EP1079090B1 - Verfahren zur Kalibrierung einer in Verbrennungskraftmaschinen eingesetzten Breitband-Lambdasonde - Google Patents

Verfahren zur Kalibrierung einer in Verbrennungskraftmaschinen eingesetzten Breitband-Lambdasonde Download PDF

Info

Publication number
EP1079090B1
EP1079090B1 EP00116857A EP00116857A EP1079090B1 EP 1079090 B1 EP1079090 B1 EP 1079090B1 EP 00116857 A EP00116857 A EP 00116857A EP 00116857 A EP00116857 A EP 00116857A EP 1079090 B1 EP1079090 B1 EP 1079090B1
Authority
EP
European Patent Office
Prior art keywords
correction value
internal combustion
lambda
combustion engine
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00116857A
Other languages
English (en)
French (fr)
Other versions
EP1079090A2 (de
EP1079090A3 (de
Inventor
Thomas Bizenberger
Michael Dipl.-Ing. Daetz
Hanno Dipl.-Ing. Jelden
Christoph Kielmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1079090A2 publication Critical patent/EP1079090A2/de
Publication of EP1079090A3 publication Critical patent/EP1079090A3/de
Application granted granted Critical
Publication of EP1079090B1 publication Critical patent/EP1079090B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2474Characteristics of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions

Definitions

  • the invention relates to a method for determining a lambda value.
  • lambda probes For detecting a ratio of an oxygen content and a fuel fraction in an air-fuel mixture (lambda value), it is known to arrange lambda probes in an exhaust gas passage of an internal combustion engine. Such lambda probes provide a signal corresponding to the lambda value of the exhaust gas. This signal is usually forwarded to an engine control unit, processed by this and used to control a composition of the fuel-air mixture (lambda control).
  • broadband lambda probes for example two-cell current limit probes
  • the exhaust gas must first overcome a diffusion barrier before it enters a measuring chamber.
  • the catalytically active electrodes are arranged as a concentration cell analogous to the jump lambda probe.
  • An output signal of this regulator controls a current through a second cell of the probe, a so-called pump cell.
  • this current brings about an oxygen transport out of the measuring chamber, and this corresponds to a diffusion current through the diffusion barrier after equilibrium has been established at the electrodes.
  • this also provides an output signal of the probe in the form of a measuring current which is proportional to the oxygen partial pressure in the exhaust gas.
  • reducing agents such as CO, HC or H 2 diffuse to an increasing extent through the diffusion barrier into the measuring chamber and react there on the catalytically active electrodes with the oxygen now brought up by the pump cell.
  • the flowing measurement stream is a function of a sum of the partial pressures of the reducing agents multiplied by their respective diffusion coefficients.
  • a disadvantage of such broadband lambda probes is that essential, a height of the measuring current influencing parameters are insufficient or not considered. It is thus known that the measuring current, apart from the exhaust gas composition, also depends on a geometry of the probe, a diffusion barrier porosity, a gas pressure and a temperature which prevails in the region of the probe. It is known to compensate for production-related tolerances, the output signal with a predetermined correction value to multiply (calibration). However, the parameters affecting the sensitivity of the probe will change due to aging effects or contamination during operation of the internal combustion engine.
  • a correction value for a broadband lambda probe is determined by first detecting an air mass flow in a stoichiometric operating point with known fuel mass. Subsequently, an additional air mass of the internal combustion engine is supplied via a bypass line while keeping the fuel mass constant. The correction value is dependent formed by the air mass flows, the measurement signals of the two operating points and the constant fuel mass. In order to mitigate the effects of the inevitable torque fluctuation, the method is carried out in steady-state operation, in particular at idle.
  • the object of the present invention is to provide a method which makes it possible to determine the lambda value of the exhaust gas of the internal combustion engine with long-term stability and with high accuracy and which determines the correction value of a broadband lambda probe at any operating point, in particular also in dynamic operation. allowed without unwanted torque fluctuations.
  • the predefinable correction value should also largely compensate for the operational tolerances.
  • the determination of the correction value advantageously takes place as a function of selected calibration parameters.
  • a temperature and / or a water content of an intake air of the internal combustion engine when determining the correction value. If, for example, the temperature of the intake air exceeds a limit temperature during the determination of the correction value, the calibration is aborted. In the same way can be moved when exceeding a predetermined threshold for the water content of the intake air, a pipe wall temperature or an exhaust gas temperature. These measures subsequently lead to an influence on a water gas content of the exhaust gas (CO and H 2 content). Of course, the water gas content can also be detected directly and thus a disturbing influence on the calibration of the lambda probe can be excluded.
  • a change from the operating point p 1 into the operating point p 2 with ⁇ > 1 of the internal combustion engine should preferably be effected by a measure which essentially influences the air mass flow, since an efficiency of the internal combustion engine changes only to a relatively small extent and the air mass flows are detected particularly accurately can.
  • 0.8 to 0.9
  • the determination of the correction value can be initiated periodically after a predeterminable period of time or takes place during a dynamic operation of the internal combustion engine, if two successive suitable operating points are reached by chance.
  • lambda probes For detecting a mixture composition of an air-fuel mixture, which serves by combustion a drive of an internal combustion engine, it is known to arrange lambda probes in an exhaust passage of the internal combustion engine. Location and shape of such lambda probes are known. The mode of operation will be explained briefly by way of example with reference to a two-cell limit current probe, a so-called broadband lambda probe.
  • the two-cell limit current probe essentially consists of a concentration cell and a pumping cell. Both cells are formed by partly catalytically active electrodes, wherein the concentration cell is associated with a measuring chamber. The exhaust gas enters the measuring chamber through a porous diffusion barrier.
  • An output signal of the controller controls a current through the pumping cell in such a way that in a lean operation of the internal combustion engine ( ⁇ > 1) an oxygen transport takes place out of the measuring chamber. After equilibration of the oxygen concentration at the catalytically active electrodes, this current is equal to a diffusion current through the diffusion barrier and serves as the output signal of the probe (measuring current). The measuring current is proportional to an oxygen partial pressure in the exhaust gas.
  • reducing agents such as CO, HC or H 2 additionally diffuse to an increased extent through the diffusion barrier into the measuring chamber.
  • the flowing stream is thus a function of the sums of the partial pressures of the reducing agents multiplied by their respective diffusion coefficients.
  • the internal combustion engine are usually associated with means which allow detection of an air mass flow and a supplied fuel mass within a predetermined injection time.
  • the air mass flow can be measured by an air mass meter or calculated based on an existing load signal, for example, an intake manifold pressure.
  • An accuracy of the available air mass meter is better than 3% of the measured value as long as the pulsation amplitudes of an intake air are sufficiently small.
  • the determination of the correction value k w in the lean operation takes place taking into account the following conditions:
  • X (O 2 ) 1 indicates a residual oxygen content of the exhaust gas at the operating point p 1 .
  • the residual oxygen content may indicate an excess of oxygen or an oxygen deficiency with respect to a stoichiometric ratio after the catalytic reaction at the electrodes.
  • k st a ratio of the air mass flow m L1 to the fuel mass m K1 supplied within the injection time t 1 results in the lambda value ⁇ 1 at the operating point p 1 .
  • ⁇ 1 m L 1 m K 1 ⁇ k s t
  • the supplied fuel mass m K1 during the injection time t 1 at the operating point p 1 can be expressed as a product of the injection time t 1 and a proportionality factor kin.
  • m K 1 k in ⁇ t 1
  • the change from the operating point P 1 to the operating point p 2 of the internal combustion engine should be effected as far as possible by means of a measure which essentially influences the air mass flow m L1 , since a change in the efficiency of the internal combustion engine is relatively small.
  • an optionally necessary change in the supplied fuel mass m K1 essentially serves to compensate for a power change of the internal combustion engine.
  • This equation is described, for example, by Pischinger et al. in "Thermodynamics of the internal combustion engine", Springer Verlag, stated.
  • the lambda value ⁇ 2 for the operating point p 2 via the equation ⁇ 2 m L 2 m K 2 ⁇ k s t again defined as a ratio of an air mass flow m L2 to a fuel mass m K2 supplied over an injection time t 2 .
  • lambdageregelt can also be performed by such a calibration of the lambda probe and a lean operation of the internal combustion engine. Furthermore, known monitoring functions which detect, for example, a conversion rate of a catalytic converter arranged in the exhaust gas duct in the internal combustion engine can be carried out much more accurately.
  • correction value k W taking into account calibration parameters such as a position of the measurement signal, a predeterminable Meßsignal Scheme, a temperature or water content of an intake air, a temperature or a predetermined temperature range of the lambda probe, a water gas content or temperature of the exhaust gas or a combination thereof.
  • equations established in advance in connection with the determination of the correction value k w for the lean operation also apply. Only the residual oxygen content according to equation (VI) must be adjusted accordingly, since in lean operation, as is known, there is an excess of oxygen and, in the case of rich operation, an oxygen deficiency. This can be calculated in a known manner, taking into account a water gas equilibrium for the proportions of the exhaust gas of CO, H 2 , H 2 O and CO 2 .
  • the oxygen flow corresponds in height to the diffusion flow of CO and H 2 , so that ultimately results in a measuring current I 2 , which corresponds to the exhaust gas fractions of CO and H 2 multiplied by their respective diffusion coefficients, and from which a correction value k w for the Fat operation can be calculated.
  • correction values determined such k w can be redefined to take into account aging or contamination of the lambda probe periodically after a predeterminable period of time. It is also conceivable that the determination of the correction values k w takes place during a dynamic operation of the internal combustion engine as a result of two randomly successive, suitable operating points.
  • the temperature of the intake air during calibration should not be above a predefinable limit temperature.
  • the limit temperature is 35 ° C, since below this temperature, the water gas content of the intake air is negligible.
  • the determination of the correction value can be aborted if the water content of the intake air is above a predefinable threshold value.
  • the calibration should also only take place if the exhaust gas temperature in the region of the lambda probe during the determination of the correction value k w is above a predefinable threshold value.
  • the exhaust gas temperature may be detected directly with an exhaust gas temperature sensor or calculated from the engine operating data via a model.
  • a pipe wall temperature between the exhaust valves of the internal combustion engine and the installation location of the lambda probe should also be above a threshold value.
  • the threshold value for the exhaust gas temperature and the pipe wall temperature are preferably chosen such that the calibration is carried out only from a temperature above 60 ° C, in particular 100 ° C. At a temperature of> 60 ° C of the exhaust gas, the dew point of the exhaust gas is safely exceeded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Testing Of Engines (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Ermittlung eines Lambdawertes.
  • Zur Erfassung eines Verhältnisses eines Sauerstoffanteils und eines Kraftstoffanteils in einem Luft-Kraftstoff-Gemisch (Lambdawert) ist es bekannt, in einem Abgaskanal einer Verbrennungskraftmaschine Lambdasonden anzuordnen. Derartige Lambdasonden stellen ein Signal entsprechend dem Lambdawert des Abgases zur Verfügung. Dieses Signal wird üblicherweise an ein Motorsteuergerät weitergeleitet, von diesem verarbeitet und zur Steuerung einer Zusammensetzung des Kraft-Luftstoff-Gemisches genutzt (Lambdaregelung).
  • In der Praxis finden im Wesentlichen zwei verschiedene Bautypen von Lambdasonden Anwendung. Zum einen stellen so genannte Sprung-Lambdasonden das Signal in Form einer elektrischen Spannung zur Verfügung, die sich entsprechend einer Gleichgewichtssauerstoffkonzentration zwischen zwei katalytisch aktiven Elektroden der Sonde einstellt. Da sich die Gleichgewichtssauerstoffkonzentration im Bereich bei λ = 1 (stöchiometrischer Betrieb) um mehrere Zehnerpotenzen ändert, zeigt eine solche Sprung-Lambdasonde einen sehr steilen und stabilen Kennlinienverlauf für den stöchiometrischen Bereich. Dagegen ist nachteilig, dass der Kennlinienverlauf in Bereichen mit λ ≠ 1 sehr flach verläuft. Somit ist eine Regelung eines Arbeitsmodus der Verbrennungskraftmaschine in einem Magerbetrieb (λ > 1) oder Fettbetrieb (λ < 1) stark erschwert oder nicht möglich.
  • Alternativ hierzu finden in der Praxis so genannte Breitband-Lambdasonden, beispielsweise Zweizellen-Grenzstromsonden, Anwendung. Hierbei muss das Abgas zunächst eine Diffusionsbarriere überwinden, bevor es in eine Messkammer eintritt. In der Messkammer sind analog der Sprung-Lambdasonde die katalytisch aktiven Elektroden als eine Konzentrationszelle angeordnet. Eine Ausgangsspannung dieser Konzentrationszelle wird bei den Breitband-Lambdasonden einem Regler zugeführt und mit einer Spannung verglichen, die üblicherweise der Gleichgewichtssauerstoffkonzentration bei λ = 1 entspricht. Ein Ausgangssignal dieses Reglers steuert einen Strom durch eine zweite Zelle der Sonde, einer so genannten Pumpzelle. Dieser Strom bewirkt im Magerbetrieb einen Sauerstofftransport aus der Messkammer heraus, wobei dieser nach einer Gleichgewichtseinstellung an den Elektroden einem Diffusionsstrom durch die Diffusionsbarriere entspricht. Damit steht aber auch ein Ausgangssignal der Sonde in Form eines Messstromes zur Verfügung, das proportional zum Sauerstoffpartialdruck im Abgas ist.
  • Im Fettbetrieb diffundieren in einem vermehrten Maße Reduktionsmittel wie CO, HC oder H2 durch die Diffusionsbarriere in die Messkammer und reagieren dort an den katalytisch aktiven Elektroden mit dem jetzt von der Pumpzelle herangeführten Sauerstoff. Der fließende Messstrom ist eine Funktion einer Summe der Partialdrücke der Reduktionsmittel multipliziert mit ihren jeweiligen Diffusionskoeffizienten. Derartige Breitband-Lambdasonden ermöglichen eine Messung des Lambdawertes in einem Bereich von λ = 0,7 bis ∞.
  • Nachteilig an derartigen Breitband-Lambdasonden ist es, dass wesentliche, eine Höhe des Messstromes beeinflussende Parameter nur unzureichend oder gar nicht berücksichtigt werden. So ist bekannt, dass der Messstrom außer von der Abgaszusammensetzung auch von einer Geometrie der Sonde, einer Porosität der Diffusionsbarriere, einem Gasdruck und einer Temperatur, die im Bereich der Sonde herrscht, abhängt. Es ist bekannt, zum Ausgleich von fertigungsbedingten Toleranzen das Ausgangssignal mit einem vorgebbaren Korrekturwert zu multiplizieren (Kalibrierung). Allerdings ändern sich die eine Empfindlichkeit der Sonde beeinflussenden Parameter infolge von Alterungseffekten oder durch Verschmutzung während eines Betriebs der Verbrennungskraftmaschine.
  • Gemäß US 4,751,907 A wird ein Korrekturwert für eine Breitband-Lambdasonde bestimmt, indem zunächst in einem stöchiometrischen Betriebspunkt bei bekannter Kraftstoffmasse ein Luftmassenstrom erfasst wird. Nachfolgend wird über eine Bypassleitung eine zusätzliche Luftmasse der Verbrennungskraftmaschine unter Konstanthaltung der Kraftstoffmasse zugeführt. Der Korrekturwert wird in Abhängigkeit von den Luftmassenströmen, den Messsignalen der beiden Betriebspunkte sowie der konstanten Kraftstoffmasse gebildet. Um die Auswirkungen der zwangsläufig erfolgenden Momentenschwankung abzuschwächen, wird das Verfahren im stationären Betrieb durchgeführt, insbesondere im Leerlauf.
  • Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Verfügung zu stellen, das es ermöglicht, den Lambdawert des Abgases der Verbrennungskraftmaschine langzeitstabil und mit einer hohen Genauigkeit zu bestimmen und das die Bestimmung des Korrekturwertes einer Breitbandlambdasonde in beliebigen Betriebspunkten, insbesondere auch im dynamischen Betrieb, ohne unerwünschte Momentenfluktuationen erlaubt. Dabei soll der vorgebbare Korrekturwert auch die betriebsbedingten Toleranzen weitestgehend ausgleichen.
  • Erfindungsgemäß wird diese Aufgabe durch das Verfahren zur Ermittlung eines Lambdawertes einer Lambdasonde mit den im Anspruch 1 genannten Merkmalen gelöst. Dadurch, dass zur Festlegung des Korrekturwertes
    • (a) in einem ersten, stöchiometrischen Betriebspunkt p1 der Verbrennungskraftmaschine, an der die Lambdasonde ein erstes Messsignal I, entsprechend einem Lambdawert λ = 1 anzeigt, eine zugeführte Kraftstoffmasse mK1 und ein Luftmassenstrom mL1 erfasst wird,
    • (b) nachfolgend ein zweiter, magerer oder fetter Betriebspunkt p2 der Verbrennungskraftmaschine mit λ ≠ 1 im Wesentlichen durch Änderung des Luftmassenstroms mL eingestellt wird, wobei die zugeführte Kraftstoffmasse mK beim Betriebspunktwechsel im Wesentlichen so verändert wird, dass eine Leistungsänderung der Verbrennungskraftmaschine kompensiert wird,
    • (c) in dem zweiten Betriebspunkt p2 eine Kraftstoffmasse mK2 und ein Luftmassenstrom mL2 erfasst wird, und
    • (d) in Abhängigkeit von den Luftmassenströmen mL1, mL2 und den Kraftstoffmassen mK1, mK2des ersten und zweiten Betriebspunkts p1, p2 der Korrekturwert kw für den Lambdawert des Betriebspunktes p2 gebildet wird,
    ist es möglich, eine genaue Bestimmung des Lambdawertes langzeitstabildurchzuführen und die Kalibrierung der Lambdasonde in beliebigen Betriebspunkten unter weitgehender Unterdrückung von Momentenschwankungen durchzuführen.
  • Die Festlegung des Korrekturwertes erfolgt vorteilhafterweise in Abhängigkeit von ausgewählten Kalibrierungsparametern. So ist es denkbar, eine Temperatur und/oder einen Wassergehalt einer Ansaugluft der Verbrennungskraftmaschine bei der Ermittlung des Korrekturwertes zu berücksichtigen. Überschreitet beispielsweise die Temperatur der Ansaugluft während der Festlegung des Korrekturwertes eine Grenztemperatur, so erfolgt ein Abbruch der Kalibrierung. In gleicher Weise kann beim Überschreiten eines vorgebbaren Schwellenwertes für den Wassergehalt der Ansaugluft, eine Rohrwandtemperatur oder eine Abgastemperatur verfahren werden. Diese Maßnahmen führen nachfolgend zu einer Beeinflussung eines Wassergasgehalts des Abgases (CO- und H2-Gehalt). Selbstverständlich kann der Wassergasgehalt auch direkt erfasst werden und somit ein störender Einfluss auf die Kalibrierung der Lambdasonde ausgeschlossen werden.
  • Vorteilhaft ist ferner, die Lage des Messsignals oder des vorgebbaren Messsignalbereichs bei der Kalibrierung zu berücksichtigen. So ist es sinnvoll, unterschiedliche Korrekturwerte im Magerbetrieb oder Fettbetrieb der Verbrennungskraftmaschine für die Ermittlung des Lambdawertes zu verwenden. Daneben können Kalibrierungsparameter, wie die Temperatur oder der vorgebbare Temperaturbereich der Lambdasonde, bei der Kalibrierung der Lambdasonde berücksichtigt werden.
  • Ein Wechsel von dem Betriebspunkt p1 in den Betriebspunkt p2 mit λ > 1 der Verbrennungskraftmaschine soll bevorzugt durch eine im Wesentlichen den Luftmassenstrom beeinflussende Maßnahme erfolgen, da sich dabei ein Wirkungsgrad der Verbrennungskraftmaschine nur in relativ geringem Umfang ändert und die Luftmassenströme besonders exakt erfasst werden können. Vorteilhafterweise kann ein Wechsel auf einen Betriebspunkt p2 mit λ < 1 (Fettbetrieb) ausschließlich durch die Änderung der Kraftstoffmasse mK1 erzwungen werden, wenn der Betriebspunkt p2 in einem Lambdabereich von λ = 0,8 bis 0,9 liegt. Erfahrungsgemäß findet sich in diesem Lambdabereich ein Betriebspunkt mit äquivalenten Leistungen wie im stöchiometrischen Betrieb mit λ = 1. Insgesamt lässt sich auf diese Weise die Kalibrierung der Lambdasonde mit besonders geringen Toleranzen durchführen.
  • Die Festlegung des Korrekturwertes kann periodisch nach Ablauf einer vorgebbaren Zeitspanne initiiert werden oder erfolgt während eines dynamischen Betriebs der Verbrennungskraftmaschine, wenn zufällig zwei aufeinander folgende geeignete Betriebspunkte erreicht werden.
  • Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.
  • Die Erfindung wird nachfolgend in einem Ausführungsbeispiel erläutert.
  • Zur Erfassung einer Gemischzusammensetzung eines Luft-Kraftstoff-Gemisches, das durch Verbrennung einem Antrieb einer Verbrennungskraftmaschine dient, ist es bekannt, Lambdasonden in einem Abgaskanal der Verbrennungskraftmaschine anzuordnen. Lage und Form derartiger Lambdasonden sind bekannt. Die Funktionsweise soll beispielhaft kurz anhand einer Zweizellen-Grenzstromsonde, einer sogenannten Breitband-Lambdasonde, erläutert werden.
  • Die Zweizellen-Grenzstromsonde besteht im wesentlichen aus einer Konzentrationszelle und einer Pumpzelle. Beide Zellen werden durch teils katalytisch aktive Elektroden gebildet, wobei der Konzentrationszelle eine Meßkammer zugeordnet ist. Durch eine poröse Diffusionsbarriere gelangt das Abgas in die Meßkammer. Dabei wird ein Ausgangssignal der Konzentrationszelle in Form einer elektrischen Spannung in Abhängigkeit von einer Gleichgewichtssauerstoffkonzentration eingestellt. Diese Ausgangsspannung der Konzentrationszelle wird einem Regler zugeführt und in diesem mit einer Spannung von üblicherweise 450 mV verglichen, die der Gleichgewichtssauerstoffkonzentration bei λ = 1 entspricht.
  • Die Gleichgewichtssauerstoffkonzentration ändert sich bei einem Übergang von einem Lambdawert von knapp über 1 zu einem Lambdawert knapp unter 1 und umgekehrt um mehrere Zehnerpotenzen, so daß sich das resultierende Meßsignal in der Konzentrationszelle stark ändert. Aufgrund dessen besitzt die Lambdasonde in dem Bereich um λ = 1 eine sehr hohe Genauigkeit.
  • Ein Ausgangssignal des Reglers steuert einen Strom durch die Pumpzelle und zwar derart, daß in einem Magerbetrieb der Verbrennungskraftmaschine (λ > 1) ein Sauerstofftransport aus der Meßkammer heraus erfolgt. Nach einer Gleichgewichtseinstellung der Sauerstoffkonzentration an den katalytisch aktiven Elektroden ist dieser Strom gleich einem Diffusionsstrom durch die Diffusionsbarriere und dient als Ausgangssignal der Sonde (Meßstrom). Der Meßstrom ist dabei proportional einem Sauerstoffpartialdruck im Abgas.
  • Im Fettbetrieb (λ < 1) diffundieren zusätzlich in einem vermehrten Maße Reduktionsmittel wie CO, HC oder H2 durch die Diffusionsbarriere in die Meßkammer. An den katalytisch aktiven Elektroden findet eine Oxidation der Reduktionsmittel durch den von der Pumpzelle herangeführten Sauerstoff statt. Der fließende Strom ist somit eine Funktion der Summen der Partialdrücke der Reduktionsmittel, multipliziert mit ihren jeweiligen Diffusionskoeffizienten. Mit geeigneten Kennlinien und unter der vereinfachenden Annahme, daß der Einfluß der Reduktionsmittel im wesentlichen auf ein im Gleichgewicht stehendes Wassergas (CO- und H2-Anteil) zurückzuführen ist, kann auf diese Weise ein Lambdawert ermittelt werden. Insgesamt ermöglicht eine solche Zweizellen-Grenzstromsonde eine Messung des Lambdawertes des Abgases einer Verbrennungskraftmaschine in einem weiten Bereich von λ = 0,7 bis ∞.
  • Eine zusätzliche Kalibrierung der Lambdasonde ist jedoch notwendig, um störende Einflüsse, wie beispielsweise geometrische Eigenschaften, eine Porosität der Diffusionsbarriere, einen Gasdruck oder eine Temperatur der Sonden auf den Meßstrom zu verhindern. Es ist daher bekannt, zum Ausgleich von fertigungsbedingten Toleranzen das Meßsignal mit einem einstellbaren Korrekturwert kw zu multiplizieren. Unberücksichtigt dabei bleibt allerdings, daß Verschmutzungen oder Alterungseffekte zu einem Drift des Meßsignals führen können und betriebsbedingte Toleranzen unberücksichtigt bleiben.
  • Der Verbrennungskraftmaschine sind üblicherweise Mittel zugeordnet, die eine Erfassung eines Luftmassenstroms und einer zugeführten Kraftstoffmasse innerhalb einer vorgebbaren Einspritzzeit ermöglichen. Der Luftmassenstrom kann von einem Luftmassenmesser gemessen oder anhand eines vorhandenen Lastsignals, zum Beispiel einem Saugrohrdruck, berechnet werden. Eine Genauigkeit der verfügbaren Luftmassenmesser ist besser als 3 % vom Meßwert, solange die Pulsationsamplituden einer Ansaugluft ausreichend klein sind.
  • In dem erfindungsgemäßen Verfahren erfolgt die Festlegung des Korrekturwertes kw in dem Magerbetrieb unter der Berücksichtigung folgender Bedingungen:
  • Zunächst wird an einem Betriebspunkt p1 mit λ1 = 1 innerhalb einer Einspritzzeit t1 eine Kraftstoffmasse mK1 und ein Luftmassenstrom mL1 erfaßt. Für den Meßstrom I1 der Zweizellen-Grenzstromsonde gilt: I 1 = k w X ( O 2 ) 1
    Figure imgb0001
  • X(O2)1 gibt einen Restsauerstoffgehalt des Abgases im Betriebspunkt p1 an. Der Restsauerstoffgehalt kann nach der katalytischen Reaktion an den Elektroden dabei einen Sauerstoffüberschuß oder einen Sauerstoffmangel in Bezug auf ein stöchiometrisches Verhältnis anzeigen. Unter stöchiometrischen Bedingungen, also bei λ = 1, ist X(O2)1 zu vernachlässigen. Unter Berücksichtigung eines stöchiometrischen Faktors kst ergibt ein Verhältnis des Luftmassenstroms mL1 zur innerhalb der Einspritzzeit t1 zugeführten Kraftstoffmasse mK1 den Lambdawert λ1 im Betriebspunkt p1. λ 1 = m L 1 m K 1 k s t
    Figure imgb0002
  • Ferner kann die zugeführte Kraftstoffmasse mK1 während der Einspritzzeit t1 am Betriebspunkt p1 als Produkt der Einspritzzeit t1 und einem Proportionalitätsfaktor kin ausgedrückt werden. m K 1 = k in t 1
    Figure imgb0003
  • Über die Lambdaregelung wird mit der Einspritzzeit t1 die Kraftstoffmasse mK1 so eingestellt, daß die Lambdasonde einen Lambdawert von λ = 1 anzeigt. Die Genauigkeit der Lambdasonde ist bei λ = 1 besonders hoch, da nach katalytischer Reaktion kein Restsauerstoffüberschuß oder Sauerstoffmangel vorhanden ist. Fehler in der Empfindlichkeit, die über den Korrekturwert kw ausgeglichen werden sollen, spielen in dem Betriebspunkt p1 damit keine Rolle, so daß davon ausgegangen werden kann, daß der Lambdawert mit λ1 = 1 mit hoher Genauigkeit eingestellt werden kann. Der Proportionalitätsfaktor kin kann aus den vorhandenen Meßwerten mit guter Genauigkeit ermittelt werden und ergibt sich aus den Gleichungen (II) und (III). k in = m L 1 t 1 k s t
    Figure imgb0004
  • Nachfolgend findet ein Wechsel in einen zweiten Betriebspunkt p2 der Verbrennungskraftmaschine mit λ ≠ 1 beispielsweise mit λ2 = 2 (Magerbetrieb) statt. Der Wechsel von dem Betriebspunkt P1 in den Betriebspunkt p2 der Verbrennungskraftmaschine soll dabei möglichst durch eine im wesentlichen den Luftmassenstrom mL1 beeinflussende Maßnahme erfolgen, da hier eine Änderung eines Wirkungsgrades der Verbrennungskraftmaschine relativ gering ist. Gleichzeitig dient eine gegebenenfalls notwendige Änderung der zugeführten Kraftstoffmasse mK1 im wesentlichen zur Kompensation einer Leistungsänderung der Verbrennungskraftmaschine. Dabei gilt für den Meßstrom I2: I 2 = k w X ( O 2 ) 2
    Figure imgb0005

    wobei der Restsauerstoffgehalt X(O2)2 im Abgas im Betriebspunkt p2 unter der Annahme, daß ein Verhältnis von Wasserstoff zu Kohlenstoff im Kraftstoff etwa 2 : 1 beträgt, näherungsweise durch die Gleichung X ( O 2 ) 2 = λ 2 1 4 , 76 λ 2 + 0 , 33
    Figure imgb0006
    gegeben ist. Diese Gleichung wird beispielsweise von Pischinger et al. in "Thermodynamik der Verbrennungskraftmaschine", Springer Verlag, angegeben. Dabei ist der Lambdawert λ2 für den Betriebspunkt p2 über die Gleichung λ 2 = m L 2 m K 2 k s t
    Figure imgb0007
    wiederum als ein Verhältnis eines Luftmassenstroms mL2 zu einer über eine Einspritzzeit t2 zugeführten Kraftstoffmasse mK2 definiert. Die innerhalb der Einspritzzeit t2 am Betriebspunkt p2 zugeführte Kraftstoffmasse mK2 ist gegeben über m K 2 = k in t 2
    Figure imgb0008
  • Durch Einsetzen der Gleichungen (II) bis (VIII) für die beiden Betriebspunkte p1, p2 ergibt sich für den Meßstrom I2 am Betriebspunkt p2 die Gleichung: I 2 = k w k 21 1 4 , 76 k 21 + 0 , 33
    Figure imgb0009

    wobei k 21 = m L 2 m L 1 t 1 t 2
    Figure imgb0010
    ist.
  • Der Korrekturwert kw für den Meßstrom läßt sich somit aus den Luftmassenströmen mL1, mL2 und den Einspritzzeiten t1, t2 an den Betriebspunkten p1 und p2 bestimmen. Unterstellt man eine hohe Genauigkeit des Luftmassenmeßsystems und eine Linearität eines Einspritzsystems, was bei nur geringen Änderungen der Einspritzzeit in den meisten Betriebspunkten der Verbrennungskraftmaschine der Fall ist, kann dieser Korrekturwert kw mit hoher Genauigkeit bestimmt werden und ergibt sich zu: k w = I 2 4 , 76 k 21 + 0 , 33 k 21 1
    Figure imgb0011
  • Mit dem so ermittelten Korrekturwert kw für das Ausgangssignal der Lambdasonde kann nun der Lambdawert für die übrigen Betriebspunkte mit λ≠1, insbesondere λ > 1, ermittelt werden: λ t = 1 + 0 , 33 X ( O 2 ) i 1 4 , 76 X ( O 2 ) i
    Figure imgb0012
    mit X ( O 2 ) i = I i k w
    Figure imgb0013
  • Ein Spezialfall des Betriebspunktes p2 ist der Schubfall ohne Kraftstoffeinspritzung. In diesem Fall vereinfacht sich die Gleichung (XI) zu k w = I 2 4 , 76
    Figure imgb0014
  • Insgesamt kann durch eine derartige Kalibrierung der Lambdasonde auch ein Magerbetrieb der Verbrennungskraftmaschine lambdageregelt durchgeführt werden. Weiterhin können bekannte Überwachungsfunktionen, die beispielsweise eine Konvertierungsrate eines im Abgaskanal in der Verbrennungskraftmaschine angeordneten Katalysators erfassen, wesentlich genauer durchgeführt werden.
  • Zur Vermeidung von Fehlkalibrierungen ist es sinnvoll, die Festlegung des Korrekturwertes kW unter Berücksichtigung von Kalibrierungsparametem wie einer Lage des Meßsignals, einem vorgebbaren Meßsignalbereich, einer Temperatur oder einem Wassergehalt einer Ansaugluft, einer Temperatur oder einem vorgebbaren Temperaturbereich der Lambdasonde, einem Wassergasgehalt oder einer Temperatur des Abgases oder einer Kombination derselben durchzuführen.
  • Durch die Berücksichtigung des Meßsignals oder des vorgebbaren Meßsignalbereichs können beispielsweise für den Magerbetrieb und den Fettbetrieb der Verbrennungskraftmaschine verschiedene Korrekturwerte kW festgelegt werden. Dies ist insoweit sinnvoll, da im Fettbetrieb die maßgeblichen Diffusionskoeffizienten wegen eines höheren Wasserstoffgehalts weniger vom Mechanismus einer Porendiffusion bestimmt sind. Zur Festlegung des Korrekturwertes kw wird dabei bevorzugt ein Betriebspunkt p2 in einem Lambdabereich von λ = 0,8 bis 0,9 durch eine Änderung der zugeführten Kraftstoffmasse m1 eingestellt. Dabei kann ausgenutzt werden, daß bei konstantem Luftmassenstrom in diesem Lambdabereich ein Betriebspunkt p2 existiert, in dem eine abgegebene Leistung der Verbrennungskraftmaschine in etwa der Leistung der Verbrennungskraftmaschine im Betriebspunkt p1 entspricht.
  • Bei der Ermittlung des Korrekturwertes kw im Fettbetrieb gelten ebenso die im Zusammenhang mit der Ermittlung des Korrekturwertes kw für den Magerbetrieb vorab aufgestellten Gleichungen. Lediglich der Restsauerstoffgehalt gemäß Gleichung (VI) muß entsprechend angepaßt werden, da im Magerbetrieb bekanntlich ein Sauerstoffüberschuß und im Fettbetrieb dagegen ein Sauerstoffmangel herrscht. Dies läßt sich in bekannter Weise unter Berücksichtigung eines Wassergasgleichgewichts für die Anteile am Abgas von CO, H2, H2O und CO2 berechnen.
  • Im Fettbetrieb diffundieren die Reduktionsmittel - wie bereits erläutert - durch die Diffusionsbarriere zu den katalytisch aktiven Elektroden der Lambdasonde. Dort reagieren sie mit dem durch die Pumpzelle herangeführten Sauerstoff, wobei ein zur Sauerstoffgleichgewichtskonzentration entsprechend λ = 1 benötigter Sauerstoffstrom den Meßwert darstellt. Der Sauerstoffstrom entspricht in seiner Höhe dem Diffusionsstrom aus CO und H2, so daß sich letztendlich ein Meßstrom I2 ergibt, der den Abgasanteilen von CO und H2, multipliziert mit ihren jeweiligen Diffusionskoeffizienten, entspricht, und aus dem ein Korrekturwert kw für den Fettbetrieb berechnet werden kann.
  • Die derartig ermittelten Korrekturwerte kw können zur Berücksichtigung von Alterungsprozessen oder Verschmutzungen der Lambdasonde periodisch nach Ablauf einer vorgebbaren Zeitspanne neu festgelegt werden. Denkbar ist auch, daß die Festlegung der Korrekturwerte kw während eines dynamischen Betriebes der Verbrennungskraftmaschine infolge zweier zufällig aufeinanderfolgender, geeigneter Betriebspunkte erfolgt.
  • Weiterhin sollte die Temperatur der Ansaugluft während der Kalibrierung nicht oberhalb einer vorgebbaren Grenztemperatur liegen. Vorteilhafterweise beträgt die Grenztemperatur 35 °C, da unterhalb dieser Temperatur der Wassergasgehalt der Ansaugluft vernachlässigbar ist. Daneben kann die Festlegung des Korrekturwertes abgebrochen werden, wenn der Wassergehalt der Ansaugluft oberhalb eines vorgebbaren Schwellenwertes liegt.
  • Die Kalibrierung sollte ebenfalls nur erfolgen, wenn die Abgastemperatur im Bereich der Lambdasonde während der Festlegung des Korrekturwertes kw oberhalb eines vorgebbaren Schwellenwertes liegt. Die Abgastemperatur kann mit einem Abgastemperatursensor direkt erfaßt werden oder über ein Modell aus den Motorbetriebsdaten berechnet werden. Auch eine Rohrwandtemperatur zwischen den Ausstoßventilen der Verbrennungskraftmaschine und dem Einbauort der Lambdasonde sollte über einem Schwellenwert liegen. Der Schwellenwert für die Abgastemperatur und die Rohrwandtemperatur sind dabei bevorzugt derart gewählt, daß die Kalibrierung erst ab einer Temperatur oberhalb von 60 °C, insbesondere 100 °C, erfolgt. Bei einer Temperatur von > 60 °C des Abgases ist der Taupunkt des Abgases sicher überschritten. Bei einer Temperatur von > 100 °C sind alle Verdampfungsprozesse von kondensiertem Wasser abgeschlossen, so daß der Wassergasgehalt des Abgases am Ort der Lambdasonde dem des Motors entspricht. Hierdurch kann der Einfluß von Kondensations- oder Verdampfungsprozessen innerhalb des Abgaskanals vermieden werden.

Claims (12)

  1. Verfahren zur Ermittlung eines Lambdawertes eines Abgases einer Verbrennungskraftmaschine mit einer in einem Abgaskanal der Verbrennungskraftmaschine angeordneten Lambdasonde, wobei ein Messsignal (I) der Lambdasonde in Abhängigkeit von einem vorgebbaren Korrekturwert (kW) den Lambdawert (λ) liefert sowie der Verbrennungskraftmaschine Mittel zugeordnet sind, die eine Erfassung eines Luftmassenstroms (mL) und einer zugeführten Kraftstoffmasse (mK) ermöglichen, wobei zur Festlegung des Korrekturwertes (kW)
    (a) in einem ersten, stöchiometrischen Betriebspunkt (p1) der Verbrennungskraftmaschine, an der die Lambdasonde ein erstes Messsignal (I1) entsprechend einem Lambdawert λ = 1 anzeigt, eine zugeführte Kraftstoffmasse (mK1) und ein Luftmassenstrom (mL1) erfasst wird,
    (b) nachfolgend ein zweiter, magerer oder fetter Betriebspunkt (p2) der Verbrennungskraftmaschine mit λ ≠ 1 im Wesentlichen durch Änderung des Luftmassenstroms (mL) eingestellt wird, wobei die zugeführte Kraftstoffmasse (mK) beim Betriebspunktwechsel im Wesentlichen so verändert wird, dass eine Leistungsänderung der Verbrennungskraftmaschine kompensiert wird,
    (c) in dem zweiten Betriebspunkt (p2) eine Kraftstoffmasse (mK2) und ein Luftmassenstrom (mL2) erfasst wird, und
    (d) in Abhängigkeit von den Luftmassenströmen (mL1' mL2) und den Kraftstoffmassen (mK1, mK2)des ersten und zweiten Betriebspunkts (p1, p2) der Korrekturwert (kW) für den Lambdawert des Betriebspunktes (p2) gebildet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Festlegung des Korrekturwertes (kw) anhand von Kalibrierungsparametern, wie einer Lage des Messsignals, einem vorgebbaren Messsignalbereich, einer Temperatur oder einem Wassergehalt einer Ansaugluft, einer Temperatur oder einem vorgebbaren Temperaturbereich der Lambdasonde, einem Wassergasgehalt oder einer Temperatur des Abgases oder einer Kombination derselben erfolgt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Korrekturwert (kW) für die Kalibrierung in dem Magerbetrieb ermittelt wird.
  4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Korrekturwert (kw) für die Kalibrierung in dem Fettbetrieb ermittelt wird.
  5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Temperatur der Ansaugluft während der Festlegung des Korrekturwertes (kw) unterhalb einer vorgebbaren Grenztemperatur liegt.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Grenztemperatur 35 °C beträgt.
  7. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Wassergehalt der Ansaugluft während der Festlegung des Korrekturwertes (kw) unterhalb eines vorgebbaren Schwellenwertes liegt.
  8. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Temperatur des Abgases und/oder einer Rohrwand der Abgasanlage im Bereich der Lambdasonde während der Festlegung des Korrekturwertes (kw) oberhalb eines vorgebbaren Schwellenwertes liegt.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der Schwellenwert oberhalb von 60 °C, insbesondere 100 °C, liegt.
  10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Festlegung des Korrekturwertes (kw) periodisch nach Ablauf einer vorgebbaren Zeitspanne initiiert wird.
  11. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Festlegung des Korrekturwertes (kw) während eines dynamischen Betriebs der Verbrennungskraftmaschine infolge zweier zufällig aufeinander folgender, geeigneter Betriebspunkte erfolgt.
  12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lambdasonde eine Breitband-Lambdasonde ist.
EP00116857A 1999-08-20 2000-08-04 Verfahren zur Kalibrierung einer in Verbrennungskraftmaschinen eingesetzten Breitband-Lambdasonde Expired - Lifetime EP1079090B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19939555A DE19939555A1 (de) 1999-08-20 1999-08-20 Verfahren zur Kalibrierung einer in Verbrennungskraftmaschienen eingesetzten Breitband-Lambdasonde
DE19939555 1999-08-20

Publications (3)

Publication Number Publication Date
EP1079090A2 EP1079090A2 (de) 2001-02-28
EP1079090A3 EP1079090A3 (de) 2003-03-05
EP1079090B1 true EP1079090B1 (de) 2006-05-03

Family

ID=7919057

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00116857A Expired - Lifetime EP1079090B1 (de) 1999-08-20 2000-08-04 Verfahren zur Kalibrierung einer in Verbrennungskraftmaschinen eingesetzten Breitband-Lambdasonde

Country Status (3)

Country Link
EP (1) EP1079090B1 (de)
AT (1) ATE325266T1 (de)
DE (2) DE19939555A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103573440A (zh) * 2012-07-12 2014-02-12 福特环球技术公司 相对空气湿度的间接测量

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1701025B1 (de) * 2001-11-28 2011-10-19 Volkswagen Aktiengesellschaft Verfahren zur Bestimmung der Zusammensetzung des Gasgemisches in einem Brennraum eines Verbrennungsmotors mit Abgasrückführung
FR2849112B1 (fr) 2002-12-18 2005-02-04 Renault Sa Procede de commande d'elements d'execution de fonctions elementaires de moteur a combustion interne
DE102005059794B3 (de) * 2005-12-14 2007-03-29 Siemens Ag Verfahren und Vorrichtung zum Kalibrieren einer Abgassonde und Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
US7861515B2 (en) * 2007-07-13 2011-01-04 Ford Global Technologies, Llc Monitoring of exhaust gas oxygen sensor performance

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751907A (en) * 1985-09-27 1988-06-21 Nissan Motor Co., Ltd. Air/fuel ratio detecting apparatus for internal combustion engines
JPS6469748A (en) * 1987-09-09 1989-03-15 Hitachi Ltd Air-fuel ratio controller
US5323635A (en) * 1992-06-01 1994-06-28 Hitachi, Ltd. Air fuel ratio detecting arrangement and method therefor for an internal combustion engine
US5289678A (en) * 1992-11-25 1994-03-01 Ford Motor Company Apparatus and method of on-board catalytic converter efficiency monitoring
JPH09166040A (ja) * 1995-12-13 1997-06-24 Matsushita Electric Ind Co Ltd 内燃機関の空燃比制御装置
DE19819461B4 (de) * 1998-04-30 2004-07-01 Siemens Ag Verfahren zur Abgasreinigung mit Trimmregelung
DE19844994C2 (de) * 1998-09-30 2002-01-17 Siemens Ag Verfahren zur Diagnose einer stetigen Lambdasonde

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103573440A (zh) * 2012-07-12 2014-02-12 福特环球技术公司 相对空气湿度的间接测量
CN103573440B (zh) * 2012-07-12 2018-01-02 福特环球技术公司 相对空气湿度的间接测量
US10557431B2 (en) 2012-07-12 2020-02-11 Ford Global Technologies, Llc Indirect measurement of relative air humidity

Also Published As

Publication number Publication date
DE19939555A1 (de) 2001-02-22
EP1079090A2 (de) 2001-02-28
ATE325266T1 (de) 2006-06-15
EP1079090A3 (de) 2003-03-05
DE50012679D1 (de) 2006-06-08

Similar Documents

Publication Publication Date Title
DE69732582T2 (de) Verfahren und Vorrrichtung zur Messung der Sauerstoffkonzentration und Stickstoffoxidkonzentration
DE102006011837B4 (de) Verfahren zur Ermittlung einer Gaskonzentration in einem Messgas mit einem Gassensor
DE3606045C2 (de)
DE102005050269A1 (de) Verfahren zur Bestimmung der Lambda-Werte mit einer Breitband-Lambda-Sonde
DE10342270B4 (de) Gaskonzentrationsdetektor
EP1105719A1 (de) Schaltungsanordnung zum regeln eines pumpstroms einer abgassonde in einem kraftfahrzeug
DE4122828A1 (de) Luft-brennstoff-verhaeltnis-steuersystem
EP1075657A1 (de) VERFAHREN ZUR BESTIMMUNG DER NO x?-KONZENTRATION
DE3933830C2 (de)
EP1079090B1 (de) Verfahren zur Kalibrierung einer in Verbrennungskraftmaschinen eingesetzten Breitband-Lambdasonde
DE10124129A1 (de) Vorrichtung und Verfahren zum Messen der Elementtemperatur eines Luft-/Kraftstoffverhältnissensors und Vorrichtung und Verfahren zum Steuern der Heizvorrichung eines Luft-/Kraftstoffverhälntissensors
EP1926899A1 (de) Verfahren und vorrichtung zur bestimmung der gaskomponenten im abgas eines verbrennungsmotors
DE10145804B4 (de) Stickoxidsensor mit unterdrückter Sauerstoffabhängigkeit des NO↓X↓-Signals
DE10360775A1 (de) Sensorvorrichtung für verbrennungsmotorische Abgase und Betriebs- und Auswerteverfahren
DE10161901B4 (de) Verfahren und Vorrichtung zur Kompensation des Offsets der linearen Sensorcharakteristik eines im Abgas einer Verbrennungskraftmaschine angeordneten Sensors
EP1075592B1 (de) Verfahren zur abgasreinigung mit trimmregelung
DE4434786C2 (de) Luft/Kraftstoff-Regelsystem
DE102021102456B3 (de) Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
DE4235503C2 (de) Steuersystem für das Luft-/Kraftstoffverhältnis für Verbrennungsmotoren
DE19907947A1 (de) Schaltung für einen NOx-Meßaufnehmer
DE19907946C2 (de) Schaltung für einen NOx-Meßaufnehmer
EP1084399B1 (de) Verfahren zur bestimmung der nox-konzentration
DE102013221298A1 (de) Verfahren zum Abgleichen eines Sensorelements zur Erfassung mindestens einer Eigenschaft eines Messgases in einem Messgasraum
DE4210398A1 (de) Anordnung zur Bestimmung eines Gaspartialdruckes in einem Gasgemisch
DE102014007168B4 (de) Verfahren zum Betreiben einer Abgasanlage für eine Brennkraftmaschine sowie entsprechende Abgasanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030905

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20031128

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JELDEN, HANNO, DIPL.-ING.

Inventor name: BIZENBERGER, THOMAS

Inventor name: DAETZ, MICHAEL, DIPL.-ING.

Inventor name: KIELMANN, CHRISTOPH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50012679

Country of ref document: DE

Date of ref document: 20060608

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060803

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061003

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20060503

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070206

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060804

BERE Be: lapsed

Owner name: VOLKSWAGEN A.G.

Effective date: 20060831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070309

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120831

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50012679

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50012679

Country of ref document: DE

Effective date: 20140301