WO2014109167A1 - 絶縁テープ及びその製造方法、並びに固定子コイル - Google Patents

絶縁テープ及びその製造方法、並びに固定子コイル Download PDF

Info

Publication number
WO2014109167A1
WO2014109167A1 PCT/JP2013/083233 JP2013083233W WO2014109167A1 WO 2014109167 A1 WO2014109167 A1 WO 2014109167A1 JP 2013083233 W JP2013083233 W JP 2013083233W WO 2014109167 A1 WO2014109167 A1 WO 2014109167A1
Authority
WO
WIPO (PCT)
Prior art keywords
mica
insulating tape
filler
layer
inorganic particles
Prior art date
Application number
PCT/JP2013/083233
Other languages
English (en)
French (fr)
Inventor
馬渕 貴裕
茂之 山本
築地 真
浩 佐古
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP13870918.3A priority Critical patent/EP2945169B1/en
Priority to JP2014511001A priority patent/JP5611485B1/ja
Priority to US14/440,424 priority patent/US9925744B2/en
Priority to CN201380064388.5A priority patent/CN104838452B/zh
Publication of WO2014109167A1 publication Critical patent/WO2014109167A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/04Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material
    • B32B19/048Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material made of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/02Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica the layer of fibres or particles being impregnated or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/04Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/04Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material
    • B32B19/045Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/30Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/60Composite insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
    • H01B19/04Treating the surfaces, e.g. applying coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/04Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances mica
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/251Mica

Definitions

  • a stator of a rotating electrical machine (particularly, a high-voltage rotating electrical machine) has a stator coil 11 accommodated in a plurality of slots 16 formed on the inner peripheral side of the stator core 10 as shown in FIG.
  • the stator coil 11 includes a coil conductor 12 and an insulating cover 13.
  • the stator coil 11 has a predetermined cross-sectional shape after being wound around the coil conductor 12 several times with an insulating tape in which a fiber reinforcing material such as glass cloth is bonded to a mica sheet and impregnating the resin composition under reduced pressure. It is manufactured by heat-pressing while being formed into.
  • the stator coil 11 is incorporated into the slot 16 in two upper and lower stages, and a spacer 15 is provided between the stator coils 11 and a wedge 14 is provided at the opening end of the slot 16, thereby operating the rotating electrical machine. Occasionally, electromagnetic vibration generated from the stator coil 11 is suppressed.
  • the conductor coil 12 In the rotating electric machine stator having such a structure, the conductor coil 12 generates heat due to a load current during operation of the rotating electric machine. In particular, in the indirect hydrogen cooling type rotating electrical machine, most of the heat generated from the conductor coil 12 is transmitted to the cooling gas via the stator core 10. Therefore, in order to increase the efficiency, size and cost of the rotating electrical machine, it is required to increase the thermal conductivity of the insulating coating 13 of the stator coil 11.
  • an adhesive (resin composition) is used to support the filler in the insulating tape. Further, in the manufacture of the stator coil 11, the insulating tape is wound around the coil conductor 12 several times, and then impregnated with the resin composition and cured to give an integrated insulating covering 13, so that the support of the filler is carried out.
  • the compatibility of the adhesive used for the resin and the resin composition used for impregnation is required to be good.
  • An object of the present invention is to provide an insulating tape capable of forming an insulating covering having high thermal conductivity and a method for manufacturing the same. Moreover, an object of this invention is to provide the stator coil which has an insulation coating body with high heat conductivity.
  • the present inventors have determined that a reinforcing layer containing a filler having high thermal conductivity formed on a mica layer is a flat layer containing specific tabular inorganic particles. It was found that the coating material can be effectively suppressed from flowing out of the filler during manufacture of the stator coil (particularly during hot pressing). That is, the present invention is a mica layer containing mica, a reinforcing layer laminated on the mica layer, a reinforcing layer containing a filler and a fiber reinforcing material, and a flat layer laminated on the reinforcing layer. And an insulating tape having a flat layer containing flat inorganic particles having an aspect ratio of 30 or more.
  • the present invention also includes a step of forming a mica layer by making a dispersion containing mica, a fiber reinforcing material is bonded to the mica sheet, and then a slurry containing a filler is applied to the fiber reinforcing material.
  • a method for producing an insulating tape comprising: a step of forming a reinforcing layer; and a step of forming a flat layer by applying a slurry containing flat inorganic particles having an aspect ratio of 30 or more to the reinforcing layer. .
  • the present invention comprises a coil conductor and the insulating tape wound around the outer periphery of the coil conductor, and the insulating tape is integrated with the coil conductor with a resin. This is a featured stator coil.
  • the present invention it is possible to form an insulating covering with high thermal conductivity without the pre-supported filler flowing out to the outside during the manufacture of the stator coil (particularly during the heating press).
  • An insulating tape and a method for manufacturing the same can be provided.
  • the stator coil which has an insulation coating body with high heat conductivity can be provided.
  • FIG. 1 is a cross-sectional view schematically showing an insulating tape according to Embodiment 1.
  • FIG. It is a figure for demonstrating the state at the time of a pressure being applied to the insulating tape of FIG. 1 impregnated with the resin composition. It is a figure for demonstrating the state in which the pressure was applied to the insulating tape (insulating tape which does not form the flat layer) impregnated with the resin composition. It is a perspective view of a stator.
  • FIG. 1 is a cross-sectional view schematically showing an insulating tape according to Embodiment 1 of the present invention.
  • an insulating tape 1 includes a mica layer 2, a reinforcing layer 3 laminated on the mica layer 2, and a flat plate layer 4 laminated on the reinforcing layer 3.
  • Mica layer 2 includes mica 5.
  • the mica 5 is not particularly limited, and for example, hard mica (mascobite) and soft mica (phlogopite), which are known as a kind of layered silicate mineral, can be used.
  • the shape of the mica 5 is not particularly limited, and for example, block mica, peeled mica, and assembled mica can be used. These can be used alone or in combination of two or more. Among them, it is preferable to use a laminated mica because the thickness is uniform and the cost is low.
  • the content of mica 5 in the insulating tape 1 is preferably 100 g or more and 200 g or less per 1 mm 2 of insulating tape 1. If the content of mica 5 is less than 100 g, desired electrical insulation properties may not be obtained, and the dielectric breakdown time at the time of power degradation may be shortened. On the other hand, if the content of mica 5 exceeds 200 g, the electrical insulation is good, but the insulating tape 1 becomes too thick, and it may be difficult to wind the coil conductor. In addition, when the thickness of the insulating tape 1 is constant, the filling rate of the filler 6 effective for achieving high thermal conductivity is relatively lowered, and an insulating covering having a desired thermal conductivity can be formed. There are things that cannot be done.
  • the thickness of the mica layer 2 is not particularly limited, and may be appropriately adjusted according to the size of the insulating tape 1 to be manufactured.
  • the thickness of the mica layer 2 is preferably 60 ⁇ m to 150 ⁇ m, more preferably 80 ⁇ m to 120 ⁇ m.
  • the reinforcing layer 3 includes a filler 6 and a fiber reinforcement 7.
  • the filler 6 is not particularly limited, and those known in the technical field can be used.
  • Examples of the filler 6 include alumina, magnesium oxide, zinc oxide, magnesium carbonate, graphite, carbon tube, boron nitride, titanium boride, silicon carbide, silicon nitride, crystalline silica, aluminum nitride, and the like. These can be used alone or in combination.
  • the filler 6 preferably has a thermal conductivity of 5 W / mK or more from the viewpoint of thermal conductivity of the insulating coating. If the thermal conductivity is less than 5 W / mK, the thermal conductivity of the insulating coating may not be sufficiently improved.
  • the volume filling rate of the filler 6 in the insulating tape 1 is 50% by volume or less from the viewpoint of the impregnation property of the resin composition. When the volume filling rate exceeds 50% by volume, the resin composition may not be sufficiently impregnated during the manufacture of the stator coil, and desired characteristics may not be obtained.
  • boron nitride is preferable in that the insulating coating can be made highly conductive with a small addition amount (supported amount) and the insulating tape 1 does not need to be thick.
  • the primary particles of boron nitride have a layered structure similar to that of graphite, and the particle shape is scaly and has a high thermal conductivity in the major axis direction and a low thermal conductivity in the minor axis direction. It has a typical thermal conductivity.
  • secondary aggregated particles obtained by aggregating the primary particles of boron nitride may be used. Particularly preferred. It does not specifically limit as a manufacturing method of a secondary aggregation particle, A well-known method can be used in the said technical field.
  • secondary aggregated particles can be produced by aggregating primary particles of boron nitride with an inorganic binder.
  • the inorganic binder is not particularly limited, and examples thereof include boric acid, alkaline earth metal borates (calcium borate, magnesium borate, sodium borate, potassium borate), sodium silicate, aluminum phosphate, and the like. Can be mentioned.
  • the orientation index of the secondary aggregated particles is preferably 15 or less.
  • the intensity ratio of the X-ray diffraction peak of the secondary agglomerated particles exceeds 15, the ratio of the primary particles oriented in a specific direction in the secondary agglomerated particles increases, and the insulating coating having the desired thermal conductivity May not be obtained.
  • the average particle diameter of the filler 6 is preferably 80 ⁇ m or less.
  • the average particle diameter of the filler 6 exceeds 80 ⁇ m, the insulating tape 1 becomes too thick, and it may be difficult to wind it around the coil conductor.
  • the thickness of the insulating tape 1 is constant, it is necessary to relatively reduce the filling rate of the mica 5 that is responsible for insulation, and thus the electrical insulation characteristics of the insulating coating may be deteriorated.
  • the average particle diameter of the filler 6 means an average particle diameter obtained by performing particle size distribution measurement by the laser diffraction scattering method, and specifically, using a commercially available laser diffraction scattering type particle size distribution meter. Mean measured average particle size.
  • the fiber reinforcement 7 is not particularly limited, and those known in the technical field can be used.
  • the fiber reinforcing material 7 means a cloth formed by knitting a plurality of warps produced by bundling a plurality of fibers and a plurality of wefts produced by bundling a plurality of fibers in a lattice shape.
  • Examples of the fiber reinforcing material 7 include glass cloth, alumina cloth, silica cloth, and the like. Among them, it is preferable to use a glass cloth which is the best material in terms of strength and cost.
  • the fiber reinforcement 7 has a plurality of openings surrounded by warps and wefts. In the reinforcing layer 3, the filler 6 is captured in the opening. Thereby, the movement of the filler 6 in the in-layer direction is suppressed.
  • the thickness of the fiber reinforcement 7 is not particularly limited, but is preferably 80 ⁇ m or less. If the thickness of the fiber reinforcing material 7 exceeds 80 ⁇ m, the insulating tape 1 becomes too thick, and it may be difficult to wind the coil reinforcing material around the coil conductor. In addition, when the thickness of the insulating tape 1 is constant, it is necessary to relatively reduce the filling rate of the mica 5 that is responsible for insulation, and thus the electrical insulation characteristics of the insulating coating may be deteriorated.
  • the flat layer 4 includes flat inorganic particles 8 having an aspect ratio of 30 or more.
  • the aspect ratio of the tabular inorganic particles 8 means a value obtained by dividing the longest diameter of the tabular inorganic particles 8 by the shortest diameter (thickness).
  • the longest side when the projections of the tabular inorganic particles 8 are maximized is called the longest diameter, the thickness is the shortest diameter, and the average of the long sides is called the average long diameter.
  • the longest diameter, the shortest diameter (thickness), and the average long diameter can be measured using an electron microscope or the like.
  • the aspect ratio of the tabular inorganic particles 8 is preferably an average value per 100 tabular inorganic particles 8. Therefore, if the average value of the aspect ratio of the tabular inorganic particles 8 is 30 or more, the tabular inorganic particles 8 having an aspect ratio of less than 30 may be included. Further, since the insulating tape 1 is wound around the outer periphery of the coil conductor when the stator coil is manufactured, if the aspect ratio of the flat inorganic particles 8 is too large, the insulating tape 1 is wound around the outer periphery of the coil conductor. It becomes difficult to put on. Therefore, the aspect ratio of the tabular inorganic particles 8 is preferably 50 to 300 from the viewpoint of obtaining both the characteristics of suppressing the outflow of the filler 6 and the winding property of the insulating tape 1.
  • the tabular inorganic particles 8 are not particularly limited, and those known in the technical field can be used. Among them, the tabular inorganic particles 8 are preferably those that are not soluble or poor in the resin used for impregnation. Examples of preferable tabular inorganic particles 8 include layered ferrosilicate minerals such as mica, kaolin, pyrophyllite, sericite, and talc, glass flakes, glass plates, aluminum flakes, boehmite, and alumina. These can be used alone or in combination. Among the various tabular inorganic particles 8, mica is preferable because it has many aspect ratios (average major axis is 100 to 500 ⁇ m, thickness is 1 ⁇ m or less) and is excellent in electrical insulation.
  • the flat layer 4 covers the surface of the reinforcing layer 3 as shown in FIG. 2, there are few outflow paths of the filler 6 contained in the reinforcing layer 3 (the arrows in the figure indicate the outflow of the filler 6).
  • the filler 6 is difficult to flow out together with the resin composition used for impregnation, and an insulating coating having a desired thermal conductivity is formed. can do.
  • the flat layer 4 does not exist, as shown in FIG. 3, there are many outflow paths of the filler 6 contained in the reinforcing layer 3 (the arrows in the figure represent the outflow path of the filler 6).
  • the stator coil is manufactured (especially during hot pressing)
  • the filler 6 flows out together with the resin composition used for impregnation, and an insulating covering having desired thermal conductivity can be formed. Can not.
  • the flat inorganic particles 8 in the flat layer 4 act as walls that prevent the filler 6 from flowing out to the outside.
  • the flat inorganic particles 8 in the flat layer 4 are bent in a complicated manner along the shape of the coil conductor when the stator coil is manufactured (particularly when the insulating tape 1 is wound around the coil conductor). As the average major axis of the tabular inorganic particles 8 is longer, the tabular inorganic particles 8 are more complicatedly bent, and the outflow of the filler 6 from between the tabular inorganic particles 8 can be effectively suppressed.
  • the average major axis of the tabular inorganic particles 8 is preferably 80 ⁇ m or more.
  • the average long diameter of the tabular inorganic particles 8 is preferably larger than the average particle diameter of the filler 6.
  • the inorganic particles in the flat plate layer 4 have other shapes such as a spherical shape
  • the inorganic particles in the flat plate layer 4 are coil conductors when the stator coil is manufactured (particularly when the insulating tape 1 is wound around the coil conductor).
