WO2014109167A1 - 絶縁テープ及びその製造方法、並びに固定子コイル - Google Patents
絶縁テープ及びその製造方法、並びに固定子コイル Download PDFInfo
- Publication number
- WO2014109167A1 WO2014109167A1 PCT/JP2013/083233 JP2013083233W WO2014109167A1 WO 2014109167 A1 WO2014109167 A1 WO 2014109167A1 JP 2013083233 W JP2013083233 W JP 2013083233W WO 2014109167 A1 WO2014109167 A1 WO 2014109167A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mica
- insulating tape
- filler
- layer
- inorganic particles
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B19/00—Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
- B32B19/04—Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material
- B32B19/048—Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material made of particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B19/00—Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
- B32B19/02—Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica the layer of fibres or particles being impregnated or embedded in a plastic substance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B19/00—Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
- B32B19/04—Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B19/00—Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
- B32B19/04—Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material
- B32B19/045—Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/16—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/30—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B17/00—Insulators or insulating bodies characterised by their form
- H01B17/56—Insulating bodies
- H01B17/60—Composite insulating bodies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B19/00—Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
- H01B19/04—Treating the surfaces, e.g. applying coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/02—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
- H01B3/04—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances mica
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/30—Windings characterised by the insulating material
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/32—Windings characterised by the shape, form or construction of the insulation
- H02K3/34—Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/101—Glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/102—Oxide or hydroxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/104—Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/107—Ceramic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/206—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/302—Conductive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/304—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/251—Mica
Definitions
- a stator of a rotating electrical machine (particularly, a high-voltage rotating electrical machine) has a stator coil 11 accommodated in a plurality of slots 16 formed on the inner peripheral side of the stator core 10 as shown in FIG.
- the stator coil 11 includes a coil conductor 12 and an insulating cover 13.
- the stator coil 11 has a predetermined cross-sectional shape after being wound around the coil conductor 12 several times with an insulating tape in which a fiber reinforcing material such as glass cloth is bonded to a mica sheet and impregnating the resin composition under reduced pressure. It is manufactured by heat-pressing while being formed into.
- the stator coil 11 is incorporated into the slot 16 in two upper and lower stages, and a spacer 15 is provided between the stator coils 11 and a wedge 14 is provided at the opening end of the slot 16, thereby operating the rotating electrical machine. Occasionally, electromagnetic vibration generated from the stator coil 11 is suppressed.
- the conductor coil 12 In the rotating electric machine stator having such a structure, the conductor coil 12 generates heat due to a load current during operation of the rotating electric machine. In particular, in the indirect hydrogen cooling type rotating electrical machine, most of the heat generated from the conductor coil 12 is transmitted to the cooling gas via the stator core 10. Therefore, in order to increase the efficiency, size and cost of the rotating electrical machine, it is required to increase the thermal conductivity of the insulating coating 13 of the stator coil 11.
- an adhesive (resin composition) is used to support the filler in the insulating tape. Further, in the manufacture of the stator coil 11, the insulating tape is wound around the coil conductor 12 several times, and then impregnated with the resin composition and cured to give an integrated insulating covering 13, so that the support of the filler is carried out.
- the compatibility of the adhesive used for the resin and the resin composition used for impregnation is required to be good.
- An object of the present invention is to provide an insulating tape capable of forming an insulating covering having high thermal conductivity and a method for manufacturing the same. Moreover, an object of this invention is to provide the stator coil which has an insulation coating body with high heat conductivity.
- the present inventors have determined that a reinforcing layer containing a filler having high thermal conductivity formed on a mica layer is a flat layer containing specific tabular inorganic particles. It was found that the coating material can be effectively suppressed from flowing out of the filler during manufacture of the stator coil (particularly during hot pressing). That is, the present invention is a mica layer containing mica, a reinforcing layer laminated on the mica layer, a reinforcing layer containing a filler and a fiber reinforcing material, and a flat layer laminated on the reinforcing layer. And an insulating tape having a flat layer containing flat inorganic particles having an aspect ratio of 30 or more.
- the present invention also includes a step of forming a mica layer by making a dispersion containing mica, a fiber reinforcing material is bonded to the mica sheet, and then a slurry containing a filler is applied to the fiber reinforcing material.
- a method for producing an insulating tape comprising: a step of forming a reinforcing layer; and a step of forming a flat layer by applying a slurry containing flat inorganic particles having an aspect ratio of 30 or more to the reinforcing layer. .
- the present invention comprises a coil conductor and the insulating tape wound around the outer periphery of the coil conductor, and the insulating tape is integrated with the coil conductor with a resin. This is a featured stator coil.
- the present invention it is possible to form an insulating covering with high thermal conductivity without the pre-supported filler flowing out to the outside during the manufacture of the stator coil (particularly during the heating press).
- An insulating tape and a method for manufacturing the same can be provided.
- the stator coil which has an insulation coating body with high heat conductivity can be provided.
- FIG. 1 is a cross-sectional view schematically showing an insulating tape according to Embodiment 1.
- FIG. It is a figure for demonstrating the state at the time of a pressure being applied to the insulating tape of FIG. 1 impregnated with the resin composition. It is a figure for demonstrating the state in which the pressure was applied to the insulating tape (insulating tape which does not form the flat layer) impregnated with the resin composition. It is a perspective view of a stator.
- FIG. 1 is a cross-sectional view schematically showing an insulating tape according to Embodiment 1 of the present invention.
- an insulating tape 1 includes a mica layer 2, a reinforcing layer 3 laminated on the mica layer 2, and a flat plate layer 4 laminated on the reinforcing layer 3.
- Mica layer 2 includes mica 5.
- the mica 5 is not particularly limited, and for example, hard mica (mascobite) and soft mica (phlogopite), which are known as a kind of layered silicate mineral, can be used.
- the shape of the mica 5 is not particularly limited, and for example, block mica, peeled mica, and assembled mica can be used. These can be used alone or in combination of two or more. Among them, it is preferable to use a laminated mica because the thickness is uniform and the cost is low.
- the content of mica 5 in the insulating tape 1 is preferably 100 g or more and 200 g or less per 1 mm 2 of insulating tape 1. If the content of mica 5 is less than 100 g, desired electrical insulation properties may not be obtained, and the dielectric breakdown time at the time of power degradation may be shortened. On the other hand, if the content of mica 5 exceeds 200 g, the electrical insulation is good, but the insulating tape 1 becomes too thick, and it may be difficult to wind the coil conductor. In addition, when the thickness of the insulating tape 1 is constant, the filling rate of the filler 6 effective for achieving high thermal conductivity is relatively lowered, and an insulating covering having a desired thermal conductivity can be formed. There are things that cannot be done.
- the thickness of the mica layer 2 is not particularly limited, and may be appropriately adjusted according to the size of the insulating tape 1 to be manufactured.
- the thickness of the mica layer 2 is preferably 60 ⁇ m to 150 ⁇ m, more preferably 80 ⁇ m to 120 ⁇ m.
- the reinforcing layer 3 includes a filler 6 and a fiber reinforcement 7.
- the filler 6 is not particularly limited, and those known in the technical field can be used.
- Examples of the filler 6 include alumina, magnesium oxide, zinc oxide, magnesium carbonate, graphite, carbon tube, boron nitride, titanium boride, silicon carbide, silicon nitride, crystalline silica, aluminum nitride, and the like. These can be used alone or in combination.
- the filler 6 preferably has a thermal conductivity of 5 W / mK or more from the viewpoint of thermal conductivity of the insulating coating. If the thermal conductivity is less than 5 W / mK, the thermal conductivity of the insulating coating may not be sufficiently improved.
- the volume filling rate of the filler 6 in the insulating tape 1 is 50% by volume or less from the viewpoint of the impregnation property of the resin composition. When the volume filling rate exceeds 50% by volume, the resin composition may not be sufficiently impregnated during the manufacture of the stator coil, and desired characteristics may not be obtained.
- boron nitride is preferable in that the insulating coating can be made highly conductive with a small addition amount (supported amount) and the insulating tape 1 does not need to be thick.
- the primary particles of boron nitride have a layered structure similar to that of graphite, and the particle shape is scaly and has a high thermal conductivity in the major axis direction and a low thermal conductivity in the minor axis direction. It has a typical thermal conductivity.
- secondary aggregated particles obtained by aggregating the primary particles of boron nitride may be used. Particularly preferred. It does not specifically limit as a manufacturing method of a secondary aggregation particle, A well-known method can be used in the said technical field.
- secondary aggregated particles can be produced by aggregating primary particles of boron nitride with an inorganic binder.
- the inorganic binder is not particularly limited, and examples thereof include boric acid, alkaline earth metal borates (calcium borate, magnesium borate, sodium borate, potassium borate), sodium silicate, aluminum phosphate, and the like. Can be mentioned.
- the orientation index of the secondary aggregated particles is preferably 15 or less.
- the intensity ratio of the X-ray diffraction peak of the secondary agglomerated particles exceeds 15, the ratio of the primary particles oriented in a specific direction in the secondary agglomerated particles increases, and the insulating coating having the desired thermal conductivity May not be obtained.
- the average particle diameter of the filler 6 is preferably 80 ⁇ m or less.
- the average particle diameter of the filler 6 exceeds 80 ⁇ m, the insulating tape 1 becomes too thick, and it may be difficult to wind it around the coil conductor.
- the thickness of the insulating tape 1 is constant, it is necessary to relatively reduce the filling rate of the mica 5 that is responsible for insulation, and thus the electrical insulation characteristics of the insulating coating may be deteriorated.
- the average particle diameter of the filler 6 means an average particle diameter obtained by performing particle size distribution measurement by the laser diffraction scattering method, and specifically, using a commercially available laser diffraction scattering type particle size distribution meter. Mean measured average particle size.
- the fiber reinforcement 7 is not particularly limited, and those known in the technical field can be used.
- the fiber reinforcing material 7 means a cloth formed by knitting a plurality of warps produced by bundling a plurality of fibers and a plurality of wefts produced by bundling a plurality of fibers in a lattice shape.
- Examples of the fiber reinforcing material 7 include glass cloth, alumina cloth, silica cloth, and the like. Among them, it is preferable to use a glass cloth which is the best material in terms of strength and cost.
- the fiber reinforcement 7 has a plurality of openings surrounded by warps and wefts. In the reinforcing layer 3, the filler 6 is captured in the opening. Thereby, the movement of the filler 6 in the in-layer direction is suppressed.
- the thickness of the fiber reinforcement 7 is not particularly limited, but is preferably 80 ⁇ m or less. If the thickness of the fiber reinforcing material 7 exceeds 80 ⁇ m, the insulating tape 1 becomes too thick, and it may be difficult to wind the coil reinforcing material around the coil conductor. In addition, when the thickness of the insulating tape 1 is constant, it is necessary to relatively reduce the filling rate of the mica 5 that is responsible for insulation, and thus the electrical insulation characteristics of the insulating coating may be deteriorated.
- the flat layer 4 includes flat inorganic particles 8 having an aspect ratio of 30 or more.
- the aspect ratio of the tabular inorganic particles 8 means a value obtained by dividing the longest diameter of the tabular inorganic particles 8 by the shortest diameter (thickness).
- the longest side when the projections of the tabular inorganic particles 8 are maximized is called the longest diameter, the thickness is the shortest diameter, and the average of the long sides is called the average long diameter.
- the longest diameter, the shortest diameter (thickness), and the average long diameter can be measured using an electron microscope or the like.
- the aspect ratio of the tabular inorganic particles 8 is preferably an average value per 100 tabular inorganic particles 8. Therefore, if the average value of the aspect ratio of the tabular inorganic particles 8 is 30 or more, the tabular inorganic particles 8 having an aspect ratio of less than 30 may be included. Further, since the insulating tape 1 is wound around the outer periphery of the coil conductor when the stator coil is manufactured, if the aspect ratio of the flat inorganic particles 8 is too large, the insulating tape 1 is wound around the outer periphery of the coil conductor. It becomes difficult to put on. Therefore, the aspect ratio of the tabular inorganic particles 8 is preferably 50 to 300 from the viewpoint of obtaining both the characteristics of suppressing the outflow of the filler 6 and the winding property of the insulating tape 1.
- the tabular inorganic particles 8 are not particularly limited, and those known in the technical field can be used. Among them, the tabular inorganic particles 8 are preferably those that are not soluble or poor in the resin used for impregnation. Examples of preferable tabular inorganic particles 8 include layered ferrosilicate minerals such as mica, kaolin, pyrophyllite, sericite, and talc, glass flakes, glass plates, aluminum flakes, boehmite, and alumina. These can be used alone or in combination. Among the various tabular inorganic particles 8, mica is preferable because it has many aspect ratios (average major axis is 100 to 500 ⁇ m, thickness is 1 ⁇ m or less) and is excellent in electrical insulation.
- the flat layer 4 covers the surface of the reinforcing layer 3 as shown in FIG. 2, there are few outflow paths of the filler 6 contained in the reinforcing layer 3 (the arrows in the figure indicate the outflow of the filler 6).
- the filler 6 is difficult to flow out together with the resin composition used for impregnation, and an insulating coating having a desired thermal conductivity is formed. can do.
- the flat layer 4 does not exist, as shown in FIG. 3, there are many outflow paths of the filler 6 contained in the reinforcing layer 3 (the arrows in the figure represent the outflow path of the filler 6).
- the stator coil is manufactured (especially during hot pressing)
- the filler 6 flows out together with the resin composition used for impregnation, and an insulating covering having desired thermal conductivity can be formed. Can not.
- the flat inorganic particles 8 in the flat layer 4 act as walls that prevent the filler 6 from flowing out to the outside.
- the flat inorganic particles 8 in the flat layer 4 are bent in a complicated manner along the shape of the coil conductor when the stator coil is manufactured (particularly when the insulating tape 1 is wound around the coil conductor). As the average major axis of the tabular inorganic particles 8 is longer, the tabular inorganic particles 8 are more complicatedly bent, and the outflow of the filler 6 from between the tabular inorganic particles 8 can be effectively suppressed.
- the average major axis of the tabular inorganic particles 8 is preferably 80 ⁇ m or more.
- the average long diameter of the tabular inorganic particles 8 is preferably larger than the average particle diameter of the filler 6.
- the inorganic particles in the flat plate layer 4 have other shapes such as a spherical shape
- the inorganic particles in the flat plate layer 4 are coil conductors when the stator coil is manufactured (particularly when the insulating tape 1 is wound around the coil conductor).
- the distance between the inorganic particles in the flat layer 4 is increased.
- the filler 6 contained in the reinforcing layer 3 easily flows out together with the resin composition used for impregnation, and the desired thermal conductivity is obtained. It is not possible to form an insulating coating having the same.
- the thickness of the flat layer 4 is not particularly limited, but is preferably 80 ⁇ m or less, more preferably 30 ⁇ m or less. When the thickness of the flat plate layer 4 exceeds 80 ⁇ m, the insulating tape 1 becomes too thick, and it may be difficult to wind the coil conductor around the coil conductor.
- a mica layer 2 is formed by making a dispersion containing mica 5. It does not specifically limit as a preparation method of the dispersion liquid containing the mica 5, A well-known method can be used in the said technical field.
- a dispersion can be prepared by dispersing mica 5 in water.
- the content of mica 5 in the dispersion is not particularly limited, and may be appropriately adjusted according to the type of mica 5 and the like.
- the method for making the dispersion is not particularly limited, and methods known in the art can be used.
- a mica sheet to be the mica layer 2 can be obtained by making a dispersion using a commercially available paper machine.
- the mica sheet may be bonded to various films as other support materials.
- the resin composition may be applied to the mica sheet using a known method such as a roll coater method or a spray method, and then bonded to the support material.
- the resin composition used for adhesion between the mica sheet and the support material generally contains a thermosetting resin, a curing agent, and a solvent. It does not specifically limit as a thermosetting resin, A well-known thing can be used in the said technical field.
- thermosetting resins include epoxy resins, unsaturated polyester resins, phenol resins, melamine resins, silicone resins, and polyimide resins. Among these, epoxy resins are preferable because they are excellent in characteristics such as heat resistance and adhesiveness.
- epoxy resins examples include bisphenol A type epoxy resins, bisphenol F type epoxy resins, orthocresol novolac type epoxy resins, phenol novolac type epoxy resins, alicyclic aliphatic epoxy resins, and glycidyl-aminophenol type epoxy resins. It is done. These resins can be used alone or in combination of two or more.
- curing agent examples include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
- organometallic complex examples include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organocopper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate.
- Organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate.
- organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate.
- cobalt (II) acetylacetonate cobalt (III) acetylacetonate, zinc (II) acetylacetonate, zinc naphthenate, iron (III) acetylacetonate are Cobalt (II) acetylacetonate and zinc naphthenate are more preferable.
- the compounding amount of the curing agent needs to be appropriately set according to the type of the thermosetting resin and the curing agent to be used, but is generally 0.1 parts by mass or more with respect to 100 parts by mass of the thermosetting resin. It is 200 parts by mass or less.
- solvent it does not specifically limit as a solvent, A well-known thing can be used in the said technical field.
- the solvent include organic solvents such as toluene and methyl ethyl ketone. These can be used alone or in combination of two or more. What is necessary is just to adjust suitably the compounding quantity of a solvent according to the viscosity which the resin composition makes desired, and it does not specifically limit.
- the slurry containing the filler 6 is applied to the fiber reinforcement 7 to form the reinforcing layer 3.
- the method for attaching the fiber reinforcement 7 to the mica sheet is not particularly limited, and methods known in the technical field can be used.
- the mica sheet and the fiber reinforcement 7 may be bonded together using a resin composition.
- the resin composition is applied to the fiber reinforcing material 7 using a known method such as a roll coater method or a spray method, and after the solvent in the resin composition is volatilized, a mica sheet is stacked thereon.
- the laminate may be pressure-bonded by heating with a hot roll or the like under heating at 60 to 70 ° C.
- the slurry containing the filler 6 is not particularly limited, and for example, a resin composition containing the filler 6 can be used.
- a resin composition containing the filler 6 can be used as the resin composition used for this slurry.
- the same resin composition as that used for bonding the mica sheet and the support material can be used.
- the blending amount of the filler 6 needs to be appropriately set according to the type of the thermosetting resin and the curing agent to be used. It is below mass parts.
- the method for applying the slurry containing the filler 6 is not particularly limited, and methods known in the technical field can be used.
- Examples of the application method include a spray method, a roll coater method, and a gravure transfer method.
- the applied slurry is cut using a known method such as a doctor blade, and then pressed using a hot roll or the like under heating at 60 to 70 ° C. Thereby, the reinforcement layer 3 of uniform and desired thickness can be formed.
- the material of the doctor blade examples include metals, ceramics, plastics, and the like. From the viewpoint of workability and wear resistance, chrome-plated steel is preferable.
- the cutting conditions are not particularly limited, but the clearance (gap) between the mica sheet and the doctor blade is preferably 0.01 to 0.1 mm, and the cutting temperature is preferably 10 to 40 ° C.,
- the cutting speed (traveling speed of the mica sheet relative to the doctor blade) is preferably 5 m / min or less. If the gap is less than 0.01 mm, the fiber reinforcement 7 may be peeled off. On the other hand, if the gap exceeds 0.1 mm, the reinforcing layer 3 becomes too thick.
- the cutting temperature is less than 10 ° C.
- the viscosity of the coated material is high and cutting may not be performed smoothly.
- the cutting temperature exceeds 40 ° C., the volatilization rate of the solvent of the applied product increases, and it is impossible to cut to a uniform thickness.
- the slurry containing the flat inorganic particles 8 is applied to the reinforcing layer 3 to form the flat layer 4.
- the slurry containing the tabular inorganic particles 8 is not particularly limited, and for example, a mixture of the tabular inorganic particles 8 and a solvent can be used. It does not specifically limit as a solvent, A well-known thing can be used in the said technical field.
- the solvent include organic solvents such as toluene and methyl ethyl ketone. These can be used alone or in combination of two or more.
- the blending amount of the solvent may be appropriately adjusted according to the coating property of the slurry, and is not particularly limited.
- the flat layer 4 can be formed by heating to a predetermined temperature and volatilizing the solvent.
- the filler 6 previously supported on the reinforcing layer 3 is used during the manufacture of the stator coil (in particular, It becomes difficult to flow out to the outside during the heating press), and an insulating covering with high thermal conductivity can be formed.
- FIG. The stator coil according to the second embodiment of the present invention has a coil conductor and the insulating tape 1 according to the first embodiment wound around the outer periphery of the coil conductor, and the insulating tape 1 is made of resin with the coil conductor. And an integrated insulating covering.
- the stator coil of the present embodiment is mainly characterized by the insulating tape to be used, and a conventionally known configuration (for example, the configuration of FIG. 4) can be adopted as the other configuration.
- the stator coil having such a structure is manufactured as follows. First, the insulating tape 1 is overlapped several times on the outer periphery of the coil conductor formed by bundling a plurality of insulated conductors so that a part of the insulating tape 1 overlaps each other (for example, half the width of the insulating tape 1). Wrap.
- a strand which comprises a coil conductor if it is electroconductive, it will not specifically limit, The strand which consists of copper, aluminum, silver, etc. can be used.
- the insulating tape 1 wound around the coil conductor is impregnated with the resin composition.
- the resin composition used for impregnation is not particularly limited, but generally includes a thermosetting resin and a curing agent. It does not specifically limit as a thermosetting resin, The same thing as what was illustrated in Embodiment 1 can be used.
- curing agents include: cycloaliphatic acid anhydrides such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride and hymic anhydride; aliphatic acid anhydrides such as dodecenyl succinic anhydride; phthalic anhydride and trihydric anhydride Aromatic acid anhydrides such as merit acid; organic dihydrazides such as dicyandiamide and adipic acid dihydrazide; tris (dimethylaminomethyl) phenol; dimethylbenzylamine; 1,8-diazabicyclo (5,4,0) undecene and derivatives thereof; And imidazoles such as -methylimidazole, 2-ethyl-4-methylimidazole and 2-phenylimidazole.
- cycloaliphatic acid anhydrides such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride and hymic anhydride
- curing agents can be used individually or in combination of 2 or more types.
- the compounding amount of the curing agent needs to be appropriately set according to the type of the thermosetting resin and the curing agent to be used, but is generally 0.1 parts by mass or more with respect to 100 parts by mass of the thermosetting resin. It is 200 parts by mass or less.
- the impregnation method of the resin composition is not particularly limited, and a method known in the technical field can be used.
- Examples of the impregnation method include vacuum impregnation, vacuum pressure impregnation, and normal pressure impregnation.
- the conditions for the impregnation are not particularly limited, and may be appropriately adjusted according to the type of resin composition to be used.
- the reinforcing layer 3 is applied even when pressure is applied to the insulating tape 1 as shown in FIG.
- the filler 6 contained in is difficult to flow out together with the resin composition used for impregnation, and the thermal conductivity of the insulating coating can be improved.
- the resin composition used for impregnation with the filler 6 contained in the reinforcing layer 3 is used. It flows out with it, and the heat conductivity of an insulation coating body will fall.
- the stator coil of the present embodiment manufactured as described above is insulated because the pre-supported filler 6 hardly flows out to the outside during manufacture of the stator coil (particularly during heating press).
- the thermal conductivity of the covering can be improved.
- Example 1 The assembled mica powder was dispersed in water to prepare a dispersion of the assembled mica powder, and the dispersion was made with a paper machine to obtain a mica sheet (mica layer). Next, a resin composition prepared by dissolving 100 parts by mass of a bisphenol A type epoxy resin (trade name: Epicoat 834, manufactured by Japan Epoxy Resin Co., Ltd.) and 10 parts by mass of zinc naphthenate in 400 parts by mass of methyl ethyl ketone by a roll coater method.
- a bisphenol A type epoxy resin trade name: Epicoat 834, manufactured by Japan Epoxy Resin Co., Ltd.
- a support material (a polyester film having a width of 1000 mm and a thickness of 0.02 mm and having a predetermined length) is laminated and bonded to the mica with a support material having an overall thickness of 0.1 mm. A sheet was obtained.
- a resin composition obtained by dissolving 100 parts by mass of bisphenol A type epoxy resin (trade name: Epicoat 834, manufactured by Japan Epoxy Resin Co., Ltd.) and 10 parts by mass of zinc naphthenate in 1000 parts by mass of methyl ethyl ketone is obtained by a roll coater method.
- a glass cloth a width of 1000 mm, a thickness of 30 ⁇ m, a predetermined length, and an opening ratio of 97%) as a fiber reinforcement
- the solvent was volatilized.
- the coated material was cut using a chrome-plated steel doctor blade under the conditions of a gap of 0.01 mm, a cutting speed of 3 m / min, and a cutting temperature of 25 ° C., and then pressurized with a 60 ° C. hot roll to provide a reinforcing layer. Formed.
- this insulating tape was wound around a coil conductor of 50 mm ⁇ 12 mm ⁇ 1140 mm by half wrapping to a thickness of 4.4 mm.
- the insulating resin wound around the coil conductor was impregnated with a liquid resin composition by a vacuum pressure impregnation method.
- the resin composition 100 parts by mass of bisphenol A type epoxy resin (trade name: Epicoat 828, manufactured by Japan Epoxy Resin Co., Ltd.) and methyltetrahydrophthalic anhydride curing agent (trade name: HN-2200, Hitachi Chemical Co., Ltd.) A product consisting of 93 parts by mass) was used.
- the resin composition is clamped with a jig so that the thickness of the insulating tape impregnated with the resin composition is 4.26 mm, and heated in a drying furnace to obtain a resin composition.
- Stator coils were produced by curing.
- Example 2 An insulating tape and a stator coil were produced in the same manner as in Example 1 except that secondary aggregate particles of boron nitride having an average particle diameter of 60 ⁇ m were used as the filler.
- Comparative Example 1 An insulating tape and a stator coil were produced in the same manner as in Example 1 except that the flat layer was not formed.
- Comparative Example 2 An insulating tape and a stator coil were produced in the same manner as in Example 1 except that the thickness of the glass cloth was changed to 75 ⁇ m and mica particles (flat inorganic particles) having an aspect ratio of 20 were used.
- the measurement of thermal conductivity and a dielectric breakdown voltage was performed as follows.
- the measurement of the thermal conductivity of the insulating coating was performed by cutting out a test piece of the insulating coating from the stator coil, and applying a thermal conductivity measuring device (xenon flash analyzer, LFA447 NanoFlash (registered trademark) to the cut out test piece of the insulating coating. ) And NETZSCH).
- the dielectric breakdown voltage of the insulation coating was measured according to the method of JIS-C2126. These results are shown in Table 1.
- the insulation coating of the stator coil produced in the example has a dielectric breakdown voltage of 25 kV or higher and a thermal conductivity of 0.5 or higher. The thermal conductivity was also good. On the other hand, although the insulation coating body of the stator coil produced in the comparative example had a dielectric breakdown voltage of 25 kV or more, the thermal conductivity was low.
- the pre-supported filler does not flow out to the outside during the manufacture of the stator coil (particularly during the heating press), and the insulation has high thermal conductivity.
- An insulating tape capable of forming a covering and a method for manufacturing the same can be provided.
- the stator coil which has an insulation coating body with high heat conductivity can be provided.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Insulation, Fastening Of Motor, Generator Windings (AREA)
- Insulating Bodies (AREA)
- Inorganic Insulating Materials (AREA)
- Insulated Conductors (AREA)
Abstract
Description
また、本発明は、熱伝導率が高い絶縁被覆体を有する固定子コイルを提供することを目的とする。
すなわち、本発明は、マイカを含むマイカ層と、前記マイカ層上に積層された補強層であって、充填材及び繊維強化材を含む補強層と、前記補強層上に積層された平板層であって、アスペクト比が30以上の平板状無機粒子を含む平板層とを有することを特徴とする絶縁テープである。
また、本発明によれば、熱伝導率が高い絶縁被覆体を有する固定子コイルを提供することができる。
図1は、本発明の実施の形態1による絶縁テープを模式的に示す断面図である。図1において、絶縁テープ1は、マイカ層2と、マイカ層2上に積層された補強層3と、補強層3上に積層された平板層4とを有する。
或いは、マイカ層2の支持材として各種樹脂フィルムを用いてもよい。樹脂フィルムとしては特に限定されず、当該技術分野において公知のものを用いることができる。
充填材6としては、特に限定されず、当該技術分野において公知のものを用いることができる。充填材6の例としては、アルミナ、酸化マグネシウム、酸化亜鉛、炭酸マグネシウム、グラファイト、カーボンチューブ、窒化ホウ素、ホウ化チタン、炭化珪素、窒化珪素、結晶シリカ、窒化アルミニウム等が挙げられる。これらは単独又は複数を組み合わせて用いることができる。
絶縁テープ1における充填材6の体積充填率は、樹脂組成物の含浸性の観点から、50体積%以下である。体積充填率が50体積%を超えると、固定子コイルの製造の際に樹脂組成物が十分に含浸せず、所望の特性が得られない場合がある。
窒化ホウ素の一次粒子は、黒鉛と同様の層状構造を有しており、その粒子形状は鱗片状であって、長径方向の熱伝導率が高く、短径方向の熱伝導率が低いという異方的な熱伝導性を有する。そのため、窒化ホウ素の一次粒子を充填材6として用いた場合、絶縁テープ1の製造条件によっては、窒化ホウ素の異方的な熱伝導性のために所望の熱伝導性を有する絶縁被覆体が得られない場合がある。
二次凝集粒子の製造方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。例えば、窒化ホウ素の一次粒子を無機バインダによって凝集させることによって二次凝集粒子を製造することができる。無機バインダとしては、特に限定されず、例えば、ホウ酸、アルカリ土類金属のホウ酸塩(ホウ酸カルシウム、ホウ酸マグネシウム、ホウ酸ナトリウム、ホウ酸カリウム)、ケイ酸ソーダ、リン酸アルミ等が挙げられる。
繊維強化材7の厚さは、特に限定されないが、80μm以下であることが好ましい。繊維強化材7の厚さが80μmを超えると、絶縁テープ1が厚くなり過ぎてしまい、コイル導体に巻き付け難くなることがある。また、絶縁テープ1の厚さを一定とした場合には、絶縁性を担うマイカ5の充填率を相対的に少なくする必要があるため、絶縁被覆体の電気絶縁特性が低下することがある。
ここで、平板状無機粒子8のアスペクト比とは、平板状無機粒子8の最長径を最短径(厚さ)で除して得られる値を意味する。また、平板状無機粒子8の投影面積が最大となるように配置した時の最も長い辺を最長径、その厚みを最短径、長い辺の平均を平均長径という。最長径、最短径(厚さ)及び平均長径は、電子顕微鏡等を用いて測定することができる。
また、絶縁テープ1は、固定子コイルを製造する際にコイル導体の外周部に巻回されるため、平板状無機粒子8のアスペクト比が大きすぎると絶縁テープ1がコイル導体の外周部に巻きつけ難くなる。そのため、充填材6の流出抑制効果及び絶縁テープ1の巻回性の両方の特性を得る観点から、平板状無機粒子8のアスペクト比は50~300であることが好ましい。
各種平板状無機粒子8の中でも、マイカは、アスペクト比が高い(平均長径が100~500μm、厚さが1μm以下)ものが多く、且つ電気絶縁性にも優れていることから好ましい。
これに対して、平板層4が存在しない場合、図3に示すように、補強層3に含有される充填材6の流出経路が多く(図中の矢印は充填材6の流出経路を表す)、固定子コイルを製造する際(特に、加熱プレスの際)に、含浸に用いられる樹脂組成物と共に充填材6が流出してしまい、所望の熱伝導性を有する絶縁被覆体を形成することができない。
また、平板状無機粒子8の平均長径は、充填材6の平均粒径よりも大きいことが好ましい。平板状無機粒子8の平均長径が、充填材6の平均粒径よりも大きいと、平板状無機粒子8の間からの充填材6の外部流出を、より一層抑制することができる。
まず、マイカ5を含む分散液を抄造してマイカ層2を形成する。
マイカ5を含む分散液の調製方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。例えば、マイカ5を水中に分散させることによって分散液を調製することができる。分散液におけるマイカ5の含有量は、特に限定されず、マイカ5の種類等に応じて適宜調整すればよい。
分散液の抄造方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。例えば、市販の抄紙機を用いて分散液を抄造することにより、マイカ層2となるマイカシートを得ることができる。
熱硬化性樹脂としては、特に限定されず、当該技術分野において公知のものを用いることができる。熱硬化性樹脂の例としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、及びポリイミド樹脂等が挙げられる。これらの中でも、エポキシ樹脂は、耐熱性や接着性等の特性に優れているので好ましい。エポキシ樹脂の例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、脂環脂肪族エポキシ樹脂、及びグリシジル-アミノフェノール系エポキシ樹脂等が挙げられる。これらの樹脂は、単独又は2種以上を組み合わせて用いることができる。
硬化剤の配合量は、使用する熱硬化性樹脂や硬化剤の種類等に応じて適宜設定する必要があるが、一般的に100質量部の熱硬化性樹脂に対して0.1質量部以上200質量部以下である。
溶剤の配合量は、樹脂組成物の所望とする粘度に応じて適宜調整すればよく、特に限定されない。
マイカシートに繊維強化材7を貼り合わせる方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。例えば、マイカシートと繊維強化材7とを樹脂組成物を用いて貼り合わせればよい。具体的には、ロールコーター法又はスプレー法等の公知の方法を用いて樹脂組成物を繊維強化材7に塗布し、樹脂組成物中の溶剤を揮発させた後、その上にマイカシートを重ねる。その後、この積層物を60~70℃の加熱下で熱ロール等により加圧して圧着させればよい。
塗布したスラリーは、ドクターブレード等の公知の方法を用いて切削した後、60~70℃の加熱下で熱ロール等を用いて加圧される。これにより、均一且つ所望の厚さの補強層3を形成することができる。
また、切削条件としては、特に限定されないが、マイカシートとドクターブレードとのクリアランス(ギャップ)が0.01~0.1mmであることが好ましく、切削温度が10~40℃であることが好ましく、切削速度(ドクターブレードに対するマイカシートの走行速度)が5m/分以下であることが好ましい。ギャップが0.01mm未満であると、繊維強化材7が剥離してしまう場合がある。一方、ギャップが0.1mmを超えると、補強層3が厚くなりすぎてしまう。また、切削温度が10℃未満であると、塗布物の粘性が高く、平滑に切削できないことがある。一方、切削温度が40℃を超えると、塗布物の溶剤の揮発速度が大きくなり、均一な厚さに切削することができない。
平板状無機粒子8を含むスラリーとしては、特に限定されず、例えば、平板状無機粒子8と溶剤との混合物を用いることができる。
溶剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。溶剤の例としては、トルエンやメチルエチルケトン等の有機溶剤が挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。
溶剤の配合量は、スラリーの塗布性に応じて適宜調整すればよく、特に限定されない。
平板状無機粒子8を含むスラリーの塗布後、所定の温度に加熱して溶剤を揮発させることにより、平板層4を形成することができる。
本発明の実施の形態2による固定子コイルは、コイル導体と、このコイル導体の外周部に巻回された実施の形態1の絶縁テープ1を有し、絶縁テープ1が樹脂によって前記コイル導体と一体化された絶縁被覆体とを備えている。本実施の形態の固定子コイルは、使用する絶縁テープに主な特徴があり、その他の構成は従来公知の構成(例えば、図4の構成)を採用することができる。
まず、絶縁被覆された複数の素線導体を束ねて構成されたコイル導体の外周部に、絶縁テープ1を一部(例えば、絶縁テープ1の幅の半分の部分)が互いに重なるように複数回巻き付ける。ここで、コイル導体を構成する素線としては、導電性であれば特に限定されず、銅、アルミニウム、銀等からなる素線を用いることができる。
熱硬化性樹脂としては、特に限定されず、実施の形態1において例示したものと同じものを用いることができる。
硬化剤の配合量は、使用する熱硬化性樹脂や硬化剤の種類等に応じて適宜設定する必要があるが、一般的に100質量部の熱硬化性樹脂に対して0.1質量部以上200質量部以下である。
次に、絶縁テープ1を加熱等することにより、絶縁テープ1に含浸されている樹脂組成物を硬化させる。これにより、固定子コイルが完成する。
(実施例1)
集成マイカ粉を水中に分散させ、集成マイカ粉の分散液を調製した後、この分散液を抄紙機にて抄造してマイカシート(マイカ層)を得た。
次に、ビスフェノールA型エポキシ樹脂(商品名:エピコート834、ジャパンエポキシレジン株式会社製)100質量部及びナフテン酸亜鉛10質量部をメチルエチルケトン400質量部に溶解した樹脂組成物をロールコーター法にてマイカシートに塗布し、その上に支持材(幅1000mm、厚さ0.02mmであり、所定の長さを有するポリエステルフィルム)を重ねて貼り合わせ、全体の厚さが0.1mmの支持材付きマイカシートを得た。
次に、この樹脂組成物をスプレー法にて上記積層物のガラスクロス面に塗布した。次に、この塗布物をクロムメッキ鋼のドクターブレードを用い、ギャップ0.01mm、切削速度3m/分、切削温度25℃の条件下で切削した後、60℃の熱ロールで加圧して補強層を形成した。
得られた絶縁テープは、下記の試験に用いるために幅30mmに切断した。
次に、コイル導体に巻き付けられた絶縁テープに、真空加圧含浸方式によって液状の樹脂組成物を含浸させた。ここで、樹脂組成物としては、ビスフェノールA型エポキシ樹脂(商品名:エピコート828、ジャパンエポキシレジン株式会社製)100質量部とメチルテトラヒドロ無水フタル酸硬化剤(商品名:HN-2200、日立化成工業株式会社製)93質量部とからなるものを用いた。
充填材として、平均粒径が60μmの窒化ホウ素の二次凝集粒子を用いたこと以外は実施例1と同様にして絶縁テープ及び固定子コイルを作製した。
(比較例1)
平板層を形成しなかったこと以外は実施例1と同様にして絶縁テープ及び固定子コイルを作製した。
(比較例2)
ガラスクロスの厚さを75μmに変更すると共に、アスペクト比が20のマイカ粒子(平板状無機粒子)を用いたこと以外は実施例1と同様にして絶縁テープ及び固定子コイルを作製した。
絶縁被覆体の熱伝導率の測定は、固定子コイルから絶縁被覆体の試験片を切り出し、切り出した絶縁被覆体の試験片に対して、熱伝導率測定装置(キセノンフラッシュアナライザ、LFA447NanoFlash(登録商標)、NETZSCH社製)を用いることにより行った。また、絶縁被覆体の絶縁破壊電圧の測定は、JIS-C2126の方法に準拠して行った。これらの結果を表1に示す。
これに対して比較例において作製された固定子コイルの絶縁被覆体は、25kV以上の絶縁破壊電圧を有していたものの、熱伝導率が低かった。
Claims (8)
- マイカを含むマイカ層と、
前記マイカ層上に積層された補強層であって、充填材及び繊維強化材を含む補強層と、
前記補強層上に積層された平板層であって、アスペクト比が30以上の平板状無機粒子を含む平板層と
を有することを特徴とする絶縁テープ。 - 前記平板状無機粒子の平均長径が、前記充填材の平均粒径よりも大きいことを特徴とする請求項1に記載の絶縁テープ。
- 前記平板状無機粒子の平均長径が、80μm以上であることを特徴とする請求項1又は2に記載の絶縁テープ。
- 前記平板状無機粒子がマイカであることを特徴とする請求項1~3のいずれか一項に記載の絶縁テープ。
- 前記充填材の熱伝導率が5W/mK以上であることを特徴とする請求項1~4のいずれか一項に記載の絶縁テープ。
- 前記充填材が窒化ホウ素であることを特徴とする請求項1~5のいずれか一項に記載の絶縁テープ。
- マイカを含む分散液を抄造してマイカ層を形成する工程と、
前記マイカシートに繊維強化材を貼り合わせた後、充填材を含むスラリーを前記繊維強化材に塗布して補強層を形成する工程と、
アスペクト比が30以上の平板状無機粒子を含むスラリーを前記補強層に塗布して平板層を形成する工程と
を含むことを特徴とする絶縁テープの製造方法。 - コイル導体と、
前記コイル導体の外周部に巻回された請求項1~6のいずれか一項に記載の絶縁テープを有し、前記絶縁テープが樹脂によって前記コイル導体と一体化された絶縁被覆体と
を備えることを特徴とする固定子コイル。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13870918.3A EP2945169B1 (en) | 2013-01-10 | 2013-12-11 | Insulation tape, method for producing same and stator coil |
JP2014511001A JP5611485B1 (ja) | 2013-01-10 | 2013-12-11 | 絶縁テープ及びその製造方法、並びに固定子コイル |
US14/440,424 US9925744B2 (en) | 2013-01-10 | 2013-12-11 | Insulating tape, method for producing same, and stator coil |
CN201380064388.5A CN104838452B (zh) | 2013-01-10 | 2013-12-11 | 绝缘带及其制造方法、以及定子线圈 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013002355 | 2013-01-10 | ||
JP2013-002355 | 2013-01-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014109167A1 true WO2014109167A1 (ja) | 2014-07-17 |
Family
ID=51166829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/083233 WO2014109167A1 (ja) | 2013-01-10 | 2013-12-11 | 絶縁テープ及びその製造方法、並びに固定子コイル |
Country Status (5)
Country | Link |
---|---|
US (1) | US9925744B2 (ja) |
EP (1) | EP2945169B1 (ja) |
JP (1) | JP5611485B1 (ja) |
CN (1) | CN104838452B (ja) |
WO (1) | WO2014109167A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019130588A1 (ja) * | 2017-12-28 | 2019-07-04 | 日立化成株式会社 | プリプレグマイカテープ、回転電機用コイル及びその製造方法 |
WO2019130586A1 (ja) * | 2017-12-28 | 2019-07-04 | 日立化成株式会社 | プリプレグマイカテープ、回転電機用コイル及びその製造方法 |
US11095179B2 (en) * | 2016-07-13 | 2021-08-17 | Mitsubishi Electric Corporation | Thermosetting resin composition, stator coil obtained using same, and rotating electric machine |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105637599B (zh) * | 2013-10-09 | 2017-06-27 | 日立化成株式会社 | 预浸云母带及使用其的线圈 |
WO2019079473A1 (en) * | 2017-10-19 | 2019-04-25 | Shell Oil Company | MINERAL INSULATED ELECTRIC CABLES FOR INTEGRATED COMPRESSORS DRIVEN BY ELECTRIC MOTOR |
US11848590B1 (en) | 2020-01-15 | 2023-12-19 | Kencoil, Inc. | Electric coil with novel insulating tape and manufacturing method therefor |
CN111501401B (zh) * | 2020-04-10 | 2022-04-19 | 北京倚天凌云科技股份有限公司 | 一种树脂复合型绝缘云母纸及其制备方法 |
JP7292525B2 (ja) * | 2020-09-09 | 2023-06-16 | 三菱電機株式会社 | 回転機コイルと回転電機、および回転機コイルの製造方法 |
CN113808778B (zh) * | 2021-11-01 | 2024-09-13 | 哈尔滨理工大学 | 一种高导热氮化硼云母带及其制备方法 |
CN115142291A (zh) * | 2022-07-26 | 2022-10-04 | 宁波卓翔科技有限公司 | 一种纤维加强云母纸的制备方法、云母板的制备方法以及云母板 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62104447A (ja) * | 1985-10-30 | 1987-05-14 | Mitsubishi Electric Corp | 回転電機巻線 |
JP2000058314A (ja) * | 1998-08-03 | 2000-02-25 | Hitachi Ltd | 高熱伝導コイル、絶縁シート及びその製造方法 |
WO2001016965A1 (fr) * | 1999-08-27 | 2001-03-08 | Hitachi, Ltd. | Materiau isolant, enroulement electrique et leur procede de fabrication |
JP2002330562A (ja) * | 2001-04-27 | 2002-11-15 | Toshiba Corp | 回転電機のコイル及びこのコイルの絶縁に用いられるマイカーテープ |
WO2005069312A1 (ja) * | 2004-01-15 | 2005-07-28 | Kabushiki Kaisha Toshiba | テープ部材或いはシート部材並びにテープ部材或いはシート部材の製造方法 |
WO2007037342A1 (ja) * | 2005-09-29 | 2007-04-05 | Kabushiki Kaisha Toshiba | マイカテープ、このマイカテープを用いた回転電機コイルおよびこの回転電機コイルを具えた回転電機 |
JP2009187817A (ja) * | 2008-02-07 | 2009-08-20 | Toshiba Corp | 絶縁シート、固定子コイルおよび回転電機 |
JP4625615B2 (ja) | 2003-05-22 | 2011-02-02 | 株式会社東芝 | テープ部材とその製造方法及びテープ部材を用いた電磁コイル並びに電磁機器 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5553802A (en) * | 1978-10-17 | 1980-04-19 | Japan Mica Ind | Resin impregnated lumped mica basic material sheet and method of manufacturing same |
JPS5818809A (ja) * | 1981-07-24 | 1983-02-03 | 株式会社デンソー | 耐過負荷絶縁電線及びその製造方法 |
JPH0274548A (ja) | 1988-09-12 | 1990-03-14 | Showa Denko Kk | 耐熱絶縁シートの製造方法 |
JP3458693B2 (ja) | 1998-02-27 | 2003-10-20 | 株式会社日立製作所 | 絶縁材及び電機巻線 |
US6288341B1 (en) * | 1998-02-27 | 2001-09-11 | Hitachi, Ltd. | Insulating material windings using same and a manufacturing method thereof |
US7955661B2 (en) * | 2005-06-14 | 2011-06-07 | Siemens Energy, Inc. | Treatment of micropores in mica materials |
JP2008027819A (ja) * | 2006-07-24 | 2008-02-07 | Toshiba Corp | プリプレグ材、電気絶縁用プリプレグテープ及びこれを用いた回転電機 |
US7812260B2 (en) * | 2007-09-25 | 2010-10-12 | Siemens Energy, Inc. | Electrical insulation tape with controlled bonding and resin impregnation properties |
CN201556453U (zh) * | 2009-09-30 | 2010-08-18 | 江苏迅达电磁线有限公司 | 云母带绕包薄膜熔敷铜扁线 |
-
2013
- 2013-12-11 US US14/440,424 patent/US9925744B2/en active Active
- 2013-12-11 CN CN201380064388.5A patent/CN104838452B/zh active Active
- 2013-12-11 JP JP2014511001A patent/JP5611485B1/ja active Active
- 2013-12-11 EP EP13870918.3A patent/EP2945169B1/en active Active
- 2013-12-11 WO PCT/JP2013/083233 patent/WO2014109167A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62104447A (ja) * | 1985-10-30 | 1987-05-14 | Mitsubishi Electric Corp | 回転電機巻線 |
JP2000058314A (ja) * | 1998-08-03 | 2000-02-25 | Hitachi Ltd | 高熱伝導コイル、絶縁シート及びその製造方法 |
WO2001016965A1 (fr) * | 1999-08-27 | 2001-03-08 | Hitachi, Ltd. | Materiau isolant, enroulement electrique et leur procede de fabrication |
JP2002330562A (ja) * | 2001-04-27 | 2002-11-15 | Toshiba Corp | 回転電機のコイル及びこのコイルの絶縁に用いられるマイカーテープ |
JP4625615B2 (ja) | 2003-05-22 | 2011-02-02 | 株式会社東芝 | テープ部材とその製造方法及びテープ部材を用いた電磁コイル並びに電磁機器 |
WO2005069312A1 (ja) * | 2004-01-15 | 2005-07-28 | Kabushiki Kaisha Toshiba | テープ部材或いはシート部材並びにテープ部材或いはシート部材の製造方法 |
WO2007037342A1 (ja) * | 2005-09-29 | 2007-04-05 | Kabushiki Kaisha Toshiba | マイカテープ、このマイカテープを用いた回転電機コイルおよびこの回転電機コイルを具えた回転電機 |
JP2009187817A (ja) * | 2008-02-07 | 2009-08-20 | Toshiba Corp | 絶縁シート、固定子コイルおよび回転電機 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2945169A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11095179B2 (en) * | 2016-07-13 | 2021-08-17 | Mitsubishi Electric Corporation | Thermosetting resin composition, stator coil obtained using same, and rotating electric machine |
WO2019130588A1 (ja) * | 2017-12-28 | 2019-07-04 | 日立化成株式会社 | プリプレグマイカテープ、回転電機用コイル及びその製造方法 |
WO2019130586A1 (ja) * | 2017-12-28 | 2019-07-04 | 日立化成株式会社 | プリプレグマイカテープ、回転電機用コイル及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2945169A1 (en) | 2015-11-18 |
CN104838452B (zh) | 2017-05-24 |
JPWO2014109167A1 (ja) | 2017-01-19 |
EP2945169A4 (en) | 2016-08-17 |
US9925744B2 (en) | 2018-03-27 |
CN104838452A (zh) | 2015-08-12 |
US20150273800A1 (en) | 2015-10-01 |
JP5611485B1 (ja) | 2014-10-22 |
EP2945169B1 (en) | 2017-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5611485B1 (ja) | 絶縁テープ及びその製造方法、並びに固定子コイル | |
JP6058169B2 (ja) | 絶縁テープ及びその製造方法、固定子コイル及びその製造方法、並びに回転電機 | |
JP6203235B2 (ja) | 電磁コイル及びその製造方法 | |
JP4922018B2 (ja) | 回転電機のコイル絶縁物 | |
JP6094683B2 (ja) | プリプレグマイカテープ及びそれを用いたコイル | |
JP3576119B2 (ja) | 回転電機のコイル及びこのコイルの絶縁に用いられるマイカーテープ | |
JP3843967B2 (ja) | 絶縁コイルの製造方法 | |
WO2016104141A1 (ja) | 絶縁テープ及びその製造方法、並びに固定子コイル及びその製造方法、並びに発電機 | |
JP2012244861A (ja) | 絶縁コイル | |
JP2010158113A (ja) | 電気絶縁部材、回転電機用固定子コイルおよび回転電機 | |
JP2008027819A (ja) | プリプレグ材、電気絶縁用プリプレグテープ及びこれを用いた回転電機 | |
WO2018003950A1 (ja) | 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの製造方法、マイカテープの硬化物及び絶縁物 | |
JP6403444B2 (ja) | マイカテープ及び固定子コイル | |
JP5159812B2 (ja) | 回転電機 | |
WO2018003951A1 (ja) | 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物 | |
JPWO2019077793A1 (ja) | 固定子コイルの絶縁被覆材およびそれを用いた回転機 | |
WO2023047439A1 (ja) | 回転機コイル、その製造方法および回転機 | |
JP2018170252A (ja) | 回転電機用コイル、プリプレグマイカテープ、プリプレグマイカテープの製造方法、プリプレグマイカテープの硬化物、絶縁層付き物品、及び回転電機用コイルの製造方法 | |
WO2018179437A1 (ja) | 回転電機用コイル、回転電機用コイルの製造方法、ドライマイカテープ及び絶縁物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014511001 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13870918 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14440424 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2013870918 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013870918 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |