WO2000074267A1 - Recepteur et procede d'egalisation - Google Patents

Recepteur et procede d'egalisation Download PDF

Info

Publication number
WO2000074267A1
WO2000074267A1 PCT/JP2000/003446 JP0003446W WO0074267A1 WO 2000074267 A1 WO2000074267 A1 WO 2000074267A1 JP 0003446 W JP0003446 W JP 0003446W WO 0074267 A1 WO0074267 A1 WO 0074267A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal components
delay
received signal
unit
time adjustment
Prior art date
Application number
PCT/JP2000/003446
Other languages
English (en)
French (fr)
Inventor
Yoshiko Saito
Mitsuru Uesugi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP00931605A priority Critical patent/EP1102420A4/en
Priority to AU49508/00A priority patent/AU4950800A/en
Publication of WO2000074267A1 publication Critical patent/WO2000074267A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/084Equal gain combining, only phase adjustments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques

Definitions

  • the present invention relates to a receiving apparatus and an equalization processing method, and more particularly to a receiving apparatus and an equalization processing method that updates tap coefficients of an equalizer at any time based on an adaptive algorithm.
  • FIG. 1 is a main block diagram showing a schematic configuration of a conventional receiving apparatus.
  • FIG. 2 is a main block diagram showing a schematic configuration of a multiple array combining section of a conventional receiving apparatus.
  • FIG. 3 is a main block diagram showing a schematic configuration of a propagation path estimating unit of a conventional receiving apparatus.
  • 4A to 4D are diagrams illustrating an example of the delay profile.
  • FIG. 5 is a main block diagram showing a schematic configuration of a video equalizer of a conventional receiving apparatus.
  • FIG. 1 is a main block diagram showing a schematic configuration of a conventional receiving apparatus.
  • FIG. 2 is a main block diagram showing a schematic configuration of a multiple array combining section of a conventional receiving apparatus.
  • FIG. 3 is a main block diagram showing a schematic configuration of a propagation path estimating unit of a conventional receiving apparatus.
  • 4A to 4D are diagrams illustrating an example of the delay profile.
  • FIG. 5 is a main block diagram showing a schematic configuration of
  • FIG. 6 is a main block diagram showing a schematic configuration of a replica generation unit of a conventional receiving apparatus.
  • the multiple array combining section 12 has the same number of processing systems as the number of antennas for combining signals received by each antenna 11, and further combines the combined result after weighting for each antenna. .
  • the timing control unit 13 acquires the symbol synchronization timing from the output of the reception processing unit provided for each antenna in the multiple array combining unit 12.
  • the timing control section 13 can acquire the symbol synchronization timing from the output of any one of the reception processing sections.
  • the propagation path estimating section 14 estimates a delay profile from the output of the receiving processing section provided for each antenna in the multiple array combining section 12, and grasps the dispersion state of the received signal component on the time axis. That is, the channel estimation unit 14 performs channel estimation. Then, the propagation path estimating unit 14 adjusts the amount of time adjustment for the delayed wave (see FIG. 4) in order to keep the variance of the received signal component within the range where the delay can be compensated by the video equalizer 16 described later. 4) ⁇ ) shown in FIG. 4D is calculated and output to the time adjustment unit 22 in the multiple array synthesis unit 12.
  • the channel estimation unit 14 can perform channel estimation from the output of any one of the reception processing units.
  • the tap coefficient estimator 15 estimates a coefficient that minimizes the mean square value of the difference between the replica signal and the received signal (that is, a weighting coefficient based on the least squares method), and synthesizes the estimated coefficient into a plurality of arrays.
  • the video equalizer 16 generates a replica signal, and makes a determination using the video algorithm for the received signal using the difference between the array-synthesized received signal component and the replica signal as likelihood information. .
  • the configuration of the multiple-array combining unit 12 will be described with reference to FIG.
  • the case of two array elements and two path groups will be described, but the number of array elements and the number of path groups are arbitrary.
  • reception processing section 21 performs reception processing on a signal received from each antenna.
  • the time adjustment unit 22 delays the reception signal after the reception processing based on the output of the propagation path estimation unit 14.
