WO2001017002A1 - Schichtstruktur für bipolare transistoren und verfahren zu deren herstellung - Google Patents

Schichtstruktur für bipolare transistoren und verfahren zu deren herstellung Download PDF

Info

Publication number
WO2001017002A1
WO2001017002A1 PCT/DE2000/002491 DE0002491W WO0117002A1 WO 2001017002 A1 WO2001017002 A1 WO 2001017002A1 DE 0002491 W DE0002491 W DE 0002491W WO 0117002 A1 WO0117002 A1 WO 0117002A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
emitter
emitter layer
partially
bipolar transistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/DE2000/002491
Other languages
German (de)
English (en)
French (fr)
Inventor
Dietmar KRÜGER
Thomas Morgenstern
Karl-Ernst Ehwald
Eberhard Bugiel
Bernd Heinemann
Dieter Knoll
Bernd Tillack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut fuer Halbleiterphysik GmbH
IHP GmbH
Original Assignee
Institut fuer Halbleiterphysik GmbH
IHP GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut fuer Halbleiterphysik GmbH, IHP GmbH filed Critical Institut fuer Halbleiterphysik GmbH
Priority to JP2001520454A priority Critical patent/JP2003528443A/ja
Priority to EP00958187A priority patent/EP1212786B1/de
Publication of WO2001017002A1 publication Critical patent/WO2001017002A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D10/00Bipolar junction transistors [BJT]
    • H10D10/01Manufacture or treatment
    • H10D10/021Manufacture or treatment of heterojunction BJTs [HBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D10/00Bipolar junction transistors [BJT]
    • H10D10/80Heterojunction BJTs
    • H10D10/821Vertical heterojunction BJTs
    • H10D10/891Vertical heterojunction BJTs comprising lattice-mismatched active layers, e.g. SiGe strained-layer transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2205Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities from the substrate during epitaxy, e.g. autodoping; Preventing or using autodoping

Definitions

  • the invention relates to a layer structure for bipolar transistors and a method for their production and a method for integrated circuits produced on this basis.
  • Si x Ge y C ⁇ - xy heterostructures with the parameters x, y in the range 0 ⁇ x, y ⁇ 1, lie, among other things, in their extreme speed, their low base resistances and improved noise behavior .
  • the technology for manufacturing integrated circuits using Si x GeyC ⁇ -x -y / Si HBT's is compatible with the widely established mass technology for integrated circuits based on silicon.
  • the advantages listed make fast transistors based on Si x Ge y C ⁇ -xy layer structures a preferred variant for highly integrated circuits with use in modern telecommunications.
  • the base of the transistor structure is made from Si x Ge y C ⁇ -x . y , Si x Ge ⁇ -x layers with thicknesses of sometimes less than 20 nm.
  • the perfection of the grown epitaxial layers and the interfaces that arise during the layer deposition is a prerequisite for a high yield of good transistors and circuits and for the correct functioning of the corresponding circuits.
  • the problem of poly-Si emitter layers on silicon for the production of bipolar transistors has recently been increasingly investigated. In order to achieve sufficient current amplification in the manufacture of the vertical structures, oxygen-contaminated interfaces with increased emitter resistances were accepted [JS Hamel, DJ Roulston, CR Selvakumar. IEEE Electron Device Letters, 13 (6), 332 (1992)].
  • the Si layer forming the emitter and emitter connection is designed according to the prior art both for silicon, Si homostructures and in Si / Si / Si x Ge y C ⁇ -xy / Si hetero structures as a polycrystalline Si layer, as described in many publications [for example in JD Cressler, IEEE Electron Device Lett, 17, 13 (1996), D. Knoll et al., IEDM Techn. Dig., 703 (1998)]
  • the invention is based on the object of proposing a layer structure for bipolar transistors with the aid of which the electrical properties and the homogeneity of bipolar transistors are improved.
  • the base current behavior is to be improved and the noise is to be reduced, and a method for producing bipolar transistors with such a layer Structure are shown, with the help of which it is possible to manufacture integrated circuits with such bipolar transistors with good yield and reproducibility.
  • the vertical structure of the transistors contains a partially monocrystalline emitter layer, which turns into a polycrystalline and / or amorphous layer above an epitaxial, single-crystal growth layer and the partially single-crystalline emitter layer locally in the vertical structure of the transistor thin oxide and / or nitride layers.
  • the partially monocrystalline emitter layer is deposited on a Si x Ge y C ⁇ -xy cover layer, a Si buffer layer and a silicon substrate with the parameters x, y in the range 0 ⁇ x, y ⁇ 1.
  • the interface between the partially monocrystalline emitter layer and the substructure is characterized by a low oxygen contamination with an oxygen dose of less than 1 x 10 15 cm ⁇ 2 .
  • At least part of the electrically active zone of the partially monocrystalline emitter layer is formed by a Si x Ge y CC -x-> cover layer with the parameters x, y in the range 0 ⁇ x, y ⁇ 1.
  • the method according to the invention for producing the layer structure for Si-based bipolar transistors is based on the fact that
  • a doping gas is supplied during the cooling to the layer growth temperature and that
  • the partially monocrystalline emitter layer is advantageously applied in a multi-disk reactor by means of chemical vapor deposition at low pressure.
  • the partially monocrystalline emitter layer is preferably formed by a doped Si x Ge ,, C ⁇ -xy layer with the parameters x, y in the range 0 ⁇ x, y ⁇ 1.
  • the samples are subjected to an intensive nitrogen purge of at least 15 minutes in a cold CVD reactor without pre-tempering the CVD system in hydrogen-containing gases.
  • the layer structure is subjected to further technological sub-steps, such as, for example, oxidations, implantations, etching, partial sub-steps.
  • the monocrystalline growth of the partially monocrystalline Si emitter layer is maintained until the end of the layer deposition, so that there is no changeover to polycrystalline / amorphous growth.
  • the doping element for the partially monocrystalline emitter layer is As and / or P.
  • At least one emitter dopant is introduced during the CVD deposition process. The emitter dopant is advantageously introduced during the cooling process and before the silane addition to grow the partially monocrystalline emitter layer.
  • a homogeneously doped partially single-crystal emitter layer or alternatively doped and undoped regions of the partially single-crystal emitter layer to increase the growth rate are deposited.
  • the partially monocrystalline emitter layer is applied to Si substrate wafers.
  • the partially crystalline emitter layer is coated on commercial Si substrate wafers or on commercial "silicon-on-insulator” (SOI) wafers and Si wafers with homoepitaxial layers and Si base structures and Si formed in accordance with the prior art - Collector structures applied.
  • SOI silicon-on-insulator
  • the partially-single-crystal emitter is in layer of the heterostructure Si - emitter / Si / Si y C ⁇ -y / Si substrate for use.
  • the partially crystalline emitter layer comes in three-component material systems of the type Si - emitter / Si / Si x Ge y C ⁇ -xy , Si x Ge y O ⁇ - ⁇ -y , with the parameters x, y in the range 0 ⁇ x , y ⁇ 1, are used on Si substrates.
  • a silicon wafer is provided with a layer stack for a heterobipolar transistor which is produced according to the prior art.
  • the layer stack consists of a doped Si buffer layer 2 directly on the Si substrate 1 for forming the collector, an Si x Ge y C ⁇ -x- layer 3 with the parameters x, y in the range 0 ⁇ x, y ⁇ 1, to form the base, an epitaxial Si cover layer 4 and a polycrystalline silicon layer to form the emitter 5.
  • the critical interface 6 between the Si emitter layer 5 and the epitaxial Si cover layer 4 is contaminated with oxide residues and / or strong oxygen contamination in a layer production according to the prior art.
  • the polycrystalline emitter layer can also be formed by a Si x Ge- ⁇ layer. Outside of the section shown, the layer deposition as a polycrystalline layer can also take place via nitride or oxide layers produced according to the prior art or over other layer structures.
  • 1b schematically shows the same layer stack produced according to the solution according to the invention, in which the interface 6 is only contaminated to a small extent by acid.
  • Concentrations of substance of preferably less than 1 x 10 5 cm ⁇ is characterized and in which after initially epitaxial, single-crystalline growth of the Si emitter layer 5 in later growth stages, crystallographic defects arise which only form a significant distance with the formation of a further interface 7 in polycrystalline growth the Si emitter layer 5 end.
  • Fig.lc shows the borderline case of a completely single-crystal emitter layer 5, as can be produced, for example, in growth in ultra-high vacuum (UHV) systems for molecular beam epitaxy (MBE) or at high temperatures and / or in extremely clean normal pressure and low pressure CVD systems.
  • UHV ultra-high vacuum
  • MBE molecular beam epitaxy
  • 2b shows a transmission electron micrograph of a cross section through the partially monocrystalline emitter layer 5 with the two interfaces 6 and 7 the success of the method for producing transistors with a partially monocrystalline emitter layer 5.
  • a commercial, industry-compatible LP-CVD system with a large wafer capacity, for example of more than 50 wafers per process, originally specified for deposition of polycrystalline silicon, can be used for the production of the vertical transistor structure according to the invention.
  • the preceding technological steps in transistor production as well as the lateral structure of the transistor correspond to the state of the art.
  • the method according to the invention is used for the production of the vertical layer sequence in the transistor structure, in particular the production of the partially monocrystalline emitter layer 5.
  • the wafer is cleaned on the Basis of solvents containing hydrofluoride. The storage time of the samples after the etching is limited to less than one hour without special surface passivation.
  • the solution according to the invention can also be used in CVD systems without a wafer lock, which avoids the ventilation of the overall system.
  • the plant is subjected, according to the invention, to an intensive nitrogen purge of at least 15 minutes in a cold reactor.
  • the invention can be used to cool the growth temperature in the range from 450 ° C. to 700 ° C., preferably 550 ° C., the doping gas is switched on for the in-situ doping of the layer, preferably with arsenic or phosphorus.
  • the oxygen contamination of the boundary surface 6 between the emitter layer 5 and the silicon substrate 1 and the Si cap layer 4 is achieved according to a built-oxygen dose of less than 5 x 10 cm ", preferably less than
  • the advantages of the method according to the invention can be seen.
  • the almost perfect interface 6 enables homogeneous diffusion and a low contact resistance.
  • the low surface roughness of the emitter contact which is significantly lower than in the case of polycrystalline emitter layers with large grains produced in accordance with the prior art, can also be seen in FIG. 2 (b).
  • the layer deposition can initially be substantially shortened with the same layer thickness after initially growing single-crystal. This leads to a shortening of the entire technological process.
  • the deposition of the in-situ doped emitter layers 5 can save subsequent implantations for emitter doping.
  • Another advantage of the invention is that the lack of the contaminated interface homogenizes the diffusion of the dopant, which is also reflected in an improvement in the electrical parameters.
  • the solution according to the invention opens up the possibility of starting the growth process with a selective, epitaxial deposition, this layer initially depositing only in the open windows which are not covered with oxide. The difference in height between the Si surface and the oxide surface is reduced. It is only when the polycrystalline silicon is turned over in the open windows that non-selective layer growth begins on the entire wafer.
  • the solution according to the invention also enables the creation of a corresponding layer structure on "silicon on insulator” (SOI) wafers.
  • SOI silicon on insulator
  • the transistor according to the invention with the partially monocrystalline emitter layer 5 and the method for its production enable use in modern Si x Ge y C ⁇ -xy technologies, with the parameters x, y in the range 0 ⁇ x, y ⁇ 1, which is perspective for the Manufacture of modern highly integrated circuits for mobile communication are provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Bipolar Transistors (AREA)
PCT/DE2000/002491 1999-08-26 2000-07-28 Schichtstruktur für bipolare transistoren und verfahren zu deren herstellung Ceased WO2001017002A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001520454A JP2003528443A (ja) 1999-08-26 2000-07-28 バイポーラトランジスタの層状構造体およびその製造法
EP00958187A EP1212786B1 (de) 1999-08-26 2000-07-28 Schichtstruktur für bipolare transistoren und verfahren zu deren herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19940278A DE19940278A1 (de) 1999-08-26 1999-08-26 Schichtstruktur für bipolare Transistoren und Verfahren zu deren Herstellung
DE19940278.7 1999-08-26

Publications (1)

Publication Number Publication Date
WO2001017002A1 true WO2001017002A1 (de) 2001-03-08

Family

ID=7919533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/002491 Ceased WO2001017002A1 (de) 1999-08-26 2000-07-28 Schichtstruktur für bipolare transistoren und verfahren zu deren herstellung

Country Status (4)

Country Link
EP (1) EP1212786B1 (enExample)
JP (1) JP2003528443A (enExample)
DE (1) DE19940278A1 (enExample)
WO (1) WO2001017002A1 (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12297562B2 (en) * 2021-12-17 2025-05-13 1)MIRISE Technologies Corporation Silicon carbide ingot including screw dislocations

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10160511A1 (de) * 2001-11-30 2003-06-12 Ihp Gmbh Bipolarer Transistor
DE10220578A1 (de) * 2002-05-08 2003-11-27 Infineon Technologies Ag Bipolartransistor
DE10317098A1 (de) 2003-04-14 2004-07-22 Infineon Technologies Ag Verfahren zur Herstellung eines Bipolartransistors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4563807A (en) * 1983-04-06 1986-01-14 Matsushita Electric Industrial Co., Ltd. Method for making semiconductor device utilizing molecular beam epitaxy to form the emitter layers
WO1998026457A1 (de) * 1996-12-09 1998-06-18 Institut für Halbleiterphysik Frankfurt (Oder) GmbH Silizium-germanium-heterobipolartransistor und verfahren zur herstellung der epitaktischen einzelschichten eines derartigen transistors

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640275A (en) * 1979-09-12 1981-04-16 Hitachi Ltd Preparation of semiconductor device
GB8708926D0 (en) * 1987-04-14 1987-05-20 British Telecomm Bipolar transistor
JPH02154429A (ja) * 1988-12-06 1990-06-13 Fujitsu Ltd 半導体装置
JP2860138B2 (ja) * 1989-03-29 1999-02-24 キヤノン株式会社 半導体装置およびこれを用いた光電変換装置
EP0543759A3 (en) * 1991-11-20 1993-10-06 International Business Machines Corporation A poly-emitter structure with improved interface control
US5321301A (en) * 1992-04-08 1994-06-14 Nec Corporation Semiconductor device
US5285083A (en) * 1992-04-27 1994-02-08 The University Of British Columbia Inverted heterojunction bipolar device having undoped amorphous silicon layer
DE4301333C2 (de) * 1993-01-20 2003-05-15 Daimler Chrysler Ag Verfahren zur Herstellung von Silizium-Germanium-Heterobipolartransistoren
JP2626535B2 (ja) * 1993-12-28 1997-07-02 日本電気株式会社 半導体装置
US5659197A (en) * 1994-09-23 1997-08-19 Vlsi Technology, Inc. Hot-carrier shield formation for bipolar transistor
JP3062065B2 (ja) * 1995-10-20 2000-07-10 日本電気株式会社 半導体装置の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4563807A (en) * 1983-04-06 1986-01-14 Matsushita Electric Industrial Co., Ltd. Method for making semiconductor device utilizing molecular beam epitaxy to form the emitter layers
WO1998026457A1 (de) * 1996-12-09 1998-06-18 Institut für Halbleiterphysik Frankfurt (Oder) GmbH Silizium-germanium-heterobipolartransistor und verfahren zur herstellung der epitaktischen einzelschichten eines derartigen transistors

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"National Technology Roadmap Semiconductors", SEMICONDUCTOR INDUSTRIES ASSOCIATION, 1997
ABDUL-RAHIM A I ET AL: "Improved control of polysilicon emitter interfacial oxide using a UHV-compatible LPCVD cluster tool", IEEE MTT/ED/AP/LEO SOCIETIES JOINT CHAPTER UNITED KINGDOM AND REPUBLIC OF IRELAND SECTION. 1997 WORKSHOP ON HIGH PERFORMANCE ELECTRON DEVICES FOR MICROWAVE AND OPTOELECTRONIC APPLICATIONS. EDMO (CAT. NO.97TH8305), IEEE MTT/ED/AP/LEO SOCIETIES JOINT C, 1997, New York, NY, USA, IEEE, USA, pages 232 - 236, XP002156028, ISBN: 0-7803-4135-X *
AGNELLO P D ET AL: "CONDITIONS FOR AN OXIDE-FREE SI SURFACE FOR LOW-TEMPERATURE PROCESSING: STEADY-STATE BOUNDARY", JOURNAL OF THE ELECTROCHEMICAL SOCIETY,US,ELECTROCHEMICAL SOCIETY. MANCHESTER, NEW HAMPSHIRE, vol. 139, no. 10, 1 October 1992 (1992-10-01), pages 2929 - 2934, XP000359004, ISSN: 0013-4651 *
HAMEL J S ET AL: "Trade-off between emitter resistance and current gain in polysilicon emitter bipolar transistors with intentionally grown interfacial oxide layers", IEEE ELECTRON DEVICE LETTERS, JUNE 1992, USA, vol. 13, no. 6, pages 332 - 334, XP002156027, ISSN: 0741-3106 *
LIPPERT G ET AL: "Optimized processing for differentially molecular beam epitaxy-grown SiGe(C) devices", PREPARATION AND CHARACTERIZATION,NL,ELSEVIER SEQUOIA, vol. 321, no. 1-2, 26 May 1998 (1998-05-26), pages 21 - 25, XP004147888, ISSN: 0040-6090 *
WEIR B E ET AL: "LOW-TEMPERATURE HOMOEPITAXY ON SI(111)", APPLIED PHYSICS LETTERS,US,AMERICAN INSTITUTE OF PHYSICS. NEW YORK, vol. 59, no. 2, 8 July 1991 (1991-07-08), pages 204 - 206, XP000230501, ISSN: 0003-6951 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12297562B2 (en) * 2021-12-17 2025-05-13 1)MIRISE Technologies Corporation Silicon carbide ingot including screw dislocations

Also Published As

Publication number Publication date
JP2003528443A (ja) 2003-09-24
DE19940278A1 (de) 2001-03-08
EP1212786A1 (de) 2002-06-12
EP1212786B1 (de) 2012-09-26

Similar Documents

Publication Publication Date Title
DE112010000953B4 (de) Verfahren zum Herstellen einer Siliziumkarbid-Halbleitervorrichtung
DE602004013163T2 (de) Verfahren zur Herstellung eines Germanium-On-Insulator-Wafers (GeOI)
DE102013204275B4 (de) Halbleiteranordnung
DE19510922A1 (de) Verfahren zur Herstellung eines Halbleiterbauelements, Verfahren zur Reinigung einer Kristalloberfläche eines Halbleiters sowie Halbleiterbauelement
EP1597770A1 (de) Bipolartransistor mit verbessertem basis-emitter- bergang und verfahren zur herstellung
DE69517629T2 (de) Verfahren zur selektiven Herstellung von Halbleitergebieten
EP1625614B1 (de) Verfahren zur herstellung eines bipolartransistors
WO2006061439A1 (de) Vertikaler bipolartransistor
DE102012100006A1 (de) Halbleiterbauelement und Herstellungsverfahren dafür
DE69520849T2 (de) Verfahren zur Herstellung eines bipolaren Transistors
DE102015204411B4 (de) Transistor und Verfahren zur Herstellung eines Transistors
EP1497855B1 (de) Verfahren zur herstellung einer oder mehrerer einkristalliner schichten mit jeweils unterschiedlicher gitterstruktur in einer ebene einer schichtenfolge
EP1212786A1 (de) Schichtstruktur für bipolare transistoren und verfahren zu deren herstellung
EP1148544A1 (de) Verfahren zum Dünnen eines Substrats
US5610411A (en) Silicon carbide bipolar semiconductor device with birdsbeak isolation structure
DE3512841A1 (de) Heterouebergang-bipolartransistor mit planarstruktur und verfahren zu seiner herstellung
EP2130214B1 (de) Selektives wachstum von polykristallinem siliziumhaltigen halbleitermaterial auf siliziumhaltiger halbleiteroberfläche
EP1701386B1 (de) Verfahren zur Integration von zwei Bipolartransistoren in einem Halbleiterkörper, Halbleiteranordnung in einem Halbleiterkörper und Kaskodenschaltung
DE102005036551A1 (de) Siliziumkarbid-Halbleitervorrichtung und Herstellungsverfahren davon
DE2540901C2 (de) Verfahren zur Herstellung eines Halbleiterbauelements hoher Leistung
DE4440072C1 (de) Verfahren zur Herstellung einer vergrabenen monokristallinen Siliziumcarbidschicht
DE19840866A1 (de) Verfahren zur Dotierung der externen Basisanschlußgebiete von Si-basierten Einfach-Polysilizium-npn-Bipolartransistoren
DE10249897B4 (de) Selbstjustierendes Verfahren zur Herstellung eines Transistors
DE4139159C2 (de) Verfahren zum Diffundieren von n-Störstellen in AIII-BV-Verbindungshalbleiter
EP1474826B1 (de) Polysilizium-bipolartransistor und verfahren zur herstellung desselben

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000958187

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10069262

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000958187

Country of ref document: EP