WO2001029356A1 - Mejoras en los sistemas antipinzamiento destinados al automovil - Google Patents

Mejoras en los sistemas antipinzamiento destinados al automovil Download PDF

Info

Publication number
WO2001029356A1
WO2001029356A1 PCT/ES2000/000392 ES0000392W WO0129356A1 WO 2001029356 A1 WO2001029356 A1 WO 2001029356A1 ES 0000392 W ES0000392 W ES 0000392W WO 0129356 A1 WO0129356 A1 WO 0129356A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
window
systems
module
car
Prior art date
Application number
PCT/ES2000/000392
Other languages
English (en)
French (fr)
Inventor
Melchor Daumal Castellon
Original Assignee
Melchor Daumal Castellon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8310348&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001029356(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Melchor Daumal Castellon filed Critical Melchor Daumal Castellon
Priority to EP00967923A priority Critical patent/EP1146191B1/en
Priority to JP2001532323A priority patent/JP2003512550A/ja
Priority to US09/806,044 priority patent/US6555978B1/en
Priority to DE60020078T priority patent/DE60020078C5/de
Publication of WO2001029356A1 publication Critical patent/WO2001029356A1/es

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/70Power-operated mechanisms for wings with automatic actuation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/085Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load
    • H02H7/0851Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load for motors actuating a movable member between two end positions, e.g. detecting an end position or obstruction by overload signal
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/40Safety devices, e.g. detection of obstructions or end positions
    • E05F15/41Detection by monitoring transmitted force or torque; Safety couplings with activation dependent upon torque or force, e.g. slip couplings
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/60Power-operated mechanisms for wings using electrical actuators
    • E05F15/603Power-operated mechanisms for wings using electrical actuators using rotary electromotors
    • E05F15/665Power-operated mechanisms for wings using electrical actuators using rotary electromotors for vertically-sliding wings
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/50Application of doors, windows, wings or fittings thereof for vehicles
    • E05Y2900/53Type of wing
    • E05Y2900/55Windows
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/093Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against increase beyond, or decrease below, a predetermined level of rotational speed

