とするものである。
本発明によれば、 起動時における光ピックァップの移動量を大幅に減 少させることができる為、 起動時間の大幅な短縮を実現しう るものとな る。
本発明の請求の範囲第 5項にかかる光ディスク装置は、 請求の範囲第 1項ないし請求の範囲第 4項のいずれかに記載の光ディスク装置におい て、 上記振幅検出手段にて トラック誤差信号の振幅を検出する期間を、 上記光ディスク媒体の回転に同期して 1回転以上の期間行う ことを特徴 とするものである。
本発明によれば、 光ディスク媒体自身の偏芯や装着時の中心ずれ、 ま た光ピックァップの対物レンズの振動などによ り、 トラック誤差信号の 状態が変化しても確実に トラック誤差信号の振幅を検出することができ る。
本発明の請求の範囲第 6項にかかる光ディスク装置は、 情報記録用 ト ラックを有する光ディスク媒体に対し情報の記録あるいは再生を行う光 ピックアップと、 光ビームの焦点を上記光ディスク媒体に合わせるよ う に上記光ピックアップの制御を行うフォーカス制御手段と、 光ビームの 照射位置が上記情報記録用 トラックに追従するよ うに上記光ピックアツ プを駆動する トラッキングァクチユエータと、 光ビームの照射位置の ト ラック位置からのずれを検出する トラック誤差検出手段と、 該 トラック 誤差検出手段が出力する トラック誤差信号のゲイン及びオフセッ トを調 整する調整手段と、 該調整手段の出力信号に応じて上記 トラッキングァ クチユエータを駆動する トラッキング駆動手段とを備えた光ディスク装 置において、 上記光ディスク媒体からの戻り光量を検出する戻り光量検 出手段と、 該戻り光量検出手段の出力信号の振幅を検出する振幅検出手 段と、 上記光ピックァップを上記光ディスク媒体の径方向に移送させる 移送手段とを備え、 上記フォ一カス制御手段は上記光ディスク媒体上に 上記光ピックァップからの光ビームの焦点を合わせ、 上記振幅検出手段 にて検出した戻り光量信号の振幅が予め設定した値以上ならば、 上記調 整手段によ り トラック誤差信号のゲイン及びオフセッ トの調整を行い、 上記振幅検出手段にて検出した戻り光量信号の振幅が予め設定した値未 満ならば、 上記光ピックアップを予め定められた位置に移送させるこ と を特徴とするものである。
本発明によれば、 起動時における光ピックアツプの初期化位置への移 動をほとんど無くすことができる為、 起動時間の大幅な短縮を実現しう るものとなる。 本発明の請求の範囲第 7項にかかる光ディスク装置は、 情報記録用 ト ラックを有する光ディスク媒体に対し情報の記録あるいは再生を行う光 ピックアップと、 光ビームの焦点を上記光ディスク媒体に合わせるよ う に上記光ピックアップの制御を行うフォーカス制御手段と、 光ビームの 照射位置が上記情報記録用 トラックに追従するよ うに上記光ピックァッ プを駆動する トラッキングァクチユエータと、 光ビームの照射位置の ト ラック位置からのずれを検出する トラック誤差検出手段と、 該トラック 誤差検出手段が出力する トラック誤差信号のゲイン及びオフセッ トを調 整する調整手段と、 該調整手段の出力信号に応じて上記 トラッキングァ クチユエータを駆動する トラッキング駆動手段とを備えた光ディスク装 置において、 上記光ディスク媒体からの戻り光量を検出する戻り光量検 出手段と、 該戻り光量検出手段の出力信号の振幅を検出する振幅検出手 段と、 上記トラッキング駆動手段に信号を与え、 光ピックアップの対物 レンズを上記光ディスク媒体の径方向にシフ トさせる対物レンズシフ ト 手段と、 上記光ピックアップを上記光ディスク媒体の径方向に移送させ る移送手段とを備え、 上記フォーカス制御手段は上記光ディスク媒体上 に上記光ピックァップから照射される光ビームの焦点を合わせ、 上記対 物レンズシフ ト手段によって上記光ディスク媒体の外周方向に上記光ピ ックァップの対物レンズをシフ トさせた状態で上記振幅検出手段にて検 出した第 1の戻り光量信号の振幅と予め設定した値とを比較した第 1 の 比較結果と、 上記対物レンズシフ ト手段によって上記光ディスク媒体の 内周方向に上記光ピックアップの対物レンズをシフ トさせた状態で上記 振幅検出手段にて検出した第 2の戻り光量信号の振幅と上記予め設定し た値とを比較した第 2 の比較結果とにより、 上記第 1 の比較結果と上記 第 2の比較結果とが共に予め設定した値以上ならば、 トラック誤差信号 のゲイン及びオフセッ トの調整を行い、 上記第 1 の比較結果は予め設定 した値以上で上記第 2 の比較結果は予め設定した値未満ならば、 上記光 ピックアップを上記光ディスク媒体の外周方向に移送させ、 上記第 1 の 比較結果は予め設定した値未満で上記第 2 の比較結果は予め設定した値 以上ならば、 上記光ピックァップを上記光ディスク媒体の内周方向に移 送させ、 上記第 1 の比較結果と上記第 2の比較結果とが共に予め設定し た値未満ならば、 上記光ピックァップを予め定められた位置に移送させ ることを特徴とするものである。
本発明によれば、 トラック誤差信号の調整動作を行う前に前記光ピッ ク.ァップを移動する必要があるかを決め、 更に移動が必要と判断した場 合においても最適な方向に移動を行うことができるよ うにしたので、 起 動時に光ピックァップが光ディスク媒体上の トラックが存在する領域の 境界に位置したと しても光ピックアップの移動を最適化することができ るため、 起動時間の大幅な短縮を実現しうるものとなる。
本発明の請求の範囲第 8項にかかる光ディスク装置は、 情報記録用 ト ラックを有する光ディスク媒体に対し情報の記録あるいは再生を行う光 ピックアップと、 光ビームの焦点を上記光ディスク媒体に合わせるよ う に上記光ピックアップの制御を行うフォーカス制御手段と、 光ビームの 照射位置が上記情報記録用 トラックに追従するよ うに上記光ピックァッ プを駆動する トラッキングァクチユエータと、 光ビームの照射位置の ト ラック位置からのずれを検出する トラック誤差検出手段と、 該 トラック 誤差検出手段が出力する トラック誤差信号のゲイン及びオフセッ トを調 整する調整手段と、 該調整手段の出力信号に応じて上記トラッキングァ クチユエータを駆動する トラッキング駆動手段とを備えた光ディスク装 置において、 上記光ディスク媒体からの戻り光量を検出する戻り光量検 出手段と、 該戻り光量検出手段の出力信号の振幅を検出する振幅検出手 段と、 上記トラッキング駆動手段に信号を与え、 光ピックアップの対物 レンズを上記光ディスク媒体の径方向にシフ トさせる対物レンズシフ ト 手段と、 上記光ピックアップを上記光ディスク媒体の径方向に移送させ る移送手段とを備え、 該移送手段は上記光ピックァップを上記光ディス ク媒体の外周方向へ移送し、 上記フォーカス制御手段は上記光ディスク 媒体上に上記光ピックアップからの光ビームの焦点を合わせ、 上記対物 レンズシフ ト手段によって上記光デイスク媒体の外周方向に上記光ピッ クァップの対物レンズをシフ トさせた状態で上記振幅検出手段にて検出 した戻り光量信号の振幅が予め設定した値以上ならば、 上記対物レンズ のシフ トを止めて上記調整手段によ り トラック誤差信号のゲイン及びォ フセッ トの調整を行い、 上記振幅検出手段にて検出した戻り光量信号の 振幅が予め設定した値未満ならば、 上記光ピックアップを上記光デイ ス ク媒体の内周方向に移送させることを特徴とするものである。
本発明によれば、 起動時における光ピックアップの移動量を大幅に減 少させることができる為、 起動時間の大幅な短縮を実現しう るものとな る。
本発明の請求の範囲第 9項にかかる光ディスク装置は、 情報記録用 ト ラックを有する光ディスク媒体に対し情報の記録あるいは再生を行う光 ピックアップと、 光ビームの焦点を上記光ディスク媒体に合わせるよ う に上記光ピックァップの制御を行うフォーカス制御手段と、 光ビームの 照射位置が上記情報記録用 トラックに追従するよ うに上記光ピックアツ プを駆動する トラッキングァクチユエータ と、 光ビームの照射位置の ト ラック位置からのずれを検出する トラック誤差検出手段と、 該 トラック 誤差検出手段が出力する トラック誤差信号のゲイン及びオフセッ トを調 整する調整手段と、 該調整手段の出力信号に応じて上記トラッキングァ クチユエータを駆動する トラッキング駆動手段とを備えた光ディスク装 置において、 上記光ディスク媒体からの戻り光量を検出する戻り光量検 出手段と、 該戻り光量検出手段の出力信号の振幅を検出する振幅検出手 段と、 上記 トラッキング駆動手段に信号を与え、 光ピックアップの対物 レンズを上記光ディスク媒体の径方向にシフ トさせる対物レンズシフ ト 手段と、 上記光ピックァップを上記光ディスク媒体の径方向に移送させ る移送手段とを備え、 上記移送手段は上記光ピックアップを上記光ディ スク媒体の内周方向へ移送し、 上記フォーカス制御手段によ り上記光デ ィスク媒体上に上記光ピックァップから照射される光ビームの焦点を合 わせ、 上記対物レンズシフ ト手段によって上記光ディスク媒体の内周方 向に上記光ピックァップの対物レンズをシフ トさせた状態で上記振幅検 出手段にて検出した戻り光量信号の振幅が予め設定した値以上ならば、 上記対物レンズのシフ トを止めて上記調整手段により トラック誤差信号 のゲイン及びオフセッ トの調整を行い、 上記振幅検出手段にて検出した 戻り光量信号の振幅が予め設定した値未満ならば、 上記光ピックアップ を上記光ディスク媒体の外周方向に移送させることを特徴とするもので ある。
本発明によれば、 起動時における光ピックァップの移動量を大幅に減 少させることができる為、 起動時間の大幅な短縮を実現しうるものとな る。
本発明の請求の範囲第 1 0項にかかる光ディスク装置は、 請求の範囲 第 6項ないし請求の範囲第 9項のいずれかに記載の光デイ スク装置にお いて、 上記振幅検出手段にて戻り光量信号の振幅を検出する期間を、 上 記光ディスク媒体の回転に同期して 1回転以上の期間行うことを特徴と するものである。
本発明によれば、 光ディスク媒体自身の偏芯や装着時の中心ずれ、 ま た光ピックアップの対物レンズの振動などにより、 戻り光量信号の状態 が変化しても確実にトラック誤差信号の振幅を検出することができる。 図面の簡単な説明
第 1図は、 本発明の実施の形態 1 による光ディスク装置の構成を示す ブロック図である。
第 2図は、 本発明の実施の形態 1 による光ディスク装置の動作を説明 するためのフローチャートを示す図である。
第 3図は、 本発明の実施の形態 2〜4による光ディスク装置の構成を 示すブロック図である。
第 4図は、 本発明の実施の形態 2による光デイ スク装置の動作を説明 するためのフローチヤ一トを示す図である。
第 5図は、 本発明の実施の形態 3による光ディスク装置の動作を説明 するためのフローチヤ一トを示す図である。 第 6図は、 本発明の実施の形態 4による光ディスク装置の動作を説明 するためのフローチヤ一トを示す図である。
第 7図は、 本発明の実施の形態 6による光デイスク装置の構成を示す ブロック図である。
第 8図は、 本発明の実施の形態 6による光ディスク装置の動作を説明 するためのフローチヤ一トを示す図である。
第 9図は、 記録部及び未記録部の トラッククロス状態における R F信 号と T E信号を示す図である。
第 1 0図は、 本発明の実施の形態 7〜 9による光ディスク装置の構成 を示すブロック図である。
第 1 1図は、 本発明の実施の形態 7による光ディスク装置の動作を説 明するためのフローチヤ一トを示す図である。
第 1 2図は、 本発明の実施の形態 8による光ディスク装置の動作を説 明するためのフローチヤ一トを示す図である。
第 1 3図は、 本発明の実施の形態 9による光ディスク装置の動作を説 明するためのフローチヤ一トを示す図である。
第 1 4図は、 従来の光ディスク装置の構成を示すプロック図である。 第 1 5図は、 従来の光ディスク装置の動作を説明するためのフローチ ヤー トを示す図である。
第 1 6図は、 光ディスク媒体における領域の構成を示す図である。 第 1 7図は、 トラッククロス状態における T E信号と T E A信号を示 す図である。 発明を実施するための最良の形態
以下に、 本発明の実施の形態について図面を参照しながら説明する。
(実施の形態 1 )
第 1図は本発明の実施の形態 1 による光ディスク装置の構成を示すブ 口ック図である。
第 1図において、 2は C D, C D - R O M, D V D , M Oなどの, 情 報記録用 トラックを有する光ディスク媒体、 1は半導体レーザを集光し て、 光ディスク媒体 2上の目標の位置に照射し、 情報の記録及び再生を 行う光ピックアップであり、 光学系と駆動系とから構成される。 光学系 は、 光ディスク媒体 2の面上にレーザ光を集光させたり、 レーザ光の照 射位置と光ディスク媒体 2上の目標位置とのずれを検出したりするもの であり、 半導体レーザ、 レンズ類、 ビームスプリ ッタ、 フォ トダイォー ドなど (いずれも図示せず) から構成される。 一方、 駆動系は、 対物レ ンズを光ディスク媒体 2上の面振れに追従させるフォーカス制御、 ある いはトラック振れに追従させる トラッキング制御を行い、 光ディスク媒 体 2上の目標位置とレーザ光スポッ ト との位置関係を一定に維持するた めに駆動するものであり、 主にマグネッ ト、 コイル、 支持部材 (いずれ も図示せず) から構成される。 この駆動系は光学系のレンズ群等を駆動 するァクチユエータとなっている。
3は光ピックァップ 1を構成する, 複数に分割されたフォ トダイォー ドによって検出された、 光ディスク媒体 2からの戻り光量信号に各種の 演算処理を行う演算アンプ (トラック誤差検出手段) であり、 レーザ光 スポッ トの光ディスク媒体 2上での焦点ずれ量であるフォーカスエラー 信号 (以下、 F E信号と称する) と、 レーザ光スポッ トの光ディスク媒 体 2上のトラックに対する位置ずれ量である トラック誤差信号 (以下、 T E信号と称する) と、 光ディスク媒体 2上に光の反射率の変化として 記録された情報である再生信号 (以下、 R F信号と称する) とを出力す る。 4は光ピックアップ 1から照射されるレーザ光を集光し、 光デイ ス ク媒体 2に焦点を合わせるフォーカス制御を行うフォーカス制御回路 (フォーカス制御手段) 、 5はフォーカス制御回路 4に制御されながら、 光ピックアップ 1 の対物レンズのァクチユエータを駆動するフォーカス 駆動回路、 6は演算処理装置であるマイクロプロセッサ (以下、 M P U と称する) であり、 前述したフォーカス制御動作の O N Z O F Fはこの M P U 6の指令によつて動作する。 7はオフセッ ト制御回路 7 1 と可変 ゲインアンプ 7 2 とから構成され、 演算アンプ 3から出力される T E信 号を入力し、 MP U 6からの設定によってゲインとオフセッ トとが調整 され、 調整後の トラック誤差信号 (以下、 T EA信号と称する) を出力 する調整回路 (調整手段) 、 8は T EA信号を入力し、 光ディスク媒体 2のトラックにレーザ光の照射位置が追従するように制御する トラツキ ング制御回路、 9はトラッキング制御回路 8に制御されながら、 光ピッ クアップ 1の対物レンズのァクチユエータを駆動する トラッキング駆動 回路 (トラッキング駆動手段) であり、 このトラッキング制御動作の O N/O F Fは、 M P U 6の指令によって動作する。
