WO2018003044A1 - 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物 - Google Patents

回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物 Download PDF

Info

Publication number
WO2018003044A1
WO2018003044A1 PCT/JP2016/069362 JP2016069362W WO2018003044A1 WO 2018003044 A1 WO2018003044 A1 WO 2018003044A1 JP 2016069362 W JP2016069362 W JP 2016069362W WO 2018003044 A1 WO2018003044 A1 WO 2018003044A1
Authority
WO
WIPO (PCT)
Prior art keywords
mica
mica tape
layer
mass
tape
Prior art date
Application number
PCT/JP2016/069362
Other languages
English (en)
French (fr)
Inventor
みゆき 室町
貴耶 山本
敬二 福島
竹澤 由高
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2016/069362 priority Critical patent/WO2018003044A1/ja
Priority to JP2018525281A priority patent/JP6891887B2/ja
Priority to PCT/JP2017/024057 priority patent/WO2018003951A1/ja
Publication of WO2018003044A1 publication Critical patent/WO2018003044A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material

Definitions

  • the present invention relates to a coil for a rotating electrical machine, a method for manufacturing a coil for a rotating electrical machine, mica tape, a cured product of an mica tape, and an insulator.
  • a coil (hereinafter also simply referred to as a coil) used in a rotating electrical machine such as a generator or an electric motor generally has a coil conductor and an insulating layer disposed on the outer periphery of the coil conductor to insulate the coil conductor from the external environment. is doing.
  • a material for forming the insulating layer an insulating material using mica called a mica tape is known.
  • the mica tape is generally mainly composed of a backing layer containing a backing material and a mica layer containing mica.
  • the mica tape is impregnated with a resin component in a state before being wound around the insulator, or after being wound around the insulator, and the insulating layer is formed by curing the resin component.
  • Patent Document 1 describes a mica tape having improved thermal conductivity by containing boron nitride particles as an inorganic filler in a backing layer.
  • Mica contained in the mica layer is a flaky inorganic substance excellent in electrical insulation, and the insulation effect tends to increase as the amount of mica contained in the mica layer increases.
  • the amount of mica is increased, the thickness of the mica tape increases and it may be difficult to wind the mica tape around the object to be insulated, or voids and cracks may be generated in the formed insulating layer.
  • increasing the content of inorganic filler to improve thermal conductivity makes the mica tape harder and more prone to wrinkles, cracks, etc. when wound around the coil, causing delamination of insulating layers, residual voids, etc. As a result, the insulation reliability of the insulating layer may be reduced.
  • the ratio of the mica layer in the mica tape is increased for improving the electric insulation, the ratio of the backing layer containing the inorganic filler is decreased, and the thermal conductivity of the insulating layer may be decreased. Therefore, development of a coil having an insulating layer excellent in electrical insulation while maintaining high thermal conductivity is awaited. In addition, development of a mica tape capable of forming an insulating layer excellent in electrical insulation while maintaining high thermal conductivity is awaited.
  • an object of the present invention is to provide a coil for a rotating electrical machine having an insulating layer that is excellent in electrical insulation while maintaining high thermal conductivity, and a method for manufacturing the same.
  • Another object of the present invention is to provide a mica tape capable of forming an insulating layer excellent in electrical insulation while maintaining high thermal conductivity, a cured product of mica tape, and an insulator using the same.
  • a coil conductor and an insulating layer disposed on an outer periphery of the coil conductor wherein the insulating layer includes a mica tape, and the mica tape includes a mica layer including mica, a backing material, and an inorganic filler.
  • a coil for a rotating electrical machine wherein the mica layer has a mass per 1 m 2 of 110 g / m 2 to 160 g / m 2 .
  • a ratio of mica not passing through a JIS standard sieve having a nominal opening of 2.8 mm is less than 45% by mass of the entire mica included in the mica layer. Coil for rotating electrical machines.
  • the content of the inorganic filler is 20% by volume to 50% by volume of the total nonvolatile content excluding the mica and the backing material.
  • Any one of ⁇ 1> to ⁇ 4>, including the step of winding the mica tape around the outer periphery of the coil conductor and the step of forming an insulating layer from the mica tape wound around the outer periphery of the coil conductor A method for manufacturing a coil for a rotating electrical machine according to claim 1.
  • ⁇ 8> The mica tape according to ⁇ 6> or ⁇ 7>, wherein the content of the inorganic filler is 20% by volume to 50% by volume of the total volume of nonvolatile components excluding the mica and the backing material.
  • a coil for a rotating electrical machine having an insulating layer excellent in electrical insulation while maintaining high thermal conductivity and a method for manufacturing the same are provided.
  • cured material of a mica tape, and an insulator using the same are provided.
  • the present invention is not limited to the following embodiments.
  • the components including element steps and the like are not essential unless otherwise specified.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
  • numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the content rate or content of each component in the composition is such that when there are a plurality of substances corresponding to each component in the composition, the plurality of kinds present in the composition unless otherwise specified. It means the total content or content of substances.
  • the particle diameter of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
  • the term “layer” refers to the case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. Is also included.
  • the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
  • the coil for a rotating electrical machine of the present embodiment has a coil conductor and an insulating layer disposed on the outer periphery of the coil conductor, and the insulating layer includes mica tape,
  • the mica tape has a mica layer containing mica and a backing layer containing a backing material and an inorganic filler, and the mass per 1 m 2 of the mica layer is 110 g / m 2 to 160 g / m 2 .
  • the coil for rotating electrical machines of this embodiment is excellent in thermal conductivity because the mica tape forming the insulating layer contains an inorganic filler. Furthermore, as a result of studies by the present inventors, when the mass per m 2 of the mica layer of the mica tape forming the insulating layer is 110 g / m 2 or more, the insulating property of the insulating layer is maintained well, but 110 g It has been found that the electrical insulation is significantly lowered when the ratio is less than / m 2 . On the other hand, when the mass per m 2 of the mica layer of the mica tape forming the insulating layer is 160 g / m 2 or less, the winding property of the mica tape is maintained well, and the insulating layer formed using this is electrically insulated.
  • the mica tape used for forming the insulating layer of the coil of the present embodiment are the same as those of the mica tape of the present embodiment described later. Further, the material, shape, size, and the like of the coil conductor used in the coil of the present embodiment are not particularly limited, and can be selected according to the use of the coil.
  • the manufacturing method of the coil for rotary electric machines of this embodiment has the process of winding a mica tape around the outer periphery of a coil conductor, and the process of forming an insulating layer from the said mica tape wound around the outer periphery of the said coil conductor.
  • the method of winding the mica tape around the outer periphery of the coil conductor is not particularly limited, and a commonly performed method can be adopted.
  • the method for forming the insulating layer from the mica tape wound around the outer periphery of the coil conductor is not particularly limited.
  • the mica tape is heated while being pressed (heat press), and the resin component contained in the mica tape is caused to flow out of the mica tape in advance to fill the space between the overlapping mica tapes.
  • the resin component is mica by a method of curing this to form an insulating layer (in the case of a prepreg mica tape) and a vacuum pressure impregnation method (vacuum pressure impregnation, VPI) after winding the mica tape around the coil conductor.
  • VPI vacuum pressure impregnation
  • Examples include a method of impregnating a tape and curing it to form an insulating layer (in the case of dry mica tape).
  • the mica tape of the present embodiment has a mica layer containing mica, and a backing layer containing a backing material and an inorganic filler (which is an inorganic filler other than mica, hereinafter simply referred to as “inorganic filler”), and
  • the mass per m 2 of the mica layer is 110 g / m 2 to 160 g / m 2 .
  • the electrical insulation property (especially the insulation life) of the insulating layer formed from the mica tape is maintained at a good level when the mass per m 2 of the mica layer is 110 g / m 2 or more. However, it was found that when it was less than 110 g / m 2 , it significantly decreased.
  • the winding property to an insulator is maintained at a good level when the mass per m 2 of the mica layer is 160 g / m 2 or less, but the mass per m 2 of the mica layer is 160 g / m 2.
  • the thickness of the entire tape is increased, and it has been found that the thickness is significantly reduced. Therefore, it has been found that when the mass per m 2 of the mica layer is in the range of 110 g / m 2 to 160 g / m 2 , it is possible to form an insulating layer excellent in electrical insulation while maintaining high thermal conductivity.
  • the mass per m 2 of the mica layer is not particularly limited as long as it is in the range of 110 g / m 2 to 160 g / m 2 , and can be selected according to the characteristics required for the mica tape.
  • the mass per m 2 of the mica layer is preferably 120 g / m 2 or more, and more preferably 130 g / m 2 or more.
  • the mass per m 2 of the mica layer is preferably 150 g / m 2 or less, and more preferably 140 g / m 2 or less.
  • FIG. 1 is a schematic cross-sectional view showing an example of the structure of the mica tape of this embodiment.
  • the mica tape has a mica layer 6 containing mica 4 and a backing layer 5 containing a backing material 2 and an inorganic filler 1.
  • the mica layer 6 and the backing layer 5 may each contain the resin component 3.
  • the resin component 3 may be included in both the mica layer 6 and the backing layer 5 or only in one.
  • the resin component 3 may be included in the entire mica layer 6 (or the backing layer 5) or may be partially included.
  • the mica tape of this embodiment is a mica tape (prepreg mica tape) used in a method for forming an insulating layer by curing a resin component contained in a mica tape in advance after the mica tape is wound around an object to be insulated.
  • it may be a mica tape (dry mica tape) used in a method of forming an insulating layer by curing a resin component impregnated after being wound around an insulator.
  • the kind of mica contained in the mica layer is not particularly limited. Examples include unfired hard mica, fired hard mica, unfired soft mica, fired soft mica, synthetic mica, and flake mica. Among these, unfired hard mica is preferable from the viewpoint of adhesion between mica and the resin component.
  • Mica may be used alone or in combination of two or more.
  • two or more mica are used in combination, for example, when two or more mica having the same component and different particle sizes are used, when two or more mica having the same particle size and different components are used, and the average particle size and component The case where 2 or more types of mica having different types is used is mentioned.
  • Mica size is not particularly limited. From the viewpoint of electrical insulation, the proportion of mica that does not pass through a JIS standard sieve having a nominal aperture of 2.8 mm is preferably less than 45 mass% of the entire mica contained in the mica layer, and is 30 mass% or less. It is more preferable that it is 20% by mass or less.
  • the reason for the tendency to be excellent in electrical insulation when the proportion of mica that does not pass through a JIS standard sieve having a nominal aperture of 2.8 mm is less than 45% by mass is not necessarily clear.
  • the resin component sufficiently fills the space between the mica pieces, and the generation of voids in the mica layer is suppressed. It is conceivable that peeling between the mica tapes caused by the above is suppressed.
  • the electrical insulation can be improved without increasing the mass per 1 m 2 of the mica layer by setting the ratio of mica not passing through the JIS standard sieve having a nominal aperture of 2.8 mm to less than 45 mass%. That is, it is possible to obtain a good winding property by suppressing an increase in the thickness of the mica tape while ensuring necessary electrical insulation.
  • the ratio of mica that does not pass through a JIS standard sieve having a nominal aperture of 0.5 mm is 0.5 mm when the particle diameter when sieving using a JIS standard sieve is 0.5 mm.
  • the proportion of mica pieces as described above is preferably 40% by mass or more, and more preferably 60% by mass or more of the entire mica contained in the mica layer.
  • JIS-Z-8801-1 2006 and corresponds to ISO3310-1: 2000.
  • ISO 3310-1: 2000 it is preferable to apply a sieve having a square shape as in JIS-Z-8801-1: 2006.
  • the target of sieving is the mica piece in the state before forming the mica layer, or the mica piece obtained from the mica layer (mica paper) before forming the mica tape, from the backing layer in the mica tape. It may be a mica piece obtained from a mica layer peeled off using a razor or the like.
  • 1 g of the mica layer is dispersed in 100 g of methyl ethyl ketone, shaken for 10 minutes, and then centrifuged at 8000 rpm for 5 minutes.
  • 100 g of methyl ethyl ketone is added to the solid content remaining after removing the supernatant, shaken for 10 minutes, and then centrifuged at 8000 rpm for 5 minutes.
  • 100 g of methyl ethyl ketone is added to the remaining solid after removing the supernatant, and the mixture is shaken for 10 minutes and then centrifuged at 8000 rpm for 5 minutes.
  • JIS standard sieve JIS-Z-8801-1: 2006, ISO3310-1: 2000, Tokyo Screen Co., Ltd., test sieve
  • the type of the backing material is not particularly limited.
  • a glass cloth is mentioned.
  • the inorganic filler is taken in between the fibers constituting the glass cloth, and the falling of the inorganic filler tends to be suppressed.
  • the resin component penetrated between the fibers tends to be well integrated with the adjacent mica layer, and the thermal conductivity tends to be improved.
  • a part of the fiber may be an organic material.
  • the fiber comprised in particular with an organic material is not restrict
  • a part of the glass cloth is a fiber composed of an organic material
  • the warp, the weft, or both may be a fiber composed of an organic material.
  • the average thickness of the backing material is not particularly limited.
  • the thickness is preferably 30 ⁇ m to 60 ⁇ m, and more preferably 45 ⁇ m to 50 ⁇ m.
  • the average thickness of the backing material is 30 ⁇ m or more, it is suppressed that the backing layer becomes too thin following the thickness of the backing material when the mica tape is pressed, and a decrease in thermal conductivity is suppressed. There is a tendency. If the thickness of the backing material is 60 ⁇ m or less, the thickness of the mica tape can be suppressed, and the occurrence of breakage, cracks, and the like of the mica tape during the process of winding the mica tape around the insulator tends to be suppressed.
  • the average thickness of the backing material is the arithmetic average value of the measured values obtained by measuring the thickness of the backing material at a total of 10 locations using a micrometer (MDC-SB, Mitutoyo Corporation). .
  • the backing material may be surface-treated if necessary.
  • Examples of the surface treatment method for the backing material include treatment with a silane coupling agent.
  • inorganic filler The kind of inorganic filler is not particularly limited. Examples include silica, boron nitride, and alumina. From the viewpoint of thermal conductivity, boron nitride is preferable. Boron nitride exhibits higher thermal conductivity than other inorganic fillers (eg, alumina). Therefore, when the backing layer contains boron nitride, the thermal conductivity of the insulating layer formed from the mica tape tends to be further improved.
  • the proportion of boron nitride in the inorganic filler is preferably 50% by mass or more, more preferably 70% by mass or more, and 90% by mass. More preferably, it is the above.
  • the type of boron nitride is not particularly limited, and examples include hexagonal boron nitride (h-BN), cubic boron nitride (c-BN), and wurtzite boron nitride. Among these, hexagonal boron nitride (h-BN) is preferable.
  • the boron nitride may be primary particles of boron nitride formed in a scale shape or secondary particles formed by agglomeration of primary particles.
  • the average particle diameter of the inorganic filler is not particularly limited.
  • a volume average particle size it is preferably 1 ⁇ m to 40 ⁇ m, more preferably 5 ⁇ m to 20 ⁇ m, and even more preferably 5 ⁇ m to 10 ⁇ m.
  • the volume average particle diameter of the inorganic filler is 1 ⁇ m or more, the thermal conductivity and the dielectric breakdown voltage tend to be further improved, and in the resin impregnation step of impregnating the mica tape with the resin component, the fine inorganic filler particles Outflow tends to be suppressed.
  • the average particle size of the inorganic filler is 40 ⁇ m or less, the anisotropy of the thermal conductivity due to the anisotropy of the particle shape tends to be suppressed, and the protrusion of the inorganic filler particles from the tape surface is suppressed. In the resin impregnation step, the outflow of the inorganic filler tends to be suppressed.
  • the volume average particle diameter of the inorganic filler can be measured by using, for example, a laser diffraction / scattering particle size distribution analyzer (Nikkiso Co., Ltd., “Microtrack MT3000II”). Specifically, an inorganic filler is introduced into pure water and then dispersed with an ultrasonic disperser. By measuring the particle size distribution of the dispersion, the particle size distribution of the inorganic filler is measured. Based on this particle size distribution, the particle size (D50) corresponding to 50% volume accumulation from the small diameter side is determined as the volume average particle size.
  • a laser diffraction / scattering particle size distribution analyzer Nikkiso Co., Ltd., “Microtrack MT3000II”.
  • the inorganic filler may be used alone or in combination of two or more.
  • two or more inorganic fillers are used in combination, for example, when two or more inorganic fillers having the same component and different average particle sizes are used, two or more inorganic fillers having the same average particle size and different components are used, and A case where two or more inorganic fillers having different average particle diameters and types are used.
  • the inorganic filler may be surface-treated by a coupling agent, heat treatment or light treatment.
  • a coupling agent for example, in the case of heat treatment, impurities on the surface of the inorganic filler are removed by heating the inorganic filler at an appropriate temperature (for example, 250 ° C. to 800 ° C.) for 1 to 3 hours. Therefore, the affinity when the inorganic filler is mixed with the resin component is improved, and the viscosity of the composition containing the inorganic filler and the resin component is lowered and tends to be easily applied. Further, the coated surface of the composition has few smears and irregularities and tends to improve smoothness.
  • the mica tape may contain a resin component.
  • the kind of resin used as the resin component is not particularly limited. From the viewpoint of curing the mica tape to form the insulating layer, a curable resin is preferable, and a thermosetting resin is more preferable.
  • the curable resin include an epoxy resin, a phenol resin, an unsaturated polyester resin, and a silicone resin. From the viewpoint of adhesion between the mica layer and the backing layer and electrical insulation, an epoxy resin is preferable.
  • Epoxy resins in the case of using an epoxy resin as a resin component include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolak type epoxy resin, naphthalene type epoxy resin, cycloaliphatic epoxy resin, etc. Is mentioned. Among these, from the viewpoint of heat resistance, phenol novolac type epoxy resins, bisphenol A type epoxy resins and bisphenol F type epoxy resins are preferable.
  • the epoxy equivalent of the epoxy resin is not particularly limited. For example, it is preferably 130 g / eq to 500 g / eq, more preferably 135 g / eq to 400 g / eq, and even more preferably 140 g / eq to 300 g / eq.
  • the epoxy equivalent is measured by dissolving a precisely weighed epoxy resin in a solvent such as methyl ethyl ketone, adding acetic acid and a tetraethylammonium bromide acetic acid solution, and then performing potentiometric titration with a perchloric acid acetic acid standard solution. An indicator may be used for potentiometric titration.
  • the number average molecular weight of the resin used as the resin component is not particularly limited. For example, from the viewpoint of fluidity, it is preferably 100 to 100,000, more preferably 200 to 50,000, and still more preferably 300 to 10,000.
  • the number average molecular weight of the resin is a value measured under the following conditions using a gel permeation chromatography method (GPC) according to a conventional method.
  • a curing agent may be included as a resin component.
  • the curing agent is not particularly limited and can be appropriately selected depending on the type of the curable resin.
  • curing agent may be used individually by 1 type, or may use 2 or more types together.
  • the curing agent can be appropriately selected from curing agents usually used as a curing agent for epoxy resins. Specific examples include amine curing agents such as dicyandiamide and aromatic diamine; phenol resin curing agents such as phenol novolac and cresol novolac; acid anhydride curing agents such as alicyclic acid anhydrides and the like.
  • the ratio of the curing agent to the epoxy resin should be 0.8 to 1.2 in terms of equivalent ratio (curing agent / epoxy resin) from the viewpoint of curability and electrical characteristics of the cured product To preferred.
  • a curing catalyst may be included for the purpose of accelerating the curing reaction of the curable resin.
  • the curing catalyst is not particularly limited, and can be selected according to the type of the curable resin and the curing agent used as necessary.
  • Specific examples of the curing catalyst include tertiary amine compounds such as trimethylamine, imidazole compounds such as 2-methylimidazole and 2-methyl-4-ethylimidazole, organometallic salts such as tin, zinc and cobalt, boron trifluoride.
  • examples include amine complexes of Lewis acids such as monoethylamine, and organic phosphorus compounds such as organic phosphine compounds.
  • a hardening accelerator may be used individually by 1 type, or may use 2 or more types together.
  • the content is not particularly limited.
  • the content of the curing catalyst is generally in the range of 0.01% by mass to 5% by mass with respect to the total amount of the epoxy resin and the curing agent included as necessary. is there.
  • the mica tape may contain other components other than the components described above as necessary.
  • examples of other components include coupling agents, antioxidants, anti-aging agents, stabilizers, flame retardants, and thickeners.
  • the content is not particularly limited.
  • the mica tape of this embodiment has a mica layer containing mica and a backing layer containing a backing material and an inorganic filler, and may have other layers as necessary.
  • the other layer include a protective layer (protective film) provided on the outermost surface of the mica tape.
  • the average thickness of the mica tape (the total thickness of the mica layer and the backing layer) is not particularly limited.
  • the average thickness of the mica tape may be 400 ⁇ m or less, preferably 350 ⁇ m or less, and more preferably 300 ⁇ m or less.
  • the average thickness of the mica tape is preferably 300 ⁇ m or less and more preferably 290 ⁇ m or less from the viewpoint of the winding property of the mica tape. From the viewpoint of electrical insulation, the average thickness of the mica tape is preferably 120 ⁇ m or more, more preferably 150 ⁇ m or more, and further preferably 160 ⁇ m or more.
  • the average thickness of the mica tape is preferably 220 ⁇ m or less and more preferably 190 ⁇ m or less from the viewpoint of the winding property of the mica tape. From the viewpoint of electrical insulation, the average thickness of the mica tape is preferably 120 ⁇ m or more, more preferably 140 ⁇ m or more, and further preferably 160 ⁇ m or more.
  • the average thickness of the mica layer is not particularly limited. From the viewpoint of the winding property of the mica tape, the average thickness of the mica layer is preferably 180 ⁇ m or less, and more preferably 170 ⁇ m or less. From the viewpoint of electrical insulation, the average thickness of the mica layer is preferably 80 ⁇ m or more, and more preferably 90 ⁇ m or more.
  • the average thickness of the backing layer is not particularly limited. From the viewpoint of the winding property of the mica tape, the average thickness of the backing layer is preferably 60 ⁇ m or less, and more preferably 50 ⁇ m or less. From the viewpoint of the strength of the mica tape, the average thickness of the backing layer is preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • the average thickness of the mica tape (the sum of the thickness of the mica layer and the backing layer) is a total of 10 mica tape thicknesses using a micrometer (Mitutoyo Corporation, “MDC-SB”). Measure and use as the arithmetic average value of the measured values.
  • the thickness of the mica layer and the backing layer in the mica tape is determined by measuring the thickness of the mica layer and the backing layer in the cross section of the mica tape with a micrometer of a stereomicroscope (for example, Olympus Corporation “BX51”). Observe 3 points and use the arithmetic average.
  • a stereomicroscope for example, Olympus Corporation “BX51”.
  • the content of the inorganic filler in the nonvolatile content excluding mica and the backing material of the mica tape is not particularly limited. For example, it is preferably 20% by volume to 50% by volume and more preferably 25% by volume to 35% by volume of the total volume of the non-volatile content excluding mica and the backing material.
  • the content of the inorganic filler is 20% by volume or more of the total volume of nonvolatile components excluding mica and the backing material, the thermal conductivity of the insulating layer formed from the mica tape tends to be further improved.
  • the content of the inorganic filler is 50% by volume or less of the total volume of non-volatile components excluding mica and the backing material, filling of the inorganic filler into the resin component tends to be facilitated.
  • the backing layer preferably contains boron nitride as an inorganic filler, and the apparent volume of mica is preferably 2.0 to 5.0 times the volume of boron nitride.
  • the thermal conductivity is good.
  • the apparent volume of mica is 2.0 times or more of the volume of boron nitride
  • the ratio of the backing layer showing a relatively high thermal conductivity to the thermal conductivity of the entire mica tape tends to increase.
  • the apparent volume of mica is more preferably 3.0 times to 4.8 times the volume of boron nitride, and further preferably 3.2 times to 4.0 times.
  • the volume of boron nitride is calculated by the following method, for example.
  • a mica tape (1 cm 2 minutes) containing boron nitride is decomposed in a nitric acid aqueous solution while being irradiated with microwaves on a hot plate to prepare a sample solution for measurement.
  • the sample solution is sprayed into plasma, and boron ions generated in the plasma are separated and quantified by a mass spectrometer, and converted to the amount of boron nitride, thereby obtaining the mass of boron nitride.
  • the volume (cm 3 ) of boron nitride per cm 2 of mica tape is determined.
  • the apparent volume of mica is calculated by the following method, for example.
  • the apparent volume (cm) of the mica layer in the mica tape having an area of 1 cm 2 By determining the thickness (cm) of the mica layer in the mica tape having an area of 1 cm 2 and obtaining the obtained thickness (cm) ⁇ 1 cm 2 , the apparent volume (cm 3 ) of mica per 1 cm 2 of mica tape Become.
  • the content of non-volatile components excluding mica and the backing material in the total mass of the mica layer and the backing layer of the mica tape is not particularly limited. For example, it is preferably 5% by mass to 45% by mass of the total mass of the mica layer and the backing layer, more preferably 10% by mass to 30% by mass, and further preferably 15% by mass to 20% by mass. preferable.
  • the content of nonvolatile components excluding mica and the backing material is 5% by mass or more of the total mass of the mica layer and the backing layer, the thermal conductivity tends to be more effectively improved.
  • the non-volatile content excluding mica and the backing material is 45% by mass or less of the total mass of the mica layer and the backing layer, an increase in the thickness of the mica tape tends to be suppressed. In addition, varnish impregnation tends to proceed during the production of mica tape.
  • the content of the resin component in the nonvolatile content excluding mica and the backing material of the mica tape is not particularly limited. For example, it is preferably 35% by mass to 70% by mass, more preferably 50% by mass to 65% by mass, and more preferably 55% by mass to 60% by mass with respect to the total mass of the nonvolatile content excluding mica and the backing material. More preferably.
  • the content of the resin component is 35% by mass or more of the total mass of nonvolatile components excluding mica and the backing material, the adhesion between the backing layer and the mica layer tends to be improved.
  • the content of the resin component is 70% by mass or less of the total nonvolatile content excluding mica and the backing material, the thermal conductivity tends to be improved.
  • the content of the resin component in the mica tape is not particularly limited and can be selected according to the use of the mica tape.
  • the content of the resin component may be 40% by mass or less of the total mass of the mica layer and the backing layer, and is preferably 5% by mass to 33% by mass.
  • the content of the resin component is preferably 25% by mass to 33% by mass of the total mass of the mica layer and the backing layer, for example, 25% by mass to 30% by mass. It is more preferable that When the content of the resin component is 25% by mass or more of the total mass of the mica layer and the backing layer, dropping of the mica and inorganic filler from the mica tape (powder falling) is suppressed, and when the mica tape is wound around the insulator As a result of the occurrence of cracks, cuts, wrinkles, etc. of the mica tape, the insulation reliability and the thermal conductivity tend to be suppressed.
  • the content of the resin component is 33% by mass or less of the total mass of the mica layer and the backing layer, an increase in the thickness of the mica tape is suppressed and good winding properties tend to be maintained. Furthermore, the resin component tends to be prevented from flowing out beyond the volume necessary to fill the gap between the overlapping mica tapes with the mica tape wound around the insulator. As a result, generation of voids is reduced, and a decrease in insulation reliability tends to be suppressed.
  • the content of the resin component in the mica tape is preferably 5% by mass to 15% by mass of the total mass of the mica layer and the backing layer, for example, 5% by mass. More preferably, it is ⁇ 12% by mass, and further preferably 8% by mass to 10% by mass.
  • the content of the resin component is 5% by mass or more of the total mass of the mica layer and the backing layer, the adhesion between the backing layer and the mica layer tends to be sufficiently secured.
  • the content of the resin component is 15% by mass or less of the total mass of the mica layer and the backing layer, high thermal conductivity tends to be achieved.
  • the content rate of the resin component in the mica tape is calculated by the following method, for example.
  • the mica tape cut to a size of 30 mm in width and 50 mm in length is heated in an electric furnace at 600 ° C. for 2 hours, and the mass reduction rate (%) before and after heating is obtained by the following formula.
  • the above process is performed three times, and an arithmetic average value of the obtained values is obtained.
  • Content of resin component ⁇ (mass before heating ⁇ mass after heating) / mass before heating ⁇ ⁇ 100
  • the content of the resin component in the mica layer is preferably 15% by mass or less of the total mass of the mica layer, and more preferably 10% by mass or less. More preferably, it is 5 mass% or less, and it is especially preferable that it is 0 mass%.
  • the mica layer does not substantially contain an inorganic filler.
  • the content of the inorganic filler in the mica layer is preferably 3% by mass or less, more preferably 2% by mass or less, and more preferably 1% by mass or less of the total mass of the mica layer. Is more preferable, and 0% by mass is particularly preferable.
  • the mica layer does not substantially contain fibrites.
  • the content of fibrils in the mica layer is preferably 1% by mass or less of the total mass of the mica layer, more preferably 0.5% by mass or less, and 0.1% by mass. The following is more preferable, and 0% by mass is particularly preferable.
  • the fibrit is a fibrous substance mixed so that the mica layer can stand on its own, and examples thereof include organic fibers such as polyamide and polyimide, and inorganic fibers such as glass fibers.
  • the mica tape of this embodiment can be used, for example, for forming an insulating layer provided on the outer periphery of an insulator such as a coil conductor used for a rotating electrical machine coil or the like.
  • the mica tape of this embodiment may be manufactured through any process, and conventionally known manufacturing methods can be applied.
  • the application of the composition may be performed such that the composition applied to the backing material oozes out to the other side of the backing material and penetrates all or part of the mica paper.
  • the composition may include a solvent.
  • the details and preferred embodiments of the mica, backing material, inorganic filler and resin component used in the above method, and the produced mica tape are as described above.
  • the mica paper is a sheet-like object formed by collecting mica pieces.
  • the cured product of the mica tape of this embodiment is obtained by curing the mica tape described above. More specifically, it is obtained by curing a resin component contained in a mica tape.
  • the curing method is not particularly limited, and can be selected from ordinary methods.
  • the resin component may be previously contained in the mica tape before being wound around the insulator, or may be impregnated after the mica tape is wound around the insulator.
  • the insulator of this embodiment includes an insulator and an insulating layer that is a cured product of the mica tape of this embodiment that is disposed on at least a part of the surface of the insulator.
  • the method for forming the insulating layer using the mica tape of the present embodiment is not particularly limited, and conventionally known production methods can be applied. For example, after winding mica tape around an insulator, heat it while applying pressure to the mica tape (heat press), and let the resin component contained in the mica tape flow out of the mica tape in advance and overlap between the overlapping mica tapes.
  • Resin component by a method of forming an insulating layer by filling and curing in the case of prepreg mica tape
  • a vacuum pressure impregnation method (VPI) after winding mica tape around an insulator Is a method of impregnating mica tape and curing it to form an insulating layer (in the case of dry mica tape).
  • the resin component impregnated into the mica tape is not particularly limited.
  • epoxy resins such as a bisphenol A type epoxy resin
  • curing agents such as an alicyclic acid anhydride
  • the impregnation method of the resin component in the vacuum pressure impregnation method the curing conditions after the impregnation, the ratio of the epoxy resin and the curing agent, etc., conventionally known methods, known conditions and the like can be referred to.
  • the kind of insulator to be insulated is not particularly limited, and examples thereof include metal materials (copper, etc.) having shapes such as coils, rods, and plates.
  • Specific examples of the insulator include a coil conductor of a coil for a rotating electrical machine.
  • an insulating layer exhibiting high thermal conductivity can be formed. Therefore, when the insulator of this embodiment is a coil, when cooling the coil, a hydrogen cooling method or an air cooling method should be adopted even for a coil of a scale that conventionally employs a direct water cooling method. As a result, the coil structure can be simplified.
  • Example 1 Preparation of Maikapepa by dispersing green hard mica in water and mica pieces, and papermaking in the papermaking machine, the mass per 1 m 2 was prepared in 110g / m 2 Maikapepa (uncalcined hard mica) .
  • Uncalcined hard mica uncalcined hard mica
  • the unfired hard mica used for the preparation of mica paper was sieved using a JIS standard sieve having a nominal mesh opening of 2.8 mm
  • the proportion of mica that did not pass through the mesh was 0% by mass of the entire mica.
  • the unfired hard mica used for the preparation of mica paper was sieved using a JIS standard sieve having a nominal aperture of 0.5 mm
  • the proportion of mica that did not pass through the sieve was 63% by mass of the entire mica.
  • Examples 2-6, Comparative Examples 1-2> The prepreg mica tapes of Examples 2 to 6 and Comparative Examples 1 to 2 were used in the same manner as in Example 1 except that the amount of mica used was changed so that the mass per m 2 of mica paper became the value shown in Table 1. It produced and laminated hardened
  • Example 7 Production of dry mica paper The same unfired hard mica used in the production of the mica tape in Example 1 was dispersed in water to make mica pieces, which were made with a paper machine, and the mass per m 2 was 110 g / m 2 of mica paper (unfired hard laminated mica) was produced.
  • Examples 8 to 10 Comparative Examples 3 and 4>
  • the dry mica tapes of Examples 8 to 10 and Comparative Examples 3 and 4 were prepared in the same manner as in Example 7 except that the amount of mica used was changed so that the mass per m 2 of mica paper became the value shown in Table 1. It produced and laminated hardened
  • the laminated cured product produced by the above method is cut into a size of 100 mm ⁇ 110 mm, and the dielectric breakdown voltage is measured using a dielectric strength test apparatus (Tokyo Transformer Co., Ltd., 100 kV, 10 kVA type). It was measured. The number of laminated cured products was three for both the prepreg mica tape and the dry mica tape.
  • Measurement conditions are based on JIS C2110, in electrical insulating oil (Florinart, FC-3283), frequency: commercial frequency 50 Hz, boosting speed: 2 kV / sec, cutoff current: 8 mA, upper spherical electrode: ⁇ 20 mm / made of brass, lower part Electrode: A total of five points were measured using ⁇ 25 mm / SUS.
  • the laminated cured material produced by the above method is cut into a size of 100 mm ⁇ 110 mm, and the electrical charging deterioration life is measured using a Vt test apparatus (Keinan Electric Co., Ltd., max: 50 kV). (Vt characteristic) was measured.
  • the number of laminated cured products was three for both the prepreg mica tape and the dry mica tape. Measurement is performed in silicone oil (Shin-Etsu Chemical Co., Ltd., KF-96-50SC) as an electrical insulating oil, with a frequency of 50 Hz, an upper electrode of ⁇ 15 mm / copper, and a lower electrode of ⁇ 20 mm / copper at one voltage.
  • the mica tape of the example whose mass per 1 m 2 of the mica layer is 110 g / m 2 or more is that of the comparative examples 1 and 3 whose mass per 1 m 2 of the mica layer is less than 110 g / m 2 .
  • the electrical insulation especially, the electrical degradation life time, which is an evaluation index for long-term electrical insulation
  • the mica tape of the example whose mass per 1 m 2 of the mica layer is 160 g / m 2 or less is covered with the mica tape of Comparative Examples 2 and 4 where the mass per 1 m 2 of the mica layer exceeds 160 g / m 2.
  • the evaluation of the winding property to the insulator was high.
  • the insulating layer formed by winding the mica tape of the example around the object to be insulated has voids, cracks, etc. inside compared to the insulating layer formed by winding the mica tape of Comparative Examples 2 and 4 around the object to be insulated. Is less likely to occur and is considered to be more excellent in electrical insulation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulating Bodies (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Inorganic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

コイル導体と、前記コイル導体の外周に配置された絶縁層と、を有し、前記絶縁層はマイカテープを含み、前記マイカテープは、マイカを含むマイカ層と、裏打ち材及び無機フィラーを含む裏打ち層と、を有し、前記マイカ層の1mあたりの質量が110g/m~160g/mである、回転電機用コイル。

Description

回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
 本発明は、回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物に関する。
 発電機、電動機等の回転電機に用いられるコイル(以下、単にコイルとも称する)は、一般にコイル導体と、コイル導体を外部環境から絶縁するためにコイル導体の外周に配置される絶縁層とを有している。絶縁層を形成する材料として、マイカテープと呼ばれるマイカを用いた絶縁材が知られている。マイカテープは、一般に、裏打ち材を含む裏打ち層と、マイカを含むマイカ層とから主に構成されている。マイカテープには、被絶縁体に巻き付ける前の状態か、または被絶縁体に巻き付けた後の状態で樹脂成分が含浸され、この樹脂成分を硬化することで絶縁層が形成される。
 一方、コイルの外側に水素ガス又は空気を通して冷却する間接冷却の方式を採用する発電機等の分野では、コイルの外側に設けられた絶縁層の高熱伝導化が望まれている。絶縁層の熱伝導率を高める手法のひとつとして、絶縁層を形成するマイカテープの裏打ち層に無機フィラーを含有させる手法が挙げられる。例えば、特許文献1には、無機フィラーとして窒化ホウ素粒子を裏打ち層に含有させることで熱伝導性を高めたマイカテープが記載されている。
国際公開第2015-053374号
 マイカ層に含まれるマイカは電気絶縁性に優れた薄片状の無機物質であり、マイカ層に含まれるマイカの量が多いほど絶縁効果は高まる傾向にある。他方、マイカの量を多くするとマイカテープの厚みが増大して被絶縁体に巻き付けにくくなったり、形成した絶縁層中に空隙、ひび等が生じたりする場合がある。
 また、熱伝導性向上のために無機フィラーの含有量を増やすとマイカテープが硬くなり、コイルに巻き付けたときに皺、ひび等が発生しやすくなり、絶縁層の層間剥離、ボイドの残存等が生じて、絶縁層の絶縁信頼性が低下する場合がある。
 また、電気絶縁性向上のためにマイカテープ中のマイカ層の割合を高くすると、無機フィラーが含まれる裏打ち層の割合が低下して、絶縁層の熱伝導性が低下する場合がある。
 従って、高熱伝導性を維持しつつ電気絶縁性に優れる絶縁層を有するコイルの開発が待たれている。また、高熱伝導性を維持しつつ電気絶縁性に優れる絶縁層を形成可能なマイカテープの開発が待たれている。
 本発明は上記事情に鑑み、高熱伝導性を維持しつつ電気絶縁性に優れる絶縁層を有する回転電機用コイル及びその製造方法を提供することを課題とする。本発明はまた、高熱伝導性を維持しつつ電気絶縁性に優れる絶縁層を形成可能なマイカテープ、マイカテープの硬化物及びそれを用いた絶縁物、を提供することを課題とする。
 前記課題を解決するための具体的手段は以下の通りである。
<1>コイル導体と、前記コイル導体の外周に配置された絶縁層と、を有し、前記絶縁層はマイカテープを含み、前記マイカテープは、マイカを含むマイカ層と、裏打ち材及び無機フィラーを含む裏打ち層と、を有し、前記マイカ層の1mあたりの質量が110g/m~160g/mである、回転電機用コイル。
<2>前記マイカテープにおいて、公称目開きが2.8mmであるJIS標準篩を通過しないマイカの割合が、前記マイカ層に含まれるマイカ全体の45質量%未満である、<1>に記載の回転電機用コイル。
<3>前記マイカテープが樹脂成分をさらに含む、<1>又は<2>に記載の回転電機用コイル。
<4>前記マイカテープにおいて、前記無機フィラーの含有率が、前記マイカと前記裏打ち材を除く不揮発分の総体積の20体積%~50体積%である、<1>~<3>のいずれか1項に記載の回転電機用コイル。
<5>前記コイル導体の外周に前記マイカテープを巻き付ける工程と、前記コイル導体の外周に巻き付けられた前記マイカテープから絶縁層を形成する工程と、を有する、<1>~<4>のいずれか1項に記載の回転電機用コイルの製造方法。
<6>マイカを含むマイカ層と、裏打ち材及び無機フィラーを含む裏打ち層と、を有し、前記マイカ層の質量が110g/m~160g/mであるマイカテープ。
<7>公称目開きが2.8mmであるJIS標準篩を通過しないマイカの割合が、前記マイカ層に含まれるマイカ全体の45質量%未満である、<6>に記載のマイカテープ。
<8>前記無機フィラーの含有率が、前記マイカと前記裏打ち材を除く不揮発分の総体積の20体積%~50体積%である、<6>又は<7>に記載のマイカテープ。
<9>樹脂成分をさらに含む、<6>~<8>のいずれか1項に記載のマイカテープ。
<10>前記樹脂成分を硬化して得られる、<9>に記載のマイカテープの硬化物。
<11>被絶縁体と、前記被絶縁体の表面の少なくとも一部に配置される<10>のマイカテープの硬化物を含む絶縁層と、を有する絶縁物。
 本発明によれば、高熱伝導性を維持しつつ電気絶縁性に優れる絶縁層を有する回転電機用コイル及びその製造方法が提供される。また、本発明によれば、高熱伝導性を維持しつつ電気絶縁性に優れる絶縁層を形成可能なマイカテープ、マイカテープの硬化物及びそれを用いた絶縁物が提供される。
本実施形態のマイカテープの構造の一例を示す概略断面図である。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本明細書において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において組成物中の各成分の含有率又は含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本明細書において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本明細書において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本明細書において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
<回転電機用コイル>
 本実施形態の回転電機用コイルは、コイル導体と、前記コイル導体の外周に配置された絶縁層と、を有し、前記絶縁層はマイカテープを含み、
 前記マイカテープは、マイカを含むマイカ層と、裏打ち材及び無機フィラーを含む裏打ち層と、を有し、前記マイカ層の1mあたりの質量が110g/m~160g/mである。
 本実施形態の回転電機用コイルは、絶縁層を形成するマイカテープが無機フィラーを含有しているため、熱伝導性に優れている。
 さらに、本発明者らの検討により、絶縁層を形成するマイカテープのマイカ層の1mあたりの質量が110g/m以上であると絶縁層の電気絶縁性が良好に維持されるが、110g/mを下回ると電気絶縁性が顕著に低下することがわかった。一方、絶縁層を形成するマイカテープのマイカ層の1mあたりの質量が160g/m以下であるとマイカテープの巻き付け性が良好に維持され、これを用いて形成される絶縁層は電気絶縁性に優れているが、マイカ層の1mあたりの質量が160g/mを上回るとマイカテープの巻き付け性が顕著に低下し、これを用いて形成される絶縁層は内部にボイド、ひび等が発生して充分な電気絶縁性が得られないことがわかった。
 本実施形態のコイルの絶縁層の形成に用いられるマイカテープの詳細及び好ましい態様は、後述する本実施形態のマイカテープと同様である。また、本実施形態のコイルに用いられるコイル導体の材質、形状、大きさ等は特に制限されず、コイルの用途等に応じて選択できる。
<回転電機用コイルの製造方法>
 本実施形態の回転電機用コイルの製造方法は、コイル導体の外周にマイカテープを巻き付ける工程と、前記コイル導体の外周に巻き付けられた前記マイカテープから絶縁層を形成する工程と、を有する。
 コイル導体の外周にマイカテープを巻き付ける方法は特に制限されず、通常行われる方法を採用することができる。
 コイル導体の外周に巻き付けられた前記マイカテープから絶縁層を形成する方法は、特に制限されない。例えば、コイル導体にマイカテープを巻き付けた後にマイカテープを加圧しながら加熱(ヒートプレス)して、あらかじめマイカテープに含まれている樹脂成分をマイカテープの外に流出させて重なり合うマイカテープ間を埋めるようにし、これを硬化させて絶縁層を形成する方法(プリプレグマイカテープの場合)、及びコイル導体にマイカテープを巻き付けた後に真空加圧含浸法(Vacuum Pressure Impregnation、VPI)にて樹脂成分をマイカテープに含浸し、これを硬化させて絶縁層を形成する方法(ドライマイカテープの場合)が挙げられる。
<マイカテープ>
 本実施形態のマイカテープは、マイカを含むマイカ層と、裏打ち材及び無機フィラー(マイカ以外の無機フィラーであり、以下単に「無機フィラー」と称する。)を含む裏打ち層と、を有し、前記マイカ層の1mあたりの質量が110g/m~160g/mである。
 本発明者らの検討により、マイカテープから形成される絶縁層の電気絶縁性(特に、絶縁寿命)は、マイカ層の1mあたりの質量が110g/m以上であると良好な水準が維持されるが、110g/mを下回ると顕著に低下することがわかった。一方、被絶縁体への巻き付け性は、マイカ層の1mあたりの質量が160g/m以下であると良好な水準が維持されるが、マイカ層の1mあたりの質量が160g/mを上回ると、高熱伝導テープの場合、テープ全体の厚みが増すため、顕著に低下することがわかった。従って、マイカ層の1mあたりの質量が110g/m~160g/mの範囲であると、高熱伝導性を維持しつつ電気絶縁性に優れる絶縁層を形成可能であることがわかった。
 マイカ層の1mあたりの質量は、110g/m~160g/mの範囲であれば特に制限されず、マイカテープに要求される特性に応じて選択できる。より良好な電気絶縁性が求められる場合には、マイカ層の1mあたりの質量は120g/m以上であることが好ましく、130g/m以上であることがより好ましい。より良好な巻き付け性が求められる場合は、マイカ層の1mあたりの質量は150g/m以下であることが好ましく、140g/m以下であることがより好ましい。
 図1は、本実施形態のマイカテープの構造の一例を表す概略断面図である。図1に示すように、マイカテープはマイカ4を含むマイカ層6と、裏打ち材2及び無機フィラー1を含む裏打ち層5と、を有している。また、マイカ層6と裏打ち層5はそれぞれ樹脂成分3を含んでいてもよい。樹脂成分3は、マイカ層6と裏打ち層5の両方に含まれても一方のみに含まれてもよい。マイカ層6(又は裏打ち層5)が樹脂成分3を含む場合、樹脂成分3は、マイカ層6(又は裏打ち層5)の全体に含まれていても、部分的に含まれていてもよい。
 本実施形態のマイカテープは、被絶縁体にマイカテープを巻き付けた後にあらかじめマイカテープに含まれている樹脂成分を硬化させて絶縁層を形成する方法に用いられるマイカテープ(プリプレグマイカテープ)であっても、被絶縁体に巻き付けた後に含浸する樹脂成分を硬化させて絶縁層を形成する方法に用いられるマイカテープ(ドライマイカテープ)であってもよい。
(マイカ)
 マイカ層に含まれるマイカの種類は、特に制限されない。例えば、未焼成硬質マイカ、焼成硬質マイカ、未焼成軟質マイカ、焼成軟質マイカ、合成マイカ及びフレークマイカが挙げられる。これらの中でも、マイカと樹脂成分の接着性の観点からは、未焼成硬質マイカが好ましい。
 マイカは1種を単独で使用してもよく、2種以上を併用してもよい。マイカを2種以上併用する場合としては、例えば、同じ成分で粒子径が異なるマイカを2種以上用いる場合、粒子径が同じで成分の異なるマイカを2種以上用いる場合、並びに平均粒子径及び成分の異なるマイカを2種以上用いる場合が挙げられる。
 マイカの大きさ(粒子径)は、特に制限されない。電気絶縁性の観点からは、公称目開きが2.8mmであるJIS標準篩を通過しないマイカの割合が、マイカ層に含まれるマイカ全体の45質量%未満であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。
 公称目開きが2.8mmであるJIS標準篩を通過しないマイカの割合が45質量%未満である場合に電気絶縁性に優れる傾向にある理由は必ずしも明らかではないが、例えば、マイカ層が比較的小さいマイカ片を多く含むことで樹脂成分がマイカ片の間を充分に充填し、マイカ層における空隙の発生が抑制される結果、マイカテープが重なり合った状態で加圧した際にマイカ層中の空隙に起因して生じるマイカテープ間の剥離が抑制されること等が考えられる。
 公称目開きが2.8mmであるJIS標準篩を通過しないマイカの割合を45質量%未満にすることで、マイカ層の1mあたり質量を増やすことなく電気絶縁性を向上させることができる。すなわち、必要な電気絶縁性を確保しつつマイカテープの厚みの増加を抑えて良好な巻き付け性を得ることができる。
 充分な絶縁破壊電界強度を確保する観点からは、公称目開きが0.5mmであるJIS標準篩を通過しないマイカの割合が、JIS標準篩を用いて篩い分けしたときの粒子径が0.5mm以上であるマイカ片の割合が、マイカ層に含まれるマイカ全体の40質量%以上であることが好ましく、60質量%以上であることがより好ましい。
 上記のJIS標準篩はJIS-Z-8801-1:2006に準拠し、ISO3310-1:2000に対応する。尚、ISO3310-1:2000を用いる場合には、JIS-Z-8801-1:2006と同様に篩い目の形状が正方形であるものを適用することが好ましい。
 篩い分けの対象は、マイカ層を形成する前の状態のマイカ片であっても、マイカテープを形成する前のマイカ層(マイカペーパ)から得たマイカ片であっても、マイカテープにおける裏打ち層から剃刀等を用いて剥離したマイカ層から得られるマイカ片であってもよい。
 マイカ層から得られるマイカ片を篩い分けする場合は、マイカ層1gをメチルエチルケトン100gに分散させ、10分間振とう後、8000回転/分(rpm)で5分間遠心分離する。上澄み液を除去して残った固形分に対して、メチルエチルケトン100gを加え、10分間振とう後、8000回転/分(rpm)で5分間遠心分離する。さらにもう一度、上澄み液を除去して残った固形分に対して、メチルエチルケトン100gを加え、10分間振とうした後、8000回転/分(rpm)で5分間遠心分離する。上澄み液を除去して残った固形分1gにメチルエチルケトン100gを加え、ミックスローターにて30分間分散させ、さらに10分間振とうする。その後、容器を振とうさせながら、所定の目開きのJIS標準篩(JIS-Z-8801-1:2006、ISO3310-1:2000、東京スクリーン株式会社、試験用ふるい)で篩い分けする。
(裏打ち材)
 裏打ち材の種類は、特に制限されない。例えば、ガラスクロスが挙げられる。裏打ち材としてガラスクロスを用いることで、ガラスクロスを構成する繊維の間に無機フィラーが取り込まれ、無機フィラーの脱落が抑制される傾向にある。また、繊維の間に浸透した樹脂成分によって隣接するマイカ層と良好に一体化し、熱伝導性が向上する傾向にある。
 裏打ち材としてガラスクロスを用いる場合、その一部が有機材料で構成される繊維であってもよい。有機材料で構成される繊維は特に制限されず、アラミド、ポリアミド、ポリイミド、ポリエステル等の繊維が挙げられる。ガラスクロスの一部が有機材料で構成される繊維である場合には、縦糸、横糸又はその両方が有機材料で構成される繊維であってもよい。
 裏打ち材の平均厚さは特に限定されない。例えば、30μm~60μmであることが好ましく、45μm~50μmであることがより好ましい。裏打ち材の平均厚さが30μm以上であれば、マイカテープを加圧した際に裏打ち層が裏打ち材の厚さに追従して薄くなりすぎるのが抑制され、熱伝導率の低下が抑制される傾向にある。裏打ち材の厚さが60μm以下であれば、マイカテープが厚くなるのを抑制でき、マイカテープを被絶縁体に巻き付ける工程中のマイカテープの切れ、ひび等の発生が抑制される傾向にある。
 本実施形態において裏打ち材の平均厚さは、マイクロメーター(MDC-SB、株式会社ミツトヨ)を用いて裏打ち材の厚さを計10箇所で測定し、得られた測定値の算術平均値とする。
 裏打ち材は、必要に応じて表面処理されたものでもよい。裏打ち材の表面処理の方法としては、例えば、シランカップリング剤による処理が挙げられる。
(無機フィラー)
 無機フィラーの種類は、特に制限されない。例えば、シリカ、窒化ホウ素及びアルミナが挙げられる。熱伝導性の観点からは、窒化ホウ素が好ましい。窒化ホウ素は、他の無機フィラー(例えば、アルミナ)よりも高い熱伝導性を示す。そのため、裏打ち層が窒化ホウ素を含むことで、マイカテープから形成される絶縁層の熱伝導性がより向上する傾向にある。無機フィラーが窒化ホウ素と窒化ホウ素以外の無機フィラーとを含む場合、無機フィラー中の窒化ホウ素の割合は50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
 窒化ホウ素の種類は特に限定されず、六方晶窒化ホウ素(h-BN)、立方晶窒化ホウ素(c-BN)、ウルツ鉱型窒化ホウ素等が挙げられる。これらの中でも、六方晶窒化ホウ素(h-BN)が好ましい。窒化ホウ素は、鱗片状に形成されている窒化ホウ素の一次粒子であっても、一次粒子が凝集して形成された二次粒子であってもよい。
 無機フィラーの平均粒子径は、特に限定されない。例えば、体積平均粒子径の場合、1μm~40μmであることが好ましく、5μm~20μmであることがより好ましく、5μm~10μmであることがさらに好ましい。
 無機フィラーの体積平均粒子径が1μm以上であると、熱伝導率及び絶縁耐電圧がより向上する傾向にあり、また、マイカテープを樹脂成分で含浸する樹脂含浸工程において微小な無機フィラーの粒子の流出が抑制される傾向にある。無機フィラーの平均粒子径が40μm以下であると、粒子形状の異方性による熱伝導率の異方性が抑制される傾向にあり、また、無機フィラーの粒子のテープ表面からの突出が抑制され、樹脂含浸工程において無機フィラーの流出が抑制される傾向にある。
 無機フィラーの体積平均粒子径は、例えば、レーザー回折散乱方式粒度分布測定装置(日機装株式会社、「マイクロトラック MT3000II」)を用いることで測定可能である。具体的には、純水中に無機フィラーを投入した後に、超音波分散機で分散する。この分散液の粒子径分布を測定することで、無機フィラーの粒子径分布が測定される。この粒子径分布に基づいて、小径側からの体積累積50%に対応する粒子径(D50)を体積平均粒子径として求める。
 無機フィラーは1種を単独で使用しても、2種以上を併用してもよい。無機フィラーを2種以上併用する場合としては、例えば、同じ成分で平均粒子径が異なる無機フィラーを2種以上用いる場合、平均粒子径が同じで成分の異なる無機フィラーを2種以上用いる場合、並びに平均粒子径及び種類の異なる無機フィラーを2種以上用いる場合が挙げられる。
 必要に応じ、無機フィラーはカップリング剤、熱処理又は光処理により表面処理されたものであってもよい。
 例えば、熱処理の場合、無機フィラーを適切な温度(例えば、250℃~800℃)で1時間~3時間加熱することにより、無機フィラー表面の不純物が除去される。そのため、無機フィラーを樹脂成分と混合したときの親和性が向上し、無機フィラーと樹脂成分を含む組成物の粘度が下がり、塗布しやすくなる傾向にある。また、組成物の塗布面は塗り斑や凹凸が少なく平滑性が向上する傾向にある。
(樹脂成分)
 マイカテープは、樹脂成分を含んでもよい。樹脂成分として用いる樹脂の種類は特に制限されない。マイカテープを硬化させて絶縁層を形成する観点からは、硬化性樹脂であることが好ましく、熱硬化性樹脂であることがより好ましい。硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂及びシリコーン樹脂が挙げられる。マイカ層と裏打ち層との接着性及び電気絶縁性の観点からは、エポキシ樹脂が好ましい。
 樹脂成分としてエポキシ樹脂を用いる場合のエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、環式脂肪族エポキシ樹脂等が挙げられる。中でも、耐熱性の観点からは、フェノールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂及びビスフェノールF型エポキシ樹脂が好ましい。
 エポキシ樹脂のエポキシ当量は、特に制限されない。例えば、130g/eq~500g/eqであることが好ましく、135g/eq~400g/eqであることがより好ましく、140g/eq~300g/eqであることがさらに好ましい。なお、エポキシ当量は、精秤したエポキシ樹脂をメチルエチルケトン等の溶媒に溶解させ、酢酸と臭化テトラエチルアンモニウム酢酸溶液を加えた後、過塩素酸酢酸標準液によって電位差滴定することにより測定される。電位差滴定には、指示薬を用いてもよい。
 樹脂成分として用いる樹脂の数平均分子量は、特に制限されない。例えば、流動性の観点からは100~100000であることが好ましく、200~50000であることがより好ましく、300~10000であることがさらに好ましい。樹脂の数平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)を用いて、定法に従い下記の条件で測定した値である。
〔測定条件〕
 ポンプ:L-6000(株式会社日立製作所)
 カラム:TSKgel(登録商標)G4000HHR+G3000HHR+G2000HXL(東ソー株式会社)
 カラム温度:40℃
 溶出溶媒:テトラヒドロフラン(クロマトグラフィー用安定剤不含、和光純薬工業株式会社)
 試料濃度:5g/L(テトラヒドロフラン可溶分)
 注入量:100μL
 流速:1.0mL/分
 検出器:示差屈折率計(RI-8020、東ソー株式会社)
 分子量較正標準物質:標準ポリスチレン
 データ処理装置:GPC-8020(東ソー株式会社)
 マイカテープが樹脂成分として硬化性樹脂を含む場合、硬化剤を樹脂成分として含んでもよい。硬化剤は特に制限されず、硬化性樹脂の種類に応じて適宜選択できる。硬化剤は1種を単独で用いても、2種以上を併用してもよい。
 硬化性樹脂がエポキシ樹脂である場合、硬化剤としてはエポキシ樹脂用硬化剤として通常用いられる硬化剤から適宜選択して用いることができる。具体的には、ジシアンジアミド、芳香族ジアミン等のアミン硬化剤;フェノールノボラック、クレゾールノボラック等のフェノール樹脂硬化剤;脂環式酸無水物等の酸無水物硬化剤などを挙げることができる。硬化性樹脂がエポキシ樹脂である場合、硬化剤とエポキシ樹脂の割合は、当量比(硬化剤/エポキシ樹脂)で0.8~1.2とすることが硬化性及び硬化物の電気特性の観点から好ましい。
(硬化触媒)
 マイカテープが樹脂成分として硬化性樹脂を含む場合、硬化性樹脂の硬化反応を加速させる等の目的で硬化触媒を含んでもよい。硬化触媒は特に制限されず、硬化性樹脂及び必要に応じて用いられる硬化剤の種類等に応じて選択できる。硬化触媒として具体的には、トリメチルアミン等の第3級アミン化合物、2-メチルイミダゾール、2-メチル-4-エチルイミダゾール等のイミダゾール化合物、錫、亜鉛、コバルト等の有機金属塩、三フッ化ホウ素モノエチルアミン等のルイス酸のアミン錯体、有機ホスフィン化合物等の有機リン化合物などを挙げることができる。硬化促進剤は1種を単独で用いても、2種以上を併用してもよい。
 マイカテープが硬化触媒を含む場合、その含有率は特に制限されない。例えば、樹脂成分としてエポキシ樹脂を用いる場合の硬化触媒の含有率は、エポキシ樹脂及び必要に応じて含まれる硬化剤の合計量に対して0.01質量%~5質量%の範囲が一般的である。
(その他の成分)
 マイカテープは、必要に応じて上述した成分以外のその他の成分を含んでもよい。その他の成分としては、カップリング剤、酸化防止剤、老化防止剤、安定剤、難燃剤、増粘剤等が挙げられる。マイカテープがこれらの成分を含む場合、その含有量は特に制限されない。
<マイカテープの全体構成>
 本実施形態のマイカテープは、マイカを含むマイカ層と、裏打ち材及び無機フィラーを含む裏打ち層と、を有し、必要に応じてその他の層を有していてもよい。その他の層としては、マイカテープの最表面に設けられる保護層(保護フィルム)等が挙げられる。
 マイカテープの平均厚さ(マイカ層と裏打ち層の厚さの合計)は特に制限されない。例えば、マイカテープの平均厚さは400μm以下であってよく、350μm以下であることが好ましく、300μm以下であることがより好ましい。
 マイカテープがプリプレグマイカテープとして使用される場合、マイカテープの巻き付け性の観点からは、マイカテープの平均厚さは300μm以下であることが好ましく、290μm以下であることがより好ましい。電気絶縁性の観点からは、マイカテープの平均厚さは120μm以上であることが好ましく、150μm以上であることがより好ましく、160μm以上であることがさらに好ましい。
 マイカテープがドライマイカテープとして使用される場合、マイカテープの巻き付け性の観点からは、マイカテープの平均厚さは220μm以下であることが好ましく、190μm以下であることがより好ましい。電気絶縁性の観点からは、マイカテープの平均厚さは120μm以上であることが好ましく、140μm以上であることがより好ましく、160μm以上であることがさらに好ましい。
 マイカ層の平均厚さは、特に制限されない。マイカテープの巻き付け性の観点からは、マイカ層の平均厚さは180μm以下であることが好ましく、170μm以下であることがより好ましい。電気絶縁性の観点からは、マイカ層の平均厚さは80μm以上であることが好ましく、90μm以上であることがより好ましい。
 裏打ち層の平均厚さは、特に制限されない。マイカテープの巻き付け性の観点からは、裏打ち層の平均厚さは60μm以下であることが好ましく、50μm以下であることがより好ましい。マイカテープの強度の観点からは、裏打ち層の平均厚さは10μm以上であることが好ましく、20μm以上であることがより好ましい。
 本実施形態においてマイカテープの平均厚さ(マイカ層と裏打ち層の厚さの合計)は、マイクロメーター(株式会社ミツトヨ、「MDC-SB」)を用いてマイカテープの厚さを計10箇所で測定し、得られた測定値の算術平均値とする。
 本実施形態においてマイカテープ中のマイカ層及び裏打ち層の厚さは、マイカテープの断面におけるマイカ層及び裏打ち層の厚さを実体顕微鏡(例えば、オリンパス株式会社、「BX51」)のミクロメーターにて3箇所観察し、その算術平均値とする。
 マイカテープのマイカと裏打ち材を除く不揮発分における無機フィラーの含有率は、特に制限されない。例えば、マイカと裏打ち材を除く不揮発分の総体積の20体積%~50体積%であることが好ましく、25体積%~35体積%であることがより好ましい。無機フィラーの含有率が、マイカと裏打ち材を除く不揮発分の総体積の20体積%以上であると、マイカテープから形成される絶縁層の熱伝導率がより向上する傾向にある。無機フィラーの含有率が、マイカと裏打ち材を除く不揮発分の総体積の50体積%以下であると、無機フィラーの樹脂成分への充填が容易となる傾向にある。
 マイカテープは、裏打ち層が無機フィラーとして窒化ホウ素を含み、マイカの見掛け体積が窒化ホウ素の体積の2.0倍~5.0倍であることが好ましい。
 マイカの見掛け体積が窒化ホウ素の体積の5.0倍以下であると、熱伝導率が良好となる。一方、マイカの見掛け体積が窒化ホウ素の体積の2.0倍以上であると、被絶縁体にマイカテープを巻き付けた際に、マイカテープのひび割れ、皺等が発生しにくくなり、ボイドの発生及び熱伝導率の低下が充分に抑制される傾向にある。さらに、窒化ホウ素を相対的に多く含むことで、相対的に高い熱伝導率を示す裏打ち層がマイカテープ全体の熱伝導率に寄与する割合が大きくなる傾向にある。マイカの見掛け体積は、窒化ホウ素の体積の3.0倍~4.8倍であることがより好ましく、3.2倍~4.0倍であることがさらに好ましい。
 本実施形態において、窒化ホウ素の体積は、例えば、下記方法によって算出される。
 ホットプレート上で窒化ホウ素を含むマイカテープ(1cm分)を硝酸水溶液中でマイクロウェーブを照射しながら分解し、測定用の試料溶液を調製する。この試料溶液をプラズマ中に噴霧し、プラズマ中で生成するホウ素イオンを質量分析計で分離及び定量し、窒化ホウ素量に換算することで、窒化ホウ素の質量を求める。得られた質量を窒化ホウ素の比重で割ると、マイカテープ1cmあたりの窒化ホウ素の体積(cm)が求められる。
 本実施形態において、マイカの見掛け体積は、例えば、下記方法によって算出される。
 面積が1cmのマイカテープにおけるマイカ層の厚さ(cm)を求め、得られた厚さ(cm)×1cmとすることで、マイカテープ1cmあたりのマイカの見掛け体積(cm)となる。
 マイカテープのマイカ層と裏打ち層の合計質量におけるマイカと裏打ち材を除く不揮発分の含有率は、特に制限されない。例えば、マイカ層と裏打ち層の合計質量の5質量%~45質量%であることが好ましく、10質量%~30質量%であることがより好ましく、15質量%~20質量%であることがさらに好ましい。マイカと裏打ち材を除く不揮発分の含有率が、マイカ層と裏打ち層の合計質量の5質量%以上であると、熱伝導率がより効果的に向上する傾向にある。マイカと裏打ち材を除く不揮発分の含有率が、マイカ層と裏打ち層の合計質量の45質量%以下であると、マイカテープの厚さの増大が抑えられる傾向にある。また、マイカテープの作製の際にワニスの含浸が進みやすい傾向にある。
 マイカテープのマイカと裏打ち材を除く不揮発分における樹脂成分の含有率は、特に制限されない。例えば、マイカと裏打ち材を除く不揮発分の総質量の35質量%~70質量%であることが好ましく、50質量%~65質量%であることがより好ましく、55質量%~60質量%であることがさらに好ましい。樹脂成分の含有率が、マイカと裏打ち材を除く不揮発分の総質量の35質量%以上であると、裏打ち層とマイカ層との接着性が向上する傾向にある。樹脂成分の含有率が、マイカと裏打ち材を除く不揮発分の総質量の70質量%以下であると、熱伝導性が向上する傾向にある。
 マイカテープ中の樹脂成分の含有率は特に制限されず、マイカテープの用途等に応じて選択できる。例えば、樹脂成分の含有率は、マイカ層と裏打ち層の合計質量の40質量%以下であってよく、5質量%~33質量%であることが好ましい。
 マイカテープがプリプレグマイカテープとして使用される場合、樹脂成分の含有率は、例えば、マイカ層と裏打ち層の合計質量の25質量%~33質量%であることが好ましく、25質量%~30質量%であることがより好ましい。樹脂成分の含有率がマイカ層と裏打ち層の合計質量の25質量%以上であると、マイカテープからのマイカ及び無機フィラーの脱落(粉落ち)が抑制され、被絶縁体にマイカテープを巻き付ける際のマイカテープのひび割れ、切れ、皺等の発生が抑制される結果、絶縁信頼性の低下及び熱伝導率の低下が抑制される傾向にある。一方、樹脂成分の含有率がマイカ層と裏打ち層の合計質量の33質量%以下であると、マイカテープの厚さの増大が抑制されて良好な巻き付け性が維持される傾向にある。さらに、被絶縁体にマイカテープを巻き付けた状態で重なり合ったマイカテープ間の空隙を埋めるために必要な体積以上に樹脂成分が流出することが抑制される傾向にある。その結果、ボイドの発生が低減し、絶縁信頼性の低下が抑制される傾向にある。
 マイカテープがドライマイカテープとして使用される場合、マイカテープ中の樹脂成分の含有率は、例えば、マイカ層と裏打ち層の合計質量の5質量%~15質量%であることが好ましく、5質量%~12質量%であることがより好ましく、8質量%~10質量%であることがさらに好ましい。樹脂成分の含有率がマイカ層と裏打ち層の合計質量の5質量%以上であると、裏打ち層とマイカ層との接着性が充分に確保される傾向にある。一方、樹脂成分の含有率がマイカ層と裏打ち層の合計質量の15質量%以下であると、高い熱伝導率が達成される傾向にある。
 本実施形態において、マイカテープ中の樹脂成分の含有率は、例えば、下記方法によって算出される。
 幅30mm及び長さ50mmの大きさに切断したマイカテープを電気炉にて600℃及び2時間の条件で加熱し、加熱前後の質量減少率(%)を下記式により求める。以上の工程を3回行い、得られた値の算術平均値として求める。
 樹脂成分の含有率={(加熱前の質量-加熱後の質量)/加熱前の質量}×100
 マイカテープがドライマイカテープとして使用される場合、マイカ層中の樹脂成分の含有率は、マイカ層の総質量の15質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることがさらに好ましく、0質量%であることが特に好ましい。
 電気絶縁性の観点からは、マイカ層は、無機フィラーを実質的に含まないことが好ましい。具体的には、マイカ層中の無機フィラーの含有率は、マイカ層の総質量の3質量%以下であることが好ましく、2質量%以下であることがより好ましく、1質量%以下であることがさらに好ましく、0質量%であることが特に好ましい。
 熱伝導率の低下を抑制する観点からは、マイカ層は、フィブリットを実質的に含まないことが好ましい。具体的には、マイカ層中のフィブリットの含有率は、マイカ層の総質量の1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましく、0質量%であることが特に好ましい。本明細書においてフィブリットとは、マイカ層が自立可能になるように混合される繊維状の物質であり、ポリアミド、ポリイミド等の有機繊維、ガラスファイバー等の無機繊維などが挙げられる。
 本実施形態のマイカテープは、例えば、回転電機コイル等に用いられるコイル導体等の被絶縁体の外周に設けられる絶縁層の形成に用いることができる。
<マイカテープの製造方法>
 本実施形態のマイカテープは、いかなる工程を経て製造されたものであってもよく、従来から公知の製造方法を適用することができる。
 マイカテープの製造方法の一例としては、裏打ち材をマイカペーパの上に配置して積層体を準備する工程と、無機フィラーと、樹脂成分と、を含む組成物(ワニス)を、前記積層体の前記裏打ち材側に付与する工程と、を含む方法が挙げられる。組成物の付与は、裏打ち材に付与した組成物が裏打ち材の他方の面側ににじみ出てマイカペーパの全体又は一部に浸透するように行ってもよい。必要に応じ、組成物は溶剤を含んでもよい。
 上記方法に用いられるマイカ、裏打ち材、無機フィラー及び樹脂成分、並びに製造されるマイカテープの詳細及び好ましい態様は、上述したとおりである。マイカペーパは、マイカ片が集合して形成されたシート状の物体である。
<マイカテープの硬化物>
 本実施形態のマイカテープの硬化物は、上述したマイカテープを硬化して得られる。より具体的には、マイカテープに含まれる樹脂成分を硬化して得られる。硬化の方法は特に制限されず、通常の方法から選択できる。樹脂成分は、被絶縁体に巻き付ける前のマイカテープにあらかじめ含まれているものであっても、被絶縁体にマイカテープを巻き付けた後に含浸されるものであってもよい。
<絶縁物>
 本実施形態の絶縁物は、被絶縁体と、前記被絶縁体の表面の少なくとも一部に配置される本実施形態のマイカテープの硬化物である絶縁層と、を有する。本実施形態のマイカテープを用いて絶縁層を形成する方法は特に制限されず、従来から公知の製造方法を適用することができる。例えば、被絶縁体にマイカテープを巻き付けた後にマイカテープを加圧しながら加熱(ヒートプレス)して、あらかじめマイカテープに含まれている樹脂成分をマイカテープの外に流出させて重なり合うマイカテープ間を埋めるようにし、これを硬化させて絶縁層を形成する方法(プリプレグマイカテープの場合)、及び被絶縁体にマイカテープを巻き付けた後に真空加圧含浸法(Vacuum Pressure Impregnation、VPI)にて樹脂成分をマイカテープに含浸し、これを硬化させて絶縁層を形成する方法(ドライマイカテープの場合)が挙げられる。
 絶縁層の形成を真空加圧含浸法により行う場合、マイカテープに含浸させる樹脂成分は特に制限されない。例えば、ビスフェノールA型エポキシ樹脂等のエポキシ樹脂と、脂環式酸無水物等の硬化剤を含むものが挙げられる。真空加圧含浸法における樹脂成分の含浸方法、含浸後の硬化条件、エポキシ樹脂と硬化剤との比率等は、従来から公知の方法、公知の条件等を参照できる。
 絶縁物における被絶縁体の種類は特に限定されず、コイル、棒、板等の形状を有する金属材料(銅等)などが挙げられる。被絶縁体として具体的には、回転電機用コイルのコイル導体が挙げられる。
 本実施形態のマイカテープを用いることで、高熱伝導性を示す絶縁層を形成することができる。従って、本実施形態の絶縁物がコイルである場合、当該コイルを冷却する際、従来では水直接冷却方式を採用されていた規模のコイルに対しても、水素冷却方式又は空冷方式を採用することができるようになり、コイルの構造を簡素化することが可能となる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<実施例1>
(1)マイカペーパの作製
 未焼成硬質マイカを水中に分散してマイカ片とし、抄紙機にて抄造して、1mあたりの質量が110g/mのマイカペーパ(未焼成硬質集成マイカ)を作製した。
 マイカペーパの作製に用いた未焼成硬質マイカを公称目開きが2.8mmのJIS標準篩を用いて篩い分けしたところ、篩い目を通過しないマイカの割合はマイカ全体の0質量%であった。
 マイカペーパの作製に用いた未焼成硬質マイカを公称目開き0.5mmのJIS標準篩を用いて篩い分けしたところ、篩い目を通過しないマイカの割合はマイカ全体の63質量%であった。
(2)樹脂ワニスの調製
 樹脂成分としてフェノールノボラック型エポキシ樹脂(ダウ・ケミカル日本株式会社、商品名「D.E.N.438」(「D.E.N.」は、登録商標))36.7質量部と、硬化触媒として三フッ化ホウ素モノエチルアミン(和光純薬工業株式会社)1.1質量部と、有機溶剤としてメチルエチルケトン(MEK)(和光純薬工業株式会社)31.1質量部とを混合した。その後、窒化ホウ素(平均粒子径5μm、電気化学工業株式会社)を31.1質量部加え、さらに混合して樹脂ワニスを調製した。
(3)プリプレグマイカテープの作製
 マイカペーパの上に裏打ち材としてガラスクロス(株式会社双洋、「WEA 03G 103」、厚さ0.030mm)を重ね、このガラスクロスの上面に、樹脂ワニスをロールコーターを用いて塗布した。塗布は、樹脂ワニスの樹脂成分がガラスクロスの下のマイカペーパの全体にも浸透するように実施した。含浸性はいずれも良好であった。
 この際、ロールコーターとガラスクロスとの間のギャップ幅を調整することで、マイカの見掛け体積が窒化ホウ素の体積の4.65倍となるようにした。乾燥後、マイカ層とガラスクロス層(裏打ち層)の積層体を、幅が30mmとなるように切断して、プリプレグマイカテープを作製した。
(4)プリプレグマイカテープの積層硬化物の作製
 上述の方法によって作製したプリプレグマイカテープを、後述する熱伝導率の測定、絶縁破壊電界強度の測定、及び課電劣化寿命の評価に必要な数(3~16枚)重ねて、170℃で1時間のヒートプレスを行って樹脂成分を硬化させ、積層硬化物を作製した。
<実施例2~6、比較例1~2>
 マイカペーパの1mあたり質量が表1に記載の値となるようにマイカの使用量を変更した以外は実施例1と同様にして、実施例2~6及び比較例1~2のプリプレグマイカテープを作製し、積層硬化物を作製した。
<実施例7>
(1)ドライマイカペーパの作製
 実施例1でマイカテープの作製に用いたものと同じ未焼成硬質マイカを水中に分散してマイカ片とし、抄紙機にて抄造して、1mあたりの質量が110g/mのマイカペーパ(未焼成硬質集成マイカ)を作製した。
(2)樹脂ワニスの調製
 樹脂成分としてビスフェノールA型エポキシ樹脂(三菱化学株式会社、「エピコート828」(汎用エポキシ))13.1質量部と、硬化触媒として亜鉛(II)アセチルアセトナート(純正化学株式会社)3.3質量部と、有機溶剤としてメチルエチルケトン(和光純薬工業株式会社)46.0質量部とを混合した。その後、無機フィラーとして窒化ホウ素(平均粒子径5μm)を37.6質量部加え、さらに混合して樹脂ワニスを調製した。
(3)ドライマイカテープの作製及び評価
 マイカペーパの上に裏打ち材としてガラスクロス(株式会社双洋、「WEA 03G 103」)を重ね、このガラスクロスの上面に、樹脂ワニスをロールコーターにより塗布した。塗布は、ガラスクロスの下のマイカペーパの一部にも樹脂ワニスの樹脂成分が浸透して、マイカペーパとガラスクロスとが樹脂成分で接着するように実施した。乾燥後、幅が30mmになるように切断して、ドライマイカテープを作製した。
(4)ドライマイカテープの積層硬化物の作製
 上述の方法によって作製したマイカテープを、後述する熱伝導率の測定、絶縁破壊電界強度の測定、及び課電劣化寿命の評価に必要な数(3~25枚)重ねて、含浸レジンに浸漬し、真空含浸法によりドライマイカテープに樹脂成分を浸透させた。含浸性はいずれも良好であった。その後、130℃で2時間、次いで190℃で2時間のヒートプレスを行って、積層硬化物を作製した。含浸レジンとしては、ビスフェノールA型エポキシ樹脂(三菱化学株式会社、エピコート828)と硬化剤(日立化成株式会社、「HN-5500」、メチルヘキサヒドロ無水フタル酸)とを質量基準で1:1で混合したものを用いた。
<実施例8~10、比較例3、4>
 マイカペーパの1mあたり質量が表1に記載の値となるようにマイカの使用量を変更した以外は実施例7と同様にして、実施例8~10及び比較例3、4のドライマイカテープを作製し、積層硬化物を作製した。
<評価>
(1)熱伝導率の測定
 上記方法により作製した積層硬化物について、熱伝導率測定装置(英弘精機株式会社、「HC-110」)を用いて、熱伝導率(W/(m・K))を測定した。積層硬化物の積層数は、プリプレグマイカテープの場合は16層、ドライマイカテープの場合は25層とした。結果を表1に示す。
(2)絶縁破壊電界強度の測定
 上記方法により作製した積層硬化物を100mm×110mmの大きさに切り出し、絶縁耐力試験装置(東京変圧器株式会社、100kV、10kVAタイプ)を用いて絶縁破壊電圧を測定した。積層硬化物の積層数は、プリプレグマイカテープ、ドライマイカテープともに3層とした。測定条件はJIS C2110に準拠し、電気絶縁油(フロリナート、FC-3283)中で、周波数:商用周波数50Hz、昇圧速度:2kV/sec、遮断電流:8mA、上部球電極:φ20mm/真鍮製、下部電極:φ25mm/SUS製にて計5点測定した。
(3)課電劣化寿命の評価
 上記方法により作製した積層硬化物を100mm×110mmの大きさに切り出し、V-t試験装置(京南電機有限会社、max:50kV)を用いて課電劣化寿命(V-t特性)を測定した。積層硬化物の積層数は、プリプレグマイカテープ、ドライマイカテープともに3層とした。測定は、電気絶縁油としてのシリコーンオイル(信越化学工業株式会社、KF-96-50SC)中で、周波数:商用周波数50Hz、上部電極:φ15mm/銅製、下部電極:φ20mm/銅製にて、1電圧水準あたり7箇所測定し、ワイブルプロットを作製した。このワイブルプロットの位置パラメータを0として5%確率値を計算し、電界強度が35kV/mmにおける寿命時間(h)を算出した。結果を表1に示す。
(4)巻き付け性の評価
 マイカテープを、被絶縁体としての長さ200mm、幅30mm、厚さ9mmの金属板の長さ方向における一端から他端まで、テープ幅の半分が重なり合うようにしてらせん状に巻き付けた。その際に、マイカテープのひび割れ、皺等の有無を以下の評価基準で評価した。結果を表1に示す。
 ひび割れ、皺等が見られない・・・A
 ひび割れ、皺等が1箇所~4箇所見られる・・・B
 ひび割れ、皺等が5箇所以上見られる・・・C
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、マイカ層の1mあたり質量が110g/m以上である実施例のマイカテープは、マイカ層の1mあたり質量が110g/m未満である比較例1、3のマイカテープに比べて電気絶縁性(特に、長期的な電気絶縁性の評価指標である課電劣化寿命時間)の評価が高かった。
 一方、マイカ層の1mあたり質量が160g/m以下である実施例のマイカテープは、マイカ層の1mあたり質量が160g/mを超える比較例2、4のマイカテープに比べて被絶縁体への巻き付け性の評価が高かった。このことから、実施例のマイカテープを被絶縁体に巻き付けて形成した絶縁層は、比較例2、4のマイカテープを被絶縁体に巻き付けて形成した絶縁層に比べて内部にボイド、ひび等が生じにくく、電気絶縁性により優れていると考えられる。
1 無機フィラー
2 裏打ち材
3 樹脂成分
4 マイカ
5 裏打ち層
6 マイカ層

Claims (11)

  1.  コイル導体と、前記コイル導体の外周に配置された絶縁層と、を有し、前記絶縁層はマイカテープを含み、前記マイカテープは、マイカを含むマイカ層と、裏打ち材及び無機フィラーを含む裏打ち層と、を有し、前記マイカ層の1mあたりの質量が110g/m~160g/mである、回転電機用コイル。
  2.  前記マイカテープにおいて、公称目開きが2.8mmであるJIS標準篩を通過しないマイカの割合が、前記マイカ層に含まれるマイカ全体の45質量%未満である、請求項1に記載の回転電機用コイル。
  3.  前記マイカテープが樹脂成分をさらに含む、請求項1又は請求項2に記載の回転電機用コイル。
  4.  前記マイカテープにおいて、前記無機フィラーの含有率が、前記マイカと前記裏打ち材を除く不揮発分の総体積の20体積%~50体積%である、請求項1~請求項3のいずれか1項に記載の回転電機用コイル。
  5.  前記コイル導体の外周に前記マイカテープを巻き付ける工程と、
     前記コイル導体の外周に巻き付けられた前記マイカテープから絶縁層を形成する工程と、を有する、請求項1~請求項4のいずれか1項に記載の回転電機用コイルの製造方法。
  6.  マイカを含むマイカ層と、裏打ち材及び無機フィラーを含む裏打ち層と、を有し、前記マイカ層の質量が110g/m~160g/mであるマイカテープ。
  7.  公称目開きが2.8mmであるJIS標準篩を通過しないマイカの割合が、前記マイカ層に含まれるマイカ全体の45質量%未満である、請求項6に記載のマイカテープ。
  8.  前記無機フィラーの含有率が、前記マイカと前記裏打ち材を除く不揮発分の総体積の20体積%~50体積%である、請求項6又は請求項7に記載のマイカテープ。
  9.  樹脂成分をさらに含む、請求項6~請求項8のいずれか1項に記載のマイカテープ。
  10.  前記樹脂成分を硬化して得られる、請求項9に記載のマイカテープの硬化物。
  11.  被絶縁体と、前記被絶縁体の表面の少なくとも一部に配置される請求項10のマイカテープの硬化物を含む絶縁層と、を有する絶縁物。
PCT/JP2016/069362 2016-06-29 2016-06-29 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物 WO2018003044A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/069362 WO2018003044A1 (ja) 2016-06-29 2016-06-29 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
JP2018525281A JP6891887B2 (ja) 2016-06-29 2017-06-29 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
PCT/JP2017/024057 WO2018003951A1 (ja) 2016-06-29 2017-06-29 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069362 WO2018003044A1 (ja) 2016-06-29 2016-06-29 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物

Publications (1)

Publication Number Publication Date
WO2018003044A1 true WO2018003044A1 (ja) 2018-01-04

Family

ID=60786190

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/069362 WO2018003044A1 (ja) 2016-06-29 2016-06-29 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
PCT/JP2017/024057 WO2018003951A1 (ja) 2016-06-29 2017-06-29 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024057 WO2018003951A1 (ja) 2016-06-29 2017-06-29 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物

Country Status (2)

Country Link
JP (1) JP6891887B2 (ja)
WO (2) WO2018003044A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6522273B1 (ja) * 2018-10-11 2019-05-29 三菱電機株式会社 固定子コイル、その製造方法及び回転電機

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041804A (ja) * 2018-09-06 2020-03-19 東芝三菱電機産業システム株式会社 絶縁寿命試験方法および絶縁試験体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158113A (ja) * 2008-12-26 2010-07-15 Toshiba Corp 電気絶縁部材、回転電機用固定子コイルおよび回転電機
WO2015053374A1 (ja) * 2013-10-09 2015-04-16 日立化成株式会社 プリプレグマイカテープ及びそれを用いたコイル

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02240901A (ja) * 1989-03-15 1990-09-25 Toshiba Corp 電気機器のコイル絶縁
JPH08162354A (ja) * 1994-12-08 1996-06-21 Toshiba Corp 耐熱絶縁線輪の製造方法
JP3422674B2 (ja) * 1998-01-12 2003-06-30 株式会社日立製作所 絶縁コイルおよびこれを用いた回転電機
JP2003009446A (ja) * 2001-06-19 2003-01-10 Hitachi Ltd 高熱伝導絶縁コイルおよび回転電機装置
JP6058169B2 (ja) * 2014-01-29 2017-01-11 三菱電機株式会社 絶縁テープ及びその製造方法、固定子コイル及びその製造方法、並びに回転電機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158113A (ja) * 2008-12-26 2010-07-15 Toshiba Corp 電気絶縁部材、回転電機用固定子コイルおよび回転電機
WO2015053374A1 (ja) * 2013-10-09 2015-04-16 日立化成株式会社 プリプレグマイカテープ及びそれを用いたコイル

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6522273B1 (ja) * 2018-10-11 2019-05-29 三菱電機株式会社 固定子コイル、その製造方法及び回転電機
WO2020075269A1 (ja) * 2018-10-11 2020-04-16 三菱電機株式会社 固定子コイル、その製造方法及び回転電機
EP3866307A4 (en) * 2018-10-11 2021-11-03 Mitsubishi Electric Corporation STATOR COIL, METHOD OF MANUFACTURING A STATOR AND ELECTRIC LATHE

Also Published As

Publication number Publication date
JP6891887B2 (ja) 2021-06-18
JPWO2018003951A1 (ja) 2019-05-16
WO2018003951A1 (ja) 2018-01-04

Similar Documents

Publication Publication Date Title
JP6889153B2 (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
JP6520966B2 (ja) プリプレグマイカテープ及びそれを用いたコイル
JP4922018B2 (ja) 回転電機のコイル絶縁物
US9925744B2 (en) Insulating tape, method for producing same, and stator coil
WO2015114907A1 (ja) 絶縁テープ及びその製造方法、固定子コイル及びその製造方法、並びに回転電機
WO2016104141A1 (ja) 絶縁テープ及びその製造方法、並びに固定子コイル及びその製造方法、並びに発電機
WO2017014202A1 (ja) 回転電機用コイル、回転電機用コイルの製造方法及びマイカテープ
JP2010158113A (ja) 電気絶縁部材、回転電機用固定子コイルおよび回転電機
WO2018003951A1 (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
WO2018003950A1 (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの製造方法、マイカテープの硬化物及び絶縁物
JP2019122099A (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
JP2012244861A (ja) 絶縁コイル
JP6403444B2 (ja) マイカテープ及び固定子コイル
JP5159812B2 (ja) 回転電機
CA2900193A1 (en) Stator slot liners
WO2018179439A1 (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
WO2018179440A1 (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
JP2009187817A (ja) 絶縁シート、固定子コイルおよび回転電機
JP2018026282A (ja) マイカテープ、マイカテープの製造方法、絶縁物、流動抵抗算出方法、流動抵抗算出装置、及び流動抵抗算出プログラム
JP2018170252A (ja) 回転電機用コイル、プリプレグマイカテープ、プリプレグマイカテープの製造方法、プリプレグマイカテープの硬化物、絶縁層付き物品、及び回転電機用コイルの製造方法
JP2019217668A (ja) ドライマイカテープ、絶縁物、回転電機用コイル及び回転電機用コイルの製造方法
WO2018179437A1 (ja) 回転電機用コイル、回転電機用コイルの製造方法、ドライマイカテープ及び絶縁物
JP2017225315A (ja) 回転電機のコイルおよびその製造方法ならびに回転電機
JP2007306645A (ja) 半導電性テープ、半導電性シート、絶縁コイル及び回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP