JP2004170363A - 長尺材のエッジ位置計測方法及びこれを用いた形状計測方法並びにエッジ位置計測装置及びこれを用いた形状計測装置 - Google Patents
長尺材のエッジ位置計測方法及びこれを用いた形状計測方法並びにエッジ位置計測装置及びこれを用いた形状計測装置 Download PDFInfo
- Publication number
- JP2004170363A JP2004170363A JP2002339486A JP2002339486A JP2004170363A JP 2004170363 A JP2004170363 A JP 2004170363A JP 2002339486 A JP2002339486 A JP 2002339486A JP 2002339486 A JP2002339486 A JP 2002339486A JP 2004170363 A JP2004170363 A JP 2004170363A
- Authority
- JP
- Japan
- Prior art keywords
- long material
- width direction
- edge position
- reference member
- long
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
【課題】作業効率に優れた長尺材のエッジ位置計測方法及びこれを用いた形状計測方法並びにエッジ位置計測装置及びこれを用いた形状計測装置を提供する。
【解決手段】本発明に係るエッジ位置計測方法を適用したエッジ位置計測装置1は、被計測対象からの自発光又は反射光を受光することによって当該被計測対象の所定部位の位置を光学的に検出し得る位置検出装置11と、位置検出装置11の検出可能領域内であって、且つ、長尺材Sの幅方向に沿って長尺材Sに並置された基準部材12とを備えている。位置検出装置11は、基準部材12の所定部位の位置を検出すると共に、長尺材Sの幅方向エッジ位置を検出し、検出した基準部材12の所定部位の位置と、検出した長尺材Sの幅方向エッジ位置との距離を演算することにより、長尺材Sの幅方向エッジ位置を計測する。
【選択図】 図1
【解決手段】本発明に係るエッジ位置計測方法を適用したエッジ位置計測装置1は、被計測対象からの自発光又は反射光を受光することによって当該被計測対象の所定部位の位置を光学的に検出し得る位置検出装置11と、位置検出装置11の検出可能領域内であって、且つ、長尺材Sの幅方向に沿って長尺材Sに並置された基準部材12とを備えている。位置検出装置11は、基準部材12の所定部位の位置を検出すると共に、長尺材Sの幅方向エッジ位置を検出し、検出した基準部材12の所定部位の位置と、検出した長尺材Sの幅方向エッジ位置との距離を演算することにより、長尺材Sの幅方向エッジ位置を計測する。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、長尺材(例えば、鋼板や棒鋼など)の幅方向のエッジ位置を計測する方法及びこれを用いた形状(キャンバー量など)計測方法、並びに、長尺材の幅方向のエッジ位置を計測する装置及びこれを用いた形状計測装置に関する。
【0002】
【従来の技術】
従来より、長尺材の平面形状(キャンバー量など)を計測する方法として、種々のものが提案されている。
【0003】
例えば、長尺材の移送方向に間隔をおいて設けた、いわゆるバックライト方式の3台の光学寸法検出装置で、移送ライン面上に定めた測定基準線からの長尺材側縁の偏位をそれぞれ同時に検出し、所定の信号処理を施すことにより曲り量を計測する方法が提案されている(例えば、特許文献1)。
【0004】
また、3台以上のエッジ位置検出センサを帯状体の長手方向に沿って配置し、上記3台以上のエッジ位置検出センサでもって検出基準線から帯状体の板端までの距離を検出し、検出点の相対位置から帯状体のキャンバーを推定する方法において、エッジ位置検出センサの配設間隔に工夫を施した帯状体のキャンバー検出方法が提案されている(例えば、特許文献2)。
【0005】
さらに、搬送される熱鋼板の長手方向に直交した視野を持ち、該鋼板片側エッジ部の長手方向に直列配置され前記鋼板の自発光を感受する2個のセンサーを備え、センサ信号の差分演算、積分演算を行うことで板幅方向の形状(曲り、うねり等)を計測する装置が提案されている(例えば、特許文献3)。
【0006】
このように、従来の形状計測方法乃至装置は、いずれも被計測対象の幅方向エッジ位置をエッジ位置検出装置(センサ)で光学的に検出し、検出したエッジ位置に基づいてキャンバー量等の平面形状を計測するものであり、エッジ位置検出装置自体の取り付け位置(検出視野)は変化しないことを前提とした方法乃至装置である。
【0007】
【特許文献1】
特公昭59−11844号公報
【特許文献2】
特開平5−157549号公報
【特許文献3】
特開平7−19830号公報
【0008】
【発明が解決しようとする課題】
しかしながら、実際には、被計測対象(鋼板や棒鋼)の搬送時に生じる振動等が、エッジ位置検出装置が取り付けられている架台に伝搬し、これにより、エッジ位置検出装置の取り付け位置、ひいては、当該装置の検出視野にずれが生じる場合がある。斯かる取り付け位置のずれ(検出視野のずれ)は、被計測対象のエッジ位置検出誤差、ひいては平面形状の計測誤差を生じさせることになる。これを回避するには、エッジ位置検出装置を校正する必要があるが、頻繁な校正を実施することは作業効率の低下を招き、実用上好ましくないという問題がある。
【0009】
本発明は、斯かる従来技術の問題点を解決するべくなされたものであり、作業効率に優れた長尺材のエッジ位置計測方法及びこれを用いた形状計測方法並びにエッジ位置計測装置及びこれを用いた形状計測装置を提供することを課題とする。
【0010】
【課題を解決するための手段】
前記課題を解決するべく、本発明は、請求項1に記載の如く、長尺材の幅方向エッジ位置を光学的に計測する方法であって、長尺材の幅方向に沿って、当該長尺材及び基準部材を並置するステップと、前記基準部材の所定部位の位置を所定の位置検出手段で光学的に検出するステップと、前記基準部材を並置した状態で、前記長尺材の幅方向エッジ位置を前記位置検出手段で光学的に検出するステップと、前記検出した基準部材の所定部位の位置と、前記検出した長尺材の幅方向エッジ位置との距離を演算することにより、長尺材の幅方向エッジ位置を計測するステップとを備えることを特徴とする長尺材のエッジ位置計測方法を提供するものである。
【0011】
請求項1に係る発明によれば、位置検出手段により長尺材の幅方向に沿って当該長尺材に並置された基準部材の所定部位の位置を光学的に検出すると共に、同じ位置検出手段で長尺材の幅方向エッジ位置を検出し、両者の距離から幅方向エッジ位置を計測することになる。従って、位置検出手段の位置ずれが生じた場合であっても、当該位置検出手段の位置ずれに応じて、基準部材の所定部位の位置と長尺材の幅方向エッジ位置とが共に同程度に位置ずれした状態で検出されるため、両者の距離としては位置検出手段の位置ずれの影響が相殺され、計測誤差が生じないことになる。これは、従来のように、頻繁な校正が不要になることを意味し、結果として作業効率に極めて優れた長尺材のエッジ位置計測方法が提供されることになる。なお、基準部材の所定部位の位置と、長尺材の幅方向エッジ位置とは、必ずしも同時に検出する必要はなく、いずれか一方を先に検出した後、他方を検出する構成であっても、少なくとも位置検出手段の定常的な位置ずれの影響を低減することが可能である。
【0012】
好ましくは、請求項2に記載の如く、前記基準部材の所定部位の位置と、前記長尺材の幅方向エッジ位置とは、略同時に検出される。
【0013】
請求項2に係る発明によれば、基準部材の所定部位の位置と、長尺材の幅方向エッジ位置とが略同時に検出されるため、位置検出手段の定常的な位置ずれのみならず、比較的高周波の振動の影響をも効果的に低減することが可能である。
【0014】
また、本発明は、請求項3に記載の如く、前記長尺材のエッジ位置計測方法によって、長尺材の長手方向に沿って複数箇所の幅方向エッジ位置を計測するステップと、前記計測した複数箇所の幅方向エッジ位置に基づき、前記長尺材の形状を計測するステップとを備えることを特徴とする長尺材の形状計測方法としても提供される。
【0015】
請求項3に係る発明によれば、前記長尺材のエッジ位置計測方法によって、長尺材の長手方向に沿って複数箇所の幅方向エッジ位置を計測し、計測した複数箇所の幅方向エッジ位置に基づき、長尺材の形状(キャンバーなど)が計測される。前述のように、各幅方向エッジ位置の計測に際しては、頻繁な校正が不要であるため、計測した複数箇所の幅方向エッジ位置に基づき長尺材の形状を計測する際にも、頻繁な校正は当然に不要であり、作業効率に優れるという利点を有する。
【0016】
また、前記課題を解決するべく、本発明は、請求項4に記載の如く、長尺材の幅方向エッジ位置を光学的に計測する装置であって、被計測対象からの自発光又は反射光を受光することによって当該被計測対象の所定部位の位置を光学的に検出し得る位置検出装置と、前記位置検出装置の検出可能領域内であって、且つ、前記長尺材の幅方向に沿って当該長尺材に並置された基準部材とを備え、前記位置検出装置は、前記基準部材の所定部位の位置を検出すると共に、前記長尺材の幅方向エッジ位置を検出し、前記検出した基準部材の所定部位の位置と、前記検出した長尺材の幅方向エッジ位置との距離を演算することにより、長尺材の幅方向エッジ位置を計測することを特徴とする長尺材のエッジ位置計測装置としても提供される。
【0017】
請求項4に係る発明によれば、位置検出装置の位置ずれが生じた場合であっても、当該位置検出装置の位置ずれに応じて、基準部材の所定部位の位置と長尺材の幅方向エッジ位置とが共に同程度に位置ずれした状態で検出されるため、両者の距離としては位置検出装置の位置ずれの影響が相殺され、計測誤差が生じないことになる。これは、従来のように、頻繁な校正が不要になることを意味し、結果として作業効率に極めて優れた長尺材のエッジ位置計測装置が提供されることになる。なお、請求項4に係る位置検出装置としては、被計測対象の自発光を利用する場合であれば、長尺材の幅方向に延びる視野を有する1次元ラインセンサ等の1次元撮像装置の他、2次元CCDカメラ等の2次元撮像装置を適用することが可能である。また、被計測対象からの反射光を利用する場合であれば、長尺材の幅方向に沿って線状に照明する線状光源と2次元撮像装置(線状光源の線幅をある程度大きくすれば1次元撮像装置とすることも可能)との組み合わせの他、面状光源と1次元撮像装置(2次元撮像装置とすることも可能)との組み合わせなど、種々の構成を適用することが可能である。
【0018】
好ましくは、請求項5に記載の如く、前記位置検出装置は、前記基準部材の所定部位の位置と、前記長尺材の幅方向エッジ位置とを、略同時に検出するように構成される。
【0019】
請求項5に係る発明によれば、基準部材の所定部位の位置と、長尺材の幅方向エッジ位置とが略同時に検出されるため、位置検出装置の定常的な位置ずれのみならず、比較的高周波の振動の影響をも効果的に低減することが可能である。なお、前記位置検出装置が、基準部材の所定部位と長尺材の幅方向エッジとを撮像する撮像装置を具備し、当該撮像装置による撮像画に信号処理を施すことによって位置を検出する構成である場合には、「略同時に検出」とは、少なくとも略同時に両者を撮像する(同一の撮像画に信号処理を施すことによって両位置を検出する場合を含む)ことを意味し(略同時に両者を撮像すれば、振動の影響を効果的に低減することが可能)、略同時に撮像した後に、撮像画から前記所定部位の位置と幅方向エッジ位置とを検出する信号処理は、必ずしも略同時に行う必要はない。
【0020】
好ましくは、請求項6に記載の如く、前記位置検出装置は、前記長尺材表面に対向する方向から、前記長尺材及び前記基準部材の表面を前記長尺材の幅方向に沿って線状に照明する線状光源と、前記長尺材及び前記基準部材の表面からの反射光を受光する2次元撮像装置と、前記2次元撮像装置の出力信号を信号処理することにより、前記基準部材の所定部位の位置を検出すると共に、前記長尺材の幅方向エッジ位置を検出し、前記検出した基準部材の所定部位の位置と、前記検出した長尺材の幅方向エッジ位置との距離を演算することにより、長尺材の幅方向エッジ位置を計測する信号処理装置とを備えるように構成される。
【0021】
請求項6に係る発明によれば、線状光源による線状照明の反射光を2次元撮像装置で受光する構成であるため、長尺材の幅方向エッジでは、線状照明の反射光を受光しない(反射光が途切れる)ため、エッジとして検出できる一方、基準部材の所定部位(例えば、基準部材の幅方向エッジ)でも反射光を受光しないこと等により、当該所定部位を検出することが可能である。なお、2次元撮像装置からの出力信号をビデオ信号として外部に取り出せる構成とした場合には、当該ビデオ信号をモニタ表示することにより、長尺材の幅方向エッジ位置や基準部材の所定部位の位置を正確に検出できているか否かを容易に確認可能であるという利点も有する。
【0022】
好ましくは、請求項7に記載の如く、前記線状光源は、前記2次元撮像装置の撮像方向とは異なる方向から前記長尺材及び前記基準部材を照明するように配置され、前記基準部材は、前記線状光源の照明方向に沿って前記長尺材と高低差を有するように配置される。
【0023】
請求項7に係る発明によれば、2次元撮像装置の撮像方向とは異なる方向から長尺材及び基準部材が照明されるため、いわゆる三角法(光切断法)の原理により、2次元撮像装置と長尺材又は基準部材との距離に応じて、線状照明の反射光の結像位置が異なることになる。従って、基準部材を、線状光源の照明方向に沿って長尺材と高低差を有するように配置すれば、長尺材からの反射光と基準部材からの反射光とは、2次元撮像装置の異なる位置にそれぞれ線状に結像する(両結像線に段差が生じる)ことになり、長尺材の幅方向エッジ位置と基準部材の所定部位の位置とを正確に検出することが可能である。請求項7に係る発明は、例えば、長尺材の幅方向の位置ずれによって、基準部材の一部が長尺材に遮蔽されたような場合(2次元撮像装置の撮像方向に対して手前側に長尺材が位置する場合)であっても、長尺材からの反射光と基準部材からの反射光とは、2次元撮像装置の異なる位置にそれぞれ線状に結像するため、長尺材の幅方向エッジ位置と基準部材の所定部位の位置とを正確に検出できる点で有効である。
【0024】
また、本発明は、請求項8に記載の如く、長尺材の長手方向に沿って複数箇所に配設された前記長尺材のエッジ位置計測装置と、前記複数箇所に配設された長尺材のエッジ位置計測装置によってそれぞれ計測された長尺材の長手方向に沿った複数箇所の幅方向エッジ位置に基づき、前記長尺材の形状を計測する形状計測手段とを備えることを特徴とする長尺材の形状計測装置としても提供される。
【0025】
請求項8に係る発明によれば、前記長尺材のエッジ位置計測装置によって、長尺材の長手方向に沿って複数箇所の幅方向エッジ位置を計測し、計測した複数箇所の幅方向エッジ位置に基づき、長尺材の形状(キャンバーなど)が計測される。前述のように、各幅方向エッジ位置の計測に際しては、頻繁な校正が不要であるため、計測した複数箇所の幅方向エッジ位置に基づき長尺材の形状を計測する際にも、頻繁な校正は当然に不要であり、作業効率に優れるという利点を有する。
【0026】
【発明の実施の形態】
以下、添付図面を参照しつつ、本発明の一実施形態について説明する。
【0027】
図1は、本発明の一実施形態に係るエッジ位置計測方法及び形状計測方法を適用した形状計測装置の概略構成を模式的に示す図であり、(a)は斜視図を、(b)は側面図をそれぞれ示す。図1に示すように、本実施形態に係る形状計測装置は、搬送ローラR(図1(b))上に停止状態で載置された長尺材Sの幅方向エッジ位置を光学的に計測するエッジ位置計測装置1が長尺材(本実施形態では、厚鋼板)Sの長手方向に沿って複数箇所に配設された構成を有する。より具体的には、後述するように、エッジ位置計測装置1を構成する線状光源111、2次元撮像装置112及び基準部材12が、長尺材Sの長手方向両側に沿って複数箇所に配設される一方、各2次元撮像装置112からの出力信号は、共通の画像処理装置113に入力される。なお、図1では、長尺材Sの長手方向片側に沿って配設された1つのエッジ位置計測装置1のみを図示している。
【0028】
エッジ位置計測装置1は、被計測対象からの反射光を受光することによって当該被計測対象の所定部位の位置を光学的に検出し得る位置検出装置11と、位置検出装置11の検出可能領域内であって、且つ、長尺材Sの幅方向に沿って当該長尺材Sに並置された基準部材12とを備えている。
【0029】
位置検出装置11は、基準部材12の所定部位(本実施形態では一方の幅方向エッジE1)の位置を検出すると共に、長尺材Sの幅方向エッジE2の位置を検出し、検出した基準部材12のエッジE1の位置と、検出した長尺材Sの幅方向エッジE2の位置との距離(長尺材Sの幅方向に沿った距離成分)Dを演算することにより、長尺材Sの幅方向エッジE2の位置を計測する(当該エッジE2の位置を前記距離Dとして算出する)ように構成されている。従って、位置検出装置11の位置ずれ(具体的には、後述する2次元撮像装置112の位置ずれ)が生じた場合であっても、当該位置検出装置11の位置ずれに応じて、基準部材12のエッジE1の位置と長尺材Sの幅方向エッジE2の位置とが共に同程度に位置ずれした状態で検出されるため、両者の距離としては位置検出装置11の位置ずれの影響が相殺され、計測誤差が生じないことになる。これは、従来のように、頻繁な校正が不要になることを意味し、結果として作業効率に極めて優れるという利点を有する。
【0030】
本実施形態に係る位置検出装置11は、長尺材S表面に対向する方向から、長尺材S及び基準部材12の表面を長尺材Sの幅方向に沿って線状(本実施形態では、線幅0.15mm〜50mm、線長100mm)に照明する線状光源111を備えている。なお、本実施形態に係る線状光源111は、所定の光源からの光を、光ファイバを断面矩形状に束ねたバンドルファイバーに導き、当該バンドルファイバーから出射する構成とされているが、これに限るものではなく、LED、蛍光灯、レーザなど種々の光源や導光部材を用いた線状光源とすることが可能である。
【0031】
また、本実施形態に係る位置検出装置11は、線状光源111によって照明された長尺材S及び基準部材12の表面からの反射光を受光する2次元撮像装置112を備えている。本実施形態に係る2次元撮像装置112は、2次元CCDカメラとされており、撮像視野が長尺材Sの長手方向に75mm(分解能0.15mm/画素)、幅方向に100mm(分解能0.15mm/画素)となるように配置されている。なお、外乱光による計測誤差が生じるのを防止するべく、2次元撮像装置112には、線状光源111の発光波長領域に相当する光のみを透過させるバンドパスフィルタを装着するのが好ましい。
【0032】
本実施形態に係る線状光源111は、2次元撮像装置112の撮像方向(本実施形態では鉛直下方向)とは異なる方向(本実施形態では撮像方向となす角度θ=10°の方向)から長尺材S及び基準部材12を照明するように配置されていると共に、基準部材12は、線状光源111の照明方向に沿って長尺材Sと高低差を有するように配置(本実施形態では長尺材Sの下方50mmの位置に配置)されている。
【0033】
斯かる配置によれば、いわゆる三角法(光切断法)の原理により、2次元撮像装置112と長尺材S又は基準部材12との距離に応じて、線状照明の反射光の結像位置が異なることになる。本実施形態では、基準部材12が、線状光源111の照明方向に沿って長尺材Sと高低差を有するように配置されているため、長尺材Sからの反射光と基準部材12からの反射光とは、2次元撮像装置112の異なる位置にそれぞれ線状に結像する(両結像線に段差が生じる)ことになる。
【0034】
図2は、本実施形態に係る2次元撮像装置112によって撮像される撮像画像の例を模式的に示す図であり、(a)は長尺材Sと基準部材12とが長尺材Sの幅方向に離間して配置されている状態の撮像画像の例を、(b)は基準部材12の一部が長尺材Sに遮蔽されている状態の撮像画像の例をそれぞれ示す。図2に示すように、長尺材Sからの反射光が結像した結像線L2と、基準部材12からの反射光が結像した結像線L1とが段差を生じる(同一直線上にない)ため、結像線L2のエッジ位置(長尺材Sの幅方向エッジE2の位置)と、結像線L1のエッジ位置(基準部材12のエッジE1の位置)とを識別することが容易であり、ひいては、両エッジ位置を正確に検出することが可能である。
【0035】
なお、本実施形態に係る線状光源111と2次元撮像装置112との配置関係、並びに長尺材Sに対する基準部材12の配置によれば、図2(b)に示すように、長尺材Sの幅方向の位置ずれによって、基準部材12の一部が長尺材Sに遮蔽されたような場合(2次元撮像装置112の撮像方向に対して手前側に長尺材Sが位置する場合)であっても、長尺材Sからの反射光が結像した結像線L2と、基準部材12からの反射光が結像した結像線L1とが段差を生じる(同一直線上にない)ため、両エッジ位置を正確に検出することが可能である点で特に有効である。
【0036】
さらに、本実施形態に係る位置検出装置11は、信号処理装置としての画像処理装置113を備えている。画像処理装置113は、予め設定された画像処理アルゴリズムに従って、2次元撮像装置112の出力信号を信号処理し(本実施形態では、図2に示すような2次元撮像装置112の撮像画像を画像処理する)、基準部材12のエッジE1の位置を検出すると共に、長尺材Sの幅方向エッジE2の位置を検出し、検出した基準部材12のエッジE1の位置と、検出した長尺材Sの幅方向エッジE2の位置との距離Dを演算することにより、長尺材Sの幅方向エッジE1の位置を計測するように構成されている。
【0037】
前記画像処理アルゴリズムをより具体的に説明すれば、本実施形態に係る画像処理装置113は、(1)2次元撮像装置112の撮像画像を入力し、(2)結像線L1、L2を抽出するべく、当該撮像画像を所定のしきい値で2値化した後、(3)ノイズ除去(小面積除去)を施し、(4)さらに、ラベリング後に各対象の特徴(幅や濃度等)に基づいて結像線L1、L2を識別し、各結像線のエッジ位置を計測することにより、基準部材12のエッジE1と長尺材Sの幅方向エッジE2の位置を検出し、(5)両者の距離Dを演算するように構成されている。
【0038】
ここで、本実施形態では、基準部材12のエッジE1の位置と、長尺材Sの幅方向エッジE2の位置とが、略同時に検出されるように構成されている。換言すれば、エッジE1の位置とエッジE2の位置とを検出するために使用される撮像画像は、同一のタイミングで撮像された同一の撮像画像とされている。従って、2次元撮像装置112の定常的な位置ずれのみならず、比較的高周波の振動の影響をも効果的に低減することが可能である。
【0039】
さらに、本実施形態に係る画像処理装置113は、複数箇所に配設された各エッジ位置計測装置1によってそれぞれ計測された長尺材Sの長手方向に沿った複数箇所の幅方向エッジ位置(すなわち距離D)に基づき、長尺材Sの形状を計測する形状計測手段としての機能も奏している。換言すれば、画像処理装置113には、長尺材Sの長手方向に沿って複数箇所に配設された2次元撮像装置112から出力された撮像画像がそれぞれ入力され、各撮像画像に基づき幅方向エッジ位置がそれぞれ計測され、当該複数の幅方向エッジ位置に基づき、キャンバー量が計測される。
【0040】
より具体的に説明すれば、長尺材Sの長手方向片側にそって配設された3つのエッジ位置計測装置1によって、長尺材Sの先端部、中央部及び後端部の幅方向エッジ位置をそれぞれ計測する場合、先端部のエッジ位置をD1、中央部のエッジ位置をD2、後端部のエッジ位置をD3とすると、キャンバー量は、D2−(D1+D3)/2で演算される。
【0041】
前述のように、各幅方向エッジ位置D1、D2、D3の計測に際しては、頻繁な校正が不要であるため、計測した複数箇所の幅方向エッジ位置に基づき長尺材Sの前記キャンバー量を計測する際にも、頻繁な校正は当然に不要であり、作業効率に優れるという利点を有する。
【0042】
なお、以上に説明した本実施形態では、被計測対象である長尺材Sを厚鋼板とした例について説明したが、本発明は無論これに限るものではなく、他の鋼板や棒鋼などの金属材料の他、非金属材料や紙製品等に適用することも可能である。
【0043】
また、本実施形態では、停止状態の長尺材Sの幅方向エッジ位置ひいてはキャンバー量を計測する構成について説明したが、本発明はこれに限るものではなく、搬送中の長尺材Sを被計測対象とすることも可能である。この場合、長尺材Sの長手方向(搬送方向)に沿って片側に1つ(両側で計2つ)のエッジ位置計測装置1のみを設置し、所定のタイミング毎に、長尺材Sの複数箇所の幅方向エッジ位置を順次計測する(2次元撮像装置112で順次撮像する)ことにより、キャンバー量を計測することも可能である。ただし、この場合、キャンバー量を精度良く計測するためには、長尺材Sの蛇行量が小さいことが条件となる。
【0044】
本実施形態では、線状光源111によって、長尺材S及び基準部材12を共に照明し、2次元撮像装置112によって、その反射光を受光する構成について説明したが、本発明はこれに限るものではなく、長尺材Sが高温材の場合には、長尺材Sについてはその自発光を受光する一方、基準部材12のみを照明してその反射光を受光する構成とすることも可能である。或いは、基準部材12をLED等の発光体で構成することも可能である。
【0045】
また、本実施形態では、基準部材12のエッジE1の位置と、長尺材Sの幅方向エッジE2の位置とが、略同時に検出される構成(エッジE1の位置とエッジE2の位置とを検出するために使用される撮像画像が同一のタイミングで撮像された同一の撮像画像とされている構成)について説明したが、本発明は必ずしもこれに限るものではなく、いずれか一方を先に検出した後、他方を検出する構成とすることも可能である。より具体的には、例えば、長尺材Sを載置する前に撮像した撮像画像に基づき基準部材12のエッジE1の位置を検出した後、長尺材Sを載置した後に撮像した撮像画像に基づき長尺材Sの幅方向エッジE2の位置を検出する構成を採用することも可能である。斯かる構成によっても、少なくとも2次元撮像装置112の定常的な位置ずれの影響を低減することは可能である。
【0046】
本実施形態では、2次元撮像装置装置112として2次元CCDカメラを適用した例について説明したが、本発明は無論これに限るものではなく、他のデバイスからなる2次元撮像装置を適用することも可能である。また、長尺材Sの幅方向に延びる視野を有するように配置された1次元ラインセンサ等の1次元撮像装置を適用することも可能である(この場合、線状光源111の線幅をある程度大きくするか、或いは、面状光源を使用すれば良い)。さらに、本実施形態では、2次元撮像装置112によって撮像された撮像画像を画像処理装置113で画像処理することにより、基準部材12のエッジE1の位置と、長尺材Sの幅方向エッジE2の位置とを検出する構成について説明したが、いわゆる2次元距離計(線状光源と2次元撮像装置を具備し、2次元撮像装置の出力信号を信号処理することにより、線状光源の照射された領域の距離測定値を出力する装置)を適用し、当該2次元距離計から出力された距離測定値の急変点を両エッジE1、E2として検出する構成を採用することも可能である。
【0047】
また、本実施形態では、長尺材Sの長手方向両側に沿って複数箇所に配設された各2次元撮像装置112からの出力信号を、共通の画像処理装置113に入力する構成について説明したが、本発明はこれに限るものではなく、各2次元装置112に対応付けて、それぞれ別個の画像処理装置113を設置する構成とすることも可能である。さらに、本実施形態では、画像処理装置113が、計測した複数の幅方向エッジ位置に基づきキャンバー量を計測する形状計測手段としての機能を兼ね備える構成について説明したが、本発明はこれに限るものではなく、画像処理装置113とは別個に形状計測手段を設ける(画像処理装置113から形状計測手段に対して幅方向エッジ位置を出力し、当該形状計測手段でキャンバー量を演算する)ことも可能である。
【0048】
本実施形態では、長尺材Sの形状として、キャンバ−量を計測する構成について説明したが、本発明はこれに限るものではなく、単にエッジ位置の計測に供することができる他、計測したエッジ位置に基づき、板幅など他の平面形状を演算するように構成することも可能である。
【0049】
また、本実施形態では、画像処理装置113において、結像線L1、L2を抽出するべく、撮像画像を所定のしきい値で2値化処理する構成について説明したが、本発明はこれに限るものではなく、例えば、撮像画像を2値化処理することなく、当該撮像画像について結像線L1、L2に直交する方向に沿って順次濃度値のピーク位置を検出することにより、結像線L1、L2を抽出するなど、種々の画像処理アルゴリズムを適用することが可能である。
【0050】
また、本実施形態では、線状光源111の照明方向に沿って長尺材Sと高低差を有するように基準部材12を配置する構成について説明したが、本発明はこれに限るものではなく、長尺材Sと基準部材12とを略同一の高さに配置することも可能である。この場合、前記結像線L1とL2とは、略同一直線上に位置することになるが、両者を識別するには、長尺材Sからの受光強度(撮像画像における濃度値に相当する)と基準部材12からの受光強度に差が生じるように、例えば、長尺材S表面の反射率とは明らかに反射率の異なる材料(例えば白色塗料)を基準部材12の表面に塗布すればよい。斯かる構成によれば、2次元撮像装置112の撮像画像において、結像線L1の濃度値の方が結像線L2の濃度値よりも大きくなるため、2つのしきい値で2値化処理(低い方のしきい値で結像線L1、L2を抽出し、さらに高い方のしきい値で結像線L1のみを抽出する)することにより、結像線L1、L2を識別し、基準部材12のエッジE1と長尺材Sの幅方向エッジE2の位置を検出することが可能である。また、白色塗料の代わりに、長尺材S表面とは色相の異なる塗料を塗布し、2次元撮像装置112としてカラー撮像装置(或いは、カラーフィルタを装着したモノクロ撮像装置)を用い、反射光の色相の差異によって結像線L1、L2を識別することも可能である。さらに、前述したように、基準部材12をLED等の発光体で構成することにより、長尺材Sからの受光強度と基準部材12からの受光強度に差を生じさせることも可能である。
【0051】
さらに、本実施形態では、基準部材12の所定部位として、一方の幅方向エッジE1の位置を検出し、これを距離Dを算出するための基準とする構成について説明したが、本発明はこれに限るものではなく、例えば、基準部材12の幅方向両エッジの位置を検出し、この中点を距離Dを算出するための基準とする構成を採用することも可能である。また、基準部材12の表面に凹部を形成し、当該凹部のエッジ位置を検出し、これを距離Dを算出するための基準とすることも可能である。
【0052】
【発明の効果】
以上に説明したように、本発明に係る長尺材のエッジ位置計測方法によれば、位置検出手段により長尺材の幅方向に沿って当該長尺材に並置された基準部材の所定部位の位置を光学的に検出すると共に、同じ位置検出手段で長尺材の幅方向エッジ位置を検出し、両者の距離から幅方向エッジ位置を計測することになる。従って、位置検出手段の位置ずれが生じた場合であっても、当該位置検出手段の位置ずれに応じて、基準部材の所定部位の位置と長尺材の幅方向エッジ位置とが共に同程度に位置ずれした状態で検出されるため、両者の距離としては位置検出手段の位置ずれの影響が相殺され、計測誤差が生じないことになる。これは、従来のように、頻繁な校正が不要になることを意味し、結果として作業効率に極めて優れた長尺材のエッジ位置計測方法が提供される。
【図面の簡単な説明】
【図1】図1は、本発明の一実施形態に係るエッジ位置計測方法及び形状計測方法を適用した形状計測装置の概略構成を模式的に示す図である。
【図2】図2は、図1に示す2次元撮像装置よって撮像される撮像画像の例を模式的に示す図である。
【符号の説明】
1…エッジ位置計測装置 11…位置検出装置 12…基準部材
111…線状光源 112…2次元撮像装置 113…画像処理装置
S…長尺材
【発明の属する技術分野】
本発明は、長尺材(例えば、鋼板や棒鋼など)の幅方向のエッジ位置を計測する方法及びこれを用いた形状(キャンバー量など)計測方法、並びに、長尺材の幅方向のエッジ位置を計測する装置及びこれを用いた形状計測装置に関する。
【0002】
【従来の技術】
従来より、長尺材の平面形状(キャンバー量など)を計測する方法として、種々のものが提案されている。
【0003】
例えば、長尺材の移送方向に間隔をおいて設けた、いわゆるバックライト方式の3台の光学寸法検出装置で、移送ライン面上に定めた測定基準線からの長尺材側縁の偏位をそれぞれ同時に検出し、所定の信号処理を施すことにより曲り量を計測する方法が提案されている(例えば、特許文献1)。
【0004】
また、3台以上のエッジ位置検出センサを帯状体の長手方向に沿って配置し、上記3台以上のエッジ位置検出センサでもって検出基準線から帯状体の板端までの距離を検出し、検出点の相対位置から帯状体のキャンバーを推定する方法において、エッジ位置検出センサの配設間隔に工夫を施した帯状体のキャンバー検出方法が提案されている(例えば、特許文献2)。
【0005】
さらに、搬送される熱鋼板の長手方向に直交した視野を持ち、該鋼板片側エッジ部の長手方向に直列配置され前記鋼板の自発光を感受する2個のセンサーを備え、センサ信号の差分演算、積分演算を行うことで板幅方向の形状(曲り、うねり等)を計測する装置が提案されている(例えば、特許文献3)。
【0006】
このように、従来の形状計測方法乃至装置は、いずれも被計測対象の幅方向エッジ位置をエッジ位置検出装置(センサ)で光学的に検出し、検出したエッジ位置に基づいてキャンバー量等の平面形状を計測するものであり、エッジ位置検出装置自体の取り付け位置(検出視野)は変化しないことを前提とした方法乃至装置である。
【0007】
【特許文献1】
特公昭59−11844号公報
【特許文献2】
特開平5−157549号公報
【特許文献3】
特開平7−19830号公報
【0008】
【発明が解決しようとする課題】
しかしながら、実際には、被計測対象(鋼板や棒鋼)の搬送時に生じる振動等が、エッジ位置検出装置が取り付けられている架台に伝搬し、これにより、エッジ位置検出装置の取り付け位置、ひいては、当該装置の検出視野にずれが生じる場合がある。斯かる取り付け位置のずれ(検出視野のずれ)は、被計測対象のエッジ位置検出誤差、ひいては平面形状の計測誤差を生じさせることになる。これを回避するには、エッジ位置検出装置を校正する必要があるが、頻繁な校正を実施することは作業効率の低下を招き、実用上好ましくないという問題がある。
【0009】
本発明は、斯かる従来技術の問題点を解決するべくなされたものであり、作業効率に優れた長尺材のエッジ位置計測方法及びこれを用いた形状計測方法並びにエッジ位置計測装置及びこれを用いた形状計測装置を提供することを課題とする。
【0010】
【課題を解決するための手段】
前記課題を解決するべく、本発明は、請求項1に記載の如く、長尺材の幅方向エッジ位置を光学的に計測する方法であって、長尺材の幅方向に沿って、当該長尺材及び基準部材を並置するステップと、前記基準部材の所定部位の位置を所定の位置検出手段で光学的に検出するステップと、前記基準部材を並置した状態で、前記長尺材の幅方向エッジ位置を前記位置検出手段で光学的に検出するステップと、前記検出した基準部材の所定部位の位置と、前記検出した長尺材の幅方向エッジ位置との距離を演算することにより、長尺材の幅方向エッジ位置を計測するステップとを備えることを特徴とする長尺材のエッジ位置計測方法を提供するものである。
【0011】
請求項1に係る発明によれば、位置検出手段により長尺材の幅方向に沿って当該長尺材に並置された基準部材の所定部位の位置を光学的に検出すると共に、同じ位置検出手段で長尺材の幅方向エッジ位置を検出し、両者の距離から幅方向エッジ位置を計測することになる。従って、位置検出手段の位置ずれが生じた場合であっても、当該位置検出手段の位置ずれに応じて、基準部材の所定部位の位置と長尺材の幅方向エッジ位置とが共に同程度に位置ずれした状態で検出されるため、両者の距離としては位置検出手段の位置ずれの影響が相殺され、計測誤差が生じないことになる。これは、従来のように、頻繁な校正が不要になることを意味し、結果として作業効率に極めて優れた長尺材のエッジ位置計測方法が提供されることになる。なお、基準部材の所定部位の位置と、長尺材の幅方向エッジ位置とは、必ずしも同時に検出する必要はなく、いずれか一方を先に検出した後、他方を検出する構成であっても、少なくとも位置検出手段の定常的な位置ずれの影響を低減することが可能である。
【0012】
好ましくは、請求項2に記載の如く、前記基準部材の所定部位の位置と、前記長尺材の幅方向エッジ位置とは、略同時に検出される。
【0013】
請求項2に係る発明によれば、基準部材の所定部位の位置と、長尺材の幅方向エッジ位置とが略同時に検出されるため、位置検出手段の定常的な位置ずれのみならず、比較的高周波の振動の影響をも効果的に低減することが可能である。
【0014】
また、本発明は、請求項3に記載の如く、前記長尺材のエッジ位置計測方法によって、長尺材の長手方向に沿って複数箇所の幅方向エッジ位置を計測するステップと、前記計測した複数箇所の幅方向エッジ位置に基づき、前記長尺材の形状を計測するステップとを備えることを特徴とする長尺材の形状計測方法としても提供される。
【0015】
請求項3に係る発明によれば、前記長尺材のエッジ位置計測方法によって、長尺材の長手方向に沿って複数箇所の幅方向エッジ位置を計測し、計測した複数箇所の幅方向エッジ位置に基づき、長尺材の形状(キャンバーなど)が計測される。前述のように、各幅方向エッジ位置の計測に際しては、頻繁な校正が不要であるため、計測した複数箇所の幅方向エッジ位置に基づき長尺材の形状を計測する際にも、頻繁な校正は当然に不要であり、作業効率に優れるという利点を有する。
【0016】
また、前記課題を解決するべく、本発明は、請求項4に記載の如く、長尺材の幅方向エッジ位置を光学的に計測する装置であって、被計測対象からの自発光又は反射光を受光することによって当該被計測対象の所定部位の位置を光学的に検出し得る位置検出装置と、前記位置検出装置の検出可能領域内であって、且つ、前記長尺材の幅方向に沿って当該長尺材に並置された基準部材とを備え、前記位置検出装置は、前記基準部材の所定部位の位置を検出すると共に、前記長尺材の幅方向エッジ位置を検出し、前記検出した基準部材の所定部位の位置と、前記検出した長尺材の幅方向エッジ位置との距離を演算することにより、長尺材の幅方向エッジ位置を計測することを特徴とする長尺材のエッジ位置計測装置としても提供される。
【0017】
請求項4に係る発明によれば、位置検出装置の位置ずれが生じた場合であっても、当該位置検出装置の位置ずれに応じて、基準部材の所定部位の位置と長尺材の幅方向エッジ位置とが共に同程度に位置ずれした状態で検出されるため、両者の距離としては位置検出装置の位置ずれの影響が相殺され、計測誤差が生じないことになる。これは、従来のように、頻繁な校正が不要になることを意味し、結果として作業効率に極めて優れた長尺材のエッジ位置計測装置が提供されることになる。なお、請求項4に係る位置検出装置としては、被計測対象の自発光を利用する場合であれば、長尺材の幅方向に延びる視野を有する1次元ラインセンサ等の1次元撮像装置の他、2次元CCDカメラ等の2次元撮像装置を適用することが可能である。また、被計測対象からの反射光を利用する場合であれば、長尺材の幅方向に沿って線状に照明する線状光源と2次元撮像装置(線状光源の線幅をある程度大きくすれば1次元撮像装置とすることも可能)との組み合わせの他、面状光源と1次元撮像装置(2次元撮像装置とすることも可能)との組み合わせなど、種々の構成を適用することが可能である。
【0018】
好ましくは、請求項5に記載の如く、前記位置検出装置は、前記基準部材の所定部位の位置と、前記長尺材の幅方向エッジ位置とを、略同時に検出するように構成される。
【0019】
請求項5に係る発明によれば、基準部材の所定部位の位置と、長尺材の幅方向エッジ位置とが略同時に検出されるため、位置検出装置の定常的な位置ずれのみならず、比較的高周波の振動の影響をも効果的に低減することが可能である。なお、前記位置検出装置が、基準部材の所定部位と長尺材の幅方向エッジとを撮像する撮像装置を具備し、当該撮像装置による撮像画に信号処理を施すことによって位置を検出する構成である場合には、「略同時に検出」とは、少なくとも略同時に両者を撮像する(同一の撮像画に信号処理を施すことによって両位置を検出する場合を含む)ことを意味し(略同時に両者を撮像すれば、振動の影響を効果的に低減することが可能)、略同時に撮像した後に、撮像画から前記所定部位の位置と幅方向エッジ位置とを検出する信号処理は、必ずしも略同時に行う必要はない。
【0020】
好ましくは、請求項6に記載の如く、前記位置検出装置は、前記長尺材表面に対向する方向から、前記長尺材及び前記基準部材の表面を前記長尺材の幅方向に沿って線状に照明する線状光源と、前記長尺材及び前記基準部材の表面からの反射光を受光する2次元撮像装置と、前記2次元撮像装置の出力信号を信号処理することにより、前記基準部材の所定部位の位置を検出すると共に、前記長尺材の幅方向エッジ位置を検出し、前記検出した基準部材の所定部位の位置と、前記検出した長尺材の幅方向エッジ位置との距離を演算することにより、長尺材の幅方向エッジ位置を計測する信号処理装置とを備えるように構成される。
【0021】
請求項6に係る発明によれば、線状光源による線状照明の反射光を2次元撮像装置で受光する構成であるため、長尺材の幅方向エッジでは、線状照明の反射光を受光しない(反射光が途切れる)ため、エッジとして検出できる一方、基準部材の所定部位(例えば、基準部材の幅方向エッジ)でも反射光を受光しないこと等により、当該所定部位を検出することが可能である。なお、2次元撮像装置からの出力信号をビデオ信号として外部に取り出せる構成とした場合には、当該ビデオ信号をモニタ表示することにより、長尺材の幅方向エッジ位置や基準部材の所定部位の位置を正確に検出できているか否かを容易に確認可能であるという利点も有する。
【0022】
好ましくは、請求項7に記載の如く、前記線状光源は、前記2次元撮像装置の撮像方向とは異なる方向から前記長尺材及び前記基準部材を照明するように配置され、前記基準部材は、前記線状光源の照明方向に沿って前記長尺材と高低差を有するように配置される。
【0023】
請求項7に係る発明によれば、2次元撮像装置の撮像方向とは異なる方向から長尺材及び基準部材が照明されるため、いわゆる三角法(光切断法)の原理により、2次元撮像装置と長尺材又は基準部材との距離に応じて、線状照明の反射光の結像位置が異なることになる。従って、基準部材を、線状光源の照明方向に沿って長尺材と高低差を有するように配置すれば、長尺材からの反射光と基準部材からの反射光とは、2次元撮像装置の異なる位置にそれぞれ線状に結像する(両結像線に段差が生じる)ことになり、長尺材の幅方向エッジ位置と基準部材の所定部位の位置とを正確に検出することが可能である。請求項7に係る発明は、例えば、長尺材の幅方向の位置ずれによって、基準部材の一部が長尺材に遮蔽されたような場合(2次元撮像装置の撮像方向に対して手前側に長尺材が位置する場合)であっても、長尺材からの反射光と基準部材からの反射光とは、2次元撮像装置の異なる位置にそれぞれ線状に結像するため、長尺材の幅方向エッジ位置と基準部材の所定部位の位置とを正確に検出できる点で有効である。
【0024】
また、本発明は、請求項8に記載の如く、長尺材の長手方向に沿って複数箇所に配設された前記長尺材のエッジ位置計測装置と、前記複数箇所に配設された長尺材のエッジ位置計測装置によってそれぞれ計測された長尺材の長手方向に沿った複数箇所の幅方向エッジ位置に基づき、前記長尺材の形状を計測する形状計測手段とを備えることを特徴とする長尺材の形状計測装置としても提供される。
【0025】
請求項8に係る発明によれば、前記長尺材のエッジ位置計測装置によって、長尺材の長手方向に沿って複数箇所の幅方向エッジ位置を計測し、計測した複数箇所の幅方向エッジ位置に基づき、長尺材の形状(キャンバーなど)が計測される。前述のように、各幅方向エッジ位置の計測に際しては、頻繁な校正が不要であるため、計測した複数箇所の幅方向エッジ位置に基づき長尺材の形状を計測する際にも、頻繁な校正は当然に不要であり、作業効率に優れるという利点を有する。
【0026】
【発明の実施の形態】
以下、添付図面を参照しつつ、本発明の一実施形態について説明する。
【0027】
図1は、本発明の一実施形態に係るエッジ位置計測方法及び形状計測方法を適用した形状計測装置の概略構成を模式的に示す図であり、(a)は斜視図を、(b)は側面図をそれぞれ示す。図1に示すように、本実施形態に係る形状計測装置は、搬送ローラR(図1(b))上に停止状態で載置された長尺材Sの幅方向エッジ位置を光学的に計測するエッジ位置計測装置1が長尺材(本実施形態では、厚鋼板)Sの長手方向に沿って複数箇所に配設された構成を有する。より具体的には、後述するように、エッジ位置計測装置1を構成する線状光源111、2次元撮像装置112及び基準部材12が、長尺材Sの長手方向両側に沿って複数箇所に配設される一方、各2次元撮像装置112からの出力信号は、共通の画像処理装置113に入力される。なお、図1では、長尺材Sの長手方向片側に沿って配設された1つのエッジ位置計測装置1のみを図示している。
【0028】
エッジ位置計測装置1は、被計測対象からの反射光を受光することによって当該被計測対象の所定部位の位置を光学的に検出し得る位置検出装置11と、位置検出装置11の検出可能領域内であって、且つ、長尺材Sの幅方向に沿って当該長尺材Sに並置された基準部材12とを備えている。
【0029】
位置検出装置11は、基準部材12の所定部位(本実施形態では一方の幅方向エッジE1)の位置を検出すると共に、長尺材Sの幅方向エッジE2の位置を検出し、検出した基準部材12のエッジE1の位置と、検出した長尺材Sの幅方向エッジE2の位置との距離(長尺材Sの幅方向に沿った距離成分)Dを演算することにより、長尺材Sの幅方向エッジE2の位置を計測する(当該エッジE2の位置を前記距離Dとして算出する)ように構成されている。従って、位置検出装置11の位置ずれ(具体的には、後述する2次元撮像装置112の位置ずれ)が生じた場合であっても、当該位置検出装置11の位置ずれに応じて、基準部材12のエッジE1の位置と長尺材Sの幅方向エッジE2の位置とが共に同程度に位置ずれした状態で検出されるため、両者の距離としては位置検出装置11の位置ずれの影響が相殺され、計測誤差が生じないことになる。これは、従来のように、頻繁な校正が不要になることを意味し、結果として作業効率に極めて優れるという利点を有する。
【0030】
本実施形態に係る位置検出装置11は、長尺材S表面に対向する方向から、長尺材S及び基準部材12の表面を長尺材Sの幅方向に沿って線状(本実施形態では、線幅0.15mm〜50mm、線長100mm)に照明する線状光源111を備えている。なお、本実施形態に係る線状光源111は、所定の光源からの光を、光ファイバを断面矩形状に束ねたバンドルファイバーに導き、当該バンドルファイバーから出射する構成とされているが、これに限るものではなく、LED、蛍光灯、レーザなど種々の光源や導光部材を用いた線状光源とすることが可能である。
【0031】
また、本実施形態に係る位置検出装置11は、線状光源111によって照明された長尺材S及び基準部材12の表面からの反射光を受光する2次元撮像装置112を備えている。本実施形態に係る2次元撮像装置112は、2次元CCDカメラとされており、撮像視野が長尺材Sの長手方向に75mm(分解能0.15mm/画素)、幅方向に100mm(分解能0.15mm/画素)となるように配置されている。なお、外乱光による計測誤差が生じるのを防止するべく、2次元撮像装置112には、線状光源111の発光波長領域に相当する光のみを透過させるバンドパスフィルタを装着するのが好ましい。
【0032】
本実施形態に係る線状光源111は、2次元撮像装置112の撮像方向(本実施形態では鉛直下方向)とは異なる方向(本実施形態では撮像方向となす角度θ=10°の方向)から長尺材S及び基準部材12を照明するように配置されていると共に、基準部材12は、線状光源111の照明方向に沿って長尺材Sと高低差を有するように配置(本実施形態では長尺材Sの下方50mmの位置に配置)されている。
【0033】
斯かる配置によれば、いわゆる三角法(光切断法)の原理により、2次元撮像装置112と長尺材S又は基準部材12との距離に応じて、線状照明の反射光の結像位置が異なることになる。本実施形態では、基準部材12が、線状光源111の照明方向に沿って長尺材Sと高低差を有するように配置されているため、長尺材Sからの反射光と基準部材12からの反射光とは、2次元撮像装置112の異なる位置にそれぞれ線状に結像する(両結像線に段差が生じる)ことになる。
【0034】
図2は、本実施形態に係る2次元撮像装置112によって撮像される撮像画像の例を模式的に示す図であり、(a)は長尺材Sと基準部材12とが長尺材Sの幅方向に離間して配置されている状態の撮像画像の例を、(b)は基準部材12の一部が長尺材Sに遮蔽されている状態の撮像画像の例をそれぞれ示す。図2に示すように、長尺材Sからの反射光が結像した結像線L2と、基準部材12からの反射光が結像した結像線L1とが段差を生じる(同一直線上にない)ため、結像線L2のエッジ位置(長尺材Sの幅方向エッジE2の位置)と、結像線L1のエッジ位置(基準部材12のエッジE1の位置)とを識別することが容易であり、ひいては、両エッジ位置を正確に検出することが可能である。
【0035】
なお、本実施形態に係る線状光源111と2次元撮像装置112との配置関係、並びに長尺材Sに対する基準部材12の配置によれば、図2(b)に示すように、長尺材Sの幅方向の位置ずれによって、基準部材12の一部が長尺材Sに遮蔽されたような場合(2次元撮像装置112の撮像方向に対して手前側に長尺材Sが位置する場合)であっても、長尺材Sからの反射光が結像した結像線L2と、基準部材12からの反射光が結像した結像線L1とが段差を生じる(同一直線上にない)ため、両エッジ位置を正確に検出することが可能である点で特に有効である。
【0036】
さらに、本実施形態に係る位置検出装置11は、信号処理装置としての画像処理装置113を備えている。画像処理装置113は、予め設定された画像処理アルゴリズムに従って、2次元撮像装置112の出力信号を信号処理し(本実施形態では、図2に示すような2次元撮像装置112の撮像画像を画像処理する)、基準部材12のエッジE1の位置を検出すると共に、長尺材Sの幅方向エッジE2の位置を検出し、検出した基準部材12のエッジE1の位置と、検出した長尺材Sの幅方向エッジE2の位置との距離Dを演算することにより、長尺材Sの幅方向エッジE1の位置を計測するように構成されている。
【0037】
前記画像処理アルゴリズムをより具体的に説明すれば、本実施形態に係る画像処理装置113は、(1)2次元撮像装置112の撮像画像を入力し、(2)結像線L1、L2を抽出するべく、当該撮像画像を所定のしきい値で2値化した後、(3)ノイズ除去(小面積除去)を施し、(4)さらに、ラベリング後に各対象の特徴(幅や濃度等)に基づいて結像線L1、L2を識別し、各結像線のエッジ位置を計測することにより、基準部材12のエッジE1と長尺材Sの幅方向エッジE2の位置を検出し、(5)両者の距離Dを演算するように構成されている。
【0038】
ここで、本実施形態では、基準部材12のエッジE1の位置と、長尺材Sの幅方向エッジE2の位置とが、略同時に検出されるように構成されている。換言すれば、エッジE1の位置とエッジE2の位置とを検出するために使用される撮像画像は、同一のタイミングで撮像された同一の撮像画像とされている。従って、2次元撮像装置112の定常的な位置ずれのみならず、比較的高周波の振動の影響をも効果的に低減することが可能である。
【0039】
さらに、本実施形態に係る画像処理装置113は、複数箇所に配設された各エッジ位置計測装置1によってそれぞれ計測された長尺材Sの長手方向に沿った複数箇所の幅方向エッジ位置(すなわち距離D)に基づき、長尺材Sの形状を計測する形状計測手段としての機能も奏している。換言すれば、画像処理装置113には、長尺材Sの長手方向に沿って複数箇所に配設された2次元撮像装置112から出力された撮像画像がそれぞれ入力され、各撮像画像に基づき幅方向エッジ位置がそれぞれ計測され、当該複数の幅方向エッジ位置に基づき、キャンバー量が計測される。
【0040】
より具体的に説明すれば、長尺材Sの長手方向片側にそって配設された3つのエッジ位置計測装置1によって、長尺材Sの先端部、中央部及び後端部の幅方向エッジ位置をそれぞれ計測する場合、先端部のエッジ位置をD1、中央部のエッジ位置をD2、後端部のエッジ位置をD3とすると、キャンバー量は、D2−(D1+D3)/2で演算される。
【0041】
前述のように、各幅方向エッジ位置D1、D2、D3の計測に際しては、頻繁な校正が不要であるため、計測した複数箇所の幅方向エッジ位置に基づき長尺材Sの前記キャンバー量を計測する際にも、頻繁な校正は当然に不要であり、作業効率に優れるという利点を有する。
【0042】
なお、以上に説明した本実施形態では、被計測対象である長尺材Sを厚鋼板とした例について説明したが、本発明は無論これに限るものではなく、他の鋼板や棒鋼などの金属材料の他、非金属材料や紙製品等に適用することも可能である。
【0043】
また、本実施形態では、停止状態の長尺材Sの幅方向エッジ位置ひいてはキャンバー量を計測する構成について説明したが、本発明はこれに限るものではなく、搬送中の長尺材Sを被計測対象とすることも可能である。この場合、長尺材Sの長手方向(搬送方向)に沿って片側に1つ(両側で計2つ)のエッジ位置計測装置1のみを設置し、所定のタイミング毎に、長尺材Sの複数箇所の幅方向エッジ位置を順次計測する(2次元撮像装置112で順次撮像する)ことにより、キャンバー量を計測することも可能である。ただし、この場合、キャンバー量を精度良く計測するためには、長尺材Sの蛇行量が小さいことが条件となる。
【0044】
本実施形態では、線状光源111によって、長尺材S及び基準部材12を共に照明し、2次元撮像装置112によって、その反射光を受光する構成について説明したが、本発明はこれに限るものではなく、長尺材Sが高温材の場合には、長尺材Sについてはその自発光を受光する一方、基準部材12のみを照明してその反射光を受光する構成とすることも可能である。或いは、基準部材12をLED等の発光体で構成することも可能である。
【0045】
また、本実施形態では、基準部材12のエッジE1の位置と、長尺材Sの幅方向エッジE2の位置とが、略同時に検出される構成(エッジE1の位置とエッジE2の位置とを検出するために使用される撮像画像が同一のタイミングで撮像された同一の撮像画像とされている構成)について説明したが、本発明は必ずしもこれに限るものではなく、いずれか一方を先に検出した後、他方を検出する構成とすることも可能である。より具体的には、例えば、長尺材Sを載置する前に撮像した撮像画像に基づき基準部材12のエッジE1の位置を検出した後、長尺材Sを載置した後に撮像した撮像画像に基づき長尺材Sの幅方向エッジE2の位置を検出する構成を採用することも可能である。斯かる構成によっても、少なくとも2次元撮像装置112の定常的な位置ずれの影響を低減することは可能である。
【0046】
本実施形態では、2次元撮像装置装置112として2次元CCDカメラを適用した例について説明したが、本発明は無論これに限るものではなく、他のデバイスからなる2次元撮像装置を適用することも可能である。また、長尺材Sの幅方向に延びる視野を有するように配置された1次元ラインセンサ等の1次元撮像装置を適用することも可能である(この場合、線状光源111の線幅をある程度大きくするか、或いは、面状光源を使用すれば良い)。さらに、本実施形態では、2次元撮像装置112によって撮像された撮像画像を画像処理装置113で画像処理することにより、基準部材12のエッジE1の位置と、長尺材Sの幅方向エッジE2の位置とを検出する構成について説明したが、いわゆる2次元距離計(線状光源と2次元撮像装置を具備し、2次元撮像装置の出力信号を信号処理することにより、線状光源の照射された領域の距離測定値を出力する装置)を適用し、当該2次元距離計から出力された距離測定値の急変点を両エッジE1、E2として検出する構成を採用することも可能である。
【0047】
また、本実施形態では、長尺材Sの長手方向両側に沿って複数箇所に配設された各2次元撮像装置112からの出力信号を、共通の画像処理装置113に入力する構成について説明したが、本発明はこれに限るものではなく、各2次元装置112に対応付けて、それぞれ別個の画像処理装置113を設置する構成とすることも可能である。さらに、本実施形態では、画像処理装置113が、計測した複数の幅方向エッジ位置に基づきキャンバー量を計測する形状計測手段としての機能を兼ね備える構成について説明したが、本発明はこれに限るものではなく、画像処理装置113とは別個に形状計測手段を設ける(画像処理装置113から形状計測手段に対して幅方向エッジ位置を出力し、当該形状計測手段でキャンバー量を演算する)ことも可能である。
【0048】
本実施形態では、長尺材Sの形状として、キャンバ−量を計測する構成について説明したが、本発明はこれに限るものではなく、単にエッジ位置の計測に供することができる他、計測したエッジ位置に基づき、板幅など他の平面形状を演算するように構成することも可能である。
【0049】
また、本実施形態では、画像処理装置113において、結像線L1、L2を抽出するべく、撮像画像を所定のしきい値で2値化処理する構成について説明したが、本発明はこれに限るものではなく、例えば、撮像画像を2値化処理することなく、当該撮像画像について結像線L1、L2に直交する方向に沿って順次濃度値のピーク位置を検出することにより、結像線L1、L2を抽出するなど、種々の画像処理アルゴリズムを適用することが可能である。
【0050】
また、本実施形態では、線状光源111の照明方向に沿って長尺材Sと高低差を有するように基準部材12を配置する構成について説明したが、本発明はこれに限るものではなく、長尺材Sと基準部材12とを略同一の高さに配置することも可能である。この場合、前記結像線L1とL2とは、略同一直線上に位置することになるが、両者を識別するには、長尺材Sからの受光強度(撮像画像における濃度値に相当する)と基準部材12からの受光強度に差が生じるように、例えば、長尺材S表面の反射率とは明らかに反射率の異なる材料(例えば白色塗料)を基準部材12の表面に塗布すればよい。斯かる構成によれば、2次元撮像装置112の撮像画像において、結像線L1の濃度値の方が結像線L2の濃度値よりも大きくなるため、2つのしきい値で2値化処理(低い方のしきい値で結像線L1、L2を抽出し、さらに高い方のしきい値で結像線L1のみを抽出する)することにより、結像線L1、L2を識別し、基準部材12のエッジE1と長尺材Sの幅方向エッジE2の位置を検出することが可能である。また、白色塗料の代わりに、長尺材S表面とは色相の異なる塗料を塗布し、2次元撮像装置112としてカラー撮像装置(或いは、カラーフィルタを装着したモノクロ撮像装置)を用い、反射光の色相の差異によって結像線L1、L2を識別することも可能である。さらに、前述したように、基準部材12をLED等の発光体で構成することにより、長尺材Sからの受光強度と基準部材12からの受光強度に差を生じさせることも可能である。
【0051】
さらに、本実施形態では、基準部材12の所定部位として、一方の幅方向エッジE1の位置を検出し、これを距離Dを算出するための基準とする構成について説明したが、本発明はこれに限るものではなく、例えば、基準部材12の幅方向両エッジの位置を検出し、この中点を距離Dを算出するための基準とする構成を採用することも可能である。また、基準部材12の表面に凹部を形成し、当該凹部のエッジ位置を検出し、これを距離Dを算出するための基準とすることも可能である。
【0052】
【発明の効果】
以上に説明したように、本発明に係る長尺材のエッジ位置計測方法によれば、位置検出手段により長尺材の幅方向に沿って当該長尺材に並置された基準部材の所定部位の位置を光学的に検出すると共に、同じ位置検出手段で長尺材の幅方向エッジ位置を検出し、両者の距離から幅方向エッジ位置を計測することになる。従って、位置検出手段の位置ずれが生じた場合であっても、当該位置検出手段の位置ずれに応じて、基準部材の所定部位の位置と長尺材の幅方向エッジ位置とが共に同程度に位置ずれした状態で検出されるため、両者の距離としては位置検出手段の位置ずれの影響が相殺され、計測誤差が生じないことになる。これは、従来のように、頻繁な校正が不要になることを意味し、結果として作業効率に極めて優れた長尺材のエッジ位置計測方法が提供される。
【図面の簡単な説明】
【図1】図1は、本発明の一実施形態に係るエッジ位置計測方法及び形状計測方法を適用した形状計測装置の概略構成を模式的に示す図である。
【図2】図2は、図1に示す2次元撮像装置よって撮像される撮像画像の例を模式的に示す図である。
【符号の説明】
1…エッジ位置計測装置 11…位置検出装置 12…基準部材
111…線状光源 112…2次元撮像装置 113…画像処理装置
S…長尺材
Claims (8)
- 長尺材の幅方向エッジ位置を光学的に計測する方法であって、
長尺材の幅方向に沿って、当該長尺材及び基準部材を並置するステップと、
前記基準部材の所定部位の位置を所定の位置検出手段で光学的に検出するステップと、
前記基準部材を並置した状態で、前記長尺材の幅方向エッジ位置を前記位置検出手段で光学的に検出するステップと、
前記検出した基準部材の所定部位の位置と、前記検出した長尺材の幅方向エッジ位置との距離を演算することにより、長尺材の幅方向エッジ位置を計測するステップとを備えることを特徴とする長尺材のエッジ位置計測方法。 - 前記基準部材の所定部位の位置と、前記長尺材の幅方向エッジ位置とを、略同時に検出することを特徴とする請求項1に記載の長尺材のエッジ位置計測方法。
- 請求項1又は2に記載の長尺材のエッジ位置計測方法によって、長尺材の長手方向に沿って複数箇所の幅方向エッジ位置を計測するステップと、
前記計測した複数箇所の幅方向エッジ位置に基づき、前記長尺材の形状を計測するステップとを備えることを特徴とする長尺材の形状計測方法。 - 長尺材の幅方向エッジ位置を光学的に計測する装置であって、
被計測対象からの自発光又は反射光を受光することによって当該被計測対象の所定部位の位置を光学的に検出し得る位置検出装置と、
前記位置検出装置の検出可能領域内であって、且つ、前記長尺材の幅方向に沿って当該長尺材に並置された基準部材とを備え、
前記位置検出装置は、前記基準部材の所定部位の位置を検出すると共に、前記長尺材の幅方向エッジ位置を検出し、前記検出した基準部材の所定部位の位置と、前記検出した長尺材の幅方向エッジ位置との距離を演算することにより、長尺材の幅方向エッジ位置を計測することを特徴とする長尺材のエッジ位置計測装置。 - 前記位置検出装置は、前記基準部材の所定部位の位置と、前記長尺材の幅方向エッジ位置とを、略同時に検出することを特徴とする請求項4に記載の長尺材のエッジ位置計測装置。
- 前記位置検出装置は、
前記長尺材表面に対向する方向から、前記長尺材及び前記基準部材の表面を前記長尺材の幅方向に沿って線状に照明する線状光源と、
前記長尺材及び前記基準部材の表面からの反射光を受光する2次元撮像装置と、
前記2次元撮像装置の出力信号を信号処理することにより、前記基準部材の所定部位の位置を検出すると共に、前記長尺材の幅方向エッジ位置を検出し、前記検出した基準部材の所定部位の位置と、前記検出した長尺材の幅方向エッジ位置との距離を演算することにより、長尺材の幅方向エッジ位置を計測する信号処理装置とを備えることを特徴とする請求項4又は5に記載の長尺材のエッジ位置計測装置。 - 前記線状光源は、前記2次元撮像装置の撮像方向とは異なる方向から前記長尺材及び前記基準部材を照明するように配置され、
前記基準部材は、前記線状光源の照明方向に沿って前記長尺材と高低差を有するように配置されていることを特徴とする請求項6に記載の長尺材のエッジ位置計測装置。 - 長尺材の長手方向に沿って複数箇所に配設された請求項4から7のいずれかに記載の長尺材のエッジ位置計測装置と、
前記複数箇所に配設された長尺材のエッジ位置計測装置によってそれぞれ計測された長尺材の長手方向に沿った複数箇所の幅方向エッジ位置に基づき、前記長尺材の形状を計測する形状計測手段とを備えることを特徴とする長尺材の形状計測装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002339486A JP2004170363A (ja) | 2002-11-22 | 2002-11-22 | 長尺材のエッジ位置計測方法及びこれを用いた形状計測方法並びにエッジ位置計測装置及びこれを用いた形状計測装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002339486A JP2004170363A (ja) | 2002-11-22 | 2002-11-22 | 長尺材のエッジ位置計測方法及びこれを用いた形状計測方法並びにエッジ位置計測装置及びこれを用いた形状計測装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004170363A true JP2004170363A (ja) | 2004-06-17 |
Family
ID=32702427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002339486A Pending JP2004170363A (ja) | 2002-11-22 | 2002-11-22 | 長尺材のエッジ位置計測方法及びこれを用いた形状計測方法並びにエッジ位置計測装置及びこれを用いた形状計測装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004170363A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010512525A (ja) * | 2006-12-15 | 2010-04-22 | フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ | 厚さ測定のための方法及び装置 |
JP2013015361A (ja) * | 2011-07-01 | 2013-01-24 | Toshiba Mitsubishi-Electric Industrial System Corp | 幅測定装置 |
JP2013024894A (ja) * | 2011-07-15 | 2013-02-04 | Fujifilm Corp | 撮像レンズ位置算出装置およびその動作制御方法 |
KR101291128B1 (ko) | 2011-09-07 | 2013-08-01 | 삼성중공업 주식회사 | 부재의 최외각 측정 장치 및 방법 |
JP2018027560A (ja) * | 2016-08-18 | 2018-02-22 | 東芝三菱電機産業システム株式会社 | 形状測定装置及びそれを備えた圧延システム |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5911844B2 (ja) * | 1974-08-14 | 1984-03-19 | 新日本製鐵株式会社 | 長尺材の曲り測定装置 |
JPH0512414A (ja) * | 1991-07-02 | 1993-01-22 | Kubota Corp | 三次元画像入力装置 |
JPH05157549A (ja) * | 1991-12-06 | 1993-06-22 | Nippon Steel Corp | 帯状体のキャンバー検出方法 |
JPH0719830A (ja) * | 1993-07-06 | 1995-01-20 | Nippon Steel Corp | 熱鋼板の形状計測装置 |
JPH095020A (ja) * | 1995-06-16 | 1997-01-10 | Kanegafuchi Chem Ind Co Ltd | 蛇行修正装置及びこれを組み合わせたラミネート装置 |
JPH11190609A (ja) * | 1997-12-26 | 1999-07-13 | Canon Inc | ワーク測定方法及び装置 |
JP2001304824A (ja) * | 2000-04-19 | 2001-10-31 | Tokimec Inc | 携帯式レール断面測定装置 |
JP2001343223A (ja) * | 1999-11-08 | 2001-12-14 | Sumitomo Metal Ind Ltd | 帯状体の品質測定方法、キャンバ抑制方法、帯状体の品質測定装置、圧延装置及びトリム装置 |
JP2002277223A (ja) * | 2001-03-21 | 2002-09-25 | Nagoya Railroad Co Ltd | レール断面形状測定方法 |
-
2002
- 2002-11-22 JP JP2002339486A patent/JP2004170363A/ja active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5911844B2 (ja) * | 1974-08-14 | 1984-03-19 | 新日本製鐵株式会社 | 長尺材の曲り測定装置 |
JPH0512414A (ja) * | 1991-07-02 | 1993-01-22 | Kubota Corp | 三次元画像入力装置 |
JPH05157549A (ja) * | 1991-12-06 | 1993-06-22 | Nippon Steel Corp | 帯状体のキャンバー検出方法 |
JPH0719830A (ja) * | 1993-07-06 | 1995-01-20 | Nippon Steel Corp | 熱鋼板の形状計測装置 |
JPH095020A (ja) * | 1995-06-16 | 1997-01-10 | Kanegafuchi Chem Ind Co Ltd | 蛇行修正装置及びこれを組み合わせたラミネート装置 |
JPH11190609A (ja) * | 1997-12-26 | 1999-07-13 | Canon Inc | ワーク測定方法及び装置 |
JP2001343223A (ja) * | 1999-11-08 | 2001-12-14 | Sumitomo Metal Ind Ltd | 帯状体の品質測定方法、キャンバ抑制方法、帯状体の品質測定装置、圧延装置及びトリム装置 |
JP2001304824A (ja) * | 2000-04-19 | 2001-10-31 | Tokimec Inc | 携帯式レール断面測定装置 |
JP2002277223A (ja) * | 2001-03-21 | 2002-09-25 | Nagoya Railroad Co Ltd | レール断面形状測定方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010512525A (ja) * | 2006-12-15 | 2010-04-22 | フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ | 厚さ測定のための方法及び装置 |
JP2013015361A (ja) * | 2011-07-01 | 2013-01-24 | Toshiba Mitsubishi-Electric Industrial System Corp | 幅測定装置 |
JP2013024894A (ja) * | 2011-07-15 | 2013-02-04 | Fujifilm Corp | 撮像レンズ位置算出装置およびその動作制御方法 |
KR101291128B1 (ko) | 2011-09-07 | 2013-08-01 | 삼성중공업 주식회사 | 부재의 최외각 측정 장치 및 방법 |
JP2018027560A (ja) * | 2016-08-18 | 2018-02-22 | 東芝三菱電機産業システム株式会社 | 形状測定装置及びそれを備えた圧延システム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5183197B2 (ja) | 分配システムにおける測定装置および方法 | |
US6369401B1 (en) | Three-dimensional optical volume measurement for objects to be categorized | |
JP5754752B2 (ja) | 帯状体の端部位置検出装置及び帯状体の端部位置検出方法 | |
JP6275622B2 (ja) | 走行面上の複数の製品の位置と三次元的な形状を非接触で検出する方法およびスキャナ | |
JP2011089981A (ja) | 検査システム及び検査方法 | |
JP2008256616A (ja) | 表面欠陥検査システム、方法及びプログラム | |
CN1844899A (zh) | 检测宽物品的方法 | |
CA2365654C (en) | Apparatus and method for detecting twist in articles | |
EP0483362B1 (en) | System for measuring length of sheet | |
JP2004170363A (ja) | 長尺材のエッジ位置計測方法及びこれを用いた形状計測方法並びにエッジ位置計測装置及びこれを用いた形状計測装置 | |
EP0871008B1 (en) | Device for measuring the dimensions of an object that is very extensive longitudinally and whose cross section has a curved contour | |
CA2962809C (en) | System and method for color scanning a moving article | |
JP2007205868A (ja) | 光学式形状検査装置及び方法 | |
JP6780533B2 (ja) | 形状測定システム及び形状測定方法 | |
JP2008164338A (ja) | 位置検出装置 | |
JP2009042978A (ja) | 印刷物識別装置および印刷物識別方法 | |
JP2001108423A (ja) | 表面欠陥検出方法および装置 | |
KR100473682B1 (ko) | 비정형적인 슬래브의 폭 측정장치 및 그 방법 | |
RU2284510C1 (ru) | Способ контроля широкого изделия (варианты) | |
KR101886212B1 (ko) | 판쏠림 및 판폭 동시 계측 장치 | |
JP3096807B2 (ja) | 表裏判別方法及び表裏判別装置 | |
JP2007301670A (ja) | 走行シートの切断位置検出装置 | |
JPH08271442A (ja) | 表面欠陥検出方法および装置 | |
JPS61105409A (ja) | 端曲り量測定装置 | |
JP2009085666A (ja) | シート傾斜角測定方法、シート検査方法、およびシート検査装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050322 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070302 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070629 |