WO2015114907A1 - 絶縁テープ及びその製造方法、固定子コイル及びその製造方法、並びに回転電機 - Google Patents

絶縁テープ及びその製造方法、固定子コイル及びその製造方法、並びに回転電機 Download PDF

Info

Publication number
WO2015114907A1
WO2015114907A1 PCT/JP2014/080080 JP2014080080W WO2015114907A1 WO 2015114907 A1 WO2015114907 A1 WO 2015114907A1 JP 2014080080 W JP2014080080 W JP 2014080080W WO 2015114907 A1 WO2015114907 A1 WO 2015114907A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insulating tape
mica
filler
cellulose derivative
Prior art date
Application number
PCT/JP2014/080080
Other languages
English (en)
French (fr)
Inventor
馬渕 貴裕
茂之 山本
築地 真
浩 佐古
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP14880544.3A priority Critical patent/EP3101665B1/en
Priority to JP2015559738A priority patent/JP6058169B2/ja
Priority to CN201480074454.1A priority patent/CN105940467B/zh
Priority to US15/110,318 priority patent/US10199136B2/en
Publication of WO2015114907A1 publication Critical patent/WO2015114907A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/04Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances mica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
    • H01B19/04Treating the surfaces, e.g. applying coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/185Substances or derivates of cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/32Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes natural resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/04Details of the magnetic circuit characterised by the material used for insulating the magnetic circuit or parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/10Applying solid insulation to windings, stators or rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/40Windings characterised by the shape, form or construction of the insulation for high voltage, e.g. affording protection against corona discharges
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2401/00Presence of cellulose
    • C09J2401/006Presence of cellulose in the substrate

Definitions

  • the present invention relates to an insulating tape used for a stator of a rotating electrical machine, a manufacturing method thereof, a stator coil, a manufacturing method thereof, and a rotating electrical machine.
  • the stator of a rotating electrical machine has a stator coil housed in a plurality of slots formed on the inner peripheral side of the stator core.
  • the stator coil is composed of a coil conductor and a stator coil insulator that covers the coil conductor.
  • the stator coil is wound around the coil conductor several times with an insulating tape made of a mica sheet and fiber reinforcing material such as glass cloth, and impregnated with a low-viscosity liquid thermosetting resin composition (insulating varnish) under reduced pressure. Then, it is manufactured by heating while press forming so as to have a predetermined cross-sectional shape.
  • the stator coils are housed in two stages in the upper and lower stages in the slot, and a spacer is inserted between the stator coils and a wedge for fixing the stator coil is inserted into the opening end of the slot. This suppresses electromagnetic vibration generated from the stator coil during operation of the rotating electrical machine.
  • the coil conductor Normally, in such a stator of a rotating electrical machine, the coil conductor generates heat due to a load current during operation of the rotating electrical machine, so that heat is transferred to the surrounding gas via the stator coil insulator and the stator core. Dissipates heat.
  • the thermal conductivity of the stator coil insulator is very small compared to the coil conductor and the stator core, so increasing the thermal conductivity of the stator coil insulator will greatly improve the cooling performance. effective. Therefore, it is important to increase the thermal conductivity of the stator coil insulator in order to increase the output and size of the rotating electrical machine.
  • the hydrogen indirect cooling type rotating electric machine which is expected to be superior in terms of efficiency and operation / maintenance compared to the direct water cooling type rotating electric machine, it is strongly required to increase the thermal conductivity of the stator coil insulator. Has been.
  • an adhesive is used to support the filler on the insulating tape.
  • the insulating tape is wound around the coil conductor, and then impregnated with an insulating varnish and heat-cured to be integrated with the coil conductor. Therefore, an adhesive for supporting the filler
  • the insulating varnish used for impregnation is required to have good compatibility and to be integrated with the adhesive and the insulating varnish at the time of heat curing.
  • stator coil when manufacturing a stator coil using a conventional insulating tape, the filler flows out from the gap between the insulating tape and the insulating varnish to the outside in the longitudinal direction of the coil conductor when heating while pressing. Therefore, there is a problem that the obtained stator coil insulator cannot exhibit desired thermal conductivity. Further, when the stator coil is manufactured using the conventional insulating tape, there is a problem that the adhesive strength between the insulating tapes becomes insufficient.
  • the present invention has been made in order to solve the above-described problem, and the stator coil insulation having high thermal conductivity without causing the filler previously supported on the insulating tape to flow outside when the stator coil is manufactured.
  • An object of the present invention is to provide an insulating tape capable of forming a layer and improving the adhesive strength between the insulating tapes and a method for producing the same.
  • Another object of the present invention is to provide a stator coil having high thermal conductivity and high strength reliability, and a method for manufacturing the same.
  • the present invention includes a mica layer containing mica, a reinforcing layer laminated on the mica layer and containing a filler and a fiber reinforcing material, and a cellulose derivative layer laminated on the reinforcing layer, and the cellulose derivative layer Is one or more of the hydroxyl groups of the glucose unit, —CH 2 CH 2 OH, —CH 2 CH 2 OCH 2 CH 2 OH, —CH 2 CH (OH) CH 3 , —CH 3 , —CH 2 CH 3 , -NO 2, - (CH 2 CH 2 O) p H ( wherein, p is 0 super 50 any number of repetitions of the following), - CH 2 COOH, -CH 2 CH 2 COOH, -CH 2 COOM ( Wherein M is Li, Na or K) and — (CH 2 CH 2 O) q CH 2 CH (OH) CH 2 N + (CH 3 ) 2 (nC 12 H 25 ) X ⁇ (formula among, q is an arbitrary number of repetition
  • the present invention also includes a step of forming a mica layer by making a dispersion containing mica, and a slurry containing a filler having a maximum particle size of 100 ⁇ m or less after bonding a fiber reinforcing material to the mica layer.
  • a step of forming a reinforcing layer by applying to a fiber reinforcing material, and one or more of hydroxyl groups of glucose units are —CH 2 CH 2 OH, —CH 2 CH 2 OCH 2 CH 2 OH, —CH 2 CH (OH) CH 3 , —CH 3 , —CH 2 CH 3 , —NO 2 , — (CH 2 CH 2 O) p H (wherein p is an arbitrary number of repetitions greater than 0 and less than or equal to 50), —CH 2 COOH , —CH 2 CH 2 COOH, —CH 2 COOM (wherein M is Li, Na or K) and — (CH 2 CH 2 O) q CH 2 CH (OH) CH 2 N + (CH 3 ) 2 (n—C 12 H 25 ) X ⁇ (wherein q is an arbitrary number of repetitions of 0 to 50) Yes, X - is Cl -, Br -, F - or I - a is) a slurry
  • the present invention also includes a coil conductor and an insulating layer formed by winding the insulating tape around the coil conductor and impregnating the insulating tape with a liquid thermosetting resin composition, followed by heating and pressing. Is a stator coil.
  • the present invention also includes a step of winding the above-described insulating tape around a coil conductor, and a step of impregnating the insulating tape with a liquid thermosetting resin composition and heat-pressing the stator coil. It is a manufacturing method.
  • the stator coil insulating layer having high thermal conductivity can be formed without causing the filler previously carried on the insulating tape to flow outside when the stator coil is manufactured, and the insulating tape It is possible to provide an insulating tape capable of improving the adhesive strength between the two and a method for manufacturing the same.
  • FIG. 1 It is a schematic cross section of the insulating tape by Embodiment 1 of this invention. It is a figure for demonstrating the state at the time of impregnating a liquid thermosetting resin composition in the insulating tape by Embodiment 1 of this invention, and heat-pressing-molding. It is a figure for demonstrating the state at the time of impregnating a liquid thermosetting resin composition in the insulating tape in which the cellulose derivative layer is not formed, and heat-press-molding. It is a partial expansion perspective view of the stator of a rotary electric machine. It is a cross-sectional perspective view of the generator as an example of a rotary electric machine.
  • FIG. 1 is a schematic cross-sectional view of an insulating tape according to the first embodiment.
  • an insulating tape 1 includes a mica layer 3 containing mica 2, a reinforcement layer 6 laminated on the mica layer 3, a filler 4 and a fiber reinforcing material 5, and a cellulose derivative laminated on the reinforcement layer 6. And a layer 7.
  • Mica layer 3 includes mica 2.
  • the mica 2 hard mica (mascobite), soft mica (phlogopite), etc., which are known as a kind of layered silicate mineral, can be used.
  • the shape of the mica 2 include block mica, peeled mica, and assembled mica. These may be used alone or in combination of two or more. Among these, it is preferable to use a laminated mica because the thickness is uniform and the cost is low.
  • the mica layer 3 can contain a resin such as an epoxy resin, a silicone resin, and a phenol resin in addition to the mica 2. These resins can bond the mica 2 to each other and improve the strength of the mica layer 3. Further, these resins are preferably bonded and integrated with the insulating varnish when the stator coil is manufactured. Therefore, it is desirable to select the type as appropriate according to the reactivity with the insulating varnish.
  • a resin such as an epoxy resin, a silicone resin, and a phenol resin in addition to the mica 2.
  • the basis weight of the mica 2 is 100 g or more and 200 g or less, preferably 140 g or more and 180 g or less, per 1 m 2 of insulating tape. If the basis weight of the mica 2 is less than 100 g / m 2 , desired electrical insulation cannot be obtained, and the dielectric breakdown time at the time of degradation of electric power is shortened. On the other hand, when the basis weight of the mica 2 exceeds 200 g / m 2 , although the electric insulation is good, the insulating tape 1 becomes thick and difficult to wind. In addition, when the thickness of the insulating layer is constant, the filler filling rate effective for increasing the thermal conductivity of the insulating tape 1 is relatively lowered, and an insulating layer having a high thermal conductivity cannot be formed. is there.
  • the thickness of the mica layer 3 may be appropriately set according to the size of the insulating tape 1 and the like, but is preferably 40 ⁇ m or more and 180 ⁇ m or less, more preferably 60 ⁇ m or more and 140 ⁇ m or less.
  • Examples of the filler 4 include alumina, magnesium oxide, zinc oxide, magnesium carbonate, graphite, carbon tube, boron nitride, titanium boride, silicon carbide, silicon nitride, silica, and aluminum nitride. These may be used alone or in combination of two or more. Further, fillers having different particle diameters may be combined to increase the packing density. Among these, boron nitride is preferable in that the insulating layer can have high thermal conductivity with a particularly small basis weight, and electrical insulation can be maintained.
  • the primary particles of boron nitride have a layered structure similar to that of graphite, and the particle shape is scaly and has a high thermal conductivity in the major axis direction and a low thermal conductivity in the minor axis direction. It has a typical thermal conductivity. Therefore, when the primary particles of boron nitride are used as the filler 4, depending on the manufacturing conditions of the insulating tape 1, the thermal conductivity of the insulating layer may vary due to the anisotropic thermal conductivity of the boron nitride. is there.
  • secondary aggregated particles obtained by aggregating the primary particles of boron nitride are used as the filler 4. It is preferable.
  • the intensity ratio (I ⁇ 002> / I ⁇ 100>) of the X-ray diffraction peak of the ⁇ 002> plane to the ⁇ 100> plane of the secondary aggregated particles is It is preferable that it is 15 or less.
  • a method for producing secondary agglomerated particles of boron nitride a method known in the art can be used. For example, it can be produced by agglomerating primary particles of boron nitride with an inorganic binder.
  • the inorganic binder include boric acid, alkali metal or alkaline earth metal borate (calcium borate, magnesium borate, sodium borate, potassium borate), sodium silicate, aluminum phosphate, and the like. .
  • the maximum particle size of the filler 4 is 100 ⁇ m or less, preferably 80 ⁇ m or less. When the maximum particle size of the filler 4 exceeds 100 ⁇ m, it is necessary to relatively reduce the basis weight of the mica 2 that bears the insulating property so that the thickness of the insulating tape 1 does not increase.
  • the maximum particle size of the filler 4 is the cross-sectional size of all the fillers 4 included in an image (photographing area 200 ⁇ m ⁇ 200 ⁇ m or more) obtained by photographing the tape cross section using SEM or the like (magnification 300 times). This is performed until the number of fillers 4 reaches 1000, which means the maximum value of 1000 fillers 4 measured.
  • the maximum value is set to 100 ⁇ m, it is included in this range as long as the effect described in the embodiment is obtained as long as it is within the error range.
  • the weight per unit area of the filler 4 is 10 g or more and 50 g or less, and 10 g or more and 30 g or less per 1 m 2 of the insulating tape, in consideration of the thickness of the insulating tape 1 and the insulating properties based on the basis weight of the mica 2. Is preferred. If the basis weight of the filler 4 is less than 10 g, the desired thermal conductivity cannot be obtained. On the other hand, when the basis weight of the filler 4 exceeds 50 g, it is necessary to relatively reduce the basis weight of the mica 2 that bears the insulating property so that the thickness of the insulating tape 1 does not increase, so that the electrical insulation characteristics are deteriorated. .
  • the fiber reinforcing material 5 examples include glass cloth, alumina cloth, silica cloth, and the like. If there is an opening in the fiber reinforcing material 5, it is possible to suppress an increase in the thickness of the insulating tape 1 due to the addition of the filler 4 by filling the filler 4 therein, and to increase the thermal conductivity of the insulating layer. Can contribute.
  • the thickness of the fiber reinforcement 5 is preferably 100 ⁇ m or less from the viewpoint of electrical insulation characteristics.
  • the basis weight of the fiber reinforcing material 5 is preferably 10 g or more and 50 g or less, more preferably 10 g or more and 30 g or less per 1 m 2 of insulating tape 1.
  • one or more of the hydroxyl groups of the glucose unit are made of —CH 2 CH 2 OH, —CH 2 CH 2 OCH. 2 CH 2 OH, —CH 2 CH (OH) CH 3 , —CH 3 , —CH 2 CH 3 , —NO 2 , — (CH 2 CH 2 O) p H (wherein p is greater than 0 and less than or equal to 50 Any number of repetitions), —CH 2 COOH, —CH 2 CH 2 COOH, —CH 2 COOM (wherein M is Li, Na or K) and — (CH 2 CH 2 O) q CH 2 CH (OH) CH 2 N + (CH 3 ) 2 (n—C 12 H 25 ) X ⁇ (wherein q is an arbitrary number of repetitions of 0 to 50, and X ⁇ is Cl ⁇ , Br ⁇ , F - or I - a is)
  • the cellulose derivative which is.
  • Specific examples of the cellulose derivative substituted with such a functional group include hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, ethyl cellulose, nitrocellulose, carboxymethyl cellulose, carboxyethyl cellulose, and cationized cellulose.
  • one or more of the hydroxyl groups of the glucose unit is replaced with —CH 2 CH 2 OH and — (CH 2 CH 2 ) in terms of electrical insulation characteristics and workability in the process of forming the cellulose derivative layer 7 during the production of the insulating tape.
  • glucose derivatives substituted with a functional group selected from the group consisting of ultra-50 is any number of repetitions of the following
  • 2 or 1 or more hydroxyl groups in a glucose unit The following was substituted with a functional group selected from the group consisting of —CH 2 CH 2 OH and — (CH 2 CH 2 O) p H (wherein p is an arbitrary number of repetitions of 2 to 50). It is most preferable to include a glucose derivative (that is, the degree of substitution with these functional groups is 1 or more and 2 or less).
  • n in the following chemical formula is preferably a value such that the molecular weight of the cellulose derivative is 10,000 or more, and a value that is 100,000 or more and 3000000 or less from the viewpoint of stably exhibiting the filler outflow prevention effect. More preferably.
  • the cellulose derivative layer 7 may contain a water-soluble polymer other than the cellulose derivative as long as the effects of the present invention are not impaired.
  • the cellulose derivative layer 7 is formed so as to cover the filler 4 included in the reinforcing layer 6 as shown in FIG. 2, there are few outflow paths of the filler 4 included in the reinforcing layer 6 (the arrows in the figure are (Representing the outflow path of the filler 4), the insulating varnish is pushed out and moved out of the system when the stator coil is manufactured (especially when hot-press molding), but the filler 4 is blocked by the cellulose derivative layer 7. As a result, the filler 4 remains in the system, and an insulating layer having a desired thermal conductivity is obtained. Therefore, it is important that the cellulose derivative forming the cellulose derivative layer 7 is difficult to dissolve in the insulating varnish or not dissolved in the insulating varnish.
  • the reinforcing layer 6 and the cellulose derivative layer 7 may be mixed on the mica layer 3.
  • an epoxy resin, a silicone resin, a phenol resin, a vinyl ester resin, or the like is used as the insulating varnish, and the above-described cellulose derivatives have high solubility resistance to these resins.
  • the above-mentioned cellulose derivative can not only suppress the outflow of filler during press molding, but also makes it difficult to cause separation between the insulating varnish and the surface of the filler 4 in the stator coil after heat and pressure molding, thereby insulating the cellulose derivative.
  • the adhesive strength between the tapes 1 can be improved.
  • the cellulose derivative layer 7 is not formed, there are many outflow paths of the filler 4 contained in the reinforcing layer 6 as shown in FIG. 3 (the arrow in the figure represents the outflow path of the filler 4).
  • the stator coil is manufactured (particularly, when heat and pressure molding is performed), the filler 4 flows out together with the insulating varnish, and an insulating layer having a desired thermal conductivity cannot be formed.
  • the basis weight of the cellulose derivative layer 7 is preferably 0.001 g or more and 5 g or less, more preferably 0.005 g or more and 1 g or less, per 1 m 2 of insulating tape.
  • the basis weight of the cellulose derivative layer 7 is less than 0.001 g, the filler outflow prevention effect may not be exhibited.
  • the basis weight of the cellulose derivative layer 7 exceeds 5 g, the effect of preventing the filler from flowing out increases, but the compatibility with the insulating varnish decreases and the insulating varnish becomes difficult to impregnate. As a result, voids are formed in the insulating layer. There is a concern to generate.
  • a mica layer 3 is formed by making a dispersion containing mica 2. It does not specifically limit as a preparation method of the dispersion liquid containing the mica 2, A well-known method in the said technical field can be used.
  • a dispersion can be prepared by dispersing mica 2 in water.
  • the content of mica 2 in the dispersion is not particularly limited, and may be appropriately adjusted depending on the type of mica 2 and the like.
  • the method for making the dispersion is not particularly limited, and methods known in the art can be used.
  • a mica sheet to be the mica layer 3 can be obtained by making a dispersion using a commercially available paper machine.
  • the mica sheet may be bonded to various films as other support materials.
  • the resin composition may be applied to the mica sheet using a known method such as a roll coater method or a spray method, and then bonded to the support material.
  • the resin composition used for adhesion between the mica sheet and the support material generally contains a thermosetting resin, a curing agent, and a solvent.
  • a thermosetting resin a well-known thing can be used in the said technical field.
  • Specific examples of the thermosetting resin include an epoxy resin, an unsaturated polyester resin, a phenol resin, a melamine resin, a silicone resin, and a polyimide resin.
  • epoxy resins are preferable because they are excellent in characteristics such as heat resistance and adhesiveness.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, orthocresol novolak type epoxy resin, phenol novolac type epoxy resin, alicyclic aliphatic epoxy resin, glycidyl-aminophenol type epoxy resin, and the like. . These resins may be used alone or in combination of two or more.
  • curing agent includes organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
  • organometallic complex include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organic copper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate.
  • Organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate.
  • organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate.
  • cobalt (II) acetylacetonate cobalt (III) acetylacetonate, zinc (II) acetylacetonate, zinc naphthenate, iron (III) acetylacetonate are Cobalt (II) acetylacetonate and zinc naphthenate are more preferable. These may be used alone or in combination of two or more.
  • the amount of the curing agent needs to be appropriately set according to the type of the thermosetting resin and the curing agent to be used, but is generally 0.1 parts by mass with respect to 100 parts by mass of the thermosetting resin. The amount is 200 parts by mass or less.
  • the solvent includes organic solvents such as toluene and methyl ethyl ketone. These may be used alone or in combination of two or more. What is necessary is just to adjust suitably the compounding quantity of a solvent according to the viscosity which the resin composition makes desired, and it does not specifically limit.
  • the slurry containing the filler 4 is applied to the fiber reinforcing material 5 to form the reinforcing layer 6.
  • the method for attaching the fiber reinforcing material 5 to the mica sheet is not particularly limited, and methods known in the technical field can be used.
  • the mica sheet and the fiber reinforcing material 5 may be bonded together using a resin composition.
  • the resin composition is applied to the fiber reinforcing material 5 using a known method such as a roll coater method or a spray method, and the solvent in the resin composition is volatilized, and then a mica sheet is stacked thereon. .
  • what is necessary is just to press-fit and press-bond this laminated body with a hot roll etc. under the heating of 60 degreeC or more and 70 degrees C or less.
  • the slurry containing the filler 4 is not particularly limited, and for example, a resin composition containing the filler 4 can be used.
  • a resin composition containing the filler 4 can be used as the resin composition used for this slurry.
  • the same resin composition as that used for bonding the mica sheet and the support material can be used.
  • the blending amount of the filler 4 needs to be appropriately set according to the type of the thermosetting resin and the curing agent to be used, but generally 20 parts by mass or more and 200 parts by mass with respect to 100 parts by mass of the thermosetting resin. It is below mass parts.
  • the method for applying the slurry containing the filler 4 is not particularly limited, and methods known in the technical field can be used. Examples of the application method include a spray method, a roll coater method, and a gravure transfer method.
  • a cellulose derivative layer 7 is formed by applying a slurry containing a cellulose derivative to the reinforcing layer 6. It does not specifically limit as a slurry containing a cellulose derivative, For example, what melt
  • the cellulose derivative layer 7 can be formed by heating to a predetermined temperature to volatilize the solvent.
  • the filler 4 contained in the reinforcing layer 6 is covered with the cellulose derivative layer 7, the filler 4 previously supported on the reinforcing layer 6 is used to manufacture the stator coil.
  • an insulating layer having a high thermal conductivity can be formed, and the adhesive strength between the insulating tapes 1 can be improved.
  • Embodiment 2 In the stator coil according to the second embodiment of the present invention, the coil conductor and the insulating tape 1 according to the first embodiment wound around the outer periphery of the coil conductor are impregnated with the liquid thermosetting resin composition and heated and pressed. And an insulating layer that is cured and integrated with the coil conductor.
  • the stator coil of the present embodiment is characterized by the insulating tape to be used, and a conventionally known configuration (for example, the configuration shown in FIG. 4) can be adopted as the other configuration. As shown in FIG.
  • a stator coil 10 having a coil conductor 8 and an insulating layer 9 is vertically moved in a plurality of slots 12 formed on the inner peripheral side of the stator core 11.
  • a spacer 13 is inserted between the stator coils 10, and a wedge 14 for fixing the stator coil 10 is inserted into the opening end of the slot 12.
  • the stator coil 10 having such a structure is manufactured as follows. First, a plurality of insulating tapes 1 (for example, a half of the width of the insulating tape 1) overlap each other on the outer periphery of the coil conductor 8 formed by bundling a plurality of insulated wire conductors. Wind around.
  • the wire constituting the coil conductor 8 is not particularly limited as long as it is conductive, and a wire made of copper, aluminum, silver or the like can be used.
  • the insulating tape 1 wound around the coil conductor 8 is impregnated with the liquid thermosetting resin composition.
  • the liquid thermosetting resin composition used for impregnation is not particularly limited, but generally includes a thermosetting resin and a curing agent.
  • the thermosetting resin the same ones as exemplified in the first embodiment can be used, but it is preferable to use those which are difficult to dissolve the above cellulose derivative or those which do not dissolve the above cellulose derivative. .
  • curing agents include: cycloaliphatic acid anhydrides such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hymic anhydride; aliphatic acid anhydrides such as dodecenyl succinic anhydride; phthalic anhydride, trihydric anhydride Aromatic acid anhydrides such as merit acid; organic dihydrazides such as dicyandiamide and adipic acid dihydrazide; tris (dimethylaminomethyl) phenol; dimethylbenzylamine; 1,8-diazabicyclo (5,4,0) undecene and derivatives thereof; And imidazoles such as -methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, and the like.
  • cycloaliphatic acid anhydrides such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hymic an
  • curing agents may be used alone or in combination of two or more.
  • the amount of the curing agent needs to be appropriately set according to the type of the thermosetting resin and the curing agent to be used, but is generally 0.1 parts by mass with respect to 100 parts by mass of the thermosetting resin. The amount is 200 parts by mass or less.
  • the method for impregnating the liquid thermosetting resin composition is not particularly limited, and methods known in the technical field can be used.
  • Examples of the impregnation method include vacuum impregnation, vacuum pressure impregnation, and normal pressure impregnation.
  • the conditions for the impregnation are not particularly limited, and may be appropriately adjusted according to the type of the liquid thermosetting resin composition to be used.
  • the coil conductor 8 is clamped from the outside of the insulating tape 1 to apply pressure to the insulating tape 1.
  • the liquid thermosetting resin composition impregnated in the insulating tape 1 is cured by heating the insulating tape 1 or the like. Thereby, the stator coil 10 is obtained.
  • the filler 4 previously supported is unlikely to flow out to the outside when the stator coil 10 is manufactured (especially when heat-pressing). Therefore, the thermal conductivity of the insulating layer can be improved and the adhesive strength between the insulating tapes 1 is high, so that the strength reliability can be improved.
  • FIG. 5 shows a cross-sectional perspective view of the structure of a generator as an example of a rotating electrical machine.
  • the generator is mainly composed of a stator 15 and a rotor 17.
  • the stator 15 includes a stator core 11 and a stator coil 10 accommodated in a slot of the stator core 11.
  • the rotor 17 includes a rotor iron core and a rotor coil 16 inserted into the rotor iron core.
  • the stator coil 11 described in the second embodiment is used.
  • the filler 4 previously carried on the insulating tape 1 is difficult to flow out to the outside when the stator coil 10 is manufactured (particularly, when heating and pressing), so the heat of the insulating layer
  • the adhesive strength between the insulating tapes 1 is high, so that the strength reliability can be improved. Therefore, according to the present embodiment, the temperature of the stator coil insulator during operation can be reduced as compared with the conventional generator, and the life of the stator coil insulator can be extended.
  • a highly reliable generator can be provided.
  • the present embodiment is useful for an indirect hydrogen cooling type rotating electrical machine that requires a particularly high thermal conductivity.
  • Example 1 The assembled mica powder was dispersed in water to prepare a dispersion of the assembled mica powder, and the dispersion was made with a paper machine to obtain a mica sheet. Next, a resin composition in which 100 parts by mass of bisphenol A type epoxy resin (trade name: JER (registered trademark) 828, manufactured by Mitsubishi Chemical Corporation) and 10 parts by mass of zinc naphthenate are dissolved in 400 parts by mass of methyl ethyl ketone is rolled. It was applied to a mica sheet by a coater method, and a glass cloth as a fiber reinforcing material was bonded thereon.
  • JER registered trademark 828
  • boron nitride powder slurry 150 parts by mass of a bisphenol A type epoxy resin (trade name: JER (registered trademark) 828, manufactured by Mitsubishi Chemical Corporation), 15 parts by mass of zinc naphthenate, boron nitride powder having a maximum particle size of 5 ⁇ m, and methyl ethyl ketone 1000 Part by mass was mixed to prepare a boron nitride powder slurry. This slurry was applied to the glass cloth surface of the bonded body of the mica sheet and the glass cloth by a roll coater method and dried to form a reinforcing layer containing boron nitride powder (the basis weight of boron nitride powder was 20 g / m 2 ).
  • a slurry in which hydroxyethyl cellolose A (molecular weight: about 300,000, degree of substitution with —CH 2 CH 2 OH: 1) was dissolved in water was applied to the surface of the reinforcing layer by a spray method and dried at 80 ° C.
  • a cellulose derivative layer was formed to obtain an insulating tape having a three-layer structure.
  • 100 g of mica sheets are contained per 1 m 2 of the obtained insulating tape (weight per unit area 100 g / m 2 )
  • boron nitride powder is contained 20 g (per unit weight 20 g / m 2 )
  • glass cloth is 20 g.
  • This insulating tape was cut into a width of 30 mm. Next, this insulating tape was wound 20 times on a coil conductor of 50 ⁇ 20 ⁇ 7000 mm by half-lap winding with the mica layer side facing the coil conductor. As the coil conductor, a plurality of flat insulated wires bundled and subjected to label dislocation were used.
  • thermosetting resin composition comprising 90 parts by mass of an acid curing agent (trade name: HN-2200, manufactured by Hitachi Chemical Co., Ltd.) was impregnated. Press molding with a jig so that the thickness of the insulating tape impregnated with this liquid thermosetting resin composition is 4 mm, and heating in a drying furnace to cure the liquid thermosetting resin composition A stator coil was obtained.
  • stator coils were produced in the same manner as in Example 1 using the materials shown in Tables 1 to 3, and evaluated.
  • the molecular weight of carboxymethyl cellulose is about 150,000
  • the degree of substitution with —CH 2 COOH is 2
  • the molecular weight of methylcellulose is about 250,000
  • the degree of substitution with —CH 3 is 1.
  • Example 12 In place of hydroxyethyl cellolose A (molecular weight: about 300,000, degree of substitution with —CH 2 CH 2 OH: 1), substitution with hydroxyethyl cellulose B (molecular weight: about 230000, — (CH 2 CH 2 O) 2 H A stator coil was produced and evaluated in the same manner as in Example 1 except that the degree: 1) was used.
  • Example 13 Instead of hydroxyethyl cellolose A (molecular weight: about 300,000, degree of substitution with —CH 2 CH 2 OH: 1), substitution with hydroxyethyl cellulose C (molecular weight: about 300,000, — (CH 2 CH 2 O) 6 H A stator coil was produced and evaluated in the same manner as in Example 1 except that the degree: 1) was used.
  • Example 1 A stator coil was produced and evaluated in the same manner as in Example 1 except that the basis weight of the mica sheet was 90 g / m 2 .
  • the measurement of thermal conductivity and a dielectric breakdown electric field was performed as follows.
  • the thermal conductivity was measured using a steady method defined in JIS-A1412.
  • the measurement of the dielectric breakdown electric field was carried out at an alternating current of 50 Hz by a short-time pressurization method (boost rate 2 kV / sec).
  • the results are shown in Tables 1 to 3.
  • the physical properties of the insulators shown in Tables 1 to 3 are relative values when the thermal conductivity and dielectric breakdown value of the stator coil obtained in Example 1 are 10.
  • Examples 5, 6, 7, 8, and 9 and Comparative Examples 3, 4, and 5 are results of examining the maximum particle size and basis weight of boron nitride.
  • the maximum particle size and basis weight of boron nitride were appropriate, both the thermal conductivity and the dielectric breakdown value were 10 or more.
  • Comparative Example 3 since boron nitride having a maximum particle size of 110 ⁇ m was used, the insulating tape was thickened, and the proportion of the thickness of the mica layer in the insulating layer was reduced, so that the dielectric breakdown value was reduced.
  • Comparative Example 5 the thermal conductivity was less than 10 because the basis weight of boron nitride was small.
  • Examples 10 and 11 and Comparative Examples 6 and 7 are the results of examining the types and basis weights of cellulose derivatives. In Examples 10 and 11, since boron nitride is retained by the cellulose derivative, the thermal conductivity was 10 or more. On the other hand, in Comparative Example 6, boron nitride flowed out of the system, and the thermal conductivity was low. In Comparative Example 7, the thermal conductivity of the cellulose derivative was decreased. This is probably because the impregnation of the liquid thermosetting resin composition was inhibited by the cellulose derivative and voids were generated in the sample.
  • Examples 12 and 13 hydroxyethyl cellulose having a different number of repeating p of — (CH 2 CH 2 O) p H was examined.
  • the thermal conductivity was equivalent to that in Examples 1 to 4, and the relative value of the dielectric breakdown electric field showed particularly excellent characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Insulating Bodies (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

 本発明の絶縁テープは、マイカを含むマイカ層と、該マイカ層上に積層され、フィラー及び繊維補強材を含む補強層と、該補強層上に積層されたセルロース誘導体層とを有し、該セルロース誘導体層が、グルコース単位の水酸基の1個以上を、-CH2CH2OH、-(CH2CH2O)pH(式中、pは0超50以下の任意の繰り返し数である)等の官能基で置換したセルロース誘導体を含み、該マイカの目付量が100g/m2以上200g/m2以下の範囲であり、該フィラーの最大粒径が100μm以下であり且つその目付量が10g/m2以上50g/m2以下の範囲であることを特徴とする。本発明によれば、絶縁テープに予め担持させたフィラーが固定子コイルを製造する際に外部に流出することなく、熱伝導率の高い固定子コイル絶縁層を形成することができ、且つ絶縁テープ間の接着強度を向上させることができる絶縁テープを提供することができる。

Description

絶縁テープ及びその製造方法、固定子コイル及びその製造方法、並びに回転電機
 本発明は、回転電機の固定子に用いられる絶縁テープ及びその製造方法、固定子コイル及びその製造方法、並びに回転電機に関するものである。
 回転電機の固定子は、固定子鉄心の内周側に形成された複数のスロット内に収納された固定子コイルを有する。固定子コイルは、コイル導体及びそれを被覆する固定子コイル絶縁物から構成される。固定子コイルは、マイカシートにガラスクロスなどの繊維補強材を貼り合わせた絶縁テープをコイル導体に数回巻きつけ、低粘度の液状熱硬化性樹脂組成物(絶縁ワニス)を減圧下で含浸させた後、所定の断面形状となるようにプレス成形しながら加熱することにより製造される。また、固定子コイルは、スロット内で上下2段に収納されており、これらの固定子コイル間にスペーサーを挿入すると共に、スロットの開口端部に固定子コイルを固定するためのウェッジを挿入することにより、回転電機の運転時に固定子コイルから発生する電磁振動を抑制している。
 通常、このような回転電機の固定子において、コイル導体は、回転電機の運転時の負荷電流によって発熱するので、その熱を、固定子コイル絶縁物及び固定子鉄心を経由して、周辺気体へ放熱している。この伝熱経路において、固定子コイル絶縁物の熱伝導率はコイル導体及び固定子鉄心に比べて非常に小さいため、固定子コイル絶縁物の熱伝導率を増加させることは冷却性能の向上に大きな効果がある。そのため、回転電機の高出力化及び小型化のためには、固定子コイル絶縁物の熱伝導率を高めることが重要である。特に、水直接冷却方式の回転電機に比べて、効率及び運転・保守の面で優れると期待される水素間接冷却方式の回転電機では、固定子コイル絶縁物の熱伝導率を高めることが強く要求されている。
 そこで、特定の配向率を有する鱗片状の六方晶窒化ホウ素フィラーを含むフィラー層とマイカ層と有する回転電機固定子用絶縁テープが提案されている(特許文献1を参照)。
特開2012-175799号公報
 一般に、絶縁テープにフィラーを担持させるためには、接着剤が用いられている。一方で、固定子コイルの製造において、絶縁テープは、コイル導体に巻き付けられた後、絶縁ワニスを含浸させて加熱硬化することによってコイル導体と一体化されるため、フィラーを担持させるための接着剤と、含浸に用いられる絶縁ワニスとは、相溶性が良好であり、且つ加熱硬化時に接着剤と絶縁ワニスとが一体化することが求められる。
 しかしながら、従来の絶縁テープを用いて固定子コイルを製造する場合、プレス成形しながら加熱する際にフィラーが絶縁テープの隙間からコイル導体の長手方向の端に向かって絶縁ワニスと共に外部に流出してしまうため、得られる固定子コイル絶縁物は所望の熱伝導性を発現できないという問題があった。また、従来の絶縁テープを用いて固定子コイルを製造した場合、絶縁テープ間の接着強度が不十分となるという問題があった。
 本発明は、上記の課題を解決するためになされたもので、絶縁テープに予め担持させたフィラーが固定子コイルを製造する際に外部に流出することなく、熱伝導率の高い固定子コイル絶縁層を形成することができ、且つ絶縁テープ間の接着強度を向上させることができる絶縁テープ及びその製造方法を提供することを目的とする。
 また、本発明は、熱伝導率が高く且つ強度信頼性の高い固定子コイル及びその製造方法を提供することを目的とする。
 本発明は、マイカを含むマイカ層と、該マイカ層上に積層され、フィラー及び繊維補強材を含む補強層と、該補強層上に積層されたセルロース誘導体層とを有し、該セルロース誘導体層が、グルコース単位の水酸基の1個以上を、-CH2CH2OH、-CH2CH2OCH2CH2OH、-CH2CH(OH)CH3、-CH3、-CH2CH3、-NO2、-(CH2CH2O)pH(式中、pは0超50以下の任意の繰り返し数である)、-CH2COOH、-CH2CH2COOH、-CH2COOM(式中、MはLi、Na又はKである)及び-(CH2CH2O)qCH2CH(OH)CH2+(CH32(n-C1225)X-(式中、qは0以上50以下の任意の繰り返し数であり、X-はCl-、Br-、F-又はI-である)からなる群から選択される官能基で置換されたセルロース誘導体を含み、該マイカの目付量が100g/m2以上200g/m2以下の範囲であり、該フィラーの最大粒径が100μm以下であり且つその目付量が10g/m2以上50g/m2以下の範囲であることを特徴とする絶縁テープである。
 また、本発明は、マイカを含む分散液を抄造してマイカ層を形成する工程と、該マイカ層に繊維補強材を貼り合わせた後、最大粒径が100μm以下であるフィラーを含むスラリーを該繊維補強材に塗布して補強層を形成する工程と、グルコース単位の水酸基の1個以上が、-CH2CH2OH、-CH2CH2OCH2CH2OH、-CH2CH(OH)CH3、-CH3、-CH2CH3、-NO2、-(CH2CH2O)pH(式中、pは0超50以下の任意の繰り返し数である)、-CH2COOH、-CH2CH2COOH、-CH2COOM(式中、MはLi、Na又はKである)及び-(CH2CH2O)qCH2CH(OH)CH2+(CH32(n-C1225)X-(式中、qは0以上50以下の任意の繰り返し数であり、X-はCl-、Br-、F-又はI-である)からなる群から選択される官能基で置換されたセルロース誘導体を含むスラリーを該補強層に塗布してセルロース誘導体層を形成する工程とを含み、該マイカの目付量を100g/m2以上200g/m2以下の範囲とし、該フィラーの目付量を10g/m2以上50g/m2以下の範囲とすることを特徴とする絶縁テープの製造方法である。
 また、本発明は、コイル導体と、該コイル導体に上記した絶縁テープを巻き付け、該絶縁テープに液状熱硬化性樹脂組成物を含浸して加熱加圧成形させた絶縁層とを有することを特徴とする固定子コイルである。
 また、本発明は、コイル導体に上記した絶縁テープを巻き付ける工程と、該絶縁テープに液状熱硬化性樹脂組成物を含浸して加熱加圧成形する工程とを含むことを特徴とする固定子コイルの製造方法である。
 本発明によれば、絶縁テープに予め担持させたフィラーが固定子コイルを製造する際に外部に流出することなく、熱伝導率の高い固定子コイル絶縁層を形成することができ、且つ絶縁テープ間の接着強度を向上させることができる絶縁テープ及びその製造方法を提供することができる。
本発明の実施の形態1による絶縁テープの模式断面図である。 本発明の実施の形態1による絶縁テープに液状熱硬化性樹脂組成物を含浸して加熱加圧成形する際の状態を説明するための図である。 セルロース誘導体層が形成されていない絶縁テープに液状熱硬化性樹脂組成物を含浸して加熱加圧成形する際の状態を説明するための図である。 回転電機の固定子の部分拡大斜視図である。 回転電機の一例としての発電機の断面斜視図である。
 実施の形態1.
 図1は、実施の形態1による絶縁テープの模式断面図である。
 図1において、絶縁テープ1は、マイカ2を含むマイカ層3と、マイカ層3上に積層され、フィラー4及び繊維補強材5を含む補強層6と、補強層6上に積層されたセルロース誘導体層7とを有するものである。
 マイカ層3は、マイカ2を含む。マイカ2としては、層状ケイ酸塩鉱物の一種として知られる硬質マイカ(マスコバイト)、軟質マイカ(フロゴパイト)等を用いることができる。マイカ2の形状としては、ブロックマイカ、剥がしマイカ、集成マイカ等が挙げられる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの中でも、厚さが均一であり、且つ低コストであるという点で、集成マイカを用いることが好ましい。
 マイカ層3は、マイカ2の他に、エポキシ樹脂、シリコーン樹脂、フェノール樹脂等の樹脂を含むことができる。これら樹脂は、マイカ2同士を接着し、マイカ層3の強度を向上させることができる。また、これらの樹脂は、固定子コイルを製造する際には、絶縁ワニスと化学的に結合して一体化することが好ましい。従って、絶縁ワニスとの反応性に応じて、その種類を適宜選定することが望ましい。
 固定子コイルの電気絶縁性の観点から、マイカ2の目付量は、1m2の絶縁テープ1当たり、100g以上200g以下であり、140g以上180g以下であることが好ましい。マイカ2の目付量が100g/m2未満であると、所望の電気絶縁性が得られず、課電劣化時の絶縁破壊時間が短くなる。一方、マイカ2の目付量が200g/m2を超えると、電気絶縁性は良好であるものの、絶縁テープ1が厚くなって巻き付け難くなる。また、絶縁層の厚みを一定とした場合には、絶縁テープ1の高熱伝導化に有効なフィラーの充填率が相対的に低下し、熱伝導率の高い絶縁層を形成することができない場合がある。
 マイカ層3の厚みは、絶縁テープ1の大きさ等に応じて適宜設定すればよいが、好ましくは40μm以上180μm以下であり、より好ましくは60μm以上140μm以下である。
 フィラー4としては、アルミナ、酸化マグネシウム、酸化亜鉛、炭酸マグネシウム、グラファイト、カーボンチューブ、窒化ホウ素、ホウ化チタン、炭化珪素、窒化珪素、シリカ、窒化アルミニウム等が挙げられる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、粒径の異なるフィラーを組み合わせて、充填密度を高めてもよい。これらの中でも、特に少ない目付量で絶縁層の高熱伝導化が可能であり、且つ電気絶縁性を維持できるという点で、窒化ホウ素が好ましい。窒化ホウ素の一次粒子は、黒鉛と同様の層状構造を有しており、その粒子形状は鱗片状であって、長径方向の熱伝導率が高く、短径方向の熱伝導率が低いという異方的な熱伝導性を有する。そのため、窒化ホウ素の一次粒子をフィラー4として用いた場合、絶縁テープ1の製造条件によっては、窒化ホウ素の異方的な熱伝導性のために、絶縁層の熱伝導性にばらつきがでる場合がある。そこで、窒化ホウ素の一次粒子の異方的な熱伝導性に起因した絶縁層の熱伝導性のばらつきを防止する観点から、窒化ホウ素の一次粒子を凝集させた二次凝集粒子をフィラー4として用いることが好ましい。特に、異方的な熱伝導性をより抑制する観点から、二次凝集粒子の<100>面に対する<002>面のX線回折ピークの強度比(I<002>/I<100>)が15以下であることが好ましい。このような窒化ホウ素の二次凝集粒子を用いれば、絶縁テープ1の製造条件に依らず、安定した熱伝導性を発揮することができる。
 窒化ホウ素の二次凝集粒子の製造方法は、当該技術分野において公知の方法を用いることができる。例えば、窒化ホウ素の一次粒子を無機バインダによって凝集させることによって製造することができる。無機バインダとしては、例えば、ホウ酸、アルカリ金属あるいはアルカリ土類金属のホウ酸塩(ホウ酸カルシウム、ホウ酸マグネシウム、ホウ酸ナトリウム、ホウ酸カリウム)、ケイ酸ソーダ、リン酸アルミ等が挙げられる。
 フィラー4の最大粒径は、100μm以下であり、80μm以下であることが好ましい。フィラー4の最大粒径が100μmを超えると、絶縁テープ1の厚みが厚くならないように、絶縁性を担うマイカ2の目付量を相対的に少なくする必要があるため、電気絶縁特性が低下する。ここで、本発明において、フィラー4の最大粒径とは、テープ断面をSEM等(倍率300倍)を用いて撮影した画像(撮影領域200μm×200μm以上)に含まれる全てのフィラー4の断面サイズを計測し、これをフィラー4の個数が1000個に達するまで行い、計測された1000個のフィラー4の最大値を意味する。ただし、最大値を100μmとしているが、誤差の範囲であれば、実施の形態に記載する効果を奏する限り、この範囲に含まれる。
 フィラー4の目付量は、絶縁テープ1の厚みとマイカ2の目付量に基づく絶縁性特性との兼ね合いから、1m2の絶縁テープ1当たり、10g以上50g以下であり、10g以上30g以下であることが好ましい。フィラー4の目付量が10g未満であると、所望の熱伝導率が得られない。一方、フィラー4の目付量が50gを超えると、絶縁テープ1の厚みが厚くならないように、絶縁性を担うマイカ2の目付量を相対的に少なくする必要があるため、電気絶縁特性が低下する。
 繊維補強材5としては、ガラスクロス、アルミナクロス、シリカクロス等が挙げられるが、絶縁テープ1の強度を上記クロスと同程度以上に担保できるものであればこれに限らない。繊維補強材5に目開きがあれば、その中にフィラー4を充填することで、フィラー4の添加による絶縁テープ1の厚みの増加を抑制することが可能であり、絶縁層の高熱伝導化に寄与することができる。また、繊維補強材5の厚みは、電気絶縁特性の観点から、100μm以下であることが好ましい。また、繊維補強材5の目付量は、1m2の絶縁テープ1当たり、10g以上50g以下であることが好ましく、10g以上30g以下であることがより好ましい。
 セルロース誘導体層7は、フィラー4の外部への流出防止と絶縁テープ1間の接着強度との観点から、グルコース単位の水酸基の1個以上が、-CH2CH2OH、-CH2CH2OCH2CH2OH、-CH2CH(OH)CH3、-CH3、-CH2CH3、-NO2、-(CH2CH2O)pH(式中、pは0超50以下の任意の繰り返し数である)、-CH2COOH、-CH2CH2COOH、-CH2COOM(式中、MはLi、Na又はKである)及び-(CH2CH2O)qCH2CH(OH)CH2+(CH32(n-C1225)X-(式中、qは0以上50以下の任意の繰り返し数であり、X-はCl-、Br-、F-又はI-である)からなる群から選択される官能基で置換されたセルロース誘導体、即ち、下記化学式で表されるグルコース単位のR1~R3の1個以上が、-CH2CH2OH、-CH2CH2OCH2CH2OH、-CH2CH(OH)CH3、-CH3、-CH2CH3、-NO2、-(CH2CH2O)pH(式中、pは0超50以下の任意の繰り返し数である)、-CH2COOH、-CH2CH2COOH、-CH2COOM(式中、MはLi、Na又はKである)及び-(CH2CH2O)qCH2CH(OH)CH2+(CH32(n-C1225)X-(式中、qは0以上50以下の任意の繰り返し数であり、X-はCl-、Br-、F-又はI-である)からなる群から選択される官能基であるセルロース誘導体から形成されている。このような官能基で置換されたセルロース誘導体の具体例としては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、エチルセルロース、ニトロセルロース、カルボキシメチルセルロース、カルボキシエチルセルロース、カチオン化セルロースなどが挙げられる。これらの中でも、電気絶縁特性と、絶縁テープ製造時のセルロース誘導体層7の形成工程における作業性という点で、グルコース単位の水酸基の1個以上を、-CH2CH2OH及び-(CH2CH2O)pH(式中、pは0超50以下の任意の繰り返し数である)からなる群から選択される官能基で置換したグルコース誘導体が好ましく、グルコース単位の水酸基の1個以上2個以下を、-CH2CH2OH及び-(CH2CH2O)pH(式中、pは2以上50以下の任意の繰り返し数である)からなる群から選択される官能基で置換した(即ち、これらの官能基による置換度が1以上2以下である)グルコース誘導体を含むことが最も好ましい。また、下記化学式中のnは、フィラー流出防止効果を安定して発揮させる観点から、セルロース誘導体の分子量が10000以上となるような値であることが好ましく、100000以上3000000以下となるような値であることがより好ましい。なお、セルロース誘導体層7には、本発明の効果を損なわない範囲で、上記したセルロース誘導体以外の水溶性高分子が含まれてもよい。
Figure JPOXMLDOC01-appb-C000001
 セルロース誘導体層7は、図2に示すように、補強層6に含まれるフィラー4を覆うように形成されているため、補強層6に含まれるフィラー4の流出経路が少なく(図中の矢印はフィラー4の流出経路を表す)、固定子コイルを製造する際(特に加熱加圧成形する際)に、絶縁ワニスは押し出されて系外へ移動するが、フィラー4はセルロース誘導体層7にブロックされて動けないためであり、これによりフィラー4が系内に留まり、所望の熱伝導性を有する絶縁層が得られる。従って、セルロース誘導体層7を形成するセルロース誘導体は、絶縁ワニスに溶解し難いか、又は絶縁ワニスに溶解されないことが重要である。このフィラー流出防止効果はセルロース誘導体層7が不連続な層であっても発現し、またフィラー4とセルロース誘導体層7とが、完全に分離した状態であっても、混ざり合った状態であっても、その効果を発揮することができる。例えば、マイカ層3上に補強層6とセルロース誘導体層7とが混在した状態であってもよい。一般に、絶縁ワニスは、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、ビニルエステル樹脂等が用いられるが、これらの樹脂に対する耐溶解性が高いものが、上記したセルロース誘導体である。また、上記したセルロース誘導体は、プレス成形時のフィラー流出を抑制することができるだけでなく、加熱加圧成形後の固定子コイルにおいて絶縁ワニスとフィラー4表面との間で剥離を発生させ難くし絶縁テープ1間の接着強度を向上させることができる。
 これに対して、セルロース誘導体層7が形成されていない場合、図3に示すように、補強層6に含まれるフィラー4の流出経路が多く(図中の矢印はフィラー4の流出経路を表す)、固定子コイルを製造する際(特に、加熱加圧成形する際)に、絶縁ワニスと共にフィラー4が流出してしまい、所望の熱伝導性を有する絶縁層を形成することができない。
 セルロース誘導体層7の目付量は、1m2の絶縁テープ1当たり、0.001g以上5g以下であることが好ましく、0.005g以上1g以下であることがより好ましい。セルロース誘導体層7の目付量が0.001g未満であると、フィラー流出防止効果を発揮できない場合がある。一方、セルロース誘導体層7の目付量が5gを超えると、フィラー流出防止効果は高まるが、絶縁ワニスとの相溶性が低下し、絶縁ワニスが含浸し難くなり、その結果、絶縁層内にボイドを発生させる懸念がある。
 次に、絶縁テープ1の製造方法について説明する。
 まず、マイカ2を含む分散液を抄造してマイカ層3を形成する。
 マイカ2を含む分散液の調製方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。例えば、マイカ2を水中に分散させることによって分散液を調製することができる。分散液におけるマイカ2の含有量は、特に限定されず、マイカ2の種類等に応じて適宜調整すればよい。
 分散液の抄造方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。例えば、市販の抄紙機を用いて分散液を抄造することにより、マイカ層3となるマイカシートを得ることができる。
 このとき、マイカシートは別の支持材である各種フィルムに貼り合わせてもよい。マイカシートを支持材に貼り合わせる場合、ロールコーター法、スプレー法等の公知の方法を用いてマイカシートに樹脂組成物を塗布した後、支持材と接着させればよい。
 マイカシートと支持材との接着に用いられる樹脂組成物としては、熱硬化性樹脂、硬化剤及び溶剤を一般に含む。
 熱硬化性樹脂としては、当該技術分野において公知のものを用いることができる。熱硬化性樹脂の具体例としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、ポリイミド樹脂等が挙げられる。これらの中でも、エポキシ樹脂は、耐熱性、接着性等の特性に優れているので好ましい。エポキシ樹脂の例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、脂環脂肪族エポキシ樹脂、グリシジル-アミノフェノール系エポキシ樹脂等が挙げられる。これらの樹脂は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 硬化剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。硬化剤の具体例としては、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体等が挙げられる。有機金属塩としては、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛などが挙げられる。これらの中でも、硬化性、溶剤溶解性の観点から、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート、亜鉛(II)アセチルアセトナート、ナフテン酸亜鉛、鉄(III)アセチルアセトナートが好ましく、コバルト(II)アセチルアセトナート、ナフテン酸亜鉛がより好ましい。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 硬化剤の配合量は、使用する熱硬化性樹脂や硬化剤の種類等に応じて適宜設定する必要があるが、100質量部の熱硬化性樹脂に対して、一般的に0.1質量部以上200質量部以下である。
 溶剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。溶剤の具体例としては、トルエン、メチルエチルケトン等の有機溶剤が挙げられる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 溶剤の配合量は、樹脂組成物の所望とする粘度に応じて適宜調整すればよく、特に限定されない。
 次に、マイカシートに繊維補強材5を貼り合わせた後、フィラー4を含むスラリーを繊維補強材5に塗布して補強層6を形成する。
 マイカシートに繊維補強材5を貼り合わせる方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。例えば、マイカシートと繊維補強材5とを樹脂組成物を用いて貼り合わせればよい。具体的には、ロールコーター法、スプレー法等の公知の方法を用いて樹脂組成物を繊維補強材5に塗布し、樹脂組成物中の溶剤を揮発させた後、その上にマイカシートを重ねる。その後、この積層物を60℃以上70℃以下の加熱下で熱ロール等により加圧して圧着させればよい。
 フィラー4を含むスラリーとしては、特に限定されず、例えば、樹脂組成物にフィラー4を配合したものを用いることができる。このスラリーに用いられる樹脂組成物としては、マイカシートと支持材との接着に用いられる樹脂組成物と同じものを用いることができる。フィラー4の配合量は、使用する熱硬化性樹脂や硬化剤の種類等に応じて適宜設定する必要があるが、100質量部の熱硬化性樹脂に対して、一般的に20質量部以上200質量部以下である。
 フィラー4を含むスラリーの塗布方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。塗布方法の例としては、スプレー法、ロールコーター法、グラビア転写法等が挙げられる。
 次に、セルロース誘導体を含むスラリーを補強層6に塗布してセルロース誘導体層7を形成する。
 セルロース誘導体を含むスラリーとしては、特に限定されず、例えば、上記したセルロース誘導体を溶剤で溶解させたものを用いることができる。
 溶剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。溶剤の具体例としては、水、エタノール、エチレングリコール等が挙げられる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 溶剤の配合量は、スラリーの塗布性に応じて適宜調整すればよく、特に限定されない。
 セルロース誘導体を含むスラリーの塗布方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。塗布方法の例としては、スプレー法、ロールコーター法等が挙げられる。
 セルロース誘導体を含むスラリーの塗布後、所定の温度に加熱して溶剤を揮発させることにより、セルロース誘導体層7を形成することができる。
 上記のようにして得られた絶縁テープ1は、補強層6に含まれるフィラー4がセルロース誘導体層7で被覆されているため、補強層6に予め担持させたフィラー4が、固定子コイルの製造の際(特に、加熱加圧成形する際)に外部に流出し難くなり、熱伝導率が高い絶縁層を形成することができる上に、絶縁テープ1間の接着強度を向上させることができる。
 実施の形態2.
 本発明の実施の形態2による固定子コイルは、コイル導体と、このコイル導体の外周部に巻き付けられた実施の形態1の絶縁テープ1に液状熱硬化性樹脂組成物を含浸して加熱加圧硬化させてコイル導体と一体化された絶縁層とを有する。本実施の形態の固定子コイルは、使用する絶縁テープに特徴があり、その他の構成は従来公知の構成(例えば、図4に示す構成)を採用することができる。図4に示すように、回転電機の固定子において、コイル導体8と絶縁層9とを有する固定子コイル10は、固定子鉄心11の内周側に形成された複数のスロット12内で上下2段に収納され、これらの固定子コイル10間にスペーサー13が挿入されると共に、スロット12の開口端部に固定子コイル10を固定するためのウェッジ14が挿入される。
 このような構造を有する固定子コイル10は、以下のようにして製造される。
 まず、絶縁被覆された複数の素線導体を束ねて構成されたコイル導体8の外周部に、絶縁テープ1を一部(例えば、絶縁テープ1の幅の半分の部分)が互いに重なるように複数回巻き付ける。ここで、コイル導体8を構成する素線としては、導電性であれば特に限定されず、銅、アルミニウム、銀等からなる素線を用いることができる。
 次に、コイル導体8に巻き付けた絶縁テープ1に液状熱硬化性樹脂組成物を含浸させる。ここで、含浸に用いられる液状熱硬化性樹脂組成物としては、特に限定されないが、一般に、熱硬化性樹脂及び硬化剤を含む。
 熱硬化性樹脂としては、実施の形態1において例示したものと同じものを用いることができるが、上記したセルロース誘導体を溶解し難いものか、又は上記したセルロース誘導体を溶解しないものを用いることが好ましい。
 硬化剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。硬化剤の例としては、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水ハイミック酸等の脂環式酸無水物;ドデセニル無水コハク酸等の脂肪族酸無水物;無水フタル酸、無水トリメリット酸等の芳香族酸無水物;ジシアンジアミド、アジピン酸ジヒドラジド等の有機ジヒドラジド;トリス(ジメチルアミノメチル)フェノール;ジメチルベンジルアミン;1,8-ジアザビシクロ(5,4,0)ウンデセン及びその誘導体;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール等のイミダゾール類等が挙げられる。これらの硬化剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 硬化剤の配合量は、使用する熱硬化性樹脂や硬化剤の種類等に応じて適宜設定する必要があるが、100質量部の熱硬化性樹脂に対して、一般的に0.1質量部以上200質量部以下である。
 液状熱硬化性樹脂組成物の含浸方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。含浸方法の例としては、真空含浸、真空加圧含浸、常圧含浸等が挙げられる。含浸の際の条件は、特に限定されることはなく、使用する液状熱硬化性樹脂組成物等の種類に応じて適宜調整すればよい。
 液状熱硬化性樹脂組成物を絶縁テープ1に含浸させた後、コイル導体8を絶縁テープ1の外側から型締めすることにより、絶縁テープ1に圧力を加える。
 次に、絶縁テープ1を加熱等することにより、絶縁テープ1に含浸されている液状熱硬化性樹脂組成物を硬化させる。これにより、固定子コイル10が得られる。
 上記のようにして製造される本実施の形態の固定子コイル10は、予め担持させたフィラー4が固定子コイル10の製造の際(特に、加熱加圧成形する際)に外部に流出し難いので、絶縁層の熱伝導率を向上させることができる上に、絶縁テープ1間の接着強度が高いので、強度信頼性を向上させることができる。
 実施の形態3.
 回転電機の一例としての発電機の構造の断面斜視図を図5に示す。図5に示すように、発電機は、主に、固定子15及び回転子17で構成されている。固定子15は、固定子鉄心11と、固定子鉄心11のスロット内に収納された固定子コイル10とから構成される。また、回転子17は、回転子鉄心と、回転子鉄心に挿入された回転子コイル16とから構成される。この発電機では、実施の形態2で説明した固定子コイル11が用いられている。
 本実施の形態の発電機では、絶縁テープ1に予め担持させたフィラー4が固定子コイル10の製造の際(特に、加熱加圧成形する際)に外部に流出し難いので、絶縁層の熱伝導率を向上させることができる上に、絶縁テープ1間の接着強度が高いので、強度信頼性を向上させることができる。そのため、本実施の形態によれば、従来の発電機よりも、運転時の固定子コイル絶縁物の温度を低減することが可能であり、固定子コイル絶縁物を長寿命化することができる。また、本実施の形態によれば、絶縁テープ1間の剥離を抑えることができるので、信頼性の高い発電機を提供することができる。本実施の形態は、特に高い熱伝導率が要求される水素間接冷却方式の回転電機に有用である。
 以下、実施例及び比較例により本発明の詳細を説明するが、これらによって本発明が限定されるものではない。
<実施例1>
 集成マイカ粉を水中分散させ、集成マイカ粉の分散液を調製した後、この分散液を抄紙機にて抄造してマイカシートを得た。
 次に、ビスフェノールA型エポキシ樹脂(商品名:JER(登録商標)828、三菱化学株式会社製)100質量部とナフテン酸亜鉛10質量部とをメチルエチルケトン400質量部に溶解した樹脂組成物を、ロールコーター法によりマイカシートに塗布し、その上に繊維補強材としてのガラスクロスを貼り合わせた。
 次に、ビスフェノールA型エポキシ樹脂(商品名:JER(登録商標)828、三菱化学株式会社製)150質量部と、ナフテン酸亜鉛15質量部と、最大粒径5μmの窒化ホウ素粉末と、メチルエチルケトン1000質量部とを混合し、窒化ホウ素粉末のスラリーを調製した。このスラリーを、ロールコーター法により上記マイカシートとガラスクロスとの貼り合わせ体におけるガラスクロス面に塗布し、乾燥させ、窒化ホウ素粉末を含有する補強層を形成した(窒化ホウ素粉末の目付量20g/m2)。
 続いて、ヒドロキシエチルセロルースA(分子量:約300000、-CH2CH2OHによる置換度:1)を水に溶解させたスラリーを、スプレー法により補強層の表面に塗布し、80℃で乾燥させ、セルロース誘導体層を形成し、3層構造の絶縁テープを得た。なお、得られた絶縁テープ1m2当たり、マイカシートは100g含有されており(目付量100g/m2)、窒化ホウ素粉末は20g含有されており(目付量20g/m2)、ガラスクロスは20g含有されており(目付量20g/m2)、ヒドロキシエチルセロルースAは1g含有されていた(目付量1g/m2)。この絶縁テープを幅30mmに切断した。
 次に、この絶縁テープを、マイカ層面をコイル導体側にして、半重ね巻きで、50×20×7000mmのコイル導体に20回巻き付けた。コイル導体には複数の平角絶縁素線を束ねてレーベル転位させたものを用いた。次に、この絶縁テープを巻き付けたコイル導体に、真空加圧含浸方式によりビスフェノールA型エポキシ樹脂(商品名:JER(登録商標)828、三菱化学株式会社製)100質量部と、メチルテトラヒドロ無水フタル酸硬化剤(商品名:HN-2200、日立化成工業株式会社製)90質量部とからなる液状熱硬化性樹脂組成物を含浸させた。この液状熱硬化性樹脂組成物を含浸させた絶縁テープの厚さが4mmになるように治具を用いてプレス成形し、乾燥炉で加熱して、液状熱硬化性樹脂組成物を硬化させることにより固定子コイルを得た。
<実施例2~11>
 実施例2~11については表1~3に示す材料を用いて実施例1と同様に固定子コイルを作製し、評価を行った。なお、表中のカルボキシメチルセロルースの分子量は約150000であり、-CH2COOHによる置換度は2であり、メチルセルロースの分子量は、約250000であり、-CH3による置換度は1である。
<実施例12>
 ヒドロキシエチルセロルースA(分子量:約300000、-CH2CH2OHによる置換度:1)の代わりに、ヒドロキシエチルセロルースB(分子量:約230000、-(CH2CH2O)2Hによる置換度:1)を用いたこと以外は実施例1と同様の手法にて固定子コイルを作製し、評価を行った。
<実施例13>
 ヒドロキシエチルセロルースA(分子量:約300000、-CH2CH2OHによる置換度:1)の代わりに、ヒドロキシエチルセロルースC(分子量:約300000、-(CH2CH2O)6Hによる置換度:1)を用いたこと以外は実施例1と同様の手法にて固定子コイルを作製し、評価を行った。
<比較例1>
 マイカシートの目付量を90g/m2としたこと以外は実施例1と同様の手法にて固定子コイルを作製し、評価を行った。
<比較例2~7>
 比較例2~7については表1~3に示す材料を用いて実施例1と同様に固定子コイルを作製し、評価を行った。
 上記の実施例及び比較例で得られた固定子コイルについて、熱伝導率及び絶縁破壊電界の測定を下記のようにして行った。
 熱伝導率の測定は、JIS-A1412に規定されている定常法を用いて測定した。また、絶縁破壊電界の測定は、交流50Hzにて、短時間昇圧法(昇圧速度2kV/秒)で行った。結果を表1~3に示す。なお、表1~3に示す絶縁物の物性は、実施例1で得られた固定子コイルの熱伝導率及び絶縁破壊値を10とした時の相対値である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1、2、3及び4では、マイカ目付けと窒化ホウ素目付けの比率が適当であるため、熱伝導率及び絶縁破壊値ともに10以上となった。一方、比較例1では、絶縁性を担保するマイカ目付量が不足し、絶縁破壊値が低下した。比較例2では、マイカ目付量が多いため絶縁破壊値は高くなるものの、熱伝導性を担う窒化ホウ素の目付量が相対的に少ないため、熱伝導率は低かった。
 実施例5、6、7、8及び9、比較例3、4及び5は、窒化ホウ素の最大粒径及び目付量を検討した結果である。実施例5から9のいずれも、窒化ホウ素の最大粒径と目付量が適当であるため、熱伝導率及び絶縁破壊値ともに10以上となった。一方、比較例3では、最大粒径110μmの窒化ホウ素を用いたため、絶縁テープが厚くなり、絶縁層に占めるマイカ層の厚さの割合が低下したため、絶縁破壊値が低下した。また、比較例4では、最大粒径50μmの窒化ホウ素の目付量を多くしたため、絶縁テープが厚くなり、絶縁層に占めるマイカ層の厚さの割合が低下したため、熱伝導率は12と高いが、絶縁破壊値は10未満であった。
 また、比較例5では、窒化ホウ素の目付量が少ないため熱伝導率が10未満であった。
 実施例10及び11、比較例6及び7は、セルロース誘導体の種類及び目付量を検討した結果である。実施例10及び11では、セルロース誘導体によって窒化ホウ素が保持されるため、熱伝導率は10以上となった。一方、比較例6では、窒化ホウ素が、系外へ流出し、熱伝導率は低くなった。また、比較例7では、セルロース誘導体が含まれるものの熱伝導率は低下した。これは、液状熱硬化性樹脂組成物の含浸がセルロース誘導体によって阻害され、試料内にボイドが生成したためと考えられる。
 実施例12及び13では、-(CH2CH2O)pHの繰り返し数pの異なるヒドロキシエチルセルロースを検討した結果である。実施例12及び13は、熱伝導率は実施例1~4と同等であり、また絶縁破壊電界の相対値は特に優れた特性を示した。
 なお、本国際出願は、2014年1月29日に出願した日本国特許出願第2014-14166号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本国際出願に援用する。
 1 絶縁テープ、2 マイカ、3 マイカ層、4 フィラー、5 繊維補強材、6 補強層、7 セルロース誘導体層、8 コイル導体、9 絶縁層、10 固定子コイル、11 固定子鉄心、12 スロット、13 スペーサー、14 ウェッジ、15 固定子、16 回転子コイル、17 回転子。

Claims (8)

  1.  マイカを含むマイカ層と、
     該マイカ層上に積層され、フィラー及び繊維補強材を含む補強層と、
     該補強層上に積層されたセルロース誘導体層とを有し、
     該セルロース誘導体層が、グルコース単位の水酸基の1個以上を、-CH2CH2OH、-CH2CH2OCH2CH2OH、-CH2CH(OH)CH3、-CH3、-CH2CH3、-NO2、-(CH2CH2O)pH(式中、pは0超50以下の任意の繰り返し数である)、-CH2COOH、-CH2CH2COOH、-CH2COOM(式中、MはLi、Na又はKである)及び-(CH2CH2O)qCH2CH(OH)CH2+(CH32(n-C1225)X-(式中、qは0以上50以下の任意の繰り返し数であり、X-はCl-、Br-、F-又はI-である)からなる群から選択される官能基で置換したグルコース誘導体を含み、
     該マイカの目付量が100g/m2以上200g/m2以下の範囲であり、
     該フィラーの最大粒径が100μm以下であり且つその目付量が10g/m2以上50g/m2以下の範囲であることを特徴とする絶縁テープ。
  2.  前記フィラーが、窒化ホウ素であることを特徴とする請求項1に記載の絶縁テープ。
  3.  前記セルロース誘導体層の目付量が、0.001g/m2以上5g/m2以下であることを特徴とする請求項1又は2に記載の絶縁テープ。
  4.  前記セルロース誘導体が、グルコース単位の水酸基の1個以上2個以下を、-CH2CH2OH及び-(CH2CH2O)pH(式中、pは2以上50以下の任意の繰り返し数である)からなる群から選択される官能基で置換したグルコース誘導体を含むことを特徴とする請求項1~3の何れか一項に記載の絶縁テープ。
  5.  マイカを含む分散液を抄造してマイカ層を形成する工程と、
     該マイカ層に繊維補強材を貼り合わせた後、最大粒径が100μm以下であるフィラーを含むスラリーを該繊維補強材に塗布して補強層を形成する工程と、
     グルコース単位の水酸基の1個以上が、-CH2CH2OH、-CH2CH2OCH2CH2OH、-CH2CH(OH)CH3、-CH3、-CH2CH3、-NO2、-(CH2CH2O)pH(式中、pは0超50以下の任意の繰り返し数である)、-CH2COOH、-CH2CH2COOH、-CH2COOM(式中、MはLi、Na又はKである)及び-(CH2CH2O)qCH2CH(OH)CH2+(CH32(n-C1225)X-(式中、qは0以上50以下の任意の繰り返し数であり、X-はCl-、Br-、F-又はI-である)からなる群から選択される官能基で置換されたセルロース誘導体を含むスラリーを該補強層に塗布してセルロース誘導体層を形成する工程と
    を含み、
     該マイカの目付量を100g/m2以上200g/m2以下の範囲とし、
     該フィラーの目付量を10g/m2以上50g/m2以下の範囲とすることを特徴とする絶縁テープの製造方法。
  6.  コイル導体と、
     該コイル導体に請求項1~4の何れか一項に記載の絶縁テープを巻き付け、該絶縁テープに液状熱硬化性樹脂を含浸して加熱加圧成形させた絶縁層と
    を有することを特徴とする固定子コイル。
  7.  コイル導体に請求項1~4の何れか一項に記載の絶縁テープを巻き付ける工程と、
     該絶縁テープに液状熱硬化性樹脂を含浸して加熱加圧成形する工程と
    を含むことを特徴とする固定子コイルの製造方法。
  8.  固定子鉄心のスロット内に、請求項6に記載の固定子コイルが収納されていることを特徴とする回転電機。
PCT/JP2014/080080 2014-01-29 2014-11-13 絶縁テープ及びその製造方法、固定子コイル及びその製造方法、並びに回転電機 WO2015114907A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14880544.3A EP3101665B1 (en) 2014-01-29 2014-11-13 Insulating tape and manufacturing method therefor, stator coil and manufacturing method therefor, and rotating electrical machine
JP2015559738A JP6058169B2 (ja) 2014-01-29 2014-11-13 絶縁テープ及びその製造方法、固定子コイル及びその製造方法、並びに回転電機
CN201480074454.1A CN105940467B (zh) 2014-01-29 2014-11-13 绝缘带及其制造方法、定子线圈及其制造方法、以及旋转电机
US15/110,318 US10199136B2 (en) 2014-01-29 2014-11-13 Insulating tape and production method thereof, stator coil and production method thereof, and rotating electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014014166 2014-01-29
JP2014-014166 2014-01-29

Publications (1)

Publication Number Publication Date
WO2015114907A1 true WO2015114907A1 (ja) 2015-08-06

Family

ID=53756504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080080 WO2015114907A1 (ja) 2014-01-29 2014-11-13 絶縁テープ及びその製造方法、固定子コイル及びその製造方法、並びに回転電機

Country Status (5)

Country Link
US (1) US10199136B2 (ja)
EP (1) EP3101665B1 (ja)
JP (1) JP6058169B2 (ja)
CN (1) CN105940467B (ja)
WO (1) WO2015114907A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104141A1 (ja) * 2014-12-22 2016-06-30 三菱電機株式会社 絶縁テープ及びその製造方法、並びに固定子コイル及びその製造方法、並びに発電機
WO2017175875A1 (ja) * 2016-04-08 2017-10-12 日立化成株式会社 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
JPWO2018003951A1 (ja) * 2016-06-29 2019-05-16 日立化成株式会社 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017120941A1 (de) * 2017-09-11 2019-03-14 Endress + Hauser Wetzer Gmbh + Co. Kg Thermisches Durchflussmessgerät
DE102019127688A1 (de) * 2019-10-15 2021-04-15 Türk & Hillinger GmbH Vorrichtung mit einem Innenleiter, der innerhalb des Rohrinnenraums eines rohrförmigen Metallmantels angeordnet und von diesem mit einem elektrisch isolierenden Material elektrisch isoliert ist und Verfahren zur Herstellung einer solchen Vorrichtung
US11848590B1 (en) 2020-01-15 2023-12-19 Kencoil, Inc. Electric coil with novel insulating tape and manufacturing method therefor
CN111478527B (zh) * 2020-05-06 2021-06-04 东莞市畅科电机有限公司 一种空心杯电机的制作方法
US11791684B2 (en) 2020-07-02 2023-10-17 Ge Aviation Systems Llc Method and system for electrically insulating portions of an electric machine
CN112164578B (zh) * 2020-10-09 2022-01-28 常德国力变压器有限公司 一种油浸式变压器上绕组散热油道的自动加工设备
DE102021109899A1 (de) 2021-04-20 2022-10-20 Bayerische Motoren Werke Aktiengesellschaft Rotor sowie Verfahren zum Herstellen eines Rotors
CN114566336B (zh) * 2022-02-25 2023-09-12 北玻电力复合材料有限公司 一种复合支柱绝缘子芯棒成型用预制体的成型设备及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945133A (ja) * 1995-08-01 1997-02-14 Japan Mica Ind Co Ltd マイカ基材シート状体及び絶縁コイル
JP2000058314A (ja) * 1998-08-03 2000-02-25 Hitachi Ltd 高熱伝導コイル、絶縁シート及びその製造方法
JP2000116047A (ja) * 1998-09-29 2000-04-21 Hitachi Ltd 高熱伝導絶縁コイル及びこのコイルを用いた回転電機装置
JP2008027819A (ja) * 2006-07-24 2008-02-07 Toshiba Corp プリプレグ材、電気絶縁用プリプレグテープ及びこれを用いた回転電機
JP2009231352A (ja) * 2008-03-19 2009-10-08 Daikin Ind Ltd 高誘電性フィルム形成用のコーティング組成物および高誘電性フィルム
WO2010064603A1 (ja) * 2008-12-01 2010-06-10 ダイキン工業株式会社 積層型高誘電性フィルム
JP2012175799A (ja) 2011-02-21 2012-09-10 Toshiba Corp 回転電機固定子、回転電機固定子の製造方法、及び回転電機固定子用絶縁テープ
JP2012244861A (ja) * 2011-05-24 2012-12-10 Mitsubishi Electric Corp 絶縁コイル

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2650184A (en) * 1947-01-25 1953-08-25 Owens Corning Fiberglass Corp Coated cloth and other resin and fiber compositions
GB1020511A (en) * 1962-08-04 1966-02-16 Ernest Stanley Buckley Vehicle luggage carrier
US3867245A (en) * 1972-06-12 1975-02-18 Gen Electric Electrical insulation
JP3497719B2 (ja) * 1998-01-12 2004-02-16 株式会社日立製作所 電機絶縁コイルおよびこれを用いた回転電機
US6288341B1 (en) 1998-02-27 2001-09-11 Hitachi, Ltd. Insulating material windings using same and a manufacturing method thereof
JP3576119B2 (ja) * 2001-04-27 2004-10-13 株式会社東芝 回転電機のコイル及びこのコイルの絶縁に用いられるマイカーテープ
US6991845B2 (en) * 2002-12-13 2006-01-31 E. I. Du Pont De Nemours And Company Mica sheet and tape
JP4599063B2 (ja) 2004-01-15 2010-12-15 株式会社東芝 コイル巻回用絶縁テープ
JP4996086B2 (ja) * 2005-09-29 2012-08-08 株式会社東芝 マイカテープおよびこのマイカテープを用いた回転電機コイル
JPWO2013073496A1 (ja) * 2011-11-14 2015-04-02 三菱電機株式会社 電磁コイル及びその製造方法、並びに絶縁テープ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945133A (ja) * 1995-08-01 1997-02-14 Japan Mica Ind Co Ltd マイカ基材シート状体及び絶縁コイル
JP2000058314A (ja) * 1998-08-03 2000-02-25 Hitachi Ltd 高熱伝導コイル、絶縁シート及びその製造方法
JP2000116047A (ja) * 1998-09-29 2000-04-21 Hitachi Ltd 高熱伝導絶縁コイル及びこのコイルを用いた回転電機装置
JP2008027819A (ja) * 2006-07-24 2008-02-07 Toshiba Corp プリプレグ材、電気絶縁用プリプレグテープ及びこれを用いた回転電機
JP2009231352A (ja) * 2008-03-19 2009-10-08 Daikin Ind Ltd 高誘電性フィルム形成用のコーティング組成物および高誘電性フィルム
WO2010064603A1 (ja) * 2008-12-01 2010-06-10 ダイキン工業株式会社 積層型高誘電性フィルム
JP2012175799A (ja) 2011-02-21 2012-09-10 Toshiba Corp 回転電機固定子、回転電機固定子の製造方法、及び回転電機固定子用絶縁テープ
JP2012244861A (ja) * 2011-05-24 2012-12-10 Mitsubishi Electric Corp 絶縁コイル

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104141A1 (ja) * 2014-12-22 2016-06-30 三菱電機株式会社 絶縁テープ及びその製造方法、並びに固定子コイル及びその製造方法、並びに発電機
WO2017175875A1 (ja) * 2016-04-08 2017-10-12 日立化成株式会社 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
CN108886286A (zh) * 2016-04-08 2018-11-23 日立化成株式会社 旋转电机用线圈、旋转电机用线圈的制造方法、云母带、云母带的固化物和绝缘物
JPWO2017175875A1 (ja) * 2016-04-08 2018-11-29 日立化成株式会社 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
JP2020092597A (ja) * 2016-04-08 2020-06-11 日立化成株式会社 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
JPWO2018003951A1 (ja) * 2016-06-29 2019-05-16 日立化成株式会社 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物

Also Published As

Publication number Publication date
CN105940467B (zh) 2017-08-22
EP3101665B1 (en) 2018-05-02
US10199136B2 (en) 2019-02-05
EP3101665A4 (en) 2017-07-05
JP6058169B2 (ja) 2017-01-11
US20160329123A1 (en) 2016-11-10
CN105940467A (zh) 2016-09-14
EP3101665A1 (en) 2016-12-07
JPWO2015114907A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6058169B2 (ja) 絶縁テープ及びその製造方法、固定子コイル及びその製造方法、並びに回転電機
JP5611485B1 (ja) 絶縁テープ及びその製造方法、並びに固定子コイル
JP4103390B2 (ja) 絶縁材及び電機巻線とその製造法
JP6899785B2 (ja) 絶縁ワニス、絶縁ワニス硬化物、固定子コイル及び回転電機
JP2008220095A (ja) 回転電機のコイル絶縁物
WO2016104141A1 (ja) 絶縁テープ及びその製造方法、並びに固定子コイル及びその製造方法、並びに発電機
JP2005006389A (ja) 絶縁コイルの製造方法
JP2010158113A (ja) 電気絶縁部材、回転電機用固定子コイルおよび回転電機
JP2012244861A (ja) 絶縁コイル
EP2955723A1 (en) Rotating electrical machine
WO2018003950A1 (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの製造方法、マイカテープの硬化物及び絶縁物
WO2018011904A1 (ja) 熱硬化性樹脂組成物及びこれを用いた固定子コイル、並びに回転電機
JPWO2019077793A1 (ja) 固定子コイルの絶縁被覆材およびそれを用いた回転機
JP5159812B2 (ja) 回転電機
JP5766352B2 (ja) 回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物、それを用いた回転電機及びその製造方法
WO2018003044A1 (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
WO2023047439A1 (ja) 回転機コイル、その製造方法および回転機
JP7292525B2 (ja) 回転機コイルと回転電機、および回転機コイルの製造方法
JP2908431B1 (ja) 電気絶縁コイルの製造方法
JP7397876B2 (ja) 絶縁シート、ステータおよびステータの製造方法
JP2570210B2 (ja) プリプレグ
JPH1180324A (ja) 含浸熱硬化性樹脂組成物および回転電機絶縁コイル
JPS61166010A (ja) 電気絶縁線輪
JPS5927516A (ja) 絶縁コイルの製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880544

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559738

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15110318

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014880544

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014880544

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE