WO2018179437A1 - 回転電機用コイル、回転電機用コイルの製造方法、ドライマイカテープ及び絶縁物 - Google Patents

回転電機用コイル、回転電機用コイルの製造方法、ドライマイカテープ及び絶縁物 Download PDF

Info

Publication number
WO2018179437A1
WO2018179437A1 PCT/JP2017/013845 JP2017013845W WO2018179437A1 WO 2018179437 A1 WO2018179437 A1 WO 2018179437A1 JP 2017013845 W JP2017013845 W JP 2017013845W WO 2018179437 A1 WO2018179437 A1 WO 2018179437A1
Authority
WO
WIPO (PCT)
Prior art keywords
mica
mass
coil
mica tape
binder material
Prior art date
Application number
PCT/JP2017/013845
Other languages
English (en)
French (fr)
Inventor
士輝 宋
竹澤 由高
片木 秀行
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2017/013845 priority Critical patent/WO2018179437A1/ja
Publication of WO2018179437A1 publication Critical patent/WO2018179437A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/60Composite insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material

Definitions

  • the present invention relates to a coil for a rotating electrical machine, a method for manufacturing the coil for a rotating electrical machine, a dry mica tape, and an insulator.
  • a prepreg mica tape resin rich mica tape
  • a dry mica tape VPI (Vacuum Pressure Impression) mica tape
  • the prepreg mica tape mainly includes a backing material, mica paper, and a curable resin composition containing a curable resin or the like that is pre-impregnated into the mica paper.
  • the dry mica tape mainly includes a backing material, mica paper, and an adhesive layer that integrally bonds the backing material and the mica paper.
  • an insulating layer contained in an insulator is formed using a prepreg mica tape
  • the prepreg mica tape is wrapped around a portion requiring insulation of the insulator, heated while being pressurized, and pre-impregnated into mica paper
  • the insulating layer is formed by curing the object.
  • an insulating layer contained in an insulator is formed using dry mica tape
  • the dry mica tape is wound around a portion requiring insulation of the insulator, and the dry mica tape is impregnated with a curable resin composition, and then The insulating layer is formed by curing the curable resin composition impregnated in the dry mica tape by heating or pressurizing.
  • the inorganic has higher thermal conductivity than the binder resin contained in the mica and the adhesive layer in the tape.
  • a method of adding a filler is used.
  • Japanese Patent Application Laid-Open No. 2005-199562 discloses a mica tape in which alumina having high thermal conductivity is filled as an inorganic filler in a mica layer.
  • a mica tape By using this mica tape, 0.32 W / ( It is said that a mica plate having a thermal conductivity of m ⁇ K) to 0.36 W / (m ⁇ K) is obtained.
  • Japanese Patent Application Laid-Open No. 2002-93257 discloses a mica substrate sheet-like body in which a heat conductive layer containing an inorganic filler having a high thermal conductivity is further provided on one surface of a normal mica tape.
  • a heat conductive layer containing an inorganic filler having a high thermal conductivity is further provided on one surface of a normal mica tape.
  • HTC (high thermal conductivity) particles are infiltrated into a fabric layer of a composite tape including a fabric layer and a mica layer, and impregnated resin is impregnated into the composite tape through the fabric layer.
  • a method is disclosed.
  • an insulating layer having a thermal conductivity of 0.4 W / (m ⁇ K) or more can be formed by adding a thermal conductive layer further containing an inorganic filler to normal mica tape.
  • a good mica tape was obtained, but it became a thick tape having a thickness of 0.22 mm to 0.32 mm.
  • Mica tape is required to be flexible from the viewpoint of ease of taping work on coils.
  • the tape in the case of a tape having a thickness of 0.25 mm or more, the tape is hard and is wrinkled or wound when wound around the coil. Cracks are likely to occur and it is difficult to apply to actual machines.
  • the heat conductive layer becomes thick, it is considered that the heat conductive layer becomes an obstacle in the process of injecting the curable resin composition, and the curable resin composition hardly penetrates into the mica tape.
  • Japanese Patent Publication No. 2009-532242 uses a method of dry-filling HTC particles.
  • the mica tape is coated with a resin back coating. If it does so, a thermal resistance layer will be formed and it will be difficult to improve thermal conductivity.
  • An object of one embodiment of the present invention is to provide a coil for a rotating electrical machine having an insulating layer exhibiting high thermal conductivity and a method for manufacturing the same, in view of the above circumstances.
  • Another object of one embodiment of the present invention is to provide a dry mica tape capable of forming an insulating layer exhibiting high thermal conductivity and an insulator using the dry mica tape.
  • ⁇ 1> forming a mica tape laminate covering at least a part of the outer periphery of the coil conductor; Impregnating the laminate with a curable resin composition; Curing the curable resin composition to form an insulating layer,
  • the mica tape has a backing layer containing glass cloth, a binder material containing boron nitride and a binder resin, A mica layer containing mica provided on the surface of the backing layer, At least a part of the gap of the texture of the glass cloth is filled with the binder material,
  • the binder material is a dry mica tape having a total volume of 0.5 to 2 times the total volume of the gaps of the glass cloth.
  • ⁇ 2> The method for manufacturing a coil for a rotating electrical machine according to ⁇ 1>, wherein the binder resin content is 35% by mass to 70% by mass with respect to the binder material.
  • ⁇ 3> The method for manufacturing a coil for a rotating electrical machine according to ⁇ 1> or ⁇ 2>, wherein a content ratio of the binder resin is 5% by mass to 25% by mass with respect to a total of the backing layer and the mica layer.
  • ⁇ 4> The method for producing a coil for a rotating electrical machine according to any one of ⁇ 1> to ⁇ 3>, wherein the boron nitride has an average particle diameter of 1 ⁇ m to 40 ⁇ m.
  • ⁇ 5> The method for manufacturing a coil for a rotating electrical machine according to any one of ⁇ 1> to ⁇ 4>, wherein the boron nitride content is 20% by volume to 50% by volume with respect to the binder material.
  • ⁇ 6> The rotating electrical machine according to any one of ⁇ 1> to ⁇ 5>, wherein a ratio of the binder material is 5% by mass to 45% by mass with respect to a total of the backing layer and the mica layer.
  • ⁇ 7> The method for manufacturing a coil for a rotating electrical machine according to any one of ⁇ 1> to ⁇ 6>, wherein the boron nitride is surface-treated.
  • the insulating layer includes a laminate of mica tape covering at least a part of the outer periphery of the coil conductor, and a cured product of a curable resin composition impregnated in the laminate,
  • the mica tape has a backing layer containing glass cloth, a binder material containing boron nitride and a binder resin, A mica layer containing mica provided on the surface of the backing layer, At least a part of the gap of the texture of the glass cloth is filled with the binder material, A coil for a rotating electrical machine, wherein the binder material is a dry mica tape having a total volume of 0.5 to 2 times the total volume of the gaps of the glass cloth.
  • ⁇ 9> The rotating electrical machine coil according to ⁇ 8>, wherein the binder resin content is 35% by mass to 70% by mass with respect to the binder material.
  • ⁇ 11> The coil for a rotating electrical machine according to any one of ⁇ 8> to ⁇ 10>, wherein an average particle diameter of the boron nitride is 1 ⁇ m to 40 ⁇ m.
  • ⁇ 12> The rotating electrical machine coil according to any one of ⁇ 8> to ⁇ 11>, wherein the boron nitride content is 20% by volume to 50% by volume with respect to the binder material.
  • ⁇ 13> The rotating electrical machine according to any one of ⁇ 8> to ⁇ 12>, wherein a ratio of the binder material is 5% by mass to 45% by mass with respect to a total of the backing layer and the mica layer. coil.
  • ⁇ 14> The rotating electrical machine coil according to any one of ⁇ 8> to ⁇ 13>, wherein the boron nitride is surface-treated.
  • ⁇ 17> The dry mica tape according to ⁇ 15> or ⁇ 16>, wherein a content of the binder resin is 5% by mass to 25% by mass with respect to a total of the backing layer and the mica layer.
  • ⁇ 18> The dry mica tape according to any one of ⁇ 15> to ⁇ 17>, wherein the boron nitride has an average particle size of 1 ⁇ m to 40 ⁇ m.
  • ⁇ 19> The dry mica tape according to any one of ⁇ 15> to ⁇ 18>, wherein the boron nitride content is 20% by volume to 50% by volume with respect to the binder material.
  • ⁇ 20> The dry mica tape according to any one of ⁇ 15> to ⁇ 19>, wherein a ratio of the binder material is 5% by mass to 45% by mass with respect to a total of the backing layer and the mica layer. . ⁇ 21> The dry mica tape according to any one of ⁇ 15> to ⁇ 20>, wherein the boron nitride is surface-treated.
  • ⁇ 22> an insulator, A laminate of the dry mica tape according to any one of ⁇ 15> to ⁇ 21>, which covers at least a part of the insulator, and a cured product of the curable resin composition impregnated in the laminate, An insulating layer containing, Having an insulator.
  • a coil for a rotating electrical machine having an insulating layer exhibiting high thermal conductivity and a method for manufacturing the same are provided. Furthermore, according to one embodiment of the present invention, a dry mica tape capable of forming an insulating layer exhibiting high thermal conductivity and an insulator using the same can be provided.
  • FIG. 6 is a schematic cross-sectional view showing dry mica tapes of Examples 1 to 7 and Comparative Example 4.
  • FIG. 2 is a cross-sectional photomicrograph showing the laminated cured product of Example 1.
  • 6 is a schematic cross-sectional view showing a dry mica tape of Comparative Example 1.
  • FIG. 6 is a schematic cross-sectional view showing a dry mica tape of Comparative Example 2.
  • FIG. 6 is a schematic cross-sectional view showing a dry mica tape of Comparative Example 3.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
  • a numerical range indicated using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the content and the content ratio of each component mean the total of the plurality of types of substances unless there is a specific notice when there are a plurality of types of substances corresponding to each component.
  • the particle diameter of each component means a value for a mixture of the plurality of types of particles when there are a plurality of types of particles corresponding to each component, unless otherwise specified.
  • the term “layer” includes a configuration of a shape formed in part in addition to a configuration of a shape formed on the entire surface when observed as a plan view.
  • the term “stacked” indicates that the layers are stacked, and two or more layers may be bonded, or two or more layers may be detachable.
  • the method of manufacturing a coil for a rotating electrical machine of the present embodiment includes a step of forming a laminate of mica tape covering at least a part of the outer periphery of the coil conductor, a step of impregnating the laminate with a curable resin composition, A step of curing the curable resin composition to form an insulating layer, and the mica tape includes a glass cloth, a binder material containing boron nitride and a binder resin, and a backing layer, A mica layer containing mica provided on the surface of the backing layer, and at least part of the gaps of the texture of the glass cloth is filled with the binder material, and the total volume of the binder material is The dry cloth is 0.5 to 2 times the total volume of the gaps in the glass cloth.
  • the method for forming a laminate of mica tape that covers at least a part of the outer periphery of the coil conductor is not particularly limited, and a commonly performed method can be adopted.
  • a method of winding mica tape around the outer periphery of the coil conductor can be mentioned.
  • the mica tape may be wound a plurality of times so that a part (for example, a half of the width of the mica tape) overlaps each other.
  • the method for impregnating the laminate of mica tape with the curable resin composition is not particularly limited.
  • Other methods include a vacuum impregnation method and a normal pressure impregnation method.
  • the mica tape laminate is impregnated with the curable resin composition, for example, the coil conductor at least partially covered with the mica tape laminate is placed on the iron core of the coil.
  • Examples include a full impregnation method for impregnation and a single coil impregnation method in which a curable resin composition is impregnated in the state of a coil conductor at least partially covered with a laminate of mica tape.
  • a process method for forming the insulating layer by curing the curable resin composition is not particularly limited, and a commonly performed method can be employed.
  • the curable resin composition can be cured by heating the iron core of the coil in which the coil conductor is disposed in a heating furnace.
  • the coil conductor is clamped from the outside of the laminate of mica tape, and heated in a state where pressure is applied to the laminate, so that the curable resin composition Can be cured.
  • the mica tape used in the method for manufacturing a coil for a rotating electrical machine of the present embodiment are the same as the dry mica tape of the present embodiment described later.
  • the material, shape, size, and the like of the coil conductor used in the coil of the present embodiment are not particularly limited, and can be selected according to the use of the coil.
  • the details of the curable resin composition (impregnated varnish) are the same as those of the insulator according to the present embodiment described later.
  • the coil for a rotating electrical machine includes a coil conductor and an insulating layer arranged to cover at least a part of the outer periphery of the coil conductor, and the insulating layer is at least an outer periphery of the coil conductor.
  • the binder material has a total volume of 0.5 to 2 times the total volume of the gaps in the texture of the glass cloth.
  • the insulating layer according to the coil for rotating electrical machines of the present embodiment includes a laminate of the dry mica tape of the present embodiment described later, it has excellent thermal conductivity.
  • the mica tape used for forming the insulating layer of the rotating electrical machine coil of the present embodiment are the same as the dry mica tape of the present embodiment described later. Further, the material, shape, size, and the like of the coil conductor used in the coil of the present embodiment are not particularly limited, and can be selected according to the use of the coil. Furthermore, the details of the curable resin composition (impregnated varnish) are the same as those of the insulator according to the present embodiment described later.
  • the dry mica tape of the present embodiment comprises a glass cloth, a backing layer containing boron nitride and a binder resin, and a mica layer containing mica provided on the surface of the backing layer. And at least a part of the gap between the textures of the glass cloth is filled with the binder material, and the total volume of the binder material is 0.5 to 2 times the total volume of the gaps between the textures of the glass cloth. It has been doubled.
  • the dry mica tape of this embodiment can form an insulating layer exhibiting high thermal conductivity.
  • the reason why the dry mica tape of this embodiment can form an insulating layer exhibiting high thermal conductivity is presumed as follows.
  • the backing layer of the dry mica tape of the present embodiment includes a binder material including boron nitride and a binder resin. Since boron nitride exhibits higher thermal conductivity than other inorganic fillers such as alumina, it includes boron nitride. It is presumed that the dry mica tape of this embodiment having a backing layer can form an insulating layer exhibiting high thermal conductivity. Further, the dry mica tape of the present embodiment is different from the mica substrate sheet described in Japanese Patent Laid-Open No.
  • the number of interfaces or the area of the interface that provides thermal resistance does not increase, so it is possible to form an insulating layer that exhibits high thermal conductivity It is inferred that Furthermore, in this embodiment, at least a part of the gaps of the texture of the glass cloth used for the backing material is filled with the binder material, and the total volume of the binder material is 0.5 of the total volume of the gaps of the texture of the glass cloth. Doubled to doubled.
  • the total volume of the binder material is 0.5 to 2 times the total volume of the gaps of the glass cloth
  • the curable resin composition is impregnated into the dry mica tape laminate
  • the binder material is less likely to become an impediment to impregnation, and the laminate of dry mica tape can be efficiently impregnated with the curable resin composition.
  • the total volume of the binder material is less than 0.5 times the total volume of the gaps in the glass cloth, the problem of low thermal conductivity may occur.
  • the total volume of the binder material exceeds twice the total volume of the gaps of the glass cloth, boron nitride flows out from the backing layer when the insulating layer is formed by heating while applying pressure. There may be a problem that the thermal conductivity is lowered.
  • the total volume of the binder material is preferably 0.8 to 1.8 times, more preferably 0.9 to 1.5 times the total volume of the glass cloth weaves.
  • the gap between the weaves of the glass cloth is a space surrounded by the warp and weft of the glass cloth.
  • the total volume of the glass cloth weaves is a value calculated by the following method. For example, the mass of glass cloth per 1 m 2 (that is, the mass of glass) is obtained. Dividing this mass by the specific gravity of the glass gives the volume of the glass (referred to as V glass ). Further, the average thickness of the glass cloth is obtained, and V glass is subtracted from the value obtained by (1 m 2 ⁇ average thickness) to obtain the total volume of the gaps in the texture of the glass cloth.
  • the average thickness of the glass cloth is obtained as an arithmetic average value by measuring the thickness at 10 points using a micrometer (MDC-SB, Mitutoyo Corporation).
  • the total volume of the binder material refers to a value calculated by the following method. For example, the mass of boron nitride per 1 m 2 and the mass of the binder resin are determined. Dividing the mass of boron nitride and the mass of binder resin by the specific gravity of boron nitride and binder resin, respectively, gives the volume of boron nitride (V BN ) and the volume of binder resin (V binder ). V BN + V binder is the total volume of the binder material.
  • the average thickness of the dry mica tape of this embodiment is preferably 150 ⁇ m to 220 ⁇ m, more preferably 150 ⁇ m to 210 ⁇ m.
  • the average thickness of the dry mica tape is obtained as an arithmetic average value by measuring the thickness at 10 points using a micrometer (MDC-SB, Mitutoyo Corporation).
  • the layer configuration of the dry mica tape of the present embodiment includes a backing layer containing glass cloth, a binder material containing boron nitride and a binder resin, and a mica layer containing mica provided on the surface of the backing layer. And may have other layers as necessary. Examples of other layers provided as necessary include a protective layer (protective film) provided on the outermost surface of the dry mica tape, an adhesive layer, and the like.
  • the backing layer according to the present embodiment includes a glass cloth and a binder material including boron nitride and a binder resin.
  • the proportion of the binder material is not particularly limited and is preferably in the range of 5% by mass to 45% by mass and more preferably in the range of 10% by mass to 40% by mass with respect to the total of the backing layer and the mica layer. A range of 15% by mass to 37% by mass is more preferable.
  • the proportion of the binder material is 5% by mass or more with respect to the total of the backing layer and the mica layer, the effect of improving the thermal conductivity tends to increase.
  • the proportion of the binder material is 45% by mass or less with respect to the total of the backing layer and the mica layer, the dry mica tape tends to be prevented from becoming too thick. Furthermore, when impregnating the curable resin composition, the impregnation tends to proceed easily.
  • the mica layer according to the present embodiment includes mica.
  • the mica layer according to the present embodiment may contain other components other than mica as necessary. Examples of other components include a binder resin, a curing agent, a curing catalyst, and various additives.
  • the other components may be those in which the components of the binder material contained in the backing layer are transferred to the mica layer.
  • Mica amount of mica layer is not particularly limited, is preferably in the range of 100g / m 2 ⁇ 230g / m 2, the range of 120g / m 2 ⁇ 200g / m 2 is more preferable.
  • the amount of mica in the mica layer is 100 g / m 2 or more, a decrease in insulation tends to be suppressed. If the amount of mica in the mica layer is 230 g / m 2 or less, it tends to be suppressed that the dry mica tape becomes thick or the thermal conductivity becomes low.
  • the mica layer preferably contains no other inorganic filler (boron nitride or the like) other than mica.
  • the content of other inorganic fillers other than mica in the total amount of inorganic filler contained in the mica layer is preferably 3% by mass or less, more preferably 2% by mass or less, still more preferably 1% by mass or less, and 0% by mass. % Is particularly preferred.
  • the mica layer preferably contains no fibrites other than mica.
  • the fibril content in the mica layer is preferably 1% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.1% by mass or less, and particularly preferably 0% by mass. If the content of fibrils in the mica layer is 1% by mass or less, a decrease in thermal conductivity tends to be suppressed.
  • the content of the binder resin in the mica layer is preferably 25% by mass or less, more preferably 15% by mass or less, and still more preferably 5% by mass or less.
  • glass cloth is used as the backing material.
  • the texture of the glass cloth is filled with boron nitride and binder resin constituting the binder material, and the glass cloth is included in the backing layer and integrated with the binder material.
  • the integration of the glass cloth and the binder material is advantageous for improving the thermal conductivity.
  • a part of the glass cloth used in the present embodiment may be a fiber made of an organic material.
  • the fiber made of an organic material that constitutes a part of the glass cloth is not particularly limited, and examples thereof include fibers such as aramid, polyamide, polyimide, and polyester. When a part of fibers composed of an organic material is used, it may be used as warp, weft, or both.
  • the ratio of the fiber made of the organic material in the glass cloth is 0.1% by mass to 0.2% by mass. % Is preferred.
  • the average thickness of the glass cloth is not particularly limited, and is preferably 30 ⁇ m to 80 ⁇ m, and more preferably 35 ⁇ m to 50 ⁇ m. If the average thickness of the glass cloth is 30 ⁇ m or more, it is suppressed that the backing layer becomes too thin following the thickness of the glass cloth at the time of heat pressing, so that a decrease in thermal conductivity tends to be suppressed. If the average thickness of the glass cloth is 80 ⁇ m or less, the dry mica tape is prevented from becoming too thick, and wrinkles or cracks tend not to occur during taping.
  • the total volume of the gaps in the glass cloth weave may be 20 cm 3 / m 2 to 70 cm 3 / m 2 , may be 24 cm 3 / m 2 to 60 cm 3 / m 2 , and may be 24 cm 3 / m. It may be 2 to 56 cm 3 / m 2 .
  • the glass cloth according to the present embodiment may be surface-treated.
  • Examples of the glass cloth surface treatment method include treatment with a silane coupling agent.
  • the boron nitride contained in the binder material according to the present embodiment is not particularly limited, and hexagonal boron nitride (h-BN), cubic boron nitride (c-BN), wurtzite boron nitride, and the like. Is mentioned. Among these, hexagonal boron nitride (h-BN) is preferable.
  • the boron nitride may be primary particles of boron nitride formed in a scaly shape or secondary particles formed by agglomerating such primary particles.
  • the average particle diameter of boron nitride is not particularly limited, preferably 1 ⁇ m to 40 ⁇ m, more preferably 5 ⁇ m to 20 ⁇ m, and still more preferably 5 ⁇ m to 10 ⁇ m.
  • the average particle diameter of boron nitride is 1 ⁇ m or more, the thermal conductivity and the dielectric strength voltage tend to be further improved.
  • the average particle diameter of boron nitride is 40 ⁇ m or less, it can be suppressed that the anisotropy of the thermal conductivity due to the anisotropy of the particle shape becomes too large.
  • one type of boron nitride may be used alone, or two or more types may be used in combination.
  • two or more types of boron nitride are used in combination, for example, when two or more types of boron nitride having the same crystal structure and different average particle sizes are used, or when two or more types of boron nitride having the same average particle size and different crystal structures are used.
  • the content of boron nitride is not particularly limited, and is preferably 20% by volume to 50% by volume, and 25% by volume to 45% by volume with respect to the binder material contained in the dry mica tape of the present embodiment. It is more preferable that If the boron nitride content is 20% by volume or more with respect to the binder material, the thermal conductivity of the insulating layer formed using the dry mica tape of this embodiment tends to be further improved. If the boron nitride content is 50% by volume or less with respect to the binder material, it tends to be difficult to fill the binder resin with boron nitride.
  • the boron nitride contained in the binder material according to the present embodiment may be surface-treated by a coupling agent, heat treatment, or light treatment.
  • boron nitride is heated at an appropriate high temperature (for example, 250 ° C. to 800 ° C.) for 1 hour to 3 hours to modify the surface state of boron nitride, and boron nitride and binder resin are mixed. Affinity in time is improved. For this reason, the viscosity of the coating varnish containing boron nitride and the binder resin decreases, and the coating becomes easy. In this case, boron nitride is easily filled in the gaps between the textures of the glass cloth.
  • an appropriate high temperature for example, 250 ° C. to 800 ° C.
  • the backing layer may contain other inorganic fillers other than boron nitride.
  • Other inorganic fillers include alumina, silica, mica and the like.
  • the boron nitride content is preferably 90% by mass or more, more preferably 95% by mass or more, and 99% by mass with respect to the inorganic filler. % Or more is more preferable.
  • the binder resin contained in the binder material according to the present embodiment is not particularly limited.
  • a curable resin as the binder resin, and examples thereof include an epoxy resin, a phenol resin, an unsaturated polyester resin, and a silicone resin. From the viewpoints of adhesiveness and electrical insulation, an epoxy resin is preferable.
  • examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthalene type epoxy resin and the like.
  • the epoxy equivalent of the epoxy resin is not particularly limited, and is preferably 130 g / eq to 500 g / eq, more preferably 135 g / eq to 400 g / eq, and further preferably 140 g / eq to 300 g / eq.
  • the epoxy equivalent is measured by dissolving a precisely weighed epoxy resin in a solvent such as methyl ethyl ketone, adding acetic acid and a tetraethylammonium bromide acetic acid solution, and then performing potentiometric titration with a perchloric acid acetic acid standard solution. An indicator may be used for this titration.
  • the content of the binder resin is not particularly limited, and is preferably 35% by mass to 70% by mass, and more preferably 40% by mass to 65% by mass with respect to the binder material.
  • the content of the binder resin is preferably 5% by mass to 25% by mass, more preferably 5% by mass to 20% by mass, and still more preferably 8% by mass to 17% by mass with respect to the total of the backing layer and the mica layer. .
  • the content of the binder resin is 5% by mass or more based on the total of the backing layer and the mica layer, the adhesion between the backing layer and the mica layer tends to be improved. On the other hand, if the content of the binder resin is 25% by mass or less with respect to the total of the backing layer and the mica layer, there is a tendency to contribute to a higher thermal conductivity.
  • unfired hard mica fired hard mica
  • unfired soft mica fired soft mica
  • synthetic mica flake mica, and the like
  • unfired hard mica it is preferable to use unfired hard mica as mica from the viewpoints of price and availability.
  • one type of mica may be used alone, or two or more types may be used in combination.
  • two or more types of mica are used in combination, for example, when two or more types of mica having the same component and different average particle sizes are used, when two or more types of mica having the same average particle size and different components are used, and the average particle size and The case where two or more types of mica having different components is used is mentioned.
  • binder material examples include a curing agent, a curing catalyst, and various additives.
  • the binder material according to the present embodiment may include at least one curing agent in addition to the curable resin as a curable component.
  • the curing agent can be appropriately selected from curing agents usually used as a curing agent for epoxy resins. Specific examples include amine curing agents such as dicyandiamide and aromatic diamine; phenolic resin curing agents such as phenol novolak and cresol novolak.
  • the curable resin is an epoxy resin, the ratio of the curing agent to the epoxy resin is 0.8 to 1.2 in terms of equivalent ratio (curing agent / epoxy resin). It is preferable from the viewpoint.
  • the binder material according to the present embodiment may contain a curing catalyst for the purpose of accelerating the curing reaction of the curable resin.
  • a curing catalyst there is no restriction
  • Curing catalysts include tertiary amine compounds such as trimethylamine, imidazole compounds such as 2-methylimidazole and 2-methyl-4-ethylimidazole, organometallic salts such as tin, zinc and cobalt, boron trifluoride monoethylamine, etc.
  • the content of the curing catalyst when the curable resin is an epoxy resin is not particularly limited, and generally ranges from 0.01% by mass to 5% by mass with respect to the total amount of the epoxy resin and the curing agent. Is.
  • the binder material according to the present embodiment can further include various additives as necessary.
  • additives include various additives generally used for resin compositions such as coupling agents, elastomers, antioxidants, antioxidants, stabilizers, flame retardants, and thickeners.
  • the binder material according to the present embodiment further contains additives, the content of these additives is not particularly limited.
  • the dry mica tape of this embodiment may be manufactured through any process, and conventionally known manufacturing methods can be applied.
  • a boron nitride mixed liquid (BN-containing resin varnish) in which a binder material containing a binder resin, boron nitride, and other materials used as necessary is mixed with a solvent.
  • a coating process in which a glass cloth is stacked on one surface of mica paper and a boron nitride mixed liquid is applied from the glass cloth side.
  • the binder resin may be diluted with a solvent.
  • the solvent used is appropriately selected from commonly used organic solvents. Specific examples include solvents such as methyl ethyl ketone, toluene, methanol, and cyclohexanone.
  • the insulator of the present embodiment includes an insulator, a laminate of the dry mica tape of the embodiment covering at least a part of the insulator, and a cured product of the curable resin composition impregnated in the laminate. And an insulating layer.
  • the method for forming an insulating layer using the dry mica tape of the present embodiment will be described by taking a case where a coil is used as an object to be insulated as an example.
  • the insulating layer of the coil should be formed using the dry mica tape of the present embodiment.
  • the curable resin composition is injected into the laminate of dry mica tape by vacuum pressure impregnation or the like, and then heated or heated and pressurized. And a method of forming an insulating layer by curing a curable resin composition impregnated in a dry mica tape laminate.
  • the insulator to be applied to the insulator of the present embodiment is not particularly limited, and examples thereof include a coil, bar-shaped copper, and plate-shaped copper.
  • the curable resin composition used in the present embodiment may be in an impregnated varnish containing at least a curable resin and, if necessary, a curing agent or the like.
  • the curable resin contained in the impregnated varnish is not particularly limited, and examples thereof include curable resins such as epoxy resins, polyester resins, and polyurethane resins.
  • Specific examples of the epoxy resin include bisphenol A type epoxy resin.
  • curing agent contained as needed in the impregnation varnish which concerns on this embodiment it selects suitably based on the kind of curable resin.
  • the curing agent include alicyclic acid anhydrides.
  • Injection method of impregnating varnish (curable resin composition) by vacuum pressure impregnation, etc., curing conditions after injecting impregnated varnish (curable resin composition), impregnating varnish (curable resin composition) is epoxy resin and acid
  • conventionally known methods, known conditions, etc. can be referred to.
  • the dry mica tape of this embodiment it becomes possible to form an insulating layer exhibiting high thermal conductivity, so when the insulator to be insulated according to this embodiment is a coil, when cooling the coil, Conventionally, a hydrogen cooling method or an air cooling method can be adopted even for a coil of a scale that has adopted the direct water cooling method, and the structure of the coil can be simplified.
  • Example 1 Production of mica paper Unfired hard mica pieces were dispersed in water and made with a paper machine to produce mica paper having a mica amount of 140 g / m 2 .
  • Epoxy resin Mitsubishi Chemical Corporation, "Epicoat 828” (general purpose epoxy)
  • zinc (II) acetylacetonate Pure Chemical Co., Ltd.
  • methyl ethyl ketone Wako Pure Chemical Industries Ltd.
  • boron nitride average particle size 5 ⁇ m, Denka Co., Ltd., “SP-3”
  • the mass ratio of the epoxy resin and the curing catalyst was 97: 3.
  • the content rate of the boron nitride with respect to the total solid (namely, binder material) of BN containing resin varnish was 25 volume%.
  • the content of the general-purpose epoxy (binder resin) was 62% by mass with respect to the total solid content of the BN-containing resin varnish (that is, the binder material).
  • the thermal resistance value of the laminated cured product was measured using a thermal resistance device (Yamayo Tester Co., Ltd., “YST-901S”).
  • the thermal conductivity (W / (m ⁇ K)) was calculated by back-calculating the obtained thermal resistance value.
  • the heat conductivity of the laminated cured product was 0.37 W / (m ⁇ K).
  • Example 2 Production of mica paper Mica paper was produced in the same manner as in Example 1.
  • BN-containing resin varnish was prepared in the same manner as in Example 1, except that the content of boron nitride relative to the total solid content of the BN-containing resin varnish was 30% by volume.
  • the binder resin content was 56% by mass with respect to the total solid content of the BN-containing resin varnish (that is, the binder material).
  • a dry mica tape was produced in the same manner as in Example 1.
  • the total volume of the binder material was 1.2 times the total volume of the interstices of the glass cloth.
  • the average thickness of the obtained dry mica tape was 160 ⁇ m.
  • the content rate of the binder resin with respect to the sum total of a backing layer and a mica layer was 12 mass%, and the ratio for which the binder material occupied with respect to the sum total of a backing layer and a mica layer was 21 mass%.
  • Example 3 Production of mica paper Mica paper was produced in the same manner as in Example 1.
  • BN-containing resin varnish was prepared in the same manner as in Example 1 except that the content of boron nitride relative to the total solid content of the BN-containing resin varnish was 35% by volume.
  • the binder resin content was 50% by mass with respect to the total solid content of the BN-containing resin varnish (that is, the binder material).
  • Example 4 Production of mica paper Mica paper was produced in the same manner as in Example 1.
  • a dry mica tape was produced in the same manner as in Example 1.
  • the total volume of the binder material was 1.1 times the total volume of the interstices of the glass cloth.
  • the average thickness of the obtained dry mica tape was 156 ⁇ m.
  • the content rate of the binder resin with respect to the sum total of a backing layer and a mica layer was 12 mass%, and the ratio for which the binder material occupied with respect to the sum total of a backing layer and a mica layer was 19 mass%.
  • Example 5 Production of mica paper Mica paper was produced in the same manner as in Example 1.
  • Example 6 Production of mica paper In the same manner as in Example 1, mica paper having a mica amount of 120 g / m 2 was produced.
  • BN-containing resin varnish was prepared in the same manner as in Example 1 except that the content of boron nitride relative to the total solid content of the BN-containing resin varnish was 44% by volume.
  • the content rate of binder resin was 41 mass% with respect to the total solid (namely, binder material) of BN containing resin varnish.
  • Example 7 (1) Production of mica paper In the same manner as in Example 1, mica paper having a mica amount of 120 g / m 2 was produced.
  • BN-containing resin varnish was prepared in the same manner as in Example 1 except that the boron nitride content relative to the total solid content of the BN-containing resin varnish was 42% by volume.
  • the content of the binder resin was 43% by mass with respect to the total solid content of the BN-containing resin varnish (that is, the binder material).
  • Example 3 Preparation of dry mica tape As in Example 1, except that glass cloth (Soyo Co., Ltd., “WEA 116E 105”, the total volume of the gaps in the weave is 55.5 cm 3 / m 2 ) was used. A dry mica tape was prepared. The total volume of the binder material was 1.0 times the total volume of the gaps in the texture of the glass cloth. The average thickness of the obtained dry mica tape was 210 ⁇ m. Moreover, the content rate of the binder resin with respect to the sum total of a backing layer and a mica layer was 12 mass%, and the ratio for which the binder material occupied with respect to the sum total of a backing layer and a mica layer was 28 mass%.
  • BN-containing mica paper Boron nitride (average particle size 5 ⁇ m, Denka Co., Ltd., “SP-3”) and mica pieces were dispersed in water at a mass ratio (boron nitride: mica pieces) of 7:93.
  • the BN-containing mica paper was produced by paper making with a paper machine.
  • FIG. 1 is a schematic cross-sectional view showing dry mica tapes of Examples 1 to 7 and Comparative Example 4.
  • 2 is a cross-sectional photomicrograph showing the laminated cured product of Example 1.
  • FIG. 3 is a schematic cross-sectional view showing a dry mica tape of Comparative Example 1.
  • FIG. 4 is a schematic cross-sectional view showing a dry mica tape of Comparative Example 2.
  • FIG. 5 is a schematic cross-sectional view showing a dry mica tape of Comparative Example 3.
  • reference numeral 1 is a backing layer
  • reference numeral 2 is a mica layer
  • reference numeral 3 is a glass cloth
  • reference numeral 4 is a binder resin
  • reference numeral 5 is boron nitride
  • reference numeral 6 is mica
  • reference numeral 7 Represents alumina
  • numeral 8 represents a boron nitride-containing mica layer.
  • “content ratio of thermally conductive inorganic filler (vs. binder material)” means “content ratio of thermally conductive inorganic filler to binder material”, and “ratio of total volume of binder material”. Means “ratio of the total volume of the binder material to the total volume of the gaps in the weave of the glass cloth”, and “the content of the binder resin (vs.
  • binder material means “the content of the binder resin relative to the binder material”
  • Binder resin content (total of backing layer and mica layer) means “binder resin content relative to the total of backing layer and mica layer”
  • binder material occupancy ratio (Total of the backing layer and the mica layer) means “the ratio of the binder material to the total of the backing layer and the mica layer”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

回転電機用コイルの製造方法は、コイル導体の外周の少なくとも一部を覆う、マイカテープの積層体を形成する工程と、前記積層体に硬化性樹脂組成物を含浸する工程と、前記硬化性樹脂組成物を硬化して絶縁層を形成する工程と、を有し、前記マイカテープが、ガラスクロスと、窒化ホウ素とバインダ樹脂とを含むバインダ材と、を含有する裏打ち層と、前記裏打ち層の面上に設けられたマイカを含むマイカ層と、を有し、前記ガラスクロスの織目の隙間の少なくとも一部が、前記バインダ材により埋められ、前記バインダ材の合計体積が、前記ガラスクロスの織目の隙間の合計体積の0.5倍~2倍のドライマイカテープとされる。

Description

回転電機用コイル、回転電機用コイルの製造方法、ドライマイカテープ及び絶縁物
 本発明は、回転電機用コイル、回転電機用コイルの製造方法、ドライマイカテープ及び絶縁物に関する。
 絶縁物に含まれる絶縁層を形成するために、プリプレグマイカテープ(レジンリッチマイカテープ)又はドライマイカテープ(VPI(Vacuum Pressure Impregnation)マイカテープ)が用いられる。プリプレグマイカテープは、主として、裏打ち材と、マイカペーパーと、マイカペーパーに予め含浸される硬化性樹脂等を含む硬化性樹脂組成物と、を含んで構成される。一方、ドライマイカテープは、主として、裏打ち材と、マイカペーパーと、裏打ち材とマイカペーパーとを一体的に結合する接着層と、を含んで構成される。
 プリプレグマイカテープを用いて絶縁物に含まれる絶縁層を形成する場合、絶縁物の絶縁性を要する箇所にプリプレグマイカテープを巻き付け、加圧しながら加熱してマイカペーパーに予め含浸される硬化性樹脂組成物を硬化することで絶縁層が形成される。
 一方、ドライマイカテープを用いて絶縁物に含まれる絶縁層を形成する場合、絶縁物の絶縁性を要する箇所にドライマイカテープを巻き付け、そのドライマイカテープに硬化性樹脂組成物を含浸させ、その後、加熱するか又は加圧しながら加熱してドライマイカテープ中に含浸させた硬化性樹脂組成物を硬化することで絶縁層が形成される。
 絶縁物に含まれる絶縁層を形成するためにプリプレグマイカテープを用いると、巻き付けられたマイカテープに硬化性樹脂組成物を含浸させる必要がないため、製造工程が簡易になる傾向にある。一方、絶縁物に含まれる絶縁層を形成するためにドライマイカテープを用いると、硬化性樹脂組成物の種類を任意に選択できるため、絶縁層の構成を設計する際の自由度が高い傾向にある。
 また、絶縁層を備えるコイルの外側に水素ガス又は空気を通して冷却する間接冷却の方式を採用する発電機の分野では特に、コイルの絶縁層の厚み方向の高熱伝導化が望まれている。
 プリプレグマイカテープ又はドライマイカテープを用いて形成される絶縁層の熱伝導率を高めるためには、多くの場合、テープの中にマイカ及び接着層に含まれるバインダ樹脂よりも熱伝導率の高い無機フィラーを加える手法が用いられている。
 例えば、特開2005-199562号公報には、マイカ層の中に無機フィラーとして熱伝導率の高いアルミナが充填されたマイカテープが開示されており、このマイカテープを用いることで0.32W/(m・K)~0.36W/(m・K)の熱伝導率を有するマイカ板が得られるとされている。
 特開2002-93257号公報には、通常のマイカテープの一方の面上に、更に、熱伝導率の高い無機フィラーを含有する熱伝導層が付与されたマイカ基材シート状体が開示されており、0.35W/(m・K)~0.48W/(m・K)の熱伝導率を有する絶縁層が得られるとされている。
 特表2009-532242号公報には、織物層とマイカ層とを含む複合体テープの織物層にHTC(高熱伝導性)粒子を浸透させ、織物層を通して複合体テープの中に含浸樹脂を含浸させる方法が開示されている。
 これまでのマイカテープの高熱伝導化の手法としては、マイカ層、裏打ち材、又は樹脂中にマイカ及び樹脂よりも高い熱伝導率を有する無機フィラーを充填する手法が一般的である。しかし、特開2005-199562号公報、特開2002-93257号公報及び特表2009-532242号公報に記載されている手法には、それぞれ課題があると考えられる。
 特開2005-199562号公報では、マイカ層に無機フィラーを含有させるためにマイカ片と無機フィラー粒子とを混合したスラリーを抄紙機等により抄造する手法が用いられる。しかし、無機フィラー粒子が抄紙機の網目から抜け落ちやすいため、無機フィラーを含有するマイカペーパーの抄造作業は困難であり、そのため、製造コストが上がる傾向にある。
 また、通常、無機フィラー粒子とマイカの比重等の違いで、均一な無機フィラー含有のマイカペーパーを得ることは困難である。そのため、マイカ層内にボイド、内部剥離等が起きやすく、テープの絶縁信頼性の低下が生じやすく、熱伝導率の向上は難しい。特開2005-199562号公報では、マイカ層に無機フィラーを充填したマイカテープを用いてマイカ板を形成しているが、熱伝導率は0.4W/(m・K)までも達成できていない。
 特開2002-93257号公報では、通常のマイカテープに更に無機フィラーを含有する熱伝導層を付与することで、0.4W/(m・K)以上の熱伝導率を有する絶縁層を形成可能なマイカテープが得られたが、厚みが0.22mm~0.32mmの厚いテープになってしまう。
 コイル等へのテーピング作業の容易性の観点から、マイカテープには柔軟性が求められる。熱伝導層を厚くすればするほど、マイカテープを用いて形成される絶縁層の熱伝導率は上昇するが、厚み0.25mm以上のテープの場合、テープが硬くて、コイルに巻き付ける時にしわ又はひびが起きやすく、実機に適用するのは困難である。
 また、熱伝導層が厚くなると、硬化性樹脂組成物を注入する過程では、熱伝導層が障害になって硬化性樹脂組成物がマイカテープに浸透しにくいと考えられる。
 特表2009-532242号公報では、含浸時にマイカテープの織物層に、更に織物層を通してマイカ層にHTC粒子を浸透させる手法を用いているため、マイカ層にHTC粒子を浸透させるためにはナノレベルの非常に小さいHTC粒子を使用しなくてはならない。しかし、小さいHTC粒子を使用する場合、パーコレーション(伝熱路)を確保することが難しくなることがあり、熱伝導率の向上が困難になることが知られている。
 また、特表2009-532242号公報では、HTC粒子を乾燥充填させる手法も用いられている。いわゆるバインダ等により担持されていない粒子がマイカテープから粉落ちするのを防ぐために、マイカテープを樹脂バックコーティングしている。そうすると、熱抵抗層が形成されることとなり、熱伝導率の向上が難しいと考えられる。
 さらには、高熱伝導性を示す絶縁層を有するコイルの開発が待たれている。
 本発明の一形態は、上記事情に鑑み、高熱伝導性を示す絶縁層を有する回転電機用コイル及びその製造方法を提供することを目的とする。さらに、本発明の一形態は、高熱伝導性を示す絶縁層を形成可能なドライマイカテープ及びそれを用いた絶縁物を提供することを目的とする。
 前記課題を達成するための具体的手段は以下の通りである。
  <1> コイル導体の外周の少なくとも一部を覆う、マイカテープの積層体を形成する工程と、
 前記積層体に硬化性樹脂組成物を含浸する工程と、
 前記硬化性樹脂組成物を硬化して絶縁層を形成する工程と、を有し、
 前記マイカテープが、ガラスクロスと、窒化ホウ素とバインダ樹脂とを含むバインダ材と、を含有する裏打ち層と、
 前記裏打ち層の面上に設けられたマイカを含むマイカ層と、を有し、
 前記ガラスクロスの織目の隙間の少なくとも一部が、前記バインダ材により埋められ、
 前記バインダ材の合計体積が、前記ガラスクロスの織目の隙間の合計体積の0.5倍~2倍のドライマイカテープである回転電機用コイルの製造方法。
  <2> 前記バインダ樹脂の含有率が、前記バインダ材に対し35質量%~70質量%である<1>に記載の回転電機用コイルの製造方法。
  <3> 前記バインダ樹脂の含有率が、前記裏打ち層及び前記マイカ層の合計に対して5質量%~25質量%である<1>又は<2>に記載の回転電機用コイルの製造方法。
  <4> 前記窒化ホウ素の平均粒子径が、1μm~40μmである<1>~<3>のいずれか1項に記載の回転電機用コイルの製造方法。
  <5> 前記窒化ホウ素の含有率が、前記バインダ材に対し20体積%~50体積%である<1>~<4>のいずれか1項に記載の回転電機用コイルの製造方法。
  <6> 前記バインダ材の占める割合が、前記裏打ち層及び前記マイカ層の合計に対して5質量%~45質量%である<1>~<5>のいずれか1項に記載の回転電機用コイルの製造方法。
  <7> 前記窒化ホウ素が、表面処理されている<1>~<6>のいずれか1項に記載の回転電機用コイルの製造方法。
  <8> コイル導体と、前記コイル導体の外周の少なくとも一部を覆うように配置された絶縁層と、を有し、
 前記絶縁層が、前記コイル導体の外周の少なくとも一部を覆うマイカテープの積層体と、前記積層体に含浸された硬化性樹脂組成物の硬化物とを含み、
 前記マイカテープが、ガラスクロスと、窒化ホウ素とバインダ樹脂とを含むバインダ材と、を含有する裏打ち層と、
 前記裏打ち層の面上に設けられたマイカを含むマイカ層と、を有し、
 前記ガラスクロスの織目の隙間の少なくとも一部が、前記バインダ材により埋められ、
 前記バインダ材の合計体積が、前記ガラスクロスの織目の隙間の合計体積の0.5倍~2倍のドライマイカテープである回転電機用コイル。
  <9> 前記バインダ樹脂の含有率が、前記バインダ材に対し35質量%~70質量%である<8>に記載の回転電機用コイル。
  <10> 前記バインダ樹脂の含有率が、前記裏打ち層及び前記マイカ層の合計に対して5質量%~25質量%である<8>又は<9>に記載の回転電機用コイル。
  <11> 前記窒化ホウ素の平均粒子径が、1μm~40μmである<8>~<10>のいずれか1項に記載の回転電機用コイル。
  <12> 前記窒化ホウ素の含有率が、前記バインダ材に対し20体積%~50体積%である<8>~<11>のいずれか1項に記載の回転電機用コイル。
  <13> 前記バインダ材の占める割合が、前記裏打ち層及び前記マイカ層の合計に対して5質量%~45質量%である<8>~<12>のいずれか1項に記載の回転電機用コイル。
  <14> 前記窒化ホウ素が、表面処理されている<8>~<13>のいずれか1項に記載の回転電機用コイル。
  <15> ガラスクロスと、窒化ホウ素とバインダ樹脂とを含むバインダ材と、を含有する裏打ち層と、
 前記裏打ち層の面上に設けられたマイカを含むマイカ層と、を有し、
 前記ガラスクロスの織目の隙間の少なくとも一部が、前記バインダ材により埋められ、
 前記バインダ材の合計体積が、前記ガラスクロスの織目の隙間の合計体積の0.5倍~2倍であるドライマイカテープ。
  <16> 前記バインダ樹脂の含有率が、前記バインダ材に対し35質量%~70質量%である<15>に記載のドライマイカテープ。
  <17> 前記バインダ樹脂の含有率が、前記裏打ち層及び前記マイカ層の合計に対して5質量%~25質量%である<15>又は<16>に記載のドライマイカテープ。
  <18> 前記窒化ホウ素の平均粒子径が、1μm~40μmである<15>~<17>のいずれか1項に記載のドライマイカテープ。
  <19> 前記窒化ホウ素の含有率が、前記バインダ材に対し20体積%~50体積%である<15>~<18>のいずれか1項に記載のドライマイカテープ。
  <20> 前記バインダ材の占める割合が、前記裏打ち層及び前記マイカ層の合計に対して5質量%~45質量%である<15>~<19>のいずれか1項に記載のドライマイカテープ。
  <21> 前記窒化ホウ素が、表面処理されている<15>~<20>のいずれか1項に記載のドライマイカテープ。
  <22> 被絶縁体と、
 前記被絶縁体の少なくとも一部を覆う<15>~<21>のいずれか1項に記載のドライマイカテープの積層体と、前記積層体に含浸された硬化性樹脂組成物の硬化物と、を含む絶縁層と、
を有する絶縁物。
 本発明の一形態によれば、高熱伝導性を示す絶縁層を有する回転電機用コイル及びその製造方法が提供される。さらに、本発明の一形態によれば、高熱伝導性を示す絶縁層を形成可能なドライマイカテープ及びそれを用いた絶縁物を提供することができる。
実施例1~実施例7及び比較例4のドライマイカテープを表す概略断面図である。 実施例1の積層硬化物を表す断面顕微鏡写真である。 比較例1のドライマイカテープを表す概略断面図である。 比較例2のドライマイカテープを表す概略断面図である。 比較例3のドライマイカテープを表す概略断面図である。
 以下、本発明の回転電機用コイル、回転電機用コイルの製造方法、ドライマイカテープ及び絶縁物の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合、原理的に明らかに必須であると考えられる場合等を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本明細書において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。また本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。また、本明細書において各成分の含有量及び含有率は、各成分に該当する物質が複数種存在する場合、特に断らない限り、当該複数種の物質の合計を意味する。また、本明細書において各成分の粒子径は、各成分に該当する粒子が複数種存在する場合、特に断らない限り、当該複数種の粒子の混合物についての値を意味する。また、本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構成に加え、一部に形成されている形状の構成も包含される。「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
<回転電機用コイルの製造方法>
 本実施形態の回転電機用コイルの製造方法は、コイル導体の外周の少なくとも一部を覆う、マイカテープの積層体を形成する工程と、前記積層体に硬化性樹脂組成物を含浸する工程と、前記硬化性樹脂組成物を硬化して絶縁層を形成する工程と、を有し、前記マイカテープが、ガラスクロスと、窒化ホウ素とバインダ樹脂とを含むバインダ材と、を含有する裏打ち層と、前記裏打ち層の面上に設けられたマイカを含むマイカ層と、を有し、前記ガラスクロスの織目の隙間の少なくとも一部が、前記バインダ材により埋められ、前記バインダ材の合計体積が、前記ガラスクロスの織目の隙間の合計体積の0.5倍~2倍のドライマイカテープとされたものである。
 コイル導体の外周の少なくとも一部を覆う、マイカテープの積層体を形成する方法は特に制限されず、通常行われる方法を採用することができる。例えば、コイル導体の外周に、マイカテープを巻き付ける方法が挙げられる。この場合、マイカテープを一部(例えば、マイカテープの幅の半分の部分)が互いに重なるように複数回巻き付けてもよい。
 マイカテープの積層体に硬化性樹脂組成物を含浸する方法は特に制限されない。例えば、マイカテープの積層体に真空加圧含浸法(Vacuum Pressure Impregnation、VPI)にて硬化性樹脂組成物を含浸する方法が挙げられる。その他の方法としては、真空含浸法、常圧含浸法等が挙げられる。
 マイカテープの積層体に硬化性樹脂組成物を含浸する場合、例えば、マイカテープの積層体で少なくとも一部を覆われたコイル導体を、コイルの鉄芯に配置した状態で硬化性樹脂組成物を含浸する全含浸方式、及びマイカテープの積層体で少なくとも一部を覆われたコイル導体の状態で、硬化性樹脂組成物を含浸するコイル単体含浸方式が挙げられる。
 硬化性樹脂組成物を硬化して絶縁層を形成する工程方法は特に制限されず、通常行われる方法を採用することができる。例えば、全含浸方式を採用した場合には、コイル導体を配置されたコイルの鉄芯を加熱炉内で加熱して硬化性樹脂組成物を硬化することができる。一方、コイル単体含浸方式を採用した場合には、コイル導体をマイカテープの積層体の外側から型締めすることにより、積層体に圧力を加えた状態で加熱等することにより、硬化性樹脂組成物を硬化することができる。
 本実施形態の回転電機用コイルの製造方法で用いられるマイカテープの詳細及び好ましい態様は、後述する本実施形態のドライマイカテープと同様である。また、本実施形態のコイルに用いられるコイル導体の材質、形状、大きさ等は特に制限されず、コイルの用途等に応じて選択できる。さらに、硬化性樹脂組成物(含浸ワニス)の詳細は、後述する本実施形態の絶縁物の場合と同様である。
<<回転電機用コイル>>
 本実施形態の回転電機用コイルは、コイル導体と、前記コイル導体の外周の少なくとも一部を覆うように配置された絶縁層と、を有し、前記絶縁層が、前記コイル導体の外周の少なくとも一部を覆うマイカテープの積層体と、前記積層体に含浸された硬化性樹脂組成物の硬化物とを含み、前記マイカテープが、ガラスクロスと、窒化ホウ素とバインダ樹脂とを含むバインダ材と、を含有する裏打ち層と、前記裏打ち層の面上に設けられたマイカを含むマイカ層と、を有し、前記ガラスクロスの織目の隙間の少なくとも一部が、前記バインダ材により埋められ、前記バインダ材の合計体積が、前記ガラスクロスの織目の隙間の合計体積の0.5倍~2倍のドライマイカテープとされたものである。
 本実施形態の回転電機用コイルに係る絶縁層は、後述する本実施形態のドライマイカテープの積層体を含むため、熱伝導性に優れている。
 本実施形態の回転電機用コイルの絶縁層の形成に用いられるマイカテープの詳細及び好ましい態様は、後述する本実施形態のドライマイカテープと同様である。また、本実施形態のコイルに用いられるコイル導体の材質、形状、大きさ等は特に制限されず、コイルの用途等に応じて選択できる。さらに、硬化性樹脂組成物(含浸ワニス)の詳細は、後述する本実施形態の絶縁物の場合と同様である。
<<ドライマイカテープ>>
 本実施形態のドライマイカテープは、ガラスクロスと、窒化ホウ素とバインダ樹脂とを含むバインダ材と、を含有する裏打ち層と、前記裏打ち層の面上に設けられたマイカを含むマイカ層と、を有し、前記ガラスクロスの織目の隙間の少なくとも一部が、前記バインダ材により埋められ、前記バインダ材の合計体積が、前記ガラスクロスの織目の隙間の合計体積の0.5倍~2倍とされたものである。
 本実施形態のドライマイカテープは、高熱伝導性を示す絶縁層を形成可能なものである。本実施形態のドライマイカテープが高熱伝導性を示す絶縁層を形成可能な理由は以下のように推察される。
 本実施形態のドライマイカテープが有する裏打ち層は、窒化ホウ素とバインダ樹脂とを含むバインダ材を含むところ、窒化ホウ素は他の無機フィラー、例えばアルミナより高い熱伝導性を示すため、窒化ホウ素を含む裏打ち層を有する本実施形態のドライマイカテープは、高熱伝導性を示す絶縁層を形成可能になるものと推察される。
 また、本実施形態のドライマイカテープの構成は、接着層と熱伝導層とを個別に設ける特開2002-93257号公報に記載のマイカ基材シート状体とは違い、窒化ホウ素を含み熱伝導性を示す裏打ち層が接着層の役割を果たしているため、熱抵抗となる層が減少し、高熱伝導性を示す絶縁層を形成可能になると推察される。
 更に、バインダ材をガラスクロスに塗布する際にマイカ層内にバインダ樹脂が染み込み、それによって、裏打ち層とマイカ層が結合される。裏打ち層とマイカ層を別々に形成させ、後で両層を貼り合わせる手法に比較して、熱抵抗となる界面の数又は界面の面積が増加しないため、高熱伝導性を示す絶縁層を形成可能になると推察される。
 更に、本実施形態では、裏打ち材に用いるガラスクロスの織目の隙間の少なくとも一部がバインダ材により埋められ、バインダ材の合計体積が、ガラスクロスの織目の隙間の合計体積の0.5倍~2倍とされる。
 ガラスクロスの織目の隙間の少なくとも一部がバインダ材により埋められることで、硬化性樹脂組成物をドライマイカテープの積層体に含浸させて絶縁層を形成する際に、ガラスクロスの織目が障害となって熱伝導性の発現に寄与する窒化ホウ素が裏打ち層から流出しにくくなる。そのため、本実施形態のドライマイカテープを用いることで高熱伝導性を示す絶縁層を形成可能になると推察される。
 また、バインダ材の合計体積が、ガラスクロスの織目の隙間の合計体積の0.5倍~2倍とされることで、硬化性樹脂組成物をドライマイカテープの積層体に含浸する際に、バインダ材が含浸の障害となりにくく、効率的に硬化性樹脂組成物をドライマイカテープの積層体に含浸させることができる。
 バインダ材の合計体積が、ガラスクロスの織目の隙間の合計体積の0.5倍未満であると、熱伝導率が低い問題を生ずることがある。一方、バインダ材の合計体積が、前記ガラスクロスの織目の隙間の合計体積の2倍を超えると、加圧しながら加熱することによって絶縁層を形成するときに窒化ホウ素が裏打ち層から流出して熱伝導率が低くなる問題を生ずることがある。
 本実施形態において、バインダ材の合計体積は、ガラスクロスの織目の隙間の合計体積の0.8倍~1.8倍が好ましく、0.9倍~1.5倍がより好ましい。
 本実施形態において、ガラスクロスの織目の隙間とは、ガラスクロスの縦糸と横糸とによって囲まれた空間のことである。
 本実施形態において、ガラスクロスの織目の隙間の合計体積は、下記方法によって算出された値をいう。
 例えば、1mあたりのガラスクロスの質量(つまり、ガラスの質量)を求める。この質量をガラスの比重で割るとガラスの体積(Vglassとする)となる。更にガラスクロスの平均厚みを求め、(1m×平均厚み)で得られた値からVglassを差し引くとガラスクロスの織目の隙間の合計体積が得られる。なお、ガラスクロスの平均厚みは、マイクロメーター(MDC-SB、株式会社ミツトヨ)を用いて10点の厚みを測定し、その算術平均値として求める。
 本実施形態において、バインダ材の合計体積は、下記方法によって算出された値をいう。
 例えば、1mあたりの窒化ホウ素の質量とバインダ樹脂の質量を求める。窒化ホウ素の質量とバインダ樹脂の質量をそれぞれ窒化ホウ素とバインダ樹脂の比重で割ると窒化ホウ素の体積(VBN)とバインダ樹脂の体積(Vbinder)となる。VBN+Vbinderはバインダ材の合計体積となる。
 本実施形態のドライマイカテープの平均厚みは、150μm~220μmが好ましく、150μm~210μmがより好ましい。
 ドライマイカテープの平均厚みは、マイクロメーター(MDC-SB、株式会社ミツトヨ)を用いて10点の厚みを測定し、その算術平均値として求める。
<ドライマイカテープの層構成>
 本実施形態のドライマイカテープの層構成は、ガラスクロスと、窒化ホウ素とバインダ樹脂とを含むバインダ材と、を含有する裏打ち層と、前記裏打ち層の面上に設けられたマイカを含むマイカ層と、を有するものであればよく、必要に応じてその他の層を有していてもよい。必要に応じて設けられるその他の層としては、ドライマイカテープの最表面に設けられる保護層(保護フィルム)、接着層等が挙げられる。
-裏打ち層-
 本実施形態に係る裏打ち層は、ガラスクロスと、窒化ホウ素とバインダ樹脂とを含むバインダ材とを含む。
 バインダ材の占める割合は、特に限定されるものではなく、裏打ち層及びマイカ層の合計に対して5質量%~45質量%の範囲が好ましく、10質量%~40質量%の範囲がより好ましく、15質量%~37質量%の範囲が更に好ましい。バインダ材の占める割合が裏打ち層及びマイカ層の合計に対して5質量%以上であれば、熱伝導率の向上効果が大きくなる傾向にある。一方、バインダ材の占める割合が裏打ち層及びマイカ層の合計に対して45質量%以下であれば、ドライマイカテープの厚みが厚くなりすぎることが防止される傾向にある。更に、硬化性樹脂組成物を含浸させる際に、含浸が進みやすい傾向にある。
-マイカ層-
 本実施形態に係るマイカ層はマイカを含む。本実施形態に係るマイカ層は、必要に応じてマイカ以外のその他の成分を含有してもよい。その他の成分としては、例えば、バインダ樹脂、硬化剤、硬化触媒及び各種添加剤を挙げることができる。マイカ層がマイカ以外のその他の成分を含有する場合、その他の成分は、裏打ち層に含有されるバインダ材の成分がマイカ層に移行したものであってもよい。
 マイカ層のマイカ量は、特に限定されるものではなく、100g/m~230g/mの範囲が好ましく、120g/m~200g/mの範囲がより好ましい。マイカ層のマイカ量が100g/m以上であれば、絶縁性の低下が抑制される傾向にある。マイカ層のマイカ量が230g/m以下であれば、ドライマイカテープが厚くなったり、熱伝導率が低くなったりすることが抑制される傾向にある。
 マイカ層中には、マイカ以外のその他の無機フィラー(窒化ホウ素等)が含有されていないことが好ましい。マイカ層中に含有される無機フィラーの全量に占めるマイカ以外のその他の無機フィラーの含有率は、3質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下が更に好ましく、0質量%であることが特に好ましい。
 マイカ層中には、マイカ以外のフィブリットが含有されていないことが好ましい。マイカ層に占めるフィブリットの含有率は、1質量%以下が好ましく、0.5質量%以下がより好ましく、0.1質量%以下が更に好ましく、0質量%であることが特に好ましい。マイカ層に占めるフィブリットの含有率が1質量%以下であれば、熱伝導率の低下が抑制される傾向にある。
 マイカ層中のバインダ樹脂の含有率は、25質量%以下が好ましく、15質量%以下がより好ましく、5質量%以下が更に好ましい。
<ドライマイカテープの構成材料>
 以下、本実施形態のドライマイカテープを構成するガラスクロス、バインダ樹脂、窒化ホウ素、マイカ及び必要に応じて用いられるその他の材料について説明する。
-ガラスクロス-
 本実施形態においては、裏打ち材としてガラスクロスが用いられる。裏打ち材としてガラスクロスを用いることで、ガラスクロスの織目がバインダ材を構成する窒化ホウ素とバインダ樹脂で埋められ、ガラスクロスが裏打ち層中に含まれ、バインダ材と一体化する。ガラスクロスとバインダ材とが一体化することは、熱伝導率の向上に有利である。
 本実施形態で用いられるガラスクロスの一部は、有機材料で構成される繊維が用いられていてもよい。
 ガラスクロスの一部を構成する、有機材料で構成される繊維としては、特に限定されるものではなく、アラミド、ポリアミド、ポリイミド、ポリエステル等の繊維が挙げられる。有機材料で構成される繊維を一部用いる場合には、縦糸、横糸又はその両方として用いてもよい。
 本実施形態で用いられるガラスクロスの一部に有機材料で構成される繊維が用いられる場合における、ガラスクロスに占める有機材料で構成される繊維の割合は、0.1質量%~0.2質量%が好ましい。
 ガラスクロスの平均厚みは、特に限定されるものではなく、30μm~80μmが好ましく、35μm~50μmがより好ましい。ガラスクロスの平均厚みが30μm以上であれば、ヒートプレス時に裏打ち層がガラスクロスの厚みに追従して薄くなりすぎるのが抑制されるため、熱伝導率の低下が抑制される傾向にある。ガラスクロスの平均厚みが80μm以下であれば、ドライマイカテープが厚くなり過ぎることが防止され、テーピングのときにしわ又はひびが入りにくくなる傾向にある。
 ガラスクロスの織目の隙間の合計体積は、20cm/m~70cm/mであってもよく、24cm/m~60cm/mであってもよく、24cm/m~56cm/mであってもよい。
 本実施形態に係るガラスクロスは、表面処理されたものでもよい。ガラスクロスの表面処理方法としては、例えば、シランカップリング剤による処理が挙げられる。
-窒化ホウ素-
 本実施形態に係るバインダ材に含有される窒化ホウ素としては、特に限定されるものではなく、六方晶窒化ホウ素(h-BN)、立方晶窒化ホウ素(c-BN)、ウルツ鉱型窒化ホウ素等が挙げられる。これらの中でも、六方晶窒化ホウ素(h-BN)が好ましい。窒化ホウ素は、鱗片状に形成されている窒化ホウ素の一次粒子であっても、このような一次粒子が凝集されて形成された二次粒子であってもよい。
 窒化ホウ素の平均粒子径は、特に限定されるものではなく、1μm~40μmが好ましく、5μm~20μmがより好ましく、5μm~10μmが更に好ましい。
 窒化ホウ素の平均粒子径が1μm以上であると、熱伝導率及び絶縁耐電圧がより向上する傾向がある。窒化ホウ素の平均粒子径が40μm以下であると、粒子形状の異方性による熱伝導率の異方性が大きくなりすぎることが抑制できる。
 窒化ホウ素の平均粒子径は、レーザー回折散乱方式粒度分布測定装置(マイクロトラック MT3000II、日機装株式会社)を用いることで測定可能である。純水中に窒化ホウ素粉末を投入した後に、超音波分散機で分散する。この分散液の粒子径分布を測定することで窒化ホウ素の粒子径分布が測定される。粒子径分布に基づいて、平均粒子径は、小径側からの体積累積50%に対応する粒子径として求められる。
 本実施形態においては、窒化ホウ素の1種類を単独で使用してもよいし、2種類以上を併用して用いてもよい。なお、窒化ホウ素を2種類以上併用するとは、例えば、同じ結晶構造で平均粒子径が異なる窒化ホウ素を2種類以上用いる場合、平均粒子径が同じで結晶構造の異なる窒化ホウ素を2種類以上用いる場合並びに平均粒子径及び結晶構造の異なる窒化ホウ素を2種類以上用いる場合が挙げられる。
 窒化ホウ素の含有率は、特に限定されるものではなく、本実施形態のドライマイカテープに含有されるバインダ材に対し20体積%~50体積%であることが好ましく、25体積%~45体積%であることがより好ましい。窒化ホウ素の含有率がバインダ材に対し20体積%以上であれば、本実施形態のドライマイカテープを用いて形成される絶縁層の熱伝導率がより向上する傾向にある。窒化ホウ素の含有率がバインダ材に対し50体積%以下であれば、窒化ホウ素のバインダ樹脂への充填が困難になりにくい傾向にある。
 本実施形態に係るバインダ材に含有される窒化ホウ素としては、カップリング剤、熱処理又は光処理により表面処理されたものでもよい。
 例えば、熱処理の場合、窒化ホウ素を適切な高温(例えば、250℃~800℃)で1時間~3時間加熱することにより、窒化ホウ素の表面状態が改質され、窒化ホウ素とバインダ樹脂との混合時における親和性が向上する。そのため、窒化ホウ素とバインダ樹脂とを含む塗布ワニスの粘度が下がり、塗布しやすくなる。なお、この場合、窒化ホウ素はガラスクロスの織目の隙間に充填されやすくなる。
 本実施形態においては、裏打ち層に窒化ホウ素以外のその他の無機フィラーが含まれていてもよい。その他の無機フィラーとしては、アルミナ、シリカ、マイカ等が挙げられる。裏打ち層に窒化ホウ素以外のその他の無機フィラーが含まれる場合、窒化ホウ素の含有率は、無機フィラーに対し90質量%以上であることが好ましく、95質量%以上であることがより好ましく、99質量%以上であることが更に好ましい。なお、本実施形態においては、裏打ち層に含まれる無機フィラーの全てが窒化ホウ素であることが好ましい。
-バインダ樹脂-
 本実施形態に係るバインダ材に含有されるバインダ樹脂は特に限定されるものではない。
 本実施形態においては、バインダ樹脂として硬化性樹脂を用いることが好ましく、例えば、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂及びシリコーン樹脂が挙げられる。接着性及び電気絶縁性の観点から、エポキシ樹脂が好ましい。
 バインダ樹脂としてエポキシ樹脂を用いる場合、エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂等が挙げられる。
 また、エポキシ樹脂の数平均分子量としては特には制限されず、例えば、流動性の観点から、100~100000であることが好ましく、200~50000であることがより好ましく、300~10000であることが更に好ましい。なお、数平均分子量はゲルパーミエーションクロマトグラフィー(GPC)により測定した値である。
 エポキシ樹脂の数平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)を用いて定法に従い測定する。
〔測定条件〕
ポンプ:L-6000(株式会社日立製作所)
カラム:TSKgel(登録商標) G4000HHR+G3000HHR+G2000HXL(東ソー株式会社)
カラム温度:40℃
溶出溶媒:テトラヒドロフラン(クロマトグラフィー用安定剤不含、和光純薬工業株式会社)
試料濃度:5g/L(テトラヒドロフラン可溶分)
注入量:100μL
流速:1.0mL/分
検出器:示差屈折率計RI-8020(東ソー株式会社)
分子量較正標準物質:標準ポリスチレン
データ処理装置:GPC-8020(東ソー株式会社)
 エポキシ樹脂のエポキシ当量は、特に限定されるものではなく、130g/eq~500g/eqが好ましく、135g/eq~400g/eqがより好ましく、140g/eq~300g/eqが更に好ましい。
 エポキシ当量は、精秤したエポキシ樹脂をメチルエチルケトン等の溶媒に溶解させ、酢酸と臭化テトラエチルアンモニウム酢酸溶液を加えた後、過塩素酸酢酸標準液によって電位差滴定することにより測定される。この滴定には、指示薬を用いてもよい。
 バインダ樹脂の含有率は特に限定されるものではなく、バインダ材に対して35質量%~70質量%が好ましく、40質量%~65質量%がより好ましい。バインダ樹脂の含有率がバインダ材に対して35質量%以上であれば、裏打ち層とマイカ層との接着性が向上する傾向がある。一方、バインダ樹脂の含有率がバインダ材に対して70質量%以下であれば、高熱伝導率化に寄与する傾向がある。
 また、バインダ樹脂の含有率は、裏打ち層及びマイカ層の合計に対して5質量%~25質量%が好ましく、5質量%~20質量%がより好ましく、8質量%~17質量%が更に好ましい。バインダ樹脂の含有率が裏打ち層及びマイカ層の合計に対して5質量%以上であれば、裏打ち層とマイカ層との接着性が向上する傾向がある。一方、バインダ樹脂の含有率が裏打ち層及びマイカ層の合計に対して25質量%以下であれば、高熱伝導率化に寄与する傾向がある。
-マイカ-
 本実施形態に係るマイカ層に含有されるマイカとしては、未焼成硬質マイカ、焼成硬質マイカ、未焼成軟質マイカ、焼成軟質マイカ、合成マイカ、フレークマイカ等を用いることができる。これらの中でも、価格及び入手のしやすさの観点からマイカとして未焼成硬質マイカを用いることが好ましい。
 本実施形態においては、マイカの1種類を単独で使用してもよいし、2種類以上を併用して用いてもよい。なお、マイカを2種類以上併用するとは、例えば、同じ成分で平均粒子径が異なるマイカを2種類以上用いる場合、平均粒子径が同じで成分の異なるマイカを2種類以上用いる場合並びに平均粒子径及び成分の異なるマイカを2種類以上用いる場合が挙げられる。
-その他の成分-
 本実施形態に係るバインダ材に含有されてもよいその他の成分としては、例えば、硬化剤、硬化触媒及び各種添加剤を挙げることができる。
(硬化剤)
 バインダ樹脂として硬化性樹脂を用いた場合、本実施形態に係るバインダ材には、硬化性成分として硬化性樹脂に加えて少なくとも1種の硬化剤を含んでもよい。前記硬化剤としては特に制限はなく、硬化性樹脂の種類に応じて適宜選択できる。
 特に、硬化性樹脂がエポキシ樹脂である場合、硬化剤としてはエポキシ樹脂用硬化剤として通常用いられる硬化剤から適宜選択して用いることができる。具体的には、ジシアンジアミド、芳香族ジアミン等のアミン硬化剤;フェノールノボラック、クレゾールノボラック等のフェノール樹脂硬化剤などを挙げることができる。
 硬化性樹脂がエポキシ樹脂である場合、該硬化剤とエポキシ樹脂の割合は、当量比(硬化剤/エポキシ樹脂)で0.8~1.2とすることが硬化性及び硬化物の電気特性の観点から好ましい。
(硬化触媒)
 バインダ樹脂として硬化性樹脂を用いた場合、本実施形態に係るバインダ材には、硬化性樹脂の硬化反応を加速させる目的で硬化触媒を含有してもよい。硬化触媒としては特に制限はなく、バインダ樹脂及び必要により用いられる硬化剤の種類に応じて適宜選択して用いることができる。硬化触媒としては、トリメチルアミン等の第3級アミン化合物、2-メチルイミダゾール、2-メチル-4-エチルイミダゾール等のイミダゾール化合物、錫、亜鉛、コバルト等の有機金属塩、三フッ化ホウ素モノエチルアミン等のルイス酸のアミン錯体、有機ホスフィン化合物等の有機リン化合物などを挙げることができる。
 硬化性樹脂がエポキシ樹脂である場合の硬化触媒の含有率は、特に限定されるものではなく、エポキシ樹脂及び硬化剤の合計量に対して、0.01質量%~5質量%の範囲が一般的である。
(添加剤)
 本実施形態に係るバインダ材には、各種添加剤を必要に応じて更に含むことができる。その他の添加剤としては、カップリング剤、エラストマ、酸化防止剤、老化防止剤、安定剤、難燃剤、増粘剤等の樹脂組成物に一般に用いられる各種添加剤を挙げることができる。本実施形態に係るバインダ材が添加剤を更に含有する場合、これらの添加剤の含有量は特に制限されない。
<ドライマイカテープの製造方法>
 本実施形態のドライマイカテープは、いかなる工程を経て製造されたものであってもよく、従来から公知の製造方法を適用することができる。
 本実施形態のドライマイカテープの製造方法の一例としては、バインダ樹脂と窒化ホウ素と必要に応じて用いられるその他の材料を含むバインダ材が溶剤に混合された窒化ホウ素混合液(BN含有樹脂ワニス)を準備する窒化ホウ素混合液準備工程と、マイカペーパーの一方の面上にガラスクロスを重ね、ガラスクロス側から窒化ホウ素混合液を塗布する塗布工程と、を経る方法が挙げられる。
 バインダ樹脂の中に窒化ホウ素を充填するために、溶剤でバインダ樹脂を希釈してもよい。用いられる溶剤としては、通常用いられる有機溶剤から適宜選択される。具体的には、メチルエチルケトン、トルエン、メタノール、シクロヘキサノン等の溶剤を挙げることができる。
 塗布工程において窒化ホウ素混合液がガラスクロスの一方の面上に塗布される際、窒化ホウ素混合液の一部がガラスクロスの他方の面側ににじみ出てマイカペーパーに浸透する。そのため、フィブリット混抄のマイカペーパーでなくても、マイカペーパーが自立可能となりやすく、崩れにくい。フィブリットを含まないマイカペーパーを使用する場合は熱伝導率的に有利になる。
 本実施形態のドライマイカテープは、コイル等の被絶縁体の絶縁層の形成に用いることができる。特に、回転電機コイル等に用いられるコイル導体等の被絶縁体の外周に設けられる絶縁層の形成に有用である。
<<絶縁物>>
 本実施形態の絶縁物は、被絶縁体と、前記被絶縁体の少なくとも一部を覆う本実施形態のドライマイカテープの積層体と、前記積層体に含浸された硬化性樹脂組成物の硬化物と、を含む絶縁層と、を有する。
 本実施形態のドライマイカテープを用いて絶縁層を形成する方法について、被絶縁体としてコイルを用いる場合を例に説明すると、本実施形態のドライマイカテープを用いてコイルの絶縁層を形成すべき箇所に該テープを巻回させてドライマイカテープの積層体とした後、真空加圧含浸等によって硬化性樹脂組成物をドライマイカテープの積層体に注入した後、加熱するか又は加熱及び加圧してドライマイカテープの積層体に含浸させた硬化性樹脂組成物を硬化することにより、絶縁層を形成する方法が挙げられる。
 本実施形態の絶縁物に適用されうる被絶縁体としては、特に限定されるものではなく、コイル、棒状の銅、板状の銅等が挙げられる。
 本実施形態で用いられる硬化性樹脂組成物は、少なくとも硬化性樹脂を含み、必要に応じて硬化剤等を含む含浸ワニスの状態であってもよい。
 含浸ワニスに含まれる硬化性樹脂としては、特に限定されるものではなく、エポキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂等の硬化性樹脂が挙げられる。また、エポキシ樹脂の具体例としては、ビスフェノールA型エポキシ樹脂等が挙げられる。また、本実施形態に係る含浸ワニスに必要に応じて含まれる硬化剤としては、硬化性樹脂の種類に基づいて適宜選択される。硬化性樹脂が例えばエポキシ樹脂の場合、硬化剤としては脂環式酸無水物等が挙げられる。真空加圧含浸等による含浸ワニス(硬化性樹脂組成物)の注入方法、含浸ワニス(硬化性樹脂組成物)を注入した後の硬化条件、含浸ワニス(硬化性樹脂組成物)がエポキシ樹脂と酸無水物系硬化剤とを含む場合のエポキシ樹脂と酸無水物系硬化剤との比率等は、従来から公知の方法、公知の条件等を参照できる。
 本実施形態のドライマイカテープを用いることで、高熱伝導性を示す絶縁層を形成可能となるため、本実施形態の絶縁物に係る被絶縁体がコイルである場合、当該コイルを冷却する際、従来では水直接冷却方式を採用されていた規模のコイルに対しても、水素冷却方式又は空冷方式を採用することができるようになり、コイルの構造を簡素化することが可能となる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<実施例1>
(1)マイカペーパーの作製
 未焼成硬質マイカ片を水中に分散し、抄紙機にて抄造し、マイカ量が140g/mのマイカペーパーを作製した。
(2)BN含有樹脂ワニスの調製
 エポキシ樹脂(三菱化学株式会社、「エピコート828」(汎用エポキシ))と、硬化触媒として亜鉛(II)アセチルアセトナート(純正化学株式会社)と、溶剤としてメチルエチルケトン(和光純薬工業株式会社)とを混合した。その後、窒化ホウ素(平均粒子径5μm、デンカ株式会社、「SP-3」)を加えて更に混合しBN含有樹脂ワニスを調製した。エポキシ樹脂と硬化触媒との質量基準の比率(エポキシ樹脂:硬化触媒)は、97:3であった。
 なお、BN含有樹脂ワニスの全固形分(即ちバインダ材)に対する窒化ホウ素の含有率は、25体積%であった。汎用エポキシ(バインダ樹脂)の含有率は、BN含有樹脂ワニスの全固形分(即ちバインダ材)に対し62質量%であった。
(3)ドライマイカテープの作製
 マイカペーパーの上にガラスクロス(株式会社双洋、「WEA 106 105」、織目の隙間の合計体積は25.5cm/m)を重ね、このガラスクロス側から得られたBN含有樹脂ワニスをロールコーターにより塗布した。ロールコーター間のギャップを調整することでバインダ材の合計体積がガラスクロスの織目の隙間の合計体積の1.1倍になるようにした。乾燥後、幅30mmに切断しドライマイカテープを作製した。得られたドライマイカテープの平均厚みは150μmであった。なお、ドライマイカテープの平均厚みは、マイクロメーター(株式会社ミツトヨ、「MDC-SB」)を用いて10点の厚みを測定し、その算術平均値として求めた。以下、同様の方法によりドライマイカテープの平均厚みを測定した。
 また、裏打ち層及びマイカ層の合計に対するバインダ樹脂の含有率は12質量%であり、裏打ち層及びマイカ層の合計に対するバインダ材の占める割合は、19質量%であった。
(4)ドライマイカテープの積層硬化物の作製
 上述の方法によって得たドライマイカテープを5層に重ねて、含浸ワニスを真空含浸により注入した後に、130℃で2時間、次いで190℃で2時間ヒートプレスにて加熱して硬化し、積層硬化物を作製した。
 含浸ワニスとしては、エピコート828とHN-5500(3又は4-メチル-ヘキサヒドロ無水フタル酸、日立化成株式会社)とを質量基準で1:1で混合したものを用いた。
<評価>
 上記で得られたドライマイカテープの積層硬化物について、以下のような熱伝導率評価を行った。結果を表1に示す。
 得られた積層硬化物について、熱抵抗装置(ヤマヨ試験器有限会社、「YST-901S」)を用いて、積層硬化物の熱抵抗値を測定した。得られた熱抵抗値を逆算することによって、熱伝導率(W/(m・K))を算出した。
 積層硬化物の熱伝導率は0.37W/(m・K)であった。
<実施例2>
(1)マイカペーパーの作製
 実施例1と同様にしてマイカペーパーを作製した。
(2)BN含有樹脂ワニスの調製
 BN含有樹脂ワニスの全固形分に対する窒化ホウ素の含有率を30体積%とした以外、実施例1と同様にしてBN含有樹脂ワニスを調製した。バインダ樹脂の含有率は、BN含有樹脂ワニスの全固形分(即ちバインダ材)に対し56質量%であった。
(3)ドライマイカテープの作製
 実施例1と同様にしてドライマイカテープを作製した。バインダ材の合計体積は、ガラスクロスの織目の隙間の合計体積の1.2倍であった。得られたドライマイカテープの平均厚みは160μmであった。
 また、裏打ち層及びマイカ層の合計に対するバインダ樹脂の含有率は12質量%であり、裏打ち層及びマイカ層の合計に対するバインダ材の占める割合は、21質量%であった。
(4)ドライマイカテープの積層硬化物の作製
 実施例1と同様にして積層硬化物を作製した。
 得られた積層硬化物の熱伝導率は0.40W/(m・K)であった。
<実施例3>
(1)マイカペーパーの作製
 実施例1と同様にしてマイカペーパーを作製した。
(2)BN含有樹脂ワニスの調製
 BN含有樹脂ワニスの全固形分に対する窒化ホウ素の含有率を35体積%とした以外、実施例1と同様にしてBN含有樹脂ワニスを調製した。バインダ樹脂の含有率は、BN含有樹脂ワニスの全固形分(即ちバインダ材)に対し50質量%であった。
(3)ドライマイカテープの作製
 実施例1と同様にしてドライマイカテープを作製した。バインダ材の合計体積は、ガラスクロスの織目の隙間の合計体積の1.2倍であった。得られたドライマイカテープの平均厚みは165μmであった。
 また、裏打ち層及びマイカ層の合計に対するバインダ樹脂の含有率は12質量%であり、裏打ち層及びマイカ層の合計に対するバインダ材の占める割合は、23質量%であった。
(4)ドライマイカテープの積層硬化物の作製
 実施例1と同様にして積層硬化物を作製した。
 得られた積層硬化物の熱伝導率は0.42W/(m・K)であった。
<実施例4>
(1)マイカペーパーの作製
 実施例1と同様にしてマイカペーパーを作製した。
(2)BN含有樹脂ワニスの調製
 窒化ホウ素をエポキシ樹脂と混合させる前に、窒化ホウ素を電気炉にて800℃で1時間加熱して熱処理を施した。その後、BN含有樹脂ワニスの全固形分に対する窒化ホウ素の含有率を25体積%とし、実施例1と同様にしてBN含有樹脂ワニスを調製した。バインダ樹脂の含有率は、BN含有樹脂ワニスの全固形分(即ちバインダ材)に対し62質量%であった。
(3)ドライマイカテープの作製
 実施例1と同様にしてドライマイカテープを作製した。バインダ材の合計体積は、ガラスクロスの織目の隙間の合計体積の1.1倍であった。得られたドライマイカテープの平均厚みは156μmであった。
 また、裏打ち層及びマイカ層の合計に対するバインダ樹脂の含有率は12質量%であり、裏打ち層及びマイカ層の合計に対するバインダ材の占める割合は、19質量%であった。
(4)ドライマイカテープの積層硬化物の作製
 実施例1と同様にして積層硬化物を作製した。
 得られた積層硬化物の熱伝導率は0.40W/(m・K)であった。
<実施例5>
(1)マイカペーパーの作製
 実施例1と同様にしてマイカペーパーを作製した。
(2)BN含有樹脂ワニスの調製
 BN含有樹脂ワニスの全固形分に対する窒化ホウ素の含有率を40体積%とした以外、実施例1と同様にしてBN含有樹脂ワニスを調製した。バインダ樹脂の含有率は、BN含有樹脂ワニスの全固形分(即ちバインダ材)に対し45質量%であった。
(3)ドライマイカテープの作製
 ガラスクロス(株式会社双洋、「WEA 3313 105」、織目の隙間の合計体積は38.4cm/m)を用いた以外は、実施例1と同様にしてドライマイカテープを作製した。バインダ材の合計体積は、ガラスクロスの織目の隙間の合計体積の1.4倍であった。得られたドライマイカテープの平均厚みは206μmであった。
 また、裏打ち層及びマイカ層の合計に対するバインダ樹脂の含有率は13質量%であり、裏打ち層及びマイカ層の合計に対するバインダ材の占める割合は、28質量%であった。
(4)ドライマイカテープの積層硬化物の作製
 実施例1と同様にして積層硬化物を作製した。
 得られた積層硬化物の熱伝導率は0.44W/(m・K)であった。
<実施例6>
(1)マイカペーパーの作製
 実施例1と同様にして、マイカ量が120g/mのマイカペーパーを作製した。
(2)BN含有樹脂ワニスの調製
 BN含有樹脂ワニスの全固形分に対する窒化ホウ素の含有率を44体積%とした以外、実施例1と同様にしてBN含有樹脂ワニスを調製した。バインダ樹脂の含有率は、BN含有樹脂ワニスの全固形分(即ちバインダ材)に対し41質量%であった。
(3)ドライマイカテープの作製
 ガラスクロス(株式会社双洋、「WEA 3313 105」、織目の隙間の合計体積は38.4cm/m)を用いた以外は、実施例1と同様にしてドライマイカテープを作製した。バインダ材の合計体積は、ガラスクロスの織目の隙間の合計体積の1.4倍であった。得られたドライマイカテープの平均厚みは185μmであった。
 また、裏打ち層及びマイカ層の合計に対するバインダ樹脂の含有率は13質量%であり、裏打ち層及びマイカ層の合計に対するバインダ材の占める割合は、30質量%であった。
(4)ドライマイカテープの積層硬化物の作製
 実施例1と同様にして積層硬化物を作製した。
 得られた積層硬化物の熱伝導率は0.47W/(m・K)であった。
<実施例7>
(1)マイカペーパーの作製
 実施例1と同様にして、マイカ量が120g/mのマイカペーパーを作製した。
(2)BN含有樹脂ワニスの調製
 BN含有樹脂ワニスの全固形分に対する窒化ホウ素の含有率を42体積%とした以外、実施例1と同様にしてBN含有樹脂ワニスを調製した。バインダ樹脂の含有率は、BN含有樹脂ワニスの全固形分(即ちバインダ材)に対し43質量%であった。
(3)ドライマイカテープの作製
 ガラスクロス(株式会社双洋、「WEA 116E 105」、織目の隙間の合計体積は55.5cm/m)を用いた以外は、実施例1と同様にしてドライマイカテープを作製した。バインダ材の合計体積は、ガラスクロスの織目の隙間の合計体積の1.0倍であった。得られたドライマイカテープの平均厚みは210μmであった。
 また、裏打ち層及びマイカ層の合計に対するバインダ樹脂の含有率は12質量%であり、裏打ち層及びマイカ層の合計に対するバインダ材の占める割合は、28質量%であった。
(4)ドライマイカテープの積層硬化物の作製
 実施例1と同様にして積層硬化物を作製した。
 得られた積層硬化物の熱伝導率は0.48W/(m・K)であった。
<比較例1>
(1)マイカペーパーの作製
 実施例1と同様にしてマイカペーパーを作製した。
(2)BN未含有樹脂ワニスの調製
 樹脂ワニスに窒化ホウ素を添加しなかった以外、実施例1と同様にしてBN未含有樹脂ワニスを調製した。
(3)ドライマイカテープの作製
 実施例1と同様にしてドライマイカテープを作製した。得られたドライマイカテープの平均厚みは165μmであった。
(4)ドライマイカテープの積層硬化物の作製
 実施例1と同様にして積層硬化物を作製した。
 得られた積層硬化物の熱伝導率は0.25W/(m・K)であった。
 バインダ材の合計体積は、ガラスクロスの織目の隙間の合計体積の1.1倍であった。
<比較例2>
(1)マイカペーパーの作製
 実施例1と同様にしてマイカペーパーを作製した。
(2)アルミナ含有樹脂ワニスの調製
 BNの代わりに、樹脂ワニスにアルミナ(平均粒子径3μm、住友化学株式会社、「AA3」)を添加した以外、実施例1と同様に調製した。なお、アルミナ含有樹脂ワニスの全固形分に対するアルミナの含有率は25体積%であった。
(3)ドライマイカテープの作製
 実施例1と同様にしてドライマイカテープを作製した。得られたドライマイカテープの平均厚みは195μmであった。
(4)ドライマイカテープの積層硬化物の作製
 実施例1と同様にして積層硬化物を作製した。
 得られた積層硬化物の熱伝導率は0.35W/(m・K)であった。
 バインダ材の合計体積は、ガラスクロスの織目の隙間の合計体積の1.1倍であった。
<比較例3>
(1)BN含有マイカペーパーの作製
 窒化ホウ素(平均粒子径5μm、デンカ株式会社、「SP-3」)とマイカ片とを質量比(窒化ホウ素:マイカ片)が7:93で水中に分散し、抄紙機にて抄造しBN含有マイカペーパーを作製した。
(2)ドライマイカテープの作製
 BN含有マイカペーパーを使用した以外、比較例1と同様にしてドライマイカテープを作製した。得られたドライマイカテープの平均厚みは200μmであった。
(3)ドライマイカテープの積層硬化物の作製
 実施例1と同様にして積層硬化物を作製した。
 得られた積層硬化物の熱伝導率は0.30W/(m・K)であった。
 バインダ材の合計体積は、ガラスクロスの織目の隙間の合計体積の1.1倍であった。
<比較例4>
(1)マイカペーパーの作製
 実施例1と同様にしてマイカペーパーを作製した。
(2)BN含有樹脂ワニスの調製
 実施例1と同様にしてBN含有樹脂ワニスを調製した。BN含有樹脂ワニスの全固形分に対する窒化ホウ素の含有率は25体積%であった。
(3)ドライマイカテープの作製
 実施例1と同様にしてドライマイカテープを作製した。ただし、ロールコーター間のギャップを調整することでバインダ材の合計体積がガラスクロスの織目の隙間の合計体積の2.5倍になるようにした。得られたドライマイカテープの平均厚みは320μmであった。
(4)ドライマイカテープの積層硬化物の作製
 実施例1と同様にして積層硬化物を作製してみたが、樹脂含浸時とヒートプレス時に窒化ホウ素が多量に流出したため、熱伝導率の測定をしなかった。
 図1は、実施例1~実施例7及び比較例4のドライマイカテープを表す概略断面図である。図2は、実施例1の積層硬化物を表す断面顕微鏡写真である。図3は、比較例1のドライマイカテープを表す概略断面図である。図4は、比較例2のドライマイカテープを表す概略断面図である。図5は、比較例3のドライマイカテープを表す概略断面図である。
 図1~図5において、符号1は裏打ち層を、符号2はマイカ層を、符号3はガラスクロスを、符号4はバインダ樹脂を、符号5は窒化ホウ素を、符号6はマイカを、符号7はアルミナを、符号8は窒化ホウ素含有マイカ層を、各々表す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2中、「熱伝導性無機フィラーの含有率(対バインダ材)」は、「バインダ材に対する熱伝導性無機フィラーの含有率」を意味し、「バインダ材の合計体積の比率」は、「バインダ材の合計体積の、ガラスクロスの織目の隙間の合計体積に対する比率」を意味し、「バインダ樹脂の含有率(対バインダ材)」は、「バインダ材に対するバインダ樹脂の含有率」を意味し、「バインダ樹脂の含有率(対裏打ち層及びマイカ層の合計)」は、「裏打ち層及びマイカ層の合計に対するバインダ樹脂の含有率」を意味し、「バインダ材の占める割合(対裏打ち層及びマイカ層の合計)」は、「裏打ち層及びマイカ層の合計に対するバインダ材の占める割合」を意味する。
 表1及び表2から明らかなように、ガラスクロスと、窒化ホウ素とバインダ樹脂とを含むバインダ材と、を含有する裏打ち層と、前記裏打ち層の面上に設けられたマイカを含むマイカ層と、を有し、前記ガラスクロスの織目の隙間の少なくとも一部が、前記バインダ材により埋められ、前記バインダ材の合計体積が、前記ガラスクロスの織目の隙間の合計体積の0.5倍~2倍であるドライマイカテープを用いることで、高熱伝導性を示す絶縁層を形成可能となることがわかる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (22)

  1.  コイル導体の外周の少なくとも一部を覆う、マイカテープの積層体を形成する工程と、
     前記積層体に硬化性樹脂組成物を含浸する工程と、
     前記硬化性樹脂組成物を硬化して絶縁層を形成する工程と、を有し、
     前記マイカテープが、ガラスクロスと、窒化ホウ素とバインダ樹脂とを含むバインダ材と、を含有する裏打ち層と、
     前記裏打ち層の面上に設けられたマイカを含むマイカ層と、を有し、
     前記ガラスクロスの織目の隙間の少なくとも一部が、前記バインダ材により埋められ、
     前記バインダ材の合計体積が、前記ガラスクロスの織目の隙間の合計体積の0.5倍~2倍のドライマイカテープである回転電機用コイルの製造方法。
  2.  前記バインダ樹脂の含有率が、前記バインダ材に対し35質量%~70質量%である請求項1に記載の回転電機用コイルの製造方法。
  3.  前記バインダ樹脂の含有率が、前記裏打ち層及び前記マイカ層の合計に対して5質量%~25質量%である請求項1又は請求項2に記載の回転電機用コイルの製造方法。
  4.  前記窒化ホウ素の平均粒子径が、1μm~40μmである請求項1~請求項3のいずれか1項に記載の回転電機用コイルの製造方法。
  5.  前記窒化ホウ素の含有率が、前記バインダ材に対し20体積%~50体積%である請求項1~請求項4のいずれか1項に記載の回転電機用コイルの製造方法。
  6.  前記バインダ材の占める割合が、前記裏打ち層及び前記マイカ層の合計に対して5質量%~45質量%である請求項1~請求項5のいずれか1項に記載の回転電機用コイルの製造方法。
  7.  前記窒化ホウ素が、表面処理されている請求項1~請求項6のいずれか1項に記載の回転電機用コイルの製造方法。
  8.  コイル導体と、前記コイル導体の外周の少なくとも一部を覆うように配置された絶縁層と、を有し、
     前記絶縁層が、前記コイル導体の外周の少なくとも一部を覆うマイカテープの積層体と、前記積層体に含浸された硬化性樹脂組成物の硬化物とを含み、
     前記マイカテープが、ガラスクロスと、窒化ホウ素とバインダ樹脂とを含むバインダ材と、を含有する裏打ち層と、
     前記裏打ち層の面上に設けられたマイカを含むマイカ層と、を有し、
     前記ガラスクロスの織目の隙間の少なくとも一部が、前記バインダ材により埋められ、
     前記バインダ材の合計体積が、前記ガラスクロスの織目の隙間の合計体積の0.5倍~2倍のドライマイカテープである回転電機用コイル。
  9.  前記バインダ樹脂の含有率が、前記バインダ材に対し35質量%~70質量%である請求項8に記載の回転電機用コイル。
  10.  前記バインダ樹脂の含有率が、前記裏打ち層及び前記マイカ層の合計に対して5質量%~25質量%である請求項8又は請求項9に記載の回転電機用コイル。
  11.  前記窒化ホウ素の平均粒子径が、1μm~40μmである請求項8~請求項10のいずれか1項に記載の回転電機用コイル。
  12.  前記窒化ホウ素の含有率が、前記バインダ材に対し20体積%~50体積%である請求項8~請求項11のいずれか1項に記載の回転電機用コイル。
  13.  前記バインダ材の占める割合が、前記裏打ち層及び前記マイカ層の合計に対して5質量%~45質量%である請求項8~請求項12のいずれか1項に記載の回転電機用コイル。
  14.  前記窒化ホウ素が、表面処理されている請求項8~請求項13のいずれか1項に記載の回転電機用コイル。
  15.  ガラスクロスと、窒化ホウ素とバインダ樹脂とを含むバインダ材と、を含有する裏打ち層と、
     前記裏打ち層の面上に設けられたマイカを含むマイカ層と、を有し、
     前記ガラスクロスの織目の隙間の少なくとも一部が、前記バインダ材により埋められ、
     前記バインダ材の合計体積が、前記ガラスクロスの織目の隙間の合計体積の0.5倍~2倍であるドライマイカテープ。
  16.  前記バインダ樹脂の含有率が、前記バインダ材に対し35質量%~70質量%である請求項15に記載のドライマイカテープ。
  17.  前記バインダ樹脂の含有率が、前記裏打ち層及び前記マイカ層の合計に対して5質量%~25質量%である請求項15又は請求項16に記載のドライマイカテープ。
  18.  前記窒化ホウ素の平均粒子径が、1μm~40μmである請求項15~請求項17のいずれか1項に記載のドライマイカテープ。
  19.  前記窒化ホウ素の含有率が、前記バインダ材に対し20体積%~50体積%である請求項15~請求項18のいずれか1項に記載のドライマイカテープ。
  20.  前記バインダ材の占める割合が、前記裏打ち層及び前記マイカ層の合計に対して5質量%~45質量%である請求項15~請求項19のいずれか1項に記載のドライマイカテープ。
  21.  前記窒化ホウ素が、表面処理されている請求項15~請求項20のいずれか1項に記載のドライマイカテープ。
  22.  被絶縁体と、
     前記被絶縁体の少なくとも一部を覆う請求項15~請求項21のいずれか1項に記載のドライマイカテープの積層体と、前記積層体に含浸された硬化性樹脂組成物の硬化物と、を含む絶縁層と、
    を有する絶縁物。
PCT/JP2017/013845 2017-03-31 2017-03-31 回転電機用コイル、回転電機用コイルの製造方法、ドライマイカテープ及び絶縁物 WO2018179437A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013845 WO2018179437A1 (ja) 2017-03-31 2017-03-31 回転電機用コイル、回転電機用コイルの製造方法、ドライマイカテープ及び絶縁物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013845 WO2018179437A1 (ja) 2017-03-31 2017-03-31 回転電機用コイル、回転電機用コイルの製造方法、ドライマイカテープ及び絶縁物

Publications (1)

Publication Number Publication Date
WO2018179437A1 true WO2018179437A1 (ja) 2018-10-04

Family

ID=63677582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013845 WO2018179437A1 (ja) 2017-03-31 2017-03-31 回転電機用コイル、回転電機用コイルの製造方法、ドライマイカテープ及び絶縁物

Country Status (1)

Country Link
WO (1) WO2018179437A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093257A (ja) * 2000-09-13 2002-03-29 Japan Mica Ind Co Ltd マイカ基材シート状体及び絶縁コイル
JP2008027819A (ja) * 2006-07-24 2008-02-07 Toshiba Corp プリプレグ材、電気絶縁用プリプレグテープ及びこれを用いた回転電機
JP2012244861A (ja) * 2011-05-24 2012-12-10 Mitsubishi Electric Corp 絶縁コイル
WO2013073496A1 (ja) * 2011-11-14 2013-05-23 三菱電機株式会社 電磁コイル及びその製造方法、並びに絶縁テープ
WO2015053374A1 (ja) * 2013-10-09 2015-04-16 日立化成株式会社 プリプレグマイカテープ及びそれを用いたコイル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093257A (ja) * 2000-09-13 2002-03-29 Japan Mica Ind Co Ltd マイカ基材シート状体及び絶縁コイル
JP2008027819A (ja) * 2006-07-24 2008-02-07 Toshiba Corp プリプレグ材、電気絶縁用プリプレグテープ及びこれを用いた回転電機
JP2012244861A (ja) * 2011-05-24 2012-12-10 Mitsubishi Electric Corp 絶縁コイル
WO2013073496A1 (ja) * 2011-11-14 2013-05-23 三菱電機株式会社 電磁コイル及びその製造方法、並びに絶縁テープ
WO2015053374A1 (ja) * 2013-10-09 2015-04-16 日立化成株式会社 プリプレグマイカテープ及びそれを用いたコイル

Similar Documents

Publication Publication Date Title
JP6520966B2 (ja) プリプレグマイカテープ及びそれを用いたコイル
CN101223015B (zh) 带有载体的预浸料及其制造工艺、薄双面板及其制造工艺和多层印刷电路板的制造工艺
JP6889153B2 (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
US9925744B2 (en) Insulating tape, method for producing same, and stator coil
WO2001016965A1 (fr) Materiau isolant, enroulement electrique et leur procede de fabrication
WO2017014202A1 (ja) 回転電機用コイル、回転電機用コイルの製造方法及びマイカテープ
WO2018003950A1 (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの製造方法、マイカテープの硬化物及び絶縁物
JP2010158113A (ja) 電気絶縁部材、回転電機用固定子コイルおよび回転電機
JP2012244861A (ja) 絶縁コイル
JP3879054B2 (ja) マイカ基材シート状体及び絶縁コイル
JP2008503053A (ja) 極大化した雲母含量を有する雲母テープ
JP2019122099A (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
WO2018179437A1 (ja) 回転電機用コイル、回転電機用コイルの製造方法、ドライマイカテープ及び絶縁物
JP6891887B2 (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
JP2019217668A (ja) ドライマイカテープ、絶縁物、回転電機用コイル及び回転電機用コイルの製造方法
WO2018179439A1 (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
WO2018179440A1 (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
JP2018026282A (ja) マイカテープ、マイカテープの製造方法、絶縁物、流動抵抗算出方法、流動抵抗算出装置、及び流動抵抗算出プログラム
JP2018170252A (ja) 回転電機用コイル、プリプレグマイカテープ、プリプレグマイカテープの製造方法、プリプレグマイカテープの硬化物、絶縁層付き物品、及び回転電機用コイルの製造方法
JPS61266051A (ja) 高圧回転電機コイルの絶縁処理方法
JP2022124844A (ja) 燃料電池用セパレータ部材、燃料電池用セパレータ部材の製造方法、及び燃料電池用セパレータ
JP2020127254A (ja) 回転電機固定子用絶縁材及びその製造方法並びに回転電機固定子
JPH08242563A (ja) 回転電機絶縁コイルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP