WO2001038864A2 - VERFAHREN ZUR BESTIMMUNG DER NOx-KONZENTRATION - Google Patents

VERFAHREN ZUR BESTIMMUNG DER NOx-KONZENTRATION Download PDF

Info

Publication number
WO2001038864A2
WO2001038864A2 PCT/DE2000/004128 DE0004128W WO0138864A2 WO 2001038864 A2 WO2001038864 A2 WO 2001038864A2 DE 0004128 W DE0004128 W DE 0004128W WO 0138864 A2 WO0138864 A2 WO 0138864A2
Authority
WO
WIPO (PCT)
Prior art keywords
nox concentration
air ratio
exhaust gas
measuring cell
measurement error
Prior art date
Application number
PCT/DE2000/004128
Other languages
English (en)
French (fr)
Other versions
WO2001038864A3 (de
Inventor
Bertrand Lemire
Tim Walde
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP00989790A priority Critical patent/EP1232391A2/de
Priority to JP2001540362A priority patent/JP4746239B2/ja
Publication of WO2001038864A2 publication Critical patent/WO2001038864A2/de
Publication of WO2001038864A3 publication Critical patent/WO2001038864A3/de
Priority to US10/156,483 priority patent/US6699383B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • G01N27/4074Composition or fabrication of the solid electrolyte for detection of gases other than oxygen

Definitions

  • the invention relates to a method for determining the NOx concentration in the exhaust gas of an internal combustion engine according to the preamble of claim 1.
  • a thick-film sensor To measure the NOx concentration in a gas, for example in the exhaust gas of an internal combustion engine, it is known to use a thick-film sensor.
  • a thick-film sensor is described, for example, in the publication N. Kato et al. , "Thick Film Zr0 2 NOx Sensor for the Measurement of Low NOx Concentration ,,, Society of Automotive Engineers, publication 980170, 1989, or in N. Kato et al. , “Performance of Thick Film NOx Sensor on Diesel and Gasoline Engines ,,, Society of Automotive Engineers, publication 970858, 1997.
  • This sensor has two measuring cells and consists of a zirconium oxide that conducts oxygen ions.
  • a first oxygen concentration is set by means of a first oxygen ion pump current, with no decomposition of NOx taking place.
  • a second measuring cell which is connected to the first via a diffusion barrier, the oxygen content is further reduced by means of a second oxygen ion pump current.
  • the decomposition of NOx at a measuring electrode leads to a third oxygen ion pump current, which is a measure of the NOx concentration.
  • the entire sensor is brought to an elevated temperature, for example 750 ° C., by means of an electric heater.
  • This measurement of the NOx concentration results in a deviation of the true NOx concentration, since a slip of oxygen from the first into the second chamber leads to a falsification of the NOx measured value.
  • Pumping out the acid Material slip in the second cell reduces the oxygen content falsifying the measurement signal considerably, but not completely, since oxygen that does not come from the decomposition of NOx is still included.
  • the invention is based on the knowledge that the measurement error of the value for the NOx concentration supplied by a NOx measuring sensor constructed in a two-chamber construction depends on the level of the oxygen concentration in the exhaust gas of an internal combustion engine.
  • the sensor cannot measure the oxygen concentration.
  • the first oxygen ion pump current is a direct measure of the air ratio ⁇ of the exhaust gas. If one does not relate this measurement error to the
  • largely linear means that higher order terms only have to be taken into account with very small coefficients.
  • An air ratio signal preferably the 1 / ⁇ value of the exhaust gas, is thus obtained from the first oxygen ion pump current in the first measuring cell, by means of which the measurement error is determined using a relationship between the air ratio signal and measurement error.
  • the measured NOx concentration is then corrected for this measurement error.
  • the relationship is preferably determined beforehand in a calibration measurement, so that the measurement error in the form of a characteristic of, a characteristic curve or a functional relationship.
  • a characteristic curve is also determined which reflects the relationship between the first oxygen ion pump current in the first cell and the air ratio signal, for example 1 / ⁇ or another function of ⁇ .
  • the relationship between the first oxygen ion pumping current and 1 / ⁇ is surprisingly largely linear, so that it is further advantageous to select 1 / ⁇ as the air ratio signal.
  • the method according to the invention has the advantage that only multiplications, subtractions and additions are necessary when correcting the measured NOx concentration. A division that would unduly stress the computing power of an inexpensive microcontroller is not required.
  • FIG. 1 shows a schematic representation of a device for carrying out the method according to the invention
  • Fig. 2 is a schematic sectional view of a NOx sensor
  • FIG. 3 shows a schematic flow diagram for carrying out the method according to the invention.
  • a section through a NOx sensor 1 is shown schematically.
  • This sensor 1 is used in the device shown in FIG. 1 as a sensor 24 for loading Mood of the NOx concentration in the exhaust tract 27 of an internal combustion engine 20 is used.
  • the measured values of the NOx sensor 24 are read out by a control unit 23, which is connected to the NOx sensor 24, and fed to an operating control device 25 of the internal combustion engine 20, which controls a fuel supply system 21 of the internal combustion engine 20 so that a NOx reducing catalytic converter 28, which in this case is located upstream of the NOx sensor 24 in the exhaust tract 27 of the internal combustion engine 20, shows optimal operating behavior.
  • the sensor 24, 1 is shown in more detail in FIG. 2.
  • the exhaust gas diffuses through the diffusion barrier 3 into a first measuring cell 4.
  • the oxygen content in this measuring cell is measured by tapping a Nernst voltage between a first electrode 5 and a reference electrode 11 exposed to ambient air.
  • the reference electrode 11 is arranged in an air duct 12 into which ambient air passes through an opening 14.
  • the tapped Nernst voltage is fed to an 8-bit microcontroller which serves as controller C0 and which provides a control voltage VSO.
  • controller C0 which controls a voltage-controlled current source UI0 which drives a first oxygen ion pump current IP0 through the solid electrolyte 2 of the sensor 1 between the first electrode 5 and an outer electrode 6.
  • a predetermined oxygen concentration is regulated by the regulator C0 m of the first measuring cell 4 by means of the control voltage VSO. This is measured via the Nernst voltage between the electrode 5 and the reference electrode 11, so that the control loop of the controller C0 is closed.
  • the first oxygen ion pump current is a measure of the air ratio in the exhaust gas, as is known from lambda probes.
  • the circuit arrangement described thus sets a predetermined oxygen concentration in the first measuring cell 4.
  • the second measuring cell 8 is connected to the first measuring cell 4 via a further diffusion barrier 7.
  • the gas present in the first measuring cell 4 diffuses into the second measuring cell 8 through this diffusion barrier 7.
  • a second oxygen concentration is set in the second measuring cell via a circuit arrangement.
  • a second Nernst voltage is tapped between a second electrode 9 and the reference electrode 11 and fed to a regulator C1, which provides a second actuating voltage VS1 with which a second voltage-controlled current source Uli is controlled.
  • the circuit arrangement for driving the oxygen ion pump current IP1 out of the second measuring cell 8 thus corresponds to the circuit arrangement for the first measuring cell 4.
  • the circuit arrangement drives the oxygen ion pumping current IP1 in such a way that a predetermined oxygen concentration is established in the second measuring cell 8.
  • This oxygen concentration is chosen so that NOx is not affected by the processes taking place, in particular no decomposition takes place.
  • the NOx is now pumped at the measuring electrode 10, which can be configured catalytically, in a third oxygen ion pumping current IP2 from the measuring electrode 10 to the outer electrode 6. Since the residual oxygen content in the measuring cell 8 has been reduced sufficiently, this oxygen ion pumping current IP2 is essentially carried only by oxygen ions which originate from the decomposition of NOx at the measuring electrode 10. The pump current IP2 is therefore a measure of the NOx concentration in the measuring cell 8 and thus in the exhaust gas to be measured.
  • This pump current IP2 is driven by a voltage-controlled current source UI2, the actuating voltage VS2 of which is predetermined by a regulator C2, which controls the Nernst voltage between the measuring electrode 10 and the Taps reference electrode 11 and regulates a predetermined Nernst voltage by specifying the control voltage VS2.
  • the residual oxygen content of the measuring cell 8 is only ideally zero, since a slip of oxygen from the first into the second measuring cell still causes the measured NOx concentration to depend on the oxygen concentration in the exhaust gas.
  • an oxygen signal 1 / LAM is obtained from the first oxygen ion pumping current IPO in the first measuring cell 4, which signal expresses the air ratio in the exhaust gas.
  • the conversion of the first oxygen ion pump current IPO is carried out using a characteristic curve 15 or a characteristic map which assigns a 1 / ⁇ value to each current, which in this case is the air ratio signal 1 / LAM.
  • the characteristic curve 15 was previously determined for the respective measuring sensor 1 in a calibration measurement.
  • This air ratio signal 1 / LAM is implemented with a further characteristic curve 16 m, a measurement error NOx_D.
  • the characteristic curve 16 was obtained from a corresponding calibration measurement of the sensor 1 and prints out the relationship between the measurement error and 1 / LAM.
  • the conversion using a characteristic curve is replaced by a conversion using a functional relationship. If the 1 / ⁇ value is taken as the air ratio signal, there is a largely linear relationship. If one cannot rely on such a substantially linear relationship, the characteristic curve 16 is stored instead of a function. In the following, however, it is assumed that the 1 / ⁇ value is used as the air ratio signal 1 / LAM and thus the truncation is based on a largely linear relationship. Then through simple multiplication of the value of the air ratio signal 1 / LAM by a multiplication factor and addition of an addition factor, a measurement error N0x_D can be obtained. The corrected NOx concentration NOx_C is obtained by simply multiplying this measurement error N0x_D, which is then implemented, for example, as a correction multiplier, in arithmetic operation 17 by the measured NOx concentration NOx-M.
  • the characteristic curve 15 can be combined with this characteristic curve 16, so that directly from the first Oxygen ion pump current IPO the measurement error N0x_D, for example as a multiplication or addition correction factor. Then one step is omitted because the generation of the air ratio signal 1 / LAM is dispensed with. However, if this air ratio signal 1 / LAM is required, for example for other control or regulating functions when operating the internal combustion engine, it can of course still be generated from the first oxygen ion pumping current IPO.

Abstract

Zur Messung der NOx-Konzentration im Abgas einer Brennkraftmaschine (20) wird ein Dickschicht-Meßaufnehmer (24) verwendet, der zwei Meßzellen aufweist. Aus einem in der ersten Meßzelle fließenden Sauerstoffionen-Pumpstrom wird der 1/μ-Wert des Abgases bestimmt, beispielsweise mittels eines Kennfeldes, und aus diesem, beispielsweise mittels einer zuvor in einer Kalibriermessung bestimmten Kennlinie, ein Meßfehler bestimmt, mit dem die gemessene NOx-Konzentration korrigiert werden kann. Der Erfindung liegt die Erkenntnis zugrunde, daß der Meßfehler vom Luftverhältnis im Abgas abhängt. Drückt man dieses durch den 1/μ-Wert aus, kann bei der Korrektur auf eine rechenaufwendige Division verzichtet werden.

Description

Beschreibung
Verfahren zur Bestimmung der NOx-Konzentration
Die Erfindung betrifft ein Verfahren zur Bestimmung der NOx- Konzentration im Abgas einer Brennkraftmaschine gemäß dem Oberbegriff des Patentanspruchs 1.
Zur Messung der NOx-Konzentration in einem Gas, z.B. im Abgas einer Brennkraftmaschine, ist es bekannt, einen Dickschicht- Meßaufnehmer zu verwenden. Ein solcher Meßaufnehmer ist beispielsweise in der Veröffentlichung N. Kato et al . , „Thick Film Zr02 NOx Sensor for the Measurement of Low NOx Concentration,,, Society of Automotive Engineers, Veröffentli- chung 980170, 1989, oder in N. Kato et al . , „Performance of Thick Film NOx Sensor on Diesel and Gasoline Engines,,, Society of Automotive Engineers, Veröffentlichung 970858, 1997, beschrieben. Dieser Meßaufnehmer weist zwei Meßzellen auf und besteht aus einem Sauerstoffionen leitenden Zirkoniumoxid. Er verwirklicht folgendes Meßkonzept: In einer ersten Meßzelle, der das zu messende Gas über eine Diffusionsbarriere zugeführt wird, wird mittels eines ersten Sauerstoffionen-Pumpstroms eine erste Sauerstoffkonzentration eingestellt, wobei keine Zersetzung von NOx stattfinden soll. In einer zweiten Meßzelle, die über eine Diffusionsbarriere mit der ersten verbunden ist, wird der Sauerstoffgehalt mittels eines zweiten Sauerstoffionen-Pumpstroms weiter abgesenkt. Die Zersetzung von NOx an einer Meßelektrode führt zu einem dritten Sauerstoffionen-Pu pstrom, der ein Maß für die NOx-Konzentration ist. Der gesamte Meßaufnehmer wird dabei mittels eines elektrischen Heizers auf eine erhöhte Temperatur, z.B. 750°C, gebracht.
Bei dieser Messung der NOx-Konzentration entsteht eine Abwei- chung der wahren NOx-Konzentration, da es durch einen Schlupf von Sauerstoff von der ersten in die zweite Kammer zu einer Verfälschung des NOx-Meßwertes kommt. Das Abpumpen des Sauer- Stoffschlupfes in der zweiten Zelle reduziert zwar den das Meßsignal verfälschenden Sauerstoffgehalt erheblich, jedoch nicht vollständig, da immer noch Sauerstoff, der nicht aus der Zersetzung von NOx stammt, miterfaßt wird.
Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren anzugeben, mit dem die NOx-Konzentration im Abgas einer Brennkraftmaschine unter Verwendung des oben beschriebenen Meßaufnehmers exakter erfaßt werden kann.
Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst.
Die Erfindung geht von der Erkenntnis aus, daß der Meßfehler des von einem in Zweikammerbauweise aufgebauten NOx- Meßaufnehmer gelieferten Wertes für die NOx-Konzentration von der Höhe der Sauerstoffkonzentration im Abgas einer Brennkraftmaschine abhängt. Der Meßwertaufnehmer kann die Sauerstoffkonzentration nicht messen. Der erste Sauerstoffionen- Pumpstrom ist eben ein direktes Maß für das Luftverhältnis λ des Abgases. Bezieht man diesen Meßfehler nun nicht auf die
Sauerstoffkonzentration, sondern auf λ, vorzugsweise auf dessen Kehrwert 1/λ, so zeigt sich, daß der Meßfehler bei vielen Meßaufnehmern durch eine einfache Funktion, bei 1/λ sogar weitgehend linear beschrieben werden kann. Unter weitgehend linear wird dabei verstanden, daß bei einer Reihenentwicklung Terme höherer Ordnung nur noch mit sehr kleinen Koeffizienten berücksichtigt werden müssen.
Aus dem ersten Sauerstoffionen-Pumpstrom in der ersten Meß- zelle wird somit ein Luftverhältnissignal, vorzugsweise der 1/λ-Wert des Abgases gewonnen, mittels dem der Meßfehler unter Ausnützung eines Zusammenhangs zwischen Luftverhältnissignal und Meßfehler bestimmt wird. Um diesen Meßfehler wird die gemessene NOx-Konzentration dann korrigiert.
Vorzugsweise wird der Zusammenhang zuvor in einer Kalibriermessung bestimmt, so daß der Meßfehler in Form eines Kennfei- des, einer Kennlinie oder eines funktionalen Zusammenhangs vorliegt .
Um das Luftverhaltnissignal aus dem ersten Sauerstofflonen- Pumpstrom gewinnen zu können, wird weiter eine Kennlinie bestimmt, die den Zusammenhang zwischen erstem Sauerstofflonen- Pumpstrom in der ersten Zelle und dem Luftverhaltnissignal, beispielsweise 1/λ oder einer anderen Funktion von λ wiedergibt. Dabei ist der Zusammenhang zwischen erstem SauerstoffI- onen-Pumpstrom und 1/λ überraschenderweise weitgehend linear, so daß es weiter vorteilhaft ist, als Luftverhaltnissignal 1/λ zu wählen.
Das erfmdungsgemaße Verfahren hat den Vorteil, daß bei der Korrektur der gemessenen NOx-Konzentration nur Multiplikationen, Subtraktionen und Additionen notig sind. Eine Division, die die Rechenleistung eines kostengünstigen Mikrokontrollers übermäßig stark beanspruchen wurde, ist nicht erforderlich.
Vorteilhafte Ausgestaltungen der Erfindung sind in den Ansprüchen gekennzeichnet.
Die Erfindung wird nachfolgend anhand der Zeichnung naher beschrieben. Die Zeichnung zeigt:
Fig. 1 eine schematische Darstellung einer Vorrichtung zur Durchfuhrung des erfmdungsgemaßen Verfahrens,
Fig. 2 eine schematische Schnittdarstellung eines NOx- Meßaufnehmers und
Fig. 3 ein schematisches Flußdiagramm zur Durchfuhrung des erfmdungsgemaßen Verfahrens.
In Fig. 2 ist ein Schnitt durch einen NOx-Meßaufnehmer 1 schematisch dargestellt. Dieser Meßaufnehmer 1 wird in der in Fig. 1 dargestellten Vorrichtung als Meßaufnehmer 24 zur Be- Stimmung der NOx-Konzentration im Abgastrakt 27 einer Brennkraftmaschine 20 verwendet. Dazu werden die Meßwerte des NOx- Meßaufnehmers 24 von einer Steuereinheit 23 ausgelesen, die mit dem NOx-Meßaufnehmer 24 verbunden ist, und einem Be- triebssteuergerat 25 der Brennkraftmaschine 20 zugeführt, das ein Kraftstoffzufuhrsystem 21 der Brennkraftmaschine 20 so ansteuert, daß ein NOx-reduzierender Katalysator 28, der in diesem Fall stromauf des NOx-Meßaufnehmers 24 im Abgastrakt 27 der Brennkraftmaschine 20 liegt, optimales Betriebsverhal- ten zeigt.
Der Meßaufnehmer 24, 1 ist in Fig. 2 detaillierter dargestellt. Der aus einem Festkorperelektrolyten 2, m diesem Fall Zr02 bestehende Meßaufnehmer 1 nimmt über eine Diffusi- onsbarπere 3 das zu messende Abgas auf, dessen NOx- Konzentration bestimmt werden soll. Das Abgas diffundiert durch die Diffusionsbarriere 3 in eine erste Meßzelle 4. Der Sauerstoffgehalt in dieser Meßzelle wird durch Abgriff einer Nernstspannung zwischen einer ersten Elektrode 5 und einer Umgebungsluft ausgesetzten Referenzelektrode 11 gemessen. Dabei ist die Referenzelektrode 11 m einem Luftkanal 12 angeordnet, in den über eine Öffnung 14 Umgebungsluft gelangt.
Die abgegriffene Nernstspannung wird einem als Regler C0 die- nenden 8-Bιt MikroController zugeführt, der eine Stellspannung VSO bereitstellt. Diese steuert eine spannungsgesteuerte Stromquelle UI0 an, die einen ersten Sauerstofflonen- Pumpstrom IP0 durch den Festkorperelektrolyten 2 des Meßaufnehmers 1 zwischen der ersten Elektrode 5 und einer Außen- elektrode 6 treibt. Dabei wird mittels der Stellspannung VSO vom Regler C0 m der ersten Meßzelle 4 eine vorbestimmte Sauerstoffkonzentration eingeregelt. Diese wird über die Nernstspannung zwischen der Elektrode 5 und der Referenzelektrode 11 gemessen, so daß der Regelkreis des Reglers C0 geschlossen ist. Der erste Sauerstofflonen-Pumpstrom ist ein Maß für das Luftverhaltnis im Abgas, wie von Lambda-Sonden bekannt ist. Die beschriebene Schaltkreisanordnung stellt so in der ersten Meßzelle 4 eine vorbestimmte Sauerstoffkonzentration ein. Die zweite Meßzelle 8 ist mit der ersten Meßzelle 4 über eine weitere Diffusionsbarriere 7 verbunden. Durch diese Diffusi- onsbarriere 7 diffundiert das in der ersten Meßzelle 4 vorhandene Gas in die zweite Meßzelle 8. In der zweiten Meßzelle wird über eine Schaltkreisanordnung eine zweite Sauerstoffkonzentration eingestellt. Dazu wird zwischen einer zweiten Elektrode 9 und der Referenzelektrode 11 eine zweite Nernst- Spannung abgegriffen und einem Regler Cl zugeführt, der eine zweite Stellspannung VS1 bereitstellt, mit der eine zweite spannungsgesteuerte Stromquelle Uli angesteuert wird. Die Schaltkreisanordnung zum Treiben des Sauerstoffionen- Pumpstroms IP1 aus der zweiten Meßzelle 8 heraus entspricht somit der Schaltkreisanordnung für die erste Meßzelle 4.
Die Schaltkreisanordnung treibt den Sauerstoffionen-Pumpstrom IP1 so, daß sich in der zweiten Meßzelle 8 eine vorbestimmte Sauerstoffkonzentration einstellt .
Diese Sauerstoffkonzentration wird dabei so gewählt, daß NOx von den ablaufenden Vorgängen nicht betroffen ist, insbesondere keine Zersetzung stattfindet. Das NOx wird nun an der Meßelektrode 10, die katalytisch ausgestaltet sein kann, in einem dritten Sauerstoffionen-Pumpstrom IP2 von der Meßelektrode 10 zur Außenelektrode 6 hin gepumpt. Da der Restsauerstoffgehalt in der Meßzelle 8 ausreichend abgesenkt ist, wird dieser Sauerstoffionen-Pumpstrom IP2 im wesentlichen nur von Sauerstoffionen getragen, die aus der Zersetzung von NOx an der Meßelektrode 10 stammen. Der Pumpstrom IP2 ist somit ein Maß für die NOx-Konzentration in der Meßzelle 8 und somit im zu messenden Abgas.
Dieser Pumpstrom IP2 wird wie die vorherigen Pumpströme von einer spannungsgesteuerten Stromquelle UI2 getrieben, deren Stellspannung VS2 von einem Regler C2 vorgegeben wird, der die Nernstspannung zwischen der der Meßelektrode 10 und der Referenzelektrode 11 abgreift und durch Vorgabe der Stellspannung VS2 eine vorbestimmte Nernstspannung einregelt.
Der Restsauerstoffgehalt der Meßzelle 8 ist jedoch nur ldeal- erweise Null, da ein Schlupf von Sauerstoff von der ersten in die zweite Meßzelle immer noch eine Abhängigkeit der gemessenen NOx-Konzentration von der Sauerstoffkonzentration im Abgas bewirkt.
Diese Abhängigkeit wird nun rechnerisch nach dem in Fig. 3 schematisch dargestellten Verfahren korrigiert. Zuerst wird aus dem ersten Sauerstoffionen-Pumpstrom IPO in der ersten Meßzelle 4 ein SauerstoffSignal 1/LAM gewonnen, welches das Luftverhaltnis im Abgas ausdruckt. Die Umwandlung des ersten Sauerstoffionen-Pumpstroms IPO erfolgt dabei mit einer Kennlinie 15 oder einem Kennfeld, das jedem Strom einen 1/λ-Wert, der m diesem Fall das Luftverhaltnissignal 1/LAM ist, zuordnet. Die Kennlinie 15 wurde zuvor für den jeweiligen Meßaufnehmer 1 in einer Kalibπermessung bestimmt.
Dieses Luftverhaltnissignal 1/LAM wird mit einer weiteren Kennlinie 16 m einen Meßfehler NOx_D umgesetzt. Die Kennlinie 16 wurde aus einer entsprechenden Kalibriermessung des Meßaufnehmers 1 gewonnen und druckt den Zusammenhang zwischen Meßfehler und 1/LAM aus.
Für den Fall, daß sich ein funktionaler Zusammenhang zwischen Meßfehler NOx_D und Luftverhaltnissignal 1/LAM finden laßt, wird die Umsetzung per Kennlinie durch eine Umrechnung per funktionalem Zusammenhang ersetzt. Wird als Luftverhaltnissignal der 1/λ-Wert genommen, ergibt sich ein weitgehend linearer Zusammenhang. Kann man sich nicht auf einen solchen wesentlich linearen Zusammenhang stutzen, ist anstatt einer Funktion die Kennlinie 16 hinterlegt. Im folgenden wird je- doch davon ausgegangen, daß der 1/λ-Wert als Luftverhaltnissignal 1/LAM verwendet wird und somit die Stutzung auf einen weitgehend linearen Zusammenhang erfolgt. Dann kann durch einfache Multiplikation des Wertes des Luftverhältnissignals 1/LAM mit einem Multiplikationsfaktor sowie Addition eines Additionsfaktors ein Meßfehler N0x_D erhalten werden. Durch eine einfache Multiplikation dieses dann beispielsweise als Korrekturmultiplikator realisierten Meßfehlers N0x_D in der Rechenoperation 17 mit der gemessenen NOx-Konzentration NOx-M erhält man die korrigierte NOx-Konzentration NOx_C.
Dabei wird weder bei der Bestimmung des Meßfehlers NOx_D aus dem Luftverhaltnissignal 1/LAM noch bei der Berechnung der korrigierten NOx-Konzentration NOx_C eine Division erforderlich, die in der Regel eine Gleitkommaarithmetik mit sich brächte und deshalb einen aufwendigen Mikrokontroller erforderte. Stattdessen kann ein einfacher kostengünstiger Mikro- kontroller verwendet werden.
Ist es nicht möglich, sich bei der Bestimmung des Meßfehlers NOx_D aus dem Luftverhaltnissignal 1/LAM auf einen weitgehend linearen Zusammenhang zu stützen, sondern wird eine Kennlinie 16 eingesetzt, kann man die Kennlinie 15 mit dieser Kennlinie 16 vereinigen, so daß direkt aus dem ersten Sauerstoffionen- Pumpstrom IPO der Meßfehler N0x_D, beispielsweise als Mul- tiplikations- oder Additionskorrekturfaktor erhalten wird. Dann fällt ein Arbeitsschritt weg, da auf die Generierung des Luftverhältnissignals 1/LAM verzichtet wird. Benötigt man allerdings dieses Luftverhaltnissignal 1/LAM, beispielsweise für andere Steuerungs- oder Regelungsfunktionen beim Betrieb der Brennkraftmaschine, kann es natürlich dennoch aus dem ersten Sauerstoffionen-Pumpstrom IPO erzeugt werden.

Claims

Patentansprüche
1. Verfahren zur Bestimmung der NOx-Konzentration im Abgas einer Brennkraftmaschine mittels eines Meßaufnehmers mit
- einer ersten Meßzelle, in die ein Teil des Abgases eingeführt wird und in der eine erste Sauerstoffkonzentration durch einen Sauerstoffionen-Pumpstrom eingestellt wird,
- einer zweiten Meßzelle, die mit der ersten Meßzelle verbun- den ist und m der eine zweite Sauerstoffkonzentration eingestellt wird, wobei
- die NOx-Konzentration in der zweiten Meßzelle gemessen wird, d a d u r c h g e k e n n z e i c h n e t, daß a) aus dem Sauerstoffionen-Pumpstrom ein Luftverhaltnissignal bestimmt wird, das eine Funktion des λ-Wertes des Abgases wiedergibt, b) aus dem Luftverhaltnissignal ein Meßfehler bestimmt wird, der die Abweichung der gemessenen NOx-Konzentration von der wahren NOx-Konzentration wiedergibt, und c) die gemessene NOx-Konzentration um den Meßfehler korrigiert wird.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e ic h n e t, daß der Zusammenhang zwischen Luftverhaltnissignal und Meßfehler in einer Kalibriermessung bestimmt wird, in der der Meßaufnehmer verschiedenen Gasgemischen ausgesetzt wird, und der Meßfehler erfaßt und m Form eines Kennfeldes oder einer Kennlinie oder eines funktionalen Zusammenhangs beschrieben wird, wobei m den Gasgemischen mindestens λ-Wert und NOx- Konzentration variiert wird.
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, daß d e Korrektur im Schritt c) durch Multiplikations-Additions- und/oder Subtraktionsrechenoperationen erfolgt.
4. Verfahren nach einem der vorherigen Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß als Zusammenhang zwischen Luftverhaltnissignal und Meßfehler im Schritt b) eine weitgehend lineare Funktion verwendet wird.
5. Verfahren nach einem der vorherigen Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß im Schritt a) auf eine Kennlinie oder ein Kennfeld zugegriffen wird, um das Luftverhaltnissignal aus dem Sauerstoffionen-Pumpstrom zu bestimmen.
PCT/DE2000/004128 1999-11-25 2000-11-22 VERFAHREN ZUR BESTIMMUNG DER NOx-KONZENTRATION WO2001038864A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00989790A EP1232391A2 (de) 1999-11-25 2000-11-22 VERFAHREN ZUR BESTIMMUNG DER NOx-KONZENTRATION
JP2001540362A JP4746239B2 (ja) 1999-11-25 2000-11-22 NOx濃度を求める方法
US10/156,483 US6699383B2 (en) 1999-11-25 2002-05-28 Method for determining a NOx concentration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19956822A DE19956822B4 (de) 1999-11-25 1999-11-25 Verfahren zur Bestimmung der NOx-Konzentration
DE19956822.7 1999-11-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/156,483 Continuation US6699383B2 (en) 1999-11-25 2002-05-28 Method for determining a NOx concentration

Publications (2)

Publication Number Publication Date
WO2001038864A2 true WO2001038864A2 (de) 2001-05-31
WO2001038864A3 WO2001038864A3 (de) 2002-02-14

Family

ID=7930341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/004128 WO2001038864A2 (de) 1999-11-25 2000-11-22 VERFAHREN ZUR BESTIMMUNG DER NOx-KONZENTRATION

Country Status (6)

Country Link
US (1) US6699383B2 (de)
EP (1) EP1232391A2 (de)
JP (1) JP4746239B2 (de)
KR (1) KR100754535B1 (de)
DE (1) DE19956822B4 (de)
WO (1) WO2001038864A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8211293B2 (en) 2009-06-16 2012-07-03 Toyota Jidosha Kabushiki Kaisha Method of correcting NOx sensor and NOx-sensing device
CN102918245A (zh) * 2010-05-25 2013-02-06 五十铃自动车株式会社 Scr系统

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9700384D0 (sv) * 1997-02-04 1997-02-04 Biacore Ab Analytical method and apparatus
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US9155496B2 (en) 1997-03-04 2015-10-13 Dexcom, Inc. Low oxygen in vivo analyte sensor
US7657297B2 (en) 2004-05-03 2010-02-02 Dexcom, Inc. Implantable analyte sensor
US7899511B2 (en) 2004-07-13 2011-03-01 Dexcom, Inc. Low oxygen in vivo analyte sensor
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US6862465B2 (en) 1997-03-04 2005-03-01 Dexcom, Inc. Device and method for determining analyte levels
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
WO2002078512A2 (en) 2001-04-02 2002-10-10 Therasense, Inc. Blood glucose tracking apparatus and methods
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
DE10211781B4 (de) * 2002-03-16 2004-08-12 Innecken Elektrotechnik Gmbh & Co. Kg Verfahren und Einrichtung zur Überwachung und Regelung des Betriebes einer Brennkraftmaschine mit reduzierter NOx-Emission
US7134999B2 (en) * 2003-04-04 2006-11-14 Dexcom, Inc. Optimized sensor geometry for an implantable glucose sensor
WO2005010518A1 (en) * 2003-07-23 2005-02-03 Dexcom, Inc. Rolled electrode array and its method for manufacture
WO2007120442A2 (en) 2003-07-25 2007-10-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
WO2005012871A2 (en) * 2003-07-25 2005-02-10 Dexcom, Inc. Increasing bias for oxygen production in an electrode system
US7074307B2 (en) 2003-07-25 2006-07-11 Dexcom, Inc. Electrode systems for electrochemical sensors
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
US9135402B2 (en) 2007-12-17 2015-09-15 Dexcom, Inc. Systems and methods for processing sensor data
US8160669B2 (en) 2003-08-01 2012-04-17 Dexcom, Inc. Transcutaneous analyte sensor
US7774145B2 (en) * 2003-08-01 2010-08-10 Dexcom, Inc. Transcutaneous analyte sensor
US7519408B2 (en) * 2003-11-19 2009-04-14 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US8060173B2 (en) 2003-08-01 2011-11-15 Dexcom, Inc. System and methods for processing analyte sensor data
US8622905B2 (en) 2003-08-01 2014-01-07 Dexcom, Inc. System and methods for processing analyte sensor data
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US8615282B2 (en) 2004-07-13 2013-12-24 Dexcom, Inc. Analyte sensor
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
EP1711790B1 (de) * 2003-12-05 2010-09-08 DexCom, Inc. Kalibrationsmethoden für einen kontinuierlich arbeitenden analytsensor
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US20050182451A1 (en) * 2004-01-12 2005-08-18 Adam Griffin Implantable device with improved radio frequency capabilities
US7637868B2 (en) * 2004-01-12 2009-12-29 Dexcom, Inc. Composite material for implantable device
US8808228B2 (en) 2004-02-26 2014-08-19 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
DE102004016986B3 (de) * 2004-04-02 2005-10-06 Siemens Ag Vorrichtung und Verfahren zur Messung mehrerer Abgasbestandteile
US20050245799A1 (en) * 2004-05-03 2005-11-03 Dexcom, Inc. Implantable analyte sensor
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
US20060015020A1 (en) * 2004-07-06 2006-01-19 Dexcom, Inc. Systems and methods for manufacture of an analyte-measuring device including a membrane system
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US7783333B2 (en) 2004-07-13 2010-08-24 Dexcom, Inc. Transcutaneous medical device with variable stiffness
US7654956B2 (en) 2004-07-13 2010-02-02 Dexcom, Inc. Transcutaneous analyte sensor
WO2006127694A2 (en) 2004-07-13 2006-11-30 Dexcom, Inc. Analyte sensor
US8452368B2 (en) 2004-07-13 2013-05-28 Dexcom, Inc. Transcutaneous analyte sensor
US20060016700A1 (en) 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US20090076360A1 (en) 2007-09-13 2009-03-19 Dexcom, Inc. Transcutaneous analyte sensor
US8133178B2 (en) 2006-02-22 2012-03-13 Dexcom, Inc. Analyte sensor
DE102005056515A1 (de) * 2005-11-28 2007-05-31 Robert Bosch Gmbh Verfahren zur Erkennung der Diffusionsgaszusammensetzung in einer Breitband-Lambdasonde
US9757061B2 (en) 2006-01-17 2017-09-12 Dexcom, Inc. Low oxygen in vivo analyte sensor
US7920907B2 (en) 2006-06-07 2011-04-05 Abbott Diabetes Care Inc. Analyte monitoring system and method
US20080306434A1 (en) 2007-06-08 2008-12-11 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US9452258B2 (en) 2007-10-09 2016-09-27 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
US8290559B2 (en) 2007-12-17 2012-10-16 Dexcom, Inc. Systems and methods for processing sensor data
CA2715628A1 (en) 2008-02-21 2009-08-27 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
JP4874282B2 (ja) * 2008-03-20 2012-02-15 株式会社デンソー ガスセンサ制御装置
US8396528B2 (en) 2008-03-25 2013-03-12 Dexcom, Inc. Analyte sensor
DE102008038224B3 (de) * 2008-08-18 2010-05-12 Continental Automotive Gmbh Verfahren und Vorrichtung zum Überprüfen eines Abgassensors
WO2010033724A2 (en) 2008-09-19 2010-03-25 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
JP5195615B2 (ja) * 2009-04-23 2013-05-08 トヨタ自動車株式会社 ガス濃度検出装置
CN111246797A (zh) 2017-10-24 2020-06-05 德克斯康公司 预连接分析物传感器
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0810430A2 (de) * 1996-05-31 1997-12-03 Ngk Spark Plug Co., Ltd Sensor und Verfahren zur Messung der Stickstoffoxidkonzentration
US5736028A (en) * 1993-11-08 1998-04-07 Ab Volvo Sensor and method for detecting oxides of nitrogen
EP0859232A2 (de) * 1997-02-13 1998-08-19 Ngk Spark Plug Co., Ltd Gerät zur Bestimmung der Stickoxidkonzentration

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3470012B2 (ja) * 1996-05-30 2003-11-25 日本碍子株式会社 ガス分析計及びその校正方法
JP3587282B2 (ja) * 1996-05-31 2004-11-10 日本特殊陶業株式会社 窒素酸化物濃度検出器
JP3338318B2 (ja) * 1996-11-29 2002-10-28 日本特殊陶業株式会社 NOxガス濃度検出器
JP3519228B2 (ja) * 1996-12-18 2004-04-12 日本特殊陶業株式会社 NOxガス濃度検出器
JP3328565B2 (ja) * 1996-12-02 2002-09-24 日本特殊陶業株式会社 NOxガス濃度検出器
JP3431822B2 (ja) * 1997-02-13 2003-07-28 日本特殊陶業株式会社 窒素酸化物濃度検出装置
DE69825813T2 (de) * 1997-03-21 2005-02-03 NGK Spark Plug Co., Ltd., Nagoya Verfahren und Vorrichtung zur Messung einer NOx-Gaskonzentration
JP3621827B2 (ja) * 1997-05-02 2005-02-16 日本特殊陶業株式会社 窒素酸化物濃度の測定方法及び測定装置
US6082176A (en) * 1997-06-13 2000-07-04 Ngk Spark Plug Co., Ltd. NOx-concentration detecting apparatus
DE19819462A1 (de) * 1998-04-30 1999-11-11 Siemens Ag Verfahren zur Bestimmung der NOx-Konzentration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5736028A (en) * 1993-11-08 1998-04-07 Ab Volvo Sensor and method for detecting oxides of nitrogen
EP0810430A2 (de) * 1996-05-31 1997-12-03 Ngk Spark Plug Co., Ltd Sensor und Verfahren zur Messung der Stickstoffoxidkonzentration
EP0859232A2 (de) * 1997-02-13 1998-08-19 Ngk Spark Plug Co., Ltd Gerät zur Bestimmung der Stickoxidkonzentration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8211293B2 (en) 2009-06-16 2012-07-03 Toyota Jidosha Kabushiki Kaisha Method of correcting NOx sensor and NOx-sensing device
CN102918245A (zh) * 2010-05-25 2013-02-06 五十铃自动车株式会社 Scr系统

Also Published As

Publication number Publication date
JP4746239B2 (ja) 2011-08-10
DE19956822A1 (de) 2001-06-07
EP1232391A2 (de) 2002-08-21
US6699383B2 (en) 2004-03-02
WO2001038864A3 (de) 2002-02-14
US20020179458A1 (en) 2002-12-05
DE19956822B4 (de) 2004-01-29
KR20020060760A (ko) 2002-07-18
JP2003515166A (ja) 2003-04-22
KR100754535B1 (ko) 2007-09-04

Similar Documents

Publication Publication Date Title
DE19956822B4 (de) Verfahren zur Bestimmung der NOx-Konzentration
DE3515588C2 (de)
DE102008000347B4 (de) Gassensor-Regelgerät
DE102005050269A1 (de) Verfahren zur Bestimmung der Lambda-Werte mit einer Breitband-Lambda-Sonde
DE3606045A1 (de) Luft/kraftstoff-verhaeltnissensor fuer brennkraftmaschinen
EP1105719B1 (de) Schaltungsanordnung zum regeln eines pumpstroms einer abgassonde in einem kraftfahrzeug
EP1105720A1 (de) Verfahren und vorrichtung zum kalibrieren eines sondensystems, bestehend aus einer abgassonde und einer regelschaltung für ein kraftfahrzeug
DE10342270B4 (de) Gaskonzentrationsdetektor
DE102006057305A1 (de) System und Verfahren zum Aktualisieren einer Basislinienausgabe eines Gassensors
EP1075657B1 (de) VERFAHREN ZUR BESTIMMUNG DER NOx-KONZENTRATION
DE102004016986B3 (de) Vorrichtung und Verfahren zur Messung mehrerer Abgasbestandteile
DE102018201266A1 (de) Verfahren zum Ermitteln eines angepassten Kompensationsfaktors eines amperometrischen Sensors und amperometrischer Sensor
WO2007031365A1 (de) Verfahren und vorrichtung zur bestimmung der gaskomponenten im abgas eines verbrennungsmotors
DE19907947B4 (de) Schaltung für einen NOx-Meßaufnehmer
DE102019004495A1 (de) Gassensor
DE19907946C2 (de) Schaltung für einen NOx-Meßaufnehmer
DE10161901A1 (de) Verfahren und Vorrichtung zur Kompensation des Offsets der linearen Sensorcharakteristik eines im Abgas einer Verbrennungskraftmaschine angeordneten Sensors
EP1084399B1 (de) Verfahren zur bestimmung der nox-konzentration
EP1079090B1 (de) Verfahren zur Kalibrierung einer in Verbrennungskraftmaschinen eingesetzten Breitband-Lambdasonde
DE19926505B4 (de) Schaltung und Betriebsverfahren für einen NOx-Meßaufnehmer
EP1104545B1 (de) Schaltungsanordnung zum generieren einer virtuellen masse als gemeinsames bezugspotential für eine abgassonde in einem kraftfahrzeug
DE102011005694A1 (de) Verfahren zur in-situ-Kalibrierung eines Sensorelements
EP2964937B1 (de) Verfahren und vorrichtung zur bestimmung des lambda-wertes mit einer breitband-lambda-sonde einer brennkraftmaschine insbesondere eines kraftfahrzeugs
DE10311816B4 (de) Vorrichtung und Verfahren zur Messung der NOx-Konzentration in einem Messgas
DE102010041809A1 (de) Verfahren zum Abgleich eines Sensorelements

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2000989790

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 540362

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020027006735

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10156483

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020027006735

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000989790

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000989790

Country of ref document: EP