WO2001025169A1 - Composition generatrice de gaz - Google Patents

Composition generatrice de gaz Download PDF

Info

Publication number
WO2001025169A1
WO2001025169A1 PCT/JP1999/005666 JP9905666W WO0125169A1 WO 2001025169 A1 WO2001025169 A1 WO 2001025169A1 JP 9905666 W JP9905666 W JP 9905666W WO 0125169 A1 WO0125169 A1 WO 0125169A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas generating
ammonium nitrate
gas
stabilizer
weight
Prior art date
Application number
PCT/JP1999/005666
Other languages
English (en)
French (fr)
Inventor
Kazuya Serizawa
Katsuhiko Takahashi
Original Assignee
Nof Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nof Corporation filed Critical Nof Corporation
Priority to DE69943245T priority Critical patent/DE69943245D1/de
Priority to AU61227/99A priority patent/AU6122799A/en
Priority to JP2001528121A priority patent/JP4207425B2/ja
Priority to EP99947895A priority patent/EP1142853B1/en
Priority to CA002353405A priority patent/CA2353405C/en
Publication of WO2001025169A1 publication Critical patent/WO2001025169A1/ja
Priority to US10/801,691 priority patent/US7081175B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B31/00Compositions containing an inorganic nitrogen-oxygen salt
    • C06B31/28Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/02Cartridges, i.e. cases with charge and missile
    • F42B5/16Cartridges, i.e. cases with charge and missile characterised by composition or physical dimensions or form of propellant charge, with or without projectile, or powder
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B31/00Compositions containing an inorganic nitrogen-oxygen salt
    • C06B31/28Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate
    • C06B31/30Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate with vegetable matter; with resin; with rubber
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/04Blasting cartridges, i.e. case and explosive for producing gas under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor

Definitions

  • the present invention relates to a gas generating composition which is mounted on, for example, a vehicle and inflates a gas generator for inflating an airbag for protecting an occupant or a pretensioner for winding up a seat belt. .
  • gas generating agent used to inflate this kind of airbag As a gas generating agent used to inflate this kind of airbag, a gas generating agent mainly containing sodium azide and various oxidizing agents has been conventionally known. However, due to the strong toxicity and poor handling properties of sodium azide, gas generators that do not use sodium azide have recently been required. In addition, as a gas generating agent, one that has excellent stability over time, has an appropriate burning rate, does not generate carbon monoxide and combustion residues, has excellent handleability, and has a large amount of generated gas and is inexpensive Is required. In order to meet these requirements, gas generating agents containing ammonium nitrate as a main component have been studied in various fields.
  • Japanese Unexamined 1 1 one 9 2 2 6 5 JP, carbon black or activated carbon Powder and, phase-stabilized nitrate Anmoniumu more made gas generating agent c the composition is disclosed the gas generating composition Has excellent gas generation efficiency and combustion efficiency, and has a high combustion rate.
  • the gas generating composition described in the above publication has a composition excellent in combustion performance such as gas generation efficiency and combustion speed, but does not take into account the stability over time. For this reason, the storage stability before burning the gas generating composition is inferior in storage stability, particularly storage stability at high temperatures.
  • the present invention has been made by paying attention to such problems existing in the prior art.
  • the aim is to have excellent stability over time, especially at high temperatures, with an appropriate burning rate, practically no carbon monoxide generation, appropriate sensitivity and easy handling.
  • An object of the present invention is to provide an easy and inexpensive gas generating composition. Disclosure of the invention
  • a gas generating composition comprises ammonium nitrate as an oxidizing agent, powdered microcrystalline carbon as a reducing agent, and a stabilizer, and comprises ammonium nitrate.
  • the content of ammonium nitrate is 89 to 99% by weight based on the total amount of the powdered microcrystalline carbon and the stabilizer. /.
  • the content of powdered microcrystalline carbon is 1 to 6 weight. /.
  • the content of the stabilizer is 0.2 to 6% by weight.
  • the content of the powdered microcrystalline carbon is 1.5 to 6% by weight based on the content of ammonium nitrate, and the content of the stabilizer is powder. It is 10 to 200% by weight based on the content of the powdery microcrystalline carbon.
  • the gas generating composition has an average particle diameter of the ammonium nitrate of 1 to 100 ⁇ m and an average particle diameter of the powdery microcrystalline carbon of 1 to 500 ⁇ m. and a specific surface area of 5 ⁇ 1 6 0 0 m 2 Z g, those average particle diameter of the stabilizer is 0. 1 ⁇ 5 0 0 im.
  • 1 (a) to 1 (h) are perspective views showing the shape of a molded article of a gas generating agent.
  • FIG. 2 is a cross-sectional view showing a sealed bomb test device for measuring combustion of a gas generating agent.
  • the gas generant composition (hereinafter simply referred to as gas generant, if necessary) consists of ammonium nitrate as an oxidizing agent, powdered microcrystalline carbon as a reducing agent and a stabilizer, ammonium nitrate and microcrystalline carbon.
  • the content of ammonium nitrate is 89 to 99% by weight
  • the content of microcrystalline carbon is 1 to 6% by weight
  • the content of stabilizer is 0.2 to 6% by weight based on the total amount of There is something.
  • Ammonium nitrate functions as an oxidizing agent, and oxidizes microcrystalline carbon during combustion of the gas generating agent to generate nitrogen gas and carbon dioxide gas.
  • This ammonium nitrate is desirably a powder from the viewpoint of mixing with other components and combustibility.
  • the average particle diameter is preferably from 1 to 100 / Xm, and is preferably from 1 to 500 / xm in consideration of the mechanical properties and combustion performance of the molded product obtained from the gas generating agent. More preferably, it is particularly preferably 1 to 200 m.
  • the average particle size of ammonium nitrate is less than 1 m, it becomes difficult to produce ammonium nitrate.
  • the average particle size exceeds 100 ⁇ m, it becomes difficult to mix with a binder for producing a gas generating agent molded product, so that the mechanical properties of the molded product tend to deteriorate, and There is a tendency that the burning speed when the molded product is burned becomes slow.
  • ammonium nitrate a phase transition-suppressed ammonium nitrate in which the crystal structure is prevented from changing with temperature can be used.
  • This kind of ammonium nitrate is obtained as follows. First, for example, zinc oxide, nickel oxide, copper oxide, potassium bromide, potassium nitrate, potassium perchlorate, or the like is added to ammonium nitrate melted in a melting tank heated to a predetermined temperature and mixed. Next, the mixture is cooled while being stirred in the melting tank, whereby a phase transition-suppressed ammonium nitrate is obtained. Alternatively, after mixing in a melting tank, the melt is sprayed with compressed air from a compressor to obtain a phase transition-suppressed ammonium nitrate.
  • the amount of the binder used is set to a small amount, for example, 2 to 3% by weight
  • the molded product obtained by the compression molding method changes the crystal structure of ammonium nitrate depending on the temperature.
  • powdering of the gas generating agent occurs.
  • the surface of the ammonium nitrate is sufficiently covered with the binder. Therefore, the temperature The binder absorbs the resulting change in the crystal structure of ammonium nitrate, and can prevent the gas generating agent from powdering.
  • the filter in the gas generator can be simplified and the gas generator can be downsized, and no combustion residue is generated.
  • ammonium nitrate has a remarkable hygroscopic property.
  • This coated ammonium nitrate is obtained as follows. First, an organic solvent and a coating agent are placed in a container, and heated until the temperature of the organic solvent reaches 70 to 80 ° C to dissolve the coating agent in the organic solvent. Thereafter, the ammonium nitrate having the surface coated thereon is obtained by lowering the temperature of the mixture to room temperature while stirring and putting ammonium nitrate into the container.
  • Any coating agent can be used as long as it can prevent moisture absorption when the surface of ammonium nitrate is coated.
  • polyglycol-based polymers such as polyethylene glycol, polyvinyl-based polymers, paraffin wax and the like can be mentioned.
  • polyethylene dalicol is most preferable in consideration of the efficiency as a coating agent for preventing moisture absorption of ammonium nitrate.
  • polyethylene glycol having a molecular weight of 600 to 2000.
  • the coated ammonium nitrate also has improved compatibility with the binder, and thus the mechanical properties of the molded product.
  • ammonium nitrate The amounts of ammonium nitrate are as follows: ammonium nitrate, powdered microcrystalline carbon, and ammonium nitrate. 89 to 99 weight based on the total amount of the fixing agent. / 0 is preferred, and 91-98% by weight is more preferred, and 93-98% by weight, considering that the amount of gas generated by the gas generating agent and that carbon monoxide is not substantially generated in the generated gas. Is particularly preferred.
  • the amount of ammonium nitrate is less than 89% by weight, the amount of gas generated during combustion of the gas generating agent decreases, and at that time carbon monoxide is generated. On the other hand, if the content exceeds 99% by weight, the combustion speed becomes slow, and it becomes impossible to maintain the combustion at a lower pressure.
  • condition under which carbon monoxide is not substantially generated means that the concentration of carbon monoxide in the produced gas is 500 ppm or less.
  • Powdered microcrystalline carbon is two-dimensionally similar to graphite.
  • the carbon arranged at each vertex of the plurality of hexagons is bonded to each other to form a net-like plane, and the plurality of net planes are arranged in a layer parallel to each other, and They are piled up at almost equal intervals.
  • the carbon atoms in each mesh plane or layer are not perfectly oriented with respect to the direction perpendicular to the mesh plane or layer.
  • carbon atoms arranged at each apex of the hexagon are irregularly connected to adjacent carbon atoms, and some of the graphite layers have distortion on the surface of the graphite layer.
  • powdered microcrystalline carbon is an aggregate of graphite-based microcrystals that lack structural integrity.
  • the powdered microcrystalline carbon functions as a reducing agent, and reacts with the oxidizing agent, ammonium nitrate, to produce nitrogen gas, carbon dioxide gas, water (steam), and the like, and the gas generating agent has its function.
  • the powdered microcrystalline carbon is not particularly limited as long as it is activated carbon, coke, charcoal, animal charcoal, bone charcoal, acetylene black, black carbon black, or the like. Activated carbon is preferred in order to improve the carbon content.
  • Starting materials for producing activated carbon include coconut husk, coal, charcoal, etc., but are not particularly limited.
  • the activated carbon is preferably a coconut shell having a small pore diameter.
  • Activation methods for producing activated carbon include gas activation methods using steam, carbon dioxide and air, and chemical activation methods using zinc chloride and calcium chloride. It is not something to be done. Activated carbon is preferred.
  • the activation method is a gas activation method that can provide a material with a small pore size.
  • the average particle size of the microcrystalline carbon is preferably 0.1 to 500 ⁇ m, more preferably 1 to 100 m, considering the mechanical properties and combustion performance of the gas generating agent molded product, and 3 to 5 ⁇ m. 0 ⁇ m is particularly preferred. If the average particle size exceeds 500 ⁇ m, the burning rate tends to decrease. Conversely, if the average particle size is less than 0.1 ⁇ m, the productivity tends to deteriorate.
  • the specific surface area of the microcrystalline carbon is preferably 5 to 160 mVg, and more preferably 10 to 150 mVg in consideration of the mechanical properties and combustion performance of the molded article of the gas generating agent. preferably, and particularly preferably 5 0 ⁇ 1 3 0 0 m 2 / g. If the specific surface area exceeds 16000 m 2 , the productivity of powdered microcrystalline carbon tends to deteriorate. Conversely, if the specific surface area is less than 5 m 2 g, the burning rate of the molded article of the gas generating agent tends to be slow.
  • the amount of the powdered microcrystalline carbon is 1 to 6% by weight based on the total amount of ammonium nitrate, microcrystalline carbon and stabilizer. / 0 is preferable, and in order to improve the combustion performance and not to substantially generate carbon monoxide in the generated gas, the content is more preferably 1 to 5% by weight, particularly preferably 1.5 to 5% by weight. This amount is 1 weight. If the ratio is less than / 0 , the combustion speed of the gas generating agent tends to be low, and combustion at a low pressure tends to be unable to be maintained. Conversely, 6 weight. /. If the temperature exceeds the limit, carbon monoxide is likely to be generated during combustion of the gas generating agent.
  • the amount of the microcrystalline carbon is preferably 1.5 to 6% by weight based on the amount of the ammonium nitrate, thereby improving the combustion performance and substantially generating carbon monoxide during the combustion of the gas generating agent. To avoid this, 1.5 to 5.5% by weight is more preferred, and 1.5 to 5% by weight is particularly preferred. If the amount is less than 1.5% by weight, the burning rate tends to be low, and the combustion at low pressure tends not to be maintained. vice versa, If it exceeds 6% by weight, carbon monoxide tends to be generated during combustion of the gas generating agent.
  • This stabilizer functions to improve the temporal stability of the gas generating agent made of ammonium nitrate and powdered microcrystalline carbon, particularly the temporal stability at high temperatures.
  • Such stabilizers include diphenyl perylene, methyl diphenyl perylene, ethino-resin phenyl enorea, ethino-lesin phenyl enorea, dimethylino-resin phenyl enorea, methino-lesin phenyl eno-rea
  • examples thereof include rare, dipheninoleamine, 2-nitrodipheninoleamine, dipheninoleurethane, etinolepheninoleurethane, methinolepheninoleurethane, and resorcinol.
  • At least one selected from diphenylamine, resorcinol and getyldiphenoleurea is preferred in view of the function of inhibiting the decomposition of ammonium nitrate.
  • diphenylamine is most preferred, resorcinol is next preferred, and getyldiphenylperylene is then preferred.
  • the average particle diameter of the stabilizer is preferably from 0.1 to 500 ⁇ m, more preferably from 1 to 100 Atm, particularly preferably from 1 to 50 m, in consideration of the improvement in the stability over time of the gas generating agent. New If the average particle size of the stabilizer exceeds 500 ⁇ m, the effect of improving the temporal stability of the gas generating agent tends to be insufficient. Conversely, if the average particle size is less than 0.1 / m, the productivity of the gas generating agent tends to deteriorate.
  • the compounding amount of the stabilizer is 0.2 to 6% by weight based on the total amount of ammonium nitrate, powdered microcrystalline carbon and the stabilizer, thereby improving the stability of the gas generating agent over time and generating gas.
  • 0.2 to 4% by weight is preferable, and 0.2 to 3% by weight is particularly preferable. If the amount is less than 0.2% by weight, the effect of improving the temporal stability of the gas generating agent is not exhibited. Conversely, 6 weight. When the ratio exceeds / 0 , the burning speed of the gas generating agent becomes slow, and carbon monoxide is generated during the burning.
  • the amount of the stabilizer is preferably 10 to 200% by weight based on the amount of the powdered microcrystalline carbon, thereby improving the stability over time of the gas generating agent and further improving the fuel efficiency of the gas generating agent.
  • the amount is more preferably from 30 to 100% by weight, particularly preferably from 40 to 60% by weight. If the amount is less than 10% by weight, the effect of improving the temporal stability of the gas generating agent tends not to be exhibited. Conversely, if the content exceeds 200% by weight, the burning rate becomes slow, and carbon monoxide tends to be generated when the gas generating agent is burned.
  • a high energy substance include RDX (trimethylenetrinitroamine), HMX (tetramethylenetetranitroamine), PETN (pentaerythritol tonoletetranytrate), TAGN (triaminoguanidine nitrate), and HN (trinitrate nitrate). Drazine) and the like.
  • RDX is the most preferred in view of its reactivity with oxidizing agent, ammonium nitrate.
  • the average particle size of the high-energy substance is preferably 1 to 500 ⁇ m, and considering the mechanical properties and combustion performance of the molded article of the gas generating agent, the average particle size is more preferably 1 to 100 / m. ! -30 ⁇ m is particularly preferred.
  • the average particle size is less than 1 m, it becomes easy to produce high-energy substances. On the other hand, if the average particle size exceeds 500 ⁇ m, the mechanical properties of the molded product tend to deteriorate due to poor mixing with the binder, and the effect of improving the combustion speed is not exhibited. is there.
  • the amount of the high-energy substance is preferably 15% by weight or less in the gas generating composition, which improves the handleability and the combustion performance, and substantially reduces carbon monoxide during the combustion of the gas generating composition. To avoid producing 1 to 10 weight. / 0 is more preferable, and 1 to 5% by weight is particularly preferable. If the amount of the high-energy substance exceeds 15% by weight, handling becomes difficult due to an increase in sensitivity such as impact.
  • a binder is preferably added to the gas generant composition in order to perform granulation of the gas generant.
  • binders include cellulose acetate, cellulose butyrate, polyester, and polyether.
  • the amount of the binder was 25% by weight in the gas generating composition. /.
  • the following is preferable.
  • 6 to 20% by weight is further added.
  • Preferred is 8-15% by weight. If the compounding amount of the binder exceeds 25% by weight, the mechanical properties of the molded article of the gas generating agent are improved, but the compounding ratio of the other composition is reduced, so that the combustibility is deteriorated and the gas generating agent is deteriorated. When carbon dioxide is burned, carbon monoxide is generated, and the combustion rate tends to be slower.
  • a plasticizer to the gas generating composition in order to impart plasticity and improve moldability.
  • a plasticizer any plasticizer having good compatibility with the binder can be used.
  • phthalate plasticizers such as dibutyl phthalate, dimethyl phthalate, and jetinolephthalate
  • fatty acid ester plasticizers such as phosphate, triacetin, and acetyl triethyl citrate
  • trimethylolone ethane Trinitrate diethylene glycol resinate rate, triethylenglycol ⁇ / ginaterate, nitroglycerin, bis-1,2,2-dinitropropinoleacetanole / honoremanore, etc.
  • glycidyl Azide plasticizers and the like.
  • the amount of plasticizer added was 5% by weight in the gas generating composition. / 0 or less, preferably 0.1 to 4% by weight, more preferably 0.1 to 3% by weight, in order to substantially prevent carbon monoxide from being generated during combustion of the gas generating agent.
  • the added amount of the plasticizer exceeds 5% by weight, the effect as a plasticizer becomes large, but the mixing ratio of other components is reduced, so that the combustibility is deteriorated. Tends to generate.
  • any one that completely dissolves the binder can be used.
  • organic solvents such as acetone, ethyl alcohol, and ethyl acetate.
  • these mixed solutions can also be used.
  • the weight ratio of acetonnoethyl alcohol is 8%, and that ⁇ 0% by weight. This is because acetone alone has a high evaporation rate, which makes it difficult to produce a gas generant molded article, and conversely, ethyl alcohol alone makes it difficult to completely dissolve the binder.
  • the shape of the gas generating agent molded product 1 includes a solid cylindrical body 2 as shown in FIG. 1 (a) and a cylindrical body having a through hole 3 extending in the axial direction as shown in FIG. 1 (b). 2, a cylindrical body 2 having seven through holes 3 as shown in FIG. 1 (c), and a cylindrical body 2 having 19 through holes 3 as shown in FIG. 1 (d) can be adopted. Furthermore, as shown in FIG. 1 (e), a deformed column 4 having seven through holes 3, as shown in FIG. 1 (f), a deformed column 4 having 19 through holes 3, FIG. A hexagonal prism 5 having seven through holes 3 as shown in (g) and a hexagonal prism 5 having 19 through holes 3 as shown in FIG.
  • the shapes obtained by connecting the centers of the through holes 3 located on the outer peripheral portion of the molded product are all regular hexagons,
  • the shapes obtained by connecting the centers of three adjacent through holes 3 are all regular triangles. Therefore, the distances between the through holes 3 are all equal.
  • the shape and size of the gas generating agent molded product 1 vary greatly depending on the intended use. Generally, the outer diameter is 0.5 to 50 mm and the length is 0 (hereinafter referred to as the drug length). It is about 5 to 50 mm.
  • a gas generator for a pretensioner that is required to operate in a very short time, specifically, complete combustion in 5 to 20 ms, has an outer diameter of 0.5.
  • the pretensioner device is attached to an automobile seat belt, and when a collision occurs, the gas generating agent is ignited and burns, and the pressure generated at that time causes the seat belt to be wound up and the body to be pushed forward. It is a device to prevent.
  • the preferred dimensions of the gas generating agent molded product 1 are an outer diameter of 0.5 to 2 mm, an inner hole diameter of 0.2 to: L mm, and a drug length of 0. . 5 mm to 2 mm. If the thickness from the surface of the molded product to the inner hole is 0.1 mm or less or the length is less than 0.5 mm, molding tends to be difficult. On the other hand, when the thickness exceeds l mm or when the length exceeds 5 mm, the gas generation rate tends to be low and the performance as a gas generating agent tends to be insufficient.
  • the gas generating rate for airbags which are required to complete combustion in 25 to 55 ms, which is not as fast as the pre-tensioner gas generating agent, Diameter 5 to 40 mm, inner hole diameter 1 to: 10 mm, drug length about 5 to 40 mm, shown in Fig. 1 (c) to Fig. 1 (h), or outer diameter 3 to 10 mm, inside
  • the one shown in Fig. 1 (b) with a pore diameter of 1 to 8 mm and a drug length of about 2 to 10 mm is used.
  • the thickness exceeds 3 mm, the gas generation rate tends to be low and the performance as a gas generating agent tends to be insufficient.
  • the organic solvent content at the end of drying is usually 0.5 weight. /.
  • the water content is preferably 1.0% by weight or less.
  • the organic solvent content is preferably 0.3% by weight or less, the water content is preferably 0.5% by weight or less, and the organic solvent content is 0.1% by weight or less. , Moisture 0.2 weight. /.
  • the organic solvent component is zero. 5% by weight or moisture 1. 0 for exceeding wt%, countercurrent force s time Rui to decrease gas generation rate and mechanical properties of the gas generating agent.
  • the ignition agent in the gas generator is instantly ignited by electrical or mechanical means, and the flame ignites the gas generation agent. Will be burned.
  • Nitric Anmoniumu a powdered microcrystalline carbon reacts by combustion of the gas generating agent, mainly nitrogen gas (N 2) and carbon dioxide (C 0 2) and is generated. As a result, the airbag is deployed.
  • the burning rate of the gas generating agent is about 1 to 50 Omm / sec. If the combustion speed is less than 1 mm 2 s, the pressure inside the airbag will increase slowly, which is not desirable. On the other hand, if the combustion speed exceeds 500 mmsec, the pressure inside the airbag rises sharply, causing problems such as breakage of the airbag, so that the performance as a gas generating agent can be fully exhibited. There is no tendency.
  • the gas generating agent is retained for a long time in the gas generator mounted on the vehicle. In such a case, the vehicle may be exposed to high temperatures due to a rise in temperature inside the vehicle. Ammonium nitrate in the gas generating agent is relatively hard to decompose even at high temperatures. The presence of the force S and the powdered microcrystalline carbon promotes the decomposition of ammonium nitrate.
  • the stabilizer captures the decomposition product of ammonium nitrate and interrupts the autocatalytic reaction by the decomposition product to suppress the decomposition of ammonium nitrate. It is thought to be. That is, The degradation products are trapped at the benzene ring attached to the heteroatom in a stabilizer such as nilamine persorcinol.
  • the decomposition of ammonium nitrate can be suppressed to improve the stability over time of the gas generating agent, and the exothermic reaction due to the adsorption of decomposition products to the powdered microcrystalline carbon can be suppressed, and the nitric acid caused by the temperature rise can be reduced. It is possible to suppress the decomposition of the ammonium. Therefore, the stability over time of the gas generating agent can be maintained.
  • the stabilizer can capture the decomposition product of ammonium nitrate and suppress the decomposition of ammonium nitrate, the stability over time, for example, in an atmosphere of 107 ° C. It has excellent long-term stability at high temperatures such as being left in the room for 400 hours.
  • ammonium nitrate, powdered microcrystalline carbon, and stabilizer are contained so that the oxygen balance can be maintained, so that when the gas generant is burned, carbon dioxide is substantially generated. There is no danger.
  • the gas generant composition is composed of ammonium nitrate, powdered microcrystalline carbon, and a stabilizer, and contains no component that enhances the special sensitivity. Therefore, the sensitivity is appropriate and the handling is easy.
  • the gas generating composition is mostly composed of inexpensive ammonium nitrate and has a low content of powdered microcrystalline carbon and a stabilizer, the production cost can be reduced.
  • the gas generant composition contains ammonium nitrate, powdered microcrystalline carbon, and a stabilizer in predetermined contents, it is possible to improve the above-mentioned temporal stability, particularly the temporal stability at high temperatures. In addition to this, it can exhibit well-balanced performances such as moderate burning rate, substantial non-production of carbon monoxide, easy handling with appropriate sensitivity, and reduced production cost.
  • the content of the stabilizer to 1.5 to 6% by weight and the content of the stabilizer to 10 to 200% by weight with respect to the content of the powdered microcrystalline carbon,
  • the function of the stabilizer can be synergistically exhibited. For this reason, the stability with time and the burning rate of the gas generating agent can be further improved, and the generation of carbon monoxide can be further suppressed.
  • the average particle diameter of ammonium nitrate is 1 to 100 m
  • the average particle diameter of powdered microcrystalline carbon is 1 to 500 ⁇ m
  • the specific surface area is 5 to 1 6 0 0 m 2 / g
  • by setting the average particle diameter of the stabilizer to 0. 1 ⁇ 5 0 0 ⁇ m to improve the productivity of the gas generating agent molded article, the mechanical properties of the molded product even Can be improved.
  • this mixture was prepared into a columnar molded product having a diameter of 7 nim and a drug length of 3.5 mm using a rotary tableting machine.
  • this gas generant composition the concentration of carbon monoxide in the product gas during combustion and the burning rate were determined by a closed bomb test apparatus shown in Fig. 2.
  • a combustion chamber 7 having a fixed volume is provided in the bomb body 6, and the combustion chamber 7 is loaded with the molded article 1 of the gas generating agent.
  • a plug 8 for loading or sealing the gas generating agent molded article 1 into the combustion chamber 7 is mounted on the left end side of the pump body 6, and is detachable with a bolt 9.
  • an ignition device 11 is connected to the left end side of the bomb body 6 via a connection wire 10.
  • a pair of electrodes 12 is attached to the inner end surface of the plug 9 in the combustion chamber 7 ⁇ .
  • the upper electrode 12 is connected to the connection wiring 10 and the lower electrode 12 is It is connected to the.
  • An ignition ball 13 is attached to both electrodes 12 via a conductor. When the ignition device 11 is operated, the ignition ball 13 is ignited via the connection wiring 10, the electrode 12, etc., and the gas generating agent molded article 1 in the combustion chamber 7 is ignited and burned. I have.
  • a degassing valve 14 is attached to the side wall of the bomb body 6, and communicates with the combustion chamber 7 via a sampling pipe 15. The gas in the combustion chamber 7 is sampled from the degassing valve 14 so that its combustion characteristics can be evaluated.
  • a pressure transducer 16 is attached to the right end of the bomb body 6 and communicates with the combustion chamber 7 via a communication pipe 17.
  • the pressure transducer 16 can determine the relationship between the combustion time and the combustion pressure when the sample burns.
  • the gas generating agent molded product 1 is loaded into the combustion chamber 7 at a loading specific gravity of 0.1 g Z ml.
  • the gas generating agent molded article 1 in the combustion chamber 7 is ignited by the ignition device 11.
  • the generated gas is collected from the degassing valve 14. The carbon monoxide concentration of the collected product gas was determined using gas chromatography.
  • the weighed gas generant composition was placed in the sample bottle, it was placed in a thermostat adjusted to 107 ° C. and left for 400 hours. Thereafter, the gas generating composition was taken out of the thermostat and weighed.
  • the required value of this test is that the gas generating agent does not decompose and the weight loss is within 5%.
  • the Werner mixer is a device for stirring and mixing by a stirring blade supported on a rotating shaft extending in the lateral direction.
  • the extruder is equipped with a 3.5 mm die and a 2.2 mm pin in advance, and the gas generant molding is extruded through this die by applying pressure to form a single hole. Molded. This molded product was cut into a length of 4. O mm and dried to obtain a granular gas generating composition.
  • gas generant compositions were produced in the same manner as in Example 13, and the properties of each were evaluated in the same manner as in Example 13. Table 2 shows the results.
  • Example Composition (wt%) Produced gas Combustion Produced gas Combustion Nao-ri Reduction rate of CO in the air CO concentration speed c ⁇ concentration speed (%) degree mm / s) degree (ram / s)
  • Comparative Examples 1 to 10 generate gas by the same method as in Example 1
  • Comparative Examples 11 to 12 generate gas by the same method as in Example 12.
  • a composition was prepared. Then, each characteristic was evaluated in the same manner as in Example 1. Tables 3 and 4 show the results.
  • Example 2 After mixing 85% by weight of ammonium nitrate and 15% by weight of lithium nitrate in a melting tank, the melt is sprayed with compressed air from a compressor to prepare a phase-change-suppressing ammonium nitrate, and activated carbon or A gas generating composition was produced in the same manner as in Example 1 with the composition ratios shown in Table 4 and carbon black. And each characteristic is an example
  • Comparative Example 1 As shown in Comparative Example 1, there was no problem with the concentration of carbon monoxide and aging stability with ammonium nitrate alone, but the combustion rate was extremely slow, and it could not be used as a gas generating agent. there were. Therefore, it was found that powdered microcrystalline carbon had to be blended in order to exert the effect as a gas generating agent. As shown in Comparative Example 2, when diphenylamine was added to ammonium nitrate, the weight reduction rate was 0.1%, and the stability over time was improved, but the burning rate was still very slow.
  • Example 1 In the case of Example 1 in which activated carbon and diphenylamine as a stabilizer were blended with ammonium nitrate, the gas generating agent after the aging stability test was not decomposed, and the weight reduction rate was 0.8%. Was. In contrast, it was found that in the case of Comparative Example 3 in which no stabilizer was used, decomposition occurred during the temporal stability test. From this result, it was found that the blending of the stabilizer greatly contributed to the stability over time.
  • Example 5 in which carbon black was used as the powdered microcrystalline carbon and a stabilizer was added, the weight loss rate was 0.4%, and the carbon monoxide concentration increased after the aging stability test. There was no significant decrease in the burning rate.
  • Comparative Example 4 in which no stabilizer was used, the weight loss rate after the aging stability test was 9.5%, the carbon monoxide concentration was significantly increased, and the burning rate was also low. A significant drop was seen.
  • the highly effective stabilizers capable of improving the stability were diphenylamine, resorcinol, and getyldiphenoleurea at around II.
  • the concentration of carbon monoxide in the produced gas was It did not exceed 400 ppm, the burning rate was appropriate, and it was found that there was no problem with the performance after the aging stability test.
  • the content of diphenylamine as a stabilizer was 10 to 200% by weight based on the content of powdered microcrystalline carbon.
  • the content of the stabilizer is 0.2% by weight based on the total amount of ammonium nitrate, powdered microcrystalline carbon and the stabilizer. /. If it is less than (Comparative Examples 5, 7, 9, 11, 12), there is no problem with the concentration of carbon monoxide in the product gas and the burning rate before the aging stability test. Later it was found that the rate of weight loss increased, decomposed, and the concentration of carbon monoxide in the produced gas increased.
  • ammonium nitrate is a phase transition suppressing ammonium nitrate, it is possible to prevent a change in the crystal structure of the ammonium nitrate due to the temperature and to suppress the powdering of the gas generating agent.
  • the burning rate of the gas generating composition can be increased, the degree of freedom in designing the gas generating composition can be increased, and the production thereof can be facilitated. can do.
  • the production of the gas generating composition can be facilitated and the mechanical properties of the gas generating composition can be improved.
  • the gas generating composition is formed into a column shape with an outer diameter of 5 to 40 mm and a length of 5 to 40 mm, and 7 or 19 through holes extending in the axial direction are almost equally spaced inside.
  • the through hole may be formed so that the inner diameter of the through hole is 1 to 10 mm and the thickness from the surface to the through hole is 3 mm or less.
  • the gas generant composition with an outside diameter of 3 Into a column with a length of 10 mm and a length of 2 to 10 mm, and a single through hole extending in the axial direction at the center of the column. The diameter of the through hole is 1 to 8 mm. Up to 3 mm or less.
  • the molded product of the gas generating agent can be shaped into a shape suitable for an air bag, and can be easily loaded into the gas generating device, so that the effect as the gas generating agent for the air bag can be effectively exhibited. it can.
  • the outer diameter of the gas generant composition is 0. ! ⁇ And length. It is formed into a column of 5 to 5 mm, and a single through-hole extending in the axial direction is formed at the center of the column.
  • the diameter of the through-hole is 0.1 to 4 mm!
  • the thickness from the surface to the through-hole may be 1 mm or less.
  • the molded product of the gas generating agent can be shaped into a shape suitable for the pretensioner device, and can be easily loaded into the gas generating device, so that the effect as the gas generating agent for the pretensioner device can be effectively exhibited. be able to.
  • the gas generating composition having a predetermined shape can be easily and efficiently used. Can be manufactured well.
  • the stabilizer may be at least one selected from diphenylamine, resorcinol and getyldiphenylurea. In this case, excellent temporal stability, particularly excellent temporal stability at high temperatures, can be reliably exhibited. Industrial applicability
  • the gas generant composition of the present invention stability over time, particularly stability over time at high temperatures, an appropriate burning rate, and substantial generation of carbon monoxide It is easy to handle with proper sensitivity and can reduce manufacturing costs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Air Bags (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

明 細 書 ガス発生剤組成物
技術分野
この発明は、 例えば車両に搭載され、 乗員を保護するエアバッグを膨張させる ためのガス発生装置、 又は、 シートベルトを巻き上げるためのプリテンショナ一 装置に装填されるガス発生剤組成物に関するものである。
背景技術
この種めエアバッグを膨らませるために用いられるガス発生剤として、 従来か らアジ化ナトリ ゥムと各種酸化剤とを主成分とするものが知られている。 しかし、 アジ化ナトリ ゥムの強い毒性や取扱い性の悪さから、 最近ではアジ化ナトリ ウム を使用しないガス発生剤が求められている。 また、 ガス発生剤としては、 経時安 定性に優れ、 適度な燃焼速度を有し、 一酸化炭素及び燃焼残査が発生せず、 取扱 い性に優れ、 しかも生成ガス量が多く、 安価なものが要求されている。 こう した 要求に応じるために、 硝酸アンモニゥムを主成分とするガス発生剤が多方面で研 究されている。
例えば、 特開平 1 1一 9 2 2 6 5号公報には、 カーボンブラック又は活性炭粉 末と、 相安定化硝酸アンモニゥムとよりなるガス発生剤組成物が開示されている c このガス発生剤組成物は、 ガス発生効率と燃焼効率に優れ、 しかも、 燃焼速度が 速いものである。
ところが、 上記公報に記載のガス発生剤組成物は、 ガス発生効率や燃焼速度等 の燃焼性能に優れた組成になっているものの、 経時的な安定性について配慮され た組成にはなっていない。 このため、 ガス発生剤組成物を燃焼させる前の保存時 における経時安定性、 特に高温における経時安定性に劣る。
この発明は、 このような従来技術に存在する問題点に着目 してなされたもので ある。 その目的とするところは、 経時安定性、 特に高温での経時安定性に優れ、 適度な燃焼速度を有し、 実質的に一酸化炭素を生成せず、 感度が適正で取扱いが 容易であり、 しかも安価なガス発生剤組成物を提供することにある。 発明の開示
上記目的を達成するために、 本発明の一態様におけるガス発生剤組成物は、 酸 化剤としての硝酸アンモ-ゥム、 還元剤としての粉末状微結晶炭素及び安定剤よ りなり、 硝酸アンモニゥム、 粉末状微結晶炭素及び安定剤の総量に対して硝酸ァ ンモ-ゥムの含有量が 8 9〜9 9重量。/。、 粉末状微結晶炭素の含有量が 1〜6重 量。 /。及び安定剤の含有量が 0 . 2〜 6重量%であるものである。
好適な態様におけるガス発生剤組成物は、 前記粉末状微結晶炭素の含有量が硝 酸アンモ-ゥムの含有量に対して 1 . 5〜 6重量%であり、 安定剤の含有量が粉 末状微結晶炭素の含有量に対して 1 0〜 2 0 0重量%であるものである。
別の好適な態様におけるガス発生剤組成物は、 前記硝酸ァンモニゥムの平均粒 子径が 1〜 1 0 0 0 μ mであり、 粉末状微結晶炭素の平均粒子径が 1〜 5 0 0 mでかつ比表面積が 5〜 1 6 0 0 m 2 Z gであり、 安定剤の平均粒子径が 0 . 1〜 5 0 0 i mであるものである。 図面の簡単な説明
図 1 ( a ) ~ ( h ) はガス発生剤成形物の形状を示す斜視図。
図 2はガス発生剤の燃焼測定用の密閉ボンブ試験装置を示す断面図。 発明を実施するための最良の形態
以下、 この発明の実施形態について詳細に説明する。
ガス発生剤組成物 (以下、 必要に応じて単にガス発生剤という) は、 酸化剤と しての硝酸アンモユウム、 還元剤としての粉末状微結晶炭素及び安定剤よりなり, 硝酸アンモニゥム、 微結晶炭素及び安定剤の総量に対して硝酸アンモニゥムの含 有量が 8 9〜9 9重量%、 微結晶炭素の含有量が 1〜 6重量%及び安定剤の含有 量が 0 . 2〜 6重量%であるものである。 硝酸アンモニゥムは酸化剤として機能し、 ガス発生剤の燃焼時に微結晶炭素を 酸化させて窒素ガスや炭酸ガスを発生させる。 この硝酸アンモニゥムは、 他の成 分との混合性と燃焼性の点から粉末であることが望ましい。 その平均粒子径は 1 〜 1 0 0 0 /X mであることが好ましく、 ガス発生剤より得られる成形物の機械的 物性及び燃焼性能を考慮すれば 1〜 5 0 0 /x mであることがさらに好ましく、 1 〜 2 0 0 mであることが特に好ましい。
硝酸アンモニゥムの平均粒子径が 1 m未満の場合、 硝酸アンモニゥムの製 造が困難になる。 一方、 平均粒子径が 1 0 0 0 μ mを越えると、 ガス発生剤成形 物を製造するためのバインダーと混合しにく くなるため、 成形物の機械的物性が 悪くなる傾向にあり、 しかも成形物を燃焼させたときの燃焼速度が遅くなる傾向 にある。
また、 硝酸アンモニゥムとしては、 結晶構造が温度により変化するのを抑制し た相転移抑制型の硝酸アンモニゥムを使用することもできる。 この種の硝酸アン モニゥムは、 次のようにして得られる。 まず、 所定の温度に加熱した溶融槽内に て溶融させた硝酸アンモニゥムに、 例えば酸化亜鉛、 酸化ニッケル、 酸化銅、 臭 化カリ ウム、 硝酸カリウム又は過塩素酸カリウム等を加えて混合する。 次いで、 この混合物を溶融槽內で撹拌しながら冷却することにより、 相転移抑制型の硝酸 アンモニゥムが得られる。 あるいは、 溶融槽内で混合した後、 圧縮機からの圧縮 空気で溶融物を噴霧させることにより、 相転移抑制型の硝酸アンモニゥムが得ら れる。
一般的に、 結合剤の使用量を、 たとえば、 2〜 3重量%というように少なく設 定した状態で、 圧縮成形法によって得られる成形物は、 温度により硝酸アンモニ ゥムの結晶構造が変化し、 ガス発生剤の粉化が生じる。 このため、 圧縮成形法に より成形物を製造する場合には、 硝酸アンモニゥムとして相転移抑制型の硝酸ァ ンモニゥムを使用することが望ましい。
一方、 結合剤を 1 0重量%程度使用して、 押出成形法によって得られる成形物 は、 硝酸アンモニゥムの表面が結合剤で十分に覆われている。 そのため、 温度に より生じる硝酸アンモニゥムの結晶構造の変化を結合剤が吸収し、 ガス発生剤の 粉化を防止することができる。
従って、 ガス発生剤成形物を押出成形法にて成形する場合には、 前記相転移抑 制型硝酸ァンモニゥムではなく、 通常の硝酸アンモニゥムを使用することが望ま しい。 この場合、 ガス発生装置内のフィルターの簡略化及びガス発生装置の小型 化を図ることのでき、 燃焼残査が発生しないからである。
また、 硝酸アンモニゥムは著しい吸湿性も有している。 そのような吸湿性を抑 制するために、 表面をコーティング処理した硝酸アンモニゥムを使用することが 望ましい。
このコーティングした硝酸アンモニゥムは、 次のようにして得られる。 まず、 有機溶剤とコーティング剤を容器内に入れ、 有機溶剤の温度が 7 0〜 8 0 °Cとな るまで加熱してコーティング剤を有機溶剤に溶解する。 その後、 その容器内へ硝 酸アンモニゥムを入れて撹拌しながら、 混合物の温度を常温となるまで下げるこ とにより、 表面をコ一ティングした硝酸アンモニゥムが得られる。
コ一ティング剤としては、 硝酸アンモニゥムの表面をコーティングしたときに、 吸湿を防止できるものであれば、 いかなるものでも使用できる。 例えば、 ポリエ チレングリ コール等のポリグリコール系ポリマー、 ポリ ビニル系ポリマー及ぴパ ラフィンワックス等が挙げられる。 これらのうち、 硝酸アンモニゥムの吸湿を防 止するコーティング剤としての効率を考慮すれば、 ポリエチレンダリ コールが最 も好ましい。
また、 ポリエチレングリ コール自身の吸湿性を考慮すれば、 分子量 6 0 0 0〜 2 0 0 0 0のポリエチレングリコールを使用することがさらに好ましい。 このよ うなコーティング処理を行うことにより、 硝酸アンモニゥムの吸湿を防止でき、 硝酸アンモニゥムの取扱いを容易にすることができる。 さらに、 コーティング処 理された硝酸アンモニゥムは、 バインダーとの相溶性も改善されるため、 成形物 の機械的物性も向上する。
硝酸アンモニゥムの配合量は、 硝酸アンモニゥム、 粉末状微結晶炭素及び安 定剤の総量に対して 8 9〜 9 9重量。 /0が好ましく、 ガス発生剤の生成ガス量及び 生成ガス中に一酸化炭素が実質的に生成しないように考慮すれば 9 1〜 9 8重 量%がさらに好ましく、 9 3〜 9 8重量%が特に好ましい。
硝酸アンモニゥムの配合量が 8 9重量%未満では、 ガス発生剤燃焼時の生成ガ ス量が低下し、 しかもその際一酸化炭素が生成する。 また、 9 9重量%を越える と燃焼速度が遅くなり、 さらに低圧での燃焼が維持できなくなる。
この明細書において、 一酸化炭素が実質的に生成しない条件とは、 生成ガス中 に占める一酸化炭素の濃度が 5 0 0 0 p p m以下であることを意味する。
次に、 粉末状微結晶炭素について説明する。 粉末状微結晶炭素は、 二次元的に は黒鉛に類似している。 第一の形式の微結晶炭素では、 複数の六角形の各頂点に 配置された炭素が互いに結合することにより、 網状の平面が形成され、 複数の網 平面が互いに平行に層状に配置され、 かつ、 ほぼ等間隔をおいて積み重なつてい る。 しかし、 各網平面又は各層における炭素原子は、 その網平面又は層に対して 垂直な方向に関しては、 完全には配向してはいない。 また、 第二の形式の微結晶 炭素には、 六角形の各頂点に配置された炭素原子が隣接する炭素原子と不規則に 連結されて、 その黒鉛層の表面にゆがみを有するものもある。 いずれの形式であ つても、 粉末状微結晶炭素は、 構造的な完全性に欠ける黒鉛系の微結晶の集合体 である。
この粉末状微結晶炭素は還元剤として機能し、 酸化剤である前記硝酸アンモニ ゥムと反応することによって窒素ガス、 炭酸ガス及ぴ水 (水蒸気) 等を生成し、 ガス発生剤にその機能を発現させる。 この粉末状微結晶炭素としては、 活性炭、 コ一クス、 木炭、 獣炭、 骨炭、 アセチレンブラック及び力一ボンブラック等であ れば特別に制限されるものではないが、 ガス発生剤の燃焼性能を向上させるため には活性炭が好ましい。
活性炭を製造するための出発原料としては、 やし殻、 石炭、 木炭等が挙げられ るが、 特別に制限されるものではない。 活性炭としては、 細孔径の小さいやし殻 系のものが好ましい。 また、 活性炭を製造するための賦活方法は、 水蒸気、 二酸化炭素及び空気など によるガス賦活法と、 塩化亜鉛及び塩化カルシウムなどによる薬品賦活法とがあ り、 それらの賦活方法であれば特別に制限されるものではない。 活性炭の好まし ぃ賦活方法は、 細孔径の小さいものが得られるガス賦活法である。
微結晶炭素の平均粒子径は 0 . 1〜 5 0 0 μ mが好ましく、 ガス発生剤成形物 の機械的物性及び燃焼性能を考盧すれば 1〜 1 0 0 mがさらに好ましく、 3〜 5 0 μ mが特に好ましい。 この平均粒子径が 5 0 0 μ mを越えると、 燃焼速度が 遅くなる傾向にある。 逆に、 平均粒子径が 0 . 1 μ m未満では製造性が悪くなる 傾向にある。
さらに、 微結晶炭素の比表面積は 5〜 1 6 0 0 m V gが好ましく、 ガス発生 剤成形物の機械的物性及び燃焼性能を考慮すれば 1 0〜 1 5 0 0 m V gがさら に好ましく、 5 0〜 1 3 0 0 m 2 / gが特に好ましい。 比表面積が 1 6 0 0 m 2 を越えると、 粉末状微結晶炭素の製造性が悪くなる傾向にある。 逆に、 比表 面積が 5 m 2 g未満では、 ガス発生剤成形物の燃焼速度が遅くなる傾向にあ る。
また、 粉末状微結晶炭素の配合量は、 硝酸アンモニゥム、 微結晶炭素及び安定 剤の総量に対して、 1〜6重量。 /0が好ましく、 燃焼性能を向上させ、 しかも生成 ガス中に一酸化炭素を実質的に生成しないようにするには 1〜 5重量%がさらに 好ましく、 1 . 5〜 5重量%が特に好ましい。 この配合量が 1重量。 /0未満では、 ガス発生剤の燃焼速度が遅くなり、 さらに低圧での燃焼が維持できなくなる傾向 にある。 逆に、 6重量。 /。を越えるとガス発生剤の燃焼時に一酸化炭素が生成する ィ頃向にある。
また、 微結晶炭素の配合量は、 硝酸アンモニゥムの配合量に対して、 1 . 5〜 6重量%が好ましく、 燃焼性能を向上させ、 しかもガス発生剤の燃焼時に一酸化 炭素を実質的に生成しないようにするには 1 . 5〜5 . 5重量%がさらに好まし く、 1 . 5〜5重量%が特に好ましい。 この配合量が 1 . 5重量%未満では、 燃 焼速度が遅くなり、 さらに低圧での燃焼が維持できなくなる傾向にある。 逆に、 6重量%を越えると、 ガス発生剤の燃焼時に一酸化炭素が生成する傾向にある。 次に、 安定剤について説明する。 この安定剤は、 硝酸アンモニゥム及び粉末状 微結晶炭素により作製されたガス発生剤の経時安定性、 特に高温での経時安定性 を向上させるように機能するものである。
このよ うな安定剤と しては、 ジフエ二ルゥレア、 メチルジフエニルゥ レア、 ェ チノレジフエニノレゥレア、 ジェチノレジフエニノレゥレア、 ジメチノレジフエニノレゥレア、 メチノレエチノレジフエニノレゥレア、 ジフエニノレアミン、 2—ニ トロジフエ二ノレアミ ン、 ジフエ二ノレウレタン、 ェチノレフエ二ノレウレタン、 メチノレフエ二ノレウ レタン、 レゾルシノール等が挙げられる。 これらの安定剤のうち、 硝酸アンモニゥムの分 解抑制機能の点から、 ジフエニルァミン、 レゾルシノール及びジェチルジフエ二 ノレゥレアより選ばれる少なく とも一種が好ましレ、。 これらの中では、 ジフエニル ァミンが最も好ましく、 次にレゾルシノールが好ましく、 次いでジェチルジフエ ニルゥレアが好ましい。
安定剤の平均粒子径は 0 . 1〜 5 0 0 μ mが好ましく、 ガス発生剤の経時安定 性向上を考慮すれば 1〜 1 0 0 At mがさらに好ましく、 1〜 5 0 mが特に好ま しい。 安定剤の平均粒子径が 5 0 0 μ mを越えると、 ガス発生剤の経時安定性向 上の効果を発揮できない傾向にある。 逆に、 平均粒子径が 0 . l /z m未満ではガ ス発生剤の製造性が悪くなる傾向にある。
また、 安定剤の配合量は、 硝酸アンモユウム、 粉末状微結晶炭素及び安定剤の 総量に対して、 0 . 2〜 6重量%であり、 ガス発生剤の経時安定性を向上させ、 しかもガス発生剤の燃焼時に一酸化炭素が実質的に生成しないようにするには、 0 . 2〜 4重量%が好ましく、 0 . 2〜 3重量%が特に好ましい。 この配合量が 0 . 2重量%未満では、 ガス発生剤の経時安定性向上の効果が発揮されない。 逆 に、 6重量。 /0を越えるとガス発生剤の燃焼速度が遅くなり、 その燃焼時に一酸化 炭素が生成する。
また、 安定剤の配合量は、 粉末状微結晶炭素の配合量に対して、 1 0〜2 0 0 重量%が好ましく、 ガス発生剤の経時安定性を向上させ、 しかもガス発生剤の燃 焼時に一酸化炭素を実質的に生成しないようにするには 3 0〜 1 0 0重量%がさ らに好ましく、 4 0〜 6 0重量%が特に好ましい。 この配合量が 1 0重量%未満 では、 ガス発生剤の経時安定性向上の効果が発揮されない傾向にある。 逆に、 2 0 0重量%を越えると燃焼速度が遅くなり、 ガス発生剤の燃焼時に一酸化炭素が 生成する傾向にある。
次に、 ガス発生剤の燃焼速度をさらに向上させるためには、 高エネルギー物質 を配合することが好ましい。 そのような高エネルギー物質としては、 R D X (ト リ メチレント リ二 トロアミン) 、 HM X (テ トラメチレンテ トラニトロアミン) 、 P E T N (ペンタエリスリ トーノレテトラナイ トレー ト) 、 T A G N (トリアミノ グァニジンナイ トレート) 、 H N (硝酸ヒ ドラジン) 等が挙げられる。 これらの うち、 酸化剤である硝酸アンモニゥムとの反応性を考慮すれば R D Xが最も好ま しい。
また、 高エネルギー物質の平均粒子径は 1〜 5 0 0 μ mが好ましく、 ガス発生 剤成形物の機械的物性及び燃焼性能を考慮すれば、 ] 〜 1 0 0 / mがさらに好ま しく、 :!〜 3 0 μ mが特に好ましい。
この平均粒子径が 1 m未満では、 高エネルギー物質の製造が困難になりやす い。 一方、 平均粒子径が 5 0 0 μ mを越えると、 バインダーとの混ざりが悪いた め、 成形物の機械的物性が悪くなる傾向にあり、 また燃焼速度向上の効果が発揮 されないィ頃向にある。
高エネルギー物質の配合量は、 ガス発生剤組成物中において、 1 5重量%以下 であることが好ましく、 取扱い性及び燃焼性能を向上させ、 しかもガス発生剤の 燃焼時に一酸化炭素が実質的に生成しないようにするには 1〜 1 0重量。 /0がさら に好ましく、 1〜 5重量%が特に好ましい。 高エネルギー物質の配合量が 1 5重 量%を越えると、 衝撃等の感度が高くなるため取り扱いが困難となる。
次に、 ガス発生剤組成物には、 成形物を製造するにあたり、 ガス発生剤の粒状 ィ匕 (グレイ ン化) を行うために結合剤を配合することが好ましい。 そのような結 合剤としては、 酢酸セルロース、 酪酸セルロース、 ポリエステル、 ポリエーテル. ポリ ウレタン、 ニ トロセノレロース、 ポリ ビニノレアノレコーノレ、 グリ シジノレアジドポ リマー、 熱可塑性エラストマ一類、 熱硬化性エラス トマ一類等が挙げられる。 ま た、 これらの混合物も使用可能である。
結合剤の配合量は、 ガス発生剤組成物中において、 2 5重量。/。以下が好ましく、 ガス発生剤成形物の機械的物性及び燃焼速度を向上させ、 しかもガス発生剤の燃 焼時に一酸化炭素が実質的に生成しないようにするには 6〜 2 0重量%がさらに 好ましく、 8〜 1 5重量%が特に好ましい。 結合剤の配合量が 2 5重量%を越え ると、 ガス発生剤成形物の機械的物性は向上するが、 他の組成の配合比率が低下 するため、 燃焼性が悪くなり、 またガス発生剤の燃焼時に一酸化炭素が生成し、 さらに燃焼速度が遅くなる傾向にある。
次に、 ガス発生剤組成物には可塑性を付与し、 成形性を向上させるために可塑 剤を配合することが好ましい。 そのような可塑剤としては、 結合剤と相溶性の良 いものであればいかなるものでも使用できる。 具体的には例えば、 ジブチルフタ レー ト、 ジメチルフタ レー ト、 ジェチノレフタレート等のフタル酸ジエステノレ可塑 剤、 リ ン酸エステル、 ト リァセチン、 ァセチルト リェチルサイ トレー ト等の脂肪 酸エステル可塑剤、 トリメチローノレエタントリナイ トレート、 ジエチレングリ コ ーノレジナイ ト レー ト 、 ト リェチレングリ コー^/ジナイ トレー ト 、 ニ トログリセリ ン、 ビス一 2, 2—ジニ トロプロピノレアセターノレ/ホノレマーノレ等のニ トロ可塑斉!) , グリシジルアジド可塑剤等が挙げられる。
可塑剤の添加量は、 ガス発生剤組成物中において 5重量。 /0以下が好ましく、 ガ ス発生剤の燃焼時に一酸化炭素が実質的に生成しないようにするには、 0 . 1〜 4重量%がさらに好ましく、 0 . 1〜 3重量%が特に好ましい。
可塑剤の添加量が 5重量%を越えると可塑剤としての効果は多大となるが、 他 の組成の配合比率が低下するため燃焼性が悪くなり、 またガス発生剤の燃焼時に 一酸化炭素が生成する傾向にある。
次に、 有機溶剤を用いた押出成形法によるガス発生剤成形物の製造方法につい て説明する。 まず最初に、 硝酸アンモニゥム、 粉末状微結晶炭素、 安定剤及び必要により高 エネルギー物質、 結合剤及び可塑剤を所定量計量する。
押出成形法で用いられる有機溶剤としては結合剤を完全に溶かすもの全て使用 可能である。 具体的には例えば、 アセ トン、 エチルアルコール、 酢酸ェチル等の 有機溶剤が挙げられる。 これらの混合溶液も使用可能である。 例えば、 アセ トン とエチルアルコールの混合溶液における混合割合は、 重量比でァセトンノェチル アルコール = 9 0_/ 1 0〜 20Z80重量%が好ましい。 ガス発生剤組成物の成 形性を考慮すれば重量比でァセトンノエチルアルコール = 8 Ο, Ζ Ο Α θΖδ 0重量%がさらに好ましい。 なぜならば、 アセトンのみでは蒸発速度が速いため ガス発生剤成形物の製造が困難となり、 逆にエチルアルコールのみでは結合剤を 完全に溶かすことが困難となるからである。
その後、 全ての原材料を混和機内に入れ、 それに前記有機溶剤液を適量混和機 内に加えて均一な混合物を調製する。 そして、 均一に混合された混合物を押出装 置に装填し、 所定の圧力を加え、 ダイスに通しながら混合物を押し出すことによ り、 所定の形状及び大きさのガス発生剤が成形される。
すなわち、 ガス発生剤成形物 1の形状には、 図 1 ( a ) に示すような中実の円 柱体 2、 図 1 ( b ) に示すような軸線方向に延びる貫通孔 3を有する円柱体 2、 図 1 ( c ) に示すような 7個の貫通孔 3を有する円柱体 2、 図 1 ( d) に示すよ うな 1 9個の貫通孔 3を有する円柱体 2を採用できる。 さらに、 図 1 ( e ) に示 すような 7個の貫通孔 3を有する異形柱体 4、 図 1 ( f ) に示すような 1 9個の 貫通孔 3を有する異形柱体 4、 図 1 ( g ) に示すような 7個の貫通孔 3を有する 六角柱体 5、 及び図 1 (h) に示すような 1 9個の貫通孔 3を有する六角柱体 5 が挙げられる。
図 1 ( c ) 〜図 1 (h) に示すガス発生剤成形物 1では、 成形物の外周部分に 位置する貫通孔 3の中心を結ぶことによって得られる形状は、 いずれも正六角形 であり、 隣接する 3つの貫通孔 3の中心を結ぶことによって得られる形状は、 全 て正三角形である。 従って、 各貫通孔 3間の距離は全て等距離となっている。 また、 このガス発生剤成形物 1の形状と大きさは、 用途により大きく異なるが. 一般的には外径が 0. 5〜5 0 mm、 長さ (以下、 薬長とレ、う) 0. 5〜5 0 m m程度である。 例えば、 自動車が衝突した時、 ごく短時間での作動、 具体的には 5〜 2 0 m sで燃焼が完了することを要求されるプリテンショナ一用ガス発生剤 等には、 外径 0. 5〜5 mm、 内孔径 0. ;!〜 4 mm、 薬長 0. 5〜 5 mm程度 の図 1 (b ) に示すような貫通孔 3を有する円柱体 2が使用される。
ここで、 プリテンショナ一装置とは、 自動車用シー トベルトに装着され、 衝突 時にガス発生剤が点火されて燃焼し、 その際発生する圧力によりシートベルトを 巻き上げて、 体が前方に押し出されるのを防止する装置である。
ガス発生剤の成形性及びガス発生速度を考慮すれば、 ガス発生剤成形物 1の寸 法で好ましいのは外径 0. 5〜2 mm、 内孔径 0. 2〜: L mm、 薬長 0. 5 mm 〜 2mmである。 成形物の表面から内孔までの厚みが 0. l mm以下又は長さが 0. 5 mm未満では成形が困難となる傾向にある。 また、 厚さが l mmを越える 場合又は長さが 5 mmを越える場合、 ガス発生速度が遅く、 ガス発生剤としての 性能を十分に発揮できない傾向にある。
例えば、 プリテンショナ一用ガス発生剤ほど速くないガス発生速度、 具体的に は 2 5〜 5 5 m sで燃焼が完了することを要求されるエアバッグ用のガス発生剤 成形物 1には、 外径 5〜 4 0 mm、 内孔径 1〜: 1 0 mm、 薬長 5〜 4 0 mm程度 の図 1 ( c ) から図 1 (h) に示すもの、 又は外径 3〜1 0 mm、 内孔径 1〜 8 mm、 薬長 2〜 1 0 mm程度の図 1 (b ) に示すものが使用される。 但し、 厚さ が 3 mmを越えた場合、 ガス発生速度が遅く、 ガス発生剤としての性能を十分に 発揮できない傾向にある。
また、 アセトン、 エチルアルコール、 酢酸ェチル等の有機溶剤がガス発生剤中 に多く含有していると燃焼性能の低下がみられるため、 有機溶剤をできる限り取 り除くことが好ましい。 乾燥終了時の有機溶剤分は通常 0. 5重量。 /。、 水分は 1. 0重量%以下が好ましく、 成形後の取扱いを考慮すれば有機溶剤分 0. 3重量% 以下、 水分 0. 5重量%以下がさらに好ましく、 有機溶剤分 0. 1重量%以下、 水分 0 . 2重量。 /。以下が特に好ましい。 この有機溶剤分が 0 . 5重量%又は水分 が 1 . 0重量%を越える場合、 ガス発生剤のガス発生速度や機械的物性が低下す るィ頃向力 sある。
さて、 自動車などの車両が高速で衝突した際、 その衝撃を感知した後、 瞬時に 電気的又は機械的手段によりガス発生装置内の点火剤が点火され、 この火炎によ りガス発生剤が着火、 燃焼される。 ガス発生剤の燃焼によって硝酸アンモニゥム と粉末状微結晶炭素とが反応し、 主に窒素ガス (N 2 ) と炭酸ガス (C 0 2 ) と が発生する。 その結果、 エアバッグが展開される。
ガス発生剤の燃焼速度は、 1〜 5 0 O m m /秒程度である。 1 m m ,秒未満の 燃焼速度の場合、 エアバッグ内の圧力上昇が遅いため望ましくない。 一方、 5 0 0 m m 秒を越える燃焼速度の場合、 エアバッグ内の圧力が急激に上昇し、 エア バッグが破れる等の問題が生じるため、 ガス発生剤と しての性能を十分に発揮で きない傾向にある。
ガス発生装置が作動しない場合には、 ガス発生剤は車両に装着されたガス発生 装置内に長期間保持される。 その場合、 車両内部の温度上昇により高温に晒され るときがある。 ガス発生剤中の硝酸アンモニゥムは高温でも比較的分解しにくい 力 S、 粉末状微結晶炭素が存在することによって硝酸アンモニゥムの分解が促進さ れる。
硝酸アンモニゥムの分解機構は定かではないが、 硝酸アンモニゥムが分解する と分解生成物 (N 0 2 等の N O x) が生じ、 その分解生成物自体が分解していな い硝酸アンモニゥムを攻撃すること、 すなわち自触媒反応によって、 硝酸アンモ 二ゥムの分解が促進されるものと推定される。 さらに、 粉末状微結晶炭素、 特に 活性炭の表面に上記分解生成物が吸着されることにより、 活性炭が酸化されて発 熱し、 温度上昇によって硝酸アンモ-ゥムの分解がさらに促進される。
しかしながら、 ガス発生剤中には安定剤が含有されていることから、 その安定 剤が硝酸アンモニゥムの分解生成物を捕捉し、 分解生成物による自触媒反応を中 断させて硝酸アンモニゥムの分解を抑制するものと考えられる。 つまり、 ジフヱ ニルァミンゃレゾルシノールのような安定剤におけるヘテロ原子と結合している ベンゼン環で前記分解生成物が捕捉される。
それにより、 硝酸アンモニゥムの分解を抑制してガス発生剤の経時安定性を向 上させることができるとともに、 粉末状微結晶炭素に対する分解生成物の吸着に よる発熱反応を抑制し、 温度上昇による硝酸アンモ-ゥムの分解抑制を図ること ができる。 よって、 ガス発生剤の経時的安定性を維持することができる。
以上の実施形態により発揮される効果について、 以下にまとめて説明する。 •実施形態で述べたガス発生剤組成物によれば、 安定剤が硝酸アンモニゥムの分 解生成物を捕捉して硝酸アンモニゥムの分解を抑制できることから、 経時安定性、 例えば 1 0 7 °Cの雰囲気中で 4 0 0時間放置するというような高温での経時安定 性に優れている。
• また、 ガス発生剤組成物によれば、 硝酸アンモニゥムに加え、 適正量の粉末状 微結晶炭素と安定剤が配合されているため、 適度な燃焼速度を得ることができる c
- ガス発生剤組成物によれば、 硝酸アンモニゥムと粉末状微結晶炭素と安定剤と が酸素バランスがとれるように含有されていることから、 ガス発生剤の燃焼時に —酸化炭素を実質的に生成するおそれがない。
• ガス発生剤組成物は、 硝酸アンモニゥムと粉末状微結晶炭素と安定剤とにより 構成され、 格別感度を高める成分が含まれていないので、 感度が適正でその取扱 いが容易である。
' ガス発生剤組成物は、 安価な硝酸アンモニゥムが大部分で、 粉末状微結晶炭素 と安定剤の含有量が少ないことから、 製造コス 卜の低減を図ることができる。 • ガス発生剤組成物は硝酸アンモニゥムと粉末状微結晶炭素と安定剤とが所定の 含有量で配合されていることから、 前述した経時安定性、 特に高温での経時安定 性を向上させることができるうえ、 適度な燃焼速度、 一酸化炭素の実質的な非生 成、 適正な感度による取扱いの容易性及び製造コス トの低減という各性能をバラ ンス良く発揮することができる。
- ガス発生剤組成物によれば、 粉末状微結晶炭素の含有量を硝酸アンモニゥムの
】3 含有量に対して 1 . 5〜6重量%、 安定剤の含有量を粉末状微結晶炭素の含有量 に対して 1 0〜2 0 0重量%に設定することにより、 粉末状微結晶炭素と安定剤 の機能を相乗的に発揮させることができる。 このため、 ガス発生剤の経時安定性 及び燃焼速度をさらに向上させ、 また一酸化炭素の生成をさらに抑制することが できる。
- ガス発生剤組成^)によれば、 硝酸アンモニゥムの平均粒子径を 1〜 1 0 0 0 m、 粉末状微結晶炭素の平均粒子径を 1〜 5 0 0 μ mでかつ比表面積を 5〜 1 6 0 0 m 2 / g , 安定剤の平均粒子径を 0 . 1〜 5 0 0 μ mに設定することにより、 ガス発生剤成形物の製造性を向上させ、 成形物の機械的特性も向上させることが できる。 実施例
以下に、 実施例及び比較例を挙げて、 前記実施形態のガス発生剤組成物につい てさらに具体的に説明する。
(実施例 1 )
平均粒径 1 5 /X mの硝酸アンモニゥム 9 3 . 2重量%、 比表面積約 9 5 0 m 2 Z gの活性炭 4 . 5重量%、 平均粒径 2 0 μ mのジフエニルァミン 2 . 3重量% を混合した後、 この混合物をロータリ一式打錠機を使用して直径 7 nim X薬長 3 . 5 mmの円柱状成形物を調製した。 このガス発生剤組成物を用いて、 図 2に示す 密閉ボンブ試験装置により燃焼時の生成ガス中の一酸化炭素濃度及び燃焼速度を 求めた。
さらに、 このガス発生剤組成物を用いて、 1 0 7 °Cで 4 0 0時間の経時安定性 試験を行った。 そして、 経時安定性試験後の重量を測定し、 重量減少率を求めた c また、 経時安定性試験後のガス発生剤組成物を用いて密閉ボンブ試験装置により 燃焼時の生成ガス中の一酸化炭素濃度及び燃焼速度を求めた。 その結果を表 1に 示した。
(一酸化炭素及び燃焼速度の測定方法) まず、 密閉ボンブ試験装置について説明する。 図 2に示すように、 ボンブ本体 6内には一定容積を有する燃焼室 7が設けられ、 その燃焼室 7にはガス発生剤成 形物 1が装填される。 図 2においてポンプ本体 6の左端側には燃焼室 7内にガス 発生剤成形物 1を装填したり、 密閉したりするための栓体 8が装着され、 ボルト 9により着脱可能になっている。 同じくボンブ本体 6の左端側には、 接続配線 1 0を介して点火装置 1 1が接続されている。
燃焼室 7內における栓体 9の内端面には一対の電極 1 2が取り付けられ、 図 2 において上方の電極 1 2は前記接続配線 1 0に接続され、 下方の電極 1 2はボン ブ本体 6に接続されている。 両電極 1 2には導線を介して点火玉 1 3が取り付け られている。 そして、 点火装置 1 1を作動させることにより接続配線 1 0、 電極 1 2などを経て点火玉 1 3が点火し、 燃焼室 7のガス発生剤成形物 1を着火させ て燃焼させるようになつている。
ボンブ本体 6の側壁には、 ガス抜き用バルブ 1 4が取り付けられており、 サン プリング管 1 5を介して燃焼室 7と連通されている。 このガス抜き用バルブ 1 4 から燃焼室 7内のガスをサンプリングし、 その燃焼特性を評価できるようになつ ている。
なお、 ボンブ本体 6の右端には圧力変換器 1 6が取り付けられ、 連通管 1 7を 介して燃焼室 7と連通している。 この圧力変換器 1 6から試料が燃焼した際の燃 焼時間と燃焼圧力との関係を求めることができるようになつている。
そして、 栓体 8を抜いた状態で燃焼室 7内にガス発生剤成形物 1を装填比重 0 . 1 g Z m lで装填する。 次いで、 栓体 8を閉めた後、 点火装置 1 1にて燃焼室 7 のガス発生剤成形物 1を着火する。 ガス発生剤成形物 1の燃焼後、 ガス抜き用バ ルブ 1 4から生成ガスを採取する。 採取された生成ガスについて、 ガスクロマト グラフィーを用いて一酸化炭素濃度を求めた。
さらに、 ガス発生剤成形物 1が燃焼したときの燃焼時間と燃焼圧力との関係を 圧力変換器 1 6を介してオシロスコープにて計測し、 燃焼圧力 2 0 . 6 M P a での燃焼速度を求めた。 (高温経時安定性試験方法)
サンプル瓶に、 秤量したガス発生剤組成物を入れた後、 1 0 7 °Cに調温された 恒温槽に入れて 4 0 0時間放置した。 その後、 ガス発生剤組成物を恒温槽より取 り出して重量測定を行った。
(高温経時安定性評価方法)
ガス発生剤を 1 0 7 °Cの雰囲気中に 4 0 0時間放置させた際、 ガス発生剤が分 解せず、 さらに重量減少が 5 %以内であることが本試験の要求値である。
(実施例 2〜: I 1 )
表 1及び表 2に示した組成で、 実施例 1 と同様の方法によりガス発生剤組成物 を各々製造し、 各々の特性を実施例 1 と同じ方法で評価した。 それらの結果を表 1及び表 2に示した。
経時安定性 経時安定性 m.P 、里里 /o ) 試験前 試験後 生成ガ 焼 生成ガ 燃焼 重量 施 ス中の 速度 ス中の 減少率
C ο濃 (mm/秒) c o濃 速度
例 ( / \
IS. mm/ リ / ) vppm) kppm)
? ff;f3 wi?ァソ ^一一 yo.
1 活性炭 4.5 U Z . o l 1. U. Ο シ'、フエ二/レアミン 2.3
7ΐ¾¾ ^ァソ ム 9
2 活性炭 4.5 π U n
乙厶, y U oU. o Z 丄 . ム レソ Ίレシノール 2.3 ゥ厶 9
3 活性炭 4.5 ς U n . 4 λ
U リ丄"!. ϋ 1丄,ハ y シ、、ェチルシ、、フエニルゥレア 2.3 flF3 z
4 活性炭 2.0 1 i uu l . o 1
丄 4. O U. シ、、フエニルァミン 5.0 v c¾¾.ァソ ーゥ ο zJ¾, Δ
5 カーホ、、ンフ-、ラック 4.5 n u 1 o Q, Q π u 1 Ό, 1
シ"フエ二/レアミン 2.3 アンモニゥム 93 0
6 カーホ、'ンフ'、ラック 2.0 11 o u . υ
シ、、フエニルァミン 5.0 ί^ί^了ソモーゥム 98 0
7 活性炭 1.3 0 12.5 0 12.4 0.5 シ"フエ二/レアミン 0.7 硝酸アンモニゥム 93.0
8 活性炭 5.7 2000 23.0 2700 19.4 1.2 シ"フエニルァミン 1.3 硝酸アンモニゥム 95.1
9 活性炭 4.5 0 22.1 2900 18.9 3.6 シ、、フエ二/レアミン 0.4 (実施例 1 2 )
平均粒径 1 5 mの硝酸アンモニゥム 8 9. 3重量%、 比表面積約 9 5 0 m 2 ノ§の活性炭 1. 8重量0ん、 ジフエニルァミン 0. 9重量%、 酢酸セルロースの 8. 0重量%を混合して混合物を得た。 その混合物に対し、 酢酸ェチルを 5 0重 量。 /0加え、 いわゆるウェルナー混和機で均一に混合した。 なお、 ウェルナー混和 機は、 横方向に延びる回転軸に支持された撹拌羽根により撹拌、 混合する装置で ある。
次いで、 この混合物を押出装置に装填した。 押出装置には予め 3. 5 mmのダ イス及び 2. 2 mmのピンが取り付けられており、 ガス発生剤成形物は圧力を加 えることにより、 このダイスを通りながら押出されて単孔状に成形される。 この 成形物を 4. O mmの長さに裁断し、 乾燥することにより粒状のガス発生剤組成 物を得た。
そして、 その粒状ガス発生剤成形物について、 実施例 1 と同じ方法で各特性を 評価した。 それらの結果を表 2に示した。
(実施例 1 3〜 1 5 )
表 2に示した組成で、 実施例 1 3と同様の方法によりガス発生剤組成物を各々 製造し、 各々の特性を実施例 1 3と同じ方法で評価した。 それらの結果を表 2に 示した。
2 経時安定性 経時安定性 試験刖 試験後 施
例 組成 (重量%) 生成ガ 燃焼 生成ガ 燃焼 直'里 ス中の ス中の 減少率 CO濃 速度 c ο濃 速度 (%) 度 mm /秒) 度 (ram/秒)
(ppm) (ppm) 硝酸アンモニゥム 88.9
10 活性炭 4.0 0 27.8 0 25.8 0.7 η γ
ivJJA , V
シ"フエ二/レアミン 2.1 硝酸アンモニゥム 89.4
11 活性炭 1.6 3400 14.7 3500 13.8 0.2 シ"フエニルァミン 4.0 アンモニゥム 89· 3
12 0 12.8 0 11.2 0.7
Figure imgf000021_0001
硝酸アンモニゥム 89.3
13 1.8 0 12.7 0 10.4 1.4
8· U
Figure imgf000021_0002
0.9 硝酸アンモニゥム 89.3
14 活性炭 1.8 0 13.7 0 11.1 1.7
セルロース 8.0
シ、、ェチルシ、 'フエニル,ゥレア 0 Q 硝酸アンモニゥム 85.0
15 活性炭 1.3 0 15.7 0 13.0 0.8 RDX 5.0
^^セルロース 8.0
シ、、フエニルァミン 0.7 (比較例:!〜 1 2 )
それぞれ表 3及び表 4に示した組成で、 比較例 1〜 1 0は実施例 1 と同様の方 法により、 また、 比較例 1 1〜 1 2は実施例 1 2と同様の方法によりガス発生剤 組成物を製造した。 そして、 各々の特性を実施例 1 と同じ方法で評価した。 それ らの結果を表 3及び表 4に示した。
3 経時安定性 経 安 性 試験 【J 験後 比
較 組成 (重量%) 王4- r~乂1÷ -f i: t^ ~
ス中の ス中の 減少率 例 C O濃 速度 c o濃 速度 (%)
(mra/秒) (随
ヽ 度ヽ /秒)
(ppm)
1 硝酸アンモニクム 100.0 0 2.0 0 1.8 0.3
2 硝酸アンモニゥム 97. 7 0 1.9 0 1.9 0. 1 シ"フエニルァミン 2. 3
3 硝酸アンモニゥム 93. 1 0 28.0 一 ― 試験中 活性炭 6.9 に分解
4 硝酸アンモニゥム 93. 1 0 20. 3 5400 13.2 9.5 カーホ、、ンフ、、ラック 6.9 ァノモーヮム 93· 1
5 活性炭 6.8 0 27.2 に分解 シ、'フエニルァミン 0. 1 /t ソ . -¾
6 活性炭 1. 5 5400 12. 1 5500 11.6 0.3 シ、'フエニルァミン 6. 1
; R^¾H&ァソ ー QQ 1
ノノてーソ SO. 1
7 カーホ-、ンフ-、ラック 6.8 on R 1 C ο
丄 3. o o. S o3 シ、'フエニルァミン 0. 1 硝酸アンモニゥム 92.4
Q
O ■h— ノ ~ノ7' τノッ>/7 1上■ D C 5400 10.9 5600 10. 3 0.2 シ"フエニルァミン 6. 1 硝酸アンモニゥム 88.9
9 活性炭 6.0 0 29. 2 試験中 RDX 5.0 に分解 シ フエニルァミン 0. 1 (比較例 1 3及び 1 4 )
硝酸アンモニゥム 8 5重量%と硝酸力リ ウム 1 5重量%を溶融槽内で混合した 後、 圧縮機からの圧縮空気で溶融物を噴霧して調製した相転移抑制型硝酸ァンモ ニゥムと、 活性炭又はカーボンブラックとを表 4に示した組成比率で、 実施例 1 と同様の方法によりガス発生剤組成物を製造した。 そして、 各々の特性を実施例
1 と同じ方法で評価した。 それらの結果を表 4に示した。
T/JP 表 4
Figure imgf000025_0001
表 1から表 4の試験結果より次のようなことがわかった。
比較例 1に示したように、 硝酸アンモニゥムのみでは、 一酸化炭素濃度及び経 時安定性については問題ないが、 燃焼速度が非常に遅いものであり、 ガス発生剤 と しては使用不可能であった。 従って、 ガス発生剤と しての効果を発揮させるた めには粉末状微結晶炭素を配合する必要があることがわかった。 比較例 2に示したように、 硝酸アンモニゥムにジフエニルァミンを配合すると 重量減少率が 0 . 1 %になり、 経時安定性は向上するが、 依然として燃焼速度が 非常に遅いものであった。
硝酸アンモニゥムに活性炭と安定剤であるジフエニルァミンを配合した実施例 1の場合には、 経時安定性試験を行った後のガス発生剤は分解することなく、 重 量減少率も 0 . 8 %であった。 それに対して、 安定剤を使用しない比較例 3の場 合には経時安定性試験中に分解してしまうことがわかった。 この結果から、 安定 剤の配合は経時安定性に大きく寄与することがわかった。
また、 粉末状微結晶炭素としてカーボンブラックを使用し、 安定剤を配合した 実施例 5の場合には、 重量減少率が 0 . 4 %であり、 経時安定性試験後の一酸化 炭素濃度の増加はなく、 また燃焼速度についても大幅な低下はなかった。 それに 対して、 安定剤を使用しない比較例 4の場合には、 経時安定性試験後の重量減少 率が 9 . 5 %であり、 一酸化炭素濃度が大幅に増加し、 そのうえ燃焼速度につい ても大幅な低下が見られた。
また、 実施例 1〜実施例 3の試験結果を比較すると、 安定性を向上できる効果 の高い安定剤は、 ジフエニルァミ ン、 レゾルシノール、 そしてジェチルジフエ二 ノレゥレアの II頃であった。
また、 安定剤の配合量が、 硝酸アンモニゥム、 粉末状微結晶炭素及び安定剤の 総量に対して 0 . 2〜 6重量%である全ての実施例においては、 生成ガス中の一 酸化炭素濃度は 4 0 0 0 p p m以上になることはなく、 燃焼速度は適切であり、 また経時安定性試験後の性能についても問題ないことがわかった。 なお、 安定剤 であるジフエニルァミ ンの含有量が粉末状微結晶炭素の含有量に対して 1 0〜 2 0 0重量。 /0という好ましい範囲を外れている場合 (実施例 4、 6、 9及び 1 1 ) 、 生成ガス中の一酸化炭素濃度、 燃焼速度及び重量減少率のいずれかの性能が低下 した。
一方、 安定剤の含有量が硝酸アンモユウム、 粉末状微結晶炭素及び安定剤の総 量に対して 6重量%を越えた場合 (比較例 6、 8、 1 0 ) には、 燃焼速度及ぴ経 時安定性については問題ないが、 生成ガス中の一酸化炭素濃度が 5 0 0 0 p p m 以上に増大することがわかった。
また、 安定剤の含有量が、 硝酸アンモニゥム、 粉末状微結晶炭素及び安定剤の 総量に対して 0 . 2重量。/。未満になった場合 (比較例 5、 7、 9、 1 1、 1 2 ) には、 経時安定性試験前の生成ガス中の一酸化炭素濃度及び燃焼速度については 問題ないが、 経時安定性試験後に重量減少率が大きくなつたり、 分解したり、 生 成ガス中の一酸化炭素濃度が増大したりすることがわかった。
また、 高エネルギー物質を配合した場合には燃焼速度がさらに向上することが わかった。 さらに、 結合剤を配合した場合には成形物の機械的物性が向上し、 取 り扱いが容易となることがわかった。
また、 相転移抑制型硝酸アンモニゥムを使用した場合 (比較例 1 3、 1 4 ) 、 生成ガス中の一酸化炭素濃度及び燃焼速度については問題ないが、 経時安定性試 験後に分解し、 通常の硝酸アンモニゥムを使用した場合よりも経時安定性が悪く なることがわかった。
なお、 前記硝酸アンモニゥムが相転移抑制型硝酸アンモニゥムである場合、 温 度による硝酸アンモ-ゥムの結晶構造の変化を防止でき、 ガス発生剤の粉化を抑 制することができる。
さらに、 高エネルギー物質をガス発生剤組成物に含有させた場合、 ガス発生剤 組成物の燃焼速度を向上でき、 ガス発生剤成形物の設計の自由度を広げることが でき、 その製造を容易にすることができる。
ガス発生剤組成物に結合剤及び可塑剤を含有させた場合、 ガス発生剤成形物の 製造を容易にすることができるとともに、 ガス発生剤成形物の機械的物性を向上 させることができる。
また、 ガス発生剤組成物を外径 5〜 4 0 m m及び長さ 5〜 4 0 m mの柱状に成 形し、 その内部に軸線方向に延びる 7個若しくは 1 9個の貫通孔をほぼ均等距離 をおいて穿設し、 その貫通孔の内径を 1〜 1 0 m m、 表面から貫通孔までの厚み を 3 m m以下となるように構成してもよい。 または、 ガス発生剤組成物を外径 3 〜 1 0 m m及び長さ 2〜 1 0 m mの柱状に成形し、 その中心に軸線方向に延びる 1個の貫通孔を穿設し、 その貫通孔の孔径を 1〜 8 m m、 表面から貫通孔までの 厚みを 3 m m以下となるように構成してもよい。 このような場合、 ガス発生剤成 形物をエアバック用に適した形状に賦形でき、 ガス発生装置に容易に装填できて, エアバック用ガス発生剤としての効果を有効に発揮させることができる。
ガス発生剤組成物を外径 0 . 〜 ^!!^及び長さ。. 5〜5 m mの柱状に成 形し、 その中心に軸線方向に延びる 1個の貫通孔を穿設し、 その貫通孔の孔径を 0 . l〜4 m n!、 表面から貫通孔までの厚みを 1 m m以下となるように構成し てもよい。 この場合、 ガス発生剤成形物をプリテンショナ一装置用に適した形状 に賦形でき、 ガス発生装置に容易に装填できて、 プリテンショナ一装置用ガス発 生剤としての効果を有効に発揮させることができる。
ガス発生剤組成物に有機溶剤を加えて塊状体とし、 その塊状体を押出装置によ り所定形状に押出し成形するようにした場合、 所定形状のガス発生剤組成物を容 易に、 しかも効率良く製造することができる。
前記安定剤は、 ジフヱニルァミン、 レゾルシノール及びジェチルジフエニルゥ レアから選ばれた少なく とも一種としてもよい。 この場合、 優れた経時安定性、 特に高温での優れた経時安定性を確実に発揮することができる。 産業上の利用可能性
以上詳述したように、 この発明のガス発生剤組成物によれば、 経時安定性、 特 に高温での経時安定性に優れ、 適度な燃焼速度を有し、 実質的に一酸化炭素を生 成せず、 感度が適正で取扱いが容易であり、 しかも製造コス トの低減を図ること ができる。

Claims

請求の範囲
1 . 酸化剤としての硝酸アンモニゥム、 還元剤としての粉末状微結晶炭素及び 安定剤よりなり、 硝酸アンモニゥム、 微結晶炭素及び安定剤の総量に対して硝酸 アンモ-ゥムの含有量が 8 9〜9 9重量。/。、 微結晶炭素の含有量が 1〜 6重量% 及び安定剤の含有量が 0 . 2〜 6重量。/。であるガス発生剤組成物。
2 . 前記微結晶炭素の含有量が硝酸アンモニゥムの含有量に対して 1 . 5〜 6 重量。んであり、 安定剤の含有量が微結晶炭素の含有量に対して 1 0〜 2 0 0重 量%である請求項 1 に記載のガス発生剤組成物。
3 . 前記硝酸アンモニゥムの平均粒子径が 1〜 1 0 0 0 μ mであり、 微結晶炭 素の平均粒子径が 1〜 5 0 0 mでかつ比表面積が 5〜: 1 6 0 0 m 2 / gであ り、 安定剤の平均粒子径が 0 . 1〜 5 0 0 μ mである請求項 1又は請求項 2に記 載のガス発生剤組成物。
4 f 前記硝酸アンモニゥムが相転移抑制型の硝酸アンモニゥムである請求項 1 から請求項 3のいずれかに記載のガス発生剤組成物。
5 . 高エネルギー物質を更に含有する請求項 1から請求項 4のいずれかに記載 のガス発生剤組成物。
6 . 結合剤及び可塑剤を更に含有する請求項 1から請求項 5のいずれかに記载 のガス発生剤組成物。
7 . 前記ガス発生剤組成物を外径 5〜 4 0 m m及び長さ 5〜 4 0 m mの柱状に 成形し、 その内部に軸線方向に延びる 7個若しくは 1 9個の貫通孔をほぼ均等距 離をおいて穿設し、 その貫通孔の内径を 1〜 1 0 m m、 表面から貫通孔までの厚 みを 3 m m以下となるように構成した請求項 1から請求項 6のいずれかに記載の ガス発生剤組成物。
8 . 請求項 1から請求項 6のいずれかに記載の前記ガス発生剤組成物を、 外径 3〜 1 0 m m及び長さ 2〜 1 0 m mの柱状に成形し、 その中心に軸線方向に延び る 1個の貫通孔を穿設し、 その貫通孔の孔径を 1〜 8 m m、 表面から貫通孔まで の厚みを 3 mm以下となるように構成したガス発生剤成形物。
9. 請求項 1から請求項 6のいずれかに記載の前記ガス発生剤組成物を、 外径 0. 5〜 5 mm及び長さ 0. 5〜 5 mmの柱状に成形し、 その中心に軸線方向 に延びる 1個の貫通孔を穿設し、 その貫通孔の孔径を 0. l〜4mm、 表面か ら貫通孔までの厚みを 1 mm以下となるように構成したガス発生剤成形物。
1 0. 請求項 6に記載の前記ガス発生剤組成物に有機溶剤を加えて塊状体と し, その塊状体を押出装置により所定形状に押出し成形するガス発生剤成形物の製造 方法。
1 1. 前記安定剤は、 ジフエニルァミン、 レゾルシノール及びジェチルジ フユ-ルゥレアから選ばれた少なく とも一種である請求項 1から請求項 3のいず れかに記載のガス発生剤組成物。
PCT/JP1999/005666 1999-10-06 1999-10-14 Composition generatrice de gaz WO2001025169A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE69943245T DE69943245D1 (de) 1999-10-06 1999-10-14 Gaserzeugende zusammensetzung
AU61227/99A AU6122799A (en) 1999-10-06 1999-10-14 Gas generator composition
JP2001528121A JP4207425B2 (ja) 1999-10-06 1999-10-14 ガス発生剤組成物
EP99947895A EP1142853B1 (en) 1999-10-06 1999-10-14 Gas generator composition
CA002353405A CA2353405C (en) 1999-10-06 1999-10-14 Gas generating composition
US10/801,691 US7081175B2 (en) 1999-10-06 2004-03-17 Gas generating composition and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP28523999 1999-10-06
JP11/285239 1999-10-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09856849 A-371-Of-International 2001-05-25
US10/801,691 Continuation US7081175B2 (en) 1999-10-06 2004-03-17 Gas generating composition and method

Publications (1)

Publication Number Publication Date
WO2001025169A1 true WO2001025169A1 (fr) 2001-04-12

Family

ID=17688927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005666 WO2001025169A1 (fr) 1999-10-06 1999-10-14 Composition generatrice de gaz

Country Status (8)

Country Link
US (1) US7081175B2 (ja)
EP (1) EP1142853B1 (ja)
JP (1) JP4207425B2 (ja)
KR (1) KR100455535B1 (ja)
AU (1) AU6122799A (ja)
CA (1) CA2353405C (ja)
DE (1) DE69943245D1 (ja)
WO (1) WO2001025169A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137815A (ja) * 2007-12-10 2009-06-25 Daicel Chem Ind Ltd ガス発生剤組成物

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080217893A1 (en) * 2004-06-17 2008-09-11 Nof Corporation Firing Agent for Gas Generating Device
FR2899227B1 (fr) * 2006-04-04 2008-10-24 Snpe Materiaux Energetiques Sa Objets pyrotechniques monolithes de grandes dimensions, obtention et utilisation
US7758709B2 (en) 2006-06-21 2010-07-20 Autoliv Asp, Inc. Monolithic gas generant grains
US9193639B2 (en) 2007-03-27 2015-11-24 Autoliv Asp, Inc. Methods of manufacturing monolithic generant grains
US8057611B2 (en) 2007-08-13 2011-11-15 Autoliv Asp, Inc. Multi-composition pyrotechnic grain
US8815029B2 (en) 2008-04-10 2014-08-26 Autoliv Asp, Inc. High performance gas generating compositions
US8808476B2 (en) 2008-11-12 2014-08-19 Autoliv Asp, Inc. Gas generating compositions having glass fibers
US8220497B1 (en) * 2009-11-12 2012-07-17 Daniel Guarascio Plumbing trap protective devices and methods
DE102010049765A1 (de) * 2010-10-29 2012-05-03 Trw Airbag Systems Gmbh Verfahren zur Herstellung von Festtreibstofftabletten, Gasgenerator und Modul mit Gasgenerator
US9051223B2 (en) 2013-03-15 2015-06-09 Autoliv Asp, Inc. Generant grain assembly formed of multiple symmetric pieces
US9457761B2 (en) * 2014-05-28 2016-10-04 Raytheon Company Electrically controlled variable force deployment airbag and inflation
US10336662B1 (en) 2016-09-26 2019-07-02 The United States Of America As Represented By The Secretary Of The Navy Ammonium nitrate prill having a non-hygroscopic shell
CN107673942B (zh) * 2017-10-30 2020-05-29 西安近代化学研究所 一种小品号单孔发射药模具设计方法
CN109131198A (zh) * 2018-10-29 2019-01-04 湖北航天化学技术研究所 一种气囊用气体发生剂药片及其制备工艺和气体发生器系统
CN109809954B (zh) * 2018-12-29 2021-02-09 湖北航鹏化学动力科技有限责任公司 一种多孔产气剂模压制品及其制备工艺
CN109809953A (zh) * 2018-12-29 2019-05-28 湖北航鹏化学动力科技有限责任公司 一种带孔型产气剂模压制品及其制备工艺
CN114920612A (zh) * 2022-06-27 2022-08-19 泸州北方化学工业有限公司 裂岩管用单基发射药系产气药剂及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2938778A (en) 1955-06-21 1960-05-31 Standard Oil Co Ammonium nitrate gas-generating composition
US2942963A (en) 1955-02-07 1960-06-28 Standard Oil Co Solid propellant combustion catalyst
US3886008A (en) * 1969-11-13 1975-05-27 Ireco Chemicals Blasting composition for use under high temperature conditions
JPS5879896A (ja) * 1981-11-02 1983-05-13 三菱化学株式会社 硝安を基剤とする爆薬
JPS5879895A (ja) * 1981-11-02 1983-05-13 三菱化学株式会社 硝安−炭素混合物を基剤とする爆薬
EP0576326A1 (fr) 1992-06-12 1993-12-29 S.N.C. Livbag Composition pyrotechnique génératrice de gaz chauds non toxiques et son utilisation dans un système de protection des occupants d'un véhicule automobile
JPH07267770A (ja) * 1994-03-28 1995-10-17 Asahi Chem Ind Co Ltd 固体推進薬及びその製法
US5589661A (en) 1994-10-05 1996-12-31 Fraunhofer-Gesselschaft Zur Forderung Der Angewandten Forschung E.V. Solid propellant based on phase-stabilized ammonium nitrate
US5596168A (en) * 1994-10-05 1997-01-21 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Solid propellant based on phase-stabilized ammonium nitrate
JPH10120484A (ja) 1996-10-18 1998-05-12 Nof Corp 車両の乗員保護用ガス発生剤組成物及びその成形物並びに成形物の製造方法
JPH1192265A (ja) * 1997-09-12 1999-04-06 Daicel Chem Ind Ltd エアバッグ用ガス発生剤組成物
EP0972757A1 (en) 1998-07-13 2000-01-19 Nof Corporation Gas generating compositions

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE525737C (de) * 1927-10-25 1931-05-28 Minimax Akt Ges Brennbares Gemisch zur Erzeugung von Druckgas, Stickgas oder Waerme und Verfahren zuseiner Herstellung
US4140562A (en) * 1952-06-04 1979-02-20 Martin Marietta Corporation Solid propellant with alginate binder
US3720553A (en) * 1969-02-07 1973-03-13 Standard Oil Co Ammonium nitrate propellant compositions
US3912562A (en) * 1973-09-10 1975-10-14 Allied Chem Low temperature gas generator propellant
SE461094B (sv) * 1987-08-21 1990-01-08 Nobel Kemi Ab Saett att framstaella drivkrutsladdningar samt i enlighet daermed framstaella laddningar
US5320382A (en) * 1991-05-31 1994-06-14 Gt-Devices Pulsed pressure source particularly adapted for vehicle occupant air bag restraint systems
US6364975B1 (en) * 1994-01-19 2002-04-02 Universal Propulsion Co., Inc. Ammonium nitrate propellants
US5583315A (en) * 1994-01-19 1996-12-10 Universal Propulsion Company, Inc. Ammonium nitrate propellants
DE19681514B4 (de) * 1995-07-27 2006-04-27 Nippon Kayaku K.K. Sprengstoff-Zusammensetzung für einen Airbag und Verfahren zu ihrer Herstellung
JP3608902B2 (ja) * 1997-03-24 2005-01-12 ダイセル化学工業株式会社 ガス発生剤組成物及びその成型体
US6143103A (en) * 1998-01-27 2000-11-07 Trw Inc. Gas generating material for vehicle occupant protection device
US6009810A (en) * 1998-07-08 2000-01-04 The United States Of America As Represented By The Secretary Of The Navy Airbag propellant

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2942963A (en) 1955-02-07 1960-06-28 Standard Oil Co Solid propellant combustion catalyst
US2938778A (en) 1955-06-21 1960-05-31 Standard Oil Co Ammonium nitrate gas-generating composition
US3886008A (en) * 1969-11-13 1975-05-27 Ireco Chemicals Blasting composition for use under high temperature conditions
JPS5879896A (ja) * 1981-11-02 1983-05-13 三菱化学株式会社 硝安を基剤とする爆薬
JPS5879895A (ja) * 1981-11-02 1983-05-13 三菱化学株式会社 硝安−炭素混合物を基剤とする爆薬
EP0576326A1 (fr) 1992-06-12 1993-12-29 S.N.C. Livbag Composition pyrotechnique génératrice de gaz chauds non toxiques et son utilisation dans un système de protection des occupants d'un véhicule automobile
JPH07267770A (ja) * 1994-03-28 1995-10-17 Asahi Chem Ind Co Ltd 固体推進薬及びその製法
US5589661A (en) 1994-10-05 1996-12-31 Fraunhofer-Gesselschaft Zur Forderung Der Angewandten Forschung E.V. Solid propellant based on phase-stabilized ammonium nitrate
US5596168A (en) * 1994-10-05 1997-01-21 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Solid propellant based on phase-stabilized ammonium nitrate
JPH10120484A (ja) 1996-10-18 1998-05-12 Nof Corp 車両の乗員保護用ガス発生剤組成物及びその成形物並びに成形物の製造方法
JPH1192265A (ja) * 1997-09-12 1999-04-06 Daicel Chem Ind Ltd エアバッグ用ガス発生剤組成物
EP0972757A1 (en) 1998-07-13 2000-01-19 Nof Corporation Gas generating compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1142853A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137815A (ja) * 2007-12-10 2009-06-25 Daicel Chem Ind Ltd ガス発生剤組成物

Also Published As

Publication number Publication date
US7081175B2 (en) 2006-07-25
EP1142853A4 (en) 2005-02-23
KR20010086083A (ko) 2001-09-07
JP4207425B2 (ja) 2009-01-14
US20040216819A1 (en) 2004-11-04
EP1142853A1 (en) 2001-10-10
KR100455535B1 (ko) 2004-11-06
AU6122799A (en) 2001-05-10
CA2353405A1 (en) 2001-04-12
EP1142853B1 (en) 2011-03-02
CA2353405C (en) 2004-11-23
DE69943245D1 (de) 2011-04-14

Similar Documents

Publication Publication Date Title
WO2001025169A1 (fr) Composition generatrice de gaz
US6019861A (en) Gas generating compositions containing phase stabilized ammonium nitrate
US5482579A (en) Gas generator compositions
JP3972628B2 (ja) ガス発生剤組成物及びガス発生器
EP0950647B1 (en) Gas generating composition for air bag
JP5483732B2 (ja) 火工ガス発生剤及びその製造工程
JP2009509908A (ja) ガス生成装置
JP4575395B2 (ja) 特に自動車の安全装置用の発火性ガス発生用組成物及び発火物
WO2006105410A2 (en) Gas generating compositions
EP0972757B1 (en) Gas generating compositions
JP4337254B2 (ja) ガス発生剤
CA2538343C (en) Firing agent for gas generating device
CA2365807C (en) Gas-generating compositions
JP4332936B2 (ja) ガス発生剤組成物及びその成形物
JP3915462B2 (ja) ガス発生剤組成物及びエアバッグ
JP2988891B2 (ja) 雲母含有改良ガス発生剤組成物
JP4682543B2 (ja) ガス発生器用の着火剤
JPH1192265A (ja) エアバッグ用ガス発生剤組成物
JP4244596B2 (ja) ガス発生器
JPH0761885A (ja) ガス発生剤組成物
JPH10120484A (ja) 車両の乗員保護用ガス発生剤組成物及びその成形物並びに成形物の製造方法
JP4682542B2 (ja) ガス発生器用の着火剤
JPH08183419A (ja) ガス発生剤組成物及びエアバッグ用インフレーター
JPH08165186A (ja) エアバッグ用ガス発生剤
JPH10139579A (ja) ガス発生剤組成物及びそれによるインフレーター構造体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 528121

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09856849

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2353405

Country of ref document: CA

Ref country code: CA

Ref document number: 2353405

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1999947895

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020017007056

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020017007056

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999947895

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWR Wipo information: refused in national office

Ref document number: 1020017007056

Country of ref document: KR