WO2001035050A1 - Procede pour mesurer la qualite d'un corps en forme de bande, procede de suppression de la cambrure, instrument pour mesurer la qualite d'un corps en forme de bande, machine de laminage et dispositif de rognage - Google Patents

Procede pour mesurer la qualite d'un corps en forme de bande, procede de suppression de la cambrure, instrument pour mesurer la qualite d'un corps en forme de bande, machine de laminage et dispositif de rognage Download PDF

Info

Publication number
WO2001035050A1
WO2001035050A1 PCT/JP2000/007853 JP0007853W WO0135050A1 WO 2001035050 A1 WO2001035050 A1 WO 2001035050A1 JP 0007853 W JP0007853 W JP 0007853W WO 0135050 A1 WO0135050 A1 WO 0135050A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
distance
quality
calculating
strip
Prior art date
Application number
PCT/JP2000/007853
Other languages
English (en)
French (fr)
Inventor
Humitaka Ishihara
Shigeyuki Kurihara
Shinichi Nogami
Hideo Horikawa
Original Assignee
Sumitomo Metal Industries Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Limited filed Critical Sumitomo Metal Industries Limited
Priority to EP00974833A priority Critical patent/EP1158267B1/fr
Publication of WO2001035050A1 publication Critical patent/WO2001035050A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/028Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring lateral position of a boundary of the object
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/68Camber or steering control for strip, sheets or plates, e.g. preventing meandering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/34Feeding or guiding devices not specially adapted to a particular type of apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D19/00Shearing machines or shearing devices cutting by rotary discs
    • B23D19/04Shearing machines or shearing devices cutting by rotary discs having rotary shearing discs arranged in co-operating pairs
    • B23D19/06Shearing machines or shearing devices cutting by rotary discs having rotary shearing discs arranged in co-operating pairs with several spaced pairs of shearing discs working simultaneously, e.g. for trimming or making strips
    • B23D19/065Shearing machines or shearing devices cutting by rotary discs having rotary shearing discs arranged in co-operating pairs with several spaced pairs of shearing discs working simultaneously, e.g. for trimming or making strips for cutting along lines not parallel to the longitudinal direction of the material, e.g. oblique or zig-zag cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D36/00Control arrangements specially adapted for machines for shearing or similar cutting, or for sawing, stock which the latter is travelling otherwise than in the direction of the cut
    • B23D36/0008Control arrangements specially adapted for machines for shearing or similar cutting, or for sawing, stock which the latter is travelling otherwise than in the direction of the cut for machines with only one cutting, sawing, or shearing devices
    • B23D36/0016Control arrangements specially adapted for machines for shearing or similar cutting, or for sawing, stock which the latter is travelling otherwise than in the direction of the cut for machines with only one cutting, sawing, or shearing devices for minimising waste
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/04Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • G01B11/046Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving for measuring width
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • G01N21/8903Optical details; Scanning details using a multiple detector array
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B15/0007Cutting or shearing the product
    • B21B2015/0021Cutting or shearing the product in the rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product

Definitions

  • the present invention determines the width, meandering amount, and camber of a band by using a captured image of a band such as a steel band, and also eliminates chipping of side edges and surface defects.
  • a method for measuring the quality of a strip to be detected a method for suppressing the occurrence of a member in the strip during rolling and trimming, a method for measuring a quality for implementing a quality measuring method, a rolling device, and a method for measuring the quality of a strip.
  • the width of the strips fluctuates or a camber occurs (longitudinal waving of the side edges of the strip), so that both sides of the strip are trimmed. It is necessary to prepare a straight edge, and if a large camber is generated, the trim cost will be too large and the yield will be poor. If meandering occurs during rolling, the sheet thickness becomes uneven in the width direction of the steel strip. Therefore, it is necessary to measure the chamber of the steel strip being conveyed during the manufacturing process, and control the rolling reduction and tension based on the measured values to improve the quality of the product.
  • Japanese Patent Publication No. 6-1186 discloses a "calibration method for measuring the bending of a long object". This method measures the distance from the three reference points to the side edge of the band, and has the advantage of being able to accurately measure a chamber with a specific period.
  • Japanese Patent Application Laid-Open No. 5-157949 discloses that three or more A method has been proposed in which two sets of edge position detection sensors are installed in the longitudinal direction of the strip to measure the chamber. According to this method, accurate chamber measurement can be performed regardless of the period.
  • the information on the steel strip, the meandering amount, the width and the surface defects of the steel strip is referred to as quality measurement information.
  • Fig. 14 is a block diagram showing the configuration of a conventional steel strip quality measurement information acquisition device.
  • the steel strip 1 is transported in the longitudinal direction at a constant speed by the rollers 2.
  • An edge position detection sensor 20, 20, 20 or 20 for determining the chamber and meandering amount is provided on the upstream side in the transport direction of the steel strip 1 or along one side ⁇ , and on the downstream side.
  • the edge position detecting sensor 2 1. 2 1 1 is provided along each side edge of the steel strip 1 in order to determine the force and the width of the steel strip 1.
  • a television camera 22 for imaging the surface of the steel strip 1 for detecting surface defects is provided.
  • Each of the three edge position detection sensors 20, 20, and 20 measures the distance from a specific measurement reference point to the side edge of the steel strip 1, and sends the measured distance to the calculator 23.
  • Output to The computing device 23 calculates the relative positions of the three measurement reference points from these distances, and calculates the chamber and the meandering amount of the steel strip 1 based on the calculated relative positions.
  • the arithmetic unit 23 receives the steel strip 1 based on the signals regarding the positions of both side edges of the steel strip 1 inputted from the two edge position detection sensors 2 I and 21.
  • the width of the steel strip 1 is calculated, and the surface defect of the steel strip 1 is detected based on the captured image input from the TV camera 22 via the image input circuit 24.
  • the quality measurement information of the steel strip was obtained by using a plurality of edge position detection sensors and a television camera.
  • the conventional steel strip quality measurement information acquisition device is composed of a plurality of edge position detection sensors and a TV camera, so a considerable space is required to install these devices. There was a problem that it was necessary.
  • Japanese Patent Application Publication No. 654004 discloses a method for calculating the number of chambers by detecting the time-dependent changes in the rolling loads on the working side and the driving side in the rolling burrs, calculating the chamber, and setting the rolling conditions for the next pass. ing.
  • this method is an indirect measurement using the rolling load, there are errors and variations (about 3 to 9 mm), and the deviation (position recognition) of the control information due to the elongation of the sheet during rolling.
  • the present invention has been made in view of such circumstances, and by using a captured image of a strip taken by an imaging unit, the width, meandering amount, and amount of the belt being transported are measured. It is another object of the present invention to provide a method for measuring the quality of a zonal body that can be calculated with high accuracy and a quality measuring device for implementing the method.
  • the present invention provides a feed-forward control of the work-side and drive-side gears of the rolling mill based on the determined meandering amount of the band-shaped body and the chamber. Accordingly, it is an object of the present invention to provide a chamber suppressing method and a rolling device capable of suppressing occurrence of a chamber.
  • the present invention provides a feed-forward control of the meandering of the band based on the determined meandering amount and the chamber of the band during trimming. It is another object of the present invention to provide a member suppressing method and a trim device capable of suppressing occurrence of a chamber. Disclosure of the invention
  • the present inventors have determined the distance from each of a plurality of lateral sides of the conveyed band to a reference line set in the longitudinal direction of the band, and have further determined the band. By comparing with the result of measuring the distance when moving, it is possible to determine the meandering amount, the camber, and the width of the band at the same time and with a smaller number of imaging means. We found this. Based on such knowledge, the inventors have invented a quality measuring method, a member suppressing method, a quality measuring device, a rolling device, and a trim device for implementing the quality measuring method described below.
  • a method for measuring the quality of a band comprising: an imaging unit configured to image a conveyed band at a predetermined interval; and a meandering amount of the band based on a plurality of images captured by the imaging unit.
  • the belt for calculating the chamber A step of calculating a distance from each of a plurality of lateral sides of the strip in the captured image to an S reference line set in the longitudinal direction of the strip in the strip quality measurement method; and A step of detecting a difference between the distance at a predetermined position of the belt-shaped rest in the middle and the distance at the position of the band in the captured image after the belt has been conveyed by a predetermined distance, based on the difference.
  • the method for measuring the quality of a strip according to the second invention is the same as the first invention, except that a step for obtaining the amount of displacement based on the following equation is provided. ⁇ ⁇ ⁇ )-(L bi -L b 2 ) /, where ⁇ : 1 Number of measurement points in the captured image
  • L a n the steps of obtaining a meandering amount based the releasability following formula in the n-th measurement point upstream
  • I i + ni ⁇ i + 2 (ni) Lbi ⁇ n- D ⁇ ⁇ , where i is the number of fixed places on the camper. ⁇ and a natural number
  • the quality measuring method is the method according to the second or the second aspect, wherein a distance from each of the plurality of cylinder locations to each of the reference lines set on both sides of the band is calculated for each side edge of the band. It is characterized in that it includes a step and a step for calculating the width of the strip based on the following equation.
  • L c Distance from a predetermined point on one side edge to a reference line on one side edge
  • L d distance from the point on the same line perpendicular to the conveying direction of the strip to the reference line on the other edge
  • a quality measuring method is characterized in that, in any one of the i-th to third inventions, the shutter speed VS and the illuminance LX of the imaging means satisfy the following expression. .
  • K V is the range (coefficient) that was verified once
  • the quality measuring method according to the fifth aspect of the present invention is the method according to any one of the first to fourth aspects, wherein the quality of the band is determined based on the distance. Steps to detect missing side edges It is characterized by further including a loop.
  • the quality measuring method in any one of the first to fifth aspects, includes a step of detecting a surface defect of the band based on a luminance value of a pixel in the captured image. This is the feature.
  • a seventh aspect of the present invention there is provided a method for suppressing the occurrence of a member by performing feedback control of a work-side gear and a drive-side gear when rolling a strip.
  • a step of adding to the side gear set value is provided.
  • a method for suppressing a member by performing feed packing control of meandering of a band when trimming both side edges of the band to suppress occurrence of a member A method for determining the meandering amount and the chamber of one side edge or both side edges of the band-like body by the method for measuring the quality of the band-like rest according to the first to fourth inventions; And a step of calculating a meandering control set value based on the trim margin.
  • a quality measuring apparatus comprises: i or a plurality of image pickup means for picking up an image of a conveyed band at a predetermined interval; and a belt-shaped object based on a plurality of images picked up by the image pickup means.
  • a band quality measuring device for calculating the amount of meandering of the body and the chamber, the length was set in the longitudinal direction of the band from each of a plurality of lateral sides of the band in the captured image.
  • a distance calculating means for calculating a distance to a reference line; a distance calculated by the distance calculating means at a predetermined position of the band in the captured image; and the position in the captured image after the belt is transported by a predetermined distance.
  • a difference detecting means for comparing the difference with the distance calculated by the distance calculating means, a meandering amount calculating means for calculating a meandering amount of the band based on the difference, and a meandering amount calculating means. It is characterized by comprising a member calculating means for calculating a member of the band based on the calculated meandering amount of the band.
  • the distance calculating means for calculating a distance from each of a plurality of locations to each of the reference lines set on both sides of the band with respect to both side edges of the band.
  • Width calculating means for calculating the width of the band based on a distance from a pair of locations on the same line orthogonal to the conveying direction of the band to each reference line.
  • the quality measuring device of the eleventh invention is the ninth or the tenth invention, wherein the quality measuring device further comprises a chip detecting means for detecting a chip at a side edge of the band based on the distance calculated by the fiil distance calculating means. And features.
  • a quality measuring device in any one of the ninth to nineteenth aspects, wherein the surface defect detecting means detects a planar defect of the band based on a luminance value of a pixel in the captured image. It is characterized by having.
  • the rolling apparatus is the rolling device of the ninth or the tenth aspect, wherein the gap on the working side and the driving side of the roll is controlled by feedback to perform rolling.
  • a body quality measuring device means for taking in the meandering amount and chamber on the working side and the driving side of the roll-in side belt-bound body determined by the quality measuring device S, and A means for calculating a gear correction value on the working side and the driving side of the base tool, and a method for calculating the gap correction value on the working side and the driving side by using the working side and the driving side of the mouth.
  • a trim device is the trim device according to the first aspect, wherein the meandering of the band is controlled by the feedback to trim both side edges of the band.
  • a quality measuring device for a band-like body a means for taking in a meandering amount and a camber of one or both side edges of the band-like body obtained by the quality measuring device, and the meandering amount.
  • the conveyed belt is imaged at a predetermined interval by the imaging means, and the length of the belt is measured from each of a plurality of side edges of the belt in the obtained captured image. Calculate the distance to the reference line set in the direction. Then, a difference between the distance at a predetermined position of the band in the captured image captured on the upstream side and the distance at the portion of the band in the captured image captured on the downstream side is detected.
  • the meandering amount of the band is calculated based on the difference, and the chamber of the band is calculated based on the calculated meandering amount.
  • the movement of the band and the meandering amount of the band can be simultaneously performed with high accuracy while the band is moving. Quality in a short time. Therefore, in the quality setting / concealment of the present invention, it is not necessary to provide a plurality of edge position detection sensors and the like as in the conventional case, and the installation space is reduced.
  • the meandering amount and the chamber can be easily calculated.
  • the entire length of the moving belt-like body is extended.
  • the width can be measured. Also, it is not necessary to provide a dedicated edge position detection sensor or the like for calculating the width, meandering amount, and chamber of the belt-shaped body, so that a limited installation space is sufficient.
  • the meandering amount, the chamber, and the width can be accurately determined.
  • the distance from each of a plurality of lateral sides of the band in the captured image to a reference line set in the longitudinal direction of the band is calculated, and the calculated distance is calculated. Based on the distance, it detects the missing side of the obi.
  • a surface defect of a band is also detected based on a luminance value of a pixel in a captured image.
  • the set values of the drive side and the work side gear gap of the roll of the rolling mill are fed-forward controlled based on the actual value of the meandering amount and the chamber. In addition, it is possible to effectively suppress the occurrence of chambers and prevent quality defects of the obi.
  • Fig. 1 is a block diagram showing the configuration of the strip quality measuring apparatus of the present invention.
  • Fig. 2 is a schematic diagram for explaining the arrangement of a television camera provided in the strip quality measuring apparatus of the present invention.
  • FIG. FIG. 3 is a flowchart showing the processing procedure of the arithmetic unit, FIG.
  • FIG. 4 is an explanatory diagram for explaining the distance from the side edge of the steel strip to a reference line set in the longitudinal direction of the steel strip
  • FIG. 6 is an optional diagram on the side of the steel strip generated by oblique traveling of the steel strip
  • Fig. 7 is an explanatory diagram for explaining a deviation amount of a distance from a measurement point to a reference line
  • Fig. 7 is an explanatory diagram for explaining a process of calculating a width of a steel strip
  • Fig. 8 is a schematic diagram showing a rolling mill.
  • FIG. 9 is a flowchart showing the processing procedure of the gear control device
  • Fig. 10 is a schematic plan view showing the trim device
  • Fig. 11 is the meandering control device.
  • FIG. 12 is a flowchart showing a processing procedure
  • FIG. 12 is a diagram showing a case where a band chamber is calculated using the quality measuring apparatus of the present invention.
  • Fig. 13 is a graph showing the results of comparison with a case where the steel strip chamber is measured using a three-dimensional apparatus with a fly.
  • Fig. 13 shows the same range (3 lm) of a cold-rolled thin steel sheet using the quality measuring apparatus of the present invention.
  • Is a graph showing the results of measuring the chamber three times at a threading speed of 12 mpm
  • Fig. I4 is a block diagram showing the configuration of a conventional steel strip quality measurement information acquisition device. is there.
  • FIG. 1 is a block diagram showing the configuration of the apparatus for measuring the quality of a strip according to the present invention.
  • the steel strip 1 is conveyed in the longitudinal direction by the roller 2 at one speed.
  • the roller 2 is connected to a pulse encoder 7.
  • the pulse encoder 7 is adapted to the conveying distance of the steel strip 1.
  • a pulse signal is input to the arithmetic unit 5 based on the calculated number of pulses.
  • two television cameras 3 a and 3 b having a CCD (Charge Coupled Device) are provided so as to be able to image both side edges of the steel strip 1.
  • the two television cameras 3 a and 3 b continuously capture the side edges of the steel strip 1 and output the captured images to the arithmetic unit 5 via the image input circuit 4. Then, the arithmetic unit 5 stores the captured images input from the TV cameras 3a and 3b in the memory 6 in this manner.
  • CCD Charge Coupled Device
  • the two TV cameras 3a and 3b are connected continuously as described above.
  • the images may be captured intermittently at a pitch of about 10 to 15 mm.
  • the arithmetic unit 5 calculates the width, meandering amount, and chamber of the steel strip 1 based on the plurality of captured images stored in the memory 6 according to a procedure described later, and calculates surface defects and lateral defects. Detects the lack of.
  • the conditions for ensuring accuracy are as follows.
  • V S ⁇ ⁇ (V L x l 0 0 0) / 60) X ⁇ / (S L / K V) ⁇ K V ⁇ 10
  • K V the range (coefficient) for which accuracy was verified
  • the illuminance L X (L x) of the TV cameras 3a and 3b is obtained from the shutter speed V S based on the following equation.
  • KL is a conversion coefficient (LXZHz) and is 5.0 to 7.0. 6.0 is preferred.
  • FIG. 2 is a schematic plan view for explaining the arrangement of the television cameras 3a and 3b provided in the belt-like body quality measuring device of the present invention.
  • reference numerals 30a and 30b denote image pickup ranges picked up by the television cameras 3a and 3b, respectively. Further, these imaging ranges 30a and 30b include only sides E1 and E2 of steel strip 1, respectively.
  • An illuminator (not shown) is provided above the steel strip 1 near the center, and the illuminator illuminates the vicinity of the imaging range 30a and 30b with a uniform illuminance distribution.
  • the contrast between the color of the steel strip 1 and the color of the background area should be large, and the brightness value of the pixel indicating the steel strip 1 in the captured image should be equal to the background area.
  • the color of the background part is set so as to be higher than the luminance value of the pixel indicating. For example, in the case of a cold-rolled steel strip, its background is colored blue.
  • a threshold is provided for the color shading level, and the measurement value is calculated from the gradient of the color shading level around the threshold, thereby improving the measurement resolution.
  • FIG. 3 is a flowchart showing the processing procedure of the arithmetic unit 5, and FIG. 4 is a reference line set from the side edge E1 of the steel strip 1 to the longitudinal direction of the steel strip 1.
  • FIG. 7 is an explanatory diagram for explaining a distance L a!
  • I 1 indicates an It image image picked up by the TV camera 3a.
  • P a, to P a 4 indicate four fixed points arranged at a predetermined interval L on the side edge E 1 of the steel strip 1, and 8 is set in the longitudinal direction of the steel strip 1.
  • the reference line is shown.
  • P a, P a P a 3 the steel strip 1 longitudinal distance to P a 4 from, respectively L 2, L 3, is L 4.
  • reference line 8 may be provided at any position in the imaging range 30a.
  • the arrows in Figure 4 shows the scanning direction, the quality measurement device of the present invention, ⁇ point P a, ⁇ P a 4 Ri by the and this scanning only scanning lines including, acquisition time of the location information Is being shortened.
  • ⁇ point P a in addition to the scan line containing ⁇ P a 4, scanning even scan lines in the vicinity of people the scanning lines husband, child calculates the position of the side edge E 1 based on the results of these scans
  • the c computing device 5 may improve the accuracy by taking the captured image captured by the TV camera 3a out of the memory 6 and converting the captured image into the captured image.
  • the side edge E of the indicated steel strip 1 is detected using a known method.
  • step S101 1 is set to 0 (i is the fixed number of locations in the chamber).
  • step S103 an initial setting is performed based on the following equation (step S103).
  • step S104 If the steel strip 1 has moved L n j in step S104, the process proceeds to step S105.
  • step S104 if steel strip 1 does not move L i, the process is repeated until steel strip 1 moves L n- .
  • step S105 the arithmetic unit 5 uses the captured image captured by the TV camera 3a after the captured image I1 has been captured, from the side edge E1 of the steel strip 1 to the reference line 8.
  • FIG. 5 is an explanatory diagram for explaining the distances L b, to L 4 from the side edge E 1 of the steel strip 1 to the reference line 8.
  • I 2 indicates a captured image captured by the television camera 3a, and the captured image I 2 is a captured image captured after the above-described captured image I 1.
  • P b] indicates a fixed point when the fixed point Pa 3 described above moves in the distance L 3 transfer direction along with the transfer of the steel strip 1.
  • P b 2 is also a measure point when ⁇ point P a distance and L 3 moves as well.
  • Step S 1 0 5 the arithmetic unit 5 calculates the four ⁇ point P b] ⁇ P b 4 distance L b from respective to the reference line 8, the ⁇ L b 4.
  • the calculation unit 5 uses the distance L a calculated in Step S 1 0 3, the distance L b calculated in ⁇ L a 4 and step SI 0 5, the ⁇ L b 4, the steel strip 1
  • the deviation amount, meandering amount, and camber are calculated (steps S106 to S108). The details of these steps are described below.
  • Arithmetic unit 5 calculates deviation R of steel strip 1 by using the following equation: I 6
  • FIG. 6 is an explanatory diagram for explaining a deviation amount R of a distance from an arbitrary fixed point on the side E1 of the steel strip 1 to the reference line 8 caused by the oblique running of the steel strip 1.
  • FIG. 6 (a) shows the position of the fixed point P b, described above, (b) shows the position of the fixed point Pa 3 and Pa 4 , respectively, and (c) and (d) ) Indicate the running state of steel strip 1 respectively.
  • This R is generated by the slant running of steel strip 1. This is the deviation of the distance from the generated reference line 8 to the side E1 of the steel strip 1. However, in this case, meandering of steel strip 1 is assumed to be caused only by oblique traveling of belt 1.
  • this deviation amount R is calculated by the arithmetic unit 5 using the above equation.
  • the arithmetic unit 5 calculates the traveling amount D of the steel strip 1 by the following equation using the deviation amount R calculated in step SI 06 (step S 10).
  • the arithmetic unit calculates the chamber C of the steel strip 1 by the following equation (step S107).
  • the captured images I 1 and I 2 captured by the TV camera 3 a are used, and thus the band 1 calculated in steps S 107 and S 108 is used.
  • the meandering amount D and the chamber C are the same as the meandering amount D and the force of the chamber C at the side EI of the band I, using the image captured by the television camera 3b. It goes without saying that the meandering amount D and the chamber C in the side wall E2 of the steel strip 1 can be calculated by executing the processing of (1).
  • the arithmetic unit 5 determines whether or not the setting of the meandering amount D and the chamber C has been completed (step S110).
  • step S110 When the setting is completed in step S110, the processing is ended. You.
  • step S110 If it is determined in step S110 that the setting has not been completed, the process returns to step S104.
  • the arithmetic unit 5 extracts from the memory 6 the images captured by the TV cameras 3a and 3b, respectively.
  • FIG. 7 is an explanatory diagram for explaining a process of calculating the width of the steel strip 1, in which (a) shows an image captured by the television camera 3b, and (b) shows an image captured by the television camera 3b. 3a shows the captured images respectively. These captured images are captured images taken by the television cameras 3a and 3b at the same time.
  • I 3 indicates a captured image captured by the TV camera 3b.
  • P c indicates an arbitrary measurement point on the side edge E 2 of the steel strip 1
  • L c indicates a distance from the measurement point P c to the reference line 8.
  • I 4 indicates a captured image captured by the TV camera 3a
  • P d indicates a measurement point on the side edge E 1 of the steel strip 1
  • L d indicates a measurement point.
  • the distance from the fixed point Pd to the reference line 8 is shown.
  • the measuring points Pc and Pd are points on the same line orthogonal to the transport direction of the steel strip 1.
  • the arithmetic unit 5 calculates the width of the steel strip 1 using the following equation.
  • L indicates the distance between the reference line 8 for the side edge E 1 of the steel strip 1 and the reference line 8 for the side edge E 2.
  • the arithmetic unit 5 extracts the captured image captured by the TV camera 3a from the memory 6, and binarizes the luminance values of the pixels in the captured image.
  • the luminance value of the pixel indicating the steel strip 1 in the captured image is higher than the luminance value of the pixel indicating the background portion. If the surface of steel strip 1 has a surface defect such as a surface flaw, the reflection state of the illumination light by the illuminator changes, so the brightness of the pixel indicating the surface defect of steel strip 1 in the captured image The value is higher than the luminance value of the pixel indicating the steel strip 1.
  • the arithmetic unit 5 detects a surface defect of the steel strip 1 by detecting a white pixel.
  • computing device 5 When detecting the missing side ⁇ E 1 of the steel strip 1, computing device 5, the side edge E 1 in the captured image image as a function f (X), by differentiating the function f (X) (Mr. Su Then, it is determined whether the differential value obtained as a result exceeds a preset threshold value, and if so, it is determined that chipping has occurred at the side edge E 1 c . The surface defect and the defect of the side edge E 2 are also detected with respect to the image picked up in this way.
  • the quality of the steel strip 1 is measured by repeating the calculation of the width, the meandering amount and the chamber of the steel strip 1 and the detection of the surface defect and the chip of the side edge. Can be.
  • the information on the width, meandering amount, and chamber be used immediately after the measurement in the feed mode control in the belt I rolling and trimming equipment. It is difficult to correct surface defects and chipped side edges. It takes time to determine whether or not it will be used. From the characteristics of each handling information and the processing performance, in this embodiment, the measurement and processing of the width, meandering amount and chamber were performed every time the steel strip 1 or IZ 3 screens were moved, and surface defects and side edges were measured. The measurement and treatment of chipping were set to be performed every time the steel strip was moved one or one distance.
  • FIG. 8 is a schematic plan view showing a rolling mill, in which 11 is a quality measuring device g according to the present invention.
  • the quality measuring device 11 Number C PVVV: Calculates C pvdi and outputs it to the gap control device 12.
  • the gear control device 12 obtains the working-side and driving-side gears Wgap and D gap as the target of the rolling roll 13 and performs the feedback control.
  • FIG. 9 is a flowchart showing a processing procedure of the gap control device 12.
  • step S201 the working side and driving side canners Cpvwi and Cpvdi are cut off.
  • gap correction values Wdsv and Ddsv of the working side and the driving side of the rolling mill 13 are calculated (step S202).
  • Step S203 The gap measurement values Wgap fb and D gap fb of the work side and the drive side of the rolling roll 13 are input (step S204). Based on the input gap setting values Wgap fb and D gap fb, the operation of the mill 13 and the feed gap control of the drive side gaps Wgap and D gap are performed (step S 205).
  • the target was estimated based on the change in rolling load on the working and driving sides, and the target work and gaps on the driving side, Wgap and Dgap, were determined.
  • the gap setting values Wgap sv and Dgap sv are corrected based on the actual values C pvwi and C pvdi of the working-side and driving-side chambers, and the target work is performed. Since the gaps W gap and D ga on the side are obtained, occurrence of a member can be suppressed effectively.
  • FIG. 10 is a schematic plan view showing a trim device, in which 11 is a quality measuring device according to the present invention.
  • This trim device includes a meandering control roll 15 and a side trimmer 16, and controls the meandering of the steel strip 1 by shifting the meandering control roll 15 left and right. Lima 16 is used to cut a part of steel strip 1.
  • the quality measuring device 11 calculates the actual values C pvwi of the working-side and driving-side chambers based on the information obtained from the imaging range 30 a and 30 b on the driving side of the meandering control roll 15 on the human side. , C pvdi, and outputs this to the meandering control device El4.
  • the meandering control device 14 obtains the EPC set value of the meandering control roll 15 based on this, and performs feedback control.
  • FIG. 11 is a flow chart showing a processing procedure of the meandering control device 14.
  • step S301 the actual values Cpvwi and Cpvdi of the working-side and driving-side chambers are input.
  • step S302 based on the input C pvwi and C pvdi, the trim cost for steel strip 1 is calculated. Is calculated (step S302).
  • an EPC set value EPC sv is calculated based on the trim margin (step S303).
  • the EPC set value EPCfb is manually input (step S304).
  • the EPC is feedback-controlled based on the input EPC set value EPCfb (step S305).
  • the EPC set value EPC sv is fixed, whereas in the trim device of the present invention, the actual values C pvwi and C pvdi of the working-side and driving-side chambers are set. Since the meandering of the steel strip 1 is controlled by changing the EPC set value based on the above, occurrence of a chamber can be effectively suppressed. Furthermore, by controlling the moving device (T / R, etc.) on the exit side of the trim device based on the information on the meandering (moving) status of the band I, the desired band-like material can be formed. It is possible to carry and wind the coil.
  • Fig. 12 shows a comparison between the case where the steel strip chamber is calculated using the quality measuring device of the present invention and the case where the steel strip chamber is measured using a three-dimensional measuring device offline. This is a graph showing the results.
  • FIG. 12 shows the result calculated by the quality measuring device of the present invention, and (b) shows the result measured offline by the three-dimensional measuring device. As shown in FIG. 12, the error in these results was less than 0.01 mm.
  • FIG. 13 shows the use of the quality measuring device 11 of the present invention to This graph shows the results of measuring the chamber three times at a threading speed of 12 mpm for the same range (31 m). At the same time, a case where a thin steel plate is actually unfolded, a water thread is stretched and measured with a clearance gauge is also shown.
  • (a), (b) and (c) are the values measured at the first, second, and third times, respectively, and (d) is measured by stretching the water thread. Indicates a value.
  • the measurement of the width, the meandering amount and the chamber, and the measurement of the width, the meandering amount and the chamber are performed while the steel strip 1 is moving. Detection of surface defects and chipping of side edges can be performed simultaneously with high accuracy. Therefore, the quality measuring device of the present invention does not need to include a plurality of edge position detecting sensors and the like as in the conventional case, and suffices in a limited space.
  • feed-feed control is performed on a rolling device and a trim device of a band-shaped body based on the information on the width, the meandering amount, and the chamber. It is possible to manufacture a strip having higher shape accuracy.
  • n of measurement points is 4 in each imaging screen
  • n may be 3 or more.
  • the EPC set value EPC sv based on the actually measured values C pvwi and C pvdi of the working side and the driving side of the steel strip 1 was used. Power that explains the case of seeking The EPC set value EPCsV may be obtained based on the measured value of the other member. However, it is preferable to obtain the EPC set value EPC sv based on the actual values of both chambers. Industrial applicability
  • the method and the apparatus for measuring the quality of a band according to the present invention, by using an image captured by the imaging means, the movement of the band can be improved. Calculation of the width, meandering amount and camber, and detection of surface defects and chipping on the sides can be performed with high precision at the same time, and the quality of the band can be evaluated in a short time ( accordingly, the The quality measuring device of the invention does not need to be provided with a plurality of edge position detection sensors and the like as in the conventional case, and requires only a small installation space.
  • feed-forward control is performed on a rolling device and a trim device of a band-shaped body based on the information on the width, the meandering amount, and the member. It is possible to manufacture strips with high shape accuracy. Furthermore, by controlling the moving device (such as TZR) on the exit side of the trim device based on the information on the meandering (moving) state of the band, the desired conveyance and coiling of the band can be achieved. It is possible to take up the file.
  • the moving device such as TZR

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Textile Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Control Of Metal Rolling (AREA)

Description

明 細 書
帯状体の品質測定方法、 キャ ンバ抑制方法、 帯状体の品質測定装 置、 圧延装匿及び ト リ ム装置
技術分野
本発明は、 例えば鋼帯等の帯状体の撮像画像を用いる こ とによ つ て、 帯状体の幅、 蛇行量及びキャ ンバを则定する とと もに、 側縁の 欠け及び表面欠陥を検出する帯状体の品質则定方法、 圧延時及び ト リ ミ ング時に帯状体のキ ャ ンバの発生を抑制するキャ ンバ抑制方法、 品質測定方法を実施するための品質測定装置、 圧延装置及び ト リ ム 装置に関する。 背景技術
帯状体、 例えば鋼帯の製造過程においては、 板幅か変動したり、 キャ ンバ (鋼帯の側縁の長手方向の波打ち) が発生するので、 鋼帯 の両側縁を ト リ ミ ング'して直線状のェッ ジに仕十-げる必要があり、 大きなキャ ンバか発生した場合には、 ト リ ム代か大き く なつて歩留 ま りが悪く なる。 また、 圧延中に蛇行か生じた場合、 鋼帯の幅方向 において板厚が不均一になる。 従って、 製造過程において搬送中の 鋼帯のキ ャ ンバを測定し、 その測定値に基づいて圧下率、 張力等を 制御して製品の品質向上を図る必要かある。
搬送されている帯状体のキャ ンバを自動的に測定する方法と して は、 特公平 6 - 1 1 8 6号公報に 「長尺物の曲がり測定における較 正方法」 が開示されている。 この方法は、 3 ケ所の基準点から帯状 体の側縁までの距離を測定する方法であり、 特定周期のキャ ンバに ついて正確に測定するこ とができる という利点を冇している。
また、 特開平 5 — 1 5 7 5 4 9号公報には、 同 じ く 3台以上のェ ッ ジ位置検出セ ンサ群を帯状体の長手方向に 2群設置して、 キ ャ ン バを測定する方法が提案されている。 この方法による場合、 周期に よ らず正確なキヤ ンバを測定する こ とが可能になる。
ところで、 高品質の製品を製造するためには、 キャ ンバのみなら ず、 鋼帯の蛇行量及び幅を则定する必要かある。 また、 キャ ンバか 発生するこ とによって、 鋼帯には腰折れ等の表面欠陥が生じる場合 があるため、 表面欠陥の検出をも行う こ とか望ま しい。 以下、 これ ら鋼帯のキャ ンバ, 蛇行量, 幅及び表面欠陥に関する情報を品質測 定情報という。
従来では、 鋼帯の品質则定情報を次のよう にして取得していた。 第 1 4 図は、 従来の鋼帯の品質測定情報取得装置の構成を示すブ ロ ッ ク図である。 第 1 4 図に示すとおり、 鋼帯 1 はローラ 2 によ り 一定速度で長手方向に搬送されている。 鋼帯 1 の搬送方向上流側に はキヤ ンバ及び蛇行量を側定するためのエツ ジ位置検出セ ンサ 2 0 , 2 0 , 2 0 か片側緣に沿つて設けられており、 下流側にはエツ ジ位 置検出セ ンサ 2 1 . 2 1 力 、 鋼帯 1 の幅を则定するために、 鋼帯 1 の両側縁夫々 に沿って設けられている。 また、 さ らに下流側には、 表面欠陥を検出するために鋼帯 1 の表面を撮像するテレ ビカ メ ラ 2 2か設けられている。
3台のエッ ジ位置検出センサ 2 0 , 2 0 , 2 0夫々 は、 特定の则 定基準点から鋼帯 1 の側縁までの距離を则定し、 測定した距離を演 算装置 2 3 に対して出力する。 演算装置 2 3 は、 これらの距離から 3点の则定基準点の相対位置を算出 し、 こ の算出 した相対位置に基 づいて、 鋼帯 1 のキ ャ ンバ及び蛇行量を算出する。
また、 演算装置 2 3 は、 2台のエッ ジ位置検出セ ンサ 2 I , 2 1 から入力された鋼帯 1 の両側縁の位置に関する信号に基づいて鋼帯 1 の幅を算出 し、 画像入力回路 2 4 を介してテレ ビカ メ ラ 2 2から 入力された撮像画像に基づいて鋼帯 1 の表面欠陥の検出を行う。
このよ う に複数のエ ツ ジ位置検出セ ンサ及びテ レ ビカ メ ラを fflい るこ とによ って、 鋼帯の品質測定情報を取得していた。
しかしながら、 上逆したように従来の鋼帯の品質測定情報取得装 置は、 複数のエツ ジ位置検出センサ及びテレ ビカ メ ラから構成され るため、 これらの装置を設置するために相当なスペースを要する と いう問題があった。
また、 帯状体のキヤ ンバを抑制して欠陥を予防する方法と しては 板圧延時に実施する方法と、 ト リ ム加工時に実施する方法とかある, 前者の方法と しては、 特公平 6 — 6 5 4 0 4号公報に、 圧延屮に 作業側及び駆動側の圧延荷重の経時的な変化量を検出してキ ャ ンバ を算出 し、 次回パスの圧延条件を設定する方法か開示されている。 しかし、 こ の方法は圧延荷重を用いた間接的な計则であるため、 誤 差及びバラツキ ( 3〜 9 mm程度) が存在し、 圧延中の板伸びによる キャ ンバ制御情報のズレ (位置認識ズレ) も存在するので、 3 mm以 下のキャ ンバの変動を把握してこれを制御するこ とが困難である と いう問題があった。
後者の方法では、 帯状体コイル巻き出し側の巻き不良、 板幅方向 の扳厚差とその長手変動とによる剪断抵抗の変動によ り生じる 卜 リ ム刃のク リ アラ ンス ■ ラ ップ量変動等に起因する蛇行によ り帯状体 にキ ャ ンバか生じ、 その制御 ' 抑制が困難である という問題があつ た。 また、 E P C (エッ ジポジシ ョ ンコ ン トロール) 等の蛇行制御 装置を使用 した場合においても、 ト リ ム前の帯状体エッ ジキ ャ ンバ の影響を受けて制御するので、 ト リ 厶後にキヤ ンバが生じる という 問題があった。 本発明は斯かる事情に鑑みてなされたものであり、 撮像手段によ つて撮像された帯状体の撮像画像を用いる こ とによ り、 搬送中の帯 状体の幅, 蛇行量及びキャ ンバを同時に、 高精度に算出する こ とが できる帯伏体の品質则定方法及びその方法を実施するための品質測 定装置を提供する こ とを目的とする。
また、 本発明は、 则定された帯状体の蛇行量及びキ ャ ンバに基づ き、 圧延口一ルの作業側及び駆動側のギヤ ッ プをフ ィ ー ドフ ォ ヮ一 ド制御する 二 とによ り、 キヤ ンバの発生を抑制するこ とができ るキ ャ ンバ抑制方法及び圧延装置を提供する こ とを目的とする。
さ らに、 本発明は、 卜 リ ム加工時に、 剮定された帯状体の蛇行量 及びキャ ンバに基づき、 帯状体の蛇行をフ ィ ー ドフ ォ ヮ ー ド制御す る こ とによ り、 キ ヤ ンバの発生を抑制する こ とかでき るキャ ンバ抑 制方法及び ト リ ム装置を提供するこ とを目的とする。 発明の開示
本発明者等は、 搬送されている帯状体の側緣の複数箇所の夫々 か ら帯状体の長手方向に設定された基準線までの距離を则定した結果 と、 その帯状体がさ らに移動した場合に前記距離を測定した結果と を比較する こ とによって帯状体の蛇行量、 キャ ンバ、 さ らには幅を 同時に、 よ り少ない撮像手段の台数で则定する こ とができ る こ とを 知見した。 このよ う な知見に基づいて、 以下に示す帯状体の品質測 定方法、 キャ ンバ抑制方法、 品質測定方法を実施するための品質測 定装置、 圧延装置及び 卜 リ ム装置を発明 した。
第 1 発明の帯状体の品質则定方法は、 搬送される帯状体を所定問 隔で撮像する撮像手段を用い、 該撮像手段によって撮像された複数 の撮像画像に基づいて、 帯状体の蛇行量及びキヤ ンバを算出する帯 状体の品質測定方法において、 撮像画像中の帯状体の側緣の複数箇 所の夫々 から'帯状休の長手方向に設定された S準線までの距離を算 出するステッ プと、 撮像画像中の帯状休の所定箇所における前記距 離と、 帯状体を所定距離搬送した後の撮像画像中の帯状体の前記简 所における前記距離との差異を検出するステッ プと、 前記差異に基 づいて、 帯伏体の蛇行量を算出するステッ プと、 前記蛇行量に基づ いて、 帯伏休のキ ヤ ンバを算出するステッ プとを含むこ とを特徴と する。
第 2発明の帯状体の品質測定方法は、 第 1 発明において、 次の式 に基づきズレ量を求めるステツ プと、 〜门ニし卜!^ ^ しョ门 )-( L bi - L b2 ) /し 但し、 π: 1撮像画像中の測定箇所数
R^n :帯状体の斜走行により生じる、
各箇所のズレ量
L^n :左端の測定箇所から各箇所までの
帯状体長手方向の距離。
L] =0とする。
し:測定ピッチ
L an-i:上流側の n—〗番目の測定箇所に
おける前記距離
L an :上流側の n番目の測定箇所における 前記 離 次の式に基づき蛇行量を求めるステッ プと、
D'|〜n = L bi —し a n-i — M〜n 但し、 Di〜n :各箇所の蛇行量
L b! :下流側の左端の測定箇所における前記距離 次の式に基づきキヤ ンバを求めるステッ プと
し i + n-i^ i+2 (n-i) = Lbi〜n 一 D π 怛し、 i :キャンパの^定箇所数. ◦と自然数
L b n :下流^の各箇所における前 距離
を含むこ とを特徵とする。
第 3発明の品質则定方法は、 第 〗 又は第 2発明において、 帯伏体 の両側縁につき、 複数筒所の夫々 から、 帯状体の両側に設定された 各基準線までの距離を算出するステッ プと、 次の式に基づき帯状体 の幅を算出するステ ッ プとを含むこ とを特徴とする。
W= L - ( L c 十 L d )
但し、 L : 帯状体の両側の基準線間の距離
L c : 一側縁の所定箇所から一側縁側の基準線までの 距雜
L d : 前記箇所に対し、 帯状体の搬送方向と直交する 同一線上にある他側緣の箇所から他側縁側の基 準線までの距離
第 4発明の品質測定方法は、 第 i 乃至第 3のいずれかの発明にお いて、 前記撮像手段のシ ャ ッ タ速度 V S及び照度 L Xが次の式を満 足する こ とを特徴とする。
V S ≥ { (V L x l 0 0 0 ) // 6 0 } { 1 / ( S L / K V ) }
K V ≥ 1 0
L X = K L x V S
但し、 K V : 捃度検証した範囲 (係数)
K L : 変換係数 ( L X H z〉 で、 5. 0〜 了 . 0 第 5 発明の品質则定方法は、 第 1 乃至第 4のいずれかの発明にお いて、 前記距離に基づいて、 帯状体の側縁の欠けを検出するステツ プを更に含むこ とを特徴とする。
第 6 発明の品質測定方法は、 第 1 乃至第 5 のいずれかの発明にお いて、 前記撮像画像中の画素の輝度値に基づいて、 帯状体の表面欠 陥を検出するステ ップを含むこ とを特徴とする。
第 7発明のキャ ンバ抑制方法は、 帯状体を圧延する ときに、 ロー ルの作業側及び駆動側のギヤ ッ プをフ ィ ー ドバッ ク制御してキャ ン バの発生を抑制するキヤ ンバ抑制方法において、 第 1 乃至第 4 発明 の帯状体の品質则定方法によ り ロ ール入側の帯状体の作業側及び駆 動側の蛇行量及びキャ ンバを求めるステ ッ プと、 前記蛇行量及びキ ヤ ンバに Sづきロールの作業側及び駆動側のギヤ ッ プ補 ΪΗ値を算出 するステッ プと、 作業側及び駆動側の前記ギヤ ッ プ補正値を口ール の作業側及び駆動側のギヤ ッ プ設定値に加算するステ ッ プとを含む こ とを特徴とする。
第 8 発明のキャ ンバ抑制方法は、 帯状体の両側縁を ト リ ミ ン グす る ときに、 帯状体の蛇行をフ ィ ー ドパッ ク制御してキャ ンバの発生 を抑制するキ ャ ンバ抑制方法において、 第 1 乃至第 4 発明の帯状休 の品質測定方法により、 帯状体の一側縁又は両側縁の蛇行量及ぴキ ヤ ンバを求めるステッ プと、 前記蛇行量、 キャ ンバ及び目標とする 帯状体の幅に基づいて 卜 リ 厶代を求めるステッ プと、 前記 ト リ ム代 に基づき、 蛇行制御設定値を算出するステップとを含むこ とを特徴 とする。
第 9発明の品質则定装置は、 搬送される帯状体を所定の間隔で撮 像する i 又は複数の撮像手段を備え、 該撮像手段によつて撮像され た複数の撮像画像に基づいて、 帯状体の蛇行量及びキャ ンバを算出 すべく な してある帯状体の品質測定装置において、 撮像画像中の帯 状体の側緣の複数箇所の夫々 から、 帯状体の長手方向に設定された 基準線までの蹈離を算出する距離算出手段と、 撮像画像中の帯状体 の所定箇所における前記距離算出手段によって算出された距離と、 帯状体を所定距離搬送した後の撮像画像中の前記箇所における前記 距離算出手段によって算出された距離との差異を比較する差異検出 手段と、 前記差異に基づいて、 帯状体の蛇行量を算出する蛇行量算 出手段と、 該蛇行量算出手段によつて算出された帯状体の蛇行-量に 基づいて、 帯状体のキ ャ ンバを算出するキャ ンバ算出手段とを備え る こ とを特徴とする。
第 1 0 発明の品質測定装置は、 第 9 発明において、 帯状体の両側 縁につき、 複数箇所の夫々 から、 帯状体の両側に設定された各基準 線までの距離を算出する距離算出手段と、 帯状体の搬送方向と直交 する同一線上にある一対の箇所から各基準線までの距離に基づいて- 帯状体の幅を算出する幅算出手段とを備えるこ とを特徴とする。
第 1 1 発明の品質则定装置は、 第 9 又は第 1 0発明において、 fiil 記距離算出手段によって算出された距離に基づいて、 帯状体の側縁 の欠けを検出する欠け検出手段を備える こ とを特徴とする。
第 1 2発明の品質则定装置は、 第 9 乃至第 〖 1 のいずれかの発明 において、 前記撮像画像中の画素の輝度値に基づいて、 帯状体の ¾ 面欠陥を検出する表面欠陥検出手段を備えるこ とを特徴とする。
第 1 3発明の圧延装置は、 ロールの作業側及び駆動側のギャ ッ プ をフ ィ 一 ドバッ ク制御して圧延すべく な してある圧延装匿において、 第 9 又は第 1 0発明の帯状体の品質測定装置と、 前記品質则定装 S により求められた、 ロール入側の帯伏体の作業側及び駆動側の蛇行 量及びキヤ ンバを取り込む手段と、 前記坨行量及びキヤ ンバに基づ き□ールの作業側及び駆動側のギヤ ッ プ補正値を算出する手段と、 作業側及び駆動側の前記ギャ ッ プ補正値を口一儿の作業側及び駆動 側のギャ ップ設定値に加算する手段とを備えるこ とを特徴とする。 第 1 4 発明の ト リ ム装置は、 帯状体の蛇行をフ ィ ー ドバ ッ ク制御 して帯状体の両側縁を ト リ ミ ングすべく な してある ト リ 厶装置にお いて、 第 9 又は第 1 0発明の帯状体の品質測定装置と、 前記品質測 定装置によ り求められた、 帯状体のー側緣又は両側縁の蛇行量及び キャ ンバを取り込む手段と、 前記蛇行量、 キ ャ ンバ及び目標とする 帯状体の幅に基づいて 卜 リ ム代を求める手段と、 前記 ト リ ム代に基 づき、 エツ ジポジシ ョ ン コ ン ト ロール設定値を算出する手段とを備 えるこ とを特徴とする。
第 1 発明及び第 9 発明においては、 搬送される帯状体を撮像手段 によって所定の間隔で撮像し、 その結果得られた撮像画像中の帯状 体の側縁の複数箇所の夫々 から帯状体の長手方向に設定された基準 線までの距離を算出する。 そして上流側で撮像された撮像画像中の 帯状体の所定箇所における前記距離と、 下流側で撮像された撮像画 像中の帯状体の前記箇所における前記距離との差異を検出する。 こ こで前記差異に基づいて、 帯状体の蛇行量を算出し、 この算出 した 蛇行量に基づいて帯状体のキヤ ンバを算出する。
このよ う に、 撮像手段によって撮像された撮像画像を用いる こ と によって、 帯状体の移動中に、 帯状体のキャ ンバ及び蛇行量の算出 を同時に、 高精度に行う こ とができ、 帯状体の品質を短時間で評価 するこ とができる。 従って、 本発明の品質则定装匿は、 従来の場合 のよ う に複数のエッ ジ位置検出センサ等を備える必要がな く 、 設置 スペースか少な く てすむ。
第 2発明においては、 蛇行量及びキャ ンバを容易に算出する こ と ができる。
第 3発明及び第 1 0 発明においては、 移動中の帯状体の全長にわ たって、 幅を測定するこ とができる。 そ して、 帯状体の幅, 蛇行量 及びキヤ ンバの夫々 を算出するために専用のエツ ジ位置検出セ ンサ 等を設ける必要かな く 、 限られた設置スペースで足り る。
第 4 発明においては、 蛇行量、 キャ ンバ及び幅を精度良く 则定す るこ とができる こ とか確認されている。
第 5 発明及び第 1 1 発明においては、 撮像画像中の帯伏体の側緣 の複数箇所の夫々 から帯状体の長手方向に設定された基準線までの 距離を算出し、 こ の算出された距離に基づいて、 帯伏体の側緣の欠 けを検出する。
第 6 発明及び第 1 2発明においては、 撮像画像中の画素の輝度値 に基づいて、 帯状体の表面欠陥をも検出する。 帯状体の幅, 蛇行量 及びキヤ ンバの算出に加えて、 表面欠陥の検出及び帯状体の側緣の 欠けを検出するこ と も可能となり、 これらをデ一夕ベース化して管 理する こ とによ り .、 帯状体の品質保証、 並びに製造過程における形 状品質改善及び向上を図る こ とが可能になる。
第 7発明及び第 1 3発明においては、 蛇行量及びキャ ンバの実測 値に Sづき圧延装置のロールの駆動側及び作業側のギヤ ップの設定 値をフ ィ 一 ドフ ォ ヮー ド制御するので、 有効にキヤ ンバの発生を抑 制し、 帯伏体の品質欠陥を防止する こ とができる。
第 8発明及び第 1 4 発明においては、 蛇行量及びキャ ンバの実測 値に基づき 卜 リ ム代を求め、 こ の ト リ 厶代に基づき蛇行制御のため のエッ ジポジシ ョ ン コ ン ト ロール設定値を変更して ト リ ミ ングを行 うので、 有効にキャ ンバの発生を抑制し、 帯状体の品質欠陥を防 . する こ とかできる。 図面の簡単な説明 第 1 図は本発明の帯状体の品質測定装置の構成を示すプロ ッ ク図 第 2図は本発明の帯状体の品質測定装置が備えるテ レ ビカ メ ラの配 置を説明するための模式的平面図である。 第 3図は演算装置の処理 手順を示すフローチヤ一 ト、 第 4 図は鋼帯の側縁から鋼帯の長手方 向に設定された基準線までの距離を説明するための説明図、 第 5 図 は鋼帯の側縁から鋼帯の長手方向に設定された基準線までの距離を 説明するための説明図、 第 6 図は鋼帯の斜走行によって発生する鋼 帯の側緣上の任意の測定点から基準線までの距離のズレ量を説明す るための説明図、 第 7図は鋼帯の幅を算出する処理を説明するため の説明図、 第 8 図は圧延装置を示す模式的平面図、 第 9 図はギヤ ッ プ制御装置の処理手順を示すフ ローチ ャ ー ト、 第 1 0 図は ト リ ム装 置を示す模式的平面図、 第 1 1 図は蛇行制御装置の処理手順を示す フ ロ ーチ ャ ー ト、 第 1 2図は本発明の品質測定装置を用いて鐧帯の キ ヤ ンバを算出した場合とオフライ ンで 3次元装置を用いて鋼帯の キャ ンバを測定した場合との比較結果を示すグラフ、 第 1 3図は本 発明の品質測定装置を用い、 冷延薄板鋼板の同一範囲 ( 3 l m ) に ついて、 通板速度 1 2 mpm でキャ ンバを 3 回測定した結果を示した グラ フ、 第 I 4 図は従来の鋼帯の品質測定情報取得装置の構成を示 すブロ ッ ク図である。 発明を実施するための最良の形態
以下、 本発明をその実施例を示す図面に基づいて詳述する。
第 1 図は、 本発明の帯状体の品質则定装置の構成を示すプロ ッ ク 図で る。 第 1 図に示すとおり、 鋼帯 1 はローラ 2 によ り一; £速度 で長手方向に搬送されている。 このローラ 2 にはパルスエン コーダ 7が接続されており、 パルスエ ン コーダ 7 は鋼帯 1 の搬送距離に応 じたパルス数に基づきパルス信号を演算装置 5 に入力する。
また、 C C D ( Charge Coupled Device ) を有する 2台のテレ ビ カメ ラ 3 a及び 3 b は、 鋼帯 1 の両側縁を撮像できるように設けら れている。 2台のテレ ビカ メ ラ 3 a及び 3 bは、 連続的に鋼帯 1 の 側縁を撮像し、 撮像した撮像画像を画像入力回路 4 を介して演算装 置 5 に対して出力する。 そ して演算装置 5 は、 このよう に してテレ ビカ メ ラ 3 a及び 3 bから入力された撮像画像をメ モ リ 6 に記憶す る。
なお、 鋼帯 1 が長い場合は、 メ モ リ 6 に記憶されるデータ量が極 めて大き く なるため、 2台のテレ ビカ メ ラ 3 a及び 3 b は、 h述し たよう に連続的に撮像するのではな く 、 例えば 1 0 乃至 1 5 m m ピ ツチ程度で断続的に撮像するよ うに してもよい。
演算装置 5 は、 このようにしてメ モ リ 6 に記憶した複数の撮像画 像に基づき、 後述する手順にしたがって、 鋼帯 1 の幅, 蛇行量及び キャ ンバの算出、 並びに表面欠陥及び側緣の欠けの検出を行う。 则定の精度確保条件は、 以下の通りである。
テ レ ビカ メ ラ 3 a及び 3 bのシャ ツ 夕速度 V S ( H z ) 、 鋼帯 1 の最大移動速度 V L (m p m) 、 及び 1 回则定情報における位置情 報の測定間隔 S L (mm ) は以下の式を満たすようにする。
V S ≥ { (V L x l 0 0 0 ) / 6 0 ) X { \ / ( S L / K V ) } K V ≥ 1 0
但し、 K V : 精度検証した範囲 (係数)
テレ ビカ メ ラ 3 a及び 3 bの照度 L X ( L x ) は、 シ ャ ツ タ速度 V Sから以下の式に基づき求める。
L X ^ K L V S
但し、 K L : 変換係数 ( L X Z H z ) で、 5 . 0〜 7 . 0 6 . 0が好ま しい。
第 2図は、 本発明の帯状体の品質測定装置が備えるテ レ ビカ メ ラ 3 a及び 3 bの配置を説明するための模式的平面図である。 第 2 図 において 3 0 a 及び 3 0 b はテ レ ビカ メ ラ 3 a 及び 3 b夫々 によ つ て撮像される撮像範囲を示している。 また、 これら撮像範囲 3 0 a 及び 3 0 bには、 鋼帯 1 の側緣 E 1 及び E 2夫々 か含まれてる。
こ こで、 鋼帯 1 の側縁 E 1 及び E 2 とこれらの背景となる箇所と の境界を明確にし、 正確かつ安定した側緣 E 1 及び E 2 の位置情報 を得るために、 以下に示す撮像環境か保たれている。
( 1 ) 鋼帯 1 の中央寄り上部には照明器 (図示せず) を設け、 こ の照明器によって撮像範囲 3 0 a及び 3 0 b付近を均一な照度分布 で照射する。
( 2 ) 鋼帯 1 とその背景筒所との間に 0 〜 1 0 0 m m程度の段差 を設ける。
( 3 ) 鋼帯 1 の色とその背景箇所の色とのコ ン ト ラ ス トか大き く なるよ うに、 しかも撮像画像において鋼帯 1 を示している画素の輝 度値がこ の背景箇所を示している画素の輝度値より も高く なるよ う に、 背景箇所の色を設定する。 例えば冷延鋼帯の場合、 その背景箇 所は黑色とする。
そして、 色濃淡レベルに閾値を設け、 閾値の周辺における色濃淡 レベルの傾斜度から測定値を算出する こ とで、 測定分解能を向上さ せる。
次に本発明の帯状体の品質測定装置の動作について説明する。 第 3図は、 演算装置 5 の処理手順を示すフ ロ ーチ ャ ー トであり、 第 4図は、 鋼帯 1 の側縁 E 1 から鋼帯 1 の長手方向に設定された基 準線までの距離 L a ! - L a 4 を説明するための説明図である。 第 4図において、 I 1 はテレ ビカ メ ラ 3 aによって撮像された It 像画像を示している。 また P a , 〜 P a 4 は、 鋼帯 1 の側縁 E 1 上 に所定間隔 Lで配されている 4つの则定点を示しており、 8 は、 鋼 帯 1 の長手方向に設定された基準線を示している。 P a , から P a P a 3 、 P a 4 までの鋼帯 1 長手方向の距離は、 夫々 L 2 、 L 3 、 L 4 である。
なお、 基準線 8 は、 撮像範囲 3 0 aの任意の位置に設けてあれば よい。
また第 4図における矢印は走査方向を示しており、 本発明の品質 測定装置は、 则定点 P a , 〜 P a 4 を含む走査線のみを走査する こ とによ り、 位置情報の取得時間の短縮化を図つている。
なお、 则定点 P a , 〜 P a 4 を含む走査線に加え、 該走査線夫々 の付近の走査線をも走査し、 これらの走査の結果に基づいて側縁 E 1 の位置を算出するこ とによって、 精度を高めるよ う に してもよい c 演算装置 5 は、 テレ ビカ メ ラ 3 aによ って撮像された撮像画像を メ モ リ 6から取り出 し、 取り出 した撮像画像に示されている鋼帯 1 の側縁 E 〖 を公知の方法を用いて検出する。
そ して、 ステッ プ S 1 0 1 において、 1 = 0 とする ( i はキ ャ ン バの则定箇所数) 。
次に、 検出された側緣 E 1 上の 4 つの则定点 P a , 〜 P„ (こ こ では、 n = 4 ) 夫々 から基準線 8 までの距雜 L a , 〜 L a„ を算出 する ( S 1 0 2 ) 。
さ らに、 次の式に基づき初期設定を行う (ステッ プ S 1 0 3 ) 。
伹し、 π : 1撮像画像中の^定箇所数
C
Figure imgf000016_0001
:各箇所のキャンパ 次に、 演算装置 5 は、 パルスエ ン コーダ 7から入力されるパルス 信号に基づいて鋼帯 1 が距離 L - , (こ こでは L 3 = 2 L ) 移動し たか否か判断する (ステップ S 1 0 4 ) 。
ステ ッ プ S 1 0 4 において、 鋼帯 1 が L n j 移動した場合、 ステ ップ S 1 0 5 に進む。
ステッ プ S 1 0 4 において、 鋼帯 1 が L i 移動していない場合、 鐧帯 1 が L n-, 移動するまで処理を繰り返す。
ステップ S 1 0 5 において、 演算装置 5 は、 撮像画像 I 1 が撮像 された後にテレ ビカ メ ラ 3 aによって撮像された撮像画像を用いて、 鋼帯 1 の側縁 E 1 から基準線 8 までの距離 L b , 〜 L b„ (こ こで は、 n = 4 ) を算出する (ステップ S 1 0 5 ) 。
第 5図は、 鋼帯 1 の側縁 E 1 から基準線 8 までの距離 L b , 〜 L 4 を説明するための説明図である。 第 5図において、 I 2 はテレ ビ力 メ ラ 3 aによって撮像された撮像画像を示しており、 この撮像画像 I 2は、 上述した撮像画像 I 1 の後に撮像された撮像画像である。
P b 】 は、 上述した则定点 P a 3 が鋼帯 1 の搬送に伴って距離 L 3 搬送方向に移動した場合の则定点を示す。 P b 2 も同様に则定点 P a が距離 L 3 移動した場合の測定点である。
ステッ プ S 1 0 5では、 演算装置 5がこれら 4つの则定点 P b 】 〜 P b 4 夫々から基準線 8 までの距離 L b , 〜L b 4 を算出する。 次に、 演算装置 5は、 ステッ プ S 1 0 3にて算出 した距離 L a , 〜L a 4 及びステップ S I 0 5 にて算出 した距離 L b , 〜L b 4 を 用いて、 鋼帯 1 のズレ量、 蛇行量、 キャ ンバを算出する (ステッ プ S 1 0 6乃至 S 1 0 8 ) 。 以下、 これらのステップの詳紬について 説明する。
演算装置 5 は、 以下の式を fflいて鋼帯 1 のズレ量 Rを算出する I 6
(ステ ッ プ S 1 0 6 ) 。
Ri〜n =L i n x{(Cn—, - Cn ) - (Lb — L b 2 ) j /[_
但し、 R) n :帯状体の斜走行により生じる、
各箇所のズレ量
L,^n :左端の測定箇所から各箇所までの
帯状体長手方向の距離,
L, =0とする。
し: ¾定ピッチ
第 6 図は、 鋼帯 1 の斜走行によって発生する鋼帯 1 の側緣 E 1 上 の任意の则定点から基準線 8 までの距離のズレ量 Rを説明するため の説明図である。
第 6 図において、 ( a ) は上述した则定点 P b , の位置を、 ( b ) は上述した则定点 P a 3 及び P a 4 の位置を夫々示しており、 また ( c ) 及び ( d ) は、 鋼帯 1 の走行伏態を夫々示している。
こ こで第 6図 ( d ) に示すとおり、 鐧帯 1 がセンターライ ンに対 して平行に搬送されている場合は、 则定点 P a 3 は则定点 P b , ,の 位置に移動する こ ととなり、 その結果この则定点 P b , ,が则定点 P b となる。
一方、 第 6図 ( c ) に示すとおり、 鋼帯 1 かセ ン夕一ライ ンに対 して平行せずに搬送されている場合、 すなわち斜走行する場合は、 測定点 P a 3 は则定点 P b , 2の位置に移動するこ とによ り、 この则 定点 P b , 2が则定点 P b , となる。 そのため、 P a 3 から基準線 8 までの距離 L a 3 は、 P b , (図面では P b , 2 ) から基準線 8 まで の距雜 L b , となり、 鋼帯 1 がセンターライ ンに対して平行に搬送 されている場合に比し、 距離 L b , から距離 L a 3 を减じて得られ た値 ( R ) だけズレか生じる。 この Rが、 鋼帯 1 の斜走行によ り発 生する基準線 8 から鋼帯 1 の側緣 E 1 までの距離のズレ量である。 但し、 この場合、 鋼帯 1 の蛇行は鐧帯 1 の斜走行のみによる ものと してし、る。
本実施例では、 このズレ量 Rは上述の式を用いて、 演算装置 5 が 算出する。
次に、 演算装置 5 は、 ステッ プ S I 0 6 にて算出されたズレ量 R を用いて、 次の式によ り鋼帯 1 の坨行量 Dを算出する (ステッ プ S
1 0 7 ) o
L/ 】 〜 n 二 L b 〗 — n— 1 一 】 门 但し、 D ,〜n :各箇所の蛇行量
さ らに、 演算装置は、 ステッ プ S 1 0 7 にて算出された蛇行量 D を用いて、 次の式によ り鋼帯 1 のキャ ンバ Cを算出する (ステッ プ
S 1 0 8 ) o
し i + n - i 〜 i +2 ( n - i ) = L b ― D 但し、 i :キャンパの^定箇所数
なお、 上述した処理においては、 テレ ビカ メ ラ 3 a によって撮像 された撮像画像 I 1 及び I 2 を用いているので、 ステッ プ S 1 0 7 及び S 1 0 8 にて算出される鐧帯 1 の蛇行量 D及びキ ャ ンバ Cは鐧 帯 I の側緣 E I における蛇行量 D及びキヤ ンバ Cである力 、 テ レ ビ カ メ ラ 3 b によ って撮像された撮像画像を用いて同様の処理を実行 するこ とによ っ て、 鋼帯 1 の側緣 E 2 における蛇行量 D及びキャ ン バ Cを算出する こ とかできるこ とはいう までもない。
次に、 ステ ッ プ S 1 0 9 において、 i = i + n — 2 とする。
そ して、 演算装置 5 は、 蛇行量 D及びキ ャ ンバ Cの则定が終了 し たか否か判断する (ステッ プ S 1 1 0 ) 。
ステ ッ プ S 1 1 0 において、 则定が終了 した場合、 処理を終了す る。
ステップ S 1 1 0 において、 则定か終了 していない場合、 処理を S 1 0 4 に戻す。
以下、 鋼帯 1 の幅を算出する場合について説明する。
演算装置 5 は、 テレ ビカ メ ラ 3 a及び 3 b夫々 によって撮像され た撮像画像を、 メモ リ 6から取り出す。
第 7図は、 鋼帯 1 の幅を算出する処理を説明するための説明図で あり、 ( a ) はテレ ビカ メ ラ 3 b によって撮像された撮像画像を、 ( b ) はテレ ビカ メ ラ 3 a によって撮像された撮像画像を夫々示し ている。 なお、 これらの撮像画像は同一時間においてテレ ビカ メ ラ 3 a及び 3 b夫々 によって撮像された撮像画像である。
第 7図 ( a ) において、 I 3 はテレ ビカ メ ラ 3 bによって撮像さ れた撮像画像を示している。 また P c は、 鋼帯 1 の側縁 E 2上の任 意の測定点を示しており、 L c は、 この则定点 P cから基準線 8 ま での距離を示している。
また第 7 冈 ( b ) において、 I 4 はテレ ビカ メ ラ 3 a によって撮 像された撮像画像を示しており、 P d は鋼帯 1 の側縁 E 1 上の測定 点を、 L d はこの则定点 P dから基準線 8 までの距離を夫々示して いる。 こ こで測定点 P c及び P d は、 鋼帯 1 の搬送方向と直交する 同一線上の点である。
演算装置 5 は、 次の式を用いて鋼帯 1 の幅を算出する。
W = L - ( L c + L d )
こ こで Lは、 鋼帯 1 の側縁 E 1 に対する基準線 8 と側縁 E 2 に対 する基準線 8 との間の距離を示している。
以下、 鋼帯 1 の表面欠陥及び側縁の欠けの検出をする場合につい て説明する。 演算装置 5 は、 テレ ビカ メ ラ 3 a によって撮像された撮像画像を メモ リ 6 から取り出 し、 取り出した撮像画像中の画素の輝度値を 2 値化する。 こ こで、 上述した撮像環境によ り、 撮像画像において鋼 帯 1 を示している画素の輝度値は、 その背景箇所を示している画素 の輝度値よ り も高く なっている。 また鋼帯 1 の表面に表面傷などの 表面欠陥がある場合、 上述した照明器による照明光の反射状態か変 化するため、 撮像画像において鋼帯 1 の表面欠陥部分を示している 画素の輝度値は、 鋼帯 1 を示している画素の輝度値よ り も高く なる, したかって、 鋼帯 1 の表面に表面欠陥がない場合、 2値化後の撮像 画像は黒一色となる。 一方、 鐧帯 1 の表面に表面欠陥かある場合、 その表面欠陥を示す画素のみが白色となる。 よって、 演算装置 5 は. 白色となっている画素を検出する こ とによ り、 鋼帯 1 の表面欠陥の 検出を行う。
鋼帯 1 の側緣 E 1 の欠けを検出する場合、 演算装置 5 は、 撮像画 像中の側縁 E 1 を関数 f ( X ) と し、 この関数 f ( X ) を微分する ( そ してその結果得られた微分値か予め設定された閾値を越えるか否 かを判別し、 越える場合に、 側縁 E 1 に欠けか発生したと判断する c なお、 テレ ビカ メ ラ 3 b によ って撮像された撮像画像に対して も 表面欠陷及び側縁 E 2 の欠けの検出を行う。
上述した処理にしたかって、 鋼帯 1 の幅, 蛇行量及びキャ ンバの 算出、 並びに表面欠陷及び側縁の欠けの検出を操り返すこ とによ り、 鋼帯 1 の品質測定を行う こ とができる。
幅, 蛇行量及びキャ ンバの情報は、 则定後、 すぐに鐧帯 I の圧延 装置及び 卜 リ ム装置においてフ ィ 一 ドフ ォヮー ド制御に用いられる こ とが望まれる。 表面欠陥及び側縁の欠けに関しては修正か困難で あり、 欠陥部分の問引き、 不良発生要因の調査及び改善等の情報と して使用されるか、 その判定処理には時間を要する。 各取扱情報の 特徵及び処理性能から、 この実施例においては、 幅, 蛇行量及びキ ャ ンバの測定及ひ処理は、 鋼帯 1 か I Z 3画面移動する毎に行い、 表面欠陥及び側縁の欠けの測定及び処理は、 鋼帯 1 か 1 凼而移動す る毎に行う よ う に設 ftした。
以下、 キヤ ンバの抑制方法について説明する。
第 8 図は、 圧延装置を示す模式的平面図であり、 図中、 1 1 は本 発明に係る品質测定装 gである。 圧延ロール 1 3入側の作業側の鋼 帯 1 の撮像範囲 3 0 a 、 及び駆動側の撮像範囲 3 0 bから得られた 情報に基づき、 品質測定装置 1 1 は作業側、 駆動側のキャ ンバ C PVVV: C pvdiを算出 し、 これをギヤ ップ制御装置 1 2へ出力する。 ギヤ ッ プ制御装置 1 2 は、 これに基づき、 圧延ロール 1 3 の目搮とする作 業側及び駆動側のギヤ ッ ブ Wgap 、 D gap を求め、 フ ィ ー ドバッ ク 制御を行う。
第 9図は、 ギャ ッ プ制御装置 1 2の処理手順を示すフ ロ ーチヤ一 トである。
ます、 ステップ S 2 0 1 において、 作業側、 駆動側のキャ ンハ C pvwi、 C pvdiを人刀する。
次に、 入力された C pvwi、 C pvdiに基づき、 圧延口一ル 1 3 の作 業側、 駆動側のギャ ッ プ補正値 Wdsv 、 Ddsv を算出する (ステツ プ S 2 0 2 ) 。
そ して、 作業側、 駆動側の圧延ロール 1 3 のギャ ッ プ設定値 Wgap sv、 Dgap svに前記 Wdsv 、 Ddsv を加算して、 目標とする作業、 駆動側のギヤ ッ プ Wgap 、 Dgap を求める (ステ ッ プ S 2 0 3 ) 。 圧延ロール 1 3 の作業側、 駆動側のギャ ッ プ測定値 Wgap fb、 D gap fbを入力する (ステ ッ プ S 2 0 4 ) 。 入力されたギャ ッ プ则定値 Wgap fb、 D gap fbに基づき、 圧延口 —ル 1 3 の作業、 駆動側のギャ ッ プ Wgap 、 D gap をフ ィ ー ドバ ッ ク制御する (ステ ッ プ S 2 0 5 ) 。
従来の I王延装置においては、 作業側、 駆動側の圧延荷重の変化量 に基づきキャ ンバを推定して、 目標とする作業、 駆動側のギャ ッ プ Wgap 、 Dgap を求めていたのに対し、 本発明の圧延装置において は、 作業側、 駆動側のキャ ンバの実则値 C pvwi、 C pvdiに基づき、 ギャ ッ プ設定値 Wgap sv、 Dgap sv を補正して、 目標とする作業. 駆動側のギャ ッ プ W gap 、 D ga を求めるので、 有効にキャ ンバの 発生を抑制する こ とができる。
第 1 0 図は、 ト リ ム装置を示す模式的平面図であり、 図中、 1 1 は本発明に係る品質測定装置である。
この ト リ ム装置は、 蛇行制御ロール 1 5 とサイ ド 卜 リ マ 1 6 とを 備えており、 蛇行制御ロール 1 5 を左右にずら して鋼帯 1 の蛇行を 制御しつつ、 サイ ド ト リ マ 1 6 によ り鋼帯 1 の緣部をカ ツ 卜すべく な してある。
品質測定装置 1 1 は、 蛇行制御ロール 1 5 の人側の駆動側の撮像 範囲 3 0 a、 3 0 bから得られた情報に基づき、 作業側、 駆動側の キャ ンバの実则値 C pvwi、 C pvdiを算出 し、 これを蛇行制御装 E l 4へ出力する。 蛇行制御装置 1 4 は、 これに基づき、 蛇行制御ロー ル 1 5 の E P C設定値を求め、 フ ィ ー ドバッ ク制御を行う。
第 1 1 図は、 蛇行制御装置 1 4 の処理手順を示すフ ローチ ヤ — 卜 である。
まず、 ステッ プ S 3 0 1 において、 作業側、 駆動側のキャ ンバの 実则値 C pvwi、 C pvdiを入力する。
次に、 入力された C pvwi及び C pvdiに基づき、 鋼帯 1 の ト リ ム代 を算出する (ステッ プ S 3 0 2 ) 。
そ して、 前記 ト リ ム代に基づき、 E P C設定値 E P C sv を算出 する (ステップ S 3 0 3 ) 。
次に、 E P C则定値 E P C fb を人力する (ステッ プ S 3 0 4 ) 入力された E P C则定値 E P C f b に基づき、 E P Cをフ ィ ー ド バッ ク制御する (ステップ S 3 0 5 ) 。
従来の ト リ ム装置においては、 E P C設定値 E P C sv を固定し ていたのに対し、 本発明の ト リ ム装置においては、 作業側、 駆動側 のキャ ンバの実则値 C pvwi、 C pvdiに基づき、 E P C設定値を変更 して鋼帯 1 の蛇行を制御するので、 有効にキ ャ ンバの発生を抑制す る こ とができる。 さ らに、 ト リ ム装置の出側において、 鐧帯 I の蛇 行 (移動) 状況の情報に基づき、 移動装置 (T/R等) を制御する こ とによ り、 望ま しい帯状体の搬送及びコイルの巻き取りを行う こ とが可能になる。
(数値例)
以下、 本発明を数値例に基づき具体的に説明する。
レーザー加工によ り、 片側縁がピッチ 1 0 0 m ΙΏで振幅 i m πιの 波形に加工された鋼帯のキャ ンバの算出を行った。
第 1 2図は、 本発明の品質測定装置を用いて鋼帯のキャ ンバを算 出 した場合とオフライ ンで 3次元则定装置を用いて鋼帯のキ ヤ ンバ を測定した場合との比較結果を示すグラ フである。
第 1 2図において、 ( a ) は本発明の品質測定装置によって算出 された結果を示しており、 ( b ) はオフ ラ イ ンで 3次元測定装置に よって測定された結果を示している。 第 1 2図に示すとおり、 これ らの結果の誤差は 0. 0 1 mm以下であった。
第 1 3図は、 本発明の品質測定装置 1 1 を用い、 冷延薄板鋼板の 同―.範囲 ( 3 1 m) について、 通板速度 1 2 mpm でキヤ ンバを 3回 測定した結果を示したグラ フである。 同時に、 実際に薄板鋼板を展 開し、 水糸を張って隙間ゲージで計測した場合も示す。 第 1 3図に おいて、 ( a ) 、 ( b ) 及ぴ ( c ) は、 夫々 1 回目、 2 回目、 3 回 目に则定した値、 ( d ) は水糸を張って計则した値を示す。
第 1 3図よ り、 本発明の品質剮定装置 1 1 を用いるこ とにより、 土 0. 5 m mの範囲内で再現性よ く キヤ ンバを蒯定できたこ とか判 る。
以上のよう に、 本発明の鋼帯 1 の品質则定方法及び品質測定装置 においては、 鋼帯 1 の移動中に、 略全長に旦り、 幅, 蛇行量及びキ ヤ ンバの则定、 並びに表面欠陥及び側縁の欠けの検出を同時に、 高 精度に実施するこ とができる。 従って、 本発明の品質測定装置は、 従来の場合のよう に複数のエッ ジ位置検出セ ンサ等を備える必要が な く 、 限られたスペースで足り る。
また、 本発明のキャ ンバ抑制方法による場合は、 前記幅, 蛇行量 及びキヤ ンバの情報に基づき、 帯状体の圧延装置及び 卜 リ 厶装置に フ ィ ー ドフ ォ ヮ ー ド制御を行うので、 よ り形状精度が高い帯状体を 製造するこ とができる。
なお、 前記実施例においては、 帯状体と して鋼帯 1 を適用 した場 合につき説明しているが、 これに限定される ものではない。
また、 前記実施例においては、 各撮像画面において、 測定箇所数 nが 4 である場合につき説明しているか、 これに限定されず、 nは 3以上であればよし、。
さ らに、 前記実施例においては、 第 1 0 図の ト リ ム装置において、 鋼帯 1 の作業側、 駆動側のキャ ンバの実測値 C pvwi、 C pvdiに基づ き E P C設定値 E P C sv を求める場合につき説明 している力く、 一 方のキャ ンバの実測値に基づき E P C設定値 E P C s V を求める こ とにしてもよい。 但し、 両方のキャ ンバの実则値に基づき E P C設 定値 E P C s v を求める方が好ま しい。 産業上の利用可能性
以上、 詳述したよ う に、 本発明の帯状体の品質測定方法及び品質 測定装置によれば、 撮像手段によって撮像された撮像画像を用いる こ とによって、 帯状体の移動中に、 帯状体の幅, 蛇行量及びキャ ン バの算出、 並びに表面欠陥及び側緣の欠けの検出を同時に、 高精度 に行う こ とができ、 帯状体の品質を短時間で評価する こ とかできる ( 従って、 本発明の品質測定装置は、 従来の場合のよ う に複数のエツ ジ位置検出センサ等を備える必要がな く 、 設置スぺースか少な く て すむ。
また、 本発明のキャ ンバ抑制方法による場合は、 前記幅, 蛇行量 及びキャ ンバの情報に基づき、 帯状体の圧延装置及び ト リ ム装置に フ ィ — ドフ ォ ヮー ド制御を行うので、 よ り形状精度が高い帯状体を 製造するこ とができる。 さ らに、 ト リ ム装置の出側において、 帯状 体の蛇行 (移動) 状況の情報に基づき、 移動装置 ( T Z R等) を制 御するこ とによ り、 望ま しい帯状体の搬送及びコイ ルの巻き取りを 行う こ とが可能になる。

Claims

請求の & ffl
1 . 搬送される帯认-体を所定の間隔で ίβ像する撮像手段を用し、、 該撮像手段によ つて撮像された複数の撮像画像に基づいて、 帯 4犬体 の蛇行量及びキャ ンバを算出する帯状体の品質则定方法において、 像画像中の帯状体の側縁の複数 (Si iTrの夫々 から帯状体の長 方 向に設定された ¾準線までの距離を算出するステツ ブと、
m像画像中の帯状体の所定筒所における前記距 ¾ΐίと、 帯状体を所 定距離搬送した後の撮像画像中の帯伏体の前記筒所における前記距 との差異を検出するステッ プと、
前記差異に基づいて、 帯状体の蛇行量を算出するステ ッ プと、 前記蛇行量に基づいて、 帯状体のキャ ンバを算出するステツ プと を含むこ とを特徴とする帯状体の品質则定方 i 。
2. 次の ¾に基づきズレ量を求めるステッ プと、 ] . η =L ΐ .η x{ (La n-!-La n ) - (Lb】 - Lb2 /し 但し、 n : 1掲 11画像中の 定箇所数
R|-n :帯状体の斜走行により生じる、
各箇所のズレ量
L〗〜n :左端の測定箇所から各箇所までの
帯状体長手方向の距離。
L, =◦とする。
L:剁定ピッチ
Lan-i:上流側の n— 1番目の 定菡所に
おける^記距離
Lan :上流側の n番目の測定箇所における
前記距離 次の式に基づき蛇行量を求めるステッ プと、
D) n二 Lb ) - L a n- i — Ri n 但し、 D ^n :各齒所の蛇行量
Lb1 :下流側の左端の ¾定箇所における前記距離 次の式に基 :づきキヤ ンバを求めるステッ プと
C ι + π- 1〜 i+2 (n-i) = し - D 但し、 i :キャンパの剁定箇所数。 0と自然数
L b :下流側の各箇所における前記距離
を含む請求項 1 記載の帯状体の品質測定方法。
3. 帯状体の両側縁につき、 複数箇所の夫々から、 帯状体の両側 に設定された各基举線までの距離を算出するステッ プと、 次の式に 基づき帯状体の幅を算出する ステツ ブとを含む請求項 1 又は 2記脏 の帯状休の品質则定方法。
= L - ( L c + L d )
但し、 L : 帯状休の両側の基準線問の距離
L c : -側緣の所定 ®所から一側縁側の基準線までの 距離
L d : 前記 ϋ所に対し、 帯状体の搬送方向と直交する 同- -線上にある他側緣の筒所から他側縁側の基 準線までの距離
4 . 前記撮像手段のシャ ツ 夕速度 V S及び照度 L Xが次の式を満 足する請求項 1 乃至 3のいずれかに記載の帯状体の品質则定方法。
V S ≥ { (V L x l 0 0 0 ) / 6 0 ) { \ / ( S L / K V ) }
K V ≥ 1 0
L X = K L x V S
但し、 K v : 精度検証した範 ffl (係数) K L : 変換係数 ( L x Z H z ) で、 5 . 0 〜 7 . 0
5 . 前記距離に基づいて、 帯状体の側縁の欠けを検出するステツ プを更に含むこ とを特徴とする請求項 1 乃至 4 のいずれかに記載の 帯状体の品質測定方法。
6 . 前記撮像画像中の画素の輝度値に基づいて、 帯状体の表面欠 陥を検出するステ ッ プを含む請求項 1 乃至 5 のいずれかに記載の帯 状体の品質測定方法。
7 . 帯状体を圧延する ときに、 ロールの作業側及び駆動側のギヤ ッ プをフ ィ 一 ドバッ ク制御してキヤ ンバの発生を抑制するキ ヤ ンバ 抑制方法において、
請求項 1 乃至 4 のいずれかに記載の帯状体の品質蒯定方法によ り、 口一ル入側の帯状体の作業側及び駆動側の蛇行量及びキヤ ンバを求 めるステッ プと、
前記蛇行量及びキヤ ンバに基づき口ールの作業側及び駆動側のギ ャ ッ プ補正値を算出するステップと、
作業側及び駆動側の前記ギャ ップ補正値を口一ルの作業側及び駆 動側のギヤ ッ ブ設定値に加算するステッ プと
を含むこ とを特徵とするキヤ ンバ抑制方法。
8 . 帯状体の両側縁を ト リ ミ ングする ときに、 帯状体の蛇行をフ ィ 一 ドバッ ク制御してキヤ ンバの発生を抑制するキヤ ンバ抑制方法 において、
請求項 1 乃至 4 の帯状体の品質測定方法によ り、 帯状体のー側緣 又は向側縁の蛇行量及びキャ ンバを求めるステップと、
前記蛇行量、 キャ ンバ及び目標とする帯状体の幅に基づいて ト リ 厶代を求めるステッ プと、
前記 ト リ ム代に基づき、 蛇行制御設定値を算出するステッ プと を含むこ とを特徴とするキャ ンバ抑制方法。
9 . 搬送される帯状体を所定の間隔で撮像する 1 又は複数の撮像 手段を備え、 該撮像手段によって撮像された複数の撮像画像に基づ いて、 帯状体の蛇行量及びキヤ ンバを算出すべく な してある帯状体 の品質測定装置において、
撮像画像中の帯状体の側縁の複数筒所の夫々 から、 帯状体の長手 方向に設定された基準線までの距離を算出する距離算出手段と、 撮像画像中の帯状体の所定箇所における前記距離算出 ΐ·段によ つ て算出された距離と、 帯状体を所定距離搬送した後の撮像画像中の 前記茵所における前記距離算出手段によ って算出された距離との差 異を比較する差異検出手段と、
前記差異に基づいて、 帯状体の蛇行量を算出する蛇行量算出手段 と、
該蛇行量算出手段によって算出された帯状体の蛇行量に基づいて、 帯状体のキ ャ ンバを算出するキャ ンパ'算出手段と
を備える こ とを特徴とする帯状体の品質測定装置。
1 0 . 帯状体の両側縁につき、 複数箇所の夫々 から、 帯状体の両 側に設定された各基準線までの距離を算出する距離算出手段と、 帯状体の搬送方向と直交する同一線上にある一対の箇所から各基 準線までの距離に基づいて、 帯状体の幅を算出する幅算出手段と を備える請求項 9記載の帯状体の品質则定装置。
1 1 . 前記距離算出手段によって算出された距離に基づいて、 帯 状体の側縁の欠けを検出する欠け検出手段を備える請求項 9 又は 1 0記載の帯状体の品質測定装置。
1 2 . 前記撮像画像中の画素の輝度値に基づいて、 帯状体の表面 欠陥を検出する表面欠陥検出手段を備える請求項 9乃至 1 1 のいず れかに記載の帯状体の品質測定装置。
1 3 . ロールの作業側及び駆動側のギヤ ッ プをフ ィ 一 ドバッ ク制 御して圧延すべく な してある圧延装置において、
請求項 9 又は 1 0記載の帯状体の品質则定装置と、
前記品質測定装置によ り求められた、 ロ ール入側の帯状体の作業 側及び駆動側の蛇行量及びキヤ ンバを取り込む手段と、
前記蛇行量及びキャ ンバに基づきロ ールの作業側及び駆動側のギ ャ ッ プ補正値を算出する手段と、
作業側及び駆動側の前記ギヤ ッ プ補 IF.値をロールの作業側及び駆 動側のギャ ッ プ設定値に加算する手段と
を備えるこ とを特徴とする圧延装置。
1 4 . 帯状体の蛇行をフ ィ 一 ドバッ ク制御して帯状体の両側縁を ト リ ミ ングすべく な してある ト リ ム装置において、
請求項 9 又は 1 0記載の帯状体の品質測定装置と、
前記品質測定装置によ り求められた、 帯状体の一側縁又は両側緣 の蛇行量及びキヤ ンバを取り込む手段と、
前記蛇行量、 キャ ンバ及び目標とする帯状体の幅に基づいて 卜 リ ム代を求める手段と、
前記 ト リ 厶代に基づき、 エ ツ ジポジシ ョ ンコ ン ト ロール設定値を 算出する手段と
を備える こ とを特徴とする ト リ ム装置。
PCT/JP2000/007853 1999-11-08 2000-11-08 Procede pour mesurer la qualite d'un corps en forme de bande, procede de suppression de la cambrure, instrument pour mesurer la qualite d'un corps en forme de bande, machine de laminage et dispositif de rognage WO2001035050A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00974833A EP1158267B1 (fr) 1999-11-08 2000-11-08 Mesurer la qualite d'un corps en forme de bande avec un moyen de prise d'images, reduction de cambrage et ondulation, laminage, ebarbage

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP11/317044 1999-11-08
JP31704499 1999-11-08
JP2000-92247 2000-03-29
JP2000092247 2000-03-29
JP2000339677A JP2001343223A (ja) 1999-11-08 2000-11-07 帯状体の品質測定方法、キャンバ抑制方法、帯状体の品質測定装置、圧延装置及びトリム装置
JP2000-339677 2000-11-07

Publications (1)

Publication Number Publication Date
WO2001035050A1 true WO2001035050A1 (fr) 2001-05-17

Family

ID=27339574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007853 WO2001035050A1 (fr) 1999-11-08 2000-11-08 Procede pour mesurer la qualite d'un corps en forme de bande, procede de suppression de la cambrure, instrument pour mesurer la qualite d'un corps en forme de bande, machine de laminage et dispositif de rognage

Country Status (4)

Country Link
EP (1) EP1158267B1 (ja)
JP (1) JP2001343223A (ja)
KR (1) KR100465862B1 (ja)
WO (1) WO2001035050A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106391728A (zh) * 2015-07-28 2017-02-15 Posco公司 带钢位置测量装置、带钢跑偏控制装置及计算方法
CN107367232A (zh) * 2016-05-12 2017-11-21 鞍钢股份有限公司 基于嵌入式处理系统及千兆以太网的带钢宽度检测方法
CN112361969A (zh) * 2020-11-20 2021-02-12 中国航空工业集团公司北京长城计量测试技术研究所 一种加速度传感器用悬丝翘曲度的检测装置
US20220280989A1 (en) * 2019-07-22 2022-09-08 Jfe Steel Corporation Meandering control method, meandering control device, and hot rolling equipment for hot rolled steel strip
TWI779910B (zh) * 2021-10-28 2022-10-01 中國鋼鐵股份有限公司 偵測邊導器鋼帶品質的軋延系統與偵測方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100836451B1 (ko) * 2001-12-18 2008-06-09 주식회사 포스코 열간압연공정에서 롤마크 표면결함 감소방법
JP2004170363A (ja) * 2002-11-22 2004-06-17 Sumitomo Metal Ind Ltd 長尺材のエッジ位置計測方法及びこれを用いた形状計測方法並びにエッジ位置計測装置及びこれを用いた形状計測装置
KR100931220B1 (ko) * 2002-12-27 2009-12-10 주식회사 포스코 측면절단기의 캠버 보정 장치
DE102005051053A1 (de) * 2005-10-25 2007-04-26 Sms Demag Ag Verfahren zur Bandkantenerfassung
JP4919088B2 (ja) * 2008-01-23 2012-04-18 トヨタ自動車株式会社 帯状材の巻取方法および帯状材の巻取装置
JP4683060B2 (ja) 2008-03-17 2011-05-11 トヨタ自動車株式会社 ウェブ搬送装置及びウェブ搬送制御方法
JP2011085410A (ja) * 2009-10-13 2011-04-28 Nippon Steel Corp エッジ検出装置、エッジ検出方法、およびプログラム
CN102506717B (zh) * 2011-10-26 2013-11-13 上海交通大学 热轧板带三线结构光机器视觉测宽方法
JP2013205381A (ja) * 2012-03-29 2013-10-07 Nisshin Steel Co Ltd 冷間圧延機に通板する鋼帯の欠陥検出方法および欠陥検出システム
CN102721372B (zh) * 2012-05-04 2015-06-03 西安理工大学 基于双线阵ccd的带材宽度测量方法及系统
CN103913119A (zh) * 2013-01-09 2014-07-09 扬州中誉数控机械有限公司 工件长度在线测量系统及方法
CN103252358B (zh) * 2013-05-21 2014-12-31 东北大学 一种宽厚板镰刀弯矫正方法
CN103344187A (zh) * 2013-06-28 2013-10-09 上海宝锋工程技术有限公司 冶金产品宽度的在线测量装置及其方法
JP6199799B2 (ja) * 2014-05-09 2017-09-20 株式会社神戸製鋼所 自発光材料画像処理装置及び自発光材料画像処理方法
JP6446226B2 (ja) * 2014-10-10 2018-12-26 住友ゴム工業株式会社 シート状ゴム材料の表面形状測定装置
KR101647208B1 (ko) * 2014-12-01 2016-08-24 주식회사 포스코 열간 압연공정에서의 캠버 측정 장치 및 방법
CN106312179B (zh) * 2015-06-19 2018-10-02 宝山钢铁股份有限公司 一种带缺陷钢板的在线优化剪切方法
CN107796309A (zh) * 2016-09-06 2018-03-13 鞍钢股份有限公司 一种嵌入式系统与千兆以太网的带钢宽度信息检测方法
WO2019224906A1 (ja) * 2018-05-22 2019-11-28 東芝三菱電機産業システム株式会社 産業プラント用画像解析装置および産業プラント監視制御システム
EP3715000B1 (de) 2019-03-27 2022-01-12 Primetals Technologies Austria GmbH Vermeidung von wellen beim walzen von metallbändern
DE102019114327A1 (de) * 2019-04-16 2020-10-22 hpl - Neugnadenfelder Maschinenfabrik GmbH Vorrichtung und Verfahren zur Visualisierung eines Abschnitts einer Bandkontur
US20240091835A1 (en) * 2021-01-28 2024-03-21 Jfe Steel Corporation Steel-sheet meandering amount measurement device, steel-sheet meandering amount measurement method, hot-rolling equipment for hot-rolled steel strip, and hot-rolling method of hot-rolled steel strip
JP7480763B2 (ja) 2021-08-30 2024-05-10 Jfeスチール株式会社 サイドトリミング装置および金属帯のせん断方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244656A (en) * 1975-10-06 1977-04-07 Nippon Steel Corp Method of measuring camber of steel plates
JPS6146310A (ja) * 1984-08-09 1986-03-06 Kobe Steel Ltd 板圧延におけるキヤンバ−制御方法
JPH0719830A (ja) * 1993-07-06 1995-01-20 Nippon Steel Corp 熱鋼板の形状計測装置
JPH0894333A (ja) * 1994-09-20 1996-04-12 Nippon Steel Corp 鋼板の疵検出方法
JPH09304035A (ja) * 1996-05-17 1997-11-28 Nippon Steel Corp 条体のうねり測定装置
JPH09304296A (ja) * 1996-05-14 1997-11-28 Kawasaki Steel Corp 帯状体エッジ部の欠陥検出装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868605A (ja) * 1981-10-20 1983-04-23 Sumitomo Metal Ind Ltd 板体のキャンバ−測定方法
JPS6363515A (ja) * 1986-09-05 1988-03-19 Sumitomo Metal Ind Ltd 蛇行制御方法
JPH05157549A (ja) * 1991-12-06 1993-06-22 Nippon Steel Corp 帯状体のキャンバー検出方法
KR100373679B1 (ko) * 1998-11-26 2003-11-19 주식회사 포스코 열연조압연에서캠버측정장치및그장치를이용한캠버제어방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244656A (en) * 1975-10-06 1977-04-07 Nippon Steel Corp Method of measuring camber of steel plates
JPS6146310A (ja) * 1984-08-09 1986-03-06 Kobe Steel Ltd 板圧延におけるキヤンバ−制御方法
JPH0719830A (ja) * 1993-07-06 1995-01-20 Nippon Steel Corp 熱鋼板の形状計測装置
JPH0894333A (ja) * 1994-09-20 1996-04-12 Nippon Steel Corp 鋼板の疵検出方法
JPH09304296A (ja) * 1996-05-14 1997-11-28 Kawasaki Steel Corp 帯状体エッジ部の欠陥検出装置
JPH09304035A (ja) * 1996-05-17 1997-11-28 Nippon Steel Corp 条体のうねり測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1158267A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106391728A (zh) * 2015-07-28 2017-02-15 Posco公司 带钢位置测量装置、带钢跑偏控制装置及计算方法
CN106391728B (zh) * 2015-07-28 2019-05-10 Posco公司 带钢位置测量装置、带钢跑偏控制装置及计算方法
CN107367232A (zh) * 2016-05-12 2017-11-21 鞍钢股份有限公司 基于嵌入式处理系统及千兆以太网的带钢宽度检测方法
US20220280989A1 (en) * 2019-07-22 2022-09-08 Jfe Steel Corporation Meandering control method, meandering control device, and hot rolling equipment for hot rolled steel strip
US11833560B2 (en) * 2019-07-22 2023-12-05 Jfe Steel Corporation Meandering control method, meandering control device, and hot rolling equipment for hot rolled steel strip
CN112361969A (zh) * 2020-11-20 2021-02-12 中国航空工业集团公司北京长城计量测试技术研究所 一种加速度传感器用悬丝翘曲度的检测装置
CN112361969B (zh) * 2020-11-20 2022-03-29 中国航空工业集团公司北京长城计量测试技术研究所 一种加速度传感器用悬丝翘曲度的检测装置
TWI779910B (zh) * 2021-10-28 2022-10-01 中國鋼鐵股份有限公司 偵測邊導器鋼帶品質的軋延系統與偵測方法

Also Published As

Publication number Publication date
EP1158267B1 (fr) 2005-09-21
KR20010099965A (ko) 2001-11-09
KR100465862B1 (ko) 2005-01-13
EP1158267A4 (fr) 2003-01-08
EP1158267A1 (fr) 2001-11-28
JP2001343223A (ja) 2001-12-14

Similar Documents

Publication Publication Date Title
WO2001035050A1 (fr) Procede pour mesurer la qualite d'un corps en forme de bande, procede de suppression de la cambrure, instrument pour mesurer la qualite d'un corps en forme de bande, machine de laminage et dispositif de rognage
EP2492634B1 (en) Method of measuring flatness of sheet and method of manufacturing steel sheet using same
JP6892836B2 (ja) シート厚さ測定装置
JP4690727B2 (ja) 光学的形状測定方法
EP3845856B1 (en) Apparatus for measuring telescoping of coil
KR102615075B1 (ko) 열간 압연 강대의 사행 제어 방법, 사행 제어 장치 및 열간 압연 설비
KR101734748B1 (ko) 판재의 평탄도 측정 방법, 판재의 평탄도 측정 장치 및 강판의 제조 방법
JP5266033B2 (ja) アルミ圧延板凹凸検出方法,アルミ圧延板凹凸検出装置
KR100856276B1 (ko) 압연 소재 두께 측정 장치
JP2018065190A (ja) 鋼板形状の矯正装置、矯正方法、および、鋼板の連続酸洗装置
JP2012170997A (ja) クロップシャーの駆動制御方法
JP3750456B2 (ja) シート状材料の表面欠陥検査方法及び表面欠陥検査装置
KR100433256B1 (ko) 압연소재 단면형상 측정장치
JP2017145133A (ja) ウェブの張力補正方法および加工フィルムの製造方法
US20100117010A1 (en) System for measuring the wrinkle on web in r2r process
JPH08285550A (ja) 鋼板の変位測定装置
JPH0914933A (ja) コイル巻取形状測定方法及びその測定装置並びにコイル巻取形状監視装置
JP7447874B2 (ja) 鋼板の蛇行量推定モデルの生成方法、鋼板の蛇行量推定方法、鋼板の蛇行制御方法、及び鋼板の製造方法
US20240091835A1 (en) Steel-sheet meandering amount measurement device, steel-sheet meandering amount measurement method, hot-rolling equipment for hot-rolled steel strip, and hot-rolling method of hot-rolled steel strip
KR20040058742A (ko) 냉연 평탄도 품질 향상을 위한 최적 목표 형상 설정시스템 및 그 방법
KR20030054417A (ko) 냉연 평탄도 측정 장치 및 측정 정도 향상 방법
KR100523099B1 (ko) 선재압연소재의 단면형상 측정방법
JP2000275038A (ja) 帯状材の形状欠陥検出方法および装置ならびに帯状材の連続処理ライン
JP2023030752A (ja) 鋼板の蛇行量推定モデルの生成方法、蛇行量推定方法、及び製造方法
RU2259245C1 (ru) Способ определения неравномерности вдоль раствора валков прокатного стана скорости течения металла в направлении движения полосы, прокатываемой под натяжением

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): FR

WWE Wipo information: entry into national phase

Ref document number: 1020017008170

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000974833

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017008170

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000974833

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017008170

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2000974833

Country of ref document: EP