Definitions

  • Conventional drive systems of, for example, the windows of a car or a sliding roof of a car typically include an electric motor that drives the pulley and the cables of the drive assembly of the glass or window regulator, forcing the glass to rise or lower by sliding inside the corresponding guides and gaskets installed in the car door or frame.
  • Such systems usually incorporate so-called anti-pinch systems, which equip control means that normally act on the electric motor of the drive system when they detect any eventual blockage of the window pane or the sliding roof of the car.
  • anti-pinch systems called direct electronic anti-pinch systems, applicable to window regulators for door windows, sliding roofs or the like that are essentially based on mounting a coating on the inside of the window frame of a vehicle, provided with a driver of optical fiber.
  • the glass rises and encounters an obstacle between the upper edge of the glass and the window frame, for example a person's hand, the glass imprisons the obstacle against the coating of the marking.
  • the flow of light flowing through the fiber optic conductor is modified, so that a signal is sent to control means that compare it with certain preset reference values. This leads to the arrest and inversion of the direction of advance of the crystal in its ascent allowing the release of obstacle.
  • the objective of the present invention is to provide improvements applicable to the systems indirect anti-pinching, that is, those that analyze and control the operation of the engine. Said analysis is carried out in such a way that any change over predetermined predetermined values for a preset situation is interpreted by the system as a possible pinch or abnormality of the normal operation of the system.
  • an anti-pinch system comprises means for controlling the operation of the window drive motor or the sliding roof of a car that are activated when they detect any variation in the normal operation of the system.
  • said anti-pinching system is formed by a motor module, a reducing module and an electronic control module, said motor module being constituted by a n-pole motor. More specifically, the motor module is formed by a motor of at least eight poles.
  • the electronic module consists of Hall sensors designed to regulate the motor speed by emitting a number of pulses for each turn of the motor shaft.
  • the said control means act on said motor module depending on the speed of rotation of the motor itself or on the basis of the current intensity, stopping its operation and / or reversing its direction of rotation.
  • one of the improvements introduced in the present invention is the design of motors of at least eight poles instead of four poles, such as prior art motors.
  • the number of poles, for example eight is a function of the desired precision, which is determined by the following expression: f x d l.e - ⁇ nlec) ( ⁇ n
  • each turn of the motor shaft corresponds to 4 pulses of the Hall sensor and is approximately equivalent to a 1.6 mm travel of the crystal. In this way, the detection of an entrapment is made every 0.54 mm of glass travel.
  • the installed Hall sensors are of type a 0 a , instead of the conventional systems that equip them with 180 a .
  • the electronic module of the anti-pinch system includes a circuit equipped with an isolated gate field effect transistor, a relay, a programmable microprocessor, capacitors in a multilayer board and a programmable EEPROM memory that is capable of compensating the mechanical effects produced by the mechanical deformation of the system by storing a new value for each window stop cycle, which updates the previous travel value of the upper and lower stop.
  • the insulated gate field or metal-oxide-semiconductor field effect transistor of type n is a voltage component controlled by a very high input and output impedance (up to ⁇ 4 ).
  • Said component comprises a substrate in which two identical regions that are called a supplier or source and drain are diffused, which are defined by two ohmic contacts isolated from the substrate by means of diodes.
  • the conductive path between the source and the supplier is called the channel.
  • the door is formed by covering the region between the drain and the spout with a layer of silicon dioxide on which a metal plate is deposited.
  • the applied voltage determines which zone of type n provides the electrons and becomes the source, while the other region of type n collects the electrons and becomes the drain.
  • the MOSFET basically works with a positive potential between the door and the dispenser cited above. This type of operation is called rich operation.
  • This type of operation is called rich operation.
  • the spout is of the positive type, an n-type channel is induced between the spout and the drain.
  • An increase in the voltage of the door increases the conductivity of the channel, consequently increasing the current.
  • the current between the drain and the assortment is modulated by the tension between the door and the dispenser.
  • Increases in drain voltage do not produce a proportional increase in drain current, which is proportional to variations in door tension.
  • the flow of electrons from the source to the drain is controlled by the voltage applied to the door.
  • the MOSFET provides voltage and current gain with an output efficiency towards an external load that exceeds the input current and an output voltage through the external load that exceeds the input voltage.
  • the voltage gain of a MOSFET is caused by the fact that the current is saturated at higher drain-source voltages, so that a small variation of the drain current can cause a large variation of drain voltage.
  • the electronic module of the anti-pinch system also includes a microcontroller with a mask for programming the application once the components have been assembled. Thanks to this feature it is possible to program the application in the same assembly line of the components. In addition, there is a greater flexibility in updating programs and there is the possibility of updating the application software in the final assembly line, dealers, after-sales points, trials, etc. Access to software data is very agile by modifying values in EEPROM memory.
  • the plate equipped in the new anti-pinch system allows to reduce consumption considerably, especially each time the relay is activated, cutting the current peaks.
  • the nominal consumption is 180 ⁇ A; while for an idle state (electronic active but with engine stopped), the nominal consumption is 18 mA and; in operation, the nominal consumption is 80 mA.
  • the electronic module of the anti-pinch system incorporates means for controlling the temperature of the system from the number of turns of the motor shaft for a certain time taking into account the system consumption. When a preset value is exceeded, said system temperature control means only allow the window to rise.
  • the electronic module of the anti-pinching system incorporates means for regulating the maximum travel of the window, which, when connecting the motor, count the number of pulses read by the Hall sensor, disconnecting said motor when a certain preset value is exceeded without The window has reached the top.
  • the electronic module of the anti-pinch system incorporates means for disconnecting the motor when the window is at a safe distance before the lower limit stop in its descent, reaching the remaining route through the inertia of the window.
  • the electronic module of the anti-pinch system incorporates means for disconnecting the motor when the window is at a safe distance before the lower limit stop in its descent, reaching the remaining route through the inertia of the window.
  • the soft stop function is performed both in the upper stop position and in the lower stop position.
  • the motor raises the glass so that the length of the drive cable causes said glass to reach a height up to a distance before reaching the top stop of the door frame. Said distance is traveled, until reaching the top of the window frame, thanks to the extension of springs mounted on the ends of the cable, which allow the stretching of the drive length until the window travel is completed and causing, in this way, a soft stop to said upper stop of the vehicle door frame.
  • a window lift conceived in this way is very elastic.
  • This upper soft stop function makes it possible to limit the stretching of the mechanical transmission of the window regulator, notably improving the useful life of the mechanical elements of the system of the invention, reducing wear and mechanical blockages. As a mechanical stretching limit of said transmission is not reached, the consumption of the electric motor is reduced and, therefore, the battery is not impaired and there is a greater stability of the electrical circuit, preventing other devices from being affected by voltage drops
  • the motor is switched off, first with the MOSFET and then with the relay, at a safe distance before the mechanical lower stop.
  • the speed of the window lift, and therefore, the inertia of descent are affected by several factors such as the supply and consumption voltage, the state of the vehicle's engine (stopped or started), if the engine it is the one on the right or on the left, the mechanical construction of the window and door system, the environmental conditions, etc.
  • an automatic adjustment of the soft stop is carried out taking into account the lowering speed
  • the means of disconnection of the motor take into account at least some of the factors such as the speed of descent of the window, the active / inactive state of the motor and consumption; automatically adjusting the motor shutdown based on these factors.
  • This anti-pinch system temperature control software is active even if the window regulator has not been initialized.
  • the window operation time accumulates and when it exceeds a preset limit value, only the window is allowed to rise to the upper limit.
  • the standby time until a new drive is allowed is approximately five times the elapsed drive time. The value is obtained experimentally according to specifications at different temperatures of the current standards and according to the type of engine. In practice and under conditions of Normal operation, 20 complete cycles of raising / lowering the glass should be possible without disconnecting the system. In any case, overheating protection must allow the glass to rise to the top stop.
  • the temperature limit is variable.
  • an average motor consumption is set at 5 A rise, allowing 20 cycles of up and down without disconnection.
  • 5 cycles of up and down are allowed without disconnection (system compensated for consumption).
  • the number of up and down cycles is directly proportional to the consumption, in the range of 5 to 20 cycles.
  • the stop time is 0.2 s., That is, the motor is deactivated at 0.2 s. from the arrival of the glass to the limit switch, either in manual mode or in automatic mode. This contrasts with the disconnection time of prior art systems that do so in 0.5 s.
  • This minimum disconnection time is possible thanks to the arrangement of a n-pole motor, for example eight, which offers a significantly shorter disconnection time than with the four-pole motors that are conventionally used in known systems. It should be understood that when the soft stop function is performed in the lowering of the glass, the motor is switched off before it reaches the bottom stop.
  • Another motor operating limit of the drive means of the system object of the invention is the consumption, which is limited to a maximum of 25 A.
  • the anti-pinch system of the invention detects and filters the start of the car's engine due to a voltage drop. This causes the engine to stop and the glass to stop. Thanks to this feature, the system allows a false clamp to occur, since the voltage broth causes a speed variation that can be detected by the installed Hall sensors, so that, before producing a false clamp, it will cause engine stop
  • the anti-pinch system of the invention takes into account whether the vehicle is stopped or running according to the supply voltage. If the supply voltage is less than 13V, it indicates that the vehicle has not started, so the sensitivity may be higher. On the other hand, if the supply voltage is greater than 13V, it indicates that the vehicle has started, so the sensitivity is lower. It should be taken into account that when the vehicle is running, what limits the sensitivity are the possible "bumps" and that the impact of the inertia of the glass can cause a false grip. In the case of having a power supply less than 13V, this voltage is assumed to be that corresponding to that provided by the battery. Normally, when the engine is running, the power is higher than the voltage provided by the battery, since it is possible to charge and power the rest of the systems present in the vehicle.
  • the system of the invention is also characterized by set geometry. It is a modular system that includes three isolated and detachable modules. These modules are: motor module, reducing module and electronic module. Unlike conventional systems in which there is a gap between the axis and the hall sensors, the system object of the present invention incorporates a wall Plastic housing located between the shaft and the sensors. In addition, sealing gaskets are arranged between the gears and the electric motor.
  • the motor is capable of making a very short reversal of the direction of rotation (of the order of milli seconds) when the glass is descending. This causes the engine to block in inversion, as if it were rising. More specifically, every time the glass stops during its downward path, an upward pulse occurs. The maximum value of this pulse is 0.53 mm and produces a blockage in the motor gears as if it were rising. In this way, the engine stop has no inertia and the glass does not "sink" so much when supported.
  • stop detection the motor is deactivated within 0.5 s of the arrival of the glass to the limit stops, except for the soft stop
  • software temperature limit the motor thermal temperature limit
  • the entrapment system may be more sensitive as long as the vehicle is not running and, therefore, is not subject to road irregularities. Therefore, it is determined that the car is started or stopped based on the measurement of supply voltage. In this sense, it is established that the motor is stopped if a power supply of less than 13 V is detected. It is established that the motor is motor started if a power supply greater than 13 volts is detected. In this way the level of entrapment sensitivity is automatically calibrated. If the engine has not started, the sensitivity of the entrapment is high and the risk of accident due to window manipulation, especially by minors, is limited. If the engine is running, the presence of a driver is assumed and the sensitivity of entrapment will be less to filter the moments of inertia caused by the irregularities of the road.
  • a safety criterion is maintained based on the following circumstances. If the Hall effect sensors do not detect motor rotation but it actually moves, the electronics detect that for 0.2 s there is no pulse reading of the Hall sensors and deactivate the window motor. This allows the glass to be raised or lowered sensitively by pressing the manual raise or lower control. Each push up or down will allow an equivalent glass travel 0.2 s. of engine rotation time. If the Hall effect sensors continue to count pulses despite having reached the limit of travel of the window regulator and, therefore, the motor is still active by pressing the glass against the stop, the motor current sensors act when detecting a consumption greater than 25 A. disconnecting the engine. An established physical limit is established for the 20 A / s motor.
  • the calculation algorithm also establishes an autocalibration of entrapment sensitivity depending on the speed of the window lifter, in this way a linear trapping sensitivity is achieved regardless of the window speed, either due to voltage differences in the power circuit or by friction of the transmission.
  • the reaction to the entrapment detection is greater the higher the speed, achieving a similar trapping pressure sensitivity at different speeds.
  • EEPROM memory In the EEPROM memory, data such as the original reference window of the window regulator, the updated glass travel, the reference measurement of the upper frame, the reference measurement for the soft stop function, the measurement of the window for enabling the window are stored. entrapment (standard between 4 and 200 mm of the highest position), entrapment detection thresholds, manufacturer, manufacturing batch (value up to 1,000,000), date (month-year format), software version, the device version, the EEPROM version, the hundreds counter, the window lifter movements performed (value up to 1,000,000), the unit counter (trapping cycles performed, value up to 65,000). A record of grips can also be stored, as well as the deceleration produced (for a subsequent survey).
  • the variables stored in the aforementioned memory are the mechanical effects, the travel and stop threshold, the soft stop of the glass, etc.
  • the system is activated while the glass is rising and at a distance of between 4 and 200 mm from the highest position. If an obstacle is detected, the glass will lower a distance greater than or equal to 125 mm.
  • the rise mechanism is deactivated, and the descent mechanism remains active. These 10 s are reset with each new up or down and stop movement.
  • the design of the electronic circuit allows the application to be arranged in a microcontroller with a mask or to supply a microcontroller with the possibility of programming the application on the same PCB once the components are mounted. In this way it is possible to program the application in the same assembly line of components, making the updating of programs more flexible, and enabling updates of the application software in the final assembly line, dealers, after-sales, etc. as well as agile access to software and EEPROM data.
  • the EEPROM memory is programmable and the application can be configured by varying only the parameters stored in the EEPROM memory.
  • the electronic board of the system is a 4-layer board and has easy access by disassembling the housing cover without disassembling the power window or the motor. This allows easy replacement of the electronic board.
  • the invention also provides for the possible modification of the control software giving the microprocessor the management capacity of such management.
  • the door can be opened with a remote control.
  • the initialization of the engine occurs by performing a cycle of up and down to recognize the door and the window travel. From this moment, the electronic functions are put into operation. Prior to the aforementioned initialization, the motor functions as a conventional electric motor.
  • Figure n and 1 is a schematic view of a diagram in which can be seen the elements of a system equipped antipinching improvements of the present invention.
  • Figure n to 2 schematically illustrates the overall arrangement of the mechanical elements of a window regulator equipped with an improved anti-pinch system according to the invention.
  • Figure n s 3 is a schematic elevation view of the motor module of the system of the invention.
  • Figure n to 4 is a plan view of the lower part of the control means of the system of the invention in which some of the elements constituting the electronics associated with the motor module have been schematically represented.
  • figure n to 5 is a schematic view of the connector of the motor module seen by the female part and in which the external connection of the system is illustrated in detail.
  • control means (2) motor module, (2a) motor shaft magnet, (3) motor, (4) MOSFET, (5) relay, (6) microprocessor, (7) consumption signal, (8) voltage signal, (9, 10) Hall sensors, (11) window glass, (12) window regulator, (13) drive cable, (14) drum, ( 15) voltage regulator, (16) connector, (17) ground connection, (18) battery connection, (19) driver glass drive key connection mounted on driver's side, (20) drive key connection of the passenger's glass mounted on the driver's side, (21) central opening connection, (22) automatic mode connection, (23) sunroof operation, (24) central locking connection, (25) exit for closing the sunroof, (26) connection to the engine ignition key, (27) connection for opening the door.
  • the improvements object of the present invention are applicable to anti-pinch systems that analyze and control the operation of the motor, also known as indirect anti-pinch system.
  • a variation of the preset values is interpreted as a possible pinch or abnormality of normal system operation.
  • the anti-pinch system of the invention as shown in figure n to 1, comprises control means (1) of the operation of the motor module (2) that drives the window (11) of a car, see figure n to 2.
  • the control means (1) are activated when they detect any variation in the normal operation of the system.
  • the improvements of the invention affect the motor module (2), which is constituted, in the exemplary embodiment of figure n to 1, by an 8-pole motor (3). It is a high performance and low heating engine that has the magnet incorporated in the shaft.
  • the arrangement of the magnet (2a) on the shaft combined with the geometry of the circuit housing housing electronic allows the integration of Hall sensors (9, 10) on the underside of the electronic circuit. In this way, the assembly process is simplified and the reading quality of the magnetic field is very good in the temperature range from -40 to C to +85 to C.
  • the motor module (2) receives signals from the control means (1), which comprise a transistor of field effect of insulated door (MOSFET) represented by (4) in FIG e 1 and to compensate peaks intensity, power variations and stabilize a relay (5) and other elements such as capacitors arranged in a multi-layer board, programmable EEPROM memory, etc.
  • the MOSFET semiconductor switches in vacuum the power relay that connects the motor, so that the useful life of the relay is advantageously extended. When the relay is switched off in vacuum, its contacts do not open and close on load and thus substantially avoid problems arising from electromagnetic emissions.
  • the control means (1) receive the processed signals that come from the programmable microprocessor (6) that is mounted in the furthest part of the power lines and the electric motor (3) to avoid, thanks to its design, any possible disturbance .
  • Said means also incorporate a four-layer plate (not illustrated) that has easy access by disassembling the housing cover without disassembling the window regulator or the motor. This allows easy replacement of the electronic board. All the electronics are integrated in the power window motor assembly using a connection through a housing with a 12-way connector as shown in figure n to 5.
  • the microprocessor (6) receives signals (7, 8) about the consumption and voltage information as input readings.
  • the microcontroller used in the described embodiment is provided with a memory "Flash" of 4 Kb that allows to realize the programming of the application directly on the microcontroller through an SPI serial interface or by means of a conventional programmer of nonvolatile memories. In this way, it is possible to update the application in the same assembly and programming process. All instructions are executed in a processor clock cycle, which allows the application designer to optimize consumption based on the speed of data processing.
  • control means (1) act on the motor module (2) as a function of the motor rotation speed (2) detected by Hall sensors of type 0 to (9, 10), which allow to regulate the speed of the motor (3) emitting a number of pulses for each turn, or depending on the intensity of circulating current, or the consumption of the system, stopping the motor (3) and / or reversing its direction of rotation.
  • control means (1) can be seen in figure n to 4, in which the lower part of the circuit is observed with the Hall sensors (9, 10), the microprocessor (6), a voltage regulator (15), the relay (5), the MOSFET (4) and the connector (16).
  • connector (16) comprises a plurality of connecting elements, which are described in the attached table.
  • each turn of the motor shaft corresponds to 4 sensor pulses.
  • the control means (1) are equipped with a plate that considerably reduces the consumption of the system of the invention, especially each time the relay (5) is activated, cutting the current peaks.
  • said control means (1) incorporate means for controlling the temperature of the system from the number of turns of the motor shaft
  • the motor (3) is switched off, first with the MOSFET (4) and then with the relay (5), and stops at a safe distance before the infec- tion stop.
  • the control means (1) includes a programmable 128-byte EEPROM memory that can be configured by varying only the stored parameters. This memory stores data such as the original reference travel and the updated glass travel, the reference measurement of the upper frame, the reference measurement for the soft stop function, the window lifts performed, a record of grips, the deceleration produced, etc.
  • the parameters that significantly affect the operation of the application are archived in the EEPROM memory of the described embodiment. These parameters can be modified without the need to intervene in the application software.
  • the expected parameters are as follows:
  • the overload protection of the motor of the lifting system of a window (11) is carried out by software, which accumulates the time of operation of the window regulator and when exceeding a preset limit value is only allowed the climb to the top stop. Under normal operating conditions, 20 full glass up / down cycles (11) can be performed without disconnecting the system.
  • the motor (3) stops in a very short time, for example in 0.2 s, thanks to the fact that this motor (3) is eight poles.
  • the anti-pinch system of the invention detects and filters the voltage drop caused by the engine starting avoiding a false pinching, since the voltage broth causes a variation of speed that can be detected by the Hall sensors (9, 10), so that before producing a false pinch, it will cause the motor to stop (3).
  • the anti-pinch system takes into account whether the vehicle is stationary or running according to the supply voltage. If the supply voltage is less than 13V it indicates that the vehicle has not started, so the sensitivity may be higher. On the other hand, if the supply voltage is greater than 13V, it indicates that the vehicle has started, so the sensitivity is lower.
  • the motor (3) is capable of reversing the direction of rotation very short when the glass (11) is descending. Thus, each time the crystal (11) stops during its downward path, an upward pulse occurs. The maximum value of this pulse is 0.53 mm and produces a blockage in the gears of the motor (3) as if it were rising, so that the motor stop lacks inertia and the crystal does not "sink" so much to the lean on.
  • the control module (1) warns that for 0.2 s there is no pulse reading of said Hall sensors (9, 10) and deactivates the movement of the motor (3) of the window regulator (12).
  • control module (1) detects a consumption greater than 25 A and disconnect the engine.
  • the physical limit set for the engine is
  • the 20 prioritizes the lowering sequence taking into account the fact that if the glass is rising and the lowering button is pressed, the lowering crystal. On the other hand, if the glass is going down and the rise button is pressed, the glass stops. On the other hand, the crystal is also expected to
  • the invention provides for the incorporation of other improvements, especially those derived from the programmability of all the parameters involved in the system object of the invention.

Landscapes

  • Power-Operated Mechanisms For Wings (AREA)
  • Window Of Vehicle (AREA)

Abstract

El sistema comprende un motor (3) de por lo menos ocho polos, medios de control (1) que actúan sobre el motor (3) en función de la velocidad de giro o de la intensidad de corriente, deteniendo su funcionamiento y/o invirtiendo su sentido de giro, que incluyen sensores Hall (9, 10), un transistor MOSFET (4), un relé (5), un microprocesador programable (6), unos condensadores en una placa multicapa, una memoria EEPROM, medios de control de la temperatura del sistema, medios de regulación del recorrido máximo de la ventana (11) y medios de desconexión del motor (3) cuando la ventana (11) se encuentra a una distancia de seguridad antes del tope de final de carrera inferior o superior, alcanzándose el recorrido final por inercia de la ventana (11) o por estiramiento mecánico de la transmissión, respectivamente.

Description

"MEJORAS EN LOS SISTEMAS ANTIPINZAMIENTO DESTINADOS AL
AUTOMÓVIL"
Los sistemas convencionales de accionamiento de, por ejemplo, las ventanas de un automóvil o de un techo deslizante de un automóvil, incluyen típicamente un electromotor que acciona la polea y los cables del conjunto de accionamiento del cristal o elevalunas, obliqando al cristal a subir o a bajar deslizándose por el interior de las correspondientes guias y juntas instaladas en la puerta o marco del automóvil.
Dichos sistemas suelen incorporar los denominados sistemas antipinzamiento, los cuales equipan medios de control que normalmente actúan sobre el electromotor del sistema de accionamiento cuando detectan cualquier bloqueo eventual del cristal de la ventana o del techo deslizante del automóvil .
Existen sistemas antipinzamiento, denominados sistemas antipinzamiento de electrónica directa, aplicables a dispositivos elevalunas para ventanas de puertas, techos deslizantes o similares que se basan esencialmente en montar un recubrimiento en la parte interior del marco de la ventana de un vehículo, provisto de un conductor de fibra óptica. Cuando el cristal asciende y encuentra un obstáculo entre el borde superior del mismo y el marco de la ventana, por ejemplo la mano de una persona, el cristal aprisiona el obstáculo Contra el recubrimiento del marcó. Cuando esto ocurre, el flujo de luz que circula por el conductor de fibra óptica se ve modificado, de tal manera que se envia una señal a unos medios de control que la comparan con ciertos valores de referencia preestablecidos. Esto conduce a la detención e inversión del sentido de avance del cristal en su ascenso permitiendo la liberación de obstáculo.
El objetivo de la presente invención consiste en disponer unas mejoras aplicables a los sistemas antipinzamiento indirectos, es decir, aquellos que analizan y controlan el funcionamiento del motor. Dicho análisis se realiza de manera que cualquier cambio sobre unos valores predeterminados previstos para una situaciones preestablecidas es interpretado por el sistema como un posible pinzamiento o anomalía del funcionamiento normal del sistema.
En lineas generales, un sistema antipinzamiento de acuerdo con la presente invención comprende medios de control del funcionamiento del motor de accionamiento de la ventana o del techo deslizante de un automóvil que se activan cuando detectan cualquier variación en el funcionamiento normal del sistema.
Las mejoras introducidas en dicho sistema antipinzamiento consisten en que dicho sistema antipinzamiento está formado por un módulo motor, un modulo reductor y un modulo electrónico de control, estando constituido dicho módulo motor por un motor de n polos. Más concretamente, el módulo motor está formado por un motor de por lo menos ocho polos . El módulo electrónico está constituido por unos sensores Hall destinados a regular la velocidad del motor emitiendo un número de pulsos por cada vuelta del eje del motor. Los citados medios de control actúan sobre dicho módulo motor en función de la velocidad de giro del propio motor o bien en función de la intensidad de corriente circulante, deteniendo su funcionamiento y/o invirtiendo su sentido de giro.
Dichas mejoras ofrecen un sistema antipinzamiento seguro y eficaz, capaz de satisfacer las cada vez mayores exigencias de las normas internacionales relativas al automóvil y a la seguridad de sus usuarios, las cuales exigen que la sensibilidad de estos sistemas debe ser cada dia mayor. Con los perfeccionamientos de la presente invención se consiguen estos objetivos y, al mismo tiempo, es posible prever y detectar correctamente cualquier tipo de situación anómala del funcionamiento del sistema.
En este sentido, las mejoras realizadas sobre el sistema de antipinzamiento indirecto objeto de la presente invención provisto de sensores Hall permiten satisfacer normas tales como la norma americana FMVSS118 que exige una mayor sensibilidad del sistema. Las pruebas que se realizan en Estados Unidos respecto a dicha norma se realizan con un muelle que presenta una constante de rigidez de valor:
N k = 65 m
que corresponde a un valor 6,5 veces mayor que el valor de la constante de los muelles utilizados en Europa para la misma prueba, lo cual implica que en Europa se admite un muelle mas blando que el utilizado en para las pruebas de la norma americana, satisfecha por otra parte por el sistema objeto de la presente invención.
Tal como se ha especificado anteriormente, una de las mejoras introducidas en la presente invención es el diseño de motores de por lo menos ocho polos en lugar de cuatro polos, como los motores de la técnica anterior. El número de polos, por ejemplo ocho, está en función de la precisión deseada, la cual viene determinada por la expresión siguiente: f x d l.e - π nlec) (\ n
X ' 2
Donde (x) es la distancia vertical de lectura del cristal, (nlec) el número de lecturas, (dte) el diámetro del tambor del elevalunas, (r) la relación de engrane y (n) el número de polos. De este modo, para un elevalunas con un
tambor de de= 50mm y una relación de engrane 0, resulta que para un electromotor de ocho polos se consigue una resolución de lecturas cada 0,54 mm, en lugar de cada 1 mm, como sucede en el caso de los electromotores convencionales de cuatro polos. Asi, cada vuelta del eje motor corresponde a 4 pulsos de sensor Hall y equivale aproximadamente a un recorrido de 1,6 mm del cristal. De este modo, la detección de un atrapamiento se realiza cada 0,54 mm de recorrido del cristal. Los sensores Hall instalados son de tipo a 0a, en lugar de los sistemas convencionales que los equipan a 180a.
De acuerdo con la invención, el módulo electrónico del sistema antipinzamiento incluye un circuito dotado un transistor de efecto de campo de puerta aislada, un relé, un microprocesador programable, unos condensadores en una placa multicapa y una memoria EEPROM programable que es capaz de compensar los efectos mecánicos producidos por la deformación mecánica del sistema mediante el almacenamiento de un nuevo valor para cada ciclo de tope de la ventana, el cual actualiza el valor anterior de recorrido del tope superior e inferior.
El transistor de efecto de campo de puerta aislada o de campo metal-óxido-semiconductor de tipo n (MOSFET) es un componente de tensión controlado por una impedancia de entrada y salida muy elevadas (hasta Ω4) . Dicho componente comprende un substrato en el que se difunden dos regiones idénticas que se denominan surtidor o fuente y drenador, las cuales quedan definidas por dos contactos óhmicos aislados del substrato mediante unos diodos . El camino conductor entre la fuente y el surtidor se denomina canal . La puerta se forma cubriendo la región que existe entre el drenador y el surtidor con una capa de dióxido de silicio sobre la cual se deposita una placa metálica. La tensión aplicada determina qué zona de tipo n proporciona los electrones y se convierte en la fuente, mientras que la otra región de tipo n recoge los electrones y se convierte en el desagüe. El MOSFET funciona básicamente con un potencial positivo entre la puerta y el surtidor citados anteriormente. Este tipo de funcionamiento se denomina funcionamiento enriquecido . Cuando el surtidor es de tipo positivo, se induce un canal tipo n entre el surtidor y el drenador. Un aumento de la tensión de la puerta aumenta la conductividad del canal aumentando consecuentemente la corriente. De este modo, la corriente entre el drenador y el surtido es modulada por la tensión entre la puerta y el surtidor. Los aumentos de la tensión del drenador no producen un aumento proporcional de la corriente del drenador, siendo ésta proporcional a las variaciones de la tensión de la puerta. El flujo de electrones de la fuente hacia el desagüe se controla por el voltaje aplicado a la puerta. Un voltaje positivo aplicado a la puerta atrae los electrones hacia a zona de contacto entre el dieléctrico de la puerta y el semiconductor, los cuales forman un canal de conducción entre la fuente y drenaje denominado capa de inversión. El resultado neto es que la corriente entre el drenador y la fuente es controlada por el voltaje que se aplica a la puerta. Un requisito minimo para la amplificación de signos eléctricos es ganancia de energía. Se ha encontrado que un dispositivo con ganancia de tensión y corriente es un elemento de circuito muy deseable. El MOSFET proporciona ganancia de tensión y corriente con un rendimiento de salida hacia una carga exterior que sobrepasa la corriente de entrada y una tensión de salida a través de la carga exterior que sobrepasa la tensión de entrada. La ganancia de tensión de un MOSFET es causada por el hecho que la corriente se satura a tensiones del drenador-fuente más altas, de manera que una pequeña variación de la corriente del drenador puede causar una gran variación de tensión del drenador. Esto permite recortar los picos de corriente de conmutación, ofreciendo una mayor velocidad y precisión de respuesta al sistema antipinzamiento, favoreciendo también a mejorar los consumos y a reducir las corrientes parásitas y ruidos (emisiones electromagnéticas) . Debido a que el motor se detiene antes de que actúe el relé, la precisión es mayor. La invención prevé también que el módulo electrónico del sistema antipinzamiento incluya, además, un microcontrolador con máscara para la programación de la aplicación una vez montados los componentes. Gracias a esta característica es posible la programación de la aplicación en la misma linea de montaje de los componentes. Además, se produce una mayor flexibilidad de actualización de programas y existe la posibilidad de actualizaciones del software de la aplicación en la linea de montaje final, concesionarios, puntos de posventa, ensayos, etc. El acceso a datos del software es muy ágil modificando valores en la memoria EEPROM. La placa equipada en el nuevo sistema antipinzamiento permite reducir considerablemente el consumo, sobre todo cada vez que se activa el relé, cortando los picos de corriente. De este modo, con un estado de espera ("stand-by") , que se produce al parar el coche o tras 10 minutos de haber desconectado el motor o bien después de abrir la puerta o después de accionar el cierre de la puerta (cerrar puerta sin tiempo de espera) , el consumo nominal es de 180 μA; mientras que para un estado de reposo (electrónica activa pero con motor parado) , el consumo nominal es de 18 mA y; en funcionamiento, el consumo nominal es de 80 mA.
Debe tenerse en cuenta especialmente el hecho de que los vehículos cada dia incluyen más componentes eléctricos y electrónicos y, al mismo tiempo existe una necesidad de reducir el tamaño de las baterías en cuanto a su peso y su coste. De este modo, aunque aisladamente el consumo de estos sistemas no es importante, sí lo es cuando se consideran todos los sistemas de diversos tipos que equipan el automóvil de tecnología eléctrica y electrónica, por lo cual resulta notablemente importante dicha reducción de consumo del sistema antipinzamiento de la presente invención.
Por otra parte, el módulo electrónico del sistema antipinzamiento incorpora medios de control de la temperatura del sistema a partir del número de vueltas del eje del motor durante un tiempo determinado teniendo en cuenta el consumo sistema. Cuando se sobrepasa un valor preestablecido, dichos medios de control de la temperatura del sistema solamente permiten el ascenso de la ventana. Ventajosamente, el módulo electrónico del sistema antipinzamiento incorpora medios de regulación del recorrido máximo de la ventana, los cuales, al conectar el motor, cuentan el número de pulsos leídos por el sensor Hall, desconectando dicho motor cuando se sobrepasa un cierto valor preestablecido sin que la ventana haya alcanzado el tope.
Otra de las mejoras introducidas en el sistema antipinzamiento de la invención es que el módulo electrónico del sistema antipinzamiento incorpora medios de desconexión del motor cuando la ventana se encuentra a una distancia de seguridad antes del tope de final de carrera inferior en su descenso, alcanzándose el recorrido restante por la inercia de la ventana. De este modo, es posible realizar una parada suave de manera variable en función de dos parámetros que hasta ahora no habían considerado los sistemas convencionales . Dichos parámetros son la tensión de alimentación, la velocidad de descenso del cristal y el consumo del sistema. Debe tenerse en cuenta especialmente el hecho de que los sistemas antipinzamiento convencionales solamente tienen en cuenta la tensión de alimentación y la velocidad de descenso del cristal.
La función de parada suave se realiza tanto en la posición de detención superior como en la posición de detención inferior. En la posición de parada superior, el motor hace subir el cristal de manera que la longitud del cable de accionamiento provoque que dicho cristal alcance una altura hasta una distancia antes de llegar al tope superior del marco de la puerta. Dicha distancia se recorre, hasta llegar al tope superior del marco de la ventana, gracias a la extensión de unos muelles montados en los extremos del cable, los cuales permiten el estiramiento de la longitud de accionamiento hasta completar el recorrido de la ventana y provocando, de este modo, una parada suave hasta dicho tope superior del marco de la puerta del vehículo. Un elevalunas concebido de este modo resulta muy elástico.
En este sentido, cuando el cristal alcanza el tope superior o el tope inferior del marco de la ventana, el motor sigue accionado hasta que transcurren 0,5 s. Durante este periodo de tiempo se produce un estiramiento de la transmisión mecánica que es variable en función de la tensión de alimentación. Los estiramientos leídos en el tope superior en función del voltaje de la batería son los siguientes: Para 12V, el estiramiento es de 37 pulsos=9, 25mm
Para 14V, el estiramiento es de 50 pulsos=12, 5mm Para 17V, el estiramiento es de 64 pulsos=16mm
Esta función de parada suave superior permite limitar el estiramiento de la transmisión mecánica del elevalunas mejorando notablemente la vida útil de los elementos mecánicos del sistema de la invención, reduciendo los desgastes y bloqueos mecánicos . Como que no se alcanza un límite de estiramiento mecánico de dicha transmisión, se reduce el consumo del motor eléctrico y, por lo tanto, la batería no se ve perjudicada y existe una mayor estabilidad del circuito eléctrico, evitando que otros dispositivos se vean afectados por caídas de tensión.
Para prevenir una parada brusca en la posición inferior, el motor se desconecta, primero con el MOSFET y después con el relé, a una distancia de seguridad antes de la parada inferior mecánica. Teniendo en cuenta que la velocidad de accionamiento del elevalunas, y por lo tanto, la inercia de descenso se ven afectadas por varios factores tales como la tensión de alimentación y consumo, el estado del motor del vehículo (parado o arrancado) , si el motor es el de la parte derecha o el de la izquierda, la construcción mecánica del sistema elevalunas y la puerta, las condiciones medioambientales, etc., se realiza un ajuste automático de la parada suave teniendo en cuenta la velocidad de bajada
(tres rangos diferentes) , si el vehículo está en marcha o parado (tensión mayor o menor que 13V) y el consumo. Para esta puesta a punto se toman varias puertas en distintas condiciones climáticas y se verifica durante el ensayo de fatiga.
Los medios de desconexión del motor tienen en cuenta por lo menos alguno de los factores tales como la velocidad de descenso de la ventana, el estado activo/inactivo del motor y el consumo; ajustando automáticamente la desconexión del motor en función de dichos factores .
La protección de sobrecarga del motor del sistema de elevación de los cristales se realiza por software. Este software de control de temperatura del sistema antipinzamiento se encuentra activo aunque el elevalunas no haya sido inicializado. El tiempo de funcionamiento del elevalunas se va acumulando y cuando sobrepasa un valor límite preestablecido sólo se permite la subida de la ventana hasta el tope superior. El tiempo de reposo hasta que se permite un nuevo accionamiento es aproximadamente cinco veces el tiempo de accionamiento transcurrido . El valor es obtenido de forma experimental según especificaciones a diferentes temperaturas de las normas vigentes y según el tipo de motor. En la practica y bajo condiciones de funcionamiento normales, tendrían que ser posibles 20 ciclos completos de subida/bajada del cristal sin desconexión del sistema. En cualquier caso, la protección al sobrecalentamiento debe permitir la subida del cristal al tope superior. Debido a que el efecto de la temperatura del motor está en función del consumo de éste cuanto más duras estén las guías mecánicas y las guías de goma del elevalunas, mayor es el consumo del motor para el accionamiento del cristal. Bajo esta circunstancia, el limite de temperatura es variable. En este sentido, se establece un consumo medio del motor en subida de 5 A, permitiendo 20 ciclos de subida y bajada sin desconexión. Para un consumo medio del motor en subida de 15 A, se permiten 5 ciclos de subida y bajada sin desconexión (sistema compensado por consumo) . Entre un consumo de 5 A y 15 A, el número de ciclos de subida y bajada es directamente proporcional al consumo, en el rango de 5 a 20 ciclos.
Cuando el motor llega al tope superior de recorrido o cuando éste se detiene por el bloqueo eventual de un objeto, éste se detiene en un tiempo reducido. El tiempo de detención es de 0.2 s., es decir, el motor se desactiva a los 0,2 s. de la llegada del cristal al tope de fin de carrera, bien sea en modo manual o en modo automático. Esto contrasta con el tiempo de desconexión de los sistemas de la técnica anterior que lo hacen en 0.5 s. Este tiempo de desconexión mínimo es posible gracias a la disposición de un motor de n polos, por ejemplo ocho, que ofrece un tiempo de desconexión notablemente menor que con los motores de cuatro polos que se utilizan convencional ente en los sistemas conocidos. Debe entenderse que cuando se realiza la función de parada suave en el descenso del cristal, el motor se desconecta antes de que llegue al tope inferior.
Otro límite de funcionamiento del motor de los medios de accionamiento del sistema objeto de la invención es el consumo, el cual queda limitado a un máximo de 25 A.
Si durante la subida del cristal, el vehículo arranca, el sistema antipinzamiento de la invención detecta y filtra el arranque del motor del coche por una caída de tensión. Esto provoca la detención del motor y la consecuente parada del cristal. Gracias a esta característica, el sistema permite evitar que se produzca un falso pinzamiento, ya que la calda de tensión provoca una variación de velocidad que puede ser detectada por los sensores Hall instalados, de manera que, antes de producir un falso pinzamiento, provocará la detención del motor.
Por otra parte, el sistema antipinzamiento de la invención tiene en cuenta si el vehículo está parado o en marcha según la tensión de alimentación. Si la tensión de alimentación es menor que 13V, indica que el vehículo no ha arrancado, por lo que la sensibilidad puede ser mayor. En cambio, si la tensión de alimentación es mayor que 13V, indica que el vehículo ha arrancado, con lo cual la sensibilidad es menor. Debe tenerse en cuenta que cuando el vehículo esta en marcha, lo que limita la sensibilidad son los posibles "baches" y que el impacto de la inercia del cristal pueda llegar a provocar un falso pinzamiento. En el caso de tener una alimentación menor de 13V se supone dicho voltaje es el correspondiente al proporcionado por la batería. Normalmente, cuando el motor está en marcha, la alimentación es superior a la tensión proporcionada por la batería, ya que así es posible su carga y la alimentación al resto de sistemas presentes en el vehículo.
El sistema de la invención se caracteriza también por la geometría de conjunto. Se trata de un sistema modular que comprende tres módulos aislados y desmontables entre sí. Dichos módulos son: modulo motor, modulo reductor y modulo electrónico. A diferencia de los sistemas convencionales en los que entre el eje y los sensores hall existe un hueco, el sistema objeto de la presente invención incorpora una pared de plástico de la carcasa ubicada entre el eje y los sensores. Además, entre los engranajes y el motor eléctrico se disponen unas juntas de estanqueidad.
De acuerdo con la invención, el motor es capaz de realizar una inversión del sentido de giro muy corta (del orden de mili segundos) cuando el cristal está descendiendo. Esto provoca el bloqueo del motor en inversión, como si fuese de subida. Más concretamente, cada vez que el cristal para durante su trayecto de bajada se produce un pulso de subida. El valor máximo de este pulso es de 0,53 mm y produce un bloqueo en los engranajes del motor como si fuese de subida. De este modo, el paro del motor no tiene inercia y el cristal no se "hunde" tanto al apoyarse.
Los sistemas convencionales presentan un bajo rendimiento debido a la irreversibilidad del sistema. Dicha irreversibilidad está provocada por el conjunto mecánico de transmisión formado por un engranaje y un tornillo sinfín. Dicho conjunto mecánico se utiliza para evitar que el cristal descienda al empujarlo. Se ha comprobado que cuando el motor reductor presenta un rendimiento electromecánico superior al 20% su "irreversibilidad" disminuye. De este modo, es posible aumentar el rendimiento del motor y, por lo tanto, su consumo medio. Esto influye positivamente en el consumo energético del vehículo. El recorrido máximo de activación del motor se limita con el fin de evitar un movimiento continuo ante una ruptura de la transmisión mecánica. Para ello, al conectar el motor, se cuenta el número de pulsos leidos por el sensor Hall Si éste rebasa una cantidad sin haber alcanzado el tope, se desconecta el accionamiento del motor. En este sentido, se establece un recorrido máximo de 100 mm sobre el valor de referencia de distancia de recorrido del cristal del sistema de ascenso del cristal.
Si el sistema de ascenso del cristal no ha sido inicializado no existe límite de recorrido. El motor se accionará mientras se pulsen los botones de subir o bajar y solamente se detendrá bajo las siguientes circunstancias: detección de topes (el motor se desactiva a los 0,5 s de la llegada del cristal a los topes de fin de carrera, a excepción de la parada suave) , limite de temperatura por software, límite de temperatura del motor por térmico mecánico .
Si durante el arranque del vehículo el cristal de la ventanilla está ascendiendo, este cambio de estado del motor, de parado a arrancado, que también origina un cambio de tensión de alimentación en el circuito eléctrico del coche, no debe producir un ciclo de atrapamiento. Con el fin de solventar esta eventualidad se establece que el circuito electrónico detecte la tensión de alimentación en el circuito eléctrico del coche. La detección de un cambio brusco de tensión de alimentación durante el ciclo de subida del elevalunas produce una maniobra de parada del movimiento del cristal . Tras una nueva pulsación, el elevalunas puede volver a subir. La condición de vehículo en marcha y vehículo parado tiene unas repercusiones directas sobre la operativa del ciclo de atrapamiento. El nivel de insensibilidad del sistema de atrapamiento indirecto está determinado en gran medida por su resistencia al momento inercial producido por las condiciones del rodado cuando el vehículo está en marcha. El sistema de atrapamiento puede ser más sensible en la medida que el vehículo no está en marcha y, por lo tanto, no está sometido a las irregularidades del rodado. Por lo tanto, se determina que el coche esta arrancado o parado en base a la medida de tensión de alimentación. En este sentido, se establece que el motor está parado si se detecta una alimentación menor que 13 V. Se establece que el motor está motor arrancado si se detecta una alimentación mayor que 13 voltios. De esta manera se calibra automáticamente el nivel de sensibilidad de atrapamiento. Si el motor no ha arrancado, la sensibilidad del atrapamiento es alta y el riesgo de accidente por manipulación del elevalunas, sobre todo por menores, queda limitado. Si el motor está en marcha, se presupone la presencia de un conductor y la sensibilidad del atrapamiento será menor para filtrar los momentos de inercia producidos por las irregularidades del rodado.
Ante un eventual defecto de funcionamiento de la detección de posición del cristal, leído por los sensores de efecto Hall, se mantiene un criterio de seguridad en base a las siguientes circunstancias. Si los sensores de efecto Hall no detectan giro del motor pero éste se mueve realmente, la electrónica detecta que durante 0,2 s no existe lectura de pulsos de los sensores Hall y desactiva el motor del elevalunas. Esto permite subir o bajar el cristal de forma sensitiva pulsando el mando manual de subida o bajada. Cada pulsación de subida o bajada permitirá un recorrido del cristal equivalente 0,2 s. de tiempo de giro del motor. Si los sensores de efecto Hall siguen contando pulsos pese haber alcanzado el límite de recorrido del elevalunas y, por lo tanto, el motor sigue activo haciendo presión el cristal contra el tope, los sensores de corriente del motor actúan al detectar un consumo superior a 25 A. desconectando el motor. Se establece un limite físico establecido para el motor de 20 A/s.
Los efectos mecánicos producidos por la deformación mecánica de la transmisión o elasticidad del sistema son compensados gracias a las mejoras del sistema antipinzamiento de la invención. Tales deformaciones dan lugar siempre a un valor incremental en virtud del hecho de que se trata de una deformación plástica, la cual es siempre incremental, puesto que, caso contrario, se trataría de deformaciones elásticas que no corresponden al objeto del sistema de la invención. En cada ciclo de tope del cristal, se almacena en la memoria EEPROM el nuevo valor "recorrido actualizado del cristal por derivas mecánicas". Con este cálculo también se actualiza el valor de recorrido del marco superior y el valor de recorrido para la parada suave.
En función de la tensión de alimentación se establece una autocalibración de la sensibilidad de atrapamiento. Así, a mayor velocidad del elevalunas, el desplazamiento inercial en la parada es mayor, y por lo tanto la fuerza de atrapamiento también es mayor. Debe tenerse en cuenta el hecho de que el estado de las gomas y guías del cristal del elevalunas así como las condiciones climáticas condicionan la velocidad de desplazamiento del cristal.
El algoritmo de cálculo también establece una autocalibración de sensibilidad de atrapamiento en función de la velocidad del elevalunaε, de esta forma se consigue una sensibilidad de atrapamiento lineal con independencia de la velocidad del elevalunas, bien por diferencias de tensión en el circuito de alimentación o por rozamiento de la transmisión. La reacción a la detección de atrapamiento es mayor cuanto es mayor la velocidad, consiguiendo una sensibilidad de presión de atrapamiento similar a diferentes velocidades.
En la memoria EEPROM se almacenan datos como por ejemplo el recorrido de referencia original del elevalunas, el recorrido actualizado del cristal, la medida de referencia del marco superior, la medida referencia para la función de parada suave, la medida de la ventana de habilitación del atrapamiento (estándar entre 4 y 200 mm de la posición más alta) , los umbrales de detección de atrapamiento, el fabricante, el lote fabricación (valor hasta 1.000.000), la fecha (formato mes-año), la versión de software, la versión del dispositivo, la versión de la EEPROM, el contador de centenas, los movimientos del elevalunas realizados (valor hasta 1.000.000), el contador de unidades (ciclos de atrapamiento realizados, valor hasta 65.000). Puede almacenarse también un registro de pinzamientos, así como la deceleración producida (para un peritaje posterior) . Así pues, las variables almacenadas en la citada memoria son los efectos mecánicos, el recorrido y umbral de detención, la detención suave del cristal, etc.
De acuerdo con un aspecto de la invención y tal como se ha descrito anteriormente, el sistema se activa mientras el cristal está subiendo y a una distancia de entre 4 y 200 mm de la posición más alta. Si detecta un obstáculo, el cristal bajará una distancia mayor o igual que 125 mm. Durante 10 s, el mecanismo de subida queda desactivado, y el de bajada sigue activo. Dichos 10 s se reinicializan con cada nuevo movimiento de subida o bajada y parada.
El diseño del circuito electrónico permite disponer la aplicación en un microcontrolador con máscara o suministrar un microcontrolador con la posibilidad de programación de la aplicación en el mismo PCB una vez estén montados los componentes. De esta manera es posible la programación de la aplicación en la misma línea de montaje de componentes, flexibilizando la actualización de programas, y posibilitando actualizaciones del software de la aplicación en la línea de montaje final, concesionarios, posventa, etc. así como un acceso ágil a los datos de software y de la EEPROM. En ambos casos la memoria EEPROM es programable pudiendo configurarse la aplicación variando solamente los parámetros almacenados en la memoria EEPROM.
La placa electrónica del sistema es una placa de 4 capas y presenta un fácil acceso desmontando la tapa de la carcasa sin desmontar el elevalunas ni el motor. Esto permite una fácil sustitución de la placa electrónica.
La invención prevé también la posible modificación del software de control dando al microprocesador la capacidad de gestión de tal gestión. Por otra parte, se prevé también que la apertura de la puerta pueda realizarse con mando a distancia. La inicialización del motor se produce realizando un ciclo de subida y bajada para reconocer la puerta y el recorrido de la ventana. A partir de este momento, se ponen en funcionamiento las funciones electrónicas. Previamente a la citada inicialización, el motor funciona como un motor eléctrico convencional.
Las características y las ventajas de las mejoras en los sistemas antipinzamientos destinados al automóvil que son objeto de la presente invención resultarán evidentes a partir de la descripción detallada de una realización preferida de la misma que se dará, de aquí en adelante, a modo de ejemplo no limitativo, con referencia a los dibujos que se acompañan, en los cuales :
La figura ne 1 es una vista esquemática de un diagrama en el cual pueden apreciarse los elementos que constituyen un sistema antipinzamiento dotado de las mejoras de la presente invención.
La figura na 2 ilustra esquemáticamente la disposición global de los elementos mecánicos de un elevalunas dotado de un sistema antipinzamiento mejorado de acuerdo con la invención.
La figura ns 3 es una vista esquemática en alzado del módulo motor del sistema de la invención.
La figura na 4 es una vista en planta de la parte inferior de los medios de control del sistema de la invención en la que se han representado esquemáticamente algunos de los elementos que constituyen la electrónica asociada al módulo motor.
Y la figura na 5 es una vista esquemática del conector del módulo motor visto por la parte hembra y en la cual se ilustra en detalle el conexionado externo del sistema.
Los elementos descritos en las figuras corresponden a (1) medios de control, (2) módulo motor, (2a) magneto del eje motor, (3) motor, (4) MOSFET, (5) relé, (6) microprocesador, (7) señal de consumo, (8) señal de tensión, (9, 10) sensores Hall, (11) cristal de la ventana, (12) elevalunas, (13) cable de accionamiento, (14) tambor, (15) regulador de tensión, (16) conector, (17) conexión a masa, (18) conexión a batería, (19) conexión tecla de accionamiento del cristal del conductor montada en el lado del conductor, (20) conexión tecla de accionamiento del cristal del acompañante montada en el lado del conductor, (21) conexión apertura centralizada, (22) conexión modo automático, (23) salida para funcionamiento del techo solar, (24) conexión cierre centralizado, (25) salida para el cierre del techo solar, (26) conexión a la llave de contacto del motor, (27) conexión para apertura de la puerta.
Las mejoras objeto de la presente invención son aplicables a los sistemas antipinzamiento que analizan y controlan el funcionamiento del motor, también conocidos como sistema antipinzamiento indirectos. Una variación de los valores preestablecidos se interpreta como un posible pinzamiento o anomalía del funcionamiento normal del sistema.
El sistema antipinzamiento de la invención, tal como se ha representado en la figura na 1 comprende medios de control (1) del funcionamiento del módulo motor (2) que acciona la ventana (11) de un automóvil, véase figura na 2. Como se ha expuesto anteriormente, los medios de control (1) se activan cuando detectan cualquier variación en el funcionamiento normal del sistema.
Las mejoras de la invención afectan al módulo motor (2), el cual está constituido, en la realización de ejemplo de la figura na 1, por un motor (3) de 8 polos. Se trata de un motor de alto rendimiento y bajo calentamiento que presenta incorporado el magneto en el eje. Con particular referencia a la figura na 3 de los dibujos, la disposición del magneto (2a) en el eje combinada con la geometría de la carcasa de alojamiento del circuito electrónico permite la integración de unos sensores Hall (9, 10) en la cara inferior del circuito electrónico. De este modo, se consigue simplificar el proceso de montaje y la calidad de lectura del campo magnético es muy buena en el rango de temperatura de -40aC hasta +85a C.
El módulo motor (2) recibe las señales de los medios de control (1), los cuales comprenden un transistor de efecto de campo de puerta aislada (MOSFET) representado por (4) en la figura ne 1 y destinado a compensar los picos de intensidad, las variaciones de alimentación y estabilizar un relé (5) y otros elementos tales como unos condensadores dispuestos en una en placa multicapa, una memoria EEPROM programable, etc. El semiconductor MOSFET conmuta en vacío el relé de potencia que conecta el motor, de manera que la vida útil del relé se alarga ventajosamente. Al conmutar en vacío el relé, sus contactos no se abren y cierran en carga y así se evita substancialmente los problemas derivados de las emisiones electromagnéticas.
Los medios de control (1) reciben las señales procesadas que provienen del microprocesador programable (6) que va montado en la parte mas alejada de las lineas de alimentación y del motor eléctrico (3) para evitar, gracias a su diseño, cualquier posible perturbación. Dichos medios incorporan, además, una placa de cuatro capas (no ilustrada) que presenta un fácil acceso desmontando la tapa de la carcasa sin desmontar el elevalunas ni el motor. Esto permite una fácil sustitución de la placa electrónica. Toda la electrónica se encuentra integrada en el conjunto motor del elevalunas utilizando una conexión mediante una carcasa con un conector de 12 vías como el representado en la figura na 5.
El microprocesador (6), a su vez, recibe señales (7, 8) sobre la información del consumo y la tensión como lecturas de entrada. El microcontrolador utilizado en la realización que se describe está dotado de una memoria "Flash" de 4 Kb que permite realizar la programación de la aplicación directamente sobre el microcontrolador a través de una interfaz serie SPI o bien mediante un programador convencional de memorias no volátiles. De este modo, es posible actualizar la aplicación en el mismo proceso de montaje y programación. Todas las instrucciones se ejecutan en un ciclo del reloj del procesador, lo cual permite al diseñador de la aplicación optimizar el consumo en base a la velocidad de procesamiento de datos. Así, los medios de control (1) actúan sobre el módulo motor (2) en función de la velocidad de giro del motor (2) detectada por unos sensores Hall de tipo a 0a (9, 10) , que permiten regular la velocidad del motor (3) emitiendo un número de pulsos por cada vuelta, o bien en función de la intensidad de corriente circulante, o el consumo del sistema, deteniendo el motor (3) y/o invirtiendo su sentido de giro.
Los elementos que definen los medios de control (1) pueden apreciarse en la figura na 4, en la cual se observa la parte inferior del circuito con los sensores Hall (9, 10), el microprocesador (6), un regulador de tensión (15), el relé (5), el MOSFET (4) y el conector (16).
Con referencia a la figura ne 5, el conector (16) comprende una pluralidad de elementos de conexión, los cuales quedan descritos en la tabla adjunta.
Figure imgf000023_0001
La disposición de un motor de ocho polos como el de la realización preferida que aquí se describe ofrece una gran precisión al posibilitar una resolución de lecturas cada 0,5 mm de desplazamiento vertical del cristal. En otras palabras, cada vuelta del eje motor corresponde a 4 pulsos de sensor.
Los medios de control (1) van equipados con una placa que reduce considerablemente el consumo del sistema de la invención, sobre todo cada vez que se activa el relé (5) , cortando los picos de corriente. Además, dichos medios de control (1) incorporan medios de control de la temperatura del sistema a partir del número de vueltas del eje del motor
(3) durante un tiempo determinado teniendo en cuenta el consumo, de manera que al sobrepasar un valor preestablecido, dichos de control de la temperatura del sistema solamente permiten el ascenso de la ventana. Se disponen también unos medios de regulación del recorrido máximo de la ventana que, al conectar el motor (3) , cuentan el número de pulsos leídos por el sensor Hall (9, 10) , desconectando dicho motor (3) cuando se sobrepasa un cierto valor preestablecido sin que la ventana haya alcanzado el tope. Se disponen unos medios (no representados) de desconexión del motor (3) cuando la ventana se encuentra a una distancia de seguridad antes del tope de final de carrera en su descenso, de manera que el recorrido restante se consigue por la inercia de la ventana, permitiendo realizar una parada suave en función de la tensión de alimentación, la velocidad de descenso del cristal y el consumo del sistema. Para ello, el motor (3) se desconecta, primero con el MOSFET (4) y después con el relé (5), y se detiene a una distancia de seguridad antes de la parada infe io . Tal como se ha descrito anteriormente, los medios de control (1) incluyen una memoria EEPROM programable de 128 bytes que puede configurarse variando solamente los parámetros almacenados . Dicha memoria almacena datos como el recorrido de referencia original y el recorrido actualizado del cristal, la medida de referencia del marco superior, la medida referencia para la función de parada suave, los movimientos del elevalunas realizados, un registro de pinzamientos, la deceleración producida, etc.
Más concretamente, en la memoria EEPROM de la realización que se describe se archivan los parámetros que afectan significativamente al funcionamiento de la aplicación. Dichos parámetros pueden ser modificados sin necesidad de intervenir en el software de aplicación. Los parámetros previstos son los siguientes:
1- Número de datos en la memoria EEPROM
2- Recorrido de referencia original del cristal del elevalunas
3- Posición superior de la ventana de atrapamiento. Si la posición es menor no se realiza atrapamiento.
4- Posición inferior de la ventana de atrapamiento. Si la posición es mayor no se realiza atrapamiento. 5- Posición para parada suave en bajada
6- Posición para parada suave en subida 1- Valor de detección de atrapamiento en la velocidad máxima.
8- Valor de detección de atrapamiento en velocidades intermedias.
9- Valor de detección de atrapamiento en la velocidad mínima.
10- Tiempo de apriete en tope (en unidades de 0,131072 s) . 11- Fabricante
12- Lote de fabricación (valor hasta 1.000.000)
13- Fecha (formado MesMes-AñoAño)
14- Versión del software
15- Versión del hardware 16- Versión de la EEPROM
17- Contador de centenas. Movimientos del elevalunas (hasta 1.000.000)
18- Contador de unidades. Ciclos de atrapamiento realizados (valor hasta 65.000).
Con referencia a la figura na 2, la protección de sobrecarga del motor del sistema de elevación de una ventana (11) se realiza por software, el cual acumula el tiempo de funcionamiento del elevalunas y al sobrepasar un el valor límite preestablecido sólo se permite la subida hasta el tope superior. En condiciones de funcionamiento normales pueden realizarse 20 ciclos completos de subida/bajada del cristal (11) sin desconexión del sistema.
Si la ventana (11) llega al tope superior de recorrido o si se detiene por el bloqueo eventual de un objeto, el motor (3) se detiene en muy poco tiempo, por ejemplo en 0.2 s, gracias al hecho de que este motor (3) es de ocho polos.
Si el vehículo está arrancando durante la subida del cristal (11), el sistema antipinzamiento de la invención detecta y filtra la caída de tensión provocada por el arranque del motor evitando que se produzca un falso pinzamiento, ya que la calda de tensión provoca una variación de velocidad que puede ser detectada por los sensores Hall (9, 10) , de manera que antes de producir un falso pinzamiento, provocará la detención del motor (3) .
En este sentido, el sistema antipinzamiento tiene en cuenta si el vehículo está parado o en marcha según la tensión de alimentación. Si la tensión de alimentación es menor que 13V indica que el vehículo no ha arrancado, por lo que la sensibilidad puede ser mayor. En cambio, si la tensión de alimentación es mayor que 13V, indica que el vehículo ha arrancado, con lo cual la sensibilidad es menor.
El motor (3) es capaz de realizar una inversión del sentido de giro muy corta cuando el cristal (11) está descendiendo. Así, cada vez que el cristal (11) para durante su trayecto de bajada se produce un pulso de subida. El valor máximo de este pulso es de 0,53 mm y produce un bloqueo en los engranajes del motor (3) como si fuese de subida, de manera que la detención del motor carece de inercia y el cristal no se "hunde" tanto al apoyarse.
Cuando se conecta el motor (3), se cuenta el número de pulsos leídos por el sensor Hall (9, 10) . Si éste rebasa una cantidad sin haber alcanzado el tope (recorrido máximo de 100 mm) , el motor (3) se desconecta. Si existe un defecto de funcionamiento en la detección de posición del cristal (11) , que es leida por sensores de efecto Hall (9, 10) , se mantiene un criterio de seguridad en base a diversas circunstancias. Si sensores de efecto Hall (9, 10) no detectan giro del motor (3) , pero éste se mueve realmente, el módulo de control (1) advierte que durante 0,2 s no hay lectura de pulsos de dichos sensores Hall (9, 10) y desactiva el movimiento del motor (3) del elevalunas (12) . Esto permite subir o bajar el cristal (11) mediante el cable 5 de accionamiento (13) y el tambor (14) de forma sensitiva pulsando el mando manual de subida o bajada, de manera que cada pulsación de subida o bajada permitirá un recorrido del cristal (11) equivalente 0,2 s. de tiempo de giro del motor (3) . Si los sensores de efecto Hall (9, 10) siguen contando
10 pulsos aunque se haya alcanzado el limite de recorrido del cristal (11) y, por lo tanto, el motor (3) sigue funcionando de manera que el cristal sube contra el tope, el módulo de control (1) detecta un consumo superior a 25 A y desconecta el motor. El limite físico establecido para el motor es de
15 20 A/s.
Otra característica destacable es el hecho de que el sistema de la invención permite solventar eventuales incompatibilidades entre órdenes de la botonera. Asi, ante una orden de subida y otra de bajada, la electrónica
20 prioriza la secuencia de bajada teniendo en cuenta el hecho de que si el cristal está subiendo y se pulsa el botón de bajada, el cristal baja. En cambio, si el cristal está bajando y se pulsa el botón de subida, el cristal se detiene. Por otra parte, se prevé también que el cristal se
25 detenga al arrancar o parar el motor del coche con la llave de contacto.
Aunque se ha descrito una realización preferida de una de las mejoras en los sistemas antipinzamientos destinados al automóvil, el ámbito inventivo de la presente
30 invención prevé la incorporación de otras mejoras, en especial aquellas que se derivan de la programabilidad de todos los parámetros que intervienen en el sistema objeto de la invención.
Descrito suficientemente en que consiste la
35 presente invención en correspondencia con los dibujos adjuntos, se comprende que podrán introducirse en la misma cualquier modificación de detalle que se estime conveniente siempre y cuando no se alteren las características esenciales de la invención, resumidas en las siguientes REIVINDICACIONES.

Claims

R E I V I N D I C A C I O N E S:
Ia - "MEJORAS EN LOS SISTEMAS ANTIPINZAMIENTO DESTINADOS AL AUTOMÓVIL", comprendiendo dichos sistemas antipizamiento medios de control (1) del funcionamiento del motor (3) de accionamiento de la ventana (11) o del techo deslizante de un automóvil, activándose dichos medios de control (1) cuando detectan cualquier variación en el funcionamiento normal del sistema, caracterizadas en que dicho sistema antipinzamiento está formado por un módulo motor (2) , un modulo reductor y un modulo electrónico de control, estando constituido dicho módulo motor (2) por un motor de por lo menos ocho polos, y estando constituido dicho módulo electrónico por unos sensores Hall (9, 10) destinados a regular la velocidad del motor (3) emitiendo un número de pulsos por cada vuelta del eje del motor (3) , actuando los citados medios de control (1) sobre dicho módulo motor (2) en función de la velocidad de giro del motor (3) o bien en función de la intensidad de corriente circulante, deteniendo su funcionamiento y/o invirtiendo su sentido de giro.
2a- "MEJORAS EN LOS SISTEMAS ANTIPINZAMIENTO DESTINADOS AL AUTOMÓVIL" según la reivindicación Ia caracterizadas en que el módulo electrónico del sistema antipinzamiento incluye un circuito dotado un transistor de efecto de campo de puerta aislada (4), un relé (5), un microprocesador programable (6) , unos condensadores en una placa multicapa, una memoria EEPROM programable capaz de compensar los efectos mecánicos producidos por deformación mecánica del sistema mediante el almacenamiento de un nuevo valor para cada ciclo de tope de la ventana que actualiza el valor anterior de recorrido del tope superior e inferior.
3a- "MEJORAS EN LOS SISTEMAS ANTIPINZAMIENTO DESTINADOS AL AUTOMÓVIL" según la reivindicación 2a caracterizadas en que el circuito del módulo electrónico del sistema antipinzamiento incluye, además, un microcontrolador con máscara para la programación de la aplicación una vez montados los componentes .
42 - "MEJORAS EN LOS SISTEMAS ANTIPINZAMIENTOS DESTINADOS AL AUTOMÓVIL" según la reivindicación Ia caracterizadas en que el módulo electrónico del sistema antipinzamiento incorpora medios de control de la temperatura del sistema a partir del número de vueltas del eje del motor (3) durante un tiempo determinado teniendo en cuenta el consumo sistema, de manera que al sobrepasar un valor preestablecido o bien se produce una parada del cristal (11) superior a un tiempo predeterminado, dichos medios de control de la temperatura del sistema solamente permiten el ascenso de la ventana (11) . 5a - "MEJORAS EN LOS SISTEMAS ANTIPINZAMIENTO
DESTINADOS AL AUTOMÓVIL" según la reivindicación Ia caracterizadas en que el módulo electrónico del sistema antipinzamiento incorpora medios de regulación del recorrido máximo de la ventana (11) , los cuales, al conectar el motor (3) , cuentan el número de pulsos leídos por el sensor Hall (9, 10), desconectando dicho motor (3) cuando se sobrepasa un cierto valor preestablecido sin que la ventana (11) haya alcanzado el tope.
6a - "MEJORAS EN LOS SISTEMAS ANTIPINZAMIENTO DESTINADOS AL AUTOMÓVIL" según la reivindicación Ia caracterizadas en que el módulo electrónico del sistema antipinzamiento incorpora medios de desconexión del motor (3) cuando la ventana (11) se encuentra a una distancia de seguridad antes del tope de final de carrera inferior en su descenso, alcanzándose el recorrido restante por la inercia de la ventana (11) .
7fi - "MEJORAS EN LOS SISTEMAS ANTIPINZAMIENTO
DESTINADOS AL AUTOMÓVIL" según la reivindicación 6a caracterizadas en que los medios de desconexión del motor (3) tienen en cuenta por lo menos alguno de los factores tales como la velocidad de descenso de la ventana, el estado activo/inactivo del motor (3) y el consumo; ajusfando automáticamente la desconexión del motor (3) en función de dichos factores.
8a - "MEJORAS EN LOS SISTEMAS ANTIPINZAMIENTO DESTINADOS AL AUTOMÓVIL" según la reivindicación Ia caracterizadas en que el módulo electrónico del sistema antipinzamiento incorpora medios de desconexión del motor (3) cuando la ventana (11) se encuentra a una distancia de seguridad antes del tope de final de carrera superior en su ascenso, alcanzándose el recorrido restante por el estiramiento de la transmisión mecánica de accionamiento del cristal provocado por la acción de unos muelles que cooperan con el cable de transmisión (13) .
9a - "MEJORAS EN LOS SISTEMAS ANTIPINZAMIENTO
DESTINADOS AL AUTOMÓVIL" según la reivindicación 8a caracterizadas en que dicho estiramiento de la transmisión mecánica es variable en función de la tensión de alimentación.
10a - "MEJORAS EN LOS SISTEMAS ANTIPINZAMIENTO
DESTINADOS AL AUTOMÓVIL" según la reivindicación Ia caracterizadas en que dichos medios de control sobre el módulo motor (2) realizan un ajuste automático de la detención del motor (3) teniendo en cuenta la intensidad de corriente circulante sobre un intervalo de +13V.
PCT/ES2000/000392 1999-10-22 2000-10-13 Mejoras en los sistemas antipinzamiento destinados al automovil WO2001029356A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP00967923A EP1146191B1 (en) 1999-10-22 2000-10-13 Improvements to automobile anti-pinching systems
JP2001532323A JP2003512550A (ja) 1999-10-22 2000-10-13 自動車用挟み込み防止システム
US09/806,044 US6555978B1 (en) 1999-10-22 2000-10-13 Automobile anti-pinching systems
DE60020078T DE60020078C5 (de) 1999-10-22 2000-10-13 Verbesserungen an Klemmschutzvorrichtungen für Automobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES009902334A ES2155413B1 (es) 1999-10-22 1999-10-22 Mejoras en los sistemas antipinzamiento destinados al automovil.
ESP9902334 1999-10-22

Publications (1)

Publication Number Publication Date
WO2001029356A1 true WO2001029356A1 (es) 2001-04-26

Family

ID=8310348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2000/000392 WO2001029356A1 (es) 1999-10-22 2000-10-13 Mejoras en los sistemas antipinzamiento destinados al automovil

Country Status (7)

Country Link
US (1) US6555978B1 (es)
EP (1) EP1146191B1 (es)
JP (1) JP2003512550A (es)
KR (1) KR100466571B1 (es)
DE (1) DE60020078C5 (es)
ES (1) ES2155413B1 (es)
WO (1) WO2001029356A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234979B2 (en) 2009-12-08 2016-01-12 Magna Closures Inc. Wide activation angle pinch sensor section
CN113338743A (zh) * 2021-05-28 2021-09-03 微进电子科技(上海)有限公司 一种电动尾门防夹控制系统

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2151378B1 (es) * 1998-02-25 2001-06-16 Daumal Castellon Melchor Un sistema antipinzamiento perfeccionado basado en la modificacion de la conductividad luminica de una fibra optica para eleva cristales destinados al automovil.
DE10026991A1 (de) * 2000-05-31 2001-12-13 Bosch Gmbh Robert Verfahren zur Positionierung einer fremdkraftbetätigten Schliessfläche
DE10042168A1 (de) * 2000-08-15 2002-03-07 Brose Fahrzeugteile Verfahren zur Steuerung und Regelung einer motorisch angetriebenen Verstellvorrichtung
US20030085679A1 (en) * 2001-10-28 2003-05-08 Bledin Anthony G. Segmented capacitive closure obstruction sensor
DE202004017100U1 (de) * 2004-10-29 2005-03-03 Gretsch-Unitas GmbH Baubeschläge Beschlag für eine Hebe-Schiebe-Tür
EP1897205B1 (en) * 2005-06-10 2011-02-02 Magna Closures Inc. Motor drive assembly
US8493081B2 (en) 2009-12-08 2013-07-23 Magna Closures Inc. Wide activation angle pinch sensor section and sensor hook-on attachment principle
CN102883902B (zh) * 2010-05-07 2016-01-20 丰田自动车株式会社 车辆用调光玻璃装置
DE102010055650A1 (de) * 2010-12-22 2012-06-28 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt Verfahren und Einrichtung zum Steuern einer Verstelleinrichtung eines Kraftfahrzeugs
US9303442B2 (en) * 2011-06-21 2016-04-05 GM Global Technology Operations LLC Passive verification of operator presence in handling requests for vehicle features
DE102012024902A1 (de) * 2012-12-20 2014-06-26 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt Stellvorrichtung zur Verstellung eines beweglichen Fahrzeugteils und Verfahren zum Betrieb derselben
WO2015045549A1 (ja) * 2013-09-27 2015-04-02 富士電機株式会社 駆動装置
CN104832017B (zh) * 2015-03-04 2016-09-21 青岛橡胶谷知识产权有限公司 自控门剎
CN104948056B (zh) * 2015-06-17 2016-08-24 温州天球电器有限公司 一种基于采集电机电流的汽车车窗自适应防夹控制方法
JP6205588B1 (ja) * 2015-12-22 2017-10-04 パナソニックIpマネジメント株式会社 モータ制御装置のカスタマイズ方法、およびモータ制御装置
CN108705924A (zh) * 2018-08-06 2018-10-26 武汉宜南橡塑科技有限公司 一种安全性好、便于安装的汽车防夹装置
CN109510174A (zh) * 2018-12-29 2019-03-22 宁波久婵物联科技有限公司 用于智能锁中的智能电机系统及电机控制方法
EP4001567B1 (en) * 2020-11-17 2024-05-29 Aptiv Technologies AG Method and device for detecting potential pinches

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06217581A (ja) * 1993-01-19 1994-08-05 Riken Corp 直流モータの制御回路
EP0640740A1 (en) * 1993-08-30 1995-03-01 UNITED TECHNOLOGIES AUTOMOTIVE, Inc. Adaptive window lift control with pinch force based on object rigidity and window position
JPH0767293A (ja) * 1993-08-20 1995-03-10 Asmo Co Ltd パワーウインドウ駆動モータ
DE29510688U1 (de) * 1995-06-30 1996-08-01 Siemens AG, 80333 München Getriebemotor-Stellantrieb, insbesondere Fensterheber- bzw. Schiebedachantrieb für ein Kraftfahrzeug

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180430A (ja) * 1993-11-09 1995-07-18 Omron Corp 電動駆動装置
JPH0893323A (ja) * 1994-09-29 1996-04-09 Oi Seisakusho Co Ltd 開閉体の駆動制御装置
JPH08199908A (ja) * 1995-01-19 1996-08-06 Nippondenso Co Ltd パワーウィンドウの制御装置
US5610484A (en) * 1995-05-04 1997-03-11 Itt Automotive Electrical Systems, Inc. Auto reverse power closure system
US5616997A (en) * 1995-10-10 1997-04-01 Itt Automotive Electrical Systems, Inc. Auto up window with obstacle detection system
US5585702A (en) * 1995-11-03 1996-12-17 Itt Automotive Electrical Systems, Inc. Auto up window with osbtacle detection system
JP3262988B2 (ja) * 1996-06-12 2002-03-04 本田技研工業株式会社 スライドドアの開閉制御装置
JPH10220108A (ja) * 1997-02-05 1998-08-18 Yazaki Corp パワーウィンド制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06217581A (ja) * 1993-01-19 1994-08-05 Riken Corp 直流モータの制御回路
JPH0767293A (ja) * 1993-08-20 1995-03-10 Asmo Co Ltd パワーウインドウ駆動モータ
EP0640740A1 (en) * 1993-08-30 1995-03-01 UNITED TECHNOLOGIES AUTOMOTIVE, Inc. Adaptive window lift control with pinch force based on object rigidity and window position
DE29510688U1 (de) * 1995-06-30 1996-08-01 Siemens AG, 80333 München Getriebemotor-Stellantrieb, insbesondere Fensterheber- bzw. Schiebedachantrieb für ein Kraftfahrzeug

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234979B2 (en) 2009-12-08 2016-01-12 Magna Closures Inc. Wide activation angle pinch sensor section
US9417099B2 (en) 2009-12-08 2016-08-16 Magna Closures Inc. Wide activation angle pinch sensor section
CN113338743A (zh) * 2021-05-28 2021-09-03 微进电子科技(上海)有限公司 一种电动尾门防夹控制系统
CN113338743B (zh) * 2021-05-28 2022-12-20 微进电子科技(上海)有限公司 一种电动尾门防夹控制系统

Also Published As

Publication number Publication date
KR20010089667A (ko) 2001-10-08
DE60020078D1 (de) 2005-06-16
KR100466571B1 (ko) 2005-01-14
ES2155413B1 (es) 2002-02-01
DE60020078T2 (de) 2006-05-04
DE60020078C5 (de) 2011-05-05
JP2003512550A (ja) 2003-04-02
EP1146191B1 (en) 2005-05-11
US6555978B1 (en) 2003-04-29
ES2155413A1 (es) 2001-05-01
EP1146191A1 (en) 2001-10-17

Similar Documents

Publication Publication Date Title
WO2001029356A1 (es) Mejoras en los sistemas antipinzamiento destinados al automovil
ES2633843T3 (es) Procedimiento de control para un elevalunas eléctrico
US7958672B2 (en) Opening/closing device
US7309971B2 (en) Opening and closing body control device
US20080079379A1 (en) System and method for controlling anti-pinch powered windows
CN108541289B (zh) 开闭驱动装置
KR101373292B1 (ko) 차량의 장애물 감지용 센서스트립 조립체
JPH11278049A (ja) 自動車の窓ガラスの自動昇降装置における障害物検知システム
CN110446824A (zh) 开闭体驱动装置
ES2285744T3 (es) Mecanismo de accionamiento para puertas.
JP4358024B2 (ja) パワーウィンド用安全装置
JP3713792B2 (ja) パワーウインドレギュレータ装置
ES2318733T3 (es) Procedimiento para el cerramiento definido de una luna de vehiculo de motor.
ES2269875T3 (es) Dispositivo para el control de una persiana enrollable.
JP5437597B2 (ja) 開閉装置
JP2003336446A (ja) 車両用パワーウインド装置
GB2199963A (en) Control circuit for electrically operated windows
ES2266183T3 (es) Procedimiento para determinar el tiempo remanente de funcionamiento de un accionamiento.
EP0584033B1 (en) Antinipping protection system for window winders and sunroofs in automobile vehicles
JPH06137029A (ja) 安全装置付パワーウインド装置
CN218644106U (zh) 用于生物安全柜的柜门及生物安全柜
JPH11236784A (ja) 挟み込み検出装置
KR19990030964U (ko) 차량의 자동 환기장치
JP2854206B2 (ja) 安全装置付パワーウインド装置
WO2022204271A1 (en) Window blind automation device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 09806044

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2000967923

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020017007879

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2001 532323

Country of ref document: JP

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2000967923

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000967923

Country of ref document: EP