WO2001042860A1 - Erzeugung von resiststrukturen - Google Patents

Erzeugung von resiststrukturen Download PDF

Info

Publication number
WO2001042860A1
WO2001042860A1 PCT/DE2000/004237 DE0004237W WO0142860A1 WO 2001042860 A1 WO2001042860 A1 WO 2001042860A1 DE 0004237 W DE0004237 W DE 0004237W WO 0142860 A1 WO0142860 A1 WO 0142860A1
Authority
WO
WIPO (PCT)
Prior art keywords
resist
acid
polymer
salt
compound
Prior art date
Application number
PCT/DE2000/004237
Other languages
English (en)
French (fr)
Inventor
Klaus Elian
Stefan Hien
Ernst Richter
Michael Sebald
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Priority to EP00993343A priority Critical patent/EP1247141A1/de
Priority to KR1020027007210A priority patent/KR100573672B1/ko
Publication of WO2001042860A1 publication Critical patent/WO2001042860A1/de
Priority to US10/164,550 priority patent/US6703190B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • G03F7/0758Macromolecular compounds containing Si-O, Si-C or Si-N bonds with silicon- containing groups in the side chains
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • G03F7/405Treatment with inorganic or organometallic reagents after imagewise removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/1053Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
    • Y10S430/1055Radiation sensitive composition or product or process of making
    • Y10S430/106Binder containing
    • Y10S430/111Polymer of unsaturated acid or ester
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/1053Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
    • Y10S430/1055Radiation sensitive composition or product or process of making
    • Y10S430/114Initiator containing
    • Y10S430/122Sulfur compound containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/1053Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
    • Y10S430/1055Radiation sensitive composition or product or process of making
    • Y10S430/114Initiator containing
    • Y10S430/124Carbonyl compound containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/1053Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
    • Y10S430/1055Radiation sensitive composition or product or process of making
    • Y10S430/127Spectral sensitizer containing

Definitions

  • the invention relates to a method for producing negative resist structures
  • CAR chemically amplified resists
  • a non-polar chemical group for example a carboxylic acid tert-butyl ester group, a polar in the presence of a photolytically generated acid
  • Carboxylic acid group formed is Carboxylic acid group formed.
  • Further examples of such "blocked” groups are tert-butoxycarbonyloxy groups (t-BOC groups) and acetal groups.
  • t-BOC groups tert-butoxycarbonyloxy groups
  • acetal groups tert-butoxycarbonyloxy groups
  • the change in polarity is then used - when developing in an aqueous alkaline developer - to selectively dissolve the exposed (polar) regions.
  • the negative image of the mask is achieved by using an organic developer instead of the aqueous alkaline developer, which removes the polar regions of the resist, which selectively removes the non-polar (unexposed) regions.
  • organic solvents as developers (toxicity, flammability, disposal); such developers are not accepted in semiconductor production.
  • a special variant of a positive resist is known from DE-OS 42 26 464.
  • This dry-developable resist is based on the chemical combination of a photobase generator with a thermal acid generator, whereby the unexposed areas of the solid resist film are modified in such a way that silicon molecules can be incorporated into the near-surface resist film area in a chemical reaction step following the exposure. Processing does not require the usual wet-chemical development step, instead the latent structures generated during exposure are generated by direct silylation and subsequent etching in oxygen plasma ("top surface imaging", TSI).
  • top surface imaging top surface imaging
  • the disadvantage here is that due to of acid-base diffusion process. within the resist and due to diffusion of the silylation agent, the structural edges after the silylation are not clearly defined. This leads to a high edge after the final oxygen etching process. roughness and in particular to limit the resolving power. Future lithography generations with a required resolution of ⁇ 150 n cannot be realized in this way.
  • a special type of an aqueous-alkaline developable positive resist system is used.
  • a base polymer is used in the resist, which has reactive groups. These groups allow the developed resist structure to be treated with suitable reagents.
  • the structures are “widened” (“chemical a plification of resist lines”, CARL) or the resist trenches and holes are narrowed.
  • Polymer matrix is cross-linked in the developed resist structure. Negative varnishes that work on the basis of cross-linking are therefore not suitable for this system. For the structuring of certain levels in semiconductor production, however, negative resist systems with the type of aftertreatment mentioned are required.
  • EP-OS 0 425 142 discloses a photoresist system in which the structuring is carried out by a combined generation of acids and bases. In this way, a negative working resist can be transferred to a positive working resist.
  • this system has the same disadvantages as the pos tivresist known from DE-OS 42 26 464, namely high edge roughness and limited resolution.
  • the object of the invention is to provide a method for producing negative resist structures, in which the resist which can be developed in aqueous alkaline form is not structured by crosslinking and thus post-treatment is possible after the development step, and with which the problem of edge roughness and limitation of resolution is solved.
  • this process is intended to be used both in optical lithography and in direct writing processes (with laser, electron or ion beams) and in electron projection lithography (EPL) and ion projection lithography (IPL) can be used.
  • thermosaur generator a compound from which an acid is released by a thermal treatment (thermosaur generator)
  • photoreactive compound from which a base is formed when irradiated with light, X-rays, electron beams or ion beams photobase generator
  • the structures are not produced by a direct silylation but by a wet chemical development process preceding the silylation.
  • the predefined structures are treated with a sylation solution, which gives all the advantages of the CARL process (trench narrowing, high silicon content in double layer technology, large process windows). In this way - compared to the Tecnnik stand - a significantly better structural quality is achieved, combined with a higher resolution.
  • the negative resist does not work on the chemical basis Cross-linking and thus preventing the exposed areas from detaching and therefore does not exhibit the resolution-limiting phenomenon "swelling", but instead the solubility of the unexposed areas is greatly increased.
  • a negative working variant of the CARL- Another advantage is that inexpensive resists or base polymers can be used.
  • the method according to the invention proceeds in the following way.
  • the resist is applied to the substrate to be structured and then dried; the solvent evaporates.
  • the solid resist film obtained in this way a latent image of the
  • the exposed areas having the base formed from the photobase generator.
  • the irradiation takes place either optically with light or with X-rays with the aid of a photomask or directly with focused electrons or ions. In one of the irradiated
  • PEB post exposure bake
  • the acid is trapped by the previously generated base, so that the polymer cannot undergo acid-catalyzed reactions.
  • the polymer thus remains largely unchanged in the exposed areas, i.e. it is insoluble in the developer.
  • subsequent development which is carried out using an aqueous
  • the structured liquid phase substrate is silylated, i.e. treated with a silicon-containing solution; this is done either as immersion silylation or in a puddle facility.
  • the silylation in which silicon molecules are built into the developed resist structures - by reaction with the carboxylic acid anhydride groups - gives the resist mask a very high etching stability with respect to an oxygen plasma; at the same time, the silylation enables a lateral expansion of the predefined structures (CARL principle). This enables the process window to be enlarged in the lithographic process under production conditions. It is important that the resist structures developed do not contain cross-linked polymer structures, so that the post-treatment described (in the sense of CARL technology) can be carried out successfully.
  • the resist used in the method according to the invention contains a polymer which can acid-catalyze chemical reactions.
  • Functional groups are preferably used for this purpose, specifically acid-labile groups, from which molecular fragments are split off. These are advantageously one or more of the following groups: tert. Alkyl esters, tert-butoxycarbonyloxy, acetal, tetrahydrofuranyl and tetrahydropyranyl. A tert is preferred. -Butylester mich.
  • the polymer also has carboxylic anhydride groups which are suitable for the chemical attachment of the silylation agent; succinic anhydride groups are preferred.
  • carboxylic anhydride groups which are suitable for the chemical attachment of the silylation agent; succinic anhydride groups are preferred.
  • the anhydride groups of polymerized itaconic acid, acrylic acid or methacrylic acid anhydride can also be used, and also anhydride groups that are formed, for example, by thermal treatment from carboxylic acids or carboxylic acid derivatives.
  • the thermal treatment advantageously releases a sulfonic acid from the thermosaur generator contained in the resist.
  • This is preferably an organic sulfonic acid with an aromatic or aliphatic character, in particular an acid from the following group: aromatic sulfonic acids which are present on the aromatic radical - in any position - by halogen atoms, nitro groups or aliphatic radicals (with 1 to 5 carbon atoms) are substituted; aliphatic sulfonic acids which are substituted on the aliphatic radical - in any position - by halogen atoms or nitro groups; aliphatic sulfonic acids with polycyclic aliphatic groups, especially adamantyl and norbornyl groups.
  • the exposure or irradiation advantageously releases one minute from the photobase generator present in the resist.
  • This is preferably an organic aromatic or aliphatic amm.
  • At least one of the following compounds is advantageously used as the photobase generator: O-acyloxime, benzyloxycarbonylamide derivative, formamide derivative, diarylmethane trialkylammonium salt, o-nitrobenzyloxycarbonyl-cyclohexylamine (o-nitrobenzyl-N-cyclohexylcarbamate), 2, 6-diyloxy-benzo carbonyl-cyclohexylamm, nifedipine derivative, such as N-methyl-nifedipm, and polymer-bound photobase generator based on one of the base precursors mentioned.
  • Resistless suites known per se are used as solvents, in particular at least one of the following compounds: 1-methoxy-2-propyl acetate, cyclohexanone, ⁇ -butyrolactone and ethyl lactate. L-Methoxy-2-propyl acetate is preferred.
  • the resist optionally contains one or more additives which can improve resist properties, such as storage stability, service life and film formation. It is also possible to use additives which act as solubilizers, serve to adjust the exposure or adsorption wavelength, influence the exposure dose or can change properties which improve the process or product. Particularly preferred additives are 9-antracenomethanol and 9-hydroxy-9-fluorenecarboxylic acid. These compounds act as sensitizers, i.e. they absorb energy during the exposure and pass it on to the photobase generator, whereby this can be split in a higher quantum yield than would be the case without the addition of additives.
  • the resist is applied to the substrate by methods known in the art, for example by spin coating.
  • the drying of the resist is generally carried out at a temperature of about 60 to 160 ° C.
  • the resist is preferably irradiated by means of UV light with a wavelength ⁇ of 400 to 1 nm.
  • the subsequent thermal treatment, ie the heating of the resist generally takes place at a temperature of approximately 80 to 250 ° C.
  • the temperature during the heating step is higher than the temperature during drying.
  • known water-alkaline developer solutions are used, in particular developers containing tetramethyl or tetraethylammonium hydroxide.
  • the silylation is preferably carried out with an organic compound containing amino groups or with a mixture of such compounds, specifically from the liquid phase.
  • the silylation agent is dissolved in an organic solvent, in particular in an alcohol, such as ethanol, 2-propanol and 2-hexanol; the alcohol can also contain water, in particular 0.5 to 30% by weight.
  • the silylating agent is preferably a mixture of diammo-oligosiloxanes with 4 to 20 silicon atoms per molecule, in particular one
  • a thermal treatment can also be carried out before and / or after the silylation of the resist. This has a positive influence on the resist structure profile, because moisture remaining after development is removed from the resist film or residual solvent remaining after silylation.
  • a thermal treatment after the silylation is particularly advantageous for any subsequent dry etching, since in this way a difference in the lateral width of isolated lines and trenches can be avoided.
  • a resist which contains the following components: 7.52 parts by weight of a terpolymer, 0.08 parts by weight of thermosaur generator, 0.4 parts by weight of photoase generator and 92 parts by weight of solvent.
  • the terpolymer is obtained by radical copolymerization of maleic anhydride, tert-butyl methacrylic acid and allylsilane (molecular weight: approx. 20,000 g / mol).
  • thermosaur generator is 4-methoxybenzylthiolanium-2H-nonafluorobutane sulfonate
  • the photobase generator is o-nitrobenzyl-N-cyclohexyl carbamate
  • l-methoxy-2-propyl acetate serves as the solvent.
  • This resist is spun at a speed of 2000 rpm onto a silicon wafer which is coated with a 0.5 ⁇ m thick (235 ° C / 90 s, heating plate) layer of a commercially available novolak (duration: 20 s) and then dried on a hot plate at 100 ° C for 60 s.
  • the layer thickness of the top resist located on the bottom resist is approximately 200 nm.
  • the top resist according to Example 1 is exposed to UV radiation at 248 n using a gray wedge mask (multi density resolution target / Ditric Optics) on a mask aligner with vacuum contact exposure (MJB 3 / Süss KG with UV-M interference filter / Schott) and then heat treated on a hot plate at 150 ° C for 60 s (PEB).
  • the tert. -Butyl ester catalyzed by the acid formed, cleaved.
  • the dose at which the resist is fully developed can be determined, ie no remaining layer thickness can be measured in the unexposed areas (Dp (0) dose).
  • Evaluation using a contrast curve gives a value for Dp (0) of 50 mJ / cm 2 for the process conditions mentioned.
  • the contrast ie the slope of the curve at the turning point, is comparable to the contrast values of commercial resists.
  • This example thus shows the basic applicability of the resist system in lithographic applications.
  • a wafer coated in accordance with Example 1 is exposed through a mask having 0.15 ⁇ m line / web structures by means of a projection exposure device with a numerical aperture of 0.6 at a wavelength of 248 nm. After exposure, the wafer is heat treated on a hot plate at 150 ° C for 60 s (PEB). After development with a commercial tetramethylammonium hydroxide developer (duration: 60 s), a negative image of the mask is obtained in the resist, the 0.15 ⁇ m structures being shown true to size. The wafer is then covered with a solution consisting of 2% by weight bisamino-oligodimethylsiloxane and 98% by weight hexanol at room temperature.
  • the wafer is rinsed with isopropanol and then dried in an air stream.
  • the structures which have been silylated and widened in this way have 0.20 ⁇ m webs and 0.10 ⁇ m trenches.
  • the silylated top resist structure is subsequently transferred into the underlying bottom resist by means of an anisotropic oxygen plasma.
  • the structures obtained in this way have vertical flanks and 0.20 ⁇ m webs and 0.10 ⁇ m trenches.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

Bei einem Verfahren zur Erzeugung negativer Resiststrukturen wird ein chemisch verstärkter Resist auf ein Substrat aufgebracht, getrocknet, mit Licht, Röntgen-, Elektronen- oder Ionenstrahlen bestrahlt, aufgeheizt, mit einer wässrig-alkalischen Entwicklerlösung entwickelt und aus flüssiger Phase silyliert. Der Resist enthält folgende Komponenten: ein Polymer, bei dem durch Einwirkung von Säure eine Veränderung der Polarität erfolgt und das Carbonsäureanhydridgruppen, gegebenenfalls in latenter Form, aufweist; eine Verbindung, aus der durch eine thermische Behandlung eine Säure freigesetzt wird; eine photoreaktive Verbindung, aus der bei Bestrahlung mit Licht, Röntgen-, Elektronen- oder Ionenstrahlen eine Base entsteht; ein Lösemittel; gegebenenfalls ein oder mehrere Additive.

Description

Beschreibung
Erzeugung von Resiststrukturen
Die Erfindung betrifft ein Verfahren zur Erzeugung negativer Resiststrukturen
In der Mikroelektronik werden sogenannte chemisch verstärkte Resists („chemical a plification resists"", CAR) für verschie- dene lithographische Technologien im großen Umfang eingesetzt (siehe dazu: „Solid State Technology", Vol. 39 (1996), No . 7, Seiten 164 bis 173) . Das Prinzip der chemischen Verstärkung findet sowohl bei naßentwickelbaren Einlagenresists Anwendung als auch bei ganz oder teilweise trockenentwickelbaren Zwei- lagenresistsystemen. Die Resists können dabei nach dem Prinzip der säurekatalytischen Spaltung arbeiten. Im Falle von positiv arbeitenden Resists wird dann - bei einem Heizschritt (Temperung) - aus einer unpolaren chemischen Gruppe, beispielsweise eine Carbonsäure-tert .-butylestergruppe, in Gegenwart einer photolytisch erzeugten Säure eine polare
Carbonsäuregruppe gebildet. Weitere Beispiele für derartige „blockierte" Gruppen sind tert . -Butoxycarbonyloxygruppen (t-BOC-Gruppen) und Acetalgruppen. Die Polaritätsänderung wird dann - beim Entwickeln in einem wäßrig-alkalischen Entwickler - zum selektiven Lösen der belichteten (polaren) Bereiche genutzt.
Im Falle von wäßrig-alkalisch entwickelbaren chemisch verstärkten Negativresists wird bei der Belichtung ebenfalls aus einem Photosäuregenerator eine starke Säure erzeugt. Allerdings dient hierbei die erzeugte Säure bei dem der Belichtung folgenden Heizschritt nicht zur Abspaltung von „blockierten" Gruppen (wie bei den Positivresists) , sondern zur säurekatalysierten Quervernetzung der Resistbasispolymere, üblicher- weise .in Gegenwart geeigneter Vernetzungsagenzien. Säurespaltbare „blockierte" Gruppen am Polymer sind bei diesen Resists somit nicht erforderlich. Ein chemisch verstärkter Negativres ist , der nicht auf der Bas is von Quervernetzung arbeitet , ist aus der US-PS 4 491 628 bekannt . Hierbei wird ein Resistsystem eingesetzt, das aus denselben Komponenten aufgebaut ist wie die vor- stehend beschriebenen chemisch verstärkten Positivresists . Das negative Abbild der Mas ke wird dadurch erreicht, daß anstelle des wäßrig-alkalischen Entwicklers , der die polaren Bereiche des Resists herauslöst, ein organischer Entwickler verwendet wird, der selektiv die unpolaren (unbelichteten) Bereiche herauslöst . Ein Nachteil bes teht hier aber in der Verwendung organischer Lösemittel als Entwickler ( Toxizität, Brennbarkeit , Entsorgung) ; derartige Entwickler werden in der Halbleiterproduktion nicht akzeptiert .
Die chemisch verstärkten Positivres ists sind im übrigen - ebenso wie die chemisch verstärkten Negativresists - seit langem bekannt ( siehe dazu beispielsweise : „Advanced Materials for Optics and Electronics" , Vol . 4 ( 1994 ) , Seiten 83 bis 93 ) .
Eine spezielle Variante eines Positivresists ist aus der DE-OS 42 26 464 bekannt. Dieser trockenentwickelbare Resist basiert auf der chemischen Kombination eines Photobasebildners mit einem Thermosäurebildner, wodurch die unbelichteten Bereiche des festen Resistfilms in der Weise modifiziert werden, daß in einem auf die Belichtung folgenden chemischen Reaktionsschritt Siliciummoleküle in den oberflächennahen Resistfilmbereich eingebaut werden können. Bei der Prozessierung kommt man ohne den sonst üblichen naßchemischen Entwick- lungsschritt aus, statt dessen werden die bei der Belichtung erzeugten latenten Strukturen durch direkte Silylierung und nachfolgendes Ätzen im Sauerstoffplasma erzeugt („top surface imaging" , TSI) . Nachteilig ist hierbei, daß aufgrund von Säure-Base-Diffusionsprozesser. innerhalb des Resists sowie durch Diffusion des Silylierungsagens die Strukturkanten nach der Silylierung nicht klar definiert sind. Dies führt nach dem abschließenden Sauerstoffatzorozeß zu einer hohen Kanten- rauhigkeit und insbesondere zu einer Limitierung des Auflösungsvermögens. Zukünftige Lithographiegenerationen mit einer geforderten Auflösung von < 150 n können somit auf diese Weise nicht realisiert werden.
Bei einem aus der EP-PS 0 395 917 bekannten Verfahren zur Verbreiterung von Photoresiststrukturen wird eine spezielle Art eines wäßrig-alkalisch entwickelbaren Positivresist- systems eingesetzt. Hierbei wird im Resist ein Basispolymer verwendet, das reaktive Gruppen aufweist. Diese Gruppen erlauben es, die entwickelte Resiststruktur mit geeigneten Reagenzien nachzubehandeln. Während der Nachbehandlung werden die Strukturen „aufgeweitet" („chemical a plification of resist lines", CARL) bzw. die Resistgräben und -löcher ver- engt.
Entsprechend einem aus der US-PS 5 234 793 bekannten Verfahren wird die Nachbehandlung zur Silylierung in einem Zwei- lagenresistsystem genutzt (Si-CARL) . Allerdings kann diese Art der Nachbehandlung nicht durchgeführt werden, wenn die
Polymermatrix in der entwickelten Resiststruktur quervernetzt ist. Negativlacke, die auf der Basis von Quervernetzung arbeiten, eignen sich deshalb nicht für dieses System. Für die Strukturierung bestimmter Ebenen in der Halbleiterfertigung werden aber Negativresistsysteme mit der genannten Art der Nachbehandlung benötigt.
Insbesondere bei den herkömmlichen wäßrig-alkalisch entwickelbaren Negativresists besteht das Problem des sogenann- ten „swelling" . Zwar werden die belichteten Resistbereiche durch die während des Heizschrittes stattfindende Polymerquervernetzung prinzipiell gegenüber dem Entwickler unlöslich gemacht, problematisch sind aber die Randbereiche der Strukturen. Hier stehen nämlich - aufgrund einer schwächeren Lichteinstrahlungsintensität sowie aufgrund von Diffusionsprozessen - weniger Protonen für die Quervernetzung zur Verfügung. Dadurch kann die Quervernetzung nicht in dem Maße erfolgen, wie es in der Mitte der Strukturen der Fall ist. Die Randbereiche sind zwar im Entwickler unlöslich, sie können aber wahrend der Entwicklung aufquellen und das Strukturprofil verfalschen. Dies ist auf das geringere Ausmaß der Polymerquervernetzung zurückzuführen, wodurch die Strukturen im Randbereich mechanisch weniger stabil sind als im Kernbereich. Speziell bei immer kleiner werdenden Strukturen ist dies e n großes Problem, weil hierbei der Anteil der Randflachen (Kanten) im Vergleich zum eigentlichen Struktur- volumen immer größer wird. Eine originalgetreue Abbildung sehr feiner Strukturen ist mit herkömmlichen Negativresist- systemen deshalb nur sehr schwer zu erreichen, wenn nicht sogar unmöglich.
Konventionelle Resistsysteme benutzen für die eigentliche
Strukturierung nur eine einzige photoaktive Komponente. Weitere Additive zielen nicht unmittelbar auf die Strukturier- barkeit ab, sondern gleichen lediglich die störende laterale Diffusion der photoaktiven Komponente aus. Demgegenüber ist aus der EP-OS 0 425 142 ein Photoresistsyste bekannt, bei dem die Strukturierung durch eine kombinierte Sauren- und Basenerzeugung erfolgt. Auf diese Weise kann e n negativ arbeitender Resist m einen positiv arbeitenden Resist überfuhrt werden. Dieses System weist aber dieselben Nachteile auf wie der aus der DE-OS 42 26 464 bekannte Pos tivresist, nämlich hohe Kantenrauhigkeit und begrenztes Auflösungsvermögen .
Aufgabe der Erfindung ist es, ein Verfahren zur Erzeugung negativer Resiststrukturen anzugeben, bei dem der waßrig- alkalisch entwickelbare Resist nicht durch Quervernetzung strukturiert wird und somit nach dem Entwicklungsschritt eine Nachbehandlung möglich ist, und mit dem das Problem der Kantenrauhigkeit und der Auflosungsbegrenzung gelost wird. Außerdem soll dieses Verfahren sowohl bei der optischen Lithographie und bei Direktschreibverfahren (mit Laser-, Elektronen- oαer Ionenstrahlen) als auch bei der Elektronen- projektionslithographie (EPL) und der Ionenprojektionslitho- graphie (IPL) eingesetzt werden können.
Dies wird erfmdungsgemäß durch ein Verfahren erreicht, das durch folgende Schritte gekennzeichnet ist:
(a) Aufbringen eines chemisch verstärkten Resists auf ein Substrat, wobei der Resist folgende Komponenten enthalt:
- ein Polymer, bei dem durch Einwirkung von Saure eine Veränderung der Polarität erfolgt und das Carbonsaure- anhydridgruppen, gegebenenfalls in latenter Form, aufweist,
- e ne Verbindung, aus der durch eine thermische Behandlung eine Saure freigesetzt wird (Thermosaurebildner) ,
- eine photoreaktive Verbindung, aus der bei Bestrahlung mit Licht, Röntgen-, Elektronen- oder Ionenstrahlen eine Base entsteht (Photobasebildner) ,
- ein Losemittel,
- gegebenenfalls ein oder mehrere Additive;
(b) Trocknen des Resists; (c) Bestrahlen des Resists mit Licht, Röntgen-, Elektronenoder Ionenstrahlen;
(d) Aufheizen des Resists;
(e) Entwickeln des Res scs m t einer waßπg-alkalischen Entwicklerlosung; (f) Silylieren des Resists aus flussiger Phase.
Beim Verfahren nach der Erfindung werden die Strukturen nicht durch e ne Direktsilylierung erzeugt, sondern durch einen der Silylierung vorgeschalteten naßchemischen Entwicklungsprozeß. Nach der Entwicklung werden die vordefinierten Strukturen mit einer S lylierungslosung behandelt, wobei sich alle Vorteile des CARL-Prozesses ergeben (Grabenverengung, hoher Silicium- gehalt in αer Zwe lagentechnik, große Prozeßfenster) . Auf diese Weise wird - im Vergleicn zum Stand der Tecnnik - eine wesentlicn bessere Strukturqualltat erzielt, verbunden mit einem höheren Auflösungsvermögen. Bei diesem Verfahren arbeitet der Negativresist nicht auf der Basis der chemischen Quervernetzung und damit der Verhinderung des Ablösens der belichteten Bereiche und er weist deshalb nicht das auf- lösungsbegrenzende Phänomen „swelling" auf, sondern es erfolgt eine starke Erhöhung der Löslichkeit der unbelichteten 5 Bereiche. Mit diesem Verfahren wird somit eine negativ arbeitende Variante des CARL-Prozesses geschaffen. Dabei ergibt sich als weiterer Vorteil, daß kostengünstige Resists bzw. Basispolymere eingesetzt werden können.
10 Im einzelnen läuft das Verfahren nach der Erfindung in folgender Weise ab. Der Resist wird auf das zu strukturierende Substrat aufgebracht und dann getrocknet; hierbei verdampft das Lösemittel. Im dabei erhaltenen festen Resistfilm wird dann durch gezielte Bestrahlung ein latentes Bild der ge-
15 wünschten Struktur erzeugt, wobei die belichteten Bereiche die aus dem Photobasebildner entstandene Base aufweisen. Die Bestrahlung erfolgt entweder optisch mit Licht oder mit Röntgenstrahlen unter Zuhilfenahme einer Photomaske oder direkt mit fokussierten Elektronen oder Ionen. In einem der Bestrah-
20. lung folgenden Heizschritt („post exposure bake" , PEB) wird im gesamten Resistfilm der Thermosäurebildner gespalten und dabei eine Säure gebildet, d.h. eine chemische Verbindung, die saurer ist als die Matrix. Diese Säure katalysiert dann chemische Reaktionen am Polymer, die zur Abspaltung von Mole-
25 külfragmenten führen, wodurch eine Veränderung der Polarität (des Resists) bewirkt wird, d.h. es erfolgt ein Übergang von hydrophob nach hydrophil. Dies ist allerdings nur in Bereichen möglich, in denen eine ausreichende Säuremenge zur Verfügung steht. In den belichteten, d.h. bestrahlten Bereichen
30 wird die Säure durch die zuvor erzeugte Base weggefangen, so daß das Polymer keine sauer katalysierten Reaktionen eingehen kann. In den belichteten Bereichen bleibt das Polymer somit weitgehend unverändert, d.h. es ist im Entwickler unlöslich. Bei der nachfolgenden Entwicklung, die mittels eines wäßrig-
35 alkalischen Entwicklers erfolgt, werden deshalb nur die unbelichteten Bereiche weggelöst, und auf diese Weise wird ein negatives Abbild der ursprünglichen Struktur' erzeugt . Dies bedeutet, daß das Substrat an den unbelichteten Bereichen freiliegt, während die belichteten Bereiche noch vom festen Resistfilm geschützt werden.
Nach der Entwicklung wird das strukturierte Substrat aus flüssiger Phase silyliert, d.h. mit einer siliciu haltigen Lösung behandelt; dies erfolgt entweder als Tauchsilylierung oder in einer Puddle-Einrichtung. Die Silylierung, bei der in die entwickelten Resiststrukturen - durch Reaktion mit den Carbonsäureanhydridgruppen - Siliciummoleküle eingebaut werden, verleiht der Resist aske eine sehr hohe Ätzstabilität gegenüber einem Sauerstoffplasma; gleichzeitig ermöglicht die Silylierung eine laterale Aufweitung der vordefinierten Strukturen (CARL-Prinzip) . Im lithographischen Prozeß unter Produktionsbedingungen wird dadurch eine Vergrößerung des Prozeßfensters ermöglicht. Wichtig ist dabei, daß die entwickelten Resiststrukturen keine quervernetzten Polymerstrukturen enthalten, so daß die beschriebene Nachbehandlung (im Sinne der CARL-Technologie) erfolgreich durchgeführt werden kann.
Der beim Verfahren nach der Erfindung eingesetzte Resist enthält ein Polymer, welches sauer katalysiert chemische Reaktionen eingehen kann. Dazu dienen vorzugsweise funk- tionelle Gruppen, und zwar säurelabile Gruppen, aus denen Molekülfragmente abgespalten werden. Vorteilhaft sind dies eine oder mehrere folgender Gruppen: tert . -Alkylester, tert.- Butoxycarbonyloxy, Acetal, Tetrahydrofuranyl und Tetrahydro- pyranyl . Bevorzugt wird dabei eine tert . -Butylestergruppe.
Das Polymer weist ferner Carbonsäureanhydridgruppen auf, die für die chemische Anbindung des Silylierungsagens geeignet sind; bevorzugt werden dabei Bernsteinsäureanhydridgruppen. Zu diesem Zweck können aber auch die Anhydridgruppen von einpoly erisiertem Itaconsäure-, Acrylsäure- oder Methacryl- säureanhydrid dienen und ebenso latent vorhandene Anhydrid- gruppen, die beispielsweise durch thermische Behandlung aus Carbonsauren oder Carbonsaurederivaten gebildet werden.
Aus dem im Resist enthaltenen Thermosaurebildner wird durch die thermische Behandlung vorteilhaft eine Sulfonsaure freigesetzt. Dies ist vorzugsweise eine organische Sulfonsaure mit aromtischem oder aliphatischem Charakter, insbesondere eine Saure aus der folgenden Gruppe: aromatische Sulfon- säuren, die am aromatischen Rest - in beliebiger Stellung - durch Halogenatome, Nitrogruppen oder aliphatische Reste (mit 1 bis 5 C-Atomen) substituiert sind; aliphatische Sulfon- sauren, die am aliphatisc en Rest - in beliebiger Stellung - durch Halogenatome oder Nitrogruppen substituiert sind; aliphatische Sulfonsauren mit polycyclischen aliphatischen Gruppen, insbesondere Adamantyl- und Norbornylgruppen .
Als Thermosaurebildner dient vorzugsweise wenigstens eine der folgenden Verbindungen: Dialkyl-, Alkylaryl- oder Diaryl- iodoniumsalz und Tπalkyl-, Dialkylaryl- oder Alkyldiaryl- sulfoniu salz eines Sulfonats (mit Alkyl = Cx bis Ci2 und Aryl = C5 bis Cj.3, gegebenenfalls substituiert mit OH, N02, Halogen, Ci- bis Cι2-Alkyl oder -O-Alkyl) ; o-Nitrobenzylsulfonat; Salz einer Benzylthiolamumverbindung, insbesondere einer 4-Methoxybenzylthιolanιumverbmdung; Salz eines mehrfach fluorierten Butansulfonats, insbesondere eines Nonafluor- butansulfonats, wie 4-Methoxybenzylthιolanιum-nonafluor- butansulfonat; N-Sulfonsaureester, beispielsweise N-Phthal- lmid-p-toluolsulfonsaureester .
Aus dem im Resist vorhandenen Photobasebildner wird durch die Belichtung bzw. Bestrahlung vorteilhaft ein Min freigesetzt. Dies ist vorzugsweise ein organisches aromatisches oder ali- phatisches Amm. Als Photobasebildner dient vorteilhaft wenigstens eine der folgenden Verbindungen: O-Acyloxim, Benzyloxycarbonylamidderivat, Formamidderivat, Diarylmethan- trialkylammoniumsalz, o-Nitrobenzyloxycarbonyl-cyclohexylamin (o-Nitrobenzyl-N-cyclohexylcarbamat) , 2, 6-Dιhιtrobenzyloxy- carbonyl-cyclohexylamm, Nifedipinderivat, wie N-Methyl- nifedipm, und polymergebundener Photobasebildner auf der Basis einer der genannten Basevorstufen.
Als Losemittel dienen an sich bekannte Resistloseruitel, insbesondere wenigstens eine der folgenden Verbindungen: l-Methoxy-2-propylacetat, Cyclohexanon, γ-Butyrolacton und Ethyllactat. Bevorzugt wird dabei l-Methoxy-2-propylacetat .
Der Resist enthalt gegebenenfalls ein oder mehrere Additive, welche Resisteigenschaften, wie Lagerstabilitat, Standzeitverhalten und Filmbildung, verbessern können. Es können auch Additive verwendet werden, welche als Losungsvermittler wirken, zur Anpassung der Belichtungs- bzw. Adsorptionswellen- lange dienen, die Belichtungsdosis beeinflussen oder prozeß- bzw. produktverbessernde Eigenschaften verandern können. Besonders bevorzugte Additive sind 9-Antnracenmethanol und 9-Hydroxy-9-fluorencarbonsaure . Diese Verbindungen wirken als Sensibilisatoren, d.h. sie absorbieren bei der Belichtung Energie und geben sie an den Photobasebildner weiter, wodurch dieser m einer höheren Quantenausbeute gespalten werden kann als es ohne Additivzugabe der Fall wäre.
Der Resist weist im allgemeinen folgende Zusammensetzung auf (GT = Gewichtstelle) , wobei sich die einzelnen Anteile zu 100 erganzen: 2 bis 15 GT Polymer, 0,06 bis 1,5 GT Thermosaurebildner, 0,06 bis 1,5 GT Pnotobasebildner, 85 bis 98 GT Losemittel und 0 bis 1,5 GT Additive.
Der Resist wird durch an sicn bekanne Verfahren auf das Substrat aufgebracht, beispielsweise durch Aufschleudern. Die Trocknung des Resists wird im allgemeinen bei einer Temperatur von etwa 60 is 160°C durchgeführt. Die Bestrahlung des Resists erfolgt vorzugsweise mittels UV-Licht mit einer Wellenlange λ von 400 bis 1 nm. Die nachfolgende thermische Behandlung, d.h. das Aufheizen des Resists, geschieht im allgemeinen bei einer Temperatur von etwa 80 bis 250°C. Die Temperatur beim Heizschritt liegt dabei über der Temperatur beim Trocknen. Zur Entwicklung des Resists dienen an sich bekannte waßr g-alkal sche Entwicklerlosungen, insbesondere Tetramethyl- oder Tetraethylammoniumhydroxid enthaltende Entwickler.
Die Silylierung erfolgt vorzugsweise mit einer ammogruppen- haltigen organischen Verbindung oder mit einer Mischung derartiger Verbindungen, und zwar aus flüssiger Phase. Im all- gemeinen ist das Silylierungsagens dabei in einem organischen Losemittel gelost, insbesondere in einem Alkohol, wie Etha- nol, 2-Propanol und 2-Hexanol; der Alkohol kann auch Wasser enthalten, insbesondere 0,5 bis 30 Gew.-%. Das Silylierungsagens ist vorzugsweise ein Gemisch von Diammo-oligosiloxanen mit 4 bis 20 Siliciumatomen pro Molekül, insbesondere ein
Dia mo-oligodimethylsiloxan. Vor und/oder nach der Silylierung des Resists kann noch eine thermische Behandlung durchgeführt werden. Dadurch wird das Resiststrukturprofll positiv beeinflußt, weil nach der Entwicklung verbliebene Feuchtig- keit aus dem Resistfilm entfernt wird bzw. nach der Silylierung verbliebenes Restlosemittel. Für eine sich eventuell anschließende Trockenatzung ist insbesondere eine thermische Behandlung nach der Silylierung von Vorteil, da sich auf diese Weise eine Differenz in der lateralen Breite von iso- lierten Linien und Graben vermeiden laßt.
Anhand von Ausfuirungsbeispielen soll die Erfindung noch naher erläutert werden.
Beispiel 1
Herstellung eines Photoresists und Beschichtung eines Substrats (GT = Gewichtstelle)
Es wird ein Resist hergestellt, der folgende Komponenten enthalt: 7,52 GT eines Terpolymers, 0,08 GT Thermosaurebildner, 0,4 GT Photooasebilαner und 92 GT Losemittel. Das Terpolymer wird durch radikalische Copolymerisation von Maleinsäureanhydrid, Methacrylsäure-tert .-butylester und Allylsilan erhalten (Molgewicht: ca. 20000 g/mol). Der Thermosaurebildner ist 4-Methoxybenzylthiolanium-2H-nonafluorbutan- sulfonat, der Photobasebildner o-Nitrobenzyl-N-cyclohexyl- carbamat; als Lösemittel dient l-Methoxy-2-propylacetat .
Dieser Resist wird bei einer Umdrehungszahl von 2000/min auf einen Siliziumwafer, welcher mit einer 0,5 um dicken aus- geheizten (235°C/90 s, Heizplatte) Schicht eines handelsüblichen Novolaks beschichtet ist, aufgeschleudert (Dauer: 20 s) und anschließend auf einer Heizplatte bei 100°C 60 s getrocknet. Die Schichtdicke des auf dem Bottomresist befindlichen Topresists beträgt ca. 200 nm.
Beispiel 2
Belichtung und Entwicklung des Resists
Der Topresist entsprechend Beispiel 1 wird über eine Graukeilmaske (Multi density resolution target/Ditric Optics) auf einem Mask Aligner mit Vakuu kontaktbelichtung (MJB 3/Süss KG mit UV-M-Interferenzfilter/Schott) mit UV-Strahlung bei 248 n belichtet und dann auf einer Heizplatte bei 150°C für 60 s temperaturbehandelt (PEB) . Dabei wird der tert. -Butylester, katalysiert durch die gebildete Säure, gespalten. Durch Entwickeln (60 s) in einem auf 23 °C thermostatisierten Gefäß mit einem kommerziellen Entwickler werden die unbelichteten Bereiche des Resists weggelöst, wobei ein negatives Abbild der Maske erhalten wird. Da die Maske Regionen mit verschiedenen Transmissionsgraden aufweist, kann die Dosis ermittelt werden, bei der der Resist vollständig entwickelt ist, d.h. in den unbelichteten Bereichen keine verbliebene Restschichtdicke mehr gemessen werden kann (Dp (0) -Dosis) . Die Auswertung mittels einer Kontrastkurve ergibt für die genannten Prozeßbedingungen einen Wert für Dp(0) von 50 mJ/cm2. Der Kontrast, d.h. die Steigung der Kurve im Wendepunkt, ist vergleichbar mit Kontrastwerten kommerzieller Resists.
Dieses Beispiel zeigt somit die prinzipielle Einsetzbarkeit des Resistsystems bei lithographischen Anwendungen.
Beispiel 3
Strukturierung des Resists
Ein entsprechend Beispiel 1 beschichteter Wafer wird durch eine Maske, die 0,15 um-Linien/Steg-Strukturen aufweist, mittels eines Projektionbelichtungsgerätes mit einer numerischen Apertur von 0,6 bei einer Wellenlänge von 248 nm belichtet. Nach der Belichtung wird der Wafer auf einer Heizplatte bei 150°C für 60 s temperaturbehandelt (PEB) . Nach der Entwicklung mit einem kommerziellen Tetramethylammoniumhydroxid- Entwickler (Dauer: 60 s) wird im Resist ein negatives Abbild der Maske erhalten, wobei die 0,15 um-Strukturen maßhaltig abgebildet sind. Anschließend wird der Wafer bei Raumtemperatur mit einer Lösung, bestehend aus 2 Gew.-% Bisamino- oligodimethylsiloxan und 98 Gew.-% Hexanol, überschichtet. Nach 40 s wird der Wafer mit Isopropanol gespült und anschließend in einem Luftstrom getrocknet. Die derart sily- lierten und aufgeweiteten Strukturen weisen 0,20 μm-Stege und 0,10 um-Gräben auf. In einem Plasmaätzreaktor wird die silylierte Topresist-Struktur nachfolgend mittels eines anisotropen Sauerstoffplasmas in den unterliegenden Bottom- resist übertragen. Die dabei erhaltenen Strukturen weisen senkrechte Flanken sowie 0,20 μm-Stege und 0,10 μm-Gräben auf.

Claims

Patentansprüche
1. Verfahren zur Erzeugung negativer Resiststrukturen, g e k e n n z e i c h n e t durch folgende Schritte: (a) Aufbringen eines chemisch verstärkten Resists auf ein
Substrat, wobei der Resist folgende Komponenten enthalt:
- ein Polymer, bei dem durch Einwirkung von Saure eine Veränderung der Polarität erfolgt und das Carbonsaure- anhydridgruppen, gegebenenfalls in latenter Form, auf- weist,
- eine Verbindung, aus der durch eine thermische Behandlung eine Saure freigesetzt wird (Thermosaurebildner) ,
- eine photoreaktive Verbindung, aus der bei Bestrahlung mit Licht, Röntgen-, Elektronen- oder Ionenstrahlen eine Base entsteht (Photobasebildner),
- ein Losemittel,
- gegebenenfalls ein oder mehrere Additive;
(b) Trocknen des Resists;
(c) Bestrahlen des Resists mit Licht, Röntgen-, Elektronen- oder Ionenstrahlen;
(d) Aufheizen des Resists;
(e) Entwickeln des Resists mit einer waßrig-alkalischen Entwicklerlosung;
(f) Silylieren des Resists aus flussiger Phase.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß das Polymer wenigstens eine der folgenden saurelabilen Gruppen aufweist: tert . -Alkylester, tert .-Butoxycarbonylσxy, Acetal, Tetrahydrofuranyl und Tetrahydropyranyl .
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e ¬ k e n n z e i c h n e t , daß aus dem Thermosaurebildner eine Sulfonsaure freigesetzt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß der Thermo- säurebildner wenigstens eine der folgenden Verbindungen ist: Dialkyl-, Alkylaryl- oder Diaryliodoniumsalz und Trialkyl-, Dialkylaryl- oder Alkyldiarylsulfoniumsalz eines Sulfonats, o-Nitrobenzylsulfonat, Salz einer Benzylthiolaniumverbindung, Salz eines mehrfach fluorierten Butansulfonats und N-Sulfon- säureester .
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß aus dem Photobasebildner ein A in entsteht.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , daß der Photobasebildner wengistens eine der folgenden Verbindungen ist: O-Acyloxim, Benzyloxycarbonylamidderivat, Formamidderivat,
Diarylmethan-trialkylam oniumsalz, o-Nitrobenzyloxycarbonyl- cyclohexylamin, 2, 6-Dinitrobenzyloxycarbonyl-cyclohexylamin, Nifedipinderivat und polymergebundener Photobasebildner auf Basis einer der genannten Basevorstufen.
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , daß der Resist als Additiv 9-Anthracenmethanol und/oder 9-Hydroxy- 9-fluorencarbonsäure enthält.
8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 1, d a d u r c h g e k e n n z e i c h n e t , daß der Resist mit UV-Licht im Bereich 400 nm > λ > 1 nm bestrahlt wird.
9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t , daß die Silylierung mit einer aminogruppenhaltigen Verbindung erfolgt, vorzugsweise in einem organischen Lösemittel.
10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t , daß vor und/ oder nach der Silylierung eine thermische Behandlung durchgeführt wird.
PCT/DE2000/004237 1999-12-07 2000-11-27 Erzeugung von resiststrukturen WO2001042860A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00993343A EP1247141A1 (de) 1999-12-07 2000-11-27 Erzeugung von resiststrukturen
KR1020027007210A KR100573672B1 (ko) 1999-12-07 2000-11-27 레지스트 구조물의 형성 방법
US10/164,550 US6703190B2 (en) 1999-12-07 2002-06-07 Method for producing resist structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19958966A DE19958966A1 (de) 1999-12-07 1999-12-07 Erzeugung von Resiststrukturen
DE19958966.6 1999-12-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/164,550 Continuation US6703190B2 (en) 1999-12-07 2002-06-07 Method for producing resist structures

Publications (1)

Publication Number Publication Date
WO2001042860A1 true WO2001042860A1 (de) 2001-06-14

Family

ID=7931715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/004237 WO2001042860A1 (de) 1999-12-07 2000-11-27 Erzeugung von resiststrukturen

Country Status (6)

Country Link
US (1) US6703190B2 (de)
EP (1) EP1247141A1 (de)
KR (1) KR100573672B1 (de)
DE (1) DE19958966A1 (de)
TW (1) TW554247B (de)
WO (1) WO2001042860A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1380895A1 (de) * 2002-07-09 2004-01-14 Fujitsu Limited Chemisch verstärktes Resistmaterial und Musterherstellungsverfahren unter dessen Verwendung
US6686131B2 (en) 2001-09-28 2004-02-03 Infineon Technologies Ag Method of producing biocompatible structures and biocompatible microchip
US6946236B2 (en) 2001-06-29 2005-09-20 Infineon Technologies Ag Negative resist process with simultaneous development and aromatization of resist structures
US6998215B2 (en) 2001-06-29 2006-02-14 Infineon Technologies Ag Negative resist process with simultaneous development and chemical consolidation of resist structures

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868735A (en) * 1997-03-06 1999-02-09 Scimed Life Systems, Inc. Cryoplasty device and method
US6873087B1 (en) * 1999-10-29 2005-03-29 Board Of Regents, The University Of Texas System High precision orientation alignment and gap control stages for imprint lithography processes
EP2264524A3 (de) * 2000-07-16 2011-11-30 The Board of Regents of The University of Texas System Hoch auflösende Ausrichtungsverfahren und entsprechende Systeme für die Präge-Lithographie
AU2001277907A1 (en) * 2000-07-17 2002-01-30 Board Of Regents, The University Of Texas System Method and system of automatic fluid dispensing for imprint lithography processes
EP1309897A2 (de) * 2000-08-01 2003-05-14 Board Of Regents, The University Of Texas System Methode zur einstellung des abstands und der ausrichtung zwischen einem transparenten original und einem substrat in der imprint-lithographie
WO2002017383A2 (en) * 2000-08-21 2002-02-28 Board Of Regents, The University Of Texas System Flexure based translation stage
EP1352295B1 (de) * 2000-10-12 2015-12-23 Board of Regents, The University of Texas System Schablone für die mikro- und nanodrucklithographie für zimmertemperatur und niedrigen druck
US20060005657A1 (en) * 2004-06-01 2006-01-12 Molecular Imprints, Inc. Method and system to control movement of a body for nano-scale manufacturing
US20050274219A1 (en) * 2004-06-01 2005-12-15 Molecular Imprints, Inc. Method and system to control movement of a body for nano-scale manufacturing
US6964793B2 (en) * 2002-05-16 2005-11-15 Board Of Regents, The University Of Texas System Method for fabricating nanoscale patterns in light curable compositions using an electric field
US7037639B2 (en) * 2002-05-01 2006-05-02 Molecular Imprints, Inc. Methods of manufacturing a lithography template
US20030235787A1 (en) * 2002-06-24 2003-12-25 Watts Michael P.C. Low viscosity high resolution patterning material
US6908861B2 (en) * 2002-07-11 2005-06-21 Molecular Imprints, Inc. Method for imprint lithography using an electric field
US7077992B2 (en) * 2002-07-11 2006-07-18 Molecular Imprints, Inc. Step and repeat imprint lithography processes
US7070405B2 (en) * 2002-08-01 2006-07-04 Molecular Imprints, Inc. Alignment systems for imprint lithography
US7071088B2 (en) * 2002-08-23 2006-07-04 Molecular Imprints, Inc. Method for fabricating bulbous-shaped vias
US8349241B2 (en) * 2002-10-04 2013-01-08 Molecular Imprints, Inc. Method to arrange features on a substrate to replicate features having minimal dimensional variability
US6980282B2 (en) * 2002-12-11 2005-12-27 Molecular Imprints, Inc. Method for modulating shapes of substrates
US6929762B2 (en) * 2002-11-13 2005-08-16 Molecular Imprints, Inc. Method of reducing pattern distortions during imprint lithography processes
CN100367113C (zh) * 2002-12-11 2008-02-06 三星电子株式会社 用于形成共轭聚合物图案的组合物和使用该组合物形成共轭聚合物图案的方法
US6871558B2 (en) * 2002-12-12 2005-03-29 Molecular Imprints, Inc. Method for determining characteristics of substrate employing fluid geometries
JP3901645B2 (ja) * 2003-02-17 2007-04-04 松下電器産業株式会社 パターン形成方法
US20040168613A1 (en) * 2003-02-27 2004-09-02 Molecular Imprints, Inc. Composition and method to form a release layer
US7452574B2 (en) * 2003-02-27 2008-11-18 Molecular Imprints, Inc. Method to reduce adhesion between a polymerizable layer and a substrate employing a fluorine-containing layer
US7323417B2 (en) * 2004-09-21 2008-01-29 Molecular Imprints, Inc. Method of forming a recessed structure employing a reverse tone process
US7186656B2 (en) * 2004-05-21 2007-03-06 Molecular Imprints, Inc. Method of forming a recessed structure employing a reverse tone process
US7122079B2 (en) * 2004-02-27 2006-10-17 Molecular Imprints, Inc. Composition for an etching mask comprising a silicon-containing material
US7179396B2 (en) * 2003-03-25 2007-02-20 Molecular Imprints, Inc. Positive tone bi-layer imprint lithography method
US7396475B2 (en) * 2003-04-25 2008-07-08 Molecular Imprints, Inc. Method of forming stepped structures employing imprint lithography
US20050160934A1 (en) * 2004-01-23 2005-07-28 Molecular Imprints, Inc. Materials and methods for imprint lithography
US7157036B2 (en) * 2003-06-17 2007-01-02 Molecular Imprints, Inc Method to reduce adhesion between a conformable region and a pattern of a mold
US7136150B2 (en) * 2003-09-25 2006-11-14 Molecular Imprints, Inc. Imprint lithography template having opaque alignment marks
US7090716B2 (en) * 2003-10-02 2006-08-15 Molecular Imprints, Inc. Single phase fluid imprint lithography method
US8211214B2 (en) * 2003-10-02 2012-07-03 Molecular Imprints, Inc. Single phase fluid imprint lithography method
US8076386B2 (en) * 2004-02-23 2011-12-13 Molecular Imprints, Inc. Materials for imprint lithography
US7906180B2 (en) 2004-02-27 2011-03-15 Molecular Imprints, Inc. Composition for an etching mask comprising a silicon-containing material
US20050275311A1 (en) * 2004-06-01 2005-12-15 Molecular Imprints, Inc. Compliant device for nano-scale manufacturing
US20050276919A1 (en) * 2004-06-01 2005-12-15 Molecular Imprints, Inc. Method for dispensing a fluid on a substrate
US7547504B2 (en) * 2004-09-21 2009-06-16 Molecular Imprints, Inc. Pattern reversal employing thick residual layers
US7241395B2 (en) * 2004-09-21 2007-07-10 Molecular Imprints, Inc. Reverse tone patterning on surfaces having planarity perturbations
US7041604B2 (en) * 2004-09-21 2006-05-09 Molecular Imprints, Inc. Method of patterning surfaces while providing greater control of recess anisotropy
US7205244B2 (en) * 2004-09-21 2007-04-17 Molecular Imprints Patterning substrates employing multi-film layers defining etch-differential interfaces
US7252777B2 (en) * 2004-09-21 2007-08-07 Molecular Imprints, Inc. Method of forming an in-situ recessed structure
US7357876B2 (en) * 2004-12-01 2008-04-15 Molecular Imprints, Inc. Eliminating printability of sub-resolution defects in imprint lithography
US20060145398A1 (en) * 2004-12-30 2006-07-06 Board Of Regents, The University Of Texas System Release layer comprising diamond-like carbon (DLC) or doped DLC with tunable composition for imprint lithography templates and contact masks
KR100674932B1 (ko) * 2005-01-03 2007-01-26 삼성전자주식회사 Pag및 tag를 포함하는 화학증폭형 포토레지스트 조성물을 이용한 반도체 소자의 미세 패턴 형성 방법
US7256131B2 (en) * 2005-07-19 2007-08-14 Molecular Imprints, Inc. Method of controlling the critical dimension of structures formed on a substrate
US7488771B2 (en) * 2005-09-02 2009-02-10 International Business Machines Corporation Stabilization of vinyl ether materials
US7419611B2 (en) * 2005-09-02 2008-09-02 International Business Machines Corporation Processes and materials for step and flash imprint lithography
US20070077763A1 (en) * 2005-09-30 2007-04-05 Molecular Imprints, Inc. Deposition technique to planarize a multi-layer structure
KR100955570B1 (ko) * 2006-09-18 2010-04-30 주식회사 엘지화학 저온 경화형 보호막 형성용 조성물, 이로부터 제조되는보호막, 및 이를 포함하는 기재
US8586269B2 (en) * 2007-03-22 2013-11-19 Globalfoundries Inc. Method for forming a high resolution resist pattern on a semiconductor wafer
JP5898985B2 (ja) 2011-05-11 2016-04-06 東京応化工業株式会社 レジストパターン形成方法
KR101936435B1 (ko) 2011-09-22 2019-01-08 도오꾜오까고오교 가부시끼가이샤 레지스트 조성물, 레지스트 패턴 형성 방법
US9405200B2 (en) 2011-09-22 2016-08-02 Toyko Ohka Kogyo Co., Ltd. Resist composition and method of forming resist pattern
JP5933364B2 (ja) * 2011-11-09 2016-06-08 東京応化工業株式会社 レジスト組成物及びレジストパターン形成方法
JP5871577B2 (ja) * 2011-11-16 2016-03-01 東京応化工業株式会社 レジストパターン形成方法
JP5871591B2 (ja) * 2011-11-30 2016-03-01 東京応化工業株式会社 レジスト組成物及びレジストパターン形成方法
US11784046B2 (en) * 2020-03-30 2023-10-10 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing a semiconductor device
US11703764B2 (en) * 2020-09-25 2023-07-18 Khalifa University of Science and Technology Fabrication of high-aspect ratio nanostructures by localized nanospalling effect

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0395917A2 (de) * 1989-04-24 1990-11-07 Siemens Aktiengesellschaft Photostrukturierungsverfahren
EP0425142A2 (de) * 1989-10-27 1991-05-02 Rohm And Haas Company Positiv arbeitender Photolack und Verfahren zu dessen Herstellung
US5234793A (en) * 1989-04-24 1993-08-10 Siemens Aktiengesellschaft Method for dimensionally accurate structure transfer in bilayer technique wherein a treating step with a bulging agent is employed after development
DE4226464A1 (de) * 1992-08-10 1994-02-17 Siemens Ag Positivresist
JPH07261393A (ja) * 1994-03-25 1995-10-13 Toshiba Corp ネガ型レジスト組成物
EP0919867A2 (de) * 1997-11-28 1999-06-02 Siemens Aktiengesellschaft Chemisch verstärkter Resist für die Elektronenstrahllithographie

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996008750A1 (de) * 1994-09-12 1996-03-21 Siemens Aktiengesellschaft Photolithographische strukturerzeugung
EP0874281B1 (de) * 1997-04-23 2002-12-04 Infineon Technologies AG Chemisch verstärkter Resist

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0395917A2 (de) * 1989-04-24 1990-11-07 Siemens Aktiengesellschaft Photostrukturierungsverfahren
US5234793A (en) * 1989-04-24 1993-08-10 Siemens Aktiengesellschaft Method for dimensionally accurate structure transfer in bilayer technique wherein a treating step with a bulging agent is employed after development
EP0425142A2 (de) * 1989-10-27 1991-05-02 Rohm And Haas Company Positiv arbeitender Photolack und Verfahren zu dessen Herstellung
DE4226464A1 (de) * 1992-08-10 1994-02-17 Siemens Ag Positivresist
JPH07261393A (ja) * 1994-03-25 1995-10-13 Toshiba Corp ネガ型レジスト組成物
EP0919867A2 (de) * 1997-11-28 1999-06-02 Siemens Aktiengesellschaft Chemisch verstärkter Resist für die Elektronenstrahllithographie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 02 29 February 1996 (1996-02-29) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6946236B2 (en) 2001-06-29 2005-09-20 Infineon Technologies Ag Negative resist process with simultaneous development and aromatization of resist structures
US6998215B2 (en) 2001-06-29 2006-02-14 Infineon Technologies Ag Negative resist process with simultaneous development and chemical consolidation of resist structures
US6686131B2 (en) 2001-09-28 2004-02-03 Infineon Technologies Ag Method of producing biocompatible structures and biocompatible microchip
EP1380895A1 (de) * 2002-07-09 2004-01-14 Fujitsu Limited Chemisch verstärktes Resistmaterial und Musterherstellungsverfahren unter dessen Verwendung
US6844135B2 (en) 2002-07-09 2005-01-18 Fujitsu Limited Chemically amplified resist material and patterning method using same

Also Published As

Publication number Publication date
DE19958966A1 (de) 2001-06-13
EP1247141A1 (de) 2002-10-09
KR100573672B1 (ko) 2006-04-25
US20030008240A1 (en) 2003-01-09
KR20030023603A (ko) 2003-03-19
TW554247B (en) 2003-09-21
US6703190B2 (en) 2004-03-09

Similar Documents

Publication Publication Date Title
WO2001042860A1 (de) Erzeugung von resiststrukturen
DE10203838B4 (de) Fluorhaltiger Fotoresist mit Reaktionsankern für eine chemische Nachverstärkung und verbesserten Copolymerisationseigenschaften
EP0919867B1 (de) Chemisch verstärkter Resist für die Elektronenstrahllithographie
DE60129024T2 (de) Zur bilderzeugung mit tiefer uv-strahlung geeignete photoresistzusammensetzung und diese verwendendes bilderzeugungsverfahren
EP0492253B1 (de) Photostrukturierungsverfahren
DE3750937T2 (de) Lithographische Methode unter Benutzung hochempfindlicher, wärmebeständiger Photolacke, die ein Netz von Wasserstoffbrücken bilden.
DE69131150T2 (de) Resist-Materialien
EP0957399A2 (de) Strahlungsempfindliches Gemisch und dessen Verwendung
DE10120673B4 (de) Verfahren zur Strukturierung einer Photolackschicht
EP0874281B1 (de) Chemisch verstärkter Resist
EP0955562A1 (de) Chemisch verstärkter Resist
EP0737897A1 (de) Nasschemisch entwickelbares, ätzstabiler Photoresist für UV-Strahlung mit einer Wellenlänge unter 200 nm
DE10208448A1 (de) Lithografieverfahren zur Verringerung des lateralen Chromstrukturverlustes bei der Fotomaskenherstellung unter Verwendung chemisch verstärkter Resists
DE10131667B4 (de) Negativ Resistprozess mit simultaner Entwicklung und Silylierung
DE10137100B4 (de) Transparenzverbesserung von Resist-Copolymeren für die 157 nm-Fotolithografie durch Einsatz von fluorierten Zimtsäurederivaten
DE10054121B4 (de) Verfahren zur Strukturierung einer Photolackschicht
EP0708934B1 (de) Strahlungsempfindliche lackzusammensetzung
DE10208754B4 (de) Polymermaterial mit niedriger Glastemperatur für die Anwendung in chemisch verstärkten Fotoresists für die Halbleiterfertigung
WO2001042859A1 (de) Erzeugung von resiststrukturen
DE10137099A1 (de) Transparenzverbesserung von Resist-Copolymeren durch Fluorierung der fotochemisch spaltbaren Abgangsgruppen für die 157 nm-Fotolithografie
DE10243742B4 (de) Verfahren zur Strukturierung von Halbleitersubstraten unter Verwendung eines Fotoresists
DE10203839B4 (de) Resist für die Fotolithografie mit reaktiven Gruppen für eine nachträgliche Modifikation der Resiststrukturen
DE112010003408B4 (de) Chemisch verstärkte Fotolack-Zusammensetzung und Verfahren zu ihrer Verwendung
DE10142600B4 (de) Siliziumhaltiger Resist für die Fotolithografie bei kurzen Belichtungswellenlängen
DE10131670A1 (de) Fotoresists mit Reaktionsankern für eine chemische Nachverstärkung von Resiststrukturen für Belichtungen bei 157 nm

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000993343

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020027007210

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10164550

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000993343

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027007210

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: JP

WWR Wipo information: refused in national office

Ref document number: 1020027007210

Country of ref document: KR