WO2001016965A1 - Materiau isolant, enroulement electrique et leur procede de fabrication - Google Patents

Materiau isolant, enroulement electrique et leur procede de fabrication Download PDF

Info

Publication number
WO2001016965A1
WO2001016965A1 PCT/JP1999/004640 JP9904640W WO0116965A1 WO 2001016965 A1 WO2001016965 A1 WO 2001016965A1 JP 9904640 W JP9904640 W JP 9904640W WO 0116965 A1 WO0116965 A1 WO 0116965A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insulating material
resin
filler
amount
Prior art date
Application number
PCT/JP1999/004640
Other languages
English (en)
French (fr)
Inventor
Tomoya Tsunoda
Mitsuru Onoda
Shigeo Amagi
Tatsuo Honda
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to KR10-2001-7011027A priority Critical patent/KR100428888B1/ko
Priority to CNB998167185A priority patent/CN1215490C/zh
Priority to JP2001520423A priority patent/JP4103390B2/ja
Priority to CNB200410064112XA priority patent/CN1317719C/zh
Priority to DE69941734T priority patent/DE69941734D1/de
Priority to PCT/JP1999/004640 priority patent/WO2001016965A1/ja
Priority to EP99940525A priority patent/EP1220240B1/en
Publication of WO2001016965A1 publication Critical patent/WO2001016965A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/60Composite insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/04Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances mica
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/40Windings characterised by the shape, form or construction of the insulation for high voltage, e.g. affording protection against corona discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/223Heat bridges

Definitions

  • Insulating material Insulating material, electric winding and manufacturing method
  • the present invention relates to an insulating material for forming main insulation of an electric machine winding, a rotating electric machine winding, and a method of manufacturing the same.
  • the insulation coating of the electric winding used in the rotating electric machine has a my-force layer, a reinforcing material layer, and a filler layer having a filler with high thermal conductivity, and the insulating layer contains a thermosetting resin.
  • Japanese Patent Application Laid-Open No. 63-110929 discloses a method of producing a conductor bundle by applying the same to a conductor bundle. This insulating material is wound around the outer periphery of the winding conductor bundle, and the resin in the insulating material is heated and hardened while applying pressure to form an insulative coating of the electric motor winding.
  • the conductor side is wrapped with the above-mentioned force and reinforcing material insulating material, and the insulating material layer is impregnated with a thermosetting resin composition containing fine granular inorganic fillers, and then applied. Pressure and heat cure.
  • a thermosetting resin composition containing a filler is impregnated or applied to my foil before winding a mica foil with a reinforcing material around a conductor bundle.
  • Japanese Patent Application Laid-Open No. 55-53802 discloses an insulating material in which a synthetic fiber filter and an inorganic powder having a high thermal conductivity are mixed into a laminated sheet and a thermosetting resin is impregnated.
  • This publication also describes, as a comparative example, an insulating sheet in which a glass cloth is bonded to a laminated mica foil with an epoxy resin. Disclosure of the invention There is no problem when the electric winding formed by using the insulating material as described above is used for a rotating electric machine operated at a low voltage. However, when used in rotating electrical machines that operate at high voltages, such as commercial generators and high-voltage motors, electrical characteristics may be problematic due to electrical defects. The present inventor has investigated the causes of electrical defects in insulating materials.
  • the insulating coating is wound around the conductor bundle of the electric motor winding, and this is pressed and formed, the uncured thermosetting resin existing in the my-force layer, the reinforcing material layer, and the filler layer is formed. It was found that some of the microbubbles contained were not discharged together with some of the contained resin, but remained in the insulating material. The reason for this is that the insulating coating of the electric winding is hardened by pressure molding because the resin content in each of the my-force layer and the filler layer in the pre-prepared state is not maintained at an appropriate content. During the process, it was found that the flow of the impregnated resin was insufficient or the flow of the resin was uneven.
  • An object of the present invention is to provide an insulating material capable of obtaining an insulating coating of an electric winding excellent in electric characteristics and an electric winding having an insulating coating excellent in electric characteristics.
  • 1 (a) and 1 (b) are cross-sectional views showing the material structure of a high heat conductive insulating tape according to an example of the present invention.
  • FIG. 2 is a perspective view showing the structure of the electric winding of the embodiment of the present invention.
  • FIG. 3 is a perspective view for explaining one manufacturing process of the electric winding according to the embodiment of the present invention.
  • FIG. 4 is a sectional view showing the structure of the rotating electric machine according to the embodiment of the present invention.
  • FIG. 5 is a sectional perspective view showing the structure of the stator shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • a flaky inorganic insulating layer such as a scaly My force, a reinforcing material layer of the inorganic insulating layer, and the reinforcing material layer and a flaky inorganic insulating layer, or the reinforcing material
  • the present invention provides an insulating material in which the resin content of the filler layer is 10 to 25% by weight based on the total weight of the insulating material, and the difference is 10% by weight or less.
  • the flaky inorganic insulator is a flaky inorganic insulating material, for example, a my-force, and a my-force layer in which this is arranged in a substantially constant direction by a thermosetting resin is a winding or a coil. This is a withstand voltage layer that ensures electrical insulation of the
  • the reinforcing material layer laminated adjacent to the inorganic insulating layer is, for example, a fibrous insulating material such as a glass cloth or a film such as a polyimide film, and particularly the mechanical strength of the insulating material in the two-dimensional direction.
  • the filler layer preferably comprises an inorganic filler having a thermal conductivity of at least 5 WZ m ⁇ K and fibers or short fibers, in particular 1 to 80% by weight of the inorganic filler, in particular 2 to 50% by weight. It is effective to use a spherical filler.
  • the dispersibility of the filler in the resin is improved, and the resin composition flows properly when the insulating tape is wound around a conductor bundle and pressed. Shows sex. Thereby, the air bubbles in the wound insulating tape can be discharged from the insulating layer together with the resin.
  • the size of the particulate filler or foil filler is preferably from 0.1 to 20 microns, particularly from 0.2 to 10 microns in average particle size. If the particle size is too small, when the insulating material layer wound around the conductor bundle is pressure-cured, the viscosity of the thermosetting resin becomes high, and the flowability of the resin becomes poor. Particle size is too large When the insulating layer is pressed, the mica pieces may be damaged.
  • the particle size of the spherical filler is preferably larger than that of the amorphous filler. This is because the irregular filler enters the gap between the spherical fillers and increases the thermal conductivity of the filler layer.
  • a filler powder such as quartz powder, alumina, titanium oxide, or silicon dioxide is blown into a flame to partially melt the surface and slightly round the shape of the powder. It is tinged. Its shape need not be a true sphere. Good flowability in resin compared to untreated powder. By using a combination of the random filler powder and the spherical filler, the flowability of the thermosetting resin is appropriately maintained.
  • the my-force layer that is preferable as an inorganic insulator is a layer having a my-force foil in which small pieces of my-power are assembled.
  • small pieces of scaly my strength are made into a sheet (aggregate my strength) by a papermaking method or the like, and this is impregnated with a thermosetting resin.
  • the mica pieces are stacked and aligned almost parallel to the two-dimensional direction of the tape and joined by a thermosetting resin.
  • the reinforcing material layer is a reinforcing material, for example, glass cloth.
  • a reinforcing material for example, glass cloth.
  • impregnate a thermosetting resin varnish In order to attach this to the my layer, impregnate a thermosetting resin varnish, apply it to mica foil, and semi-harden the resin.
  • Woven or non-woven fabric is used for glass cloth, but woven fabric is suitable.
  • the thickness of the glass cloth is arbitrary, but is preferably about 0.04 to 0.1 mm.
  • the filler layer has a thermal conductivity of at least 5 WZ m «K, such as alumina, polon nitride, magnesium oxide, aluminum nitride, magnesium fluoride, silicon dioxide, aluminum fluoride. It is made by dispersing and filling highly thermoconductive inorganic particles such as in thermosetting resin. As the filler, foil-like alumina or the like can also be used. Inorganic particles are especially used in windings of rotating electrical machines. It is a heat conductive layer that has the role of transmitting generated heat and dissipating it to the outside. In particular, inorganic fillers having a thermal conductivity of 30 W / m ⁇ K or more, such as alumina and boron nitride, are preferred.
  • the inorganic filler can be present not only in the filler layer but also in the mesh of the cloth in the reinforcing layer. It is preferred that 1 to 80% by weight of the inorganic fillers use spherical fillers. When an appropriate spherical filler is used, the dispersibility of the non-spherical filler in the resin is improved, and the resin exhibits appropriate flowability when the insulating material layer is subjected to pressure molding and curing, and is included in the insulating material layer. The fine bubbles generated are discharged out of the mold together with the resin.
  • the insulating material contains a resin, for example, a thermosetting resin such as an epoxy resin, an unsaturated polyester resin, an alkyd resin, a melamine resin, or a polyimide resin, and the total resin amount is based on the weight of the entire insulating material. Thus, it is 20 to 50% by weight.
  • the amount of resin in the my layer and the amount of resin in the filler layer are each adjusted to be 10 to 25% by weight of the entire insulating material.
  • the reason why the amount of the resin in each of the my force layer and the filler layer is set to 10% by weight or more of the whole insulating material is as follows.
  • This insulating material is used in the form of a pre-reader. That is, the thermosetting resin impregnated or applied to the my-force layer, the reinforcing material layer, and the filler layer is semi-cured, and is brought into the B stage (a state in which it does not stick during handling).
  • the content exceeds 25% by weight, the workability of the insulating material applied to the wound conductor is reduced, the insulating material becomes wrinkled, and a good insulating layer cannot be formed.
  • the amount of filler is relatively short, and the thermal conductivity of the insulating material is also reduced.
  • the amount of resin in the reinforcing material layer is calculated by including it in the amount of resin in the my layer, and the insulating material according to the present invention is composed of the amount of resin in the my layer and the amount of resin in the filler layer.
  • the difference was set to 10% by weight or less, particularly 5% by weight or less. Most preferably, the resin amounts of both layers are substantially equal.
  • the difference between the amount of resin in the my layer and the amount of resin in the filler layer is set to 10% by weight or less. If the difference between the amount of resin in the my layer and the amount of resin in the filler layer exceeds 10% by weight, it must be discharged to the outside during the pressurization process during the formation of the insulation coating on the electric winding.
  • the amount of resin present in the reinforcing material is about 7% by weight or less, and generally 3 to 5% by weight, based on the weight of the insulating material.
  • the electric winding according to the present invention has a withstand voltage layer, a reinforcing material layer, and a heat conductive layer, and has a resin amount in each of the withstand voltage layer and the heat conductive layer of 10 to 25% by weight of the entire insulating material.
  • An insulating coating was formed using the insulating material described above.
  • the withstand voltage layer is a my strength layer having mica foil.
  • the reinforcing material layer is a layer having a reinforcing material, for example, glass cloth or polyimide film.
  • the heat-conducting layer is filled with at least SWZ ni ⁇ K thermal conductivity filler, for example alumina It is a material layer.
  • Each layer contains a thermosetting resin, for example, an epoxy resin.
  • the total amount of resin is 20 to 50% by weight of the whole insulating material.
  • the amount of resin contained in each of the My layer and the filler layer is 10 to 25% by weight of the whole insulating material. It has become.
  • the insulating material of the present invention is formed into a tape shape or a sheet shape, and is densely overlapped and wound around a conductor bundle subjected to wire insulation to form an insulating layer having a desired thickness. This is placed in an unsealed mold, and the thermosetting resin in the tape or sheet is pressurized and heat-cured. At this time, a part of the resin is extruded from the insulating layer together with the bubbles. For this reason, a non-closed mold is preferred for the mold.
  • the ideal amount of resin in the tape or sheet is 25 to 40% by weight, and the amount of thermosetting resin finally remaining in the main insulating layer is preferably 20 to 40% by weight of the main insulating layer. 30% by weight. In particular, 28 to 32% by weight is preferred.
  • the electric wire loop manufactured in this way is inserted into a stator or a slot of the rotor of the rotating electric machine, and a coil end portion, a slot insulation, and a retaining ring insulation are applied to manufacture the intended rotating electric machine.
  • the insulating layer formed on the conductor bundle can obtain extremely excellent electrical characteristics, for example, an AC breakdown voltage of 26.5 to 29.0 kV Zmni.
  • FIG. 4 is a cross-sectional view of a rotating electric machine to which the present invention is applied
  • FIG. 1 is a sectional perspective view of a stator of a rotating electric machine to which the present invention is applied.
  • the stator 30 is supported by the stator frame 100.
  • the winding 9 manufactured according to the present invention is inserted into the slot 50 of the stator.
  • the rotor 60 is rotatably supported on the stator frame 100 by a bearing 20.
  • the winding 9 inserted into the stator slot 50 is fixed in the wrist slot by the springs 60, 90 and the edge 80.
  • the material structure of the high thermal conductive insulating tape 1 (high thermal conductive pre-prepared tape) according to the embodiment of the present invention will be described with reference to FIG. 1 (a).
  • 3 withstand voltage layer
  • a reinforcing material layer 5 having a glass cloth 4
  • a high thermal conductive filler layer 7 (a thermal conductive layer) having an alumina particle body 6 in this order.
  • the laminated body may be laminated in the order of the high thermal conductive filler layer 7, the my force layer 3, and the reinforcing material layer 5. .
  • the high heat conductive insulating tape 1 contains the resin 8 in each of the my force layer 3, the reinforcing material layer 5, and the high heat conductive filler layer 7, and the total amount of the resin 8 contained is high heat conductive insulating tape. 1 31.4% by weight of the whole.
  • the amount of resin 8 contained in the my force layer 3 was 12.9% by weight of the entire high thermal conductive insulating tape 1, and the amount of resin 8 contained in the high thermal conductive filler layer 7 was high thermal conductive insulating tape. It is 15.0% by weight of the whole group. Therefore, the amount of resin in the glass cloth layer is 3.5% by weight.
  • This high heat conductive insulating tape 1 was manufactured as follows. First, a laminated mica foil 2 (weight 16.5 ⁇ 01 2 ) and a glass cloth 4 (weight 35 g Zm 2 ) were prepared by paper-making my particles dispersed in water into a paper machine. These Nopora click type epoxy resin 1 0 0 parts by weight of impregnating the BF 3 Monoechi Rua Mi down 3 comprising adding parts by weight of the resin 8 (impregnation amount 8 5 g Z m 2), bonded to assembled Mai force A sheet (laminate of my strength layer 3 and reinforcing material layer 5) was obtained.
  • the alumina particles member 6, the resin 8 comprising the addition of BF 3 Monoechirua Mi emissions 3 parts by weight with respect to Nopora click type Epokishi resin 1 0 0 parts by weight, the weight ratio of the alumina particles member 6 and the resin 8 2: 1 and 10% by weight of methyl ethyl ketone was added thereto, and the coating amount of the reinforcing material layer 5 on the side of the laminated sheet was coated with a roll coater with a coating amount of 256 g Zm 2. It was applied to be. After that, methylethyl ketone was volatilized and removed in a drying oven to obtain a high thermal conductive insulation sheet. Thereafter, the high thermal conductive insulating sheet was slit to a width of 30 mm using a slitter to obtain a high thermal conductive insulating tape 1.
  • the electric winding 9 is formed by winding a plurality of insulated conductors 10a. And a high thermal conductive insulating coating 11 formed on the outer periphery of the winding conductor 10.
  • This electric winding 9 was manufactured as follows. First, as shown in FIG. 2, a plurality of insulated conductors 10a were wound a plurality of times to form a winding conductor 10. After that, the high heat conductive insulating tape 1 shown in Fig. 1 (a) was partially overlapped and wound around the outer periphery of the winding conductor 10.
  • the high thermal conductive insulating tape 1 may have the winding layer 10 on either side of the my thermal layer 3 or the high thermal conductive filler layer 7, but in this embodiment, the my thermal layer 3 side was placed on the winding conductor 10 side, and the high thermal conductive insulating tape 1 was wound around the outer periphery of the winding conductor 10.
  • the high thermal conductive insulating tape shown in FIG. 1 (b) is used, either the reinforcing material layer 5 or the high thermal conductive filler layer 7 may be on the winding conductor 10 side.
  • a release tape 12 was wrapped around the outer periphery of the high thermal conductive insulating tape 1.
  • the release tape 12 is wrapped around the outer periphery of the conductive insulating tape 1 is to prevent adhesion between a molding jig described later and the high thermal conductive insulating tape 1.
  • a forming jig 13 having heating and pressurizing means (not shown) was attached, and an external force was applied from the outer surface through the forming jig 13. Then, while discharging the minute air bubbles contained in the high thermal conductive insulating tape 1 together with a part of the resin in the high thermal conductive insulating tape 1, it is heated at a predetermined temperature and is heated.
  • the resin 8 of No. 1 was cured to form a high thermal conductive insulating coating 11 to obtain an electric motor winding 9.
  • the electric motor winding 8 of the present embodiment manufactured in this way is housed in a core slot of a rotating electric machine such as a generator or a motor.
  • the results of the AC breakdown voltage test of the electric winding of the present example and the electric winding of the comparative example will be described based on Table 1.
  • an electric motor winding having high thermal conductive insulation formed of a high thermal conductive insulating tape manufactured as follows was used as follows.
  • the production of the high thermal conductive insulating tape is as follows. First, laminated mica foil 2 (weight 16.5 g / m 2 ) and glass cross 4 (weight 35 gZm 2 ) were prepared by paper-making my particles dispersed in water into a paper machine.
  • the Nopora click type epoxy resin 1 0 0 parts by weight of impregnating the BF 3 mono Echirua Mi emissions 3 parts by weight of a composed resin (impregnated amount 4 0 gZm 2), bonded to assembled My power sheet (Mai A laminate of the force layer 3 and the reinforcing material layer 5) was obtained.
  • the coating amount becomes 2 3 0 g Z m 2 in the coater.
  • methylethyl ketone was volatilized and removed in a drying oven to obtain a high thermal conductive insulating sheet.
  • the high heat conductive insulating tape 1 was obtained by slitting the high heat conductive insulating sheet to a width of 30 mm with a slitter.
  • the total amount of resin in the tape was 19.3% by weight of the entire high thermal conductive insulating tape.
  • the amount of resin in the my-force layer was 7.1% by weight of the entire high thermal conductive insulating tape, and the amount of resin in the high thermal conductive filler layer was 10.4% by weight of the entire high thermal conductive insulating tape. Therefore, the resin content of the glass cross layer is 1.8% by weight.
  • an electric winding was manufactured using the high heat conductive insulating tape manufactured as described above.
  • the manufacturing method is the same as that of the present embodiment, and the description is omitted.
  • an aluminum foil was wound around the outer periphery of each of the electric winding of the present embodiment and the electric winding of the comparative example to form electrodes, and between the aluminum electrode of each electric winding and the winding conductor. The AC voltage was applied and the AC breakdown voltage was measured. The results were as shown in Table 1.
  • the electric winding of the present example is the same as that of the comparative example.
  • the AC breakdown voltage was higher than that of the wire. This is because the amount of resin in each of the My layer and the high thermal conductive filler layer is within the range of 10 to 25% by weight of the whole material.
  • the minute air bubbles contained in the high thermal conductive insulating tape are removed from the high thermal conductive insulating tape. This was because the resin could be sufficiently discharged together with a part of the resin. Therefore, the electric motor winding of the present embodiment has a dense high heat conductive insulating coating having excellent electrical characteristics, and can provide high reliability for a rotating electric machine operated at a high voltage.
  • the my powder was dispersed in water, and a 0.08 mm thick glass cloth having a thickness of 0.03 urn was used as a reinforcing material for the unfired laminated my strength of 0.08 mm formed by a paper machine.
  • Methylethyl ketone was mixed with the above resin composition in the mixing ratio shown in Table 2 with the random type filler powder and the spherical type filler. This composition was applied to the reinforcing material side of the above-mentioned force sheet with a mouth coater to obtain an insulating sheet.
  • This sheet was cut into a width of 320 nun to obtain a my-strength tape.
  • the above-mentioned Mycate is wound 7 times on a conductor bundle of 40 mm X 1 O mm X 100 mm in length which has been subjected to wire insulation treatment in advance, and it is 15 minutes at 110 ° C for 15 minutes. After heating, heating was performed at 170 ° C. for 60 minutes at a pressure of 5 Mpa to form an insulating material layer, thereby producing an insulated winding.
  • the difference between the amount of resin in the My force layer and the amount of resin in the filler layer is set to 10% by weight or less.
  • the minute air bubble contained in an insulating material can be fully discharged

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Insulating Bodies (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Description

明 細 書
絶縁材及び電機巻線とその製造法 技術分野
本発明は、 電機巻線の主絶縁を形成するための絶縁材及び回転電機巻 線とその製造方法に関する。 背景技術
回転電機に用いられる電機巻線の絶縁被覆を、 マイ力層, 補強材層及 び高熱伝導率の充填材を有する充填材層を有し、 それらの層が熱硬化性 樹脂を含有する絶縁材を導体束に施して製造することが特開昭 63— 1 1 0929号公報に記載されている。 この絶縁材を巻線導体束の外周部に巻 き、 これに圧力を掛けつつ絶縁材中の樹脂を加熱硬化し、 電機巻線の絶 緣被覆を形成する。 電気巻線を製造する際には、 導体側を上記マイ力, 補強材絶縁材で包み、 この絶縁材層に微細な粒状無機充填材を含む熱硬 化性樹脂組成物を含侵し、 その後加圧加熱硬化する。 なお、 補強材付き のマイカ箔を導体束に巻回する前に充填材入りの熱硬化性樹脂組成物を マイ力箔に含侵するか塗布する方法が記載されている。
特開昭 55— 53802 号公報には、 集成マイ力シートに合成繊維フィ プリ ッ トと高熱伝導性の無機粉末を混入し、 熱硬化性樹脂を含侵する絶縁材 が記載されている。 また、 この公報には、 比較例と して、 集成マイカ箔 にガラスクロスをエポキシ樹脂で貼り合わせた絶縁シートが記載されて いる。 発明の開示 前述のような絶縁材を用いて絶縁被覆を形成した電機巻線を低電圧で 運転される回転電機に使用した場合は、 問題がない。 しかし、 事業用発 電機や高圧電動機等のよう に高電圧で運転される回転電機に使用した場 合は、 電気的な欠陥によ り、 電気的特性が問題となる場合がある。 本発 明者は、 絶縁材の電気的な欠陥が生じる原因について究明した。 その結 果、 電機巻線の導体束に絶縁被覆を巻回し、 これを加圧, 形成する際、 マイ力層, 補強材層及び充填材層中に存在する未硬化の熱硬化性樹脂中 に含まれている微小な気泡の一部が、 含有する樹脂の一部と共に排出さ れず、 絶縁材中に残存していることが原因であると判った。 このよ う に なるのは、 プリ プレダ状態のマイ力層及び充填材層の各層中の樹脂量が 適切な含有量に保たれていないために、 電機巻線の絶縁被覆を加圧成形 硬化する過程において、 含浸樹脂の流れが不十分であるか、 または樹脂 の流れが偏っているためと判った。
本発明は、 電気的特性に優れた電機巻線の絶縁被覆を得ることができ る絶縁材及び電気的特性に優れた絶縁被覆を有する電機巻線の提供を目 的とする。 図面の簡単な説明
第 1 図 ( a ) 及び ( b ) は、 本発明の実施例の高熱伝導絶縁テープの 材料構造を示す断面図である。
第 2図は、 本発明の実施例の電機巻線の構造を示した斜視図である。 第 3図は、 本発明の実施例の電機巻線の一製作過程を説明するための 斜視図である。
第 4図は、 本発明の実施例の回転電機の構造を示した断面図である。 第 5図は、 第 4図の固定子の構造を示す断面斜視図である。 発明を実施するための最良の形態
本発明の実施態様によれば、 燐片状マイ力などの薄片状無機絶縁物層、 該無機絶縁物層の補強材層及び該補強材層と薄片状無機絶縁物層、 ある いは該補強材層に接着した充填材層を有し、 上記無機絶縁物層, 補強材 及び充填材層を結合する半硬化状態の熱硬化性樹脂を有し、 前記無機絶 縁物層の樹脂量と、 前記充填材層の樹脂量とがそれぞれ絶縁材全体の重 量を基礎と して 1 0 〜 2 5重量%であり、 その差が 1 0重量%以下であ る絶縁材を提供する。 上記絶縁材において、 薄片状無機絶縁物とは、 燐 片状無機絶縁材例えば、 マイ力であり、 これを熱硬化性樹脂によってほ ぼ一定の方向に配列したマイ力層は、 巻線あるいはコイルの電気的絶縁 を確保する耐電圧層である。
無機絶縁物層と隣接して積層された補強材層はたとえばガラスクロス などの繊維状絶縁材ぁるいはポリ イ ミ ドフ ィルムなどのフ ィルムで、 特 に絶縁材の二次元方向の機械的強度を確保する。 充填材層は好ま しく は、 熱伝導率 5 W Z m · K以上の無機充填材及びノ又は短繊維を含み、 特に 無機充填材のうち 1 ないし 8 0重量%、 特に 2ないし 5 0重量%を球形 充填材とするのが有効である。 適度の量の球形充填材が含まれると、 充 填材の樹脂への分散性が良好となり、 また絶縁テープを導体束に巻回し、 これを加圧成形する時に、 樹脂組成物が適切な流れ性を示す。 それによ リ、 巻回した絶縁テープ内の気泡を樹脂とともに絶縁層から排出するこ とができる。
粒状充填材又は箔状充填材 (アルミナなど) の大きさは、 平均粒径で、 0 . 1 〜 2 0 ミクロン、 特に 0 . 2 〜 1 0 ミクロンが好ま しい。 粒径が小 さすぎると、 導体束に巻回された絶縁材層を加圧硬化する時に、 熱硬化 性樹脂の粘度が高く なリ、 樹脂の流れ性が悪く なる。 粒径が大きすぎる と、 絶縁層を加圧成形する際に、 マイ カ片を傷める恐れがある。 一般に、 球形充填材の粒径は不定形充填材の粒形よ リ も大きいことが良い。 不定 形充填材が球形充填材の間隙に入リ込んで、 充填材層の熱伝導率を高め るからである。
球形充填材の製造法の一例と して、 石英粉, アルミナ, 酸化チタ ン, 二酸化珪素などの充填材粉末を火炎中に吹き込んで、 表面を一部溶融し て、 粉末の形状をやや丸みを帯びさせたものである。 その形状は真球で ある必要はない。 未処理の粉末と比べて、 樹脂中での流れ性が良い。 ラ ンダム形状の充填材粉末と球形充填材を組み合わせて使う こと によ り 、 熱硬化性樹脂の流れ性が適切に維持される。
無機絶縁物と して好ま しいマイ 力層は、 マイ力小片を集合したマイ 力 箔を有する層である。 特に燐片状マイ 力の小片を抄紙法等によ リ シ一 卜 (集成マイ 力) にし、 これに熱硬化性樹脂を含侵したものである。 マイ カ片はテープの二次元方向とほぼ並行に積層して整列され、 熱硬化性樹 脂によって結合される。
補強材層は、 補強材、 例えばガラスク ロスである。 これをマイ 力層に 貼り付けるため、 熱硬化性樹脂ワニスを含侵し、 マイカ箔に貼り付けた 後、 樹脂を半硬化させる。 ガラスク ロスは織布又は不織布が用いられる が、 織布が適している。 ガラスク ロスの厚さは任意であるが、 0 . 0 4 〜 0 . 1 mm程度が好ま しい。
充填材層は、 少な く とも 5 W Z m « Kの熱伝導率の充填材、 例えばァ ルミナ, 窒化ポロン, 酸化マグネシウム, 窒化アルミ ニウム, フ ッ化マ グネシゥム, 二酸化けい素, フ ッ化アルミ ニウム等の高熱伝導性無機粒 子を熱硬化性樹脂に分散, 充填したものである。 充填材と しては、 箔状 アルミナなども用いる ことができる。 無機粒子は特に回転電機の巻線に 発生する熱を伝達して外部に放散する役割を持っている熱伝導層である。 特に熱伝導率が 3 0 W / m · K以上の無機充填材例えばアルミナ, 窒化 ボロンなど、 が好ま しい。 無機充填材は充填材層のみに存在するのでは なく 、 補強材層中のクロスの網目内にも存在することができる。 無機充 填材のうち、 1 〜 8 0重量%が球形充填材を使用するのが好ま しい。 適 度の球形充填材を用いると、 非球形充填材の樹脂中での分散性が改善さ れ、 かつ絶縁材層の加圧成形硬化時に樹脂が適切な流れ性を示し、 絶縁 材層に含まれる微細な気泡を樹脂と共に成形型外に排出する。
絶縁材は、 樹脂、 例えばエポキシ樹脂, 不飽和ポリエステル樹脂, ァ ルキッ ド樹脂, メラミン樹脂, ポリイ ミ ド樹脂等の熱硬化性樹脂を含有 し、 その全樹脂量は、 絶縁材全体の重量を基準と して、 2 0〜 5 0重量 %である。 マイ力層の樹脂量と充填材層の樹脂量は、 それぞれ絶縁材全 体の 1 0〜 2 5重量%となるように調整する。
こ こで、 マイ力層と充填材層の各層中の樹脂量を絶縁材全体の 1 0重 量%以上とする理由は以下の通りである。 この絶縁材はプリ プレダの形 態で用いる。 即ち、 マイ力層, 補強材層及び充填材層に含侵あるいは塗 布されている熱硬化性樹脂を半硬化させて、 Bステージ (取り扱う際に 粘着しない状態) にしたものである。 電機巻線の絶縁被覆を形成する際、 導体束の回り に絶縁材のテープ又はシートを必要な絶縁耐カを得る層数 となるよう巻回し、 積層された絶縁材を加圧, 成形する過程において、 マイ力層, 補強材層及び充填材層の各層中に含まれている微小な気泡を 余分な樹脂と共に排出する。 気泡を樹脂と共に追い出し、 かつ絶縁性, 機械的強度を維持するのに必要な樹脂量を確保するために、 絶縁材重量 の 1 0重量%以上の樹脂をマイ力層と充填材層の各層に含有させること が必要である。 また、 マイ力層と充填材層の各層中の樹脂量を絶縁材全 体の 2 5重量%以下とする。 2 5重量%を超えると、 絶縁材を巻線導体 に施す際、 その作業性が低下し、 絶縁材が皺になってしまい、 良好な絶 縁層が形成できなく なるからである。 また、 充填材の量が相対的に不足 し、 絶縁材の熱伝導性も低下する。 特に、 マイ力層と充填材層のそれぞ れの樹脂量が 1 2 〜 1 8重量%となるよう に調整することが好ま しい。 この場合、 全樹脂量は絶縁材重量の 2 4 ~ 3 6重量%である。
なお、 補強材層中の樹脂量は、 マイ力層中の樹脂量に含めて計算する , また、 本発明に係る絶縁材は、 マイ力層中の樹脂量と充填材層中の樹 脂量との差を 1 0重量%以下、 特に 5重量%以下と した。 最も好ま しく は、 両層の樹脂量がほぼ等しい場合である。 こ こで、 マイ力層中の樹脂 量と充填材層中の樹脂量との差を 1 0重量%以下とする。 マイ力層中の 樹脂量と充填材層中の樹脂量との差が 1 0重量%を超えると、 電機巻線 の絶縁被覆の形成の際、 その加圧過程において、 外部に排出されるべき 微小な気泡を含んだ樹脂の一部が、 樹脂量の多い層から樹脂量の少ない 層に浸入して残留してしまうからである。 特に樹脂量の差が 5重量%以 下の時は、 他の層への樹脂の余分な流れ込みが殆どなく なる。 従って、 両層の樹脂量がほぼ等しい場合が最善である。
なお、 補強材例えばガラスクロス中に存在する樹脂量は、 絶縁材の重 量を基準と して約 7重量%以下で、 一般に 3 〜 5重量%である。
本発明に係る電機巻線は、 耐電圧層, 補強材層, 熱伝導層を有すると 共に、 耐電圧層, 熱伝導層の各層中の樹脂量を絶縁材全体の 1 0 ~ 2 5 重量%と した絶縁材を用いて絶縁被覆を形成したものである。 耐電圧層 は、 マイカ箔を有するマイ力層である。 補強材層は、 補強材、 例えばガ ラスクロス, ポリイ ミ ドフィルムを有する層である。 熱伝導層は、 少な く とも S W Z ni · Kの熱伝導率の充填材、 例えばアルミナを有する充填 材層である。 各層には、 熱硬化性樹脂、 例えばエポキシ樹脂を含有して いる。 全樹脂量は、 絶縁材全体の 2 0 〜 5 0重量%となっており、 マイ 力層及び充填材層のそれぞれが含有している樹脂量は、 絶縁材全体の 1 0〜 2 5重量%となっている。
本発明の絶縁材をテープ状又はシー ト状にして、 素線絶縁を施した導 体束の回りに密に重ね巻き して所望の厚さの絶縁層を形成する。 これを 非密閉型の成形型に入れて、 上記テープ又はシート中の熱硬化性樹脂を 加圧加熱硬化する。 この際、 樹脂の一部が気泡と共に絶縁層から押し出 される。 このため、 成形型は非密閉型が好ま しい。 理想的なテープ又は シ一トの樹脂量は 2 5〜 4 0重量%で、 最終的に主絶縁層に残留する熱 硬化性樹脂の量は、 好ま しく は主絶縁層の重量の 2 0 ~ 3 0重量%であ る。 特に 2 8 〜 3 2重量%が好ま しい。
巻線導体束の外周部にマイ力層又は充填材層のいずれかが巻線導体側 にく るように巻回する。 この後、 巻線導体に施した絶縁材の外周部に離 型材を施す。 この後、 成形治具を取り付け、 この成形治具を介して外表 面よ り外圧 (約 2 0 ~ 5 0 kg / cm2 ) と熱 (〜約 1 8 0 °C )を与える。 そ して、 絶縁材中に含まれている微小な気泡を、 絶縁材中の樹脂の一部と 共に排出しつつ、 絶縁材中の樹脂を硬化して絶縁被覆を形成する。 この よう にして製造した電機線輪を回転電機の固定子又は回転子のスロッ ト に揷入し、 コイルエン ド部, スロッ ト絶縁, リテニングリ ング絶縁を施 して目的の回転電機を製造する。
本発明によれば、 導体束に形成した絶縁層は非常に優れた電気的特性、 例えば、 2 6 . 5 ~ 2 9 . 0 k V Zmniの交流絶縁破壊電圧を得る事ができ る。
第 4図には、 本発明が適用される回転電機の断面図が示され、 第 5図 には本発明が適用された回転電機の固定子の断面斜視図を示す。 図にお いて、 固定子枠 1 0 0によって固定子 3 0 を支持する。 固定子のスロッ ト 5 0には本発明によって製造した巻線 9 を挿入する。 回転子 6 0にお いても同様である。 回転子 6 0は固定子枠 1 0 0 に軸受 2 0によ り回転 可能に支持する。 固定子スロッ ト 5 0に揷入された巻線 9は、 ばね 6 0, 9 0及びゥエッジ 8 0 によ リスロッ ト内に固定される。
(実施例 1 )
以下、 本発明の実施例を図面に基づいて説明する。 本発明の実施例の 高熱伝導絶縁テープ 1 (高熱伝導プリ プレダテープ) の材料構造を第 1 図 ( a ) に基づいて説明すると、 高熱伝導絶縁テープ 1 は、 集成マイ力 箔 2 を有するマイ力層 3 (耐電圧層) , ガラスクロス 4を有する補強材 層 5, アルミナ粒子体 6 を有する高熱伝導充填材層 7 (熱伝導層) の順 に積層した積層体を有している。 尚、 積層体は、 第 1 図 ( b ) のように、 高熱伝導充填材層 7 , マイ力層 3 , 補強材層 5の順に積層されていても よい。 .
また、 高熱伝導絶縁テープ 1 は、 マイ力層 3, 補強材層 5, 高熱伝導 充填材層 7の各層に樹脂 8 を含有しており、 含有している樹脂 8の全量 は、 高熱伝導絶縁テープ 1全体の 3 1 . 4 重量%である。 マイ力層 3に 含有している樹脂 8の量は、 高熱伝導絶縁テープ 1全体の 1 2. 9 重量 %、 高熱伝導充填材層 7 に含有している樹脂 8の量は、 高熱伝導絶縁テ ープ 1全体の 1 5. 0 重量%である。 従って、 ガラスクロス層中の樹脂 量は 3. 5重量%である。
この高熱伝導絶縁テープ 1 を、 次のよう にして製作した。 まず、 水中 分散したマイ力粒子を抄紙機にょ リ抄造して製作した集成マイカ箔 2 (重さ 1 6 5 § 012 ) ,ガラスクロス 4 (重さ 3 5 g Zm2 ) を用意し、 これらにノポラ ック型エポキシ樹脂 1 0 0重量部に対し B F 3 モノェチ ルァ ミ ン 3重量部を加えてなる樹脂 8 (含浸量 8 5 g Z m 2 ) を含浸し、 接着して集成マイ力シー ト (マイ 力層 3 と補強材層 5 との積層体) を得 た。
この後、 アルミナ粒子体 6 , ノポラ ック型ェポキシ樹脂 1 0 0重量部 に対し B F 3 モノェチルァ ミ ン 3重量部を加えてなる樹脂 8 を、 アルミ ナ粒子体 6 と樹脂 8 との重量比が 2 : 1 となるよ う に混合し、 これにメ チルェチルケ トン 1 0重量%を加え、 集成マイ 力シー トの補強材層 5側 面にロールコータで塗工量が 2 5 6 g Z m 2 となるよ う塗工した。 この 後、 乾燥炉内でメチルェチルケ トンを揮発, 除去して高熱伝導絶縁シ一 トを得た。 この後、 高熱伝導絶縁シー トをスリ ツタ によ り 3 0 mm幅にス リ ッ ト し、 高熱伝導絶縁テープ 1 を得た。
次に、 本発明の実施例の電機巻線 9 の構造を第 2 図に基づいて説明す ると、 電機巻線 9 は、 複数の絶縁導体 1 0 a を巻いて形成した巻線導体 1 0 , 巻線導体 1 0 の外周部に形成した高熱伝導絶縁被覆 1 1 を有して いる。 この電機巻線 9 は、 次のよう に製作した。 まず、 第 2 図に示す如 く 、 複数の絶縁導体 1 0 a を複数回巻いて巻線導体 1 0 を形成した。 こ の後、 巻線導体 1 0 の外周部に第 1 図 ( a ) に示した高熱伝導絶縁テ一 プ 1 を一部重ねて巻いた。 この時、 高熱伝導絶縁テープ 1 は、 マイ力層 3 , 高熱伝導充填材層 7 のどち ら側が巻線導体 1 0側になっても構わな いが、 本実施例では、 マイ 力層 3側を巻線導体 1 0側に して高熱伝導絶 縁テープ 1 を巻線導体 1 0 の外周部に巻いた。 尚、 第 1 図 ( b ) に示す 高熱伝導絶縁テープを用いる場合は、 補強材層 5 , 高 · 熱伝導充填材層 7 のどち ら側が巻線導体 1 0側になっても構わない。 この後、 高熱伝導 絶縁テープ 1 の外周部に離型テープ 1 2 を巻いた。 このよ う に、 高熱伝 導絶縁テープ 1 の外周部に離型テープ 1 2 を巻く のは、 後述する成形治 具と高熱伝導絶縁テープ 1 との接着を防止するためである。
この後、 第 3図に示す如く 、 加熱, 加圧手段 (図示しない) を有する 成形治具 1 3 を取り付け、 この成形治具 1 3 を介して外表面よ り外力を 与えた。 そ して、 高熱伝導絶縁テープ 1 の中に含まれている微小な気泡 を、 高熱伝導絶縁テープ 1 中の樹脂の一部 1 4と共に排出しつつ、 所定 の温度で加熱し、 高熱伝導絶縁テープ 1 の樹脂 8 を硬化して高熱伝導絶 縁被覆 1 1 を形成し、 電機巻線 9 を得た。 このよ う に製作した本実施例 の電機巻線 8は、 発電機, 電動機等の回転電機の鉄心スロ ッ トに納めら れる。
(比較例)
次に、 本実施例の電機巻線と比較例の電機巻線との交流絶縁破壊電圧 試験結果を表 1 に基づいて説明する。 比較例の電機巻線には、 次のよ う に製作した高熱伝導絶縁テープで形成した高熱伝導絶縁を有する電機巻 線を用いた。 その高熱伝導絶縁テープの製作は、 次の通りである。 まず 水中分散したマイ 力粒子を抄紙機にょ リ抄造して製作した集成マイ カ箔 2 (重さ 1 6 5 g /m2 ) , ガラスク ロス 4 (重さ 3 5 gZm2) を用意 し、 これらにノポラ ック型エポキシ樹脂 1 0 0重量部に対し B F3 モノ ェチルァ ミ ン 3重量部を加えてなる樹脂 (含浸量 4 0 gZm2 ) を含浸 し、 接着して集成マイ 力シー ト (マイ 力層 3 と補強材層 5との積層体) を得た。
この後、 アルミナ粒子, ノポラ ック型エポキシ樹脂 1 0 0重量部に対 し B F3 モノ ェチルァミ ン 3重量部を加えてなる樹脂を、 アルミナ粒子 と樹脂との重量比が 3. 5 : 1 となるよう に混合し、 これにメチルェチ ルケ トン 1 0重量%を加え、 集成マイ 力シー トの補強材層側面にロール P
コータで塗工量が 2 3 0 g Z m 2 となるよう塗工した。 この後、 乾燥炉 内でメチルェチルケ トンを揮発, 除去して高熱伝導絶縁シー トを得た。 この後、 高熱伝導絶縁シートをスリ ツタにて 3 0 mm幅にスリ ッ トし、 高 熱伝導絶縁テープ 1 を得た。 このよ う に製作した比較例の高熱伝導絶縁 テープにおいては、 その中の全樹脂量は、 高熱伝導絶縁テープ全体の 1 9 . 3 重量%であつた。 また、 マイ力層中の樹脂量は、 高熱伝導絶縁 テープ全体の 7 . 1 重量%、 高熱伝導充填材層中の樹脂量は、 高熱伝導 絶縁テープ全体の 1 0 . 4 重量%であった。 従って、 ガラスク ロス層の 樹脂量は 1 . 8 重量%である。
この後、 上記のようにして製作した高熱伝導絶縁テープを用いて電機 巻線を製作した。 製作方法は、 本実施例と同様であり、 その説明は省略 する。 交流絶縁破壊電圧試験にあたっては、 本実施例の電機巻線, 比較 例の電機巻線それぞれの外周にアルミニウム箔を巻き付けて電極と し、 それぞれの電機巻線のアルミニウム電極と巻線導体の間に交流電圧を加 え交流絶縁破壊電圧を測定した。 この結果は、 第 1表に示す通りになつ た。
第 1表
絶縁破壊電圧測定結果
Figure imgf000013_0001
1表から明らかなよう に、 本実施例の電機巻線は、 比較例の電機巻 線よ りも交流絶縁破壊電圧が高かった。 これは、 マイ力層, 高熱伝導充 填材層の各層中の樹脂量が材料全体の 1 0〜2 5重量%の範囲内にある 高熱伝導絶縁テープを用いて電機巻線の高熱伝導絶縁被覆を形成したた めであり、 電機巻線の高熱伝導絶縁被覆の形成の際、 その加圧過程にお いて、 高熱伝導絶縁テープ中に含まれている微小な気泡を、 高熱伝導絶 縁テープ中の樹脂の一部と共に充分に排出できたためであった。 従って、 本実施例の電機巻線は、 電気的特性に優れた緻密な高熱伝導絶縁被覆を 有しているので、 高電圧で運転される回転電機に対して高い信頼性を提 供できる。
(実施例 2 )
次にランダム形状の充填材 ( A ) と球形の充填材 ( B ) とを併用した 場合の他の実施例を示す。
本実施例においては、 マイ力粉を水中に分散させ、 抄紙機で抄造した 厚さ 0 . 0 8 mmの未焼成集成マイ力に補強材と して厚さ 0 . 0 3 urnのガラ スクロスをノポラック型エポキシ樹脂 1 0 0重量部に B F 3 モノェチル ァミン 3重量部を加えた樹脂組成物で貼り合わせてシー トを製造した。 ランダム型充填材粉末及び球形充填材を第 2表に示す配合割合で上記樹 脂組成物に、 メチルェチルケ トンを混合した。 この組成物を口一ルコー ターで上記マイ力シートの補強材側に塗布し、 絶縁材シー トを得た。 こ のシートを幅 3 2 0 nunに切断してマイ力テープを得た。 予め素線絶縁処 理を施した 4 0 mm X 1 O mm X長さ 1 0 0 0 mmの導体束に、 上記マイカテ 一プを半掛けで 7回巻き、 1 1 0 °Cで 1 5分加熱後、 圧力 5 M p aで 1 7 0 °C , 6 0分間加熱して絶縁材層を形成して、 絶縁巻線を製作した。 比較のため、 球形充填材を用いず、 ランダム充填材のみを用いて製作し た電機巻線の特性を測定した。 結果を第 2表に示す。 第 2表
充填材の配合例
Figure imgf000015_0001
第 2表に示すように、 球形充填材をランダム形状の充填材に混合する と、 硬化した絶縁層の熱伝導性を損う ことなく 、 絶縁破壊電圧の高い絶 縁層を得ることができる。 また、 本発明に係る絶縁材によれば、 マイ力 層中の樹脂量と充填材層中の樹脂量との差を 1 0重量%以下と したので、 電機巻線の絶縁被覆の形成の際、 その加圧過程において、 外部に排出さ れるべき微小な気泡を含んだ樹脂の一部が、 樹脂量の多い層から樹脂量 の少ない層に浸入して残留するのを防ぐことができ、 電気的特性に優れ た電機巻線の絶縁被覆を得ることができる。
本発明に係る電機巻線によれば、 あらゆる回転電機に使用されても電 気的特性が低下することのない高信頼性の電機巻線を得ることができる。 産業上の利用可能性
本発明に係る絶縁材によれば、 絶縁材中に含まれている微小な気泡を、 絶縁材中の樹脂の一部と共に充分に排出することができ、 電気的特性に 優れた電機巻線の絶縁被覆を得ることができる。

Claims

請 求 の 範 囲
1 . 薄片状の無機絶縁材料を熱硬化性樹脂によって、 結合した耐電圧層, 熱硬化性樹脂を含む補強材層及び高熱伝導性無機充填材を熱硬化性樹脂 に分散した熱伝導層が熱硬化性樹脂によって積層接着されてテープ状又 はシート状絶縁材を形成し、 上記耐電圧層の樹脂量が 1 0 ~ 2 5重量%、 前記熱伝導層の樹脂量が 1 0 〜 2 5重量%であリ、 前記耐電圧層の樹脂 量と前記熱伝導層の樹脂量の差が 1 0重量%以下である絶縁材。
2 . 無機絶縁材料が薄片マイ力である請求項 1 の絶縁材。
3 . 前記耐電圧層の樹脂量と、 前記充填材層中の樹脂量と差が 5重量% 以下である請求項 2記載の絶緣材。
4 . 前記絶縁材中の全樹脂量が該絶縁材全体の 2 0 〜 5 0重量%である 請求項 1 または 2記載の絶縁材。
5 . 前記充填材層の充填材は 5 W Z m * K以上の熱伝導率を有する無機 絶縁材料である請求項 1又は 2記載の絶縁材。
6 . 前記耐電圧層と前記充填材層の樹脂量がほぼ等しい請求項 1 記載の 絶縁材。
7 . 熱硬化性樹脂によ り結着された燐片状マイ力層、 該マイカ層に熱硬 化性樹脂によって結着された繊維クロス状又はフィルム状補強材層及び 該補強材に接着され熱硬化性樹脂に分散された高熱伝導性無機充填材を 含有する充填材層とを有し、 上記熱硬化性樹脂は半硬化状態であり、 該 絶縁材の重量を基準と して、 前記マイ力層の樹脂量が 1 0 ~ 2 5重量%、 前記充填材層の樹脂量が 1 0 〜 2 5重量%であり、 前記マイ力層の樹脂 量と前記充填材層の樹脂量との差が 1 0重量%以下であり、 上記充填材 の 1 ないし 8 0重量%が球形である絶縁材。
8 . 無機絶縁材料層, 補強材層及び充填材層の順に積層されている請求 項 1 の絶縁材。
9 . 補強材層, 充填材層及び無機絶縁材料層の順に積層された請求項 1 の絶縁材。
1 0 . 燐片状の無機絶縁材料を熱硬化性樹脂によって整列、 結合した耐 電圧層, 補強材に熱硬化性樹脂を含む補強材層及び高熱伝導性無機充填 材を熱硬化性樹脂に分散した熱伝導層を積層接着されてテープ状絶縁材 を形成し、 上記無機充填材は少なく とも熱伝導層中に分散され、 上記耐 電圧層中の樹脂量及び熱伝導層中のそれぞれの樹脂量が、 該絶縁材の重 量を基準と して、 1 0 〜 2 5重量%である絶縁材が巻線導体束に巻回さ れて絶縁被覆を形成した電機巻線。
1 1 . 燐片状の無機絶縁材料が薄片マイ力である請求項 1 0の絶縁材。
1 2 . 前記無機絶縁材料層の樹脂量と、 前記充填材層中の樹脂量と差が 5重量%以下である請求項 1 0記載の絶縁材。
1 3 . 前記絶縁材中の全樹脂量が該絶縁材全体の 2 0 〜 5 0重量%であ る請求項 1 0の絶縁材。
1 . 前記充填材層の充填材は 5 W Z m · K以上の熱伝導率を有する無 機絶縁材料である請求項 1 0の絶縁材。
1 5 . 前記無機絶縁材料層と前記充填材層の樹脂量がほぼ等しい請求項 1 0記載の絶縁材。
1 6 . 燐片状の無機絶縁材料を熱硬化性樹脂によって、 結合した耐電圧 層, 熱硬化性樹脂を含む補強材層及び高熱伝導性無機充填材を熱硬化性 樹脂に分散した熱伝導層が熱硬化性樹脂によって積層接着してテープ状 又はシート状絶縁材を形成し、 こ こで前記耐電圧層中の無機絶縁材は上 記補強材のテープ又はシートの面方向とほぼ平行な方向に配列され、 上 記耐電圧層及び熱伝導層中の樹脂量が、 絶縁材の重量を基準と して、 そ れぞれ 1 0 〜 2 5重量%で、 上記耐電圧層の樹脂量と上記充填材層の樹 脂量の差が 1 0重量%以下であり、 この絶縁材を導体束の回り に密に巻 回し、 加熱, 加圧手段を有する成形型に収納し、 該熱硬化性樹脂を加熱 加圧, 硬化することを特徴とする回転電機巻線の製造方法。
1 7 . 燐片状の無機絶縁材料が薄片マイ力である請求項 1 6の絶縁材。
1 8 . 前記無機絶縁材料層の樹脂量と、 前記充填材層中の樹脂量との差 が 5重量%以下である請求項 1 6記載の絶縁材の製造方法。
1 9 . 前記絶縁材中の全樹脂量が該絶縁材全体の 2 0 〜 5 0重量%であ る請求項 1 6の絶縁材の製造方法。
2 0 . 前記充填材層の充填材は 5 W Z m · K以上の熱伝導率を有する無 機絶縁材料である請求項 1 6の絶縁材の製造方法。
2 1 . 前記無機絶縁材料層と前記充填材層の樹脂量がほぼ等しい請求項 1記載の絶縁材の製造方法。
PCT/JP1999/004640 1999-08-27 1999-08-27 Materiau isolant, enroulement electrique et leur procede de fabrication WO2001016965A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR10-2001-7011027A KR100428888B1 (ko) 1999-08-27 1999-08-27 절연재 및 전기권선과 그 제조법
CNB998167185A CN1215490C (zh) 1999-08-27 1999-08-27 绝缘材料和电机绕组及其制造方法
JP2001520423A JP4103390B2 (ja) 1999-08-27 1999-08-27 絶縁材及び電機巻線とその製造法
CNB200410064112XA CN1317719C (zh) 1999-08-27 1999-08-27 绝缘材料和电机绕组
DE69941734T DE69941734D1 (de) 1999-08-27 1999-08-27 Isoliermaterial, elektrische wicklung und herstellungsmethode
PCT/JP1999/004640 WO2001016965A1 (fr) 1999-08-27 1999-08-27 Materiau isolant, enroulement electrique et leur procede de fabrication
EP99940525A EP1220240B1 (en) 1999-08-27 1999-08-27 Insulating material, electric winding, and method of manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/004640 WO2001016965A1 (fr) 1999-08-27 1999-08-27 Materiau isolant, enroulement electrique et leur procede de fabrication

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09914203 A-371-Of-International 2002-02-25
US10/208,833 Continuation US6746758B2 (en) 2002-02-25 2002-08-01 Insulating material and electric machine winding and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2001016965A1 true WO2001016965A1 (fr) 2001-03-08

Family

ID=14236559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004640 WO2001016965A1 (fr) 1999-08-27 1999-08-27 Materiau isolant, enroulement electrique et leur procede de fabrication

Country Status (6)

Country Link
EP (1) EP1220240B1 (ja)
JP (1) JP4103390B2 (ja)
KR (1) KR100428888B1 (ja)
CN (2) CN1215490C (ja)
DE (1) DE69941734D1 (ja)
WO (1) WO2001016965A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004006271A1 (ja) * 2002-07-04 2004-01-15 Kabushiki Kaisha Toshiba 高熱伝導性絶縁部材及びその製造方法、電磁コイルおよび電磁機器
JP2004035782A (ja) * 2002-07-04 2004-02-05 Toshiba Corp 高熱伝導性材料及びその製造方法
US7524557B2 (en) 2002-07-04 2009-04-28 Kabushiki Kaisha Toshiba Highly heat conductive insulating member, method of manufacturing the same and electromagnetic device
JP2009187817A (ja) * 2008-02-07 2009-08-20 Toshiba Corp 絶縁シート、固定子コイルおよび回転電機
JP2012244861A (ja) * 2011-05-24 2012-12-10 Mitsubishi Electric Corp 絶縁コイル
WO2014109167A1 (ja) * 2013-01-10 2014-07-17 三菱電機株式会社 絶縁テープ及びその製造方法、並びに固定子コイル

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7033670B2 (en) 2003-07-11 2006-04-25 Siemens Power Generation, Inc. LCT-epoxy polymers with HTC-oligomers and method for making the same
US7781063B2 (en) * 2003-07-11 2010-08-24 Siemens Energy, Inc. High thermal conductivity materials with grafted surface functional groups
JP4599063B2 (ja) * 2004-01-15 2010-12-15 株式会社東芝 コイル巻回用絶縁テープ
US8216672B2 (en) 2004-06-15 2012-07-10 Siemens Energy, Inc. Structured resin systems with high thermal conductivity fillers
WO2005124790A2 (en) * 2004-06-15 2005-12-29 Siemens Power Generation, Inc. High thermal conductivity materials aligned within resins
US20050277721A1 (en) 2004-06-15 2005-12-15 Siemens Westinghouse Power Corporation High thermal conductivity materials aligned within resins
US7776392B2 (en) 2005-04-15 2010-08-17 Siemens Energy, Inc. Composite insulation tape with loaded HTC materials
US20050274774A1 (en) 2004-06-15 2005-12-15 Smith James D Insulation paper with high thermal conductivity materials
US8030818B2 (en) 2004-06-15 2011-10-04 Siemens Energy, Inc. Stator coil with improved heat dissipation
US7553781B2 (en) 2004-06-15 2009-06-30 Siemens Energy, Inc. Fabrics with high thermal conductivity coatings
US20050277349A1 (en) * 2004-06-15 2005-12-15 Siemens Westinghouse Power Corporation High thermal conductivity materials incorporated into resins
US7651963B2 (en) 2005-04-15 2010-01-26 Siemens Energy, Inc. Patterning on surface with high thermal conductivity materials
US7846853B2 (en) 2005-04-15 2010-12-07 Siemens Energy, Inc. Multi-layered platelet structure
US7955661B2 (en) 2005-06-14 2011-06-07 Siemens Energy, Inc. Treatment of micropores in mica materials
US8357433B2 (en) * 2005-06-14 2013-01-22 Siemens Energy, Inc. Polymer brushes
US7781057B2 (en) 2005-06-14 2010-08-24 Siemens Energy, Inc. Seeding resins for enhancing the crystallinity of polymeric substructures
US7655295B2 (en) 2005-06-14 2010-02-02 Siemens Energy, Inc. Mix of grafted and non-grafted particles in a resin
US7851059B2 (en) 2005-06-14 2010-12-14 Siemens Energy, Inc. Nano and meso shell-core control of physical properties and performance of electrically insulating composites
JP5522250B2 (ja) * 2010-02-26 2014-06-18 株式会社村田製作所 高周波用誘電体付着材
DE102010019721A1 (de) * 2010-05-07 2011-11-10 Siemens Aktiengesellschaft Elektrisches Isoliermaterial, Isolationspapier und Isolationsband für eine Hochspannungsrotationsmaschine
ITMI20110741A1 (it) * 2011-05-03 2012-11-04 Ansaldo Energia Spa Metodo di realizzazione di barre statoriche isolate di macchine elettriche, in particolare di generatori elettrici sincroni
CN103944326B (zh) * 2014-04-18 2016-07-06 山东齐鲁电机制造有限公司 一种发电机定子线棒模具型单支vpi脱模工艺
US20170229207A1 (en) * 2014-09-26 2017-08-10 Momentive Performance Materials Inc. Lamination composite of boron nitride in paper for transformer insulation
WO2018216104A1 (ja) * 2017-05-23 2018-11-29 三菱電機株式会社 回転電機のステータ
WO2018149422A2 (zh) * 2018-05-22 2018-08-23 深圳顺络电子股份有限公司 一体成型电感元件及其制造方法
DE102020211111A1 (de) * 2020-09-03 2022-03-03 Siemens Aktiengesellschaft Pulverlack-Formulierung für ein Isolationssystem einer elektrischen Maschine, elektrische Maschine mit einem solchen Isolationssystem und Verfahren zum Herstellen eines solchen Isolationssystems
KR102483056B1 (ko) * 2022-04-12 2023-01-03 주식회사 에코이앤씨 포장도로 융설 및 융빙 열선 매설구조

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147753U (ja) * 1979-04-12 1980-10-23
JPS63110929A (ja) * 1986-10-22 1988-05-16 アセア アクチーボラグ 電気機器の固定子又は回転子におけるスロツト内に配置するためのコイル
JPH06223662A (ja) * 1992-12-28 1994-08-12 Asea Brown Boveri Ag 1つまたはそれ以上の織物層および雲母層からなる絶縁テープならびにその製造法
JPH0945133A (ja) * 1995-08-01 1997-02-14 Japan Mica Ind Co Ltd マイカ基材シート状体及び絶縁コイル
JPH11234938A (ja) * 1998-02-13 1999-08-27 Hitachi Ltd 高圧回転電機およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055971B2 (ja) * 1978-12-08 1985-12-07 株式会社日立製作所 電機巻線
DE3824254A1 (de) * 1988-07-14 1990-01-18 Siemens Ag Isolierband zur herstellung einer mit einer heisshaertenden epoxid-saeureanhydrid-mischung impraegnierten isolierhuelse fuer elektrische leiter
CN1044647C (zh) * 1996-02-14 1999-08-11 陈云生 耐火合成云母带及其生产工艺
JP3458693B2 (ja) * 1998-02-27 2003-10-20 株式会社日立製作所 絶縁材及び電機巻線

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147753U (ja) * 1979-04-12 1980-10-23
JPS63110929A (ja) * 1986-10-22 1988-05-16 アセア アクチーボラグ 電気機器の固定子又は回転子におけるスロツト内に配置するためのコイル
JPH06223662A (ja) * 1992-12-28 1994-08-12 Asea Brown Boveri Ag 1つまたはそれ以上の織物層および雲母層からなる絶縁テープならびにその製造法
JPH0945133A (ja) * 1995-08-01 1997-02-14 Japan Mica Ind Co Ltd マイカ基材シート状体及び絶縁コイル
JPH11234938A (ja) * 1998-02-13 1999-08-27 Hitachi Ltd 高圧回転電機およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1220240A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004006271A1 (ja) * 2002-07-04 2004-01-15 Kabushiki Kaisha Toshiba 高熱伝導性絶縁部材及びその製造方法、電磁コイルおよび電磁機器
JP2004035782A (ja) * 2002-07-04 2004-02-05 Toshiba Corp 高熱伝導性材料及びその製造方法
CN1324615C (zh) * 2002-07-04 2007-07-04 株式会社东芝 高导热性绝缘部件及其制造方法、电磁线圈
US7524557B2 (en) 2002-07-04 2009-04-28 Kabushiki Kaisha Toshiba Highly heat conductive insulating member, method of manufacturing the same and electromagnetic device
JP2009187817A (ja) * 2008-02-07 2009-08-20 Toshiba Corp 絶縁シート、固定子コイルおよび回転電機
JP2012244861A (ja) * 2011-05-24 2012-12-10 Mitsubishi Electric Corp 絶縁コイル
WO2014109167A1 (ja) * 2013-01-10 2014-07-17 三菱電機株式会社 絶縁テープ及びその製造方法、並びに固定子コイル
JP5611485B1 (ja) * 2013-01-10 2014-10-22 三菱電機株式会社 絶縁テープ及びその製造方法、並びに固定子コイル
US9925744B2 (en) 2013-01-10 2018-03-27 Mitsubishi Electric Corporation Insulating tape, method for producing same, and stator coil

Also Published As

Publication number Publication date
CN1574113A (zh) 2005-02-02
CN1215490C (zh) 2005-08-17
EP1220240A1 (en) 2002-07-03
KR20010108281A (ko) 2001-12-07
CN1317719C (zh) 2007-05-23
JP4103390B2 (ja) 2008-06-18
DE69941734D1 (de) 2010-01-07
KR100428888B1 (ko) 2004-04-29
EP1220240B1 (en) 2009-11-25
EP1220240A4 (en) 2007-05-02
CN1367931A (zh) 2002-09-04

Similar Documents

Publication Publication Date Title
JP4103390B2 (ja) 絶縁材及び電機巻線とその製造法
US6746758B2 (en) Insulating material and electric machine winding and method for manufacturing the same
US6504102B2 (en) Insulating material, windings using same, and a manufacturing method thereof
JP3843967B2 (ja) 絶縁コイルの製造方法
JP3458693B2 (ja) 絶縁材及び電機巻線
JP4922018B2 (ja) 回転電機のコイル絶縁物
JP3576119B2 (ja) 回転電機のコイル及びこのコイルの絶縁に用いられるマイカーテープ
KR101124100B1 (ko) 전기 절연 복합체의 물리적 특성 및 성능의 나노 및 메조 쉘?코어 제어
EP2945169B1 (en) Insulation tape, method for producing same and stator coil
JP3879054B2 (ja) マイカ基材シート状体及び絶縁コイル
JP2010158113A (ja) 電気絶縁部材、回転電機用固定子コイルおよび回転電機
JP2012244861A (ja) 絶縁コイル
WO2006009564A1 (en) Mica tape having maximized mica content
JPH0945133A (ja) マイカ基材シート状体及び絶縁コイル
WO2018003950A1 (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの製造方法、マイカテープの硬化物及び絶縁物
JP2000058314A (ja) 高熱伝導コイル、絶縁シート及びその製造方法
JP6403444B2 (ja) マイカテープ及び固定子コイル
CN107466269A (zh) 无机电绝缘材料
JP5159812B2 (ja) 回転電機
JP2007200986A (ja) 電磁コイル、その製造方法および回転電機
JP4085346B2 (ja) マイカ基材シート状体及び絶縁コイル
WO2018003044A1 (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
JP2000294061A (ja) 絶縁材及び電機巻線
JPH11234938A (ja) 高圧回転電機およびその製造方法
JPS61193411A (ja) 薄葉絶縁物とその製造方法およびこの薄葉絶縁物を用いた樹脂モ−ルドコイル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99816718.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN IN JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999940525

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2001/870/KOL

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020017011027

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2001 520423

Country of ref document: JP

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020017011027

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09914203

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999940525

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017011027

Country of ref document: KR