1 0はトラッキング制御回路 8から出力される制御出力信号 (以下、 TRO信号と称する) を入力し、 光ピックアップ 1のレーザ光の照射位 置が光ディスク媒体 2上のスパイラル状トラックを追従していく時に光 ピックアップ 1 自体を光ディスク 2の半径方向に追従移動させる制御信 号である T VO信号を発生する トラバース制御回路、 1 1は TV O信号 を入力し、 後述する トラバースモータ 1 2を駆動させる トラバース駆動 回路、 1 2は光ピックアップ 1を光ディスク媒体 2の半径方向に移動さ せる トラバースモータ (移送手段) である。 また、 1 3は演算アンプ 3 から出力される R F信号を入力し、 光ディスク媒体 2からの情報を再生 する信号処理回路であり、 R F信号から同期信号である S YN C信号を 抽出する。 1 4は信号処理回路 1 3から抽出された S YNC信号を入力 し光ディスク媒体 2の回転数を制御する DMO信号を出力するスピンド ルモータ制御回路、 1 5はスピン ドルモータ制御回路 1 4から DMO信 号を入力し、 後述するスピン ドルモータを駆動するス ピン ドルモータ駆 動回路、 1 6は光ディスク媒体 2を回転させるスピンドルモータであり、 回転数を表す F G信号をスピン ドルモータ制御回路 1 4に入力すること によって、 S YN C信号とは別に、 所定の回転数でス ピンドルモータ 1 6の回転を制御することもできる。 1 7は調整前の T E信号の振幅を検 出する手段である信号振幅検出回路 (振幅検出手段) であり、 出力信号 T E p pを出力する。 また信号振幅検出回路 1 7は図示しないピークホ 一ルド回路と、 ボトムホールド回路と、 差動アンプとからなる (いずれ も図示せず) 。 1 8は信号振幅検出回路 1 7から出力される出力信号 T E p p のレベルと M P U 6が設定した所定のレベル信号 T E r e f とを 比較する比較器であり、 この比較器 1 8の出力信号 S i g 1 は M P U 6 に入力される。
集光されたレーザ光スポッ トは、 光ディスク媒体 2の偏芯や装着時の 中心ずれなどによ り、 光ディスク媒体 2上の トラックを交差する。 この 状態を トラッククロス状態といい、 第 1 7 ( a ) 図に トラックク ロス状 態における T E信号の図を示す。 また、 T E p pで表すレベルは前述し た信号振幅検出回路 1 7において出力される出力信号である。
第 1 7 ( a ) 図より、 T E信号は略正弦波状であるが、 光ディスク媒 体 2の反射率の違いや、 フォ トダイオードの感度の違い、 トラック溝形 状の非対称性などによって信号振幅や信号オフセッ トが変わることがあ る。 そこで、 T E信号は調整回路 7を構成するオフセッ ト調整回路 7 1 と可変ゲインアンプ 7 2 とにより M P U 6からの設定によってゲインと オフセッ トが調整される。
第 1 7 ( b ) 図に調整後の トラック誤差信号である T E A信号を示す。 次に本実施の形態 1 による光ディスク装置の動作について説明する。 第 2図は本発明の実施の形態 1 による光ディスク装置の動作を説明す るためのフローチヤ一トである。
第 1 6図は光ディスク媒体の半径方向における領域構成図である。 第 1 6図において、 最内周部 A 1はディスクを装着するためのクランプ領 域、 A 2は トラックの存在する情報領域、 A 3 0及び A 3 1 は トラック の存在しない鏡面領域、 A 4 0及ぴ八 4 1 は透明基板のみからなる基板 領域である。
光ディスク装置に光ディスク媒体 2が装着されるか、 または光デイス ク装置の電源が◦ Nにされると (ステップ S 1 0 1 ) 、 光ディスク装置 に光ディスク媒体 2が有るか否かの判定が行われる(ステップ S 1 0 2 ) t ここで、 光ディスク媒体 2が光ディスク装置内に有るか否かの判定を行 うには、 次のよ うな操作が行われる。 まず、 光ピックアップ 1の対物レンズをフォーカス方向に上下動作さ せた時の光ディスク媒体 2からの戻り光量を R F信号のレベルから検出 する。 そして、 光ディスク装置に光ディスク媒体 2が装着されていれば、 光ピックアップ 1 の位置が第 1 6図に示す光ディスク媒体 2 の情報領域 A 2及び鏡面領域 A 3 0, A 3 1 に存在すると、 所定の R F信号レベル が得られる。 しかしながら、 起動前の光ピックアップ 1 の位置が通常と は異なる領域 (情報領域、 及ぴ鏡面領域以外の領域) に位置することも あり得るため、 R F信号のレベルによる光ディスク媒体 2の有無判別に 加えて、 次のよ うな操作が行われる。 即ち、 スピンドルモータ 1 6を一 定時間強制加速し、 スピン ドルモータ 1 6の回転数の変化を F G信号か ら検出して、 スピンドルモータ 1 6のロータ部のイナ一シャを計測する ことにより光ディスク媒体 2の有無判別を行う。 ここで、 例えば R F信 号によるディスク有無判別では光ディスク媒体 2なしと判定し、 イナ一 シャの計測によるディスク有無判別では光ディスク媒体 2有り と判定し た場合、 起動前の光ピックアップ 1の位置が通常とは異なる領域に位置 する, 異常状態であるため、 光ピックアップ 1の位置の初期化動作を行 い処理を続行する。 このよ うな光ディスク媒体 2の有無判別は、 ステツ プ S 1 0 2の中で行われる。
続いて、 ステップ S 1 0 2において判定の結果、 光ディスク媒体 2有 り と判定すると、 スピンドルモータ 1 6を駆動することによって光ディ スク媒体 2の回転を開始し (ステップ S 1 0 3 ) 、 光ピックアップ 1 の フォーカス制御を O Nにする (ステップ S 1 0 4 ) 。 一方、 ステップ S 1 0 2において、 光ディスク媒体 2が無いと判定したならば、 作業は終 了する。 ステップ S 1 0 4において、 光ピックアップ 1 の位置が光ディ スク媒体 2の トラックが存在する情報領域 A 2にあれば、 集光されたレ 一ザ光スポッ トは、 光ディスク媒体 2の偏芯や装着時の中心ずれなどに より、 トラックク ロス状態となる。 しかしながら、 光ピックアップ 1 の 位置が光デイスク媒体 2の トラックが存在しない鏡面領域 A 3 0, A 3 1 にあれば、 フォーカス制御は正常に動作するが トラックを交差しない ため、 T E信号は第 1 7図に示すよ うな略正弦波状にはならずに一定レ ベノレになる。
次に、 調整前の T E信号の信号振幅を信号振幅検出回路 1 7によって 検出し (ステップ S 1 0 5 ) 、 検出した信号 T E p p と光ディスク媒体 2の鏡面部上に傷などによつて発生する T E信号上のノィズレベル程度 に設定された所定の振幅信号レベル T E r e f とを比較器 1 8で比較し、 所定の振幅以上であるか否かを判定する (ステップ S 1 0 6 ) 。 判定の 結果、 所定の振幅以上であるならば、 比較器 1 8は出力信号 S i g 1に ハイ レベル " 1 " を出力し、 ステップ S 1 0 8へ進む。 一方、 ステップ S 1 0 6において判定の結果、 所定の振幅未満であれば、 比較器 1 8は 出力信号 S i g 1にロウレベル " 0 " を出力し、 ステップ S 1 0 7へ進 む。 ステップ S 1 0 8において、 M P U 6は信号 S i g 1力 S " 1 " なら ば、 光ピックアップ 1は光ディスク媒体 2の トラックが存在する情報領 域 A 2にあり、 正常な トラッククロス状態にあると判断して、 次の トラ ック誤差信号の調整を行う (ステップ S 1 0 8 ) 。 一方、 ステップ S 1 0 7において、 M P U 6は信号 S i g 1力 S " 0 " ならば、 光ピックアツ プ 1は光ディスク媒体 2の トラックが存在しない鏡面領域 A 3 0 , A 3 1にあり正常な トラッククロス状態にないと判断して、 光ピックアップ 1の位置の初期化動作を行い、 光ピックアップ 1を光ディスク媒体 2の トラックが存在する情報領域 A 2に移動後、 T E信号の調整を行う (ス テツプ S 1 0 8) 。 ただし、 この光ピックアップ 1の位置の初期化を行 うには、 初めにフォーカス制御を O F Fにし、 終わり に再びフォーカス 制御を ONにする。
ステップ S 1 0 8において、 T E信号の調整によって、 正確に トラッ キング制御を動作させる準備ができると、 次に トラッキング制御を O N にし (ステップ S 1 0 9 ) 、 続いて、 光ピックアップ 1のレーザ光スポ ッ トが光ディスク媒体 2上のスパイラル状 トラックを追従して行く よ う に トラバース追従制御を ONにする (ステップ S 1 1 0 ) 。 そこで、 光 ディスク媒体 2上の トラックを光ピックアップ 1のレーザ光スポッ トが 正確に追従していく ことが可能になり、 光ディスク媒体 2の情報を再生 できるようになる (ステップ S 1 1 1 ) 。
このように本実施の形態 1による光ディスク装置では、 起動時におけ る光ピックアップ 1の初期化位置への移動は起動時の光ピックアップ 1 が光ディスク媒体 2上のトラックが存在する情報領域 A 2以外に有るよ うな時のみでないと実行されないので、 ほとんどの場合、 起動時間を大 幅に短縮することが可能となる。
なお、 上記実施の形態 1では、 T E信号の振幅を検出する振幅検出手 段と、 予め設定した値との比較手段とを構成するために、 第 1 4図に示 す従来の光ディスク装置に、 信号振幅検出回路 1 7と比較器 1 8 とを追 加しているが、 調整回路 7に初期値を与えた状態で T E A信号を M P U 6にてサンプリ ングし、 かつ、 T E信号の振幅を検出する振幅検出手段 と、予め設定した値との比較手段とを M P U 6にて実現することにより、 信号振幅検出回路 1 7 と比較器 1 8 とを追加することなく、 本実施の形 態 1を実現するようにしてもよい。
(実施の形態 2 )
第 3図は本発明の実施の形態 2による光ディスク装置の構成を示すブ ロック図である。
第 3図において、 1 9は M P U 6の出力信号 S i g 2 と トラッキング 制御回路 8 の出力信号 T R Oを加算し、 トラッキング駆動回路 9に出力 することで、 光ピックアップ 1の トラッキングァクチユエータを駆動す る加算器である。 この加算器 1 9は、 M P U 6 の出力信号 S i g 2によ つて光ピックアップ 1の対物レンズを光ディスク媒体 2の径方向に強制 的にシフ トさせることが可能である。 なお、 その他の構成について第 1 図と同じ構成の部分については同じ符号を付して説明を省略する。
次に本実施の形態 2による光ディスク装置の動作について説明する。 第 4図は本発明の実施の形態 2による光ディスク装置の動作を説明す るためのフローチヤ一トである。
光ディスク装置に光ディスク媒体 2が装着されるか、 または光デイス ク装置の電源が ONにされると (ステップ S 2 0 1 ) 、 光ディスク装置 に光ディスク媒体 2が有るか否かの判定が行われる(ステップ S 2 0 2 ), なお、 光ディスク媒体 2が光ディスク装置に有るか否かの判定を行う方 法は、 実施の形態 1で説明したのと同様、 R F信号のレベルとイナーシ ャによるものであるので、 説明を省略する。 ステップ S 2 0 2において 判定の結果、 光ディスク媒体 2有り と判定したならば、 ス ピン ドルモ一 タ 1 6を駆動することによって光ディスク媒体 2の回転を開始し (ステ ップ S 2 0 3 ) 、 光ピックアップ 1のフォーカス制御を ONにする (ス テツプ S 2 04) 。 一方、 ステップ S 20 2において判定の結果、 光デ イスク媒体 2がないと判定したならば、 作業は終了する。 ステップ S 2 0 4において、 光ピックアップ 1の位置が第 1 6図に示す光ディスク媒 体 2の トラックが存在する情報領域 A 2にあれば、 集光されたレーザ光 スポッ トは、 光ディスク媒体 2の偏芯や装着時の中心ずれなどによ り、 第 1 7図に示すよ うな トラックク ロス状態となる。 一方、 光ピックアツ プ 1の位置が第 1 6図に示す光ディスク媒体 2の トラックが存在しない 鏡面領域 A 3 0, A 3 1にあれば、 フォーカス制御は正常に動作するが トラックを交差しないため、 T E信号は第 1 7図に示すよ うな略正弦波 状にはならずに一定レベルになる。
続いて、 MP U 6は出力信号 S i g 2によつて光ピックアップ 1の対 物レンズを光ディスク媒体 2の外周側にシフ トさせる (ステップ S 2 0 5 ) 。 この状態で、 調整前の T E信号を信号振幅検出回路 1 7によって 信号振幅を検出し (ステップ S 2 0 6 ) 、 検出した出力信号 T E p p と、 所定の振幅信号レベル T E r e f とを比較器 1 8で比較する。 この所定 の振幅信号レベル TE r e f は光ディスク媒体 2の鏡面部上の傷などに よって発生する T E信号上のノィズレベルと同程度に設定されている。 比較器 1 8で比較した結果、 出力信号 TE p が所定の振幅信号レベル T E r e f 以上であれば、 比較器 1 8は出力信号 S i g 1 と してハイ レ ベル〃 1〃を出力し、 出力信号 T E p pが所定の振幅信号レベル T E r e f 未満であれば、 比較器 1 8は出力信号 S i g 1 と してロウレベル〃 0 " を出力する。 この検出値を M P U 6は変数 αとして保持しておく (ステ ップ S 2 0 7 ) 。
次に、 M P U 6は出力信号 S i g 2によって光ピックアップ 1の対物 レンズを光ディスク媒体 2の内周側にシフ トさせる(ステップ S 2 0 8 )。 この状態で、 調整前の T E信号の信号振幅を信号振幅検出回路 1 7によ つて検出し (ステップ S 2 0 9 ) 、 検出した信号 T E p p と、 光デイ ス ク媒体 2の鏡面部上の傷などによって発生する T E ί言号上のノィズレベ ル程度に設定された所定の振幅信号レベル T E r e ί とを比較器 1 8で 比較する。 比較器 1 8で比較した結果、 出力信号 Τ Ε ρ ρが所定の振幅 信号レベル T E r e f 以上であれば、 比較器 1 8は出力信号 S i g 1 と してハイレベル〃 1〃を出力し、 出力信号 T E p pが所定の振幅信号レべ ル T E r e f 未満であれば、 比較器 1 8は出力信号 S i g 1 と してロウ レベル〃 0〃を出力する。この検出値を M P U 6は変数 j3 として保持し(ス テツプ S 2 1 0 ) 、 対物レンズのシフ トを解除する (ステップ S 2 1 1 ) 。 光ピックアップ 1の位置が、 第 1 6図に示す光ディスク媒体 2の トラ ックが存在する情報領域 A 2と トラックが存在しない鏡面領域 A 3 0 と の境界である境界位置 P 0、 あるいはトラックが存&する情報領域 A 2 と鏡面領域 A 3 1 との境界である境界位置 P 1 のいずれかに存在すると き、 光ディスク媒体 2の偏芯や装着時の中心ずれなどにより、 光ピック アップ 1 のレーザ光ビームと光ディスク媒体 2の境界位置 P 0または境 界位置 P 1 とが交差する。 そして、 レーザ光ビームが鏡面部に入った時 には T E信号は略正弦波状にはならずに一定レベルになってしまうため、 この位置で T E信号の調整を行う と、 本来の T E信号の振幅を検出する ことができず、 調整回路 7を構成する可変ゲインアンプ 7 2によって適 切なゲインに設定することができなくなるおそれがある。 そこで、 前述 の対物レンズの外周シフ ト量及び内周シフ ト量を、 光ディスク媒体 2の 偏芯や装着時の中心ずれにより発生する偏芯ずれ量より大きく設定する ことにより、 トラッククロス状態が不確実になる領域の範囲を超えた二 つの位置で調整前の T E信号の振幅を検出して、 変数 α及び変数 3の 2 つの検出値を予め設定した所定の振幅と比較した検出結果を得ることが できる。 そこで、 この検出値である変数 α と変数 /3によ り、 よ り詳しい 光ピックアップ 1の位置と光ディスク媒体 2の位置を判定することがで さる。
続いて、 ステップ S 2 1 2において、 検出値はひ 1 "かつ β =〃 1 " であるか否かを判定する。 判定の結果、 α =〃 1〃かつ /3 =〃 1〃であるな らば、 光ピックアップ 1 は完全に情報領域 A 2内部に位置するので、 確 実な トラッククロス状態が得られるため、 この場所で T E信号の調整を 行う (ステップ S 2 1 8 ) 。 一方、 ステップ S 2 1 2において、 検出値 力 S α =" 1 "かつ =" 1 "でなければ、 α =" 1 "かつ J3 0 "であるか否 かを判定する (ステップ S 2 1 3 ) 。 判定の結果、 検出値が a =〃 1〃か つ 3 =〃 0〃ならば、 この場合、 対物レンズが内周側にシフ トしたときに トラッククロス状態が得られなかったので、 情報領或 A 2 と トラックが 存在しない鏡面領域 A 3 0 との境界位置 P 0に光ピックアップ 1は位置 する。 そこで、 確実な トラッククロス状態が得られるよ うに、 光ピック アップ 1 を外周側へ微小移動を行い (ステップ S 2 1 4 ) 、 T E信号の 調整を行う。 一方、 ステップ S 2 1 3において、 検出値が α =" 1〃かつ β =" 0 "でなければ、 検出値は a ="0 "かつ =" 1 "であるか否かを判 定する (ステップ S 2 1 5 ) 。 判定の結果、 検出値は " =" 0 "かつ β =〃 1〃であるならば、 この場合、 対物レンズが外周側にシフ ト したときに ト ラッククロス状態が得られなかったので、 情報領域 A 2 と トラックが存 在しない鏡面領域 A 3 1 との境界位置 P 1 に光ピックアップ 1 は位置す る。 そこで、 確実な トラッククロス状態が得られるよ うに光ピックアツ プ 1を内周側へ微小移動を行い (ステップ S 2 1 6 ) 、 トラック誤差信 号の調整を行う。 一方、 ステップ S 2 1 5において、 検出値は α =〃 0 " かつ / 3 =" 1 "でなければ、 検出値は α =" 0 "かつ ]3 =" 0 "であり、 この 場合、 完全に鏡面領域 A 3 0または A 3 1 内部に光ピックアップ 1は位 置するので、 光ピックアップの位置の初期化動作を行う (ステップ S 2 1 7) 。 前述したステップ S 2 1 2〜ステップ S 2 1 7において、 光ピックァ ップ 1 を光ディスク媒体 2の トラックが存在する情報領域 A 2に移動し た後に、 T E信号の調整を行う (ステップ S 2 1 8 ) 。 この光ピックァ ップ 1の位置初期化の初めにはフォーカス制御を O F Fにし、 位置の初 期化動作の終了後は再びフォーカス制御を O Nにする。 また、 光ピック アップ 1 の位置が、 第 1 6図に示す光ディスク媒体 2の鏡面領域 A 3 0 と基板領域 A 4 0の境界位置または鏡面領域 A 3 1 と基板領域 A 4 1 の 境界位置にあり、 前述の対物レンズの外周シフ ト動作及ぴ内周シフ ト動 作によってフォーカス制御にエラー状態が発生した嬝合も、 光ピックァ ップ 1の位置の初期化動作を行い、 光ピックアップ 1 を光ディスク媒体 2の トラックが存在する情報領域 A 2に移動した後に T E信号の調整を 行う。
次に、 T E信号の調整によって正確に トラッキング制御を動作させる 準備ができたので、 トラッキング制御を O Nし (ステップ S 2 1 9 ) 、 続いて、 光ピックアップ 1のレーザ光スポッ トが光ディスク媒体 2上の スパイ ラル状トラックを追従して行く よ うに トラバース追従制御を O N にする (ステップ S 2 2 0 ) 。 これらの動作により、 光ディスク媒体 2 上の トラックを光ピックアップ 1のレーザ光スポッ トが正確に追従して 行く ことが可能となり、 光ディスク媒体 2の情報を再生するこ とができ る (ステップ S 2 2 1 )
このよ うに本実施の形態 2による光ディスク装置では、 調整前の T E 信号の振幅を検出し、 2つの検出値 (変数《、 及び変数 0 ) を予め設定 した所定の振幅と比較した結果よ り、 光ピックアップ 1 の位置が光ディ スク媒体 2上の トラックが存在する領域内に完全に位置するか、 トラッ クが存在する領域の外周側の端に位置するか、 トラックが存在する領域 の内周側の端に位置するか、 トラックが存在する領域外に完全に位置す るか、 を判断することにより Τ Ε信号の調整動作を行う前に光ピックァ ップを移動する必要があるかを決め、 さらに移動が必要と判断した場合 においても最適な方向に移動を行う ことができるので、 起動時に光ピッ クアップ 1が光ディスク媒体 2上のトラックが存在する領域の境界に位 置したとしても光ピックアップ 1 の移動を最適化することができるため、 起動時間の大幅な短縮を実現することができる。
なお、 上記実施の形態 2では、 T E信号の振幅を検出する振幅検出手 段と、 予め設定した値との比較手段とを構成するために、 第 1 4図に示 す従来の光ディスク装置に、 信号振幅検出回路 1 7と比較器 1 8 とを追 加しているが、 調整回路 7に初期値を与えた状態で T E A信号を M P U 6にてサンプリ ングし、 かつ、 T E信号の振幅を検出する振幅検出手段 と、予め設定した値との比較手段とを M P U 6にて実現することにより、 信号振幅検出回路 1 7 と比較器 1 8 とを追加することなく、 本実施の形 態 2を実現するようにしてもよい。
(実施の形態 3 )
第 3図は本発明の実施の形態 3による光ディスク装置の構成を示すブ ロック図である。 なお、 図中の各構成については実施の形態 2で説明済 みであるので、 説明を省略する。
次に本実施の形態 3による光ディスク装置の動作について説明する。 第 5図は本発明の実施の形態 3による光ディスク装置の動作を説明す るためのフローチヤ一トである。
光ディスク装置に光ディスク媒体 2が装着されるか、 または光デイ ス ク装置の電源が O Nにされると (ステップ S 3 0 1 ) 、 光ディスク装置 に光ディスク媒体 2が有るか否かの判定が行われる(ステップ S 3 0 2 )。 なお、 光ディスク媒体 2が光ディスク装置に有るか否かの判定を行う方 法は、 実施の形態 1で説明したのと同様、 R F信号のレベルとイナーシ ャによるものであるので、 説明を省略する。 ステップ S 3 0 2において 判定の結果、 光ディスク媒体 2有り と判定したならば、 スピン ドルモー タ 1 6を駆動することによって光ディスク媒体 2の回転を開始し (ステ ップ S 3 0 3 ) 、 光ピックアップ 1を光ディスク媒体 2の外周方向へ微 小移動させる (ステップ S 3 0 4 ) 。 このときの外周方向への移動量は、 光ピックアップ 1が内周側へ移動できる可動範囲の限界位置から光ディ スク媒体 2のトラックが存在する情報領域 A 2内に入るまでの移動量で ある。 光ピックアップ 1の位置は、 第 1 6図に示す光デイスク媒体 2の トラックが存在する情報領域 A 2にあれば、 集光されたレーザ光スポッ トは、 光ディスク媒体 2の偏芯や装着時の中心ずれなどにより、 第 1 7 図に示すようなトラッククロス状態となる。 一方、 光ピックアップ 1の 位置が第 1 6図に示す光ディスク媒体 2の トラックが存在しない鏡面領 域 A 3 0, A 3 1にあれば、 フォーカス制御は正常に動作するがトラッ クを交差しないため、 TE信号は第 1 7図に示すような略正弦波状には ならずに一定レべノレになる。
続いて、 MP U 6は出力信号 S i g 2によつて光ピックアップ 1の対 物レンズを光ディスク媒体 2の外周側にシフ トさせて (ステップ S 3 0 5 ) 、 フォーカス制御を ONにする (ステップ S 3 0 6 ) 。 このとき、 光ピックアップ 1の位置が光ディスク媒体 2の外周部鏡面領域 A 3 1 よ り外周側に位置し、 フォーカス制御にエラー状態が発生したならば、 図 示していないが、 実施の形態 1に述べた光ピックアップ 1の位置の初期 化動作を行った後に T E信号の調整を行う という一連のエラー処理動作 を実施する。 続いて、 光ピックアップ 1が情報領域 A 2または鏡面領域 A 3 1にありフォーカス制御が O Nならば、 T E信号の信号振幅を信号 振幅検出回路 1 7によって検出する (ステップ S 3 0 7 ) 。 そして、 検 出した出力信号 TE p p と所定の振幅信号レベル T E r e f とを比較器 1 8で比較することにより、 出力信号 TE p pが所定の振幅信号レベル T E r e f 以上であるか否かを判定する (ステップ S 3 0 8 ) 。 この振 幅信号レベル T E r e f は光ディスク媒体 2の鏡面部上の傷などによつ て発生する T E信号上のノィズレベルと同程度に設定されている。 ステ ップ S 3 0 8において判定の結果、 出力信号 T E p pが所定の振幅信号 レベル T E r e f 以上であれば、 比較器 1 8は出力信号 S i g 1 として ハイ レべノレ" 1 "を出力してステップ S 3 1 0へ進む。 一方、 ステップ S 3 0 8において判定の結果、 出力信号 T E p pが所定の振幅信号レベル T E r e f 以上でなければ、 比較器 1 8は出力信号 S i g 1 と してロウ レベル" 0 "を出力して、 ステップ S 3 0 9へ進む。
ここで、 光ピックアップ 1 の位置が、 第 1 6図に示す光ディスク媒体 2の トラックが存在する情報領域 A 2 と トラックが存在しない鏡面領域 A 3 1 との境界位置 P 1にあるならば、 光ディスク媒体 2の偏芯や装着 時の中心ずれなどによ り、 光ピックアップ 1のレーザ光ビームと光ディ スク媒体 2の境界位置 P 1は交差する。 そして、 レーザ光ビームが鏡面 部に入ったときに、 T E信号は略正弦波状にはならず一定レベルになつ てしま うため、 この位置で T E信号の調整を行う と、 本来の T E信号の 振幅を検出することができず、 調整回路 7を構成する可変ゲインアンプ 7 2によって適切なゲインに設定することができなく なるおそれがある。 そこで、 対物レンズが外周側にシフ トする量を光ディスク媒体 2の偏芯 や装着時の中心ずれにより発生する偏芯ずれ量よ り大きく設定すること により、 トラックク ロス状態が不確実になる領域よ り外周側にレーザ光 ビームは出射されるため、 レーザ光ビームは鏡面部 A 3 1 に確実に入り、 検出信号 S i g 1 はロ ウレベル〃 0〃になり、 光ピックアップ 1 を光ディ スク媒体 2の内周側へ微小移動し、 確実に情報領域 A 2内に光ピックァ ップ 1 を移動させる (ステップ S 3 0 9 ) 。 一方、 光ピックアップ 1 の 位置が、 第 1 6図に示す光ディスク媒体 2 の トラックが存在する情報領 域 A 2 と トラックが存在しない鏡面領域 A 3 1 との境界位置 P 1 よりわ ずかに内周側にあるならば、 前述の光ピックアップ 1の対物レンズを外 周側にシフ ト しているために トラックク ロス状態が不確実になる状態で T E信号振幅検出が行われるが、 いずれに判定されても次に対物レンズ の外周シフ トを解除する (ステップ S 3 1 0 ) こ とによ り 、 確実にレー ザ光ビームは情報領域 A 2内に入る。
前述したステップ S 3 0 8及びステップ S 3 0 9において、 光ピック アップ 1 を光ディスク媒体 2の トラックが存在する情報領域 A 2に移動 した後に、 T E信号の調整を行う (ステップ S 3 1 1 ) 。 ステップ S 3 1 1において、 T E信号の調整によって、 正確に トラッキング制御を動 作させる準備ができると、 次に トラッキング制御を O Nにし (ステップ S 3 1 2 ) 、 続いて、 光ピックアップ 1のレーザ光スポッ トが光ディス ク媒体 2上のスパイラル状トラックを追従して行く よ うに トラバース追 従制御を O Nにする (ステップ S 3 1 3 ) 。 これらの動作によ り、 光デ イスク媒体 2上の トラックを光ピックアップ 1のレーザ光スポッ トが正 確に追従していく ことが可能になり、 光ディスク媒体 2の情報を再生で きるよ うになる (ステップ S 3 1 4 ) 。
このよ うに本実施の形態 3による光ディスク装置では、 起動時におけ る光ピックアップ 1の移動量を大幅に減少させることができるので、 起 動時間の大幅な短縮を実現することができる。
なお、 上記実施の形態 3では、 T E信号の振幅を検出する振幅検出手 段と、 予め設定した値との比較手段とを構成するために、 第 1 4図に示 す従来の光ディスク装置に、 信号振幅検出回路 1 7 と比較器 1 8 とを追 加しているが、 調整回路 7に初期値を与えた状態で T E A信号を M P U 6にてサンプリ ングし、 かつ、 T E信号の振幅を検出する振幅検出手段 と、予め設定した値との比較手段とを M P U 6にて実現することによ り、 信号振幅検出回路 1 7 と比較器 1 8 とを追加することなく、 本実施の形 態 3を実現するよ うにしてもよい。
(実施の形態 4 )
第 3図は本発明の実施の形態 4による光ディスク装置の構成を示すブ ロ ック図である。 なお、 図中の各構成については実施の形態 2で説明済 みであるので、 説明を省略する。
次に本実施の形態 4による光ディスク装置の動作について説明する。 第 6図は本発明の実施の形態 4による光ディスク装置の動作を説明す るためのフローチヤ一 トである。
光ディスク装置に光ディスク媒体 2が装着されるか、 または光デイス ク装置の電源が O Nにされると (ステップ S 4 0 1 ) 、 光ディスク装置 に光ディスク媒体 2が有るか否かの判定が行われる(ステップ S 4 0 2 ) t なお、 光ディスク媒体 2が光ディスク装置に有るか否かの判定を行う方 法は、 実施の形態 1で説明したのと同様、 R F信号のレベルとイナーシ ャによるものであるので、 説明を省略する。 ステップ S 4 0 2において 判定の結果、 光ディスク媒体 2有り と判定したならば、 スピン ドルモー タ 1 6を駆動することによって光ディスク媒体 2の回転を開始し (ステ ップ S 40 3 ) 、 光ピックアップ 1を光ディスク媒体 2の内周方向へ微 小移動させる (ステップ S 4 04) 。 このときの内周方向への移動量は、 光ピックアップ 1が外周側へ移動できる可動範囲の限界位置から光ディ スク媒体 2の トラックが存在する情報領域 A 2内に入るまでの移動量で ある。 よって、 前述の動作によ り光ピックアップ 1の位置は、 第 1 6図 における情報領域 A 2内部、 もしく は情報領域 A 2よ り内周側に位置す ることになる。
続いて、 MP U 6は出力信号 S i g 2によって光ピックアップ 1の対 物レンズを光ディスク媒体 2の内周側にシフ トさせて (ステップ S 4 0 5 ) 、 フォーカス制御を O Nにする (ステップ S 4 0 6 ) 。 このとき、 光ピックアップ 1の位置が光ディスク媒体 2の内周部鏡面領域 A 3 0よ り内周側に位置し、 フォーカス制御にエラー状態が発生したならば、 図 示していないが、 実施の形態 1に述べた光ピックアップ 1の位置の初期 化動作を行った後に T E信号の調整を行う という一連のエラー処理動作 を実施する。 続いて、 光ピックアップ 1が情報領域 A 2または鏡面領域 A 3 0にありフォーカス制御が ONならば、 T E信号を信号振幅検出回 路 1 7によって信号振幅を検出する (ステップ S 4 0 7 ) 。 そして、 検 出した出力信号 TE p p と所定の振幅信号レベル T E r e f とを比較器 1 8で比較し、 出力信号 T E p pが所定の振幅信号レベル T E r e f 以 上であるか否かを判定する (ステップ S 4 0 8 ) 。 この振幅信号レベル T E r e f は光ディスク媒体 2の鏡面部上の傷などによって発生する T E信号上のノイズレベル程度に設定されている。 ステップ S 4 0 8にお いて判定の結果、 出力信号 T E p pが所定の振幅信号レベル T E r e f 以上であれば、 比較器 1 8は出力信号 S i g 1 と してハイ レベル〃 1 "を 出力しステップ S 4 1 0へ進む。 一方、 ステップ S 4 0 8において判定 の結果、 出力信号 T E p pが所定の振幅信号レベル T E r e f 以上でな ければ、比較器 1 8は出力信号 S i g 1 と してロウレベル〃 0〃を出力し、 ステップ S 4 0 9へ進む。
ここで、 光ピックアップ 1 の位置が、 第 1 6図に示す光ディスク媒体 2のトラックが存在する情報領域 A 2 と トラックが存在しない鏡面領域 A 3 0 との境界位置 P 0にあるならば、 光ディスク媒体 2の偏芯や装着 時の中心ずれなどにより、 光ピックアップ 1のレーザ光ビームと光ディ スク媒体 2の境界位置 P 0は交差する。 そして、 レーザ光ビームが鏡面 部に入ったときに、 T E信号は略正弦波状にはならず一定レベルになつ てしまうため、 この位置で T E信号の調整を行う と、 本来の T E信号の 振幅を検出することができず、 調整回路 7を構成する可変ゲインアンプ 7 2によって適切なゲインに設定することができなくなるおそれがある ( そこで、 対物レンズが内周側にシフ トする量を光ディスク媒体 2の偏芯 や装着時の中心ずれにより発生する偏芯ずれ量より大きく設定すること により、 トラックク ロス状態が不確実になる領域より内周側にレーザ光 ビームは出射されるため、 レーザ光ビームは鏡面部 A 3 0に確実に入り、 検出信号 S i g 1はロウレベル〃 0〃になり、 光ピックアップ 1を外周側 へ微小移動し、 確実に情報領域 A 2内に光ピックアップ 1を移動させる (ステップ S 4 0 9 ) 。 一方、 光ピックアップ 1の位置が、 第 1 6図に 示す光ディスク媒体 2のトラックが存在する情報領域 A 2 と トラックが 存在しない鏡面領域 A 3 0 との境界位置 P 0よりわずかに外周側にある ならば、 前述の光ピックアップ 1の対物レンズを内周側にシフ トしてい るためにトラッククロス状態が不確実になる状態で T E信号振幅検出が 行われるが、 いずれに判定されても次に対物レンズの内周シフ トを解除 する (ステップ S 4 1 0 ) こ とによ り 、 確実にレーザ光ビームは情報領 域 A 2内に入る。
前述したステップ S 4 0 8及びステップ S 4 0 9において、 光ピック アップ 1を光ディスク媒体 2のトラックが存在する情報領域 A 2に移動 した後に、 T E信号の調整を行う (ステップ S 4 1 1 ) 。 ステップ S 4 1 1において、 T E信号の調整によって、 正確にトラッキング制御を動 作させる準備ができると、 次にトラッキング制御を〇 Nにし (ステップ S 4 1 2 ) 、 続いて、 光ピックアップ 1のレーザ光スポッ トが光ディス ク媒体 2上のスパイラル状トラックを追従して行く よ うにトラバース追 従制御を ONにする (ステップ S 4 1 3) 。 これらの動作により、 光デ イスク媒体 2上の トラックを光ピックアップ 1のレーザ光スポッ トが正 確に追従していく ことが可能になり、 光ディスク媒体 2の情報を再生で きるよ うになる (ステップ S 4 1 4) 。
このように本発明の実施の形態 4による光ディスク装置では、 起動時 における光ピックアップ 1の移動量を大幅に減少させることができるの で、 起動時間の大幅な短縮を実現することができる。
なお、 上記実施の形態 4では、 T E信号の振幅を検出する振幅検出手 段と、 予め設定した値との比較手段とを構成するために、 第 1 4図に示 す従来の光ディスク装置に、 信号振幅検出回路 1 7と比較器 1 8 とを追 加しているが、 調整回路 7に初期値を与えた状態で T E A信号を MP U 6にてサンプリ ングし、 かつ、 T E信号の振幅を検出する振幅検出手段 と、予め設定した値との比較手段とを MP U 6にて実現することにより、 信号振幅検出回路 1 7 と比較器 1 8 とを追加することなく、 本実施の形 態 4を実現するようにしてもよい。
(実施の形態 5)
第 1 7図はトラッククロス状態における T E信号、 及び T E A信号を 示すものであるが、本発明の請求の範囲第 5項による光ディスク装置の, 調整前の T E信号の振幅を検出する期間についても示しているものであ る。
前述した発明の実施の形態 1〜 4において調整前の T E信号の振幅を 検出する期間を、 第 1 7 ( 3 ) 図の 1 1 0から 1 2 0の期間で行った場 合、 レーザ光スポッ トはトラックを完全に交差しないため、 信号振幅の 検出に誤差が生じる。 一方、 第 1 7 ( a ) 図において、 調整前の T E信 号の振幅を検出する期間を、 t 1から t 2以上の期間行う、 すなわち T E信号の振幅を検出する期間を、 光ディスク媒体 2の回転に同期して 1 回転以上の期間行うようにすれば、 光ディスク媒体 2の偏芯や装着時の 中心ずれなどによる偏芯によって、 レーザ光スポッ トは確実に光ディス ク媒体 2上のトラックを交差する。 そのため、 信号振幅の検出に誤差が 生じることがない。
このよ う に本実施の形態 5による光ディスク装置では、 T E信号の振 幅を検出する期間を、 光ディスク媒体の回転に同期して 1回転以上の期 間行うこととしたので、 確実に T E信号の振幅を検出することが可能と なる。
(実施の形態 6 )
第 7図は本発明の実施の形態 6による光ディスク装置の構成を示すブ ロック図である。
第 7図において、 1 7は光ディスク媒体 2からの戻り光量信号である R F信号の振幅を検出する手段である信号振幅検出回路であり、 出力信 号 R F p pを出力する。 また、 信号振幅検出回路 1 7はピークホールド 回路と、 ボトムホールド回路と、 差動アンプとから (いずれも図示せず) 構成される。 1 8は信号振幅検出回路 1 7から出力される出力信号 R F p pのレベルと、 M P U 6が設定した所定のレベル信号 R F r e f とを 比較する比較器であり、 比較器 1 8の出力信号 S i g 1は M P U 6に入 力される。 なお、 その他の構成について第 1図と同じ構成の部分につい ては同じ符号を付して説明を省略する。
次に本発明の実施の形態 6による光ディスク装置の動作について説明 する。
第 8図は本発明の実施の形態 6による光ディスク装置の動作を説明す るためのフローチヤ一トである。
光ディスク装置に光ディスク媒体 2が装着されるか、 または光デイス ク装置の電源が O Nにされると (ステップ S 5 0 1 ) 、 光ディスク装置 に光ディスク媒体 2が有るか否かの判定が行われる(ステップ S 5 0 2 )。 なお、 光ディスク媒体 2が光ディスク装置に有るか否かの判定を行う方 法は、 実施の形態 1で説明したのと同様、 R F信号のレベルとイナ一シ ャによるものであるので、 説明を省略する。 ステップ S 5 0 2において 判定の結果、 光ディスク媒体 2有り と判定したならば、 ス ピン ドルモー タ 1 6を駆動することによって光ディスク媒体 2の回転を開始し (ステ ップ S 5 0 3 ) 、 光ピックアップ 1 のフォーカス制御を〇Nにする (ス テツプ S 5 0 4 ) 。 このとき、 光ピックアップ 1 の位置が第 1 6図で示 す光ディスク媒体 2の トラックが存在する情報領域 A 2にあれば、 集光 されたレーザ光スポッ トは、 光ディスク媒体 2の偏芯や装着時の中心ず れなどによ り、 トラック誤差信号は第 1 7図に示すよ うな トラッククロ ス状態となる。 一方、 光ピックアップ 1の位置が第 1 6図で示す光ディ スク媒体 2の トラックが存在しない鏡面領域 A 3 0、 及び鏡面領域 A 3 1にあれば、 フォーカス制御は正常に動作するが トラックを交差しない ため、 T E信号は第 1 7図に示すよ うな略正弦波状にはならずに一定レ ベルになる。 また、 光ディスク媒体 2が、 C D _ Rや C D _ R Wのよ う な記録可能な光ディスク媒体の場合、 トラックが存在する情報領域内に おいても未記録領域が存在する。
第 9図に記録部及び未記録部での トラッククロス状態における R F信 号と T E信号を示す。
記録部において、 光ディスク媒体 2上の トラックは、 反射率が変調さ れて記録されているため、 R F信号の信号振幅は大きな振幅が得られる (第 9 ( a ) 図参照) 。 未記録部において、 光ディスク媒体 2上の トラ ックは、 反射率が変調されていないため、 R F信号の信号振幅は小さな 振幅が得られる (第 9 ( c ) 図参照) 。 しかし、 未記録部の T E信号の 信号振幅 (第 9 ( d ) 図参照) は、 記録部の T E信号の信号振幅 (第 9 ( b ) 図参照) よ り も大きな振幅である。 この T E信号の未記録部の信 号振幅は、 記録部の信号振幅に対して略 2倍にも達するよ うな光デイ ス ク媒体 2 も存在する。 ここで、 本発明の光ディスク装置が光ディスク媒 体 2の再生しか行わない再生専用の装置の場合、 光ディスク媒体の未記 録部ではトラッキング制御を O Nにさせる必要がないため、 T E信号の ゲイン調整は記録部で行われる方が好ましい。 続いて、 ステップ S 5 0 4において、 フォーカス制御を O Nさせた後、 R F信号の信号振幅を信号振幅検出回路 1 7によって検出する (ステツ プ S 5 0 5 ) 。 そして、 検出した出力信号 R F p p と、 所定の振幅信号 レベル R F r e f とを比較器 1 8で比較し、 出力信号 R F p pが所定の 信号振幅レベル R F r e f 以上であるか否かを判定する (ステップ S 5 0 6 ) 。 この振幅信号レベル R F r e f は光ディスク媒体 2の未記録部 で検出される R F信号振幅のレベルよ り大きく設定されている。 ステツ プ S 5 0 6において判定の結果、 出力信号 R F p pが所定の振幅信号レ ベル R F r e f 以上であれば、 比較器 1 8は出力信号 S i g 1 と してハ ィ レベル〃 1〃を出力してステップ S 5 0 8へ進む。 一方、 ステップ S 5 0 6において判定の結果、 出力信号 R F p pが所定の振幅信号レベル R F r e f 以上でなければ、 比較器 1 8は出力信号 S i g l と して口ウレ ベル" 0〃を出力して、 ステップ S 5 0 7へ進む。 よって、 MP U 6は出 力信号 S i g 1が〃 1〃ならば光ピックアップ 1は光ディスク媒体 2の ト ラックが存在する情報領域 A 2の記録部にあり正常な トラックク ロス状 態にあると判断して、 次の トラック誤差信号の調整を行い (ステップ S 5 0 8 ) 、 信号 S i g 1が〃 0〃ならば光ピックァップ 1は光デイ スク媒 体 2の トラックが存在する情報領域 A 2の未記録部あるいは鏡面領域 A 3 0, A 3 1にあり正常な トラックク ロス状態にないと判断して、 光ピ ックアップ位置の初期化動作を行った後 (ステップ S 5 0 7 ) 、 TE信 号の調整を行う (ステップ S 5 0 8 ) 。 ただし、 この光ピックアップ 1 の位置初期化の初めにはフォーカス制御を O F Fにし、 位置初期化設定 の終わりに再ぴフォーカス制御を ONにする。
ステップ S 5 0 8において、 T E信号の調整によ り正確に トラツキン グ制御を動作させる準備ができたので、 次に トラッキング制御を〇Nし (ステップ S 5 0 9 ) 、 続いて光ピックアップ 1のレーザ光スポッ トが 光ディスク媒体 2上のスパイラル状 トラックを追従して行く よ うに トラ バース追従制御を ONにする (ステップ S 5 1 0) 。 そこで、 光デイ ス ク媒体 2上の トラックを光ピックアップ 1のレーザ光スポッ トが正確に 追従して行く ことが可能となるので、 光ディスク媒体 2の情報を再生で きるよ うになる (ステップ S 5 1 1 ) 。
このよ うに本実施の形態 6による光ディスク装置では、 起動時におけ る光ピックアップ 1の初期化位置への移動は、 起動時の光ピックアップ 1の位置が光ディスク媒体 2上の トラックが存在する情報領域 A 2の記 録部に存在するときには行わないので、 ほとんどの場合、 起動時間を大 幅に短縮することが可能となる。
なお、 上記実施の形態 6では、 T E信号の振幅を検出する振幅検出手 段と、 予め設定した値との比較手段とを構成するために、 第 1 4図に示 す従来の光ディスク装置に、 信号振幅検出回路 1 7 と比較器 1 8 とを追 加しているが、 調整回路 7に初期値を与えた状態で T E A信号を M P U 6にてサンプリ ングし、 かつ、 T E信号の振幅を検出する振幅検出手段 と、予め設定した値との比較手段とを M P U 6にて実現することによ り、 信号振幅検出回路 1 7 と比較器 1 8 とを追加することなく、 本実施の形 態 6を実現するよ うにしてもよい。
(実施の形態 7 )
第 1 0図は本発明の実施の形態 7による光ディスク装置の構成を示す ブロック図である。
第 1 0図において、 1 9は M P U 6の出力信号 S i g 2 と トラツキン グ制御回路 8の出力信号 T R Oを加算し、 トラッキング駆動回路 9で光 ピックアップ 1の トラッキングァクチユエータを駆動する加算器である ( この加算器 1 9は M P U 6の出力信号 S i g 2によって光ピックアップ 1の対物レンズを光ディスク媒体 2の径方向に強制的にシフ トさせるこ とが可能である。 なお、 その他の構成について第 7図と同じ構成の部分 については同じ符号を付して説明を省略する。
次に本実施の形態 7による光ディスク装置の動作について説明する。 第 1 1図は本発明の実施の形態 7による光ディスク装置の動作を説明 するためのフローチヤ一トである。
光ディスク装置に光ディスク媒体 2が装着されるか、 または光デイス ク装置の電源が ONにされると (ステップ S 6 0 1 ) 、 光ディスク装置 に光ディスク媒体 2が有るか否かの判定が行われる(ステップ S 6 0 2 )。 なお、 光ディスク媒体 2が光ディスク装置に有るか否かの判定を行う方 法は、 実施の形態 1で説明したのと同様、 R F信号のレベルとイナーシ ャによるものであるので、 説明を省略する。 ステップ S 6 0 2において 判定の結果、 光ディスク媒体 2有り と判定したならば、 スピン ドルモー タ 1 6を駆動することによって光ディスク媒体 2の. II転を開始し (ステ ップ S 6 0 3 ) 、 光ピックアップ 1のフォーカス制御を O Nにする (ス テツプ S 6 04) 。 一方、 ステップ S 6 0 2において判定の結果、 光デ イスク媒体 2がないと判定したならば、 作業は終了する。 ステップ S 6 04において、光ピックアップ 1のフォーカス制御を O Nにした状態で、 光ピックアップ 1の位置が第 1 6図に示す光ディスク媒体 2の トラック が存在する情報領域 A 2にあれば、 集光されたレーザ光スポッ トは、 光 ディスク媒体 2の偏芯や装着時の中心ずれなどにより、 第 1 7図に示す よ うな トラッククロス状態となる。 一方、 光ピックアップ 1の位置が第 1 6図に示す光ディスク媒体 2の トラックが存在しない鏡面領域 A 3 0, A 3 1にあれば、 フォーカス制御は正常に動作するが トラックを交差し ないため、 T E信号は第 1 7図に示すよ うな略正弦波状にはならずに一 定レベルになる。 また、 第 9図に示すよ うに、 情報領域 A 2内では、 記 録部と未記録部において R F信号振幅と T E信号振幅とは異なるレベル となる。
続いて、 MP U 6は出力信号 S i g 2によって光ピックアップ 1の対 物レンズを光ディスク媒体 2の外周側にシフ トさせる (ステップ S 6 0 5) 。 この状態で、 R F信号の信号振幅を信号振幅検出回路 1 7によつ て検出し (ステップ S 6 0 6 ) 、 検出した信号 R F p p と、 所定の振幅 信号レベル R F r e f とを比較器 1 8で比較する。 その際、 この所定の 振幅信号レベル R F r e f は光ディスク媒体 2の未記録部で検出される R F信号振幅のレベルより大きく設定されている。 比較器 1 8で比較し た結果、 出力信号 R F p pが所定の振幅信号レベル R F r e f 以上であ れば、 比較器 1 8は出力信号 S i g l としてハイレベル〃 1〃を出力し、 出力信号 R F p pが所定の振幅信号レベル R F r e f 未満であれば、 比 較器 1 8は出力信号 S i g 1 としてロウレベル〃 0〃を出力する。 この検 出値を M P U 6は変数 αとして保持しておく (ステップ S 6 0 7 ) 。
次に、 M P U 6は出力信号 S i g 2によつて光ピックアップ 1 の対物 レンズを光ディスク媒体 2の内周側にシフ 卜させる(ステップ S 6 0 8 )。 この状態で R F信号の信号振幅を信号振幅検出回路 1 7によって検出し (ステップ S 6 0 9 ) 、 検出した信号 R F p p と、 光ディスク媒体 2 の 未記録部で検出される R F信号振幅のレベルより大きく設定された所定 の振幅信号レベル R F r e f とを比較器 1 8で比較する。 比較器 1 8で 比較した結果、 出力信号 R F p pが所定の振幅信号レベル R F r e f 以 上であれば、 比較器 1 8は出力信号 S i g 1 と してハイ レベル〃 1〃を出 力し、 出力信号 R F p が所定の振幅信号レベル R F r e f 未満であれ ば、 比較器 1 8は出力信号 S i g 1 としてロウレベル〃 0〃を出力する。 この検出値を M P U 6は変数 として保持し (ステップ S 6 1 0 ) 、 対 物レンズのシフ トを解除する (ステップ S 6 1 1 ) 。
光ピックアップ 1 の位置が、 第 1 6図に示す光ディスク媒体 2のトラ ックが存在する情報領域 A 2 と トラックが存在しない鏡面領域 A 3 0 と の境界である境界位置 P 0、 あるいはトラックが存在する情報領域 A 2 と鏡面領域 A 3 1 との境界である境界位置 P 1 のいずれかに存在すると き、 光ディスク媒体 2の偏芯や装着時の中心ずれなどにより、 光ピック アップ 1 のレーザ光ビームと光ディスク媒体 2の境界位置 P 0または境 界位置 P 1 とが交差する。 そして、 レーザ光ビームが鏡面部に入った時 には T E信号は略正弦波状にはならずに一定レベルになってしまうため、 この位置で T E信号の調整を行う と、 本来の T E信号の振幅を検出する ことができず、 調整回路 7を構成する可変ゲインアンプ 7 2によって適 切なゲインに設定することができなくなるおそれがある。 そこで、 前述 の対物レンズの外周シフ ト量及び内周シフ ト量を、 光ディスク媒体 2の 偏芯や装着時の中心ずれにより発生する偏芯ずれ量より大きく設定する ことにより、 トラッククロス状態が不確実になる領域の範囲を超えた二 つの位置で調整前の R F信号の振幅を検出して、 この検出値である変数 aと変数 /3 とにより、 より詳しい光ピックアップ 1 の位置と光ディスク 媒体 2の位置が判定できる。 光ディスク媒体 2が、 C D— Rや C D— R Wのよ うな記録可能な光ディスク媒体 1 の場合、 トラックが存在する情 報領域 A 2内において未記録領域が存在した場合は、 検出値である変数 aと変数 とにより判定できる領域は、 光ディスク媒体 2の情報領域 A 2内の記録部と未記録部の領域になる。
続いて、 ステップ S 6 1 2において、 検出値が α =〃 1 "かつ ]3 =" 1 〃 であるか否かを判定する。 判定の結果、 検出値が α =〃 1〃かつ j8 =〃 1 " であるならば、 光ピックアップ 1は完全に情報領域 A 2の記録部に位置 するので、 確実なトラックク ロス状態が得られるため、 この場所で T E 信号の調整を行う (ステップ S 6 1 8 ) 。 一方、 ステップ S 6 1 2にお いて、 検出値が α 1 "かつ =〃 1 "でなければ、 検出値は か つ β =〃 0〃であるか否かを判定する (ステップ S 6 1 3) 。 判定の結果、 検出値が α =" 1 "かつ j3 =" 0 "ならば、 この場合、 対物レンズが内周側 にシフ トしたときに R F信号振幅レベルが得られなかったので、 記録部 と未記録部の境界位置に光ピックアップ 1は位置する。 そこで、 確実な トラックク ロス状態が得られるように、 光ピックアップ 1を外周側へ微 小移動を行い (ステップ S 6 1 4 ) T E信号の調整を行う。 一方、 ステ ップ S 6 1 3において、 検出値が α =〃 1〃かつ jS = " 0〃でなければ、 検 出値は α =" 0 "かつ) 3 =" 1 "であるか否かを判定する (ステップ S 6 1 5 ) 。 判定の結果、 検出値は α =〃 0〃かつ /3 =〃 1〃であるならば、 この 場合、 対物レンズが外周側にシフ トしたときに R F信号振幅レベルが得 られなかったので、 記録部と未記録部の境界位置に光ピックアップ 1は 位置する。 そこで、 確実なトラックク ロス状態が得られるように光ピッ クアップ 1を内周側へ微小移動を行い (ステップ S 6 1 6 ) Τ Ε信号の 調整を行う。 一方、 ステップ S 6 1 5において、 検出値は α =〃 0〃かつ β =" 1〃でなければ、 すなわち検出値は α = " 0 "かつ β =〃 0〃であり、 この場合、 記録部以外に光ピックアップ 1は位置するので、 光ピックァ ップ 1の位置の初期化動作を行う (ステップ S 6 1 7 ) 。
前述したステップ S 6 1 2〜ステップ S 6 1 7において、 光ピックァ ップ 1を光ディスク媒体 2の トラックが存在する情報領域 A 2に移動し た後に、 T E信号の調整を行う (ステップ S 6 1 8) 。 この光ピックァ ップ 1の位置初期化の初めにはフォーカス制御を O F Fにし、 位置の初 期化動作の終了後は再びフォーカス制御を ONにする。 また、 光ピック アップ 1の位置が、 第 1 6図に示す光ディスク媒体 2の鏡面領域 A 3 0 と基板領域 A 4 0の境界位置または鏡面領域 A 3 1 と基板領域 A 4 1の 境界位置にあり、 前述の対物レンズの外周シフ ト動作及び内周シフ ト動 作によってフォーカス制御にエラー状態が発生した場合も、 光ピックァ ップ 1の位置の初期化動作を行い、 光ピックアップ 1を光ディスク媒体 2の トラックが存在する情報領域 A 2に移動した後に T E信号の調整を 行う (ステップ S 2 1 8) 。
次に、 T E信号の調整によって正確に トラッキング制御を動作させる 準備ができたので、 トラッキング制御を ONし (ステップ S 6 1 9 ) 、 続いて、 光ピックアップ 1のレーザ光スポッ トが光ディスク媒体 2上の スパイラル状トラックを追従して行く よ うに トラバース追従制御を ON にする (ステップ S 6 2 0 ) 。 これらの動作によ り、 光ディスク媒体 2 上の トラックを光ピックアップ 1のレーザ光スポッ トが正確に追従して 行く ことが可能となり、 光ディスク媒体 2の情報を再生するこ とができ る (ステップ S 6 2 1 )
このよ うに本実施の形態 7による光ディスク装置では、 R F信号の振 幅を検出し、 2つの検出値 (変数 α、 及び ) 3 ) を予め設定した所定の振 幅と比較した結果より、 光ピックアップの位置が光ディスク媒体上の ト ラックが存在する領域内の記録部に完全に位置するか、 記録部の外周側 の端に位置するか、 記録部の内周側の端に位置するか、 記録部外に完全 に位置するか、 を判断することにより トラック誤差信号の調整動作を行 う前に光ピックアップを移動する必要があるか否かを決定し、 さらに移 動が必要と判断した場合においても最適な方向に移動可能としたので、 起動時に光ピックァップの移動を最適化することができるため、 起動時 間の大幅な短縮を実現することができる。
なお、 上記実施の形態 7では、 T E信号の振幅を検出する振幅検出手 段と、 予め設定した値との比較手段とを構成するために、 第 1 4図に示 す従来の光ディスク装置に、 信号振幅検出回路 1 7 と比較器 1 8 とを追 加しているが、 調整回路 7に初期値を与えた状態で T E A信号を M P U 6にてサンプリングし、 かつ、 T E信号の振幅を検出する振幅検出手段 と、予め設定した値との比較手段とを M P U 6にて実現することにより、 信号振幅検出回路 1 7 と比較器 1 8 とを追加することなく、 本実施の形 態 7を実現するようにしてもよい。
(実施の形態 8 )
第 1 0図は本発明の実施の形態 8による光ディスク装置の構成を示す ブロック図である。 なお、 図中の各構成については実施の形態 7で説明 済みであるので、 説明を省略する。
次に本実施の形態 8による光ディスク装置の動作について説明する。 第 1 2図は本発明の実施の形態 8による光ディスク装置の動作を説明 するためのフローチヤ一トである。
光ディスク装置に光ディスク媒体 2が装着されるか、 または光デイ ス ク装置の電源が O Nにされると (ステップ S 7 0 1 ) 、 光ディスク装置 に光ディスク媒体 2が有るか否かの判定が行われる(ステップ S 7 0 2 )。 なお、 光ディスク媒体 2が光ディスク装置に有るか否かの判定を行う方 法は、 実施の形態 1で説明したのと同様、 R F信号のレベルとイナーシ ャによるものであるので、 説明を省略する。 ステップ S 7 0 2において 判定の結果、 光ディスク媒体 2有り と判定したならば、 スピン ドルモー タ 1 6を駆動することによって光ディスク媒体 2の回転を開始し (ステ ップ S 7 0 3 ) 、 光ピックアップ 1を外周方向へ微小移動させる (ステ ップ S 7 0 4 ) 。 このときの外周方向への移動量は、 光ピックアップ 1 が内周側へ移動できる可動範囲の限界位置から光ディスク媒体 2のトラ ックが存在する情報領域 A 2内に入るまでの移動量である。 光ピックァ ップ 1の位置は、 第 1 6図に示す光ディスク媒体 2の トラックが存在す る情報領域 A 2内部か、 もしくは情報領域 A 2より外周側に位置するこ ととなる。
続いて、 MP U 6は出力信号 S i g 2によって光ピックアップ 1の対 物レンズを外周側にシフ トさせて (ステップ S 7 0 5 ) 、 フォーカス制 御を ONにする (ステップ S 70 6 ) 。 このとき、 光ピックアップ 1の 位置が光ディスク媒体 2の外周部鏡面領域 A 3 1 より外周側に位置し、 フォーカス制御にエラー状態が発生したならば、 図示していないが、 光 ピックアップ 1の位置の初期化動作を行った後に丁 E信号の調整を行う という一連のエラー処理動作を実行する。 続いて、 光ピックアップ 1が 情報領域 A 2または鏡面領域 A 3 1にありフォーカス制御が ONならば、 R F信号を信号振幅検出回路 1 7によって信号振幅を検出する (ステツ プ S 7 0 7) 。 そして、 検出した出力信号 R F p p と所定の振幅信号レ ベル R F r e f とを比較器 1 8で比較し、 出力信号 R F p pが所定の振 幅信号レベル R F r e f 以上であるか否かを判定する (ステップ S 7 0 8 ) 。 この振幅信号レベル R F r e f は光ディスク媒体 2の未記録部で 検出される R F信号振幅のレベルより大きく設定されている。 ステップ S 7 0 8において判定の結果、 出力信号 R F p pが所定の振幅信号レべ ル R F r e f 以上であれば、 比較器 1 8は出力信号 S i g 1 と してハイ レベル" 1 "を出力してステップ S 7 1 0へ進む。 一-方、 ステップ S 7 0 8において判定の結果、 出力信号 R F p pが所定の振幅信号レベル R F r e f 以上でなければ、 比較器 1 8は出力信号 S i g 1 として口ウレべ ル〃 0〃を出力して、 ステップ S 7 0 9へ進む。
ここで、 光ピックアップ 1の位置が、 第 1 6図に示す光ディスク媒体 2のトラックが存在する情報領域 A 2の記録部と未記録部の境界にある ならば、 光ディスク媒体 2の偏芯や装着時の中心ずれなどにより、 光ピ ックアップ 1のレーザ光ビームと光ディスク媒体 2の境界位置 P 1は交 差する。 そして、 レーザ光ビームが未記録部に入ったときに、 TE信号 は記録部よ り振幅が大きく なつてしま うため、 この位置で T E信号の調 整を行う と、 本来の T E信号の振幅を検出することができず、 調整回路 7を構成する可変ゲインアンプ 7 2によつて適切なゲインに設定するこ とができなくなるおそれがある。 そこで、 対物レンズが外周側にシフ ト する量を光ディスク媒体 2の偏芯や装着時の中心ずれによ り発生する偏 芯ずれ量よ り大きく設定することによ り、 トラッククロス状態が不確実 になる領域より外周側にレーザ光ビームは出射されるため、 レーザ光ビ 一ムは未記録部に確実に入り、 検出信号 S i g 1はロ ウレベル〃 0〃にな り、 光ピックアップ 1 を内周側へ微小移動し、 確実に情報領域 A 2内に 光ピックアップ 1 を移動させる (ステップ S 7 0 9 ) 。 一方、 光ピック アップ 1 の位置が、 第 1 6図に示す光ディスク媒体 2の トラックが存在 する情報領域 A 2の記録部と未記録部の境界位置よりわずかに内周側に あるならば、 前述の光ピックアップ 1の対物レンズを外周側にシフ ト し ているために トラッククロス状態が不確実になる状態で R F信号振幅検 出が行われるが、 どちらに判定されても次に対物レンズの外周シフ トを 解除する (ステップ S 7 1 0 ) ことにより、 確実にレーザ光ビームは情 報領域 A 2の記録部内に入る。
ステップ S 7 1 0において、対物レンズの外周シフ トを解除した後に、 T E信号の調整を行う (ステップ S 7 1 1 ) 。 ステップ S 7 1 1 におい て、 T E信号の調整によって、 正確に トラッキング制御を動作させる準 備ができると、 次に トラッキング制御を O Nにし (ステップ S 7 1 2 ) 、 続いて、 光ピックアップ 1のレーザ光スポッ トが光ディスク媒体 2上の スパイラル状トラックを追従して行く ように トラバース追従制御を O N にする (ステップ S 7 1 3 ) 。 そこで、 光ディスク媒体 2上の トラック を光ピックアップ 1のレーザ光スポッ トが正確に追従していく ことが可 能になり、 光ディスク媒体 2の情報を再生できるよ うになる (ステップ S 7 1 ) 。
このよ うに本実施の形態 8による光ディスク装置では、 起動時におけ る光ピックァップの移動量を大幅に減少させることができるので、 起動 時間の大幅な短縮を実現することができる。
なお、 上記実施の形態 8では、 T E信号の振幅を検出する振幅検出手 段と、 予め設定した値との比較手段とを構成するために、 第 1 4図に示 す従来の光ディスク装置に、 信号振幅検出回路 1 7 と比較器 1 8 とを追 加しているが、 調整回路 7に初期値を与えた状態で T E A信号を M P U 6にてサンプリングし、 かつ、 T E信号の振幅を検出する振幅検出手段 と、予め設定した値との比較手段とを M P U 6にて実現することにより、 信号振幅検出回路 1 7 と比較器 1 8 とを追加することなく、 本実施の形 態 8を実現するようにしてもよい。
(実施の形態 9 )
第 1 0図は本発明の実施の形態 9による光ディスク装置の構成を示す ブロック図である。 なお、 図中の各構成については実施の形態 7で説明 済みであるので、 説明を省略する。
次に本実施の形態 9による光ディスク装置の動作 'こついて説明する。 第 1 3図は本発明の実施の形態 9による光ディスク装置の動作を説明 するためのフローチヤ一トである。
光ディスク装置に光ディスク媒体 2が装着されるか、 または光デイ ス ク装置の電源が O Nにされると (ステップ S 8 0 1 ) 、 光ディスク装置 に光ディスク媒体 2が有るか否かの判定が行われる(ステップ S 8 0 2 )。 なお、 光ディスク媒体 2が光ディスク装置に有るか否かの判定を行う方 法は、 実施の形態 1で説明したのと同様、 R F信号のレベルとイナーシ ャによるものであるので、 説明を省略する。 ステップ S 8 0 2において 判定の結果、 光ディスク媒体 2有り と判定したならば、 ス ピン ドルモー タ 1 6を駆動することによって光ディスク媒体 2の回転を開始し (ステ ップ S 8 0 3 ) 、 光ピックアップ 1を内周方向へ微小移動させる (ステ ップ S 8 0 4 ) 。 このときの内周方向への移動量は、 光ピックアップ 1 が外周側へ移動できる可動範囲の限界位置から光ディスク媒体 2のトラ ックが存在する情報領域 A 2内に入るまでの移動量である。 よって、 前 述の動作により光ピックアップ 1の位置は、 第 1 6図における情報領域 A 2内部、 もしくは情報領域 A 2より内周側に位置することになる。 続いて、 MP U 6は出力信号 S i g 2によって光ピックアップ 1の対 物レンズを光ディスク媒体 2の内周側にシフ トさせて (ステップ S 8 0 5 ) 、 フォーカス制御を ONにする (ステップ S 8 0 6 ) 。 このとき、 光ピックアップ 1の位置が光ディスク媒体 2の内周部鏡面領域 A 3 0よ り内周側に位置し、 フォーカス制御にエラー状態が発生したならば、 図 示していないが、 光ピックアップ 1の位置の初期化動作を行った後に τ E信号の調整を行う という一連のエラー処理動作を実行する。 続いて、 光ピックアップ 1が情報領域 A 2または鏡面領域 A 3 0にありフォー力 ス制御が ONならば、 R F信号の信号振幅を信号振幅検出回路 1 7によ つて検出する (ステップ S 8 0 7 ) 。 そして、 検出した出力信号 R F p P と所定の振幅信号レベル R F r e f とを比較器 1 8で比較し、 出力信 号 R F p pが所定の振幅信号レベル R F r e f 以上であるか否かを判定 する (ステップ S 8 0 8 ) 。 この振幅信号レベル R F r e f は光ディス ク媒体 2の未記録部で検出される R F信号振幅のレベルより大きく設定 されている。 ステップ S 8 0 8において判定の結果、 出力信号 R F p p が所定の振幅信号レベル R F r e f 以上であれば、 比較器 1 8は出力信 号 S i g 1 としてハイ レべノレ" 1 "を出力してステップ S 8 1 0へ進む。 一方、 ステップ S 8 0 8において判定の結果、 出力信号 R F p pが所定 の振幅信号レベル R F r e f 以上でなければ、 比較器 1 8は出力信号 S i g 1 としてロウレベル" 0 "を出力して、 ステップ S 8 0 9へ進む。 ここで、 光ピックアップ 1の位置が、 第 1 6図に示す光ディスク媒体 2のトラックが存在する情報領域 Aの記録部と未記録部の境界にあるな らば、 光ディスク媒体 2の偏芯や装着時の中心ずれなどにより、 光ピッ クアップ 1のレーザ光ビームと光ディスク媒体 2の境界位置 P 0は交差 する。 そして、 レーザ光ビームが未記録部に入ったときに、 T E信号は 記録部より振幅が大きくなつてしまうため、 この位置で T E信号の調整 を行う と、 本来の動作を行う記録部の T E信号の振幅を検出することが できず、 調整回路 7を構成する可変ゲインアンプ 7 2によつて適切なゲ インに設定することができなくなるおそれがある。 そこで、 対物レンズ が内周側にシフ トする量を光ディスク媒体 2の偏芯や装着時の中心ずれ により発生する偏芯ずれ量よ り大きく設定することによ り、 トラックク ロス状態が不確実になる領域より外周側にレーザ光ビームは出射される ため、 レーザ光ビームは未記録部に確実に入り、 検出信号 S i g 1は口 ゥレベル〃 0〃になり、 光ピックアップ 1 を光ディスク媒体 2 の外周側へ 微小移動し (ステップ S 8 0 9 ) 、 確実に情報領域 A 2内に光ピックァ ップ 1 を移動させる。 一方、 光ピックアップ 1 の位置が、 第 1 6図に示 す光ディスク媒体 2の トラックが存在する情報領域 A 2 との記録部と未 記録部の境界位置 P 0 よりわずかに外周側にあるならば、 前述の光ピッ クアップ 1の対物レンズを内周側にシフ ト しているために トラックク ロ ス状態が不確実になる状態で R F信号振幅検出が行われるが、 どちらに 判定されても次に対物レンズの内周シフ トを解除する (ステップ S 8 1 0 ) ことにより、 確実にレーザ光ビームは情報領域 A 2内に入る。
前述したステップ S 8 0 8及びステップ S 8 0 9において、 光ピック アップ 1 を光ディスク媒体 2の トラックが存在する情報領域 A 2に移動 した後に、 T E信号の調整を行う (ステップ S 8 1 1 ) 。 ステップ S 8 1 1 において、 T E信号の調整によって、 正確に トラッキング制御を動 作させる準備ができると、 次に トラッキング制御を O Nにし (ステップ S 8 1 2 ) 、 続いて、 光ピックアップ 1のレーザ光スポッ トが光ディス ク媒体 2上のスパイラル状トラックを追従して行く よ うに トラバース追 従制御を O Nにする (ステップ S 8 1 3 ) 。 そこで、 光ディスク媒体 2 上の トラックを光ピックアップ 1のレーザ光スポッ トが正確に追従して いく ことが可能になり、 光ディスク媒体 2の情報を再生できるよ うにな る (ステップ S 8 1 4 ) 。
このよ うに本実施の形態 9による光ディスク装置では、 起動時におけ る光ピックアツプの移動量を大幅に減少させることができるため、 起動 時間の大幅な短縮を実現することができる。
なお、 上記実施の形態 9では、 T E信号の振幅を検出する振幅検出手 段と、 予め設定した値との比較手段とを構成するために、 第 1 4図に示 す従来の光ディスク装置に、 信号振幅検出回路 1 7と比較器 1 8 とを追 加しているが、 調整回路 7に初期値を与えた状態で T E A信号を M P U 6にてサンプリングし、 かつ、 T E信号の振幅を検出する振幅検出手段 と、予め設定した値との比較手段とを M P U 6にて宾現することにより、 信号振幅検出回路 1 7 と比較器 1 8 とを追加することなく実施の形態 9 を実現するようにしてもよい。
(実施の形態 1 0 )
第 9図は記録部及び未記録部の トラッククロス状態における R F信号 と T E信号を示すものであるが、 本発明の請求の範囲第 1 0項による光 ディスク装置の, R F信号の振幅を検出する期間についても示している ものである。
前述した発明の実施の形態 6〜 9において調整前の T E信号の振幅を 検出する期間を、 第 9図の t 1 0から t 2 0の期間で行った場合、 レー ザ光スポッ トはトラックを完全に交差しないため、 信号振幅の検出に誤 差が生じる。 一方、 第 9図の t 1から t 2の期間以上、 すなわち R F信 号の振幅を検出する期間を、 光ディスク媒体 2の回転に同期して 1回転 以上の期間行うようにすれば、 光ディスク媒体 2の偏芯や装着時の中心 ずれなどによる偏芯によって、 レーザ光スポッ トは確実に光ディスク媒 体 2上のトラックを交差するため、 信号振幅の検出に誤差が生じること がない。
このように本実施の形態 1 0による光ディスク装置では、 R F信号の 振幅を検出する期間を、 光ディスク媒体の回転に同期して 1回転以上の 期間行うことによって、 確実にトラック誤差信号の振幅を検出すること が可能となる。
なお、 実施の形態 1ないし 1 0による光ディスク装置では、 情報の再 生のみを行う光ディスク装置を例にとって説明したが、 C D— Rや C D 一 R W等、 情報の記録も可能な光ディスク装置にも適用でき、 これら実 施の形態と同様の効果を奏する。 産業上の利用可能性
以上のように、 本発明に係る光ディスク装置は、 光ディスクに対し情報の 記録あるいは再生を行うのに適している。

Claims

請 求 の 範 囲
1 . 情報記録用 トラックを有する光ディスク媒体に対し情報の記録あ るいは再生を行う光ピックアップと、 光ビームの焦点を上記光ディスク 媒体に合わせるよ うに上記光ピックァップの制御を行うフォーカス制御 手段と、 光ビームの照射位置が上記情報記録用 トラックに追従するよ う に上記光ピックアップを駆動する トラッキングァクチユエータと、 光ビ ームの照射位置の トラック位置からのずれを検出する トラック誤差検出 手段と、 該トラック誤差検出手段が出力する トラック誤差信号のゲイン 及びオフセッ トを調整する調整手段と、 該調整手段の出力信号に応じて 上記トラッキングァクチユエータを駆動する トラッキング駆動手段とを 備えた光ディスク装置において、
上記 トラック誤差信号の振幅を検出する振幅検出手段と、
上記光ピックアップを上記光ディスク媒体の径方向に移送させる移送 手段とを備え、
上記フォーカス制御手段は上記光ディスク媒体上に上記光ピックアツ プから照射される光ビームの焦点を合わせ、 上記振 畐検出手段にて検出 した トラック誤差信号の振幅が予め設定した値以上ならば、 上記調整手 段は トラック誤差信号のゲイン及びオフセッ トの調整を行い、 上記振幅 検出手段にて検出した トラック誤差信号の振幅が予め設定した値未満な らば、 上記光ピックアップを予め定められた位置に移送させる、
ことを特徴とする光ディスク装置。
2 . 情報記録用 トラックを有する光ディスク媒体に対し情報の記録あ るいは再生を行う光ピックアップと、 光ビームの焦点を上記光ディスク 媒体に合わせるよ うに上記光ピックァップの制御を行うフォーカス制御 手段と、 光ビームの照射位置が上記情報記録用 トラックに追従するよ う に上記光ピックアップを駆動する トラッキングァクチユエータと、 光ビ ームの照射位置の トラック位置からのずれを検出する トラック誤差検出 手段と、 該トラック誤差検出手段が出力する トラック誤差信号のゲイン 及びオフセッ トを調整する調整手段と、 該調整手段の出力信号に応じて 上記トラッキングァクチユエータを駆動する トラッキング駆動手段とを 備えた光デイスク装置において、
トラック誤差信号の振幅を検出する振幅検出手段と、
上記 トラッキング駆動手段に信号を与え、 光ピックアップの対物レン ズを上記光ディスク媒体の径方向にシフ トさせる対物レンズシフ ト手段 と、
上記光ピックァップを上記光ディスク媒体の径方向に移送させる移送 手段とを備え、
上記フォーカス制御手段は上記光ディスク媒体上に上記光ピックアツ プから照射される光ビームの焦点を合わせ、 上記対物レンズシフ ト手段 によって上記光ディスク媒体の外周方向に上記光ピックァップの対物レ ンズをシフ トさせた状態で上記振幅検出手段にて検出した第 1 の トラッ ク誤差信号の振幅と予め設定した値とを比較した第 1の比較結果と、 上 記対物レンズシフ ト手段によって上記光ディスク媒体の内周方向に上記 光ピックァップの対物レンズをシフ トさせた状態で上記振幅検出手段に て検出した第 2の トラック誤差信号の振幅と上記予め設定した値とを比 較した第 2の比較結果とによ り、 上記第 1 の比較結果と上記第 2の比較 結果が共に予め設定した値以上ならば、 トラック誤差信号のゲイン及び オフセッ トの調整を行い、 上記第 1 の比較結果は予め設定した値以上で 上記第 2の比較結果は予め設定した値未満ならば、 上記光ピックアップ を上記光ディスク媒体の外周方向に移送させ、 上記第 1 の比較結果は予 め設定した値未満で上記第 2の比較結果は予め設定した値以上ならば、 上記光ピックアップを上記光ディスク媒体の内周方向に移送させ、 上記 第 1 の比較結果と上記第 2 の比較結果が共に予め設定した値未満ならば、 上記光ピックァップを予め定められた位置に移送させる、
ことを特徴とする光ディスク装置。
3 . 情報記録用 トラックを有する光ディスク媒体に対し情報の記録あ るいは再生を行う光ピックアップと、 光ビームの焦点を上記光ディスク 媒体に合わせるよ うに上記光ピックァップの制御を行うフォーカス制御 手段と、 光ビームの照射位置が上記情報記録用 トラックに追従するよ う に上記光ピックアップを駆動する トラッキングァクチユエータ と、 光ビ ームの照射位置の トラック位置からのずれを検出する トラック誤差検出 手段と、 該トラック誤差検出手段が出力する トラック誤差信号のゲイン 及びオフセッ トを調整する調整手段と、 該調整手段の出力信号に応じて 上記トラッキングァクチユエータを駆動する トラッキング駆動手段とを 備えた光ディスク装置において、
トラック誤差信号の振幅を検出する振幅検出手段と、
上記トラッキング駆動手段に信号を与え、 光ピックアップの対物レン ズを上記光ディスク媒体の径方向にシフ トさせる対物レンズシフ ト手段 と、
上記光ピックァップを上記光ディスク媒体の径方向に移送させる移送 手段とを備え、
該移送手段は上記光ピックァップを上記光ディスク媒体の外周方向へ 移送し、 上記フォーカス制御手段は上記光ディスク媒体上に上記光ピッ クアップから照射される光ビームの焦点を合わせ、 上記対物レンズシフ ト手段によって上記光ディスク媒体の外周方向に上記光ピックアップの 対物レンズをシフ トさせた状態で上記振幅検出手段にて検出した トラッ ク誤差信号の振幅が予め設定した値以上ならば、 上記対物レンズのシフ トを止めて上記調整手段は トラック誤差信号のゲイン及ぴオフセッ トの 調整を行い、 上記振幅検出手段にて検出した トラック誤差信号の振幅が 予め設定した値未満ならば、 上記光ピックアップを上記光ディスク媒体 の内周方向に移送させる、
こ とを特徴とする光ディスク装置。
4 . 情報記録用 トラックを有する光ディスク媒体に対し情報の記録あ るいは再生を行う光ピックアップと、 光ビームの焦点を上記光ディスク 媒体に合わせるよ うに上記光ピックァップの制御を行う フォーカス制御 手段と、 光ビームの照射位置が上記情報記録用 トラックに追従するよ う に上記光ピックアップを駆動する トラッキングァクチユエータと、 光ビ ームの照射位置の トラック位置からのずれを検出する トラック誤差検出 手段と、 該トラック誤差検出手段が出力する トラック誤差信号のゲイン 及びオフセッ トを調整する調整手段と、 該調整手段の出力信号に応じて 上記トラッキングァクチユエータを駆動する トラッキング駆動手段とを 備えた光デイスク装置において、
トラック誤差信号の振幅を検出する振幅検出手段と、
上記トラッキング駆動手段に信号を与え、 光ピックァップの対物レン ズを上記光ディスク媒体の径方向にシフ トさせる対物レンズシフ ト手段 と、
上記光ピックァップを上記光ディスク媒体の径方向に移送させる移送 手段とを備え、
該移送手段は上記光ピックァップを上記光ディスク媒体の内周方向へ 移送し、 上記フォーカス制御手段は上記光ディスク媒体上に上記光ピッ クアップから照射される光ビームの焦点を合わせ、 上記対物レンズシフ ト手段は上記光ディスク媒体の内周方向に上記光ピックァップの対物レ ンズをシフ トさせた状態で上記振幅検出手段にて検出した トラック誤差 信号の振幅が予め設定した値以上ならば、 上記対物レンズのシフ トを止 めて上記調整手段によ り トラック誤差信号のゲイン及ぴオフセッ トの調 整を行い、 上記振幅検出手段にて検出した トラック誤差信号の振幅が予 め設定した値未満ならば、 上記光ピックァップを上記光ディスク媒体の 外周方向に移送させる、
ことを特徴とする光ディスク装置。
5 . 請求の範囲第 1項ないし請求の範囲第 4項のいずれかに記載の光 ディスク装置において、
上記振幅検出手段にて トラック誤差信号の振幅を検出する期間を、 上 記光ディスク媒体の回転に同期して 1回転以上の期間行う、
ことを特徴とする光ディスク装置。
6 . 情報記録用 トラックを有する光ディスク媒体に対し情報の記録あ るいは再生を行う光ピックアップと、 光ビームの焦点を上記光ディスク 媒体に合わせるよ うに上記光ピックァップの制御を行う フォーカス制御 手段と、 光ビームの照射位置が上記情報記録用 トラックに追従するよ う に上記光ピックアップを駆動する トラッキングァクチユエータ と、 光ビ ームの照射位置の トラック位置からのずれを検出する トラック誤差検出 手段と、 該 トラック誤差検出手段が出力する トラック誤差信号のゲイン 及びオフセッ トを調整する調整手段と、 該調整手段の出力信号に応じて 上記トラッキングァクチユエ一タを駆動する トラッキング駆動手段とを 備えた光ディスク装置において、
上記光ディスク媒体からの戻り光量を検出する戻り光量検出手段と、 該戻り光量検出手段の出力信号の振幅を検出する振幅検出手段と、 上記光ピックァップを上記光ディスク媒体の径方向に移送させる移送 手段とを備え、
上記フォーカス制御手段は上記光ディスク媒体上に上記光ピックアツ プからの光ビームの焦点を合わせ、 上記振幅検出手段にて検出した戻り 光量信号の振幅が予め設定した値以上ならば、 上記調整手段は トラック 誤差信号のゲイン及ぴオフセッ トの調整を行い、 上記振幅検出手段にて 検出した戻り光量信号の振幅が予め設定した値未満ならば、 上記光ピッ クアップを予め定められた位置に移送させる、
ことを特徴とする光ディスク装置。
7 . 情報記録用 トラックを有する光ディスク媒体に対し情報の記録あ るいは再生を行う光ピックアップと、 光ビームの焦点を上記光ディスク 媒体に合わせるよ うに上記光ピックァップの制御を行う フォーカス制御 手段と、 光ビームの照射位置が上記情報記録用 トラックに追従するよ う に上記光ピックアップを駆動する トラッキングァクチユエータと、 光ビ ームの照射位置の トラック位置からのずれを検出する トラック誤差検出 手段と、 該 トラック誤差検出手段が出力する トラック誤差信号のゲイン 及びオフセッ トを調整する調整手段と、 該調整手段の出力信号に応じて 上記トラッキングァクチユエータを駆動する トラッキング駆動手段とを 備えた光ディスク装置において、
上記光ディスク媒体からの戻り光量を検出する戻り光量検出手段と、 該戻り光量検出手段の出力信号の振幅を検出する振幅検出手段と、 上記 トラッキング駆動手段に信号を与え、 光ピックアップの対物レン ズを上記光ディスク媒体の径方向にシフ トさせる対物レンズシフ ト手段 と、 上記光ピックァップを上記光ディスク媒体の径方向に移送させる移 送手段とを備え、
上記フォーカス制御手段は上記光ディスク媒体上に上記光ピックアツ プから照射される光ビームの焦点を合わせ、 上記対物レンズシフ ト手段 によって上記光ディスク媒体の外周方向に上記光ピックァップの対物レ ンズをシフ トさせた状態で上記振幅検出手段にて検出した第 1 の戻り光 量信号の振幅と予め設定した値とを比較した第 1の比較結果と、 上記対 物レンズシフ ト手段によって上記光ディスク媒体の内周方向に上記光ピ ックアツプの対物レンズをシフ トさせた状態で上記振幅検出手段にて検 出した第 2の戻り光量信号の振幅と上記予め設定した値とを比較した第 2の比較結果とにより、 上記第 1 の比較結果と上記第 2の比較結果とが 共に予め設定した値以上ならば、 トラック誤差信号のゲイン及びオフセ ッ トの調整を行い、 上記第 1の比較結果は予め設定した値以上で上記第 2の比較結果は予め設定した値未満ならば、 上記光ピックァップを上記 光ディスク媒体の外周方向に移送させ、 上記第 1の比較結果は予め設定 した値未満で上記第 2 の比較結果は予め設定した値以上ならば、 上記光 ピックァップを上記光ディスク媒体の内周方向に移送させ、 上記第 1 の 比較結果と上記第 2の比較結果とが共に予め設定した値未満ならば、 上 記光ピックアップを予め定められた位置に移送させる、
ことを特徴とする光ディスク装置。
8 . 情報記録用 トラックを有する光ディスク媒体に対し情報の記録あ るいは再生を行う光ピックアップと、 光ビームの焦点を上記光ディスク 媒体に合わせるよ うに上記光ピックァップの制御を行うフォーカス制御 手段と、 光ビームの照射位置が上記情報記録用 トラックに追従するよ う に上記光ピックアップを駆動する トラッキングァクチユエータ と、 光ビ ームの照射位置の トラック位置からのずれを検出する トラック誤差検出 手段と、 該トラック誤差検出手段が出力する トラック誤差信号のゲイン 及びオフセッ トを調整する調整手段と、 該調整手段の出力信号に応じて 上記トラッキングァクチユエータを駆動する トラッキング駆動手段とを 備えた光ディスク装置において、
上記光デイスク媒体からの戻り光量を検出する戻り光量検出手段と、 該戻り光量検出手段の出力信号の振幅を検出する振幅検出手段と、 上記トラッキング駆動手段に信号を与え、 光ピックァップの対物レン ズを上記光ディスク媒体の径方向にシフ トさせる対物レンズシフ ト手段 と、
上記光ピックァップを上記光ディスク媒体の径方向に移送させる移送 手段とを備え、
該移送手段は上記光ピックァップを上記光ディスク媒体の外周方向へ 移送し、 上記フォーカス制御手段は上記光ディスク媒体上に上記光ピッ クアップからの光ビームの焦点を合わせ、 上記対物レンズシフ ト手段に よって上記光ディスク媒体の外周方向に上記光ピックァップの対物レン ズをシフ トさせた状態で上記振幅検出手段にて検出した戻り光量信号の 振幅が予め設定した値以上ならば、 上記対物レンズのシフ トを止めて上 記調整手段により トラック誤差信号のゲイン及びオフセッ トの調整を行 い、 上記振幅検出手段にて検出した戻り光量信号の振幅が予め設定した 値未満ならば、 上記光ピックアップを上記光ディスク媒体の内周方向に 移送させる、
ことを特徴とする光ディスク装置。
9 . 情報記録用 トラックを有する光ディスク媒体に対し情報の記録あ るいは再生を行う光ピックアップと、 光ビームの焦点を上記光デイスク 媒体に合わせるよ うに上記光ピックァップの制御を行うフォーカス制御 手段と、 光ビームの照射位置が上記情報記録用 トラックに追従するよ う に上記光ピックァップを駆動する トラッキングァクチユエータと、 光ビ ームの照射位置の トラック位置からのずれを検出する トラック誤差検出 手段と、 該トラック誤差検出手段が出力する トラック誤差信号のゲイン 及びオフセッ トを調整する調整手段と、 該調整手段の出力信号に応じて 上記トラッキングァクチユエータを駆動する トラッキング駆動手段とを 備えた光ディスク装置において、
上記光ディスク媒体からの戻り光量を検出する戻り光量検出手段と、 該戻り光量検出手段の出力信号の振幅を検出する振幅検出手段と、 上記トラッキング駆動手段に信号を与え、 光ピックァップの対物レン ズを上記光ディスク媒体の径方向にシフ トさせる対物レンズシフ ト手段 と、
上記光ピックァップを上記光ディスク媒体の径方向に移送させる移送 手段とを備え、
上記移送手段は上記光ピックァップを上記光ディスク媒体の内周方向 へ移送し、 上記フォーカス制御手段により上記光ディスク媒体上に上記 光ピックアップから照射される光ビームの焦点を合わせ、 上記対物レン ズシフ ト手段によって上記光ディスク媒体の内周方向に上記光ピックァ ップの対物レンズをシフ トさせた状態で上記振幅検出手段にて検出した 戻り光量信号の振幅が予め設定した値以上ならば、 上記対物レンズのシ フ トを止めて上記調整手段により トラック誤差信号のゲイン及びオフセ ッ トの調整を行い、 上記振幅検出手段にて検出した戻り光量信号の振幅 が予め設定した値未満ならば、 上記光ピックアップを上記光ディスク媒 体の外周方向に移送させる、
ことを特徴とする光ディスク装置。
1 0 . 請求の範囲第 6項ないし請求の範囲第 9項のいずれかに記載の 光ディスク装置において、
上記振幅検出手段にて戻り光量信号の振幅を検出する期間を、 上記光 ディスク媒体の回転に同期して 1回転以上の期間行う、
ことを特徴とする光ディスク装置。
PCT/JP2001/001570 2000-03-01 2001-03-01 Appareil a disque optique WO2001065550A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2001/001570 WO2001065550A1 (fr) 2000-03-01 2001-03-01 Appareil a disque optique
US09/959,610 US6678221B2 (en) 2000-03-01 2001-03-01 Optical disk apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-56241 2000-03-01
JP2000056241A JP3690955B2 (ja) 2000-03-01 2000-03-01 光ディスク装置
PCT/JP2001/001570 WO2001065550A1 (fr) 2000-03-01 2001-03-01 Appareil a disque optique

Publications (1)

Publication Number Publication Date
WO2001065550A1 true WO2001065550A1 (fr) 2001-09-07

Family

ID=18577229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001570 WO2001065550A1 (fr) 2000-03-01 2001-03-01 Appareil a disque optique

Country Status (6)

Country Link
US (1) US6678221B2 (ja)
JP (1) JP3690955B2 (ja)
KR (1) KR100461886B1 (ja)
CN (1) CN1181474C (ja)
TW (1) TW484130B (ja)
WO (1) WO2001065550A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7230896B2 (en) * 2002-10-21 2007-06-12 Sony Computer Entertainment Inc. Optical disk reproducing device and optical disk reproducing method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055014A (ja) * 2002-07-18 2004-02-19 Funai Electric Co Ltd 光ディスク再生装置
KR20040029716A (ko) * 2002-10-02 2004-04-08 삼성전자주식회사 디스크 구동기의 트랙킹 제어 방법 및 장치
CN100530374C (zh) * 2002-10-15 2009-08-19 Lg电子株式会社 用于控制光学拾取部件的起始点的方法和装置
JP2004310931A (ja) * 2003-04-08 2004-11-04 Sanyo Electric Co Ltd 光ディスク再生装置、及び光ディスクのミラー面検知方法
JP2005166080A (ja) * 2003-11-28 2005-06-23 Matsushita Electric Ind Co Ltd 光ディスク装置
DE602005011975D1 (de) * 2004-07-14 2009-02-05 Koninkl Philips Electronics Nv Rsignale und plattenlaufwerk mit derartigem implementiertem verfahren
WO2006008670A1 (en) * 2004-07-14 2006-01-26 Koninklijke Philips Electronics N.V. Improved tracking error signal calibration method, and disc drive implementing such method.
JP3874197B2 (ja) * 2004-09-03 2007-01-31 船井電機株式会社 光ディスク記録再生装置及び光ディスク記録再生装置における光ディスクの情報記録エリア探索方法
US8144560B2 (en) * 2005-04-04 2012-03-27 Koninklijke Philips Electronics N.V. Method for preventing interchange of optical information carriers
JP4451834B2 (ja) * 2005-10-05 2010-04-14 株式会社日立エルジーデータストレージ 光ディスク装置及び対物レンズの移動制御方法
US8045434B2 (en) * 2006-09-28 2011-10-25 Mediatek Inc. Method of accessing information stored in predetermined data area on optical disc and information reproducing apparatus thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09161279A (ja) * 1995-12-12 1997-06-20 Fujitsu Ten Ltd 光学ディスク再生装置
JPH10162485A (ja) * 1996-11-25 1998-06-19 Alpine Electron Inc ディスク装置のデジタルサーボの調整方法
JPH1116172A (ja) * 1997-06-20 1999-01-22 Nec Ic Microcomput Syst Ltd 光ディスク再生装置
JP2001118263A (ja) * 1999-10-20 2001-04-27 Kenwood Corp 光ディスク再生装置及びその較正方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2697438B2 (ja) 1991-11-29 1998-01-14 日本ビクター株式会社 トラック誤差信号の補正装置
US5703848A (en) * 1994-04-05 1997-12-30 Hewlett-Packard Company Off track detection system for ruggedized optical disk drive
DE19630887A1 (de) * 1996-07-31 1998-02-05 Thomson Brandt Gmbh Gerät zum Lesen und/oder Beschreiben optischer Aufzeichnungsträger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09161279A (ja) * 1995-12-12 1997-06-20 Fujitsu Ten Ltd 光学ディスク再生装置
JPH10162485A (ja) * 1996-11-25 1998-06-19 Alpine Electron Inc ディスク装置のデジタルサーボの調整方法
JPH1116172A (ja) * 1997-06-20 1999-01-22 Nec Ic Microcomput Syst Ltd 光ディスク再生装置
JP2001118263A (ja) * 1999-10-20 2001-04-27 Kenwood Corp 光ディスク再生装置及びその較正方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7230896B2 (en) * 2002-10-21 2007-06-12 Sony Computer Entertainment Inc. Optical disk reproducing device and optical disk reproducing method

Also Published As

Publication number Publication date
JP3690955B2 (ja) 2005-08-31
US20020159343A1 (en) 2002-10-31
JP2001250245A (ja) 2001-09-14
KR100461886B1 (ko) 2004-12-14
KR20020012197A (ko) 2002-02-15
US6678221B2 (en) 2004-01-13
CN1363088A (zh) 2002-08-07
CN1181474C (zh) 2004-12-22
TW484130B (en) 2002-04-21

Similar Documents

Publication Publication Date Title
WO2001065550A1 (fr) Appareil a disque optique
US6072757A (en) Apparatus and method for determining a disk type prior to reproducing data from the disk
KR20010072367A (ko) 기록 매체 구동 장치 및 틸트 검출 방법
JP2002117534A (ja) 光ディスク再生装置およびディスク種別判別方法
US20020024898A1 (en) Track-jump controlling apparatus and method
JP3753267B2 (ja) ディスク記録再生装置および方法
JP3975953B2 (ja) 光ディスクの種類判別方法及び光ディスク装置
US20070211587A1 (en) Optical disk apparatus and disk discrimination method
US7072253B2 (en) Optical disc reproduction apparatus and automatic adjustment method for same
US6999387B2 (en) Disk reproducing apparatus and disk type identifying method
US5974014A (en) Disc reproducing apparatus and method
JP3056967B2 (ja) ディスクプレーヤ
JP4012673B2 (ja) ウォーブル検出装置
JP2005116171A (ja) 光ディスク装置
JP2003030878A (ja) 光ディスク記録再生装置のウォブル信号検出回路
JP3960908B2 (ja) 光ディスク装置
JP5212457B2 (ja) 光ディスク装置、フォーカスサーチ方法及びフォーカスサーチプログラム
JPH1049975A (ja) 光ディスク装置
JPH11120684A (ja) ディスクドライブ装置、ディスク判別方法
JP2003059043A (ja) 光ディスク判別装置および方法
JP2002288826A (ja) 光ディスク判別方法
JP2004241061A (ja) 光ディスク装置及び再生方法
JPH11296874A (ja) 記録再生装置
JP2000011519A (ja) ディスクドライブ装置およびディスク再生方法
JP2007059023A (ja) 情報記録再生装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 01800391.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN ID KR SG US

WWE Wipo information: entry into national phase

Ref document number: 1020017013936

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09959610

Country of ref document: US