WO2001044652A1 - Brennstoffeinspritzventil - Google Patents

Brennstoffeinspritzventil Download PDF

Info

Publication number
WO2001044652A1
WO2001044652A1 PCT/DE2000/004450 DE0004450W WO0144652A1 WO 2001044652 A1 WO2001044652 A1 WO 2001044652A1 DE 0004450 W DE0004450 W DE 0004450W WO 0144652 A1 WO0144652 A1 WO 0144652A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
fuel injection
injection valve
edge
recess
Prior art date
Application number
PCT/DE2000/004450
Other languages
English (en)
French (fr)
Inventor
Fevzi Yildirim
Michael Huebel
Christian Doering
Juergen Stein
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2001545716A priority Critical patent/JP2003517141A/ja
Priority to US09/913,657 priority patent/US6758419B2/en
Priority to DE50011450T priority patent/DE50011450D1/de
Priority to EP00993232A priority patent/EP1155231B1/de
Priority to BR0008230-9A priority patent/BR0008230A/pt
Publication of WO2001044652A1 publication Critical patent/WO2001044652A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0682Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the body being hollow and its interior communicating with the fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/07Fuel-injection apparatus having means for avoiding sticking of valve or armature, e.g. preventing hydraulic or magnetic sticking of parts

Definitions

  • the invention relates to a fuel injector according to the preamble of the main claim.
  • an electromagnetically actuated fuel injection valve which has a magnetic coil enclosing a ferromagnetic core in a housing.
  • a flat armature is arranged between a valve seat support which is fixedly connected to the housing and the end face of the housing.
  • the flat anchor interacts with the housing and core via two working air gaps and is guided radially by means of a guide membrane that grips around the valve and is fixed to the housing.
  • the connection between the flat armature and the valve closing part is established via a ring comprising the valve closing part, which is welded to the flat armature.
  • the valve closing part is subjected to closing pressure via a coil spring.
  • Fuel channels and the geometry of the flat anchor in particular the lowering of the areas adjacent to the fuel channels, allow the armature to flow around the fuel.
  • a disadvantage of the fuel injector known from DE 35 35 438 AI is the high tendency to cavitation due to the large cavities through which the fuel flows, in where currents and eddies arise.
  • the displacement of the fuel when the armature is tightened is delayed due to the high flow resistance and thus has an adverse effect on the opening time of the fuel injector.
  • the cavitation is also reinforced by the position of the flow openings, which are not located at the apex, but in the flank of the flat anchor.
  • DE 31 43 849 C2 uses a similarly shaped flat armature in a fuel injector.
  • the flow openings are made at the vertices of the flat anchor;
  • the hydrodynamic properties are only slightly improved by the still raised edge of the armature, which is aligned parallel to the anchor stop surface and makes it impossible to displace the fuel into the edge areas of the armature.
  • an electromagnetically actuated fuel injection valve is known, the armature of which is characterized in that the armature stop surface facing the inner pole is designed to be slightly wedge-shaped in order to reduce the hydraulic damping when the fuel injector is opened and the hydraulic adhesive force after the current that energizes the solenoid coil is switched off to minimize or completely prevent. Furthermore, the stop surface of the armature is designed to be wear-resistant by suitable measures such as vapor deposition and nitriding, so that the stop surface has the same size throughout the life of the fuel injector and the operation of the fuel injector is not impaired.
  • a disadvantage of the fuel injector known from EP 0 683 862 B1 is above all the hydraulic damping force which is still present in the working gap when the armature is tightened, despite the optimized armature stop surface. Is an excitation current to the solenoid applied, the armature moves in the direction of the inner pole and displaces the fuel present between the inner pole and the armature. Due to the effects of friction and inertia, a local pressure field is created which generates a hydraulic force on the anchor stop surface that acts against the direction of movement of the anchor. This extends the opening and metering times of the fuel injector.
  • the fuel injector according to the invention with the features of the main claim has the advantage that the hydraulic damping force is significantly reduced by suitable geometric design of the armature and thus the fuel injector can be opened faster, which results in m more precise metering times and quantities.
  • a favorable geometry of the anchor stop surface is achieved by chamfering the edge regions of the anchor stop surface in opposite directions.
  • the anchor has two annular edge zones, the inner edge zone being inclined inwards to the inner radius, while the outer edge zone is inclining outwards to the outer radius.
  • the anchor stop surface is thus limited by inclined surfaces.
  • the angle of inclination of the edge surfaces influences the flow behavior of the fuel in the working gap.
  • the anchor stop surface is reduced by the geometric design, which means that the wear surface is smaller.
  • the installation of axial channels in the armature is particularly advantageous, as a result of which the existing in the working gap Fuel is given the opportunity to flow through it when the armature is actuated.
  • the channels are advantageously arranged in depressions, which further improves the flow behavior, since the fuel can escape through the armature without delay.
  • the same effect can also be achieved by recesses which are provided at regular intervals on the outer edge of the anchor.
  • the fuel is displaced to the outer edge of a central recess of the fuel injector receiving the armature due to the shape of the armature stop surface which is chamfered outwards and can flow out through the recesses in the armature.
  • the depressions can be limited by an inclined and a vertical surface.
  • Another possible design variant provides for a different height for the raised ring-shaped vertices formed by the inclined surfaces, so that only a minimal surface serves as the anchor stop surface.
  • An annular recess on the magnetic surface in the area of the solenoid coil has a positive effect on the hydraulic damping due to a local enlargement of the working gap.
  • Fig. 1 shows an axial section through a fuel injector according to the state of the
  • Fig. 2 shows a schematic, enlarged section through a first embodiment of a Anchor of an inventive
  • FIG. 3 shows a plan view of the anchor stop surface of the anchor in FIG. 2,
  • FIG. 4 shows a schematic, enlarged section through a second exemplary embodiment of an armature of a fuel injector according to the invention
  • FIG. 5 shows a schematic, enlarged section through a third exemplary embodiment of an armature of a fuel injector according to the invention
  • Fig. 6 is a schematic, enlarged section through a fourth embodiment of an armature of a fuel injector according to the invention.
  • Fig. 7 is a plan view of the armature stop surface of a fifth embodiment of an armature of a fuel injector according to the invention.
  • the fuel fine injection valve 1 is in the form of an injection valve for fuel injection systems of mixture-compressing, spark-ignition internal combustion engines executed.
  • the fuel injection valve 1 is particularly suitable for injecting fuel into an intake manifold 7 of an internal combustion engine.
  • the measures for reducing the hydraulic armature damping described in more detail below are also suitable for high-pressure injection valves that directly inject into a combustion chamber.
  • the fuel injector 1 comprises a core 25 which is encapsulated with a plastic sheath 16.
  • a valve needle 3 is connected to a valve closing body 4, which cooperates with a valve seat surface 6 arranged on a valve seat body 5 to form a sealing seat.
  • fuel injector 1 is a fuel injector 1 that opens inwards and that injects into an eye tube 7.
  • the core 25 forms an inner pole 11 of a magnetic flux circuit.
  • a magnetic coil 8 is encapsulated in the plastic casing 16 and wound on a coil carrier 10, which bears against the core 25.
  • the core 25 and a nozzle body 2 serving as an outer pole are separated from one another by a gap 12 and are supported on a non-magnetic connecting component 13.
  • the magnetic coil 8 is excited via an electrical line 14 by an electrical current that can be supplied via a plug contact 15.
  • the magnetic flux circuit is through a z.
  • a restoring spring 18 is supported on the valve needle 3 and is preloaded by a sleeve 19 in the present design of the fuel injection valve 1.
  • the valve needle 3 is non-positively connected to an armature 21 via a weld seam 20.
  • the fuel is supplied through a central fuel supply 23 via a filter 24.
  • valve closing body 4 6 m sealing system is held at the valve seat.
  • the magnet coil 8 When the magnet coil 8 is excited, it builds up a magnetic field which moves the armature 21 against the spring force of the return spring 18 in the stroke direction.
  • the armature 21 also takes the valve needle 3 with it in the stroke direction.
  • Related valve-closure member 4 lifts off from valve seat surface 6 and fuel is above about radial bores 22a m to valve needle 3, a recess 22b in Ventilsitzkorper 5 and flat portions 22c guided on the valve-closure member 4 to the sealing seat.
  • FIG. 2 shows a partial axial sectional view of a first exemplary embodiment of the embodiment of the invention
  • Fuel injection valve 1 Only those components are shown in the enlarged view that are of essential importance in relation to the invention. The design of the other components can be done with a known fuel injector 1, e.g. B. with the fuel injector 1 shown in FIG. 1, be identical. Elements already described are provided with the same reference numerals, so that a repetitive description is unnecessary.
  • the anchor 21 already described in FIG. 1, which in FIG. 1 is designed as a so-called plunger anchor 21, is in the form of a flat anchor 21 in FIGS. 2 to 7. Only one half of the armature 21 is shown on the right of the symmetrical longitudinal axis 30 in FIGS. 2 to 6. 2, the armature 21 has two edge zones 31a, 31b, which are characterized by surfaces 32 which are inclined relative to one another.
  • the surface 32 of the inner edge zone 31a is delimited by an inner edge 47 of the flat anchor 21 which delimits a central recess 48 and is inclined to the inner edge 47, while the surface 32 of the outer edge zone 31b is delimited by an outer edge 46 and is inclined to the outer edge 46.
  • Two depressions 34 are formed between the edge zones 31a, 31b, each of which is characterized by two inwardly inclined surfaces 32.
  • the depressions 34 are connected to axial channels 35, which run parallel to the longitudinal axis 30 of the armature 21 and penetrate the armature 21.
  • a recess 36 on a magnetic pole surface 44 of a magnetic body 43 which is annular and locally enlarges a working gap 37 between the armature stop surface 42 and the magnetic pole surface 44.
  • the recess 36 can extend as far as the magnetic coil 8.
  • another component that separates the magnetic coil 8 from the fuel can also be provided.
  • FIG. 3 shows an armature 21 of the exemplary embodiment in FIG. 2 of the embodiment of the fuel injection valve 1 according to the invention in a partial plan view.
  • Raised concentric vertices 33 at which the inclined surfaces 32 adjoin one another, form three ring-shaped residual anchor stop surfaces 38.
  • the armature 21 no longer strikes the entire armature stop surface 42 on the magnetic body 43, but rather with the ring-shaped residual anchor stop surfaces formed by the vertices 33 38.
  • the closing process is accelerated, since the smaller residual anchor stop surface 38 also experiences a lower hydraulic adhesive force and the armature 21 is thus more easily detached from the magnetic body 43.
  • Depressed concentric apices 39 lie in the depressions 34. At regular intervals there are channels 35 in the depressions 34 which penetrate the anchor 21 parallel to the longitudinal axis 30 of the anchor 21.
  • the diameter of the channels 35 can also be made variable, so that channels 35 of different dimensions are fitted in each of the depressions 34 in accordance with the feed area increasing with the diameter.
  • the number and the dimension of the channels 35 influence the flow behavior of the fuel considerably. 3 therefore shows channels 35 with a larger diameter in the recess closer to the outer edge 46 of the armature 21 and 34 channels 35 with a smaller diameter in the recess located further inside. A particularly advantageous arrangement of the channels 35 is present if they lie on a line in the radial direction.
  • Fig. 4 shows a partial axial section of a second embodiment of an embodiment of the invention
  • the depressions 34 do not consist of two adjacent, inclined surfaces 32.
  • the two depressions 34 each have an inclined surface 32 and a surface 40 running parallel to the longitudinal axis 30 of the armature 21.
  • the channels 35 and the annular recess 36 of the magnetic body 43 located in the area of the magnetic coil 8 are designed as in the first exemplary embodiment in FIG. 2.
  • the sawtooth-shaped design of the depressions 34 is a particularly simple embodiment of the armature 21.
  • FIG. 5 shows a third exemplary embodiment of an embodiment of the fuel injector 1 according to the invention in a partial axial sectional view.
  • the exemplary embodiment described here is a simplified variant of the exemplary embodiment in FIG. 2.
  • the anchor stop surface 42 here also has two edge zones 31a, 31b, which are delimited by two surfaces 32 which are inclined relative to one another. Channels 35 are located in the only intermediate recess 34.
  • Fig. 6 shows a partial axial sectional view of a fourth embodiment of an inventive design of the
  • FIG. 6 shows a top view of the armature stop surface 42 of a fifth exemplary embodiment of an embodiment of the fuel injection valve 1 according to the invention.
  • recesses 41 are provided on the outer edge 46 of the armature. This also leads to a reduction in the effective anchor stop surface 38 and to a rapid displacement of the fuel on the edge over the inclined surface 32 of the edge zone 31b.
  • the invention is not limited to the exemplary embodiment shown and can also be implemented with a large number of other designs of fuel injection valves.
  • the invention can also be used with plunger anchors 21.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Ein Brennstoffeinspritzventil (1) für Brennstoffeinspritzanlagen von Brennkraftmaschinen besteht aus einer Magnetspule (8), einem in einer Schliessrichtung von einer Rückstellfeder beaufschlagten Anker (21) und einem mit dem Anker (21) kraftschlüssig in Verbindung stehenden Ventilschliesskörper. Dieser bildet zusammen mit einer Ventilsitzfläche einen Dichtsitz, wobei der Anker (21) mit einer Ankeranschlagfläche (42) an einer Magnetpolfläche (44) eines Magnekörpers (43) anschlägt. Die Ankeranschlagfläche (42) weist eine an einen Innenrand (47) angrenzende, innenliegende, ringförmige erste Randzone (31a), die bezüglich einer Ebene senkrecht zur Längsachse (30) des Ankers (21) nach innen geneigt ist, und eine an einen Aussenrand (46) angrenzende, aussenliegende, ringförmige zweite Randzone (31b), die bezüglich einer Ebene senkrecht zur Längsachse (30) des Ankers (21) nach aussen geneigt ist, auf.

Description

Brennstoffeinspritzventil
Stand der Technik
Die Erfindung geht aus von einem Brennstoffeinspritzventil nach der Gattung des Hauptanspruchs.
Aus der DE 35 35 438 AI ist bereits ein elektromagnetisch betätigbares Brennstoffeinspritzventil bekannt, welches in einem Gehäuse eine einen ferromagnetischen Kern umschließende Magnetspule aufweist. Zwischen einem fest mit dem Gehäuse verbundenen Ventilsitzträger und der Stirnseite des Gehäuses ist ein Flachanker angeordnet . Der Flachanker wirkt über zwei Arbeitsluf spalte mit Gehäuse und Kern zusammen und wird mittels einer ein Ventilschließteil umgreifenden, gehäusefest eingespannten Führungsmembran radial geführt. Die Verbindung zwischen dem Flachanker und dem Ventilschließteil wird über einen das Ventilschließteil umfassenden Ring hergestellt, welcher mit dem Flachanker verschweißt ist. Das Ventilschließteil wird über eine Schraubenfeder mit Schließdruck beaufschlagt. Brennstoffkanäle sowie die Geometrie des Flachankers, insbesondere die Absenkung der den Brennstoffkanälen benachbarten Bereiche, erlauben ein Umströmen des Ankers durch den Brennstoff.
Nachteilig an dem aus der DE 35 35 438 AI bekannten Brennstoffeinspritzventil ist die hohe Kavitationsneigung durch die großen vom Brennstoff durchflossenen Hohlräume, in denen Strömungen und Verwirbelungen entstehen. Die Verdrängung des Brennstoffs beim Anziehen des Ankers geschieht aufgrund des hohen Strömungswiderstands verzögert und hat damit nachteilige Auswirkungen auf die Öffnungszeit des Brennstoffeinspritzventils . Die Kavitation wird zudem durch die Lage der Durchströmöffnungen, welche nicht am Scheitelpunkt, sondern in der Flanke des Flachankers angebracht sind, verstärkt.
In der DE 31 43 849 C2 wird ein ähnlich geformter Flachanker in einem Brennstoffeinspritzventil verwendet. Hier sind zwar die Durchströmöffnungen an den Scheitelpunkten des Flachankers angebracht; die hydrodynamischen Eigenschaften sind jedoch durch den nach wie vor hochgezogenen Rand des Ankers, welcher parallel zu der Ankeranschlagflache ausgerichtet ist und eine Verdrängung des Brennstoffs in die Randbereiche des Ankers unmöglich macht, nur unwesentlich verbessert .
Aus der EP 0 683 862 Bl ist ein elektromagnetisch betätigbares Brennstoffeinspritzventil bekannt, dessen Anker dadurch gekennzeichnet ist, daß die dem Innenpol zugewandte Ankeranschlagflache geringfügig keilförmig ausgebildet ist, um die hydraulische Dämpfung beim Öffnen des Brennstoffeinspritzventils und die hydraulische Adhäsionskraf nach Abschaltung des die Magnetspule erregenden Stromes zu minimieren oder ganz zu unterbinden. Ferner ist durch geeignete Maßnahmen wie Bedampfen und Nitrieren die Anschlagfläche des Ankers verschleißfest gestaltet, so daß die Anschlagfläche während der gesamten Lebensdauer des Brennstoffeinspritzventils die gleiche Größe aufweist und die Funktionsweise des Brennstoffeinspritzventils nicht beeinträchtigt wird.
Nachteilig an dem aus der EP 0 683 862 Bl bekannten Brennstoffeinspritzventil ist vor allem die trotz der optimierten Ankeranschlagflache nach wie vor vorhandene hydraulische Dämpfungskraft im Arbeitsspalt beim Anziehen des Ankers. Wird ein Erregerstrom an die Magnetspule angelegt, bewegt sich der Anker Richtung des Innenpols und verdrängt dabei den zwischen dem Innenpol und dem Anker vorhandenen Brennstoff. Aufgrund von Reibungs- und Trägheitseffekten kommt es dabei zum Aufbau eines lokalen Druckfeldes, welches auf der Ankeranschlagflache eine hydraulische Kraft erzeugt, die gegen die Bewegungsrichtung des Ankers wirkt. Dadurch verlängern sich die Öffnungs- und Zumeßzeiten des Brennstoffeinspritzventils .
Vorteile der Erfindung
Das erfindungsgemäße Brennstoffeinspritzventil mit den Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß durch geeignete geometrische Gestaltung des Ankers die hydraulische Dämpfungskraft erheblich herabgesetzt wird und damit das Brennstoffeinspritzventil schneller geöffnet werden kann, was m präziseren Zumeßzeiten und -mengen resultiert .
Eine günstige Geometrie der Ankeranschlagflache wird durch das gegensinnige Abschrägen der Randbereiche der Ankeranschlagflache erreicht. Der Anker besitzt zwei ringförmige Randzonen, wobei die innere Randzone nach innen zum Innenradius geneigt ist, während die äußere der Randzonen nach außen zum Außenradius geneigt ist . Die Ankeranschlagflache ist somit von geneigten Flächen begrenzt . Der Neigungswinkel der Randflächen beeinflußt das Strömungsverhalten des im Arbeitsspalt befindlichen Brennstoffs. Die Ankeranschlagflache wird durch die geometrische Gestaltung verkleinert, wodurch die Verschleißfläche geringer ist.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Brennstoffeinspritzventils möglich.
Von Vorteil ist insbesondere das Anbringen von axialen Kanälen im Anker, wodurch der im Arbeitsspalt vorhandene Brennstoff die Möglichkeit erhält, bei Betätigung des Ankers durch diesen hindurch abzuströmen. Die Kanäle werden vorteilhafterweise in Vertiefungen angeordnet, wodurch sich das Strö ungsverhalten weiter verbessert, da der Brennstoff ohne Verzögerung durch den Anker entweichen kann.
Derselbe Effekt kann auch durch Aussparungen, die am Außenrand des Ankers in regelmäßigen Abständen angebracht sind, erzielt werden. Der Brennstoff wird in diesem Fall bedingt durch die nach außen abgeschrägte Form der Ankeranschlagflache an den äußeren Rand einer den Anker aufnehmenden zentralen Ausnehmung des Brennstoffeinspritzventils verdrängt und kann durch die Aussparungen im Anker abströmen.
Die Vertiefungen können durch eine schräge und eine senkrechte Fläche begrenzt werden. Eine weitere mögliche Ausgestaltungsvariante sieht eine unterschiedliche Höhe für die durch die geneigten Flächen gebildeten, erhabenen ringförmigen Scheitelpunkte vor, so daß nur noch eine minimale Fläche als Ankeranschlagflache dient .
Eine ringförmige Aussparung an der Magnetfläche im Bereich der Magnetspule bewirkt durch eine lokale Vergrößerung des Arbeitsspaltes eine positive Beeinflussung der hydraulischen Dämpfung.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Fig. 1 einen axialen Schnitt durch ein Brennstoffeinspritzventil gemäß dem Stand der
Technik,
Fig. 2 einen schematisierten, vergrößerten Schnitt durch ein erstes Ausführungsbeispiel eines Ankers eines erfindungsgemäßen
Brennstoffeinspritzventils ,
Fig. 3 eine Draufsicht auf die Ankeranschlagflache des Ankers in Fig . 2 ,
Fig. 4 einen schematisierten, vergrößerten Schnitt durch ein zweites Ausführungsbeispiel eines Ankers eines erfindungsgemäßen Brennstoffeinspritzventils,
Fig. 5 einen schematisierten, vergrößerten Schnitt durch ein drittes Ausführungsbeispiel eines Ankers eines erfindungsgemäßen Brennstoffeinspritzventils,
Fig. 6 einen schematisierten, vergrößerten Schnitt durch ein viertes Ausführungsbeispiel eines Ankers eines erfindungsgemäßen Brennstoffeinspritzventils und
Fig. 7 eine Draufsicht auf die Ankeranschlagflache eines fünften Ausführungsbeispiels eines Ankers eines erfindungsgemäßen Brennstoffeinspritzventils .
Beschreibung der Ausführungsbeispiele
Bevor anhand der Fig. 2 bis 7 mehrere Ausführungsbeispiele eines Ankers eines erfindungsgemäßen Brennstoffeinspritzventils näher beschrieben werden, soll zum besseren Verständnis der Erfindung zunächst anhand von Fig. 1 ein bereits bekanntes Brennstoffeinspritzventil bezüglich seiner wesentlichen Bauteile kurz erläutert werden .
Das Brennsto feinspritzventil 1 ist in der Form eines Einspritzventils für Brennstoffeinspritzanlagen von gemischverdichtenden, fremdgezündeten Brennkraftmaschinen ausgeführt. Das Brennstoffeinspritzventil 1 eignet sich insbesondere zum Einspritzen von Brennstoff in ein Saugrohr 7 einer Brennkraftmaschine. Die im folgenden näher beschriebenen Maßnahmen zur Reduzierung der hydraulischen Ankerdämpfung eignen sich jedoch ebenso bei direkt in einen Brennraum einspritzenden Hochdruckeinspritzventilen.
Das Brennstoffeinspritzventil 1 umfaßt einen Kern 25, welcher mit einer Kunststoffummantelung 16 umspritzt ist. Eine Ventilnadel 3 steht mit einem Ventilschließkörper 4 in Verbindung, der mit einer an einem Ventilsitzkδrper 5 angeordneten Ventilsitzfläche 6 zu einem Dichtsitz zusammenwirkt. Bei dem Brennstoffeinspritzventil 1 handelt es sich im Ausführungsbeispiel um ein nach innen öffnendes Brennstoffeinspritzventil 1, welches in ein Ξaugrohr 7 einspritzt. Der Kern 25 bildet einen Innenpol 11 eines magnetischen Flußkreises. Eine Magnetspule 8 ist in der Kunststoffummantelung 16 gekapselt und auf einen Spulenträger 10 gewickelt, welcher am Kern 25 anliegt. Der Kern 25 und ein als Außenpol dienender Düsenkörper 2 sind durch einen Spalt 12 voneinander getrennt und stützen sich auf einem nichtmagnetischen Verbindungsbauteil 13 ab. Die Magnetspule 8 wird über eine elektrische Leitung 14 von einem über einen Steckkontakt 15 zuführbaren elektrischen Strom erregt. Der magnetische Flußkreis wird durch einen z. B. bügeiförmigen Rückflußkörper 17 geschlossen.
An der Ventilnadel 3 stützt sich eine Rückstellfeder 18 ab, welche in der vorliegenden Bauform des Brennstoffeinspritzventils 1 durch eine Hülse 19 vorgespannt wird. Die Ventilnadel 3 ist über eine Schweißnaht 20 kraftschlüssig mit einem Anker 21 verbunden.
Der Brennstoff wird durch eine zentrale Brennstoffzufuhr 23 über einen Filter 24 zugeführt.
Im Ruhezustand des Brennstoffeinspritzventils 1 wird der Anker 21 von der Rückstellfeder 18 entgegen seiner Hubrichtung so beaufschlagt, daß der Ventilschließkörper 4 am Ventilsitz 6 m dichtender Anlage gehalten wird. Bei Erregung der Magnetspule 8 baut diese ein Magnetfeld auf, welches den Anker 21 entgegen der Federkraft der Ruckstellfeder 18 Hubrichtung bewegt. Der Anker 21 nimmt die Ventilnadel 3 ebenfalls m Hubrichtung mit. Der mit der Ventilnadel 3 m Verbindung stehende Ventilschließkörper 4 hebt von der Ventilsitzflache 6 ab und Brennstoff wird über Radialbohrungen 22a m der Ventilnadel 3, eine Aussparung 22b im Ventilsitzkorper 5 und Abflachungen 22c am Ventilschließkörper 4 zum Dichtsitz gefuhrt.
Wird der Spulenstrom abgeschaltet, fallt der Anker 21 nach genügendem Abbau des Magnetfeldes durch den Druck der Ruckstellfeder 18 vom Innenpol 11 ab, wodurch sich die mit dem Anker 21 Verbindung stehende Ventilnadel 3 entgegen der Hubrichtung bewegt, der Ventilschließkörper 4 auf der Ventilsitzflache 6 aufsetzt und das Brennstoffeinspritzventil 1 geschlossen wird.
Fig. 2 zeigt m einer auszugsweisen axialen Schnittdarstellung ein erstes Ausführungsbeispiel der erfmdungsgemaßen Ausgestaltung des
Brennstoffeinspritzventils 1. Es werden m der vergrößerten Darstellung nur diejenigen Komponenten gezeigt, die m Bezug auf die Erfindung von wesentlicher Bedeutung sind. Die Ausgestaltung der übrigen Komponenten kann mit einem bekannten Brennstoffeinspritzventil 1, z. B. mit dem m Fig. 1 dargestellten Brennstoffeinspritzventil 1, identisch sein. Bereits beschriebene Elemente sind mit übereinstimmenden Bezugszeichen versehen, so daß sich eine wiederholende Beschreibung erübrigt .
Der bereits Fig. 1 beschriebene Anker 21, welcher m Fig. 1 als sog. Tauchanker 21 ausgeführt ist, liegt m Fig. 2 bis 7 Form eines Flachankers 21 vor. In den Fig. 2 bis 6 ist jeweils nur eine Hälfte des Ankers 21 rechts der symmetrischen Längsachse 30 dargestellt. Der Anker 21 weist in Fig. 2 zwei Randzonen 31a, 31b auf, die sich durch gegeneinander geneigte Flächen 32 auszeichnen. Dabei ist die Fläche 32 der inneren Randzone 31a durch einen eine zentrale Ausnehmung 48 begrenzenden Innenrand 47 des Flachankers 21 begrenzt und zum Innenrand 47 geneigt, während die Fläche 32 der äußeren Randzone 31b durch einen Außenrand 46 begrenzt ist und zum Außenrand 46 geneigt ist.
Zwischen den Randzonen 31a, 31b sind zwei Vertiefungen 34 ausgebildet, die sich jeweils durch zwei nach innen geneigte Flächen 32 auszeichnen. Die Vertiefungen 34 stehen mit axialen Kanälen 35 in Verbindung, die parallel zur Längsachse 30 des Ankers 21 verlaufen und den Anker 21 durchdringen.
Im Bereich der Magnetspule 8 befindet sich eine Ausnehmung 36 an einer Magnetpolfläche 44 eines Magnetkörpers 43, welche ringförmig ausgebildet ist und einen Arbeitsspalt 37 zwischen der Ankeranschlagflache 42 und der Magnetpolfläche 44 lokal vergrößert. Die Ausnehmung 36 kann sich dabei bis zur Magnetspule 8 erstrecken. Anstelle des Magnetkörpers 43 kann auch ein anderes die Magnetspule 8 vom Brennstoff abtrennendes Bauteil vorgesehen sein.
Wird der Magnetspule 8 ein Erregerstrom zugeführt, bewegt sich der Anker 21 in Richtung auf den Magnetkörper 43 und verdrängt dabei den im Arbeitsspalt 37 vorhandenen Brennstoff. Dieser wird über die geneigten Flächen 32 in die Kanäle 35 bzw. an den Innenrand 47 und den Außenrand 46 verdrängt und kann über den Anker 21 abfließen. Durch die Verteilung des Brennstoffs in die Kanäle 35 und in den Außen- bzw. Innenbereich des Ankers 21 entsteht ein rascher Abfluß der im Arbeitsspalt 37 befindlichen Flüssigkeit, welche den Öffnungsvorgang des Brennstoffeinspritzventils 1 nicht stört. Fig. 3 zeigt in einer auszugsweisen Draufsicht den Anker 21 des Ausführungsbeispiels in Fig. 2 der erfindungsgemäßen Ausgestaltung des Brennstoffeinspritzventils 1.
Erhabene konzentrische Scheitelpunkte 33, an welchen die geneigten Flächen 32 aneinandergrenzen, bilden drei ringförmige Restankeranschlagflächen 38. Der Anker 21 schlägt somit am Ende des Öffnungsvorganges nicht mehr mit der ganzen Ankeranschlagflache 42 am Magnetkörper 43 an, sondern mit den durch die Scheitelpunkte 33 gebildeten ringförmigen Restankeranschlagflächen 38. Dadurch wird der Schließvorgang beschleunigt, da die kleinere Restankeranschlagfläche 38 auch eine geringere hydraulische Adhäsionskraft erfährt und sich der Anker 21 somit leichter vom Magnetkörper 43 löst.
Vertiefte konzentrische Scheitelpunkte 39 liegen in den Vertiefungen 34. In regelmäßigen Abständen befinden sich in den Vertiefungen 34 Kanäle 35, die parallel zur Längsachse 30 des Ankers 21 den Anker 21 durchstoßen. Dabei ist auch der Durchmesser der Kanäle 35 variabel zu gestalten, so daß in jeder der Vertiefungen 34 unterschiedlich dimensionierte Kanäle 35 entsprechend des mit dem Durchmesser zunehmenden Einzugsbereichs angebracht sind.
Die Anzahl und die Abmessung der Kanäle 35 beeinflußt das Strömungsverhalten des Brennstoffs beträchtlich. In Fig. 3 sind deshalb in der dem Außenrand 46 des Ankers 21 näherliegenden Vertiefung 34 Kanäle 35 mit größerem Durchmesser, in der weiter innen liegenden Vertiefung 34 Kanäle 35 mit geringerem Durchmesser dargestellt. Eine besonders vorteilhafte Anordnung der Kanäle 35 liegt vor, wenn diese in radialer Richtung auf einer Linie liegen.
Fig. 4 zeigt in einer auszugsweisen axialen Schnittdarstellung ein zweites Ausführungsbeispiel einer erfindungsgemäßen Ausgestaltung des
Brennstoffeinspritzventils 1. Im Gegensatz zu Fig. 2 bestehen die Vertiefungen 34 hier nicht aus zwei anemandergrenzenden, geneigten Flächen 32. Die beiden Vertiefungen 34 weisen jeweils eine geneigte Fläche 32 und eine parallel zur Längsachse 30 des Ankers 21 verlaufende Fläche 40 auf. Die Kanäle 35 sowie die im Bereich der Magnetspule 8 befindliche ringförmige Ausnehmung 36 des Magnetkόrpers 43 sind wie im ersten Ausführungsbeispiel m Fig. 2 gestaltet. Die sagezahnförmige Gestaltung der Vertiefungen 34 ist eine besonders einfach herstellbare Ausfuhrungsform des Ankers 21.
Fig. 5 zeigt in einer auszugsweisen axialen Schnittdarstellung ein drittes Ausführungsbeispiel einer erfindungsgemäßen Ausgestaltung des Brennstoffeinspritzventils 1.
Das hier beschriebene Ausführungsbeispiel ist eine vereinfachte Variante des Ausfuhrungsbeispiels in Fig. 2. Die Ankeranschlagflache 42 weist auch hier zwei Randzonen 31a, 31b auf, welche durch je zwei gegeneinander geneigte Flächen 32 begrenzt sind. In der einzigen dazwischenliegenden Vertiefung 34 befinden sich Kanäle 35.
Fig. 6 zeigt m einer auszugsweisen axialen Schnittdarstellung ein viertes Ausführungsbeispiel einer erf dungsgemaßen Ausgestaltung des
Brennstoffeinspritzventils 1.
Gegenüber der Ausgestaltungsvariante in Fig. 5 zeichnet sich die m Fig. 6 beschriebene Form durch eine Absenkung eines der erhabenen Scheitelpunkte 33 aus. Dies resultiert in einer weiteren Verkleinerung der effektiven Ankeranschlagflache 38, wodurch der Anker 21 nur an einem der Scheitelpunkte 33 anschlägt und die Adhäsion des Ankers 21 am Magnetkörper 43 weiter reduziert w rd. Die Absenkung des einen erhabenen Scheitelpunkts 33 bewirkt dort zudem eine Vergrößerung des Arbeitsspalts 37, was sich günstig auf das Strόmungsverhalten des im Arbeitsspalt 37 vorhandenen Brennstoffes auswirkt . Fig. 7 zeigt in einer Draufsicht auf die Ankeranschlagflache 42 ein fünftes Ausführungsbeispiel einer erfindungsgemäßen Ausgestaltung des Brennstoffeinspritzventils 1.
Zur besseren Verteilung und Abführung des im Arbeitsspalt 37 vorhandenen Brennstoffs sind am Außenrand 46 des Ankers 21 Aussparungen 41 vorgesehen. Dies führt ebenfalls zur Verkleinerung der effektiven Ankeranschlagflache 38 sowie zu einer zügigen randseitigen Verdrängung des Brennstoffes über die geneigte Fläche 32 der Randzone 31b.
Die Erfindung ist nicht auf das dargestellte Ausführungsbeispiel beschränkt und auch bei einer Vielzahl anderer Bauweisen von Brennstoffeinspritzventilen realisierbar. Insbesondere kann die Erfindung auch bei Tauchankern 21 zum Einsatz kommen.

Claims

Ansprüche
1. Brennstoffeinspritzventil (1) für Brennstoffeinspritzanlagen von Brennkraftmaschinen, mit einer Magnetspule (8), einem in einer Schließrichtung von einer Rückstellfeder (18) beaufschlagten Anker (21) und einem mit dem Anker (21) kraftschlüssig in Verbindung stehenden Ventilschließkörper (4) , der zusammen mit einer Ventilsitzfläche (6) einen Dichtsitz bildet, wobei der Anker (21) mit einer Ankeranschlagflache (42) an einer Magnetpolfläche (44) anschlägt, und wobei der Anker (21) einen Außenrand (46) und einen eine zentrale Ausnehmung (48) begrenzenden Innenrand (47) aufweist, dadurch gekennzeichnet, daß die Ankeranschlagflache (42) eine an den Innenrand (47) angrenzende, innenliegende, ringförmige erste Randzone (31a) , die bezüglich einer Ebene senkrecht zu einer Längsachse (30) des Ankers (21) nach innen geneigt ist, und eine an den Außenrand (46) angrenzende, außenliegende, ringförmige zweite Randzone (31b) , die bezüglich einer Ebene senkrecht zu einer Längsachse (30) des Ankers (21) nach außen geneigt ist, aufweist.
2. Brennstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß zwischen den ringförmigen geneigten Randzonen (31a, 31b) zumindest eine Vertiefung (34) ausgebildet ist.
3. Brennstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, daß jede Vertiefung (34) durch zwei geneigte Flächen (32) begrenzt ist, die bezüglich der Ebene senkrecht zur Längsachse (30) des Ankers (21) entgegengesetzt geneigt sind.
4. Brennstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, daß jede Vertiefung (34) zwischen den geneigten Randzonen (31a, 31b) durch eine erste geneigte Fläche (32) , die bezüglich der Ebene senkrecht zur Längsachse (30) des Ankers (21) geneigt ist, und eine zweite Fläche (40) , die zur
Längsachse (30) des Ankers (21) parallel verläuft, begrenzt
5. Brennstoffeinspritzventil nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die Ankeranschlagflache (42) erhabene Scheitelpunkte (33), an welchen der Abstand zwischen der Ankeranschlagflache (42) und der Magnetpolfläche (44) minimal ist, und vertiefte Scheitelpunkte (39), an welchen der Abstand zwischen der Ankeranscnlagflache (42) und der Magnetpolfläche (44) maximal ist, aufweist.
6. Brennstoffeinspritzventil nach Anspruch 5, dadurch gekennzeichnet, daß an den vertieften Scheitelpunkten (39) axiale Kanäle (35) ansetzen, die den Anker (21) durchdringen.
7. Brennstoffeinspritzventil nach Anspruch 6, dadurch gekennzeichnet, daß der Abstand zwischen der Ankeranschlagflache (42) und der Magnetpolfläche (44) an den erhabenen Scheitelpunkten (33) unterschiedlich ist.
8. Brennstoffeinspritzventil nach einem der vorhergehenden
Ansprüche, dadurch gekennzeichnet, daß der Anker (21) an seinem Außenrand (46) mindestens eine Aussparung (41) aufweist.
9. Brennstoffeinspritzventil nach einem der vorhergehenden Ansprüche , dadurch gekennzeichnet, daß die Magnetpolfläche (44) im Bereich der Magnetspule (8) eine ringförmige Ausnehmung (36) aufweist.
PCT/DE2000/004450 1999-12-16 2000-12-14 Brennstoffeinspritzventil WO2001044652A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001545716A JP2003517141A (ja) 1999-12-16 2000-12-14 燃料噴射弁
US09/913,657 US6758419B2 (en) 1999-12-16 2000-12-14 Fuel injector
DE50011450T DE50011450D1 (de) 1999-12-16 2000-12-14 Brennstoffeinspritzventil
EP00993232A EP1155231B1 (de) 1999-12-16 2000-12-14 Brennstoffeinspritzventil
BR0008230-9A BR0008230A (pt) 1999-12-16 2000-12-14 Válvula de injeção de combustìvel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19960605.6 1999-12-16
DE19960605A DE19960605A1 (de) 1999-12-16 1999-12-16 Brennstoffeinspritzventil

Publications (1)

Publication Number Publication Date
WO2001044652A1 true WO2001044652A1 (de) 2001-06-21

Family

ID=7932826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/004450 WO2001044652A1 (de) 1999-12-16 2000-12-14 Brennstoffeinspritzventil

Country Status (9)

Country Link
US (1) US6758419B2 (de)
EP (1) EP1155231B1 (de)
JP (1) JP2003517141A (de)
CN (1) CN1186526C (de)
BR (1) BR0008230A (de)
CZ (1) CZ295771B6 (de)
DE (2) DE19960605A1 (de)
ES (1) ES2249327T3 (de)
WO (1) WO2001044652A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004506129A (ja) * 2000-08-10 2004-02-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 燃料噴射弁
WO2010037590A1 (de) * 2008-10-02 2010-04-08 Robert Bosch Gmbh Kraftstoff-injektor sowie oberflächenbehandlungsverfahren
WO2016062594A1 (de) * 2014-10-23 2016-04-28 Robert Bosch Gmbh Kraftstoffinjektor
WO2019115056A1 (de) * 2017-12-15 2019-06-20 Robert Bosch Gmbh Elektromagnetisch betätigbares einlassventil und kraftstoff-hochdruckpumpe

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10148592A1 (de) * 2001-10-02 2003-04-10 Bosch Gmbh Robert Brennstoffeinspritzventil
DE10256662A1 (de) 2002-12-04 2004-06-17 Robert Bosch Gmbh Brennstoffeinspritzventil
DE10325442A1 (de) * 2003-06-05 2004-12-23 Robert Bosch Gmbh Magnetventil mit reduzierten Schaltgeräuschen
US7156368B2 (en) * 2004-04-14 2007-01-02 Cummins Inc. Solenoid actuated flow controller valve
US7637442B2 (en) * 2005-03-09 2009-12-29 Keihin Corporation Fuel injection valve
US8316826B2 (en) * 2009-01-15 2012-11-27 Caterpillar Inc. Reducing variations in close coupled post injections in a fuel injector and fuel system using same
JP5689395B2 (ja) * 2011-09-28 2015-03-25 ナブテスコ株式会社 電磁弁
CN114635818A (zh) * 2022-03-09 2022-06-17 哈尔滨工程大学 一种利用柔性液压阻尼实现共轨喷油器稳定喷射的高速电磁阀

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2178483A (en) * 1985-07-31 1987-02-11 Lucas Ind Plc Fuel injector for I.C. engines
DE3535438A1 (de) 1985-10-04 1987-04-09 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil
DE3704543A1 (de) * 1987-02-13 1988-08-25 Vdo Schindling Kraftstoff-einspritzventil
DE3714693A1 (de) * 1987-05-02 1988-11-10 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil
DE3143849C2 (de) 1981-11-05 1989-06-22 Robert Bosch Gmbh, 7000 Stuttgart, De
GB2213650A (en) * 1987-12-08 1989-08-16 Lucas Ind Plc Fuel injection valve
US5417373A (en) * 1994-02-10 1995-05-23 Siemens Automotive L.P. Electromagnet for valves
EP0683862B1 (de) 1993-12-09 1998-06-10 Robert Bosch Gmbh Elektromagnetisch betätigbares ventil

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3207918A1 (de) * 1982-03-05 1983-09-15 Robert Bosch Gmbh, 7000 Stuttgart Elektromagnetisch betaetigbares ventil
DE3305039A1 (de) * 1983-02-14 1984-08-16 Robert Bosch Gmbh, 7000 Stuttgart Elektromagnetisch betaetigbares ventil
DE3727342A1 (de) * 1987-08-17 1989-03-02 Bosch Gmbh Robert Elektromagnetisch betaetigbares kraftstoffeinspritzventil
US5372313A (en) * 1993-02-16 1994-12-13 Siemens Automotive L.P. Fuel injector
DE19503821A1 (de) * 1995-02-06 1996-08-08 Bosch Gmbh Robert Elektromagnetisch betätigbares Ventil
DE19712590A1 (de) * 1997-03-26 1998-10-01 Bosch Gmbh Robert Elektromagnetisch betätigbares Ventil
DE19905721A1 (de) * 1998-02-24 1999-08-26 Hoerbiger Ventilwerke Gmbh Gasventil

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3143849C2 (de) 1981-11-05 1989-06-22 Robert Bosch Gmbh, 7000 Stuttgart, De
GB2178483A (en) * 1985-07-31 1987-02-11 Lucas Ind Plc Fuel injector for I.C. engines
DE3535438A1 (de) 1985-10-04 1987-04-09 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil
DE3704543A1 (de) * 1987-02-13 1988-08-25 Vdo Schindling Kraftstoff-einspritzventil
DE3714693A1 (de) * 1987-05-02 1988-11-10 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil
GB2213650A (en) * 1987-12-08 1989-08-16 Lucas Ind Plc Fuel injection valve
EP0683862B1 (de) 1993-12-09 1998-06-10 Robert Bosch Gmbh Elektromagnetisch betätigbares ventil
US5417373A (en) * 1994-02-10 1995-05-23 Siemens Automotive L.P. Electromagnet for valves

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004506129A (ja) * 2000-08-10 2004-02-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 燃料噴射弁
WO2010037590A1 (de) * 2008-10-02 2010-04-08 Robert Bosch Gmbh Kraftstoff-injektor sowie oberflächenbehandlungsverfahren
CN102171438B (zh) * 2008-10-02 2014-05-07 罗伯特·博世有限公司 燃料喷射器及表面处理方法
WO2016062594A1 (de) * 2014-10-23 2016-04-28 Robert Bosch Gmbh Kraftstoffinjektor
WO2019115056A1 (de) * 2017-12-15 2019-06-20 Robert Bosch Gmbh Elektromagnetisch betätigbares einlassventil und kraftstoff-hochdruckpumpe

Also Published As

Publication number Publication date
JP2003517141A (ja) 2003-05-20
DE19960605A1 (de) 2001-07-19
EP1155231B1 (de) 2005-10-26
US20020125343A1 (en) 2002-09-12
CZ295771B6 (cs) 2005-11-16
BR0008230A (pt) 2001-10-30
CN1186526C (zh) 2005-01-26
CN1340133A (zh) 2002-03-13
EP1155231A1 (de) 2001-11-21
DE50011450D1 (de) 2005-12-01
US6758419B2 (en) 2004-07-06
ES2249327T3 (es) 2006-04-01

Similar Documents

Publication Publication Date Title
DE4018256A1 (de) Elektromagnetisch betaetigbares brennstoffeinspritzventil
DE102006052817A1 (de) Brennstoffeinspritzventil
WO2002012711A1 (de) Brennstoffeinspritzventil
EP1434941A1 (de) Brennstoffeinspritzventil
WO2001044652A1 (de) Brennstoffeinspritzventil
EP1381771B1 (de) Brennstoffeinspritzventil
WO2004051073A1 (de) Brennstoffeinspritzventil
DE10360330A1 (de) Brennstoffeinspritzventil
EP1309789A1 (de) Brennstoffeinspritzventil
DE10130205A1 (de) Brennstoffeinspritzventil
EP2521853A1 (de) Brennstoffeinspritzventil
WO2004051072A1 (de) Brennstoffeinspritzventil
DE10256667A1 (de) Brennstoffeinspritzventil
EP1425508A1 (de) Brennstoffeinspritzventil
DE10049034B4 (de) Brennstoffeinspritzventil
WO2002033244A1 (de) Brennstoffeinspritzventil
DE60320235T2 (de) Einspritzdüse mit verbesserter Einspritzung und Verfahren zu deren Herstellung
DE10052146A1 (de) Brennstoffeinspritzventil
EP1702156A1 (de) Brennstoffeinspritzventil
EP1300583B1 (de) Brennstoffeinspritzventil
DE3841010A1 (de) Elektromagnetisch betaetigbares ventil
DE10358726B4 (de) Brennstoffeinspritzventil
DE102021212790A1 (de) Elektromagnetisch betätigbares Ventil und Verfahren zur Herstellung
DE10050056A1 (de) Brennstoffeinspritzventil
DE10103932A1 (de) Brennstoffeinspritzventil

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00803864.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2000993232

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN CZ JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

ENP Entry into the national phase

Ref document number: 2001 545716

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PV2001-2970

Country of ref document: CZ

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09913657

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000993232

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV2001-2970

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 2000993232

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: PV2001-2970

Country of ref document: CZ