WO2020075269A1 - 固定子コイル、その製造方法及び回転電機 - Google Patents

固定子コイル、その製造方法及び回転電機 Download PDF

Info

Publication number
WO2020075269A1
WO2020075269A1 PCT/JP2018/037950 JP2018037950W WO2020075269A1 WO 2020075269 A1 WO2020075269 A1 WO 2020075269A1 JP 2018037950 W JP2018037950 W JP 2018037950W WO 2020075269 A1 WO2020075269 A1 WO 2020075269A1
Authority
WO
WIPO (PCT)
Prior art keywords
mica
mica tape
coil
stator coil
stator
Prior art date
Application number
PCT/JP2018/037950
Other languages
English (en)
French (fr)
Inventor
馬渕 貴裕
暁紅 殷
翼 森
築地 真
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201880098005.9A priority Critical patent/CN112771765A/zh
Priority to PCT/JP2018/037950 priority patent/WO2020075269A1/ja
Priority to US17/273,739 priority patent/US11901784B2/en
Priority to EP18936303.9A priority patent/EP3866307B1/en
Priority to JP2019511677A priority patent/JP6522273B1/ja
Publication of WO2020075269A1 publication Critical patent/WO2020075269A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/10Applying solid insulation to windings, stators or rotors
    • H02K15/105Applying solid insulation to windings, stators or rotors to the windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/40Windings characterised by the shape, form or construction of the insulation for high voltage, e.g. affording protection against corona discharges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • H02K3/487Slot-closing devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a stator coil, a manufacturing method thereof, and a rotating electric machine using the stator coil.
  • a large rotating electric machine used for a turbine generator or the like has a stator coil housed in a plurality of slots formed on the inner peripheral side of the stator core.
  • the stator coil is composed of a coil conductor and an insulating portion wound around the coil conductor.
  • a mica tape obtained by bonding a fiber reinforcing material such as glass cloth to a mica sheet is wound around the coil conductor a plurality of times, and then a low-viscosity liquid thermosetting resin composition is reduced under reduced pressure.
  • Method of heating and pressing after impregnating with (hereinafter sometimes referred to as vacuum pressure impregnation method), placing semi-cured resin on the insulating tape, winding this tape around the coil conductor multiple times and then heating
  • a pressing method (hereinafter sometimes referred to as a resin rich method) and the like are generally used.
  • the stator coil In such a rotating electric machine, the stator coil generates heat due to the current flowing through the coil conductor during operation. Therefore, the withstand voltage of the insulating portion may decrease with time due to mechanical stress due to thermal expansion of the coil conductor made of metal such as copper and thermal deterioration of the resin component.
  • stator coil having an insulating part with high voltage resistance is desired.
  • a first main insulating layer is formed by winding a first unfired laminated mica tape made of large-sized mica scales on the surface of a conductor, and a small-sized mica is formed on this.
  • a high-voltage rotating electric machine coil in which a second unfired laminated mica tape made of scales is wound to form a second main insulating layer is described.
  • the part where the electric field is highest in the stator coil is the insulating part formed near the corner of the coil conductor, and the dielectric breakdown generally occurs from this corner.
  • Patent Document 1 Although it is possible to improve the resin retainability by using mica flakes of different sizes, it is not sufficient to increase the mica filling in the vicinity of the corners of the coil conductor, and the stator coil There is a problem that desired withstand voltage cannot be obtained.
  • an object of the present invention is to provide a stator coil capable of increasing withstand voltage and a manufacturing method thereof.
  • the present invention includes a coil conductor, a first insulating layer formed by winding a first mica tape around the outer periphery of the coil conductor, and a second insulating layer formed by winding a second mica tape around the outer periphery of the first insulating layer.
  • a stator coil comprising a second insulating layer, wherein the content of mica particles in the first mica tape is 30 g or more and 100 g or less per 1 m 2 of mica tape, and the mica contained in the first mica tape is provided.
  • the particles pass through a JIS standard sieve having a nominal mesh size of 250 ⁇ m, the laminated thickness of the first mica tape is 0.1 mm or more and 1 mm or less, and the mica contained in the second mica tape is used. 40% by mass or less of the particles are the stator coil that passes through the JIS standard sieve having a nominal opening of 250 ⁇ m.
  • the present invention also includes a step of winding a first mica tape around the outer circumference of the coil conductor and laminating the first mica tape so as to have a thickness of 0.1 mm or more and 1 mm or less, and a second step on the outer circumference of the laminated first mica tape.
  • the step of winding and stacking the mica tape, the step of impregnating the liquid thermosetting resin composition into the coil conductor wound with the first mica tape and the second mica tape, and the liquid thermosetting resin A method for producing a coil, comprising the step of heat-curing a composition, wherein the content of mica particles in the first mica tape is 30 g or more and 100 g or less per 1 m 2 of mica tape, the first mica tape 60% by mass or more of the mica particles contained in is passed through a JIS standard sieve having a nominal mesh size of 250 ⁇ m, and 40% by mass or less of the mica particles contained in the second mica tape are , A method for manufacturing a stator coil, which passes through a JIS standard sieve having a nominal opening of 250 ⁇ m.
  • FIG. 5 is a flowchart of a stator coil manufacturing method according to an embodiment of the present invention. It is a figure which shows typically the principal part of the stator of the rotary electric machine which concerns on one embodiment of this invention, and is a figure (cross section) which shows the cross section along a rotating shaft.
  • FIG. 1 is a perspective sectional view of a stator of a rotary electric machine according to the first embodiment.
  • a stator of a rotating electric machine accommodates stator coils 3 in upper and lower two stages in a plurality of slots 2 formed on an inner peripheral side of a stator core 1.
  • a spacer 4 is inserted between the two stages of stator coils 3.
  • a wedge 5 for fixing the stator coil 3 is inserted into the opening end of the slot 2.
  • the wedge 5 has an effect of suppressing electromagnetic vibration generated from the stator coil 3 during operation of the rotating electric machine.
  • the cross sectional shape of the coil conductor 6 is rectangular.
  • the outer periphery of the coil conductor 6 is covered with an insulating portion 7 having a first insulating layer and a second insulating layer, so that ground insulation with the stator core 1 is secured.
  • an insulating portion 7 having a first insulating layer and a second insulating layer, so that ground insulation with the stator core 1 is secured.
  • the coil conductor 6 it is possible to use a bundle of a plurality of metal element wires that are covered with an insulating material such as glass tape and have a rectangular cross section, an electric wire having an insulating coating, and the like.
  • the metal wire is not particularly limited, and a wire made of copper, aluminum, silver or the like can be used.
  • FIG. 2 is a schematic sectional view of the stator coil according to the first embodiment.
  • the stator coil includes a coil conductor 6, a first insulating layer 8 formed by winding a first mica tape around the outer periphery of the coil conductor 6, and a second mica tape around the outer periphery of the first insulating layer 8. And an insulating portion 7 composed of a second insulating layer 9 which is wound and laminated.
  • FIG. 3 is a schematic cross-sectional view of the first mica tape used to form the insulating portion 7.
  • the first mica tape has a mica layer 11 containing mica particles 10 and a reinforcing layer 14 laminated on the mica layer 11 and containing a reinforcing material 12 and a resin 13. Since the structure itself of the second mica tape is the same as that of the first mica tape, description thereof will be omitted.
  • mica particles 10 hard mica or soft mica known as a kind of layered silicate mineral can be used.
  • examples of the shape of the mica particles 10 include laminated mica, block mica, and peeled mica. These mica particles 10 may be used alone or in combination of two or more.
  • the reinforcing material 12 is not particularly limited, and examples thereof include glass cloth, alumina cloth, silica cloth, and resin film.
  • the content of the reinforcing material 12 is preferably 8 g or more and 45 g or less (weight per unit area of 8 g / m 2 or more and 45 g / m 2 or less) per 1 m 2 of the first mica tape.
  • the content of the reinforcing material 12 in the second mica tape is the same as that of the first mica tape.
  • the resin 13 is not particularly limited, and examples thereof include epoxy resin, silicone resin, and phenol resin.
  • the mica layer 11 can include the resin 13 described above in addition to the mica particles 10. By containing the resin 13 in the mica layer 11, the mica particles 10 can be bonded to each other and the strength of the mica layer 11 can be improved.
  • the ratio of the mica particles 10 passing through the JIS standard sieve having a nominal mesh size of 250 ⁇ m is 60% by mass or more, preferably 70%. It is at least mass%.
  • the mica layer 11 filled with the mica particles 10 having a small particle size is formed in the first mica tape. It Therefore, when the first mica tape is wound around the outer periphery of the coil conductor 6, the mica layer 11 of the first mica tape is deformed along the corners of the coil conductor 6 and wrinkles are less likely to occur on the first mica tape. Become.
  • the filling rate of the mica particles 10 having a high withstand voltage increases at the corners or around the corners of the coil conductor 6, and the withstand voltage of the stator coil can be improved.
  • the proportion of the mica particles 10 passing through the JIS standard sieve having a nominal mesh size of 250 ⁇ m is less than 60% by mass, a certain amount of mica particles 10 having a particle size of 250 ⁇ m or more is contained. Therefore, when the first mica tape is wound around the outer periphery of the coil conductor 6, a portion of the first mica tape that does not extend along the corner of the coil conductor 6 is generated, and the withstand voltage is higher than that of the mica particle 10 at the corner.
  • the filling rate of the thermosetting resin having low property increases. As a result, the desired withstand voltage of the stator coil cannot be obtained.
  • the upper limit of the proportion of mica particles 10 passing through the JIS standard sieve having a nominal mesh size of 250 ⁇ m is 100% by mass.
  • the ratio of the mica particles 10 passing through the JIS standard sieve having a nominal opening of 250 ⁇ m is 40% by mass or less, preferably 30%. It is not more than mass%.
  • This gap serves as a flow path for impregnating the liquid thermosetting resin composition, particularly a flow path for impregnating the laminated first mica tape with the liquid thermosetting resin composition.
  • the liquid thermosetting resin composition is sufficiently impregnated into the corners of the coil conductor 6 or the mica layer 11 of the first mica tape around the corners, and the generation of voids is suppressed. Therefore, the withstand voltage property of the stator coil can be improved.
  • the lower limit of the proportion of the mica particles 10 passing through the JIS standard sieve having a nominal mesh size of 250 ⁇ m is 0% by mass.
  • the nominal opening of the JIS standard sieve is defined in JIS Z8801-1 (2006), and the maximum opening allowance, the average opening allowance, and the maximum opening of each nominal opening are specified.
  • the standard deviation, recommended wire diameter, etc. satisfy the same regulations.
  • the proportion of the mica particles 10 that pass through the JIS standard sieve having a nominal opening of 250 ⁇ m can be calculated by the following procedure. First, the mica tape is heated at 600 ° C. for 48 hours to thermally decompose and remove the resin component contained in the mica tape, and then the mica particles 10 contained in the mica tape are taken out and the mass of the mica particles 10 is measured.
  • the mica particles 10 dispersed in water are supplied onto a JIS standard sieve having a nominal opening of 250 ⁇ m, and the mica particles 10 that have passed through the sieve are taken out while running water. After the mica particles 10 are dried, the mass of the mica particles 10 is measured. From the mass of the mica particles 10 contained in the mica tape and the mass of the mica particles 10 passing through the JIS standard sieve having a nominal mesh size of 250 ⁇ m, the ratio of the mica particles 10 passing through the JIS standard screen having a nominal mesh size of 250 ⁇ m is calculated.
  • the content of the mica particles 10 contained in the first mica tape is 30 g or more and 100 g or less, preferably 40 g or more and 90 g or less, per 1 m 2 of mica tape. If the content of the mica particles 10 contained in the first mica tape is less than 30 g, the mica particles 10 will be insufficient. Therefore, the desired withstand voltage of the stator coil cannot be obtained. On the other hand, when the content of the mica particles 10 is more than 100 g, the liquid thermosetting resin composition is not sufficiently impregnated in the mica layer 11 of the first mica tape, and voids are generated. Therefore, the desired withstand voltage of the stator coil cannot be obtained.
  • the content of the mica particles 10 contained in the second mica tape is preferably 120 g or more and 200 g or less, and more preferably 140 g or more and 160 g or less per 1 m 2 of the mica tape.
  • the content of the mica particles 10 contained in the second mica tape is within the above range, the mechanical strength is improved and the mechanical stress resistance of the stator coil can be improved.
  • the laminated thickness t1 of the first mica tape is 0.1 mm or more and 1 mm or less, preferably 0.3 mm or more and 0.9 mm or less.
  • the laminated thickness t1 of the first mica tape indicates the thickness of the first insulating layer 8 formed of the first mica tape when the radial cross section of the stator coil is observed. If the laminated thickness t1 of the first mica tape is less than 0.1 mm, the mica particles 10 arranged along the corners of the coil conductor 6 will be insufficient. Therefore, the desired withstand voltage of the stator coil cannot be obtained.
  • the liquid thermosetting resin composition is not sufficiently impregnated in the mica layer 11 of the first mica tape, and a void is generated. Therefore, the desired withstand voltage of the stator coil cannot be obtained.
  • FIG. 4 is a flowchart of the stator coil manufacturing method according to the second embodiment.
  • a method of forming the insulating portion 7 on the coil conductor 6 there are a vacuum pressure impregnation method, a resin rich method and the like.
  • a manufacturing method adopting the vacuum pressure impregnation method will be described.
  • the first mica tape is wound around the outer circumference of the coil conductor 6 and laminated so that the laminated thickness t1 is 0.1 mm or more and 1 mm or less (step S1).
  • the coil conductor 6 and the first mica tape those described in the first embodiment can be used.
  • a prepreg-shaped mica tape may be used as the first mica tape.
  • the reason for setting the laminated thickness t1 of the first mica tape within the above range is the same as that described in the first embodiment.
  • the mica layer 11 including the mica particles 10 may be arranged on the coil conductor 6 side and wound, or the reinforcing layer 14 including the reinforcing material 12 may be wound around the coil conductor 6. It may be arranged on the 6 side and wound.
  • the mica layer 11 of the first mica tape is easily impregnated with the liquid thermosetting resin composition. Further, in order to improve the impregnation property of the liquid thermosetting resin composition, a resin fluidized layer made of glass cloth or the like may be separately provided on the mica layer 11 side of the first mica tape.
  • the first mica tape is wound a plurality of times so that parts thereof overlap each other (for example, half the width of the first mica tape overlaps).
  • the second mica tape is wrapped around the outer periphery of the laminated first mica tape and laminated (step S2).
  • the second mica tape the one described in the first embodiment can be used.
  • the preferable range of the laminated thickness t2 of the second mica tape is the same as that described in the first embodiment.
  • the coil conductor 6 wound with the first mica tape and the second mica tape is impregnated with the liquid thermosetting resin composition under a reduced pressure atmosphere (step S3).
  • the liquid thermosetting resin composition is pressure-impregnated if necessary.
  • a known one containing a thermosetting resin, a reactive diluent and the like can be used as the liquid thermosetting resin composition.
  • the thermosetting resin is not particularly limited, and examples thereof include epoxy resin, phenol resin, melamine resin and unsaturated polyester. When an epoxy resin is used as the thermosetting resin, a curing agent and a curing accelerator for the epoxy resin may be used together if necessary.
  • the reactive diluent is not particularly limited, and known ones can be used.
  • the viscosity of the liquid thermosetting resin composition is not particularly limited, but is preferably 500 mPa ⁇ s or less at 40 ° C.
  • the liquid thermosetting resin composition is heated and cured at a temperature of 90 ° C or higher and 180 ° C or lower (step S4).
  • the stator coil according to the present embodiment can be obtained through such steps.
  • the stator coil manufactured in this way has the structure of the stator coil described in the first embodiment, mica particles 10 having high withstand voltage are formed around the corners of the coil conductor 6 or around the corners. While being highly filled, the insulating portion 7 holds the necessary amount of the thermosetting resin composition that bonds the first mica tape and the second mica tape to the coil conductor 6. Therefore, the stator coil has high withstand voltage.
  • FIG. 5 is a figure which shows typically the principal part of the stator of the rotary electric machine which concerns on Embodiment 3, and is a figure (transverse cross section) which shows the cross section along a rotating shaft.
  • FIG. 6 is a diagram schematically showing a main part of a stator of a rotary electric machine according to a third embodiment, and is a view (longitudinal cross-sectional view) of a cross section orthogonal to the rotation axis as seen from the direction of arrow A in FIG. is there.
  • the stator of the rotating electric machine includes a stator core 1, a plurality (eight in this example) of iron core fastening members 15, a plurality (four in this example) of retaining rings 16, and a frame. 17, a plurality of (5 in this example) middle frame members 18, and a plurality (4 in this example) of elastic support members 19 are provided.
  • the stator core 1 is formed in a cylindrical shape, and the rotor is housed on the inner peripheral side thereof.
  • the iron core tightening members 15 are provided on the outer peripheral portion of the stator iron core 1 at predetermined intervals in the circumferential direction, and tighten the stator iron core 1 in the axial direction.
  • the holding ring 16 is formed in a flat shape in the axial direction, is provided on the outer peripheral portion of the stator iron core 1 at predetermined intervals in the axial direction, and rotates the stator iron core 1 from the outer periphery of the iron core fastening member 15. Tighten and hold in the axial direction.
  • the frame 17 is formed in a cylindrical shape, and surrounds the stator core 1 with a space therebetween.
  • the middle frame member 18 is formed in a ring shape and protrudes in the axial direction from the inner surface of the frame 17 with a predetermined interval in the axial direction.
  • the elastic support member 19 is a spring plate that is fixed to the adjacent middle frame members 18 and is fixed to the retaining ring 16 at the axial center thereof.
  • the stator of the rotating electric machine shown in FIGS. 5 and 6 constitutes, for example, an armature of a turbine generator.
  • the inner peripheral portion of the stator core 1 is provided with a predetermined number of slots formed in the axial direction in the circumferential direction.
  • the stator coil described in the first embodiment is housed in the slot.
  • the rotating electric machine equipped with the stator constructed in this way can achieve higher output and smaller size by increasing the withstand voltage of the stator coil.
  • Example 1 The first mica tape shown in Table 1 is wound around the outer circumference of the coil conductor (rectangular shape of cross section: 10 mm x 50 mm, length: 1 m) and laminated, and the outer circumference of the laminated first mica tape is shown in Table 1. After winding and stacking the second mica tape shown in the figure, under a reduced pressure atmosphere, liquid thermosetting containing bisphenol F type epoxy and hexahydrophthalic anhydride (curing agent for epoxy resin) in the coil conductor wound with the mica tape The resin composition was impregnated.
  • the reinforcing material for the first mica tape and the second mica tape 20 g of glass cloth per 1 m 2 of mica tape (weight per unit area of 20 g / m 2 ) was used.
  • the liquid thermosetting resin composition was heated to 50 ° C. before use. After the coil conductor wound with the mica tape was completely immersed in the liquid thermosetting resin composition for 4 hours, it was maintained for 8 hours in a 0.7 MPa pressurized atmosphere. Then, the coil conductor wound with the mica tape was taken out and heated at 155 ° C. for 24 hours to cure the liquid thermosetting resin composition, thereby obtaining the stator coil of Example 1.
  • An electrode is arranged in a length of 30 cm in the center of the obtained stator coil using a silver paste for a withstand voltage test, and a SiC coating is applied from the end of the silver paste to the end of the stator coil for electric field relaxation. And was dried at 100 ° C. for 3 hours. After that, an AC voltage was applied to the stator coil at a boosting rate of 1 KV / mm, and the voltage at which dielectric breakdown occurred was measured. Further, the central portion of the stator coil was cut in the radial direction, and its cross section was observed with a microscope to confirm the presence or absence of voids. The case without voids was evaluated as good impregnating property ( ⁇ ), and the case with voids was evaluated as poor impregnating property (x). The results are shown in Table 1.
  • Example 2 to 10 The stator coils of Examples 2 to 10 were obtained in the same manner as in Example 1 except that the first mica tape and the second mica tape shown in Table 1 were used. The obtained stator coil was evaluated in the same manner as in Example 1. The dielectric breakdown voltage was evaluated as good ( ⁇ ) when the dielectric breakdown voltage of the stator coil of Example 1 was 100% or more and 120% or less, and as bad (x) when it was 80% or less. The results are shown in Table 1.
  • Comparative Examples 1 to 12 The stator coils of Comparative Examples 1 to 12 were obtained in the same manner as in Example 1 except that the first mica tape and the second mica tape shown in Table 2 were used. The obtained stator coil was evaluated in the same manner as in Example 1. The dielectric breakdown voltage was evaluated as good ( ⁇ ) when the dielectric breakdown voltage of the stator coil of Example 1 was 100% or more and 120% or less, and as bad (x) when it was 80% or less. Table 2 shows the results.
  • the dielectric breakdown voltage of the obtained stator coil does not affect the insulation of the stator coil of Example 1. It is about 80% of the value of the breakdown voltage. Therefore, it can be said that the stator coils of Examples 1 to 10 have 1.2 times or more higher withstand voltage than the stator coil using the general-purpose mica tape.
  • the stator coils of Examples 1 to 10 are used in the turbine generator, the high withstand voltage of the stator coil makes it possible to reduce the thickness of the insulating portion on the outer circumference of the coil conductor. As a result, heat generation of the coil conductor is reduced, and it is possible to increase the output and efficiency of the turbine generator.
  • stator core 1 stator core, 2 slots, 3 stator coils, 4 spacers, 5 wedges, 6 coil conductors, 7 insulating parts, 8 first insulating layers, 9 second insulating layers, 10 mica particles, 11 mica layers, 12 reinforcing materials , 13 resin, 14 reinforcing layer, 15 iron core tightening member, 16 retaining ring, 17 frame, 18 middle frame member, 19 elastic supporting member, t1 laminated thickness of first mica tape, t2 laminated thickness of second mica tape .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

コイル導体と、前記コイル導体の外周に第一のマイカテープを巻いて積層させた第一絶縁層と、前記第一絶縁層の外周に第二のマイカテープを巻いて積層させた第二絶縁層とを備える固定子コイルであって、前記第一のマイカテープのマイカ含有量が、マイカテープ1m2当たり30g以上100g以下であり、前記第一のマイカテープに含まれるマイカの60質量%以上が、公称目開き250μmのJIS標準篩を通過し、前記第一のマイカテープの積層厚みが、0.1mm以上1mm以下であり、前記第二のマイカテープに含まれるマイカの40質量%以下が、公称目開き250μmのJIS標準篩を通過する、固定子コイル。

Description

固定子コイル、その製造方法及び回転電機
 本発明は、固定子コイル、その製造方法及びその固定子コイルを用いた回転電機に関する。
 タービン発電機などに用いられる大型の回転電機は、固定子鉄心の内周側に形成された複数のスロット内に収納された固定子コイルを有する。固定子コイルは、コイル導体とその外周に巻かれた絶縁部とから構成される。この絶縁部の形成方法としては、マイカシートにガラスクロスなどの繊維補強材を貼り合わせたマイカテープをコイル導体の外周に複数回巻いた後、低粘度の液状熱硬化性樹脂組成物を減圧下で含浸させた後に加熱プレスする方法(以下、真空加圧含浸方法と呼ぶことがある)、絶縁テープに半硬化状態の樹脂を配置し、このテープをコイル導体の外周に複数回巻いた後に加熱プレスする方法(以下、レジンリッチ法と呼ぶことがある)などが一般的に用いられている。
 このような回転電機においては、運転時にコイル導体を流れる電流によって固定子コイルが発熱する。そのため、絶縁部は、銅などの金属で構成されたコイル導体の熱膨張による機械的ストレス及び樹脂成分の熱劣化によって、経時的にその耐電圧性が低下する恐れがある。
 近年、回転電機の更なる小型化及び高出力化の要求が強まり、絶縁部に印加される電界が増大するため、耐電圧性の高い絶縁部を有する固定子コイルが望まれている。
 例えば、特許文献1には、導体の表面に、大きさの大きいマイカ鱗片からなる第一の無焼成集成マイカテープを巻いて第一の主絶縁層を形成し、この上に大きさの小さいマイカ鱗片からなる第二の無焼成集成マイカテープを巻いて第二の主絶縁層を形成した高電圧用回転電機コイルが記載されている。
実開昭63-021448号公報
 固定子コイルにおいて電界が最も高くなる部位は、コイル導体の角部近傍に形成された絶縁部であり、一般的に絶縁破壊はこの角部を起点として発生する。耐電圧性を向上させるためには、コイル導体の角部近傍に耐電圧性の高いマイカを高充填化しつつ、マイカテープとコイル導体とを接着する樹脂の必要量を絶縁部に保持させる必要がある。
 しかしながら、特許文献1では、大きさの異なるマイカ鱗片を用いて樹脂の保持性を高めることができるものの、コイル導体の角部近傍へのマイカの高充填化が不十分であり、固定子コイルの所望の耐電圧性が得られないといった課題があった。
 従って、本発明は、上記の課題を解決するためになされたものであり、耐電圧性を高くすることができる固定子コイル及びその製造方法を提供することを目的とする。
 本発明は、コイル導体と、前記コイル導体の外周に第一のマイカテープを巻いて積層させた第一絶縁層と、前記第一絶縁層の外周に第二のマイカテープを巻いて積層させた第二絶縁層とを備える固定子コイルであって、前記第一のマイカテープにおけるマイカ粒子の含有量が、マイカテープ1m2当たり30g以上100g以下であり、前記第一のマイカテープに含まれるマイカ粒子の60質量%以上が、公称目開き250μmのJIS標準篩を通過し、前記第一のマイカテープの積層厚みが、0.1mm以上1mm以下であり、前記第二のマイカテープに含まれるマイカ粒子の40質量%以下が、公称目開き250μmのJIS標準篩を通過する、固定子コイルである。
 また、本発明は、コイル導体の外周に第一のマイカテープを巻いて厚みが0.1mm以上1mm以下となるように積層させる工程と、積層させた前記第一のマイカテープの外周に第二のマイカテープを巻いて積層させる工程と、前記第一のマイカテープ及び前記第二のマイカテープが巻かれたコイル導体に液状熱硬化性樹脂組成物を含浸させる工程と、前記液状熱硬化性樹脂組成物を加熱硬化させる工程とを含むコイルの製造方法であって、前記第一のマイカテープにおけるマイカ粒子の含有量が、マイカテープ1m2当たり30g以上100g以下であり、前記第一のマイカテープに含まれるマイカ粒子の60質量%以上が、公称目開き250μmのJIS標準篩を通過し、前記第二のマイカテープに含まれるマイカ粒子の40質量%以下が、公称目開き250μmのJIS標準篩を通過する、固定子コイルの製造方法である。
 本発明によれば、耐電圧性の高い固定子コイル及びその製造方法を提供することができる。
本発明の一実施の形態に係る回転電機の固定子の斜視断面図である。 本発明の一実施の形態に係る固定子コイルの模式断面図である。 本発明の一実施の形態で用いたマイカテープの模式断面図である。 本発明の一実施の形態に係る固定子コイルの製造方法のフローチャートである。 本発明の一実施の形態に係る回転電機の固定子の要部を模式的に示す図であり、回転軸に沿った断面を示す図(横断面図)である。 本発明の一実施の形態に係る回転電機の固定子の要部を模式的に示す図であり、回転軸に直交する断面を図5の矢印A方向から見た図(縦断面図)である。
 実施の形態1.
 図1は、実施の形態1に係る回転電機の固定子の斜視断面図である。図1において、回転電機の固定子には、固定子鉄心1の内周側に形成された複数のスロット2内で上下2段に固定子コイル3が収納されている。この2段の固定子コイル3の間にはスペーサー4が挿入されている。スロット2の開口端部には、固定子コイル3を固定するためのウェッジ5が挿入されている。このウェッジ5は、回転電機の運転時に固定子コイル3から発生する電磁振動を抑制する効果がある。また、コイル導体6の断面形状は矩形である。コイル導体6は、その外周が、第一絶縁層と第二絶縁層とを有する絶縁部7で覆われることにより、固定子鉄心1との対地絶縁が確保されている。コイル導体6としては、ガラステープなどの絶縁材で被覆され、断面形状が矩形である金属素線を複数束ねたもの、絶縁被膜を有する電線などを用いることができる。金属素線としては、特に限定されず、銅、アルミニウム、銀などからなる素線を用いることができる。
 図2は、実施の形態1に係る固定子コイルの断面模式図である。図2において、固定子コイルは、コイル導体6と、コイル導体6の外周に第一のマイカテープを巻いて積層させた第一絶縁層8及び第一絶縁層8の外周に第二のマイカテープを巻いて積層させた第二絶縁層9からなる絶縁部7とを備える。
 図3は、絶縁部7を形成するのに用いた第一のマイカテープの模式断面図である。図3において、第一のマイカテープは、マイカ粒子10を含むマイカ層11と、マイカ層11上に積層され、補強材12及び樹脂13を含む補強層14とを有する。第二のマイカテープの構造自体は、第一のマイカテープと同じであるので説明は省略する。
 マイカ粒子10としては、層状ケイ酸塩鉱物の一種として知られる硬質マイカ、軟質マイカなどを用いることができる。マイカ粒子10の形状としては、集成マイカ、ブロックマイカ、剥がしマイカなどが挙げられる。これらのマイカ粒子10は、単独で用いてもよいし、又は2種以上を組み合わせて用いてもよい。
 補強材12としては、特に限定されず、ガラスクロス、アルミナクロス、シリカクロス、樹脂フィルムなどが挙げられる。補強材12の含有量は、第一のマイカテープ1m2当たり、好ましくは8g以上45g以下(目付量8g/m2以上45g/m2以下)である。また、第二のマイカテープにおける補強材12の含有量は、第一のマイカテープと同様である。
 樹脂13としては、特に限定されず、エポキシ樹脂、シリコーン樹脂、フェノール樹脂などが挙げられる。
 マイカ層11は、マイカ粒子10の他に、上記した樹脂13を含むことができる。マイカ層11に樹脂13が含まれることで、マイカ粒子10同士を接着し、マイカ層11の強度を向上させることができる。
 第一のマイカテープに含まれるマイカ粒子10の全量を100質量%としたときに、公称目開き250μmのJIS標準篩を通過するマイカ粒子10の割合が、60質量%以上であり、好ましくは70質量%以上である。公称目開き250μmのJIS標準篩を通過するマイカ粒子10の割合を60質量%以上とすることで、粒径の小さいマイカ粒子10が充填されたマイカ層11が第一のマイカテープ内に形成される。そのため、コイル導体6の外周に第一のマイカテープを巻いたときに、コイル導体6の角部に沿って第一のマイカテープのマイカ層11が変形し第一のマイカテープにしわが発生しにくくなる。その結果、コイル導体6の角部あるいは角部の周囲において、耐電圧性の高いマイカ粒子10の充填率が高くなり、固定子コイルの耐電圧性を向上させることができる。これに対し、公称目開き250μmのJIS標準篩を通過するマイカ粒子10の割合が60質量%未満であると、粒径が250μm以上のマイカ粒子10が一定量含まれる。そのため、コイル導体6の外周に第一のマイカテープを巻いたときに、コイル導体6の角部に沿わない第一のマイカテープの部分が発生し、角部において、マイカ粒子10よりも耐電圧性の低い熱硬化性樹脂の充填率が高くなる。その結果、固定子コイルの所望の耐電圧性を得ることができない。なお、第一のマイカテープにおいて、公称目開き250μmのJIS標準篩を通過するマイカ粒子10の割合の上限は100質量%である。
 第二のマイカテープに含まれるマイカ粒子10の全量を100質量%としたときに、公称目開き250μmのJIS標準篩を通過するマイカ粒子10の割合が、40質量%以下であり、好ましくは30質量%以下である。公称目開き250μmのJIS標準篩を通過するマイカ粒子10の割合を40質量%以下とすることで、第一絶縁層8の外周に第二のマイカテープを巻いたときに、第一絶縁層8の形状に沿って第二のマイカテープのマイカ層11が変形しにくくなる。そのため、第二のマイカテープ間に微小な隙間が発生する。この隙間が液状熱硬化性樹脂組成物を含浸させるための流路、特に積層させた第一のマイカテープへ液状熱硬化性樹脂組成物を含浸させるための流路となる。その結果、コイル導体6の角部あるいは角部の周囲の第一のマイカテープのマイカ層11内に液状熱硬化性樹脂組成物が十分に含浸され、ボイドの発生が抑制される。そのため、固定子コイルの耐電圧性を向上させることができる。なお、第二のマイカテープにおいて、公称目開き250μmのJIS標準篩を通過するマイカ粒子10の割合の下限は0質量%である。
 本明細書において、JIS標準篩の公称目開きとは、JIS Z8801-1(2006)に規定されるものであり、各公称目開きにおける最大目開きの許容差、平均目開きの許容差、最大標準偏差、推奨線径等が同規定を満たすものである。公称目開き250μmのJIS標準篩を通過するマイカ粒子10の割合は以下の手順で算出することができる。先ず、マイカテープを600℃で48時間加熱し、マイカテープに含まれる樹脂成分を熱分解して除去した後、マイカテープに含まれるマイカ粒子10を取り出し、マイカ粒子10の質量を測定する。次に、マイカ粒子10を水中に分散させたものを、公称目開き250μmのJIS標準篩上に供給し、流水を行いながら篩を通過したマイカ粒子10を取り出す。マイカ粒子10を乾燥させた後、マイカ粒子10の質量を測定する。マイカテープに含まれるマイカ粒子10の質量と公称目開き250μmのJIS標準篩を通過したマイカ粒子10の質量とから、公称目開き250μmのJIS標準篩を通過するマイカ粒子10の割合を算出する。
 第一のマイカテープに含まれるマイカ粒子10の含有量は、マイカテープ1m2当たり、30g以上100g以下であり、好ましくは40g以上90g以下である。第一のマイカテープに含まれるマイカ粒子10の含有量が30g未満であると、マイカ粒子10が不足する。そのため、固定子コイルの所望の耐電圧性を得ることができない。一方、マイカ粒子10の含有量が100g超であると、第一のマイカテープのマイカ層11内に液状熱硬化性樹脂組成物が十分に含浸せずにボイドが発生する。そのため、固定子コイルの所望の耐電圧性を得ることができない。
 第二のマイカテープに含まれるマイカ粒子10の含有量は、マイカテープ1m2当たり、好ましくは120g以上200g以下であり、より好ましくは140g以上160g以下である。第二のマイカテープに含まれるマイカ粒子10の含有量が上記範囲内であると、機械的強度が向上し、固定子コイルの機械的ストレス耐性を向上させることができる。
 第一のマイカテープの積層厚みt1は、0.1mm以上1mm以下であり、好ましくは0.3mm以上0.9mm以下である。第一のマイカテープの積層厚みt1は、固定子コイルの径方向断面を観察したときの第一のマイカテープで構成された第一絶縁層8の厚みを示す。第一のマイカテープの積層厚みt1が0.1mm未満であると、コイル導体6の角部に沿って配置されたマイカ粒子10が不足する。そのため、固定子コイルの所望の耐電圧性を得ることができない。一方、第一のマイカテープの積層厚みt1が1mm超であると、第一のマイカテープのマイカ層11内に液状熱硬化性樹脂組成物が十分に含浸せずにボイドが発生する。そのため、固定子コイルの所望の耐電圧性を得ることができない。
 実施の形態2.
 実施の形態2においては、固定子コイルの製造方法について説明する。図4は、実施の形態2に係る固定子コイルの製造方法のフローチャートである。コイル導体6への絶縁部7の形成方法は、真空加圧含浸方法、レジンリッチ法などがあるが、以下では真空加圧含浸方法を採用した製造方法について説明する。
 コイル導体6の外周に第一のマイカテープを巻いて積層厚みt1が0.1mm以上1mm以下となるように積層させる(工程S1)。コイル導体6及び第一のマイカテープは、実施の形態1で説明したものを用いることができる。第一のマイカテープとして、プリプレグ状のマイカテープを用いてもよい。また、第一のマイカテープの積層厚みt1を上記範囲内とする理由は、実施の形態1で説明したのと同様である。コイル導体6の外周に第一のマイカテープを巻くときは、マイカ粒子10を含むマイカ層11をコイル導体6側に配置して巻いてもよいし、補強材12を含む補強層14をコイル導体6側に配置して巻いてもよい。補強材12を含む補強層14をコイル導体6側に配置して巻くことにより、第一のマイカテープのマイカ層11に液状熱硬化性樹脂組成物が含浸し易くなる。また、液状熱硬化性樹脂組成物の含浸性を高めるために、第一のマイカテープのマイカ層11側にガラスクロスなどからなる樹脂流動層を別途設けてもよい。第一のマイカテープは、その一部が互いに重なるように(例えば、第一のマイカテープの幅の半分が重なるように)複数回巻く。
 次に、積層させた第一のマイカテープの外周に第二のマイカテープを巻いて積層させる(工程S2)。第二のマイカテープは、実施の形態1で説明したものを用いることができる。また、第二のマイカテープの積層厚みt2の好ましい範囲は、実施の形態1で説明したのと同様である。
 次に、減圧雰囲気下で、第一のマイカテープ及び第二のマイカテープが巻かれたコイル導体6に液状熱硬化性樹脂組成物を含浸させる(工程S3)。その後、必要に応じて液状熱硬化性樹脂組成物を加圧含浸する。液状熱硬化性樹脂組成物としては、熱硬化性樹脂、反応性希釈剤などを含む公知のものを用いることができる。熱硬化性樹脂としては、特に限定されず、エポキシ樹脂、フェノール樹脂、メラミン樹脂、不飽和ポリエステルなどが挙げられる。熱硬化性樹脂としてエポキシ樹脂を用いる場合、エポキシ樹脂用の硬化剤及び硬化促進剤を必要に応じて併用してもよい。反応性希釈剤としては、特に限定されず、公知のものを用いることができる。液状熱硬化性樹脂組成物の粘度は、特に限定されないが、40℃において500mPa・s以下であることが好ましい。
 最後に、常圧にした状態で、液状熱硬化性樹脂組成物を90℃以上180℃以下の温度で加熱硬化させる(工程S4)。このような工程を経て、本実施の形態に係る固定子コイルを得ることができる。
 このようにして製造された固定子コイルは、実施の形態1で説明した固定子コイルの構造となるため、コイル導体6の角部あるいは角部の周囲において、耐電圧性の高いマイカ粒子10が高充填されるとともに、第一のマイカテープ及び第二のマイカテープとコイル導体6とを接着する熱硬化性樹脂組成物の必要量が絶縁部7に保持される。そのため、固定子コイルは、高い耐電圧性を備えるものとなる。
 実施の形態3.
 図5は、実施の形態3に係る回転電機の固定子の要部を模式的に示す図であり、回転軸に沿った断面を示す図(横断面図)である。図6は、実施の形態3に係る回転電機の固定子の要部を模式的に示す図であり、回転軸に直交する断面を図5の矢印A方向から見た図(縦断面図)である。
 図5及び6において、回転電機の固定子は、固定子鉄心1と、複数(この例では8本)の鉄心締付部材15と、複数(この例では4箇所)の保持リング16と、フレーム17と、複数(この例では5箇所)の中枠部材18と、複数(この例では4本)の弾性支持部材19とを備えている。固定子鉄心1は、円筒状に形成されており、その内周側に回転子が収納される。鉄心締付部材15は、固定子鉄心1の外周部に、周方向に所定間隔をあけて設けられ、固定子鉄心1を軸方向に締付ける。保持リング16は、軸方向に扁平状に形成されており、固定子鉄心1の外周部に、軸方向に所定間隔をあけて設けられ、固定子鉄心1を鉄心締付部材15の外周から回転軸方向に締付けて保持する。フレーム17は、円筒状に形成されており、固定子鉄心1の周りに間隔をあけて包囲する。中枠部材18は、リング状に形成されており、フレーム17内面に軸方向に所定間隔をあけて軸心方向に突出する。弾性支持部材19は、隣り合う中枠部材18の相互に固定されて、その軸方向中央部で保持リング16に固定されたばね板からなる。図5及び6に示される回転電機の固定子は、例えば、タービン発電機の電機子を構成するものである。固定子鉄心1の内周部には、軸方向に形成されたスロットが周方向に所定数設けられている。スロット内には、実施の形態1で説明した固定子コイルが収納されている。
 このように構成された固定子を備える回転電機は、固定子コイルの高耐電圧化により、一層の高出力化及び小型化を図ることができる。特に上記回転電機の構成をタービン発電機へ適用した場合、固定子コイルの高耐電圧化により、コイル導体の外周の絶縁部の厚みを低減することが可能となる。これによりコイル導体の発熱が低減され、タービン発電機の高出力化及び高効率化を図ることができる。
[実施例1]
 コイル導体(断面形状:10mm×50mmの矩形、長さ:1m)の外周に表1に示される第一のマイカテープを巻いて積層させ、積層させた第一のマイカテープの外周に表1に示す第二のマイカテープを巻いて積層させた後、減圧雰囲気下において、マイカテープが巻かれたコイル導体に、ビスフェノールF型エポキシ及びヘキサヒドロ無水フタル酸(エポキシ樹脂用硬化剤)を含む液状熱硬化性樹脂組成物を含浸させた。なお、第一のマイカテープ及び第二のマイカテープの補強材には、マイカテープ1m2当たり20g(目付量20g/m2)のガラスクロスを用いた。含浸性を向上させるため、液状熱硬化性樹脂組成物は50℃に加温して用いた。マイカテープが巻かれたコイル導体が液状熱硬化性樹脂組成物に完全に浸漬した状態で4時間保持した後、0.7MPaの加圧雰囲気にて8時間保持した。その後、マイカテープが巻かれたコイル導体を取り出し、155℃で24時間加熱して液状熱硬化性樹脂組成物を硬化させ、実施例1の固定子コイルを得た。得られた固定子コイルの中央30cmの長さに耐電圧試験のために銀ペーストを用いて電極を配置するとともに、電界緩和のために銀ペーストの端部から固定子コイルの端部にかけてSiC塗料を塗り、100℃で3時間乾燥させた。その後、固定子コイルに交流電圧を1KV/mmの昇圧速度で印加し、絶縁破壊に至った電圧を測定した。また、固定子コイルの中心部を径方向に切断し、その断面を顕微鏡で観察し、ボイドの有無を確認した。ボイドが無い場合を含浸性良好(○)、ボイドが有る場合を含浸性不良(×)と評価した。結果を表1に示す。
[実施例2~10]
 表1に示す第一のマイカテープ及び第二のマイカテープを用いたこと以外は実施例1と同様にして、実施例2~10の固定子コイルを得た。得られた固定子コイルを実施例1と同様に評価した。なお、絶縁破壊電圧は、実施例1の固定子コイルの絶縁破壊電圧の値の100%以上120%以下のものを良好(○)、80%以下のものを不良(×)と評価した。結果を表1に示す。
[比較例1~12]
 表2に示す第一のマイカテープ及び第二のマイカテープを用いたこと以外は実施例1と同様にして、比較例1~12の固定子コイルを得た。得られた固定子コイルを実施例1と同様に評価した。なお、絶縁破壊電圧は、実施例1の固定子コイルの絶縁破壊電圧の値の100%以上120%以下のものを良好(○)、80%以下のものを不良(×)と評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 なお、汎用のマイカテープを用い、液状熱硬化性樹脂組成物の含浸性に問題がない場合、得られる固定子コイルの絶縁破壊電圧は、ばらつきを含めて、実施例1の固定子コイルの絶縁破壊電圧の値の80%程度である。従って、実施例1~10の固定子コイルは、汎用のマイカテープを用いた固定子コイルより1.2倍以上耐電圧性が高いといえる。実施例1~10の固定子コイルをタービン発電機に用いた場合には、固定子コイルの高耐電圧化により、コイル導体の外周の絶縁部の厚みを低減することが可能となる。これによりコイル導体の発熱が低減され、タービン発電機の高出力化及び高効率化を図ることができる。
 実施例及び比較例の結果からも明らかなように、本発明の実施の形態によれば、耐電圧性の高い固定子コイル及びその製造方法を提供することができる。
 1 固定子鉄心、2 スロット、3 固定子コイル、4 スペーサー、5 ウェッジ、6 コイル導体、7 絶縁部、8 第一絶縁層、9 第二絶縁層、10 マイカ粒子、11 マイカ層、12 補強材、13 樹脂、14 補強層、15 鉄心締付部材、16 保持リング、17 フレーム、18 中枠部材、19 弾性支持部材、t1 第一のマイカテープの積層厚み、t2 第二のマイカテープの積層厚み。

Claims (4)

  1.  コイル導体と、
     前記コイル導体の外周に第一のマイカテープを巻いて積層させた第一絶縁層と、
     前記第一絶縁層の外周に第二のマイカテープを巻いて積層させた第二絶縁層と
    を備える固定子コイルであって、
     前記第一のマイカテープにおけるマイカ粒子の含有量が、マイカテープ1m2当たり30g以上100g以下であり、
     前記第一のマイカテープに含まれるマイカ粒子の60質量%以上が、公称目開き250μmのJIS標準篩を通過し、
     前記第一のマイカテープの積層厚みが、0.1mm以上1mm以下であり、
     前記第二のマイカテープに含まれるマイカ粒子の40質量%以下が、公称目開き250μmのJIS標準篩を通過する、
    固定子コイル。
  2.  前記コイル導体の断面形状が矩形である請求項1に記載の固定子コイル。
  3.  コイル導体の外周に第一のマイカテープを巻いて厚みが0.1mm以上1mm以下となるように積層させる工程と、
     積層させた前記第一のマイカテープの外周に第二のマイカテープを巻いて積層させる工程と、
     前記第一のマイカテープ及び前記第二のマイカテープが巻かれたコイル導体に液状熱硬化性樹脂組成物を含浸させる工程と、
     前記液状熱硬化性樹脂組成物を加熱硬化させる工程と
    を含むコイルの製造方法であって、
     前記第一のマイカテープにおけるマイカ粒子の含有量が、マイカテープ1m2当たり30g以上100g以下であり、
     前記第一のマイカテープに含まれるマイカ粒子の60質量%以上が、公称目開き250μmのJIS標準篩を通過し、
     前記第二のマイカテープに含まれるマイカ粒子の40質量%以下が、公称目開き250μmのJIS標準篩を通過する、
    固定子コイルの製造方法。
  4.  固定子鉄心のスロット内に、請求項1又は2に記載の固定子コイルが収納されている回転電機。
PCT/JP2018/037950 2018-10-11 2018-10-11 固定子コイル、その製造方法及び回転電機 WO2020075269A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880098005.9A CN112771765A (zh) 2018-10-11 2018-10-11 定子线圈、定子线圈的制造方法以及旋转电机
PCT/JP2018/037950 WO2020075269A1 (ja) 2018-10-11 2018-10-11 固定子コイル、その製造方法及び回転電機
US17/273,739 US11901784B2 (en) 2018-10-11 2018-10-11 Stator coil, method of manufacturing the same, and rotating electric machine
EP18936303.9A EP3866307B1 (en) 2018-10-11 2018-10-11 Stator coil, method for manufacturing same, and rotary electrical machine
JP2019511677A JP6522273B1 (ja) 2018-10-11 2018-10-11 固定子コイル、その製造方法及び回転電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/037950 WO2020075269A1 (ja) 2018-10-11 2018-10-11 固定子コイル、その製造方法及び回転電機

Publications (1)

Publication Number Publication Date
WO2020075269A1 true WO2020075269A1 (ja) 2020-04-16

Family

ID=66655715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037950 WO2020075269A1 (ja) 2018-10-11 2018-10-11 固定子コイル、その製造方法及び回転電機

Country Status (5)

Country Link
US (1) US11901784B2 (ja)
EP (1) EP3866307B1 (ja)
JP (1) JP6522273B1 (ja)
CN (1) CN112771765A (ja)
WO (1) WO2020075269A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321448U (ja) 1986-07-24 1988-02-12
JPH08250344A (ja) * 1995-03-13 1996-09-27 Toshiba Corp 絶縁コイル
JP2012016273A (ja) * 2010-07-02 2012-01-19 Alstom Technology Ltd 固定子バー
WO2017175875A1 (ja) * 2016-04-08 2017-10-12 日立化成株式会社 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
WO2018003044A1 (ja) * 2016-06-29 2018-01-04 日立化成株式会社 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925327B2 (ja) * 1977-07-28 1984-06-16 日立化成工業株式会社 マイカプリプレグ材料
US4427740A (en) * 1982-04-09 1984-01-24 Westinghouse Electric Corp. High maximum service temperature low cure temperature non-linear electrical grading coatings resistant to V.P.I. resins containing highly reactive components
JPS60128843A (ja) 1983-12-15 1985-07-09 Toshiba Corp 電気機器用含浸絶縁コイル
JPH0217839A (ja) 1988-07-04 1990-01-22 Toshiba Corp 高圧回転電機用絶縁樹脂含浸コイル
JP6819589B2 (ja) * 2015-07-17 2021-01-27 昭和電工マテリアルズ株式会社 回転電機用コイル、回転電機用コイルの製造方法及びマイカテープ
WO2018003043A1 (ja) * 2016-06-29 2018-01-04 日立化成株式会社 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの製造方法、マイカテープの硬化物及び絶縁物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321448U (ja) 1986-07-24 1988-02-12
JPH08250344A (ja) * 1995-03-13 1996-09-27 Toshiba Corp 絶縁コイル
JP2012016273A (ja) * 2010-07-02 2012-01-19 Alstom Technology Ltd 固定子バー
WO2017175875A1 (ja) * 2016-04-08 2017-10-12 日立化成株式会社 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
WO2018003044A1 (ja) * 2016-06-29 2018-01-04 日立化成株式会社 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3866307A4

Also Published As

Publication number Publication date
JP6522273B1 (ja) 2019-05-29
EP3866307A1 (en) 2021-08-18
JPWO2020075269A1 (ja) 2021-02-15
EP3866307B1 (en) 2023-02-08
CN112771765A (zh) 2021-05-07
EP3866307A4 (en) 2021-11-03
US20210351654A1 (en) 2021-11-11
US11901784B2 (en) 2024-02-13

Similar Documents

Publication Publication Date Title
JP4913551B2 (ja) 回転電機巻線及び回転電機並びにそれに用いる半導電性絶縁基材
US6288341B1 (en) Insulating material windings using same and a manufacturing method thereof
KR20010108281A (ko) 절연재 및 전기권선과 그 제조법
US3679925A (en) Electrical apparatus with corona suppression means
US3990029A (en) Insulated windings provided with a mould releasing material
JP2010158113A (ja) 電気絶縁部材、回転電機用固定子コイルおよび回転電機
JP2012244861A (ja) 絶縁コイル
EP2810358B1 (en) High voltage stator coil with reduced power tip-up
WO2020075269A1 (ja) 固定子コイル、その製造方法及び回転電機
JP6305216B2 (ja) 絶縁シートおよびこれを用いた電気機械並びに絶縁シートの製造方法
JP2002118997A (ja) 積層部材およびそれを用いた回転電機
JP2011250563A (ja) 回転電機のコイル製造方法
JP2012175799A (ja) 回転電機固定子、回転電機固定子の製造方法、及び回転電機固定子用絶縁テープ
JP3518128B2 (ja) 回転電機の固定子巻線
WO2023047439A1 (ja) 回転機コイル、その製造方法および回転機
JP7498098B2 (ja) プリプレグマイカテープ、回転電機及び回転電機の製造方法
WO2021145097A1 (ja) プリプレグマイカテープ、回転電機及び回転電機の製造方法
JP7153437B2 (ja) 回転電機
WO2024052961A1 (ja) 固定子コイルの製造方法、固定子コイル及び回転機
JP2023092752A (ja) プリプレグマイカテープ、回転電機及び回転電機の製造方法
JP4069560B2 (ja) 回転電機の巻線
JPH06225489A (ja) 高圧回転機固定子コイル
JP2006074861A (ja) 回転電機の電機子巻線および回転電機
US7238404B2 (en) Thin sheet mica wedges with semi-conducting properties
JP2021158908A (ja) プリプレグマイカテープ、回転電機及び回転電機の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019511677

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018936303

Country of ref document: EP

Effective date: 20210511