  • the distance between the inorganic particles in the flat layer 4 is increased.
  • the filler 6 contained in the reinforcing layer 3 easily flows out together with the resin composition used for impregnation, and the desired thermal conductivity is obtained. It is not possible to form an insulating coating having the same.
  • the thickness of the flat layer 4 is not particularly limited, but is preferably 80 ⁇ m or less, more preferably 30 ⁇ m or less. When the thickness of the flat plate layer 4 exceeds 80 ⁇ m, the insulating tape 1 becomes too thick, and it may be difficult to wind the coil conductor around the coil conductor.
  • a mica layer 2 is formed by making a dispersion containing mica 5. It does not specifically limit as a preparation method of the dispersion liquid containing the mica 5, A well-known method can be used in the said technical field.
  • a dispersion can be prepared by dispersing mica 5 in water.
  • the content of mica 5 in the dispersion is not particularly limited, and may be appropriately adjusted according to the type of mica 5 and the like.
  • the method for making the dispersion is not particularly limited, and methods known in the art can be used.
  • a mica sheet to be the mica layer 2 can be obtained by making a dispersion using a commercially available paper machine.
  • the mica sheet may be bonded to various films as other support materials.
  • the resin composition may be applied to the mica sheet using a known method such as a roll coater method or a spray method, and then bonded to the support material.
  • the resin composition used for adhesion between the mica sheet and the support material generally contains a thermosetting resin, a curing agent, and a solvent. It does not specifically limit as a thermosetting resin, A well-known thing can be used in the said technical field.
  • thermosetting resins include epoxy resins, unsaturated polyester resins, phenol resins, melamine resins, silicone resins, and polyimide resins. Among these, epoxy resins are preferable because they are excellent in characteristics such as heat resistance and adhesiveness.
  • epoxy resins examples include bisphenol A type epoxy resins, bisphenol F type epoxy resins, orthocresol novolac type epoxy resins, phenol novolac type epoxy resins, alicyclic aliphatic epoxy resins, and glycidyl-aminophenol type epoxy resins. It is done. These resins can be used alone or in combination of two or more.
  • curing agent examples include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
  • organometallic complex examples include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organocopper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate.
  • Organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate.
  • organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate.
  • cobalt (II) acetylacetonate cobalt (III) acetylacetonate, zinc (II) acetylacetonate, zinc naphthenate, iron (III) acetylacetonate are Cobalt (II) acetylacetonate and zinc naphthenate are more preferable.
  • the compounding amount of the curing agent needs to be appropriately set according to the type of the thermosetting resin and the curing agent to be used, but is generally 0.1 parts by mass or more with respect to 100 parts by mass of the thermosetting resin. It is 200 parts by mass or less.
  • solvent it does not specifically limit as a solvent, A well-known thing can be used in the said technical field.
  • the solvent include organic solvents such as toluene and methyl ethyl ketone. These can be used alone or in combination of two or more. What is necessary is just to adjust suitably the compounding quantity of a solvent according to the viscosity which the resin composition makes desired, and it does not specifically limit.
  • the slurry containing the filler 6 is applied to the fiber reinforcement 7 to form the reinforcing layer 3.
  • the method for attaching the fiber reinforcement 7 to the mica sheet is not particularly limited, and methods known in the technical field can be used.
  • the mica sheet and the fiber reinforcement 7 may be bonded together using a resin composition.
  • the resin composition is applied to the fiber reinforcing material 7 using a known method such as a roll coater method or a spray method, and after the solvent in the resin composition is volatilized, a mica sheet is stacked thereon.
  • the laminate may be pressure-bonded by heating with a hot roll or the like under heating at 60 to 70 ° C.
  • the slurry containing the filler 6 is not particularly limited, and for example, a resin composition containing the filler 6 can be used.
  • a resin composition containing the filler 6 can be used as the resin composition used for this slurry.
  • the same resin composition as that used for bonding the mica sheet and the support material can be used.
  • the blending amount of the filler 6 needs to be appropriately set according to the type of the thermosetting resin and the curing agent to be used. It is below mass parts.
  • the method for applying the slurry containing the filler 6 is not particularly limited, and methods known in the technical field can be used.
  • Examples of the application method include a spray method, a roll coater method, and a gravure transfer method.
  • the applied slurry is cut using a known method such as a doctor blade, and then pressed using a hot roll or the like under heating at 60 to 70 ° C. Thereby, the reinforcement layer 3 of uniform and desired thickness can be formed.
  • the material of the doctor blade examples include metals, ceramics, plastics, and the like. From the viewpoint of workability and wear resistance, chrome-plated steel is preferable.
  • the cutting conditions are not particularly limited, but the clearance (gap) between the mica sheet and the doctor blade is preferably 0.01 to 0.1 mm, and the cutting temperature is preferably 10 to 40 ° C.,
  • the cutting speed (traveling speed of the mica sheet relative to the doctor blade) is preferably 5 m / min or less. If the gap is less than 0.01 mm, the fiber reinforcement 7 may be peeled off. On the other hand, if the gap exceeds 0.1 mm, the reinforcing layer 3 becomes too thick.
  • the cutting temperature is less than 10 ° C.
  • the viscosity of the coated material is high and cutting may not be performed smoothly.
  • the cutting temperature exceeds 40 ° C., the volatilization rate of the solvent of the applied product increases, and it is impossible to cut to a uniform thickness.
  • the slurry containing the flat inorganic particles 8 is applied to the reinforcing layer 3 to form the flat layer 4.
  • the slurry containing the tabular inorganic particles 8 is not particularly limited, and for example, a mixture of the tabular inorganic particles 8 and a solvent can be used. It does not specifically limit as a solvent, A well-known thing can be used in the said technical field.
  • the solvent include organic solvents such as toluene and methyl ethyl ketone. These can be used alone or in combination of two or more.
  • the blending amount of the solvent may be appropriately adjusted according to the coating property of the slurry, and is not particularly limited.
  • the flat layer 4 can be formed by heating to a predetermined temperature and volatilizing the solvent.
  • the filler 6 previously supported on the reinforcing layer 3 is used during the manufacture of the stator coil (in particular, It becomes difficult to flow out to the outside during the heating press), and an insulating covering with high thermal conductivity can be formed.
  • FIG. The stator coil according to the second embodiment of the present invention has a coil conductor and the insulating tape 1 according to the first embodiment wound around the outer periphery of the coil conductor, and the insulating tape 1 is made of resin with the coil conductor. And an integrated insulating covering.
  • the stator coil of the present embodiment is mainly characterized by the insulating tape to be used, and a conventionally known configuration (for example, the configuration of FIG. 4) can be adopted as the other configuration.
  • the stator coil having such a structure is manufactured as follows. First, the insulating tape 1 is overlapped several times on the outer periphery of the coil conductor formed by bundling a plurality of insulated conductors so that a part of the insulating tape 1 overlaps each other (for example, half the width of the insulating tape 1). Wrap.
  • a strand which comprises a coil conductor if it is electroconductive, it will not specifically limit, The strand which consists of copper, aluminum, silver, etc. can be used.
  • the insulating tape 1 wound around the coil conductor is impregnated with the resin composition.
  • the resin composition used for impregnation is not particularly limited, but generally includes a thermosetting resin and a curing agent. It does not specifically limit as a thermosetting resin, The same thing as what was illustrated in Embodiment 1 can be used.
  • curing agents include: cycloaliphatic acid anhydrides such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride and hymic anhydride; aliphatic acid anhydrides such as dodecenyl succinic anhydride; phthalic anhydride and trihydric anhydride Aromatic acid anhydrides such as merit acid; organic dihydrazides such as dicyandiamide and adipic acid dihydrazide; tris (dimethylaminomethyl) phenol; dimethylbenzylamine; 1,8-diazabicyclo (5,4,0) undecene and derivatives thereof; And imidazoles such as -methylimidazole, 2-ethyl-4-methylimidazole and 2-phenylimidazole.
  • cycloaliphatic acid anhydrides such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride and hymic anhydride
  • curing agents can be used individually or in combination of 2 or more types.
  • the compounding amount of the curing agent needs to be appropriately set according to the type of the thermosetting resin and the curing agent to be used, but is generally 0.1 parts by mass or more with respect to 100 parts by mass of the thermosetting resin. It is 200 parts by mass or less.
  • the impregnation method of the resin composition is not particularly limited, and a method known in the technical field can be used.
  • Examples of the impregnation method include vacuum impregnation, vacuum pressure impregnation, and normal pressure impregnation.
  • the conditions for the impregnation are not particularly limited, and may be appropriately adjusted according to the type of resin composition to be used.
  • the reinforcing layer 3 is applied even when pressure is applied to the insulating tape 1 as shown in FIG.
  • the filler 6 contained in is difficult to flow out together with the resin composition used for impregnation, and the thermal conductivity of the insulating coating can be improved.
  • the resin composition used for impregnation with the filler 6 contained in the reinforcing layer 3 is used. It flows out with it, and the heat conductivity of an insulation coating body will fall.
  • the stator coil of the present embodiment manufactured as described above is insulated because the pre-supported filler 6 hardly flows out to the outside during manufacture of the stator coil (particularly during heating press).
  • the thermal conductivity of the covering can be improved.
  • Example 1 The assembled mica powder was dispersed in water to prepare a dispersion of the assembled mica powder, and the dispersion was made with a paper machine to obtain a mica sheet (mica layer). Next, a resin composition prepared by dissolving 100 parts by mass of a bisphenol A type epoxy resin (trade name: Epicoat 834, manufactured by Japan Epoxy Resin Co., Ltd.) and 10 parts by mass of zinc naphthenate in 400 parts by mass of methyl ethyl ketone by a roll coater method.
  • a bisphenol A type epoxy resin trade name: Epicoat 834, manufactured by Japan Epoxy Resin Co., Ltd.
  • a support material (a polyester film having a width of 1000 mm and a thickness of 0.02 mm and having a predetermined length) is laminated and bonded to the mica with a support material having an overall thickness of 0.1 mm. A sheet was obtained.
  • a resin composition obtained by dissolving 100 parts by mass of bisphenol A type epoxy resin (trade name: Epicoat 834, manufactured by Japan Epoxy Resin Co., Ltd.) and 10 parts by mass of zinc naphthenate in 1000 parts by mass of methyl ethyl ketone is obtained by a roll coater method.
  • a glass cloth a width of 1000 mm, a thickness of 30 ⁇ m, a predetermined length, and an opening ratio of 97%) as a fiber reinforcement
  • the solvent was volatilized.
  • the coated material was cut using a chrome-plated steel doctor blade under the conditions of a gap of 0.01 mm, a cutting speed of 3 m / min, and a cutting temperature of 25 ° C., and then pressurized with a 60 ° C. hot roll to provide a reinforcing layer. Formed.
  • this insulating tape was wound around a coil conductor of 50 mm ⁇ 12 mm ⁇ 1140 mm by half wrapping to a thickness of 4.4 mm.
  • the insulating resin wound around the coil conductor was impregnated with a liquid resin composition by a vacuum pressure impregnation method.
  • the resin composition 100 parts by mass of bisphenol A type epoxy resin (trade name: Epicoat 828, manufactured by Japan Epoxy Resin Co., Ltd.) and methyltetrahydrophthalic anhydride curing agent (trade name: HN-2200, Hitachi Chemical Co., Ltd.) A product consisting of 93 parts by mass) was used.
  • the resin composition is clamped with a jig so that the thickness of the insulating tape impregnated with the resin composition is 4.26 mm, and heated in a drying furnace to obtain a resin composition.
  • Stator coils were produced by curing.
  • Example 2 An insulating tape and a stator coil were produced in the same manner as in Example 1 except that secondary aggregate particles of boron nitride having an average particle diameter of 60 ⁇ m were used as the filler.
  • Comparative Example 1 An insulating tape and a stator coil were produced in the same manner as in Example 1 except that the flat layer was not formed.
  • Comparative Example 2 An insulating tape and a stator coil were produced in the same manner as in Example 1 except that the thickness of the glass cloth was changed to 75 ⁇ m and mica particles (flat inorganic particles) having an aspect ratio of 20 were used.
  • the measurement of thermal conductivity and a dielectric breakdown voltage was performed as follows.
  • the measurement of the thermal conductivity of the insulating coating was performed by cutting out a test piece of the insulating coating from the stator coil, and applying a thermal conductivity measuring device (xenon flash analyzer, LFA447 NanoFlash (registered trademark) to the cut out test piece of the insulating coating. ) And NETZSCH).
  • the dielectric breakdown voltage of the insulation coating was measured according to the method of JIS-C2126. These results are shown in Table 1.
  • the insulation coating of the stator coil produced in the example has a dielectric breakdown voltage of 25 kV or higher and a thermal conductivity of 0.5 or higher. The thermal conductivity was also good. On the other hand, although the insulation coating body of the stator coil produced in the comparative example had a dielectric breakdown voltage of 25 kV or more, the thermal conductivity was low.
  • the pre-supported filler does not flow out to the outside during the manufacture of the stator coil (particularly during the heating press), and the insulation has high thermal conductivity.
  • An insulating tape capable of forming a covering and a method for manufacturing the same can be provided.
  • the stator coil which has an insulation coating body with high heat conductivity can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Insulating Bodies (AREA)
  • Inorganic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

 本発明は、マイカを含むマイカ層と、前記マイカ層上に積層された補強層であって、充填材及び繊維強化材を含む補強層と、前記補強層上に積層された平板層であって、アスペクト比が30以上の平板状無機粒子を含む平板層とを有することを特徴とする絶縁テープである。この絶縁テープは、予め担持させた充填材が固定子コイルの製造の際(特に、加熱プレスの際)に外部に流出することなく、熱伝導性が高い絶縁被覆体を形成することができる。

Description

絶縁テープ及びその製造方法、並びに固定子コイル
 本発明は、回転電機の固定子に用いられる絶縁テープ及びその製造方法、並びに固定子コイルに関する。
 回転電機(特に、高電圧回転電機)の固定子は、図4に示すように、固定子鉄心10の内周側に形成された複数のスロット16内に収容された固定子コイル11を有する。固定子コイル11は、コイル導体12と絶縁被覆体13とから構成される。固定子コイル11は、マイカシートにガラスクロス等の繊維強化材を貼り合わせた絶縁テープをコイル導体12に数回巻き付け、樹脂組成物を減圧下で含浸させた後、所定の断面形状となるように成形しながら加熱プレスすることによって製造される。固定子コイル11は、スロット16内に上下2段に組み込まれており、固定子コイル11の間にスペーサー15を設けると共に、スロット16の開口端部にウェッジ14を設けることにより、回転電機の運転時に固定子コイル11から生じる電磁振動を抑制している。
 このような構造を有する回転電機の固定子において、導体コイル12は、回転電機の運転時の負荷電流によって発熱する。そして、特に間接水素冷却型方式の回転電機では、導体コイル12からの発熱の大部分が、固定子鉄心10を経由して冷却気体に伝達される。そのため、回転電機の高効率化、小型化及び低コスト化のためには、固定子コイル11の絶縁被覆体13の熱伝導率を高めることが要求されている。
 そこで、固定子コイル11の絶縁被覆体13の熱伝導率を高めるために、熱伝導率が高い充填材を含む絶縁テープを用いることが提案されている(例えば、特許文献1参照)。
特許第4625615号公報
 絶縁テープにおいて充填材を担持させるためには、一般に、接着剤(樹脂組成物)が用いられている。また、固定子コイル11の製造において、絶縁テープは、コイル導体12に数回巻き付けた後、樹脂組成物を含浸させて硬化することによって一体化した絶縁被覆体13を与えるため、充填材の担持に用いられる接着剤と、含浸に用いられる樹脂組成物との相溶性が良好であることが求められる。
 しかしながら、従来の絶縁テープは、固定子コイル11を製造する際(特に、加熱プレスの際)に、コイル導体12に巻き付けた絶縁テープの隙間から、含浸に用いられる樹脂組成物と共に充填材が外部に流失してしまい、形成される絶縁被覆体の熱伝導性が十分に向上しないという問題がある。
 本発明は、前記のような問題を解決するためになされたものであり、予め担持させた充填材が固定子コイルの製造の際(特に、加熱プレスの際)に外部に流出することなく、熱伝導性が高い絶縁被覆体を形成することが可能な絶縁テープ及びその製造方法を提供することを目的とする。
 また、本発明は、熱伝導率が高い絶縁被覆体を有する固定子コイルを提供することを目的とする。
 本発明者らは、上記のような問題を解決すべく鋭意研究した結果、マイカ層上に形成された熱伝導率が高い充填材を含む補強層を、特定の平板状無機粒子を含む平板層で被覆することにより、固定子コイルの製造の際(特に、加熱プレスの際)の充填材の流出を効果的に抑制し得ることを見出した。
 すなわち、本発明は、マイカを含むマイカ層と、前記マイカ層上に積層された補強層であって、充填材及び繊維強化材を含む補強層と、前記補強層上に積層された平板層であって、アスペクト比が30以上の平板状無機粒子を含む平板層とを有することを特徴とする絶縁テープである。
 また、本発明は、マイカを含む分散液を抄造してマイカ層を形成する工程と、前記マイカシートに繊維強化材を貼り合わせた後、充填材を含むスラリーを前記繊維強化材に塗布して補強層を形成する工程と、アスペクト比が30以上の平板状無機粒子を含むスラリーを前記補強層に塗布して平板層を形成する工程とを含むことを特徴とする絶縁テープの製造方法である。
 さらに、本発明は、コイル導体と、前記コイル導体の外周部に巻回された前記絶縁テープを有し、前記絶縁テープが樹脂によって前記コイル導体と一体化された絶縁被覆体とを備えることを特徴とする固定子コイルである。
 本発明によれば、予め担持させた充填材が固定子コイルの製造の際(特に、加熱プレスの際)に外部に流出することなく、熱伝導性が高い絶縁被覆体を形成することが可能な絶縁テープ及びその製造方法を提供することができる。
 また、本発明によれば、熱伝導率が高い絶縁被覆体を有する固定子コイルを提供することができる。
実施の形態1による絶縁テープを模式的に示す断面図である。 樹脂組成物を含浸させた図1の絶縁テープに圧力が加わった際の状態を説明するための図である。 樹脂組成物を含浸させた絶縁テープ(平板層を形成していない絶縁テープ)に圧力が加わった状態を説明するための図である。 固定子の斜視図である。
 実施の形態1.
 図1は、本発明の実施の形態1による絶縁テープを模式的に示す断面図である。図1において、絶縁テープ1は、マイカ層2と、マイカ層2上に積層された補強層3と、補強層3上に積層された平板層4とを有する。
 マイカ層2は、マイカ5を含む。マイカ5としては、特に限定されないが、例えば、層状ケイ酸塩鉱物の一種として知られる硬質マイカ(マスコバイト)及び軟質マイカ(フロゴパイト)等を用いることができる。マイカ5の形状としては、特に限定されないが、例えば、ブロックマイカ、剥がしマイカ、及び集成マイカ等を用いることができる。これらは、単独又は2種以上を組み合わせて用いることができる。その中でも、厚さが均一であり、且つ低コストである点で、集成マイカを用いることが好ましい。
 マイカ層2は、マイカ5の他に、エポキシ樹脂、シリコーン樹脂、フェノール樹脂等の樹脂を含むことができる。これらの樹脂は、マイカ5同士を接着し、マイカ層2の強度を向上させることができる。また、これらの樹脂は、固定子コイルの製造の際に、含浸に用いる樹脂組成物と化学的に結合して一体化することが好ましい。したがって、含浸に用いる樹脂組成物との反応性を考慮し、その種類を選定することが好ましい。
 或いは、マイカ層2の支持材として各種樹脂フィルムを用いてもよい。樹脂フィルムとしては特に限定されず、当該技術分野において公知のものを用いることができる。
 また、固定子コイルの電気絶縁性の観点から、絶縁テープ1中のマイカ5の含有量は、1mm2の絶縁テープ1あたり、100g以上200g以下であることが好ましい。マイカ5の含有量が100g未満では、所望の電気絶縁性が得られず、課電劣化時の絶縁破壊時間が短くなることがある。一方、マイカ5の含有量が200gを超えると、電気絶縁性は良好である一方、絶縁テープ1が厚くなり過ぎてしまい、コイル導体に巻き付け難くなることがある。また、絶縁テープ1の厚さを一定とした場合には、高熱伝導化に有効な充填材6の充填率が相対的に低下し、所望の熱伝導率を有する絶縁被覆体を形成することができないことがある。
 マイカ層2の厚さは、特に限定されず、作製する絶縁テープ1の大きさ等に応じて適宜調整すればよい。マイカ層2の厚さは、好ましくは60μm~150μm、より好ましくは80μm~120μmである。
 補強層3は、充填材6及び繊維強化材7を含む。
 充填材6としては、特に限定されず、当該技術分野において公知のものを用いることができる。充填材6の例としては、アルミナ、酸化マグネシウム、酸化亜鉛、炭酸マグネシウム、グラファイト、カーボンチューブ、窒化ホウ素、ホウ化チタン、炭化珪素、窒化珪素、結晶シリカ、窒化アルミニウム等が挙げられる。これらは単独又は複数を組み合わせて用いることができる。
 充填材6は、絶縁被覆体の熱伝導性の観点から、5W/mK以上の熱伝導率を有することが好ましい。熱伝導率が5W/mK未満であると、絶縁被覆体の熱伝導性が十分に向上しないことがある。
 絶縁テープ1における充填材6の体積充填率は、樹脂組成物の含浸性の観点から、50体積%以下である。体積充填率が50体積%を超えると、固定子コイルの製造の際に樹脂組成物が十分に含浸せず、所望の特性が得られない場合がある。
 各種充填材6の中でも、少ない添加量(担持量)で絶縁被覆体の高熱伝導化が可能であり、絶縁テープ1を厚くする必要がない点で、窒化ホウ素が好ましい。
 窒化ホウ素の一次粒子は、黒鉛と同様の層状構造を有しており、その粒子形状は鱗片状であって、長径方向の熱伝導率が高く、短径方向の熱伝導率が低いという異方的な熱伝導性を有する。そのため、窒化ホウ素の一次粒子を充填材6として用いた場合、絶縁テープ1の製造条件によっては、窒化ホウ素の異方的な熱伝導性のために所望の熱伝導性を有する絶縁被覆体が得られない場合がある。
 そこで、窒化ホウ素の一次粒子の異方的な熱伝導性に起因した絶縁被覆体の熱伝導性の低下を防止する観点から、窒化ホウ素の一次粒子を凝集させた二次凝集粒子を用いることが特に好ましい。
 二次凝集粒子の製造方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。例えば、窒化ホウ素の一次粒子を無機バインダによって凝集させることによって二次凝集粒子を製造することができる。無機バインダとしては、特に限定されず、例えば、ホウ酸、アルカリ土類金属のホウ酸塩(ホウ酸カルシウム、ホウ酸マグネシウム、ホウ酸ナトリウム、ホウ酸カリウム)、ケイ酸ソーダ、リン酸アルミ等が挙げられる。
 異方的な熱伝導性を防止する観点から、二次凝集粒子の配向指数、すなわち、二次凝集粒子の<100>面に対する<002>面のX線回折ピークの強度比(I<002>/I<100>)が、15以下であることが好ましい。二次凝集粒子のX線回折ピークの強度比が15を超えると、二次凝集粒子中で一次粒子が特定の方向に配向している割合が大きくなり、所望の熱伝導性を有する絶縁被覆体が得られない場合がある。
 充填材6の平均粒径は、80μm以下であることが好ましい。充填材6の平均粒径が80μmを超えると、絶縁テープ1が厚くなり過ぎてしまい、コイル導体に巻き付け難くなることがある。また、絶縁テープ1の厚さを一定とした場合には、絶縁性を担うマイカ5の充填率を相対的に少なくする必要があるため、絶縁被覆体の電気絶縁特性が低下することがある。ここで、充填材6の平均粒径とは、レーザー回折散乱法による粒度分布測定を行うによって求められる平均粒径を意味し、具体的には、市販のレーザー回折散乱式粒度分布計を用いて測定された平均粒径を意味する。
 繊維強化材7としては、特に限定されず、当該技術分野において公知のものを用いることができる。ここで、繊維強化材7とは、複数の繊維を束ねて作製した複数本の縦糸と、複数の繊維を束ねて作製した複数本の横糸とを格子状に編んで構成されたクロスを意味する。繊維強化材7の例としては、例えば、ガラスクロス、アルミナクロス、シリカクロス等が挙げられる。その中でも、強度的及びコスト的に最良の材料であるガラスクロスを用いることが好ましい。
 繊維強化材7は、縦糸と横糸とによって囲まれた複数の開口部を有する。補強層3では、この開口部に充填材6が捕捉される。これにより、充填材6の層内方向への移動が抑制される。
 繊維強化材7の厚さは、特に限定されないが、80μm以下であることが好ましい。繊維強化材7の厚さが80μmを超えると、絶縁テープ1が厚くなり過ぎてしまい、コイル導体に巻き付け難くなることがある。また、絶縁テープ1の厚さを一定とした場合には、絶縁性を担うマイカ5の充填率を相対的に少なくする必要があるため、絶縁被覆体の電気絶縁特性が低下することがある。
 補強層3は、充填材6及び繊維強化材7の他に、エポキシ樹脂、シリコーン樹脂、フェノール樹脂等の樹脂を含むことができる。なお、補強層3に用いられる樹脂は、マイカ層2に用いられる樹脂と同じ成分であることができる。
 平板層4は、アスペクト比が30以上の平板状無機粒子8を含む。平板状無機粒子8のアスペクト比を30以上とすることにより、平板状無機粒子8が積層した状態の平板層4を形成することができるため、絶縁テープ1に圧力が加わった際、平板層4の下に存在する補強層3中の充填材6の移動経路を効果的に遮断し、その流出を抑制することが可能になる。
 ここで、平板状無機粒子8のアスペクト比とは、平板状無機粒子8の最長径を最短径(厚さ)で除して得られる値を意味する。また、平板状無機粒子8の投影面積が最大となるように配置した時の最も長い辺を最長径、その厚みを最短径、長い辺の平均を平均長径という。最長径、最短径(厚さ)及び平均長径は、電子顕微鏡等を用いて測定することができる。
 平板状無機粒子8のアスペクト比は、100個の平板状無機粒子8あたりの平均値であることが好ましい。したがって、平板状無機粒子8のアスペクト比の平均値が30以上であれば、アスペクト比が30未満の平板状無機粒子8が含まれていてもよい。
 また、絶縁テープ1は、固定子コイルを製造する際にコイル導体の外周部に巻回されるため、平板状無機粒子8のアスペクト比が大きすぎると絶縁テープ1がコイル導体の外周部に巻きつけ難くなる。そのため、充填材6の流出抑制効果及び絶縁テープ1の巻回性の両方の特性を得る観点から、平板状無機粒子8のアスペクト比は50~300であることが好ましい。
 平板状無機粒子8としては、特に限定されず、当該技術分野において公知のものを用いることができる。その中でも平板状無機粒子8は、含浸に用いる樹脂への溶解性がないもの、又は乏しいものが好ましい。好ましい平板状無機粒子8の例としては、マイカ、カオリン、パイロフィライト、セリサイト、タルク等の層状型フェロケイ酸塩鉱物、ガラスフレーク、ガラス板、アルミフレーク、ベーマイト、アルミナ等が挙げられる。これらは、単独又は複数を組み合わせて用いることができる。
 各種平板状無機粒子8の中でも、マイカは、アスペクト比が高い(平均長径が100~500μm、厚さが1μm以下)ものが多く、且つ電気絶縁性にも優れていることから好ましい。
 絶縁テープ1における平板状無機粒子8の目付け量(単位面積(1m2)当たりの質量)は、特に限定されないが、絶縁テープ1の厚さ及び充填材6の移動防止効果の観点から、1g/m2~50g/m2であることが好ましい。
 平板層4は、図2に示すように、補強層3の表面を被覆しているため、補強層3に含有される充填材6の流出経路が少なく(図中の矢印は充填材6の流出経路を表す)、固定子コイルを製造する際(特に加熱プレスの際)に、含浸に用いられる樹脂組成物と共に充填材6が流出し難くなり、所望の熱伝導性を有する絶縁被覆体を形成することができる。
 これに対して、平板層4が存在しない場合、図3に示すように、補強層3に含有される充填材6の流出経路が多く(図中の矢印は充填材6の流出経路を表す)、固定子コイルを製造する際(特に、加熱プレスの際)に、含浸に用いられる樹脂組成物と共に充填材6が流出してしまい、所望の熱伝導性を有する絶縁被覆体を形成することができない。
 平板層4では、図2に示すように、平板層4中の平板状無機粒子8が充填材6の外部流出を防止する壁として作用している。平板層4中の平板状無機粒子8は、固定子コイルを製造する際(特に、絶縁テープ1をコイル導体に巻き付ける際)に、コイル導体の形状に沿って複雑に折れ曲がる。平板状無機粒子8の平均長径が長いほど、平板状無機粒子8は複雑に折れ曲がり、平板状無機粒子8の間からの充填材6の外部流出を効果的に抑制することが可能になる。
 したがって、平板状無機粒子8の間からの充填材6の外部流出を効果的に抑制する観点から、平板状無機粒子8の平均長径は、80μm以上であることが好ましい。
 また、平板状無機粒子8の平均長径は、充填材6の平均粒径よりも大きいことが好ましい。平板状無機粒子8の平均長径が、充填材6の平均粒径よりも大きいと、平板状無機粒子8の間からの充填材6の外部流出を、より一層抑制することができる。
 平板層4中の無機粒子が球状等の他の形状である場合、平板層4中の無機粒子は、固定子コイルを製造する際(特に、絶縁テープ1をコイル導体に巻き付ける際)にコイル導体の形状に沿って移動し、平板層4中の無機粒子の間が大きくなる。その結果、固定子コイルを製造する際(特に、加熱プレスの際)に、補強層3に含有される充填材6が含浸に用いられる樹脂組成物と共に流出し易なり、所望の熱伝導性を有する絶縁被覆体を形成することができない。
 平板層4は、平板状無機粒子8の他に、エポキシ樹脂、シリコーン樹脂、フェノール樹脂等の樹脂を含むことができる。なお、平板層4に用いられる樹脂は、マイカ層2及び補強層3に用いられる樹脂と同じ成分であることができる。
 平板層4の厚さは、特に限定されないが、好ましくは80μm以下、より好ましくは30μm以下である。平板層4の厚さが80μmを超えると、絶縁テープ1が厚くなり過ぎてしまい、コイル導体に巻き付け難くなることがある。
 次に、絶縁テープ1の製造方法について説明する。
 まず、マイカ5を含む分散液を抄造してマイカ層2を形成する。
 マイカ5を含む分散液の調製方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。例えば、マイカ5を水中に分散させることによって分散液を調製することができる。分散液におけるマイカ5の含有量は、特に限定されず、マイカ5の種類等に応じて適宜調整すればよい。
 分散液の抄造方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。例えば、市販の抄紙機を用いて分散液を抄造することにより、マイカ層2となるマイカシートを得ることができる。
 このとき、マイカシートは別の支持材である各種フィルムに貼り合わせてもよい。マイカシートを支持材に貼り合わせる場合、ロールコーター法又はスプレー法等の公知の方法を用いてマイカシートに樹脂組成物を塗布した後、支持材と接着させればよい。
 マイカシートと支持材との接着に用いられる樹脂組成物としては、熱硬化性樹脂、硬化剤及び溶剤を一般に含む。
 熱硬化性樹脂としては、特に限定されず、当該技術分野において公知のものを用いることができる。熱硬化性樹脂の例としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、及びポリイミド樹脂等が挙げられる。これらの中でも、エポキシ樹脂は、耐熱性や接着性等の特性に優れているので好ましい。エポキシ樹脂の例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、脂環脂肪族エポキシ樹脂、及びグリシジル-アミノフェノール系エポキシ樹脂等が挙げられる。これらの樹脂は、単独又は2種以上を組み合わせて用いることができる。
 硬化剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。硬化剤の例としては、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体等が挙げられる。有機金属塩としては、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛などが挙げられる。これらの中でも、硬化性、溶剤溶解性の観点から、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート、亜鉛(II)アセチルアセトナート、ナフテン酸亜鉛、鉄(III)アセチルアセトナートが好ましく、コバルト(II)アセチルアセトナート、ナフテン酸亜鉛がより好ましい。これらは、単独又は2種以上を組み合わせて用いることができる。
 硬化剤の配合量は、使用する熱硬化性樹脂や硬化剤の種類等に応じて適宜設定する必要があるが、一般的に100質量部の熱硬化性樹脂に対して0.1質量部以上200質量部以下である。
 溶剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。溶剤の例としては、トルエンやメチルエチルケトン等の有機溶剤が挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。
 溶剤の配合量は、樹脂組成物の所望とする粘度に応じて適宜調整すればよく、特に限定されない。
 次に、マイカシートに繊維強化材7を貼り合わせた後、充填材6を含むスラリーを前記繊維強化材7に塗布して補強層3を形成する。
 マイカシートに繊維強化材7を貼り合わせる方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。例えば、マイカシートと繊維強化材7とを樹脂組成物を用いて貼り合わせればよい。具体的には、ロールコーター法又はスプレー法等の公知の方法を用いて樹脂組成物を繊維強化材7に塗布し、樹脂組成物中の溶剤を揮発させた後、その上にマイカシートを重ねる。その後、この積層物を60~70℃の加熱下で熱ロール等により加圧して圧着させればよい。
 充填材6を含むスラリーとしては、特に限定されず、例えば、樹脂組成物に充填材6を配合したものを用いることができる。このスラリーに用いられる樹脂組成物としては、マイカシートと支持材との接着に用いられる樹脂組成物と同じものを用いることができる。充填材6の配合量は、使用する熱硬化性樹脂や硬化剤の種類等に応じて適宜設定する必要があるが、一般的に100質量部の熱硬化性樹脂に対して20質量部以上200質量部以下である。
 充填材6を含むスラリーの塗布方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。塗布方法の例としては、スプレー法、ロールコーター法、及びグラビア転写法等が挙げられる。
 塗布したスラリーは、ドクターブレード等の公知の方法を用いて切削した後、60~70℃の加熱下で熱ロール等を用いて加圧される。これにより、均一且つ所望の厚さの補強層3を形成することができる。
 ドクターブレードの材質としては、金属、セラミックス、プラスチックス等が挙げられるが、加工性及び耐摩耗性の点から、クロムメッキ鋼であることが好ましい。
 また、切削条件としては、特に限定されないが、マイカシートとドクターブレードとのクリアランス(ギャップ)が0.01~0.1mmであることが好ましく、切削温度が10~40℃であることが好ましく、切削速度(ドクターブレードに対するマイカシートの走行速度)が5m/分以下であることが好ましい。ギャップが0.01mm未満であると、繊維強化材7が剥離してしまう場合がある。一方、ギャップが0.1mmを超えると、補強層3が厚くなりすぎてしまう。また、切削温度が10℃未満であると、塗布物の粘性が高く、平滑に切削できないことがある。一方、切削温度が40℃を超えると、塗布物の溶剤の揮発速度が大きくなり、均一な厚さに切削することができない。
 次に、平板状無機粒子8を含むスラリーを補強層3に塗布して平板層4を形成する。
 平板状無機粒子8を含むスラリーとしては、特に限定されず、例えば、平板状無機粒子8と溶剤との混合物を用いることができる。
 溶剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。溶剤の例としては、トルエンやメチルエチルケトン等の有機溶剤が挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。
 溶剤の配合量は、スラリーの塗布性に応じて適宜調整すればよく、特に限定されない。
 平板状無機粒子8を含むスラリーの塗布方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。塗布方法の例としては、スプレー法、ロールコーター法等が挙げられる。
 平板状無機粒子8を含むスラリーの塗布後、所定の温度に加熱して溶剤を揮発させることにより、平板層4を形成することができる。
 上記のようにして得られた絶縁テープ1は、補強層3が平板層4で被覆されているため、補強層3に予め担持させた充填材6が、固定子コイルの製造の際(特に、加熱プレスの際)に外部に流出し難くなり、熱伝導率が高い絶縁被覆体を形成することができる。
 実施の形態2.
 本発明の実施の形態2による固定子コイルは、コイル導体と、このコイル導体の外周部に巻回された実施の形態1の絶縁テープ1を有し、絶縁テープ1が樹脂によって前記コイル導体と一体化された絶縁被覆体とを備えている。本実施の形態の固定子コイルは、使用する絶縁テープに主な特徴があり、その他の構成は従来公知の構成(例えば、図4の構成)を採用することができる。
 このような構造を有する固定子コイルは、以下のようにして製造される。
 まず、絶縁被覆された複数の素線導体を束ねて構成されたコイル導体の外周部に、絶縁テープ1を一部(例えば、絶縁テープ1の幅の半分の部分)が互いに重なるように複数回巻き付ける。ここで、コイル導体を構成する素線としては、導電性であれば特に限定されず、銅、アルミニウム、銀等からなる素線を用いることができる。
 次に、コイル導体に巻き付けた絶縁テープ1に樹脂組成物を含浸させる。ここで、含浸に用いられる樹脂組成物としては、特に限定されないが、一般に、熱硬化性樹脂及び硬化剤を含む。
 熱硬化性樹脂としては、特に限定されず、実施の形態1において例示したものと同じものを用いることができる。
 硬化剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。硬化剤の例としては、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸及び無水ハイミック酸等の脂環式酸無水物;ドデセニル無水コハク酸等の脂肪族酸無水物;無水フタル酸及び無水トリメリット酸等の芳香族酸無水物;ジシアンジアミド及びアジピン酸ジヒドラジド等の有機ジヒドラジド;トリス(ジメチルアミノメチル)フェノール;ジメチルベンジルアミン;1,8-ジアザビシクロ(5,4,0)ウンデセン及びその誘導体;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール及び2-フェニルイミダゾール等のイミダゾール類等が挙げられる。これらの硬化剤は、単独又は2種以上を組み合わせて用いることができる。
 硬化剤の配合量は、使用する熱硬化性樹脂や硬化剤の種類等に応じて適宜設定する必要があるが、一般的に100質量部の熱硬化性樹脂に対して0.1質量部以上200質量部以下である。
 樹脂組成物の含浸方法としては、特に限定されず、当該技術分野において公知の方法を用いることができる。含浸方法の例としては、真空含浸、真空加圧含浸、常圧含浸等が挙げられる。含浸の際の条件は、特に限定されることはなく、使用する樹脂組成物等の種類に応じて適宜調整すればよい。
 樹脂組成物を絶縁テープ1に含浸させた後、コイル導体を絶縁テープ1の外側から型締めすることにより、絶縁テープ1に圧力を加える。
 次に、絶縁テープ1を加熱等することにより、絶縁テープ1に含浸されている樹脂組成物を硬化させる。これにより、固定子コイルが完成する。
 本実施の形態の固定子コイルでは、補強層3の表面を平板層4で被覆した絶縁テープ1を用いているため、図2に示すように、絶縁テープ1に圧力を加えても補強層3に含有される充填材6が含浸に用いられる樹脂組成物と共に流出し難く、絶縁被覆体の熱伝導性を向上させることができる。これに対して、補強層3の表面を平板層4で被覆していない絶縁テープを用いると、図3に示すように、補強層3に含有される充填材6が含浸に用いられる樹脂組成物と共に流出してしまい、絶縁被覆体の熱伝導性が低下してしまう。
 上記のようにして製造される本実施の形態の固定子コイルは、予め担持させた充填材6が固定子コイルの製造の際(特に、加熱プレスの際)に外部に流出し難いので、絶縁被覆体の熱伝導率を向上させることができる。
 以下、実施例及び比較例により本発明の詳細を説明するが、これらによって本発明が限定されるものではない。
 (実施例1)
 集成マイカ粉を水中に分散させ、集成マイカ粉の分散液を調製した後、この分散液を抄紙機にて抄造してマイカシート(マイカ層)を得た。
 次に、ビスフェノールA型エポキシ樹脂(商品名:エピコート834、ジャパンエポキシレジン株式会社製)100質量部及びナフテン酸亜鉛10質量部をメチルエチルケトン400質量部に溶解した樹脂組成物をロールコーター法にてマイカシートに塗布し、その上に支持材(幅1000mm、厚さ0.02mmであり、所定の長さを有するポリエステルフィルム)を重ねて貼り合わせ、全体の厚さが0.1mmの支持材付きマイカシートを得た。
 次に、ビスフェノールA型エポキシ樹脂(商品名:エピコート834、ジャパンエポキシレジン株式会社製)100質量部及びナフテン酸亜鉛10質量部をメチルエチルケトン1000重量部に溶解した樹脂組成物を、ロールコーター法にて繊維強化材であるガラスクロス(幅1000mm、厚さ30μmであり、所定の長さを有し、目開き率が97%である)に塗布した後、溶剤を揮発させた。そして、その塗布物とマイカシートとが接するように支持材付きマイカシートを重ねて張り合わせた後、60℃の熱ロールにて加圧して圧着させた。
 次に、ビスフェノールA型エポキシ樹脂(商品名:エピコート834、ジャパンエポキシレジン株式会社製)150質量部、ナフテン酸亜鉛15質量部、窒化ホウ素の二次凝集粒子(平均粒径75μm、X線回折ピークの強度比(I<002>/I<100>)10、熱伝導率が50W/mK)200質量部、及びメチルエチルケトン1000重量部を混合して樹脂組成物(スラリー)を調製した。
 次に、この樹脂組成物をスプレー法にて上記積層物のガラスクロス面に塗布した。次に、この塗布物をクロムメッキ鋼のドクターブレードを用い、ギャップ0.01mm、切削速度3m/分、切削温度25℃の条件下で切削した後、60℃の熱ロールで加圧して補強層を形成した。
 次に、平板状無機粒子としてのマイカ粒子(長径200μm、厚さ1μm)10質量部とメチルエチルケトン100質量部とを混合してスラリーを調製した。このスラリーをスプレー法にて補強層の表面に塗布した後、80℃に加熱して乾燥させ、平板層を形成した。
 得られた絶縁テープは、下記の試験に用いるために幅30mmに切断した。
 次に、この絶縁テープを、50mm×12mm×1140mmのコイル導体に、半重ね巻きすることにより、4.4mmの厚さになるまで巻き付けた。
 次に、コイル導体に巻き付けられた絶縁テープに、真空加圧含浸方式によって液状の樹脂組成物を含浸させた。ここで、樹脂組成物としては、ビスフェノールA型エポキシ樹脂(商品名:エピコート828、ジャパンエポキシレジン株式会社製)100質量部とメチルテトラヒドロ無水フタル酸硬化剤(商品名:HN-2200、日立化成工業株式会社製)93質量部とからなるものを用いた。
 最後に、樹脂組成物を含浸させた絶縁テープからなる層の厚みが、4.26mmの厚さになるように、治具を用いて型締めし、乾燥炉で加熱して、樹脂組成物を硬化させることにより固定子コイルを作製した。
 (実施例2)
 充填材として、平均粒径が60μmの窒化ホウ素の二次凝集粒子を用いたこと以外は実施例1と同様にして絶縁テープ及び固定子コイルを作製した。
 (比較例1)
 平板層を形成しなかったこと以外は実施例1と同様にして絶縁テープ及び固定子コイルを作製した。
 (比較例2)
 ガラスクロスの厚さを75μmに変更すると共に、アスペクト比が20のマイカ粒子(平板状無機粒子)を用いたこと以外は実施例1と同様にして絶縁テープ及び固定子コイルを作製した。
 上記の実施例及び比較例で得られた固定子コイルの絶縁被覆体について、熱伝導率及び絶縁破壊電圧の測定を下記のようにして行った。
 絶縁被覆体の熱伝導率の測定は、固定子コイルから絶縁被覆体の試験片を切り出し、切り出した絶縁被覆体の試験片に対して、熱伝導率測定装置(キセノンフラッシュアナライザ、LFA447NanoFlash(登録商標)、NETZSCH社製)を用いることにより行った。また、絶縁被覆体の絶縁破壊電圧の測定は、JIS-C2126の方法に準拠して行った。これらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されているように、実施例において作製された固定子コイルの絶縁被覆体は、25kV以上の絶縁破壊電圧と0.5以上の熱伝導率を兼ね備えており、絶縁破壊電圧だけでなく熱伝導率も良好であった。
 これに対して比較例において作製された固定子コイルの絶縁被覆体は、25kV以上の絶縁破壊電圧を有していたものの、熱伝導率が低かった。
 以上の結果からわかるように、本発明によれば、予め担持させた充填材が固定子コイルの製造の際(特に、加熱プレスの際)に外部に流出することなく、熱伝導性が高い絶縁被覆体を形成することが可能な絶縁テープ及びその製造方法を提供することができる。また、本発明によれば、熱伝導率が高い絶縁被覆体を有する固定子コイルを提供することができる。

Claims (8)

  1.  マイカを含むマイカ層と、
     前記マイカ層上に積層された補強層であって、充填材及び繊維強化材を含む補強層と、
     前記補強層上に積層された平板層であって、アスペクト比が30以上の平板状無機粒子を含む平板層と
    を有することを特徴とする絶縁テープ。
  2.  前記平板状無機粒子の平均長径が、前記充填材の平均粒径よりも大きいことを特徴とする請求項1に記載の絶縁テープ。
  3.  前記平板状無機粒子の平均長径が、80μm以上であることを特徴とする請求項1又は2に記載の絶縁テープ。
  4.  前記平板状無機粒子がマイカであることを特徴とする請求項1~3のいずれか一項に記載の絶縁テープ。
  5.  前記充填材の熱伝導率が5W/mK以上であることを特徴とする請求項1~4のいずれか一項に記載の絶縁テープ。
  6.  前記充填材が窒化ホウ素であることを特徴とする請求項1~5のいずれか一項に記載の絶縁テープ。
  7.  マイカを含む分散液を抄造してマイカ層を形成する工程と、
     前記マイカシートに繊維強化材を貼り合わせた後、充填材を含むスラリーを前記繊維強化材に塗布して補強層を形成する工程と、
     アスペクト比が30以上の平板状無機粒子を含むスラリーを前記補強層に塗布して平板層を形成する工程と
    を含むことを特徴とする絶縁テープの製造方法。
  8.  コイル導体と、
     前記コイル導体の外周部に巻回された請求項1~6のいずれか一項に記載の絶縁テープを有し、前記絶縁テープが樹脂によって前記コイル導体と一体化された絶縁被覆体と
    を備えることを特徴とする固定子コイル。
PCT/JP2013/083233 2013-01-10 2013-12-11 絶縁テープ及びその製造方法、並びに固定子コイル WO2014109167A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13870918.3A EP2945169B1 (en) 2013-01-10 2013-12-11 Insulation tape, method for producing same and stator coil
JP2014511001A JP5611485B1 (ja) 2013-01-10 2013-12-11 絶縁テープ及びその製造方法、並びに固定子コイル
US14/440,424 US9925744B2 (en) 2013-01-10 2013-12-11 Insulating tape, method for producing same, and stator coil
CN201380064388.5A CN104838452B (zh) 2013-01-10 2013-12-11 绝缘带及其制造方法、以及定子线圈

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013002355 2013-01-10
JP2013-002355 2013-01-10

Publications (1)

Publication Number Publication Date
WO2014109167A1 true WO2014109167A1 (ja) 2014-07-17

Family

ID=51166829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083233 WO2014109167A1 (ja) 2013-01-10 2013-12-11 絶縁テープ及びその製造方法、並びに固定子コイル

Country Status (5)

Country Link
US (1) US9925744B2 (ja)
EP (1) EP2945169B1 (ja)
JP (1) JP5611485B1 (ja)
CN (1) CN104838452B (ja)
WO (1) WO2014109167A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130588A1 (ja) * 2017-12-28 2019-07-04 日立化成株式会社 プリプレグマイカテープ、回転電機用コイル及びその製造方法
WO2019130586A1 (ja) * 2017-12-28 2019-07-04 日立化成株式会社 プリプレグマイカテープ、回転電機用コイル及びその製造方法
US11095179B2 (en) * 2016-07-13 2021-08-17 Mitsubishi Electric Corporation Thermosetting resin composition, stator coil obtained using same, and rotating electric machine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105637599B (zh) * 2013-10-09 2017-06-27 日立化成株式会社 预浸云母带及使用其的线圈
WO2019079473A1 (en) * 2017-10-19 2019-04-25 Shell Oil Company MINERAL INSULATED ELECTRIC CABLES FOR INTEGRATED COMPRESSORS DRIVEN BY ELECTRIC MOTOR
US11848590B1 (en) 2020-01-15 2023-12-19 Kencoil, Inc. Electric coil with novel insulating tape and manufacturing method therefor
CN111501401B (zh) * 2020-04-10 2022-04-19 北京倚天凌云科技股份有限公司 一种树脂复合型绝缘云母纸及其制备方法
JP7292525B2 (ja) * 2020-09-09 2023-06-16 三菱電機株式会社 回転機コイルと回転電機、および回転機コイルの製造方法
CN113808778B (zh) * 2021-11-01 2024-09-13 哈尔滨理工大学 一种高导热氮化硼云母带及其制备方法
CN115142291A (zh) * 2022-07-26 2022-10-04 宁波卓翔科技有限公司 一种纤维加强云母纸的制备方法、云母板的制备方法以及云母板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104447A (ja) * 1985-10-30 1987-05-14 Mitsubishi Electric Corp 回転電機巻線
JP2000058314A (ja) * 1998-08-03 2000-02-25 Hitachi Ltd 高熱伝導コイル、絶縁シート及びその製造方法
WO2001016965A1 (fr) * 1999-08-27 2001-03-08 Hitachi, Ltd. Materiau isolant, enroulement electrique et leur procede de fabrication
JP2002330562A (ja) * 2001-04-27 2002-11-15 Toshiba Corp 回転電機のコイル及びこのコイルの絶縁に用いられるマイカーテープ
WO2005069312A1 (ja) * 2004-01-15 2005-07-28 Kabushiki Kaisha Toshiba テープ部材或いはシート部材並びにテープ部材或いはシート部材の製造方法
WO2007037342A1 (ja) * 2005-09-29 2007-04-05 Kabushiki Kaisha Toshiba マイカテープ、このマイカテープを用いた回転電機コイルおよびこの回転電機コイルを具えた回転電機
JP2009187817A (ja) * 2008-02-07 2009-08-20 Toshiba Corp 絶縁シート、固定子コイルおよび回転電機
JP4625615B2 (ja) 2003-05-22 2011-02-02 株式会社東芝 テープ部材とその製造方法及びテープ部材を用いた電磁コイル並びに電磁機器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553802A (en) * 1978-10-17 1980-04-19 Japan Mica Ind Resin impregnated lumped mica basic material sheet and method of manufacturing same
JPS5818809A (ja) * 1981-07-24 1983-02-03 株式会社デンソー 耐過負荷絶縁電線及びその製造方法
JPH0274548A (ja) 1988-09-12 1990-03-14 Showa Denko Kk 耐熱絶縁シートの製造方法
JP3458693B2 (ja) 1998-02-27 2003-10-20 株式会社日立製作所 絶縁材及び電機巻線
US6288341B1 (en) * 1998-02-27 2001-09-11 Hitachi, Ltd. Insulating material windings using same and a manufacturing method thereof
US7955661B2 (en) * 2005-06-14 2011-06-07 Siemens Energy, Inc. Treatment of micropores in mica materials
JP2008027819A (ja) * 2006-07-24 2008-02-07 Toshiba Corp プリプレグ材、電気絶縁用プリプレグテープ及びこれを用いた回転電機
US7812260B2 (en) * 2007-09-25 2010-10-12 Siemens Energy, Inc. Electrical insulation tape with controlled bonding and resin impregnation properties
CN201556453U (zh) * 2009-09-30 2010-08-18 江苏迅达电磁线有限公司 云母带绕包薄膜熔敷铜扁线

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104447A (ja) * 1985-10-30 1987-05-14 Mitsubishi Electric Corp 回転電機巻線
JP2000058314A (ja) * 1998-08-03 2000-02-25 Hitachi Ltd 高熱伝導コイル、絶縁シート及びその製造方法
WO2001016965A1 (fr) * 1999-08-27 2001-03-08 Hitachi, Ltd. Materiau isolant, enroulement electrique et leur procede de fabrication
JP2002330562A (ja) * 2001-04-27 2002-11-15 Toshiba Corp 回転電機のコイル及びこのコイルの絶縁に用いられるマイカーテープ
JP4625615B2 (ja) 2003-05-22 2011-02-02 株式会社東芝 テープ部材とその製造方法及びテープ部材を用いた電磁コイル並びに電磁機器
WO2005069312A1 (ja) * 2004-01-15 2005-07-28 Kabushiki Kaisha Toshiba テープ部材或いはシート部材並びにテープ部材或いはシート部材の製造方法
WO2007037342A1 (ja) * 2005-09-29 2007-04-05 Kabushiki Kaisha Toshiba マイカテープ、このマイカテープを用いた回転電機コイルおよびこの回転電機コイルを具えた回転電機
JP2009187817A (ja) * 2008-02-07 2009-08-20 Toshiba Corp 絶縁シート、固定子コイルおよび回転電機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2945169A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11095179B2 (en) * 2016-07-13 2021-08-17 Mitsubishi Electric Corporation Thermosetting resin composition, stator coil obtained using same, and rotating electric machine
WO2019130588A1 (ja) * 2017-12-28 2019-07-04 日立化成株式会社 プリプレグマイカテープ、回転電機用コイル及びその製造方法
WO2019130586A1 (ja) * 2017-12-28 2019-07-04 日立化成株式会社 プリプレグマイカテープ、回転電機用コイル及びその製造方法

Also Published As

Publication number Publication date
EP2945169A1 (en) 2015-11-18
CN104838452B (zh) 2017-05-24
JPWO2014109167A1 (ja) 2017-01-19
EP2945169A4 (en) 2016-08-17
US9925744B2 (en) 2018-03-27
CN104838452A (zh) 2015-08-12
US20150273800A1 (en) 2015-10-01
JP5611485B1 (ja) 2014-10-22
EP2945169B1 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
JP5611485B1 (ja) 絶縁テープ及びその製造方法、並びに固定子コイル
JP6058169B2 (ja) 絶縁テープ及びその製造方法、固定子コイル及びその製造方法、並びに回転電機
JP6203235B2 (ja) 電磁コイル及びその製造方法
JP4922018B2 (ja) 回転電機のコイル絶縁物
JP6094683B2 (ja) プリプレグマイカテープ及びそれを用いたコイル
JP3576119B2 (ja) 回転電機のコイル及びこのコイルの絶縁に用いられるマイカーテープ
JP3843967B2 (ja) 絶縁コイルの製造方法
WO2016104141A1 (ja) 絶縁テープ及びその製造方法、並びに固定子コイル及びその製造方法、並びに発電機
JP2012244861A (ja) 絶縁コイル
JP2010158113A (ja) 電気絶縁部材、回転電機用固定子コイルおよび回転電機
JP2008027819A (ja) プリプレグ材、電気絶縁用プリプレグテープ及びこれを用いた回転電機
WO2018003950A1 (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの製造方法、マイカテープの硬化物及び絶縁物
JP6403444B2 (ja) マイカテープ及び固定子コイル
JP5159812B2 (ja) 回転電機
WO2018003951A1 (ja) 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁物
JPWO2019077793A1 (ja) 固定子コイルの絶縁被覆材およびそれを用いた回転機
WO2023047439A1 (ja) 回転機コイル、その製造方法および回転機
JP2018170252A (ja) 回転電機用コイル、プリプレグマイカテープ、プリプレグマイカテープの製造方法、プリプレグマイカテープの硬化物、絶縁層付き物品、及び回転電機用コイルの製造方法
WO2018179437A1 (ja) 回転電機用コイル、回転電機用コイルの製造方法、ドライマイカテープ及び絶縁物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014511001

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870918

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14440424

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013870918

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013870918

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE