WO2001042239A1 - Procede de preparation d'un compose pyridinemethanol - Google Patents

Procede de preparation d'un compose pyridinemethanol Download PDF

Info

Publication number
WO2001042239A1
WO2001042239A1 PCT/JP2000/005384 JP0005384W WO0142239A1 WO 2001042239 A1 WO2001042239 A1 WO 2001042239A1 JP 0005384 W JP0005384 W JP 0005384W WO 0142239 A1 WO0142239 A1 WO 0142239A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyridine
solution
formula
weight
compound
Prior art date
Application number
PCT/JP2000/005384
Other languages
English (en)
French (fr)
Inventor
Eiichi Iishi
Kanami Yoshikawa
Original Assignee
Sumika Fine Chemicals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18431365&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001042239(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumika Fine Chemicals Co., Ltd. filed Critical Sumika Fine Chemicals Co., Ltd.
Priority to AU64742/00A priority Critical patent/AU6474200A/en
Priority to DE60006857T priority patent/DE60006857T3/de
Priority to CA002394439A priority patent/CA2394439C/en
Priority to AT00962909T priority patent/ATE255103T1/de
Priority to EP00962909A priority patent/EP1238977B2/en
Priority to DK00962909.8T priority patent/DK1238977T4/da
Priority to ES00962909T priority patent/ES2209985T5/es
Priority to IL15012000A priority patent/IL150120A0/xx
Priority to AU74472/00A priority patent/AU771484B2/en
Priority to PCT/JP2000/006688 priority patent/WO2001042240A1/ja
Priority to JP2001543539A priority patent/JP3930736B2/ja
Priority to PT00962909T priority patent/PT1238977E/pt
Priority to US09/706,803 priority patent/US6376668B1/en
Publication of WO2001042239A1 publication Critical patent/WO2001042239A1/ja
Priority to US09/981,919 priority patent/US6437120B1/en
Priority to IL150120A priority patent/IL150120A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants

Definitions

  • the present invention relates to a method for producing a pyridinemethanol compound. More specifically, a method for easily and industrially producing a pyridinemethanol compound, which is an important intermediate of milpyzapine, which is useful as an anti-drinking agent, and a method for producing milpyzapine using the pyridinemethanol compound About.
  • Conventional technology is a method for easily and industrially producing a pyridinemethanol compound, which is an important intermediate of milpyzapine, which is useful as an anti-drinking agent, and a method for producing milpyzapine using the pyridinemethanol compound About.
  • pyridine-potassium ruponic acid is obtained by dissolving a pyridine-potassium liponitrile compound in ethanol, hydrolyzing it under reflux with potassium hydroxide for about 24 hours, and then adding acid to release it. Has been obtained by.
  • the present invention has been made in view of the above prior art, and has as its object to provide a method capable of economically and efficiently producing a pyridinemethanol compound.
  • Another object of the present invention is to provide a method capable of efficiently producing mirtazapine from the pyridinemethanol compound on an industrial scale and having high purity. Disclosure of the invention According to the present invention,
  • FIG. 1 is a photomicrograph of 2- (4-methyl-3-phenylbiperazine-11-yl) pyridine-3-methanol obtained in Example 4.
  • FIG. 2 is a micrograph of 2- (4-methyl-3-phenylpyperazine-1-yl) pyridine-13-methanol obtained in Comparative Example 1.
  • the pyridine carboxylic acid potassium salt represented by the formula (III) Using a pyridinecarbonitrile compound or a salt thereof represented by the formula (1) as a starting material, and easily reacting the pyridinecarbonitrile compound or a salt thereof with a hydroxylating sphere in a solvent. Can be. As described above, one of the major features of the present invention is that the pyridinecarbonyl compound or a salt thereof is reacted with the hydroxyl group in a toluene solution.
  • reaction time was about 24 hours when ethanol was used, but when both compounds were reacted in butanol, the reaction time was surprisingly reduced by about 15 hours or more. It has a particularly remarkable effect.
  • butanol enables the pyridine carbonyl compound or its salt and the pyridin carboxylic acid salt produced by the reaction of the hydroxide salt to be easily and efficiently converted from the reaction solution. An extremely remarkable effect of being able to extract well is achieved.
  • the pyridinecarbonitrile compound is specifically 2- (4-methyl-3-phenylbiperazine-111) pyridine-13-carbonitrile.
  • Pyridine power Salts of lupotonitrile compounds include, for example, oxalates, hydrochlorides, methanesulfonates of 2- (4-methyl-3-phenylphenazine-1-yl) pyridine-3-carbonitrile No.
  • the solvent examples include 1-butanol, isobutanol, sec-butanol, and a mixed solvent thereof. Of these butanols, 1-butanol is preferred.
  • the amount of butanol is not particularly limited, but usually from 300 to 8 parts by weight based on 100 parts by weight of the pyridinecarbonitrile compound or its salt from the viewpoint of shortening the reaction time and improving the volumetric efficiency. It is preferably about 100 parts by weight, especially about 400 to 600 parts by weight.
  • the form of potassium hydroxide usually includes flakes, granules and the like. Among these, flakes are preferred from the viewpoint of solubility.
  • the amount of potassium hydroxide is usually preferably 7 to 14 mol, more preferably 8 to 12 mol, per 1 mol of the pyridinecarbonitrile compound.
  • a salt of a pyridine carbonitrile compound such a salt is used. Since potassium hydroxide is consumed during the neutralization, it is preferable to further add the amount required for the neutralization.
  • the temperature of the reaction between the pyridinecarbonitrile compound or a salt thereof and the hydroxylating rim is usually from 120 to 144 ° C, preferably from 120 to 140 ° C, from the viewpoint of shortening the reaction time. More preferably, the temperature is 130 to 140 ° C.
  • the temperature of the reaction between the pyridine carbonitrile compound or its salt and the hydration power is determined by the boiling point of the potassium hydroxide used by the potassium hydroxide (for example, the boiling point of 1 Even at a temperature of about 118 ° C or higher, the reaction between the two can be carried out efficiently because bushing does not boil at normal pressure.
  • the reaction is preferably performed in an atmosphere of an inert gas such as nitrogen gas or argon gas, from the viewpoint of preventing the resulting potassium pyridinecarboxylate represented by the formula (I) from being colored.
  • an inert gas such as nitrogen gas or argon gas
  • the time required for the reaction of the pyridine carbonitrile compound or its salt with the hydroxyl group can not be determined unconditionally because it differs depending on the reaction temperature of both, but it is usually 5 to 10 hours. It is about.
  • HPLC high-performance liquid chromatography
  • potassium pyridinecarboxylate represented by the formula (I) is, specifically, 2- (4-methyl-13-phenylbiperazine-11-yl) pyridine-13-force rubonic acid It is a salt of potassium.
  • the amount of water used for liquid separation is not particularly limited, but from the viewpoint of improving liquid separation properties and improving the volumetric efficiency, usually 100 parts by weight of a pyridinecarbonitrile compound or a salt thereof is used. On the other hand, it is preferably about 400 to 600 parts by weight.
  • the temperature is preferably 30 to 60 ° C.
  • the aqueous layer after the separation was further extracted with butanol, and the pyridinecarboxylic acid potassium salt in the aqueous layer was transferred to the butanol layer and collected. can do.
  • the distillation of bushnole and water can be carried out under reduced pressure.
  • the pressure at the time of distillation is preferably 1 to 20 kPa from the viewpoint of improving the distillation rate.
  • the temperature at which butanol and water are distilled off is usually preferably 30 to 80 ° C, and more preferably 40 to 60 ° C, from the viewpoint of improving the distillation rate.
  • butanol and water to be distilled off there are no particular restrictions on the amount of butanol and water to be distilled off. However, from the viewpoint of sufficiently distilling off water, usually 400 to 100 parts by weight of the pyridinecarbonitrile compound or its salt is used. 900 parts by weight, preferably 600 to 900 parts by weight o
  • the mixed solution is mixed with a hydrocarbon, and the resulting mixed solution is heated to remove the toluene and water. It is preferable to perform azeotropic distillation.
  • hydrocarbon examples include toluene, xylene, and benzene, among which xylene is preferable.
  • the amount of hydrocarbons varies depending on the amounts of butanol and water contained in the mixed solution. From the viewpoint of efficient azeotropic distillation, pyridine carbonitrile compound or its salt is usually used. The amount is preferably from 100 to 600 parts by weight, more preferably from 200 to 300 parts by weight, based on parts by weight.
  • the temperature for azeotropic distillation is usually from 110 to 130 ° C, preferably from 120 to 130 ° C, from the viewpoint of efficiently performing azeotropic distillation. Desirably.
  • the azeotropic distillation means that the water content in the mixed solution is 1% by weight or less, preferably 0.5% by weight or less, as measured by the Karl-Fischer method from the viewpoint of allowing the reduction reaction in the next step to proceed efficiently. It is preferable to carry out until.
  • the solution after azeotropic distillation contains hydrocarbon and ethanol, it is preferable to distill these solvents.
  • Such distillation can be carried out by heating the reaction solution.
  • the heating temperature is usually from 130 to 140 ° C, preferably from 135 to 140 ° C, from the viewpoint of sufficiently distilling off the hydrocarbon solvent. It is desirable.
  • the amount of hydrocarbons to be distilled off is usually 65 to 90% by weight, preferably about 80 to 90% by weight of the amount of hydrocarbons used, from the viewpoint of sufficiently distilling off toluene. preferable.
  • the obtained potassium pyridinecarboxylate is preferably subjected to a one-pot reaction in which it is reduced as a concentrated solution that may be isolated. Reduction of a pyridine carboxylic acid salt with a metal hydride gives the formula ( ⁇ ):
  • the present invention has one major feature in that pyridine carboxylic acid rhodium salt is reduced with a metal hydride.
  • Pyridine carboxylic acid potassium salt has an excellent property that it is easily dissolved in an ether-based solvent such as tetrahydrofuran (hereinafter referred to as THF) used in the reduction. Therefore, the amount of metal hydride used in the reduction can be reduced, and pyridine carboxylic acid can be Can be easily reduced with hydrides.
  • the solution obtained by distilling off the hydrocarbon obtained in the above can be used as it is.
  • a pyridinemethanol compound can be obtained directly and efficiently without isolating potassium pyridinecarboxylate.
  • metal hydrides include lithium aluminum hydride, borane, bis hydride
  • organic solvents include, for example, THF, getyl ether and the like.
  • THF can be suitably used from the viewpoint of easy handling.
  • the solution is previously diluted with the organic solvent in order to efficiently reduce the pyrimidinecarboxylic acid potassium salt contained in the solution.
  • the organic solvents THF can be suitably used.
  • the total amount of the organic solvent is usually about 500 to 1200 parts by weight, preferably 70 to 100 parts by weight, based on 100 parts by weight of potassium pyridinecarbonate. It is desirably 0 to 900 parts by weight.
  • the amount of metal hydride is usually pyridine from the viewpoint of accelerating the reduction reaction. It is preferably from 2.5 to 5 mol, more preferably from 3 to 4 mol, per mol of the potassium carboxylate.
  • the atmosphere for reducing the pyridine carboxylic acid potassium salt is preferably an inert gas.
  • an inert gas include nitrogen gas and argon gas, and among them, nitrogen gas is preferable.
  • the reduction of potassium pyridinecarboxylate can be easily performed, for example, by dropping a diluent obtained by diluting a solution obtained by distilling the hydrocarbon with an organic solvent into a solution obtained by dissolving or suspending a metal hydride in an organic solvent. Can do it.
  • the temperature of the solution in which the metal hydride is dissolved or suspended in the organic solvent and the temperature of the diluent are both 1 ° C to 50 ° C, especially from 15 ° C to 35 ° C, from the viewpoint of promoting the reduction reaction efficiently. C is preferred.
  • the time required for the reduction reaction of the pyridine carboxylic acid potassium salt cannot be determined unconditionally because it varies depending on the amount of the pyridine carboxylic acid potassium salt, the reaction temperature, and the like, but it is usually about 1 to 6 hours. is there.
  • the amount of water is preferably from 90 to 110 parts by weight, more preferably from 95 to 100 parts by weight, based on 100 parts by weight of the metal hydride. Since the reaction solution generates heat when the water is dropped, it is preferable to drop the water so that the temperature of the reaction solution is 0 to 20 ° C.
  • an alkaline aqueous solution is dropped into the reaction solution.
  • alkali used in the alkaline aqueous solution include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide. Of these, sodium hydroxide is preferred.
  • the concentration of sodium hydroxide is usually preferably about 20 to 25% by weight.
  • the amount of sodium hydroxide is usually 0.1 to 0.25 mol, preferably 1 mol, per mol of metal hydride. It is desirably 0.15 to 0.2 mol.
  • the temperature of the reaction solution is 0 to 30 ° (: preferably 0 to 15 ° C.).
  • the amount of water is preferably from 200 to 500 parts by weight, more preferably from 250 to 400 parts by weight, based on 100 parts by weight of the metal hydride.
  • the temperature at which water is dropped is from 0 to 30, preferably from 0 to 2 (TC is desirable.
  • TC preferably from 0 to 2
  • the filterability of metal hydroxide generated by hydrolysis from metal hydride is improved.
  • the reaction solution is desirably aged at 15 to 30 ° C. for 30 minutes to 4 hours, preferably at 20 to 25 hours for 1 to 2 hours.
  • the reaction solution is filtered, and the metal hydroxide is collected by filtration.
  • the liquid temperature of the reaction solution at the time of filtration is preferably 15 to 25 ° C.
  • the metal hydroxide can be washed with a solvent such as THF.
  • a solvent such as THF.
  • the amount of the solvent is not particularly limited, but is usually 500 to 300 parts by weight, preferably 100 to 2000 parts by weight, per 100 parts by weight of the metal hydride. Desirably.
  • the distillation amount is preferably 60 to 90% by weight, preferably 65 to 80% by weight of the amount of THF used for dissolution and reduction of the potassium pyridinecarboxylate used.
  • the pyridinemethanol compound is crystallized. Crystallization is preferably performed by dropping the solution after removal of heptane by distillation.
  • the amount of heptane is usually not particularly limited as long as it can sufficiently crystallize the pyridine methanol compound, and is usually 50 to 100 parts by weight of potassium pyridine acid. It is desirably 300 parts by weight, preferably 90 to 200 parts by weight.
  • Drop heptane The dropping temperature at this time is desirably 40 to 90 ° C., preferably 50 to 70 ° C. The dropping time depends on the charged amount, but is usually 1 to 2 hours.
  • a seed crystal may be added.
  • the seed crystal may be added either at the start of the dropping of heptane or during the dropping, but preferably at the start of the dropping.
  • the amount of the seed crystal to be added is not particularly limited, but is usually preferably about 0.5 to 5% by weight of potassium pyridine acid.
  • the temperature at which the seed crystal is added may be about 50 to 65 ° C.
  • the cooling aging is preferably performed at 0 to 5 ° C. for 30 minutes to 2 hours.
  • the slurry solution is filtered and washed.
  • the filtration temperature may be 0 to 5 ° C. Washing can be performed using a mixed solvent in which toluene and heptane are mixed in equal volumes and cooled to 0 to 5 ° C.
  • the amount of the mixed solvent is not particularly limited, it is usually preferably 100 to 150 parts by volume with respect to 100 parts by weight of potassium pyridinecarboxylate.
  • the pyridinemethanol compound is preferably dried at 50 to 60 under reduced pressure of 0.6 to 14 kPa.
  • the pyridinemethanol compound has a rod-like crystal form, and has an average particle diameter of 75 to 90 / zm, which is a preferable crystal in terms of filtration, drying, and the like. It is.
  • mirzapine can be produced using a pyridinemethanol compound. More specifically, mirtazapine can be produced by adding a pyridinemethanol compound to sulfuric acid.
  • the atmosphere in which the pyridine methanol compound is added to sulfuric acid is preferably an inert atmosphere such as nitrogen gas or argon gas.
  • sulfuric acid concentrated sulfuric acid having a concentration of 97 to 99% can be suitably used.
  • the temperature of sulfuric acid when adding the pyridinemethanol compound is controlled by heat generation and tar.
  • the temperature is preferably 0 to 40 ° C., and more preferably 5 to 35 ° C., from the viewpoint of suppressing the generation of impurities.
  • a pyridine methanol compound When a pyridine methanol compound is added to sulfuric acid, it is preferable to divide the pyridine methanol compound and add it to sulfuric acid from the viewpoint of efficiently proceeding the reaction. For example, it is preferable to add a pyridinemethanol compound to sulfuric acid in 5 to 20 portions.
  • the amount of sulfuric acid is usually from 300 to 400 parts by weight, preferably from 350 to 400 parts by weight, based on 100 parts by weight of the pyridinemethanol compound.
  • the amount of water is preferably about 100 to 200 parts by weight based on 100 parts by weight of the reaction solution.
  • the liquid temperature of the reaction solution when adding water is preferably about 0 to 30 ° C. from the viewpoint of suppressing heat generation and the generation of impurities (tar).
  • an alkaline aqueous solution is preferably added to the reaction solution for neutralization.
  • the alkali include sodium hydroxide, potassium hydroxide, sodium carbonate and the like. Of these, sodium hydroxide is preferred.
  • the concentration of the alkali hydroxide in the aqueous alkali solution is preferably from 20 to 25% by weight from the viewpoint of operability.
  • the amount of the aqueous alkali hydroxide solution is desirably 50 to 250 parts by weight, preferably 80 to 110 parts by weight, based on 100 parts by weight of the reaction solution.
  • the pH of the solution is preferably adjusted to 1 to 3, preferably 1 to 2, so as not to precipitate crystals.
  • the pH can be adjusted by, for example, adding sodium hydroxide or the like to the solution.
  • the solution is filtered if necessary, and toluene and heptane can be added to the filtrate to crystallize mirtazapine.
  • the amount of toluene may be 100 to 400 parts by weight, preferably 200 to 300 parts by weight, based on 100 parts by weight of the pyridinemethanol compound. desirable.
  • the alkali include an aqueous solution of sodium hydroxide. Next, this solution is preferably heated to a temperature of 75 to 80 ° C. in order to dissolve the crystals and improve the liquid separating property.
  • Heptane is added to the organic layer.
  • the temperature at the time of adding heptane is preferably from 40 to 70 ° C, more preferably from 50 to 60 ° C, from the viewpoint of improving the filterability.
  • the amount of heptane is desirably 50 to 200 parts by weight, preferably 70 to 100 parts by weight, based on 100 parts by weight of toluene, from the viewpoint of improving the yield.
  • heptane it is preferable to drop heptane. Such dropping is, for example, preferably for 1 to 4 hours, preferably for 1 to 2 hours.
  • the obtained solution is preferably gradually cooled to 0 to 5 in 1 to 5 hours, preferably 2 to 3 hours in order to improve the yield.
  • mill zapine can be crystallized, and the crystals may be washed with a mixed solvent obtained by mixing toluene and heptane and cooling to 0 to 5 ° C, for example.
  • a mixed solvent obtained by mixing toluene and heptane and cooling to 0 to 5 ° C, for example.
  • the ratio of toluene to heptane is heptane to 100 parts by weight of toluene.
  • the amount of the tan may be about 70 to 100 parts by weight.
  • the crystals may be dried under reduced pressure at a temperature of about 50 to 60 ° C., if necessary.
  • Example 1 the present invention will be described in more detail based on examples, but the present invention is not limited to only these examples.
  • Example 1
  • the fact that the obtained compound is 2- (4-methyl-3-phenylbiperazine-11-yl) pyridine-3-potassium rhodium salt indicates that the retention time of the obtained compound by HP LC and Infrared absorption spectrum (hereinafter referred to as IR) t, separately prepared 2- (4-methyl-3-phenylbiperazine-11-yl) pyridine-13-force This could be confirmed by being identical to those of the salt.
  • the NMR and IR of the obtained 2- (4-methyl-3-phenylbiperazine-11-yl) pyridine-13-carboxylic acid potassium salt are as follows.
  • the 2- (4-monomethyl-3-phenylbiperazine-11-yl) pyridine-13-carboxylate potassium salt obtained in Example 1 was converted to the free acid with hydrochloric acid, and the 2- (4-methyl-3 —Phenylbiperazine-11-yl) Pyridine-1-3-carboxylic acid was obtained.
  • the NMR and IR of the obtained 2- (4-methyl-13-phenylbiperazine-11-yl) pyridine-13-carboxylic acid are as follows.
  • Example 2 To the reaction solution obtained in Example 1 was added 89 g of THF to obtain a THF solution.
  • a solution of lithium aluminum hydride (12.5 g) dissolved in THF (234 g) In a solution of lithium aluminum hydride (12.5 g) dissolved in THF (234 g)
  • the THF solution was added dropwise at 20 to 30 ° C over 30 minutes, and the mixture was stirred at the same temperature for 3 hours and 30 minutes.
  • the precipitated crystals were filtered, washed with THF (45 g), and THF (375 g) was distilled off under normal pressure.
  • the aqueous layer was added with 823.5 kg of 1-butyl ether, stirred at 40 to 47 ° C., allowed to stand, and separated.
  • the organic layers were combined and concentrated under reduced pressure until 95% or more of the used 1-butyl alcohol was distilled off.
  • xylene 4 36.9 kg azeotropically dehydrate at an internal temperature of 120 to 122 ° C until the water content becomes 1% or less, and further heat it at normal pressure to distill fraction containing xylene 3 28 kg were distilled off.
  • THF 43.3 kg was added to obtain a THF solution of 2- (4-methyl-3-phenylbiperazine-11-yl) pyridine-13-carboxylic acid potassium salt.
  • the water content was 179.5 ppm.
  • THF 355 L is distilled off at an internal temperature of up to 110 ° C, and at 50 to 65 ° C, 2- (4-methyl-3-phenylbiperazine) is recovered.
  • 50 g of seed crystals of gin-3-methanol were added, and the mixture was stirred for 30 minutes.
  • Heptane 2 15 kg was added dropwise at 50 to 65 ° C, cooled to 0 to 5 ° C, and aged for 1 hour.
  • FIG. 2 shows a microphotograph of the obtained 2- (4-methyl-13-phenylbiperazine-11-yl) pyridine-13-methanol.
  • the extract was extracted with 20 mL of the form of black mouth, and the organic layer was dried over anhydrous magnesium sulfate and concentrated with an evaporator.
  • the oily residue was solidified by adding ether and stirring.
  • the solid was filtered and dried, and the solid was recrystallized from petroleum ether (40 to 60).
  • the crystal was poor in crystallinity, and was pale yellow crystals in a partially solidified oil state. Filtration and drying gave 20.1 g of pale yellow mirtazapine.
  • the yield was 76.6% and the HPLC purity was 98.3%.
  • a pyridinemethanol compound represented by the formula (II) can be produced economically and efficiently from a rhodium salt of a pyridinecarboxylic acid represented by the formula (I) in a short time.
  • a pyridinemethanol compound can be efficiently produced in a short time from a pyridinecarbonitrile compound represented by the formula (I) or a salt thereof.
  • mirtazapine can be suitably produced from a pyridinemethanol compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pain & Pain Management (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Psychiatry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pyridine Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

明 細 書 ピリジンメタノ一ル化合物の製造方法
技術分野
本発明は、 ピリジンメタノール化合物の製造方法に関する。 さらに詳しくは、 抗戀剤として有用なミル夕ザピンの重要な中間体であるピリジンメタノール化合 物を簡便に工業的に製造しうる方法、 および該ピリジンメ夕ノール化合物を用い たミル夕ザピンの製造方法に関する。 従来技術
従来、 式 (I I ) :
Figure imgf000003_0001
で表わされるピリジンメタノール化合物の製造方法としては、 式 (IV)
(IV)
Figure imgf000003_0002
で表わされるピリジンカルボン酸を水素化リチウムアルミニウムを使用して還元 する方法が提案されている (米国特許第 4 , 0 6 2 , 8 4 8号明細書) 。
しかしながら、 この方法には、 高価な試薬である水素化リチウムアルミニウム をピリジンカルボン酸に対して 8倍当量程度と多量に使用する必要があるため、 経済的ではないという欠点がある。
また、 この方法では、 ピリジン力ルポン酸は、 ピリジン力ルポ二トリル化合物 をエタノールに溶解させ、 水酸化カリウムを用いて 2 4時間程度還流下で加水分 解した後、 酸を加えて遊離することによって得られている。
しかし、 この方法には、 加水分解に長時間を要し、 しかも生成したピリジン力 ルボン酸を遊離する必要があるため、 その生産効率がよくないという欠点がある o
また、 従来、 ミルタザピンを製造する方法としては、 米国特許第 4 , 0 6 2 , 8 4 8号明細書に記載の方法が知られている。
しかしながら、 かかる方法には、 濃硫酸をピリジンメタノール化合物に滴下す るため、 攪拌が困難となり、 反応のコントロールができず、 またアンモニア水で アルカリ性とするため、 大量のアンモニア水を必要とするという欠点がある。 ま た、 かかる方法には、 クロ口ホルムで反応生成物を抽出するため、 不純物まで抽 出され、 エーテルで結晶化する際に、 結晶化が阻害され、 純度の高いミルタザピ ンを得ることができないという欠点がある。
本発明は、 前記従来技術に鑑みてなされたものであり、 ピリジンメタノール化 合物を経済的に効率よく製造しうる方法を提供することを目的とする。
また、 本発明は、 前記ピリジンメタノール化合物からミルタザピンを工業的 規模で効率よく、 高純度を有するミル夕ザピンを製造しうる方法を提供すること を目的とする。 発明の開示 本発明によれば、
( 1 ) 式 ( I) :
(I)
Figure imgf000005_0001
で表わされるピリジンカルボン酸力リウ厶塩を金属水素化物で還元することを特 徴とする式(II):
Figure imgf000005_0002
で表わされるピリ ル化合物の製造方法、 および
(2) 式(II):
Figure imgf000005_0003
で表わされるピリジンメタノ一ル化合物を硫酸中に添加することからなるミル夕 ザピンの製造方法 が提供される。 図面の簡単な説明
図 1は、 実施例 4で得られた 2— (4 ーメチルー 3—フエ二ルビペラジン一 1 一ィル) ピリジン— 3—メタノールの顕微鏡写真である。
図 2は、 比較例 1で得られた 2— ( 4—メチルー 3—フエ二ルビペラジン— 1 一ィル) ピリジン一 3—メタノールの顕微鏡写真である。 発明を実施するための最良の形態
式 ( I ) :
Figure imgf000006_0001
で表わされるピリジンカルボン酸力リゥム塩は、 式(I I I)
Figure imgf000006_0002
で表わされるピリジンカルボ二トリル化合物またはその塩を出発物質として使用 し、 ブ夕ノール中で該ピリジンカルボ二トリル化合物またはその塩と水酸化力リ ゥムとを反応させることによって容易に製造することができる。 このように、 ピリジンカルボニル化合物またはその塩と水酸化力リゥ厶とをブ 夕ノール中で反応させる点に、 本発明の 1つの大きな特徴がある。
従来、 エタノールを使用した場合には反応時間を 2 4時間程度要したのに対し 、 ブタノール中で両化合物を反応させたときには、 驚くべきことに、 その反応時 間を約 1 5時間以上も短縮することができるという、 格別顕著に優れた効果が奏 される。
さらに、 本発明においてはブ夕ノールが用いられていることにより、 ピリジン カルボニル化合物またはその塩と水酸化力リゥ厶との反応によって生成したピリ ジンカルボン酸力リウ厶塩を反応溶液から容易に効率よく抽出することができる という格別顕著に優れた効果が奏される。
ピリジンカルボ二トリル化合物は、 具体的には、 2 — ( 4—メチル— 3—フエ 二ルビペラジン一 1 一ィル) ピリジン一 3 —カルボ二トリルである。 ピリジン力 ルポ二トリル化合物の塩としては、 例えば、 2— (4ーメチルー 3 —フエ二ルビ ペラジン一 1 —ィル) ピリジン— 3 _カルボ二トリルの蓚酸塩、 塩酸塩、 メタン スルホン酸塩などが挙げられる。
ブ夕ノールとしては、 例えば、 1 ーブ夕ノール、 イソブ夕ノール、 s e c—ブ 夕ノール、 これらの混合溶媒などが挙げられる。 これらのブタノールのなかでは 1 ーブ夕ノールが好ましい。 ブ夕ノールの量は、 特に限定がないが、 反応時間短 縮および容積効率の向上の観点から、 通常、 ピリジンカルボ二トリル化合物また はその塩 1 0 0重量部に対して 3 0 0〜8 0 0重量部程度、 なかんづく 4 0 0〜 6 0 0重量部程度であることが好ましい。
水酸化カリウムの形態としては、 通常、 フレーク状、 粒状などが挙げられる。 これらの中では、 フレーク状が溶解性の観点から好ましい。
水酸化カリウムの量は、 反応時間短縮の観点から、 通常、 ピリジンカルボニト リル化合物 1モルに対して 7〜1 4モル、 なかんづく 8〜1 2モルであることが 好ましい。 ピリジンカルボ二トリル化合物の塩を使用する場合には、 かかる塩を 中和する際に水酸化力リウムが消費されるため、 その中和に要する量をさらに添 加することが好ましい。
ピリジンカルボ二トリル化合物またはその塩と水酸化力リゥムとの反応の温度 は、 反応時間短縮の観点から、 通常、 1 2 0〜 1 4 5 °C、 好ましくは 1 2 0〜 1 4 0 °C. より好ましくは 1 3 0〜 1 4 0 °Cであることが好ましい。 このように、 ピリジンカルボ二トリル化合物またはその塩と水酸化力リゥムとの反応の温度は 、 水酸化カリウムが使用されていることにより、 ブ夕ノールの沸点 (例えば、 1 ーブ夕ノールの沸点:約 1 1 8 °C) 以上の温度であっても常圧でブ夕ノールが沸 騰しないので、 両者の反応を効率よく行なうことができる。
反応は、 例えば、 窒素ガス、 アルゴンガスなどの不活性ガス雰囲気中で行なう ことが、 得られる式 ( I ) で表わされるピリジンカルボン酸カリウム塩の着色を 防ぐ観点から好ましい。
ピリジンカルボ二トリル化合物またはその塩と水酸化力リゥ厶との反応に要す る時間は、 両者の反応温度によつて異なるので一概には決定することができない が、 通常、 5〜 1 0時間程度である。
反応の終了は、 原料の消失を例えば高速液体クロマトグラフィー (以下、 H P L Cという) などで確認することができる。
かく して得られる式 ( I ) で表わされるピリジンカルボン酸カリウム塩は、 具 体的には、 2— ( 4 —メチル一 3 —フエ二ルビペラジン一 1 _ィル) ピリジン一 3一力ルボン酸力リゥ厶塩である。
次に、 反応溶液に水を添加して反応溶液を有機層と水層に分液することにより 、 該反応溶液中の水酸化力リゥムを水層に移して除去することができる。
分液に用いる水の量は、 特に限定がないが、 分液性を向上させる観点おょぴ容 積効率を向上させる観点から、 通常、 ピリジンカルボ二トリル化合物またはその 塩 1 0 0重量部に対して 4 0 0〜6 0 0重量部程度であることが好ましい。
分液する際の温度は、 アルカリが析出するのを防止し、 抽出効率を向上させる 観点から、 3 0〜6 0 °Cであることが好ましい。
分液後の水層をさらにブ夕ノールで抽出し、 ブ夕ノール層と水層に分液するこ とにより、 水層中のピリジンカルボン酸カリウム塩をブ夕ノール層に移して、 回 収することができる。
次に、 前記有機層とブタノール層とを合わせ、 得られた混合液からブ夕ノール および水を留去することにより、 該混合液を濃縮してもよレ、。
ブ夕ノールおよび水の留去は、 減圧下で行なうことができる。 留去する際の圧 力は、 通常、 留去速度を向上させる観点から、 1〜2 0 k P aであることが好ま しい。 また、 ブタノールおよび水を留去する際の温度は、 通常、 留去速度を向上 させる観点から、 3 0〜8 0 °C、 好ましくは 4 0〜6 0 °Cであることが望ましい o
ブ夕ノールおよび水の留去量は、 特に限定がないが、 通常、 水を充分に留去す る観点から、 ピリジンカルボ二トリル化合物またはその塩 1 0 0重量部に対して 4 0 0〜9 0 0重量部、 好ましくは 6 0 0〜9 0 0重量部であることが好ましい o
次に、 前記混合液中に残存している水分およびブタノールをさらに留去するた めに、 該混合液と炭化水素とを混合し、 得られた混合溶液を加熱し、 ブ夕ノール および水を共沸留去することが好ましい。
炭化水素としては、 例えば、 トルエン、 キシレン、 ベンゼンなどが挙げられ、 これらのなかではキシレンが好ましい。
炭化水素の量は、 混合溶液に含まれているブ夕ノールおよび水の量によって異 なる力 共沸留去を効率よく行なう観点から、 通常、 ピリジンカルボ二トリル化 合物またはその塩 1 0 0重量部に対して 1 0 0〜6 0 0重量部、 好ましくは 2 0 0〜3 0 0重量部であることが望ましい。
なお、 共沸留去の際の温度は、 通常、 共沸留去を効率よく行なう観点から、 内 温が 1 1 0〜 1 3 0 °C、 好ましくは 1 2 0〜1 3 0 °Cであることが望ましい。 共沸留去は、 次工程の還元反応を効率よく進行させる観点から、 カールフイ ツ シャ一法で測定したとき、 混合溶液における含水量が 1重量%以下、 好ましくは 、 0 . 5重量%以下となるまで行なうことが好ましい。
なお、 共沸留去後の溶液には、 炭化水素ゃブ夕ノールが含まれているので、 こ れらを留去することが好ましい。 かかる留去は、 該反応溶液を加熱することによ つて行なうことができる。 この場合、 加熱温度は、 通常、 炭化水素ゃブ夕ノール を充分に留去する観点から、 内温が 1 3 0〜 1 4 0 °C、 好ましくは 1 3 5〜 1 4 0 °Cであることが望ましい。
炭化水素の留去量は、 ブ夕ノールを充分に留去する観点から、 通常、 使用した 炭化水素量の 6 5〜 9 0重量%、 好ましくは 8 0〜 9 0重量%程度であることが 好ましい。
得られたピリジンカルボン酸カリウム塩は、 単離してもよい力^ 濃縮液のまま 還元する 1ポッ ト反応を行なうことが好ましい。 ピリジンカルボン酸力リゥム塩 を、 金属水素化物で還元することにより、 式 (Π ) :
Figure imgf000010_0001
で表わされるピリジンメタノール化合物を調製することができる。
本発明においては、 ピリジンカルボン酸力リゥ厶塩を金属水素化物で還元する 点に、 1つの大きな特徴がある。 ピリジンカルボン酸カリウム塩は、 還元の際に 使用されるテトラヒ ドロフラン (以下、 T H Fという) などのエーテル系溶媒に 容易に溶解するという優れた性質を有する。 したがって、 還元の際に使用される 金属水素化物の量を削減することができるとともに、 ピリジンカルボン酸を金属 水素化物で容易に還元することができる。
なお、 ピリジンカルボン酸カリウム塩を金属水素化物で還元する際には、 前記 で得られた炭化水素を留去した溶液をそのまま用いることができる。 かかる溶液 を用いた場合には、 ピリジンカルボン酸カリウム塩を単離することなく、 直接効 率よく ピリジンメタノール化合物を得ることができる。
また、 本発明においては、 従来のようにピリジンカルボン酸を水素化リチウム アルミニウムで還元するのではなく、 ピリジンカルボン酸力リウ厶塩を金属水素 化物で還元するという方法が採られている。 かかる方法を採用した場合には、 金 属水素化物の量を格段に低減させることができるという優れた効果が発現される 。 金属水素化物としては、 水素化リチウムアルミニウム、 ボラン、 水素化ビス
( 2—メ トキシエトキン) アルミ二ゥムナトリゥム、 ジィソブチルアルミニゥム ヒドリ ドなどが挙げられるが、 これらの中では水素化リチウムアルミニウムは、 好適に使用しうるものである。
金属水素化物でピリジンカルボン酸力リゥム塩を還元する際には、 該金属水素 化物を有機溶媒にあらかじめ溶解または懸濁した液を用いることができる。 かか る有機溶媒としては、 例えば、 T H F、 ジェチルエーテルなどが挙げられる。 こ れらの中では、 T H Fは取り扱いが容易である観点から、 好適に使用しうるもの である。
また、 前記炭化水素を留去した溶液を用いる場合、 該溶液に含まれているピリ ジンカルボン酸力リゥム塩の還元を効率よく行なうために、 該溶液をあらかじめ 前記有機溶媒で希釈しておく ことが好ましい。 前記有機溶媒の中では、 T H Fは 好適に使用しうるものである。
有機溶媒の総使用量は、 還元反応を促進させる観点から、 通常、 ピリジンカル ボン酸カリウム塩 1 0 0重量部に対して、 5 0 0〜 1 2 0 0重量部程度、 好まし くは 7 0 0〜9 0 0重量部であることが望ましい。
また、 金属水素化物の量は、 還元反応を促進させる観点から、 通常、 ピリジン カルボン酸カリウム塩 1モルに対して、 2 . 5〜5モル、 なかんづく 3〜4モル であることが好ましい。
ピリジンカルボン酸力リゥム塩を還元する際の雰囲気は、 不活性ガスであるこ とが好ましい。 かかる不活性ガスとしては、 例えば、 窒素ガス、 アルゴンガスな どが挙げられるが、 これらの中では窒素ガスが好ましい。
ピリジンカルボン酸カリウム塩の還元は、 例えば、 金属水素化物を有機溶媒に 溶解または懸濁した液に、 前記炭化水素を留去した溶液を有機溶媒で希釈した希 釈液を滴下することによって容易に行なうことができる。 このとき、 金属水素化 物を有機溶媒に溶解または懸濁した液および希釈液の液温はいずれも還元反応を 効率よく進行させる観点から 1 o〜5 0 °C、 なかんづく 1 5〜3 5 °Cであること が好ましい。
ピリジンカルボン酸力リウム塩の還元反応に要する時間は、 ピリジンカルボン 酸力リゥ厶塩の量、 反応温度などによって異なるので一概には決定することがで きないが、 通常、 1〜6時間程度である。
反応の終了は、 ピリジンカルボン酸力リウム塩の消失を例えば H P L Cなどで 確認することができる。
反応の終了後、 反応溶液には水を滴下することが好ましい。 水の量は、 金属水 素化物 1 0 0重量部に対して 9 0〜1 1 0重量部、 好ましくは 9 5〜 1 0 0重量 部であることが望ましい。 水の滴下の際には反応溶液が発熱するので、 反応溶液 の液温が 0〜2 0 °Cとなるようにして水の滴下を行なうことが好ましい。
次に、 この反応溶液にはアルカリ水溶液を滴下する。 アルカリ水溶液に用いら れるアルカリとしては、 水酸化ナトリウム、 水酸化カリウムなどのアルカリ金属 水酸化物が挙げられる。 これらの中では、 水酸化ナトリウムが好ましい。 アル力 リ水溶液として、 水酸化ナトリウム水溶液を用いる場合、 水酸化ナトリウムの濃 度は、 通常、 2 0〜2 5重量%程度であることが好ましい。 水酸化ナトリウムの 量は、 金属水素化物 1モルに対して、 通常、 0 . 1〜0 . 2 5モル、 好ましくは 0 . 1 5〜0 . 2モルであることが望ましい。
アル力リ水溶液の滴下の際、 反応溶液の液温は、 0〜 3 0 ° (:、 好ましくは 0〜 1 5 °Cであることが望ましい。
次に、 この反応溶液のスラリー性をよくするために、 これに水を添加すること が好ましい。 水の量は、 金属水素化物 1 0 0重量部に対して、 2 0 0〜5 0 0重 量部、 好ましくは 2 5 0〜4 0 0重量部であることが望ましい。 また、 水を滴下 する際の温度は、 0〜3 0て、 好ましくは 0〜2 (TCであることが望ましい。 金属水素化物から加水分解によつて生成した金属水酸化物の濾過性を改善する ために、 反応溶液を 1 5〜 3 0 °Cで 3 0分〜 4時間、 好ましくは 2 0〜 2 5てで 1〜 2時間熟成することが望ましい。
次に、 反応溶液を濾過し、 金属水酸化物を濾取する。 濾過の際の反応溶液の液 温は、 1 5〜2 5 °Cであることが好ましい。
なお、 濾取した金属水酸化物には、 目的化合物である式 (Π ) で表わされるピ リジンメタノール化合物が残留しているため、 該金属水酸化物を T H Fなどの溶 媒で洗浄することが好ましい。 溶媒の量は、 特に限定がないが、 通常、 金属水素 化物 1 0 0重量部に対して、 5 0 0〜 3 0 0 0重量部、 好ましくは 1 0 0 0〜 2 0 0 0重量部であることが望ましい。
次に、 常圧下で、 T H Fおよび水を、 内温が約 1 1 0 °Cに到達するまで濾過溶 液から留去する。 その留去量は、 使用したピリジンカルボン酸カリウム塩の溶解 および還元に使用した T H Fの量の 6 0〜9 0重量%、 好ましくは 6 5〜8 0重 量%であることが好ましい。
次に、 ピリジンメタノール化合物を結晶化させる。 結晶化は、 ヘプタンを留去 後の溶液に滴下して行なうことが好ましい。 ヘプタンの量は、 通常、 ピリジンメ 夕ノール化合物を十分に結晶化させることができる量であればよく、 特に限定が ないが、 通常、 ピリジン酸カリウム塩 1 0 0重量部に対して、 5 0〜3 0 0重量 部、 好ましくは 9 0〜2 0 0重量部であることが望ましい。 ヘプタンを滴下する 際の滴下温度は、 4 0〜9 O 'C、 好ましくは 5 0〜7 0 °Cであることが望ましい 。 滴下時間は、 仕込み量にもよるが、 通常、 1〜2時間である。
また、 結晶化の際には、 種晶を添加してもよい。 種晶の添加は、 ヘプタンの滴 下開始時であっても滴下中であってもよいが、 滴下開始時が好ましい。 種晶の添 加量は、 特に限定されないが、 通常、 ピリジン酸カリウム塩の 0. 5〜5重量% 程度であることが好ましい。 種晶を添加する際の温度は、 5 0〜6 5 °C程度であ ればよい。
ヘプ夕ンの滴下の終了後、 スラリ一溶液の冷却熟成を行なうことが好ましい。 冷却熟成は、 0〜5 °Cで 3 0分〜 2時間行なうことが好ましい。
その後、 スラリー溶液を濾過し、 洗浄する。 濾過温度は、 0〜5 °Cであればよ い。 洗浄は、 トルエンとヘプタンとを等容量で混合し、 0〜5 °Cに冷却した混合 溶媒を用いて行なうことができる。 混合溶媒の量は、 特に限定されないが、 通常 、 ピリジンカルボン酸カリウム塩 1 0 0重量部に対して、 1 0 0〜 1 5 0容量部 であることが好ましい。
ピリジンメタノール化合物は、 通常、 0. 6〜 1 4 k P aの減圧下、 5 0〜6 0で乾燥することが好ましい。
ピリジンメタノール化合物は、 図 1に示されるように、 棒状の結晶形を有して おり、 その平均粒子径が 7 5〜9 0 /zmであることから、 濾過、 乾燥などの点で 、 好ましい結晶である。
また、 本発明においては、 ピリジンメタノール化合物を用いて、 ミル夕ザピン を製造することができる。 より具体的には、 ピリジンメタノール化合物を硫酸中 に添加することにより、 ミルタザピンを製造することができる。
ピリジンメタノール化合物を硫酸に添加する際の雰囲気は、 例えば、 窒素ガス 、 アルゴンガスなどの不活性雰囲気であることが好ましい。
硫酸としては、 濃度が 9 7〜9 9 %の濃硫酸を好適に用いることができる。 ピ リジンメタノール化合物を添加する際の硫酸の温度は、 発熱の抑制およびタール 状の不純物の生成の抑制の観点から、 0〜4 0 °C、 好ましくは 5〜 3 5 °Cである ことが望ましい。
ピリジンメタノール化合物を硫酸に添加するときには、 ピリジンメタノ一ル化 合物を分割して硫酸に添加することが、 反応を効率よく進行させる観点から好ま しい。 例えば、 ピリジンメタノール化合物を 5〜2 0分割して硫酸に添加するこ とが好ましい。
硫酸の量は、 通常、 ピリジンメタノール化合物 1 0 0重量部に対して、 3 0 0 〜4 0 0重量部、 好ましくは 3 5 0〜 4 0 0重量部であることが望ましい。
硫酸にピリジンメタノール化合物を添加した後には、 反応を促進させるために 、 3 0〜4 0 °C程度の温度で 7〜1 0時間程度攪拌することが好ましい。
かく してピリジンメタノール化合物の閉環が行なわれるが、 その閉環反応の終 点は、 H P L Cで確認することができる。
次に、 得られた反応溶液には、 硫酸の濃度を下げるために、 水を滴下などの方 法により、 添加することが好ましい。 水の量は、 操作性の観点から、 反応溶液 1 0 0重量部に対して、 1 0 0〜2 0 0重量部程度であることが好ましい。 また、 水を添加する際の反応溶液の液温は、 発熱を抑制する観点および不純物 (タール ) の生成を抑制する観点から、 0〜3 0 °C程度であることが好ましい。
次に、 反応溶液には、 中和のために、 アルカリ水溶液を添加することが好まし い。 アルカリとしては、 例えば、 水酸化ナトリウム、 水酸化カリウム、 炭酸ナト リウムなどが挙げられる。 これらの中では、 水酸化ナトリウムが好ましい。 アル カリ水溶液における水酸化アルカリの濃度は、 操作性の観点から、 2 0〜2 5重 量%であることが望ましい。 水酸化アルカリ水溶液の量は、 反応溶液 1 0 0重量 部に対して、 5 0〜2 5 0重量部、 好ましくは 8 0〜1 1 0重量部であることが 望ましい。
水酸化アルカリ水溶液を添加した後には、 その溶液の p Hは、 結晶を析出させな いようにするためには、 1〜3、 好ましくは 1〜2に調整することが望ましい。 p Hの調整は、 例えば、 水酸化ナトリウムなどを該溶液に添加することによって 行なうことができる。
p Hの調整後、 その溶液には、 脱色させるために脱色炭を添加することが好ま しい。
次に、 その溶液を必要により濾過し、 濾液にトルエンおよびヘプタンを添加して ミルタザピンを結晶化させることができる。
トルエンの量は、 収率を向上させる観点から、 ピリジンメタノール化合物 1 0 0重量部に対して、 1 0 0〜4 0 0重量部、 好ましくは 2 0 0〜 3 0 0重量部で あることが望ましい。 トルエンを添加した後には、 中和を完全に終えるために、 2 0〜5 0 °Cの温度でアル力リを添加して p Hを 8〜 1 2に調整することが好ま しい。 アルカリとしては、 例えば、 水酸化ナトリウム水溶液などが挙げられる。 次に、 この溶液は、 結晶を溶解させ、 分液性をよくするために、 7 5〜8 0 °C の温度に加熱することが好ましい。
この溶液を静置すると、 2液に分液する。 そのうち、 有機層にヘプタンを添加 する。 ヘプタンを添加する際の温度は、 濾過性を良くする観点から、 4 0〜7 0 °C、 好ましくは 5 0〜6 0 °Cであることが望ましい。 ヘプタンの量は、 収率を向 上させる観点から、 トルエン 1 0 0重量部に対して、 5 0〜2 0 0重量部、 好ま しくは 7 0〜 1 0 0重量部であることが望ましい。 また、 ヘプタンを添加する際 には、 ヘプタンは滴下することが好ましい。 かかる滴下は、 例えば、 1〜4時間 好ましくは 1〜 2時間であることが望ましい。
次に、 得られた溶液は、 収率を向上させるために、 1〜5時間、 好ましくは 2 〜 3時間で 0〜 5ての温度に徐冷することが好ましい。
かく してミル夕ザピンを結晶化させることができるが、 その結晶は、 例えば、 トルエンとヘプタンを混合し、 0〜5 °Cに冷却した混合溶媒で洗浄してもよい。 この場合、 トルエンとヘプタンとの割合は、 トルエン 1 0 0重量部に対してヘプ タン 70〜1 0 0重量部程度であればよい。
次に、 この結晶は、 必要により、 5 0〜 6 0°C程度の温度で減圧乾燥させても よい。
かく して、 ミル夕ザピンを得ることができる。 実施例
次に、 本発明を実施例に基づいてさらに詳細に説明するが、 本発明はかかる実 施例のみに限定されるものではない。 実施例 1
1—ブ夕ノール 1 6 2 gに、 水酸化力リウ厶 6 0. 9 38と 2— (4ーメチル — 3—フェニルピぺラジン一 1一ィル) ピリジン一 3—力ルポ二トリル蓚酸塩 4 0 g ( 0. 1 0 8 6モル) とを添加し、 1 25〜 1 3 5°Cで加熱したところ、 添 加から約 7時間経過後に原料である 2— (4ーメチル— 3—フヱ二ルビペラジン 一 1—ィル) ピリジン一 3—カルボニトリル蓚酸塩の消失が HP L Cで確認され た。
得られた化合物が 2— (4ーメチルー 3—フエ二ルビペラジン一 1—ィル) ピ リジン— 3—力ルボン酸力リゥ厶塩であることは、 得られた化合物の HP L Cで の保持時間および赤外吸収スぺク トル (以下、 I Rという) t、 別途調製してお いた 2— ( 4—メチルー 3—フヱニルビペラジン一 1一ィル) ピリジン一 3—力 ルボン酸力リゥム塩のそれらと同一であることで確認することができた。 得られ た 2— (4—メチルー 3—フエ二ルビペラジン一 1—ィル) ピリジン一 3—カル ボン酸力リウ厶塩の NMRおよび I Rは、 以下のとおりである。
]H-NMR (CDC 13 , 4 0 0 MHz) (5 = 2. 0 0 (b r, 1 H) 、 2. 1 0 (s, 3H) 、 2. 3 2 (b r, 1 H) 、 2. 5 3 (b r, 1 H) 、 2. 8 5〜2. 8 7 (m, 1 H) 、 3. 2 5〜3. 3 3 (m, 2 H) 、 3. 6 5 (b r , 1 H) 、 5. 6 5 (b r , 1 H) 、 6. 3 9 (b r , 1 H) 、 6. 78〜7. 52 (m, 5 H) 、 8. 0 9 (b r , 1 H) p pm
I R (KB r ) レ = 1 5 7 1、 1 4 5 3、 1 4 32、 1 3 9 7、 1 3 74、 75 9. 70 5 cm—1 上記で得られた反応溶液に水 20 0 gを添加し、 4 0〜5 0°Cで分液し、 水層 をさらに 1ーブ夕ノール 34 gで抽出した。 該ブ夕ノール層を合一し、 2. 6〜 1 3 k P aで減圧した後、 4 0〜6 0°Cで濃縮し、 溶媒 2 04 gを留去した。 次に、 得られた溶液にキシレン 8 6 gを加え、 内温 1 25〜1 3 5°Cで共沸脱 水し、 内部の水分量が 0. 4 8 7重量% (カールフィ ッシヤー法で測定) となつ たところで、 1 3 5〜 1 4 0°Cで常圧下で濃縮し、 キシレンおよび水 74 gを留 去した。 参考例
実施例 1で得られた 2 - (4一メチル— 3—フエ二ルビペラジン— 1一ィル) ピリジン一 3—カルボン酸カリウム塩を塩酸により遊離酸にして、 2— (4—メ チル— 3—フエ二ルビペラジン一 1一ィル) ピリジン一 3—カルボン酸を得た。 得られた 2— ( 4—メチル一 3—フエ二ルビペラジン一 1 _ィル) ピリジン一 3—カルボン酸の NMRおよび I Rは、 以下のとおりである。
]H-NMR (CDC 13 , 4 0 0 MHz) (5 = 2. 4 7 (s, 3H) 、 2. 6 0〜2. 6 6 (m, 2H) 、 3. 1〜3. 1 5 6 (m, 3 H) . 3. 4 8 6— 3 . 4 9 (m, 1 H) 、 4. 8 卜 4. 8 4 8 (d, 2 H) 、 7. 1〜7. 2 6 6 (m, 6 H) 、 8. 3 1 8〜 8. 34 2 (m, 1 H) 、 8. 5 1 4〜8. 5 3 1 (m, 1 H) p p m I R (KB r) = 1 5 7 K 1 4 5 6、 1 4 2 9、 1 3 8 6、 1 1 3 6、 7 6 9 cm—1 実施例 2
実施例 1で得られた反応溶液に THF 8 9 gを添加し、 THF溶液を得た。 THF 2 34 gに水素化リチウムアルミニウム 1 2. 5 gを溶解させた溶液に
、 20〜3 0°Cで THF溶液を 3 0分間かけて滴下し、 同温度で 3時間 3 0分間 攪拌した。
HPLCで 2— ( 4—メチルー 3—フエ二ルビペラジン一 1一ィル) ピリジン — 3—カルボン酸カリウム塩の消失を確認し、 20〜3 0°Cで水 1 2. 2 gを滴 下し、 2 0重量%水酸化ナト リウム溶液 1 2. 2 g、 次いで水 3 8 gを加えて 1 時間加熱した。
析出した結晶を濾過、 THF 4 5 gで洗浄し、 常圧下で THF 3 7 5 gを留去 した。
留去液に、 ヘプタン 4 2 gを攪拌しながら 4 8〜4 9°Cで 3 0分間かけて滴下 した。 0〜5°Cで 1時間攪拌し、 同温度で濾過し、 トルエン 4 3 gとヘプタン 3 4 gの混合液で洗浄し、 乾燥して化合物を結晶として得た。 (収率 70. 78 % ) 。 得られた化合物が 2— (4ーメチルー 3—フエ二ルビペラジン一 1一ィル) ピリジン一 3—メタノール 2 1. 78 gであることは、 かかる化合物が以下の物 性を有することから確認することができた。 融点: 1 24〜 1 2 6 °C
1 H-NMR (δ : p pm) : 8. 1 6 (d, 1 H, 2— H: ピリジン) 、 7. 3 6 (d, 1 H, 4一 H: ピリ ジン) 、 7. 2 9 (d, 2 H, 2— H: フエニル ) . 7. 1 3 ( t, 2H, 3 -H: フエニル) 、 7. 0 7 (d, 1 H, 4— H : フエニル) 、 6. 8 8 (d d, 1 H, 3— H: ピリジン) 、 5. 3 (b r, 1 H , 〇H) 、 4. 8 6, 4. 6 0 (d, 2 H, CH2 -OH) 、 4. 7 0 (d d,
1 H, 2 -H: ピペラジン) 、 3. 1 8 (m, 2 H, ピペラジン) 、 2. 9 6 ( m, 2 H, ピぺラジン) 、 2. 4 6 (m, 1 H, ピぺラジン) 、 2. 34 (m,
1 H, ピぺラジン) 、 2. 37 (s, 1 H, N-CH3 ) 実施例 3
1—ブ夕ノール 822 k gに、 フレーク水酸化カリウム 3 0 9. 5 k gを加え て溶解し、 2— (4一メチル一 3—フエ二ルビペラジン一 1—ィル) ピリジン一 3一力ルポ二トリル蓚酸塩 20 2. 9 k gを 3 0〜 5 0でで分割して添加した。 1 3 0〜1 4 0°Cまで昇温し、 同温度で 9時間攪拌した。 HP LCで反応の終点 を確認した後、 約 5 0°Cまで冷却し、 水 1 0 1 4 kgを流入した。 4 2〜4 5°C で攪拌し、 静置して分液した。
水層は、 1ーブ夕ノール 8 23. 5 k gを加えて 4 0〜4 7°Cで攪拌し、 静置 し、 分液した。 有機層を合一し、 使用した 1ーブ夕ノールの 9 5 %以上が留去す るまで減圧下で濃縮した。 その後、 キシレン 4 3 6. 9 k gを加え、 水分量が 1 %以下となるまで内温 1 20〜 1 22°Cで共沸脱水し、 さらに常圧で加熱してキ シレンを含む留分 3 2 8 kgを留去した。 これに、 THF 4 3 0. 6 k gを加え て 2— (4—メチルー 3—フエ二ルビペラジン一 1一ィル) ピリジン一 3—カル ボン酸力リゥ厶塩の THF溶液を得た。 水分量は 1 7 9. 5 p pmであった。 実施例 4
窒素雰囲気下で THF 8 8 9. 1 5 k gに水素化リチウムアルミニウム 6 5. 6 kgを加えて 2時間攪拌した。 この溶液に、 実施例 3で得られた 2— (4—メ チルー 3—フエ二ルビペラジン一 1一ィル) ピリジン一 3—カルボン酸力リウ厶 塩の THF溶液を 20〜25 °Cで滴下した。 THF 2 1. 4 k gでカリゥム塩溶 液が入っていた容器を洗浄して反応溶液に加えた。 2 3〜2 5 °Cで 3時間攪拌し た後、 水 6 2. 6 k gを 1〜 1 5°Cで滴下し、 2 5重量%水酸化ナトリウム水溶 液 5 0. 2 k gを 4〜 1 5°Cで滴下し、 さらに水 1 8 8. 3 k gを 1 0〜2 0°C で滴下した。 2 0〜2 5°Cで 7 0分間攪拌し、 THF 9 0 3. 5 k gで水酸化リ チウムアルミニウムの加水分解によって生成した水酸化アルミニウムを洗浄した o
常圧下、 内温 1 1 0°Cまでの温度で THF 2 5 3 5 Lを留去し、 5 0〜 6 5 °C で 2— (4ーメチルー 3—フエ二ルビペラジン一 1 一ィル) ピリ ジン一 3—メタ ノールの種晶 5 0 gを加えて 3 0分間攪拌した。 ヘプタン 2 1 5 k gを 5 0〜6 5°Cで滴下し、 0〜5°Cに冷却して 1時間熟成した。 濾過し、 トルエン 1 1 0. 5 k gとヘプタン 8 7. 1 k gとを混合して 0〜5°Cに冷却した溶液で結晶を洗 浄し、 5 0〜6 0°Cで乾燥して、 2— (4—メチル一 3—フエ二ルビペラジン一 1 —ィル) ピリジン— 3—メタノール 1 2 4 k gを得た。 その収率 〔 2— ( 4— メチルー 3—フエ二ルビペラジン一 1 一ィル) ピリジン一 3—カルボ二トリル蓚 酸塩よりの収率〕 は 7 9. 4 %であり、 HP L C純度は 9 9. 7%であった。 得られた 2— (4—メチル一 3—フエ二ルビペラジン一 1 一ィル) ピリジン一 3—メタノールの物性は、 以下のとおりである。 融点: 1 2 0. 6〜 1 2 1. 6 °C
I R (KB r) レ = 1 5 7 3、 1 4 2 9、 1 1 2 8、 1 0 3 6、 7 5 7. 8、 7 0 1 cm—1 また、 得られた 2— (4—メチルー 3—フエ二ルビペラジン一 1—ィル) ピリ ジン— 3—メタノールの顕微鏡写真を図 1に示す。 比較例 1 窒素雰囲気下、 2— (4一メチル— 3—フエ二ルビペラジン一 1 一ィル) ピリ ジン- 3—カルボン酸 1 0. 2 gを THF 1 5 OmLに溶解した。 THF 3 0 0 mLに水素化リチウムアルミニウム 1 0. 2 gを加えて還流下に、 先の THF溶 液を 5 0分間で滴下した。 4時間還流させた後、 0〜5°Cに冷却し、 水 4 0. 5 mLを徐々に滴下した。 水酸化アルミニウムを濾別し、 濾液をエバポレーターで 濃縮し、 残渣をエーテルより再結晶化し、 2— (4—メチル— 3—フヱニルピぺ ラジン一 1 —ィル) ピリジン一 3—メタノール 8. 6 gを得た。 その収率は 9 8 %であった。
得られた 2— (4—メチル一 3—フエ二ルビペラジン一 1 —ィル) ピリジン一 3—メタノールの顕微鏡写真を図 2に示す。 実施例 5
窒素雰囲気下、 5〜3 2°Cで 9 8 %濃硫酸 4 4 2. 6 k gに 2— (4—メチル - 3—フエ二ルビペラジン一 1 —ィル) ピリジン一 3—メタノール 1 2 3 k gを 3時間で分割して添加し、 3 0〜4 0°Cで 7時間攪拌した。 HPLCで原料の消 失を確認し、 水 8 8 5 k g中に反応溶液を 0〜3 0°Cで滴下した。 硫酸 5 5 k g で反応溶液が入っていた容器を洗浄し、 水解液に加えた。
0〜 3 0 °Cの温度で 2 5 %水酸化ナトリゥム水溶液 1 2 8 5 k gを水解液に滴 下し、 pHを 1〜2に調整した。 脱色炭 6 k gを加え、 攪拌し、 濾過し、 水 1 1 8 k gで脱色炭を洗浄した。 濾液に、 トルエン 1 5 9. 1 k gを加え、 2 0〜3 0°Cで 1 5分間攪拌し、 分液した。
水層にトルエン 1 5 9. 1 k gを加え、 2 0〜5 0°Cで 2 5 %水酸化ナトリウ ム水溶液 4 5 0. 3 k gを加えて pH 1 1 とした。 7 5〜8 0でに加熱して 1 5 分間攪拌し、 9 0分間静置した後、 分液した。 有機層に 5 0〜6 0°Cでヘプタン 1 2 6 k gを 6 5分間かけて滴下し、 3時間 4 0分間かけて 0〜 5 °Cに冷却し、 濾過した。 トルエン 1 2 2. 3 k gとヘプタン 9 7 k gを混合し、 0〜5°Cに冷 却した溶液で結晶を洗浄し、 5 0〜6 0°Cで減圧乾燥し、 ミルタザピン 1 0 3. 2 kgを得た。 その収率は 8 6. 7%であり、 HPLC純度は 9 9. 8 %であつ た。 比較例 2
窒素雰囲気下、 室温 ( 25〜 3 0 °C) で 9 8 %濃硫酸 1 0 0. 8 gを 2— ( 4 ーメチルー 3—フエ二ルビペラジン一 1一ィル) ピリジン一 3—メタノール 28 gに滴下した。 途中、 攪拌が困難となり、 部分的に 5 0°C近くまで発熱した。 3 0〜4 0°Cで 2時間攪拌した。 HPLCではまだ中間体が 8 %残存していたので 、 さらに 6時間攪拌した。 氷 24 0 gを反応溶液に加えたところ、 激しく発熱し た。 濃アンモニア水 1 6 1 mLを加えてアル力リ性 (pH 9) とした。 クロ口ホルム 20 OmLで抽出し、 有機層を無水硫酸マグネシウムで乾燥して エバポレ一ターで濃縮した。 オイル状の残渣をエーテルを加えて攪拌して固形化 した。 濾過し、 乾燥し、 固形物を石油エーテル 4 0〜6 0で再結晶したが、 結晶 性が悪く、 部分的にオイルが固化した状態の淡黄色結晶であった。 濾過し、 乾燥して、 淡黄色のミルタザピン 2 0. 1 gを得た。 その収率は、 7 6. 6%、 HPLC純度は 9 8. 3 %であった。 産業上の利用可能性
本発明の製造方法によれば、 式 ( I ) で表わされるピリジンカルボン酸力リウ ム塩から、 式 (II) で表わされるピリジンメタノール化合物を短時間で、 経済的 に効率よく製造することができる。 また、 本発明の製造方法によれば、 式 ( I ) で表わされるピリジンカルボ二トリル化合物またはその塩から短時間で効率よく ピリジンメタノール化合物を製造することができる。 また、 ピリジンメタノール化合物からミルタザピンを好適に製造することがで きる。

Claims

請求の範囲
1. 式 ( I )
Figure imgf000025_0001
で表わされるピリジンカルボン酸力リゥ厶塩を金属水素化物で還元することから なる式(II):
Figure imgf000025_0002
で表わされるピリジンメタノール化合物の製造方法。
2. 式 ( I ) で表わされるピリジンカルボン酸カリウム塩を、 ブ夕ノール中で 式(III) :
Figure imgf000025_0003
で表わされるピリジンカルボ二トリル化合物またはその塩と水酸化力リウ厶とを 反応させることによって製造する請求項 1記載の製造方法。
3. 式(II):
Figure imgf000026_0001
で表わされるピリジンメタノール化合物を硫酸中に添加することからなるミル夕 ザピンの製造方法。
4. 式(II)で表わされるピリジンメタノール化合物を硫酸中に分割添加する請 求項 3記載の製造方法。
5. 生成したミルタザピンをトルエンおよびヘプ夕ンを用いて結晶化させる請 求項 3または 4記載の製造方法。
PCT/JP2000/005384 1999-12-13 2000-08-11 Procede de preparation d'un compose pyridinemethanol WO2001042239A1 (fr)

Priority Applications (15)

Application Number Priority Date Filing Date Title
AU64742/00A AU6474200A (en) 1999-12-13 2000-08-11 Process for the preparation of a pyridinemethanol compound
PT00962909T PT1238977E (pt) 1999-12-13 2000-09-28 Processo para a preparacao de um composto piridinometanolico
ES00962909T ES2209985T5 (es) 1999-12-13 2000-09-28 Procedimiento para la preparación de un compuesto de piridinmetanol.
AU74472/00A AU771484B2 (en) 1999-12-13 2000-09-28 Process for the preparation of a pyridinemethanol compound
AT00962909T ATE255103T1 (de) 1999-12-13 2000-09-28 Verfahren zur herstellung von pyridinmethanol- verbindungen
EP00962909A EP1238977B2 (en) 1999-12-13 2000-09-28 Process for the preparation of a pyridinemethanol compound
DK00962909.8T DK1238977T4 (da) 1999-12-13 2000-09-28 Fremgangsmåde til fremstilling af en pyridinmethanol-forbindelse
DE60006857T DE60006857T3 (de) 1999-12-13 2000-09-28 Verfahren zur herstellung von pyridinmethanol-verbindungen
IL15012000A IL150120A0 (en) 1999-12-13 2000-09-28 Process for the preparation of a pyridinemethanol compound
CA002394439A CA2394439C (en) 1999-12-13 2000-09-28 Process for the preparation of a pyridinemethanol compound
PCT/JP2000/006688 WO2001042240A1 (en) 1999-12-13 2000-09-28 Process for the preparation of a pyridinemethanol compound
JP2001543539A JP3930736B2 (ja) 1999-12-13 2000-09-28 ピリジンメタノール化合物の製造方法
US09/706,803 US6376668B1 (en) 1999-12-13 2000-11-07 Process for preparing pyridinemethanol compounds
US09/981,919 US6437120B1 (en) 1999-12-13 2001-10-19 Process for preparing pyridinemethanol compounds
IL150120A IL150120A (en) 1999-12-13 2002-06-10 Process for the preparation of a pyridinemethanol compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/353514 1999-12-13
JP35351499 1999-12-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/706,803 Continuation-In-Part US6376668B1 (en) 1999-12-13 2000-11-07 Process for preparing pyridinemethanol compounds

Publications (1)

Publication Number Publication Date
WO2001042239A1 true WO2001042239A1 (fr) 2001-06-14

Family

ID=18431365

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2000/005384 WO2001042239A1 (fr) 1999-12-13 2000-08-11 Procede de preparation d'un compose pyridinemethanol
PCT/JP2000/006688 WO2001042240A1 (en) 1999-12-13 2000-09-28 Process for the preparation of a pyridinemethanol compound

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006688 WO2001042240A1 (en) 1999-12-13 2000-09-28 Process for the preparation of a pyridinemethanol compound

Country Status (12)

Country Link
US (2) US6376668B1 (ja)
EP (1) EP1238977B2 (ja)
JP (1) JP3930736B2 (ja)
AT (1) ATE255103T1 (ja)
AU (2) AU6474200A (ja)
CA (1) CA2394439C (ja)
DE (1) DE60006857T3 (ja)
DK (1) DK1238977T4 (ja)
ES (1) ES2209985T5 (ja)
IL (2) IL150120A0 (ja)
PT (1) PT1238977E (ja)
WO (2) WO2001042239A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60125429T2 (de) * 2000-04-24 2007-09-27 Teva Pharmaceutical Industries Ltd. Zolpidem hemitartrat solvat
CA2438446A1 (en) * 2001-03-01 2002-02-14 Teva Pharmaceutical Industries Ltd. Methods for the preparation of mirtazapine intermediates
CZ296992B6 (cs) * 2002-10-03 2006-08-16 Zentiva, A.S. Príprava a izolace 2-substituovaných-3-pyridylkarboxylových kyselin, jejich karboxylových solí a produktu redukce
UA83666C2 (ru) * 2003-07-10 2008-08-11 Н.В. Органон Способ получения энантиомерно чистого миртазапина
US7838029B1 (en) * 2003-07-31 2010-11-23 Watson Laboratories, Inc. Mirtazapine solid dosage forms
TW200538100A (en) * 2004-04-21 2005-12-01 Akzo Nobel Nv Mirtazapine salts
US20080255348A1 (en) * 2007-04-11 2008-10-16 N.V. Organon Method for the preparation of an enantiomer of a tetracyclic benzazepine
CN101679431B (zh) 2007-04-11 2013-08-14 Msd欧斯股份有限公司 制备四环苯并氮杂卓的对映异构体的方法
EP2344498A1 (en) * 2008-10-22 2011-07-20 Watson Pharma Private Limited Process for the preparation of 1- ( 3-hydroxymethylpyrid-2 -yl ) -2 -phenyl-4-methylpiperazine and mirtazapine
JP6433809B2 (ja) * 2015-02-20 2018-12-05 株式会社トクヤマ 1−(3−ヒドロキシメチルピリジル−2−)−2−フェニル−4−メチルピペラジンの製造方法
US10603272B2 (en) 2015-02-27 2020-03-31 Kindred Biosciences, Inc. Stimulation of appetite and treatment of anorexia in dogs and cats
JP6571497B2 (ja) * 2015-11-13 2019-09-04 株式会社トクヤマ ミルタザピンの製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1543171A (en) * 1975-04-05 1979-03-28 Akzo Nv Tetracyclic compounds

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196532A (en) * 1989-02-08 1993-03-23 Basf Aktiengesellschaft Diaryl-substituted heterocyclic compounds, their preparation and drugs and cosmetics obtained therefrom
CA2368815A1 (en) * 1999-04-19 2000-10-26 Claude Singer Novel synthesis and crystallization of piperazine ring-containing compounds
US6339156B1 (en) * 1999-04-19 2002-01-15 Teva Pharmaceuticals Industries, Ltd. Synthesis of piperazine ring
JP3817424B2 (ja) 2000-12-28 2006-09-06 キヤノン株式会社 シート折り装置及びこれを備えた画像形成装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1543171A (en) * 1975-04-05 1979-03-28 Akzo Nv Tetracyclic compounds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KASPERSEN FRANS M. ET AL.: "The synthesis of Org 3770 labeled with tritium carbon-13 and carbon-14", J. LABELLED COMPD. RADIOPHARM., vol. 27, no. 9, 1989, pages 1055 - 1068, XP002933770 *

Also Published As

Publication number Publication date
IL150120A0 (en) 2002-12-01
EP1238977B2 (en) 2010-07-21
DK1238977T3 (da) 2004-03-08
ES2209985T5 (es) 2010-12-03
DE60006857T3 (de) 2011-02-10
EP1238977B1 (en) 2003-11-26
AU7447200A (en) 2001-06-18
EP1238977A4 (en) 2003-02-12
AU6474200A (en) 2001-06-18
CA2394439A1 (en) 2001-06-14
ES2209985T3 (es) 2004-07-01
DE60006857D1 (de) 2004-01-08
JP3930736B2 (ja) 2007-06-13
DK1238977T4 (da) 2010-10-11
IL150120A (en) 2007-09-20
US6437120B1 (en) 2002-08-20
AU771484B2 (en) 2004-03-25
US6376668B1 (en) 2002-04-23
US20020035255A1 (en) 2002-03-21
WO2001042240A1 (en) 2001-06-14
CA2394439C (en) 2007-09-11
DE60006857T2 (de) 2004-08-26
EP1238977A1 (en) 2002-09-11
ATE255103T1 (de) 2003-12-15
PT1238977E (pt) 2004-03-31

Similar Documents

Publication Publication Date Title
EP1740593B1 (en) Processes for the preparation of clopidogrel hydrogen sulfate polymorphic form i
WO2001042239A1 (fr) Procede de preparation d'un compose pyridinemethanol
TWI732808B (zh) 1,3-苯并二氧雜環戊烯雜環化合物之製備方法
CN114621139A (zh) 用于制备pde4抑制剂的方法
WO2003014087A1 (fr) Procede de preparation de 5-methyl-1-phenyl-2(1h)-pyridinone
WO2009107571A1 (ja) アルキルピペリジン-3-イルカーバメートの光学分割方法およびその中間体
EP1889827B1 (en) Process for producing [2-(3,3,5,5-tetramethylcyclohexyl)phenyl]piperazine
CN107118161B (zh) 2-正丙基-4-甲基苯并咪唑-6-羧酸的合成方法
CN102617335B (zh) 一种对叔丁基苯甲酸的合成工艺
GB2451384A (en) 2-cyanophenylboronic acid with reduced impurities or ester thereof,and production method thereof
JP5506480B2 (ja) 精製3,3’,4,4’−ジフェニルエーテルテトラカルボン酸の製造方法
US20060142595A1 (en) Process for preparing 5,6-dihydro-4-(S)-(ethylamino)-6-(S) methyl-4H-thieno[2,3b]thiopyran-2-sulphonamide-7,7-dioxide HCI
CN111393382A (zh) 一种1-乙酸四氮唑的制备方法
KR101894091B1 (ko) 크로마논 유도체의 신규한 제조방법
JP2009001506A (ja) トリヒドロキシベンゾフェノンの製造方法
CN114524802B (zh) 一种喹啉化合物的合成方法
CN102617339A (zh) 3-环丙基甲氧基-4-卤代苯甲酸或其衍生物及应用
CN107556237B (zh) 一种3-(2-苯乙基)-2-吡啶甲酰胺类化合物的制备方法
CN116410125A (zh) 一种2-甲基-3-硝基-4-羟基吡啶的制备方法
WO2003084932A1 (fr) Procede de preparation de 6-aminomethyl-6,11-dihydro-5h-dibenz[b,e]azepine
JP2590206B2 (ja) 8−ヒドロキシキノリン−7−カルボン酸の製造方法
JP4221770B2 (ja) イソキノリン系ライサート化合物の製造方法
CN116239577A (zh) 一种制备Cudetaxestat的方法
CN117229216A (zh) 一种恩赛特韦中间体的制备方法
CN117624070A (zh) 一种缬沙坦及其中间体的制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 09706803

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642