  • FFF 23 weights the received signal based on the evening coefficient specified by tap coefficient estimating section 15.
  • the combining unit 24 combines all the signals after the FFF processing of each array and each path.
  • the delay profile estimator 31 estimates the delay profile of the received signal component.
  • Figure 4A shows an example of the delay profile.
  • the maximum value detection unit 32 detects the maximum value from the power of the received signal component dispersed on the time axis of the estimated delay profile.
  • Threshold setting section 33 sets a threshold based on the maximum value of power such that only a path having a good reception state is selected.
  • the method of determining the threshold value is arbitrary. For example, a method of determining what percentage of the maximum value or a method of subtracting a predetermined value from the maximum value can be considered.
  • Figure 4B shows the delay profile when the threshold is set.
  • the extraction unit 34 extracts only paths whose reception power exceeds the threshold value set by the threshold setting unit 33.
  • Figure 4C shows the delay profile after path extraction.
  • the grouping section 35 divides the extracted paths into groups (path groups). This grouping is performed so as to minimize the number of states of the bi-bit algorithm in consideration of the maximum delay time that can be compensated by the Viterbi equalizer 16.
  • the delay time of the longest delay component after path extraction is six.
  • the maximum delay time that can be compensated by the video equalizer 16 is up to 4 T delay, a received signal having a delay profile as shown in FIG.
  • the reception performance is greatly degraded due to the effect of the delayed wave outside the compensation range.
  • two groups, group A and group B, can be set as shown in Fig. 4D. If time adjustment is performed later on these groups in the time adjustment unit 22, the delay time of the longest delay component is 3 T, so that the video equalizer 16 capable of compensating up to 4 T delay is sufficient. It is ready for equalization.
  • the grouping unit 35 allows the dispersion state of the received signal component exceeding the threshold value. Define a group for each delay time interval as small as possible in the range to minimize the number of states, or divide the group according to the range that can be compensated by the equalizer. The number of groups is not limited to two and is optional.
  • the time adjustment amount detector 36 detects the time adjustment amount. That is, the time adjustment amount detection unit 36 detects how much each group should be delayed in order to combine another group with the most delayed group based on the grouping result.
  • the time adjustment amount detection unit 36 determines the time adjustment amount of the group A for synthesizing the group A with the group B which is the most delayed group.
  • the time adjustment amount is the distance on the time axis of the head component of each group. That is, the amount of time adjustment is determined according to the preceding wave of each group.
  • the time adjustment amount detection unit 36 detects the time adjustment amount for each group.
  • a subtractor 51 subtracts a replica signal from a received signal.
  • the error power calculator 52 calculates the power of the error from the result of the subtraction in the subtractor 51.
  • the video operation unit 53 is, for example, an MLSE circuit that performs maximum likelihood sequence estimation, and determines a received signal using the calculated power value of the error as likelihood information.
  • the memory 54 holds the known signal.
  • the switch 55 outputs the known signal stored in the memory 54 to the replica generation unit 56 when estimating the skip coefficient using the known signal based on the symbol synchronization timing output from the timing control unit 13. Otherwise, it outputs the symbol sequence candidates of the received signal, which is the output of the video operation unit 53, to the replica generation unit 56.
  • the replica generation unit 56 multiplies the known signal or the symbol sequence candidate of the received signal delayed based on the output of the propagation path estimation unit 14 by the tap coefficient estimated by the tap coefficient estimation unit 15, Generate a replica signal.
  • the configuration of the replica generation unit 56 will be described with reference to FIG. Figure In 6, the delay units 61 to 64 delay the input signal so that the receiving device takes in the received signal component at each sampling timing.
  • the number of delay units is arbitrary, but here we assume four. Also, assuming that the amount of delay in each delay unit is one symbol time, the receiver can capture up to 4 T delay waves.
  • Multipliers 65 to 69 multiply each of the known signal components or the symbol sequence candidates by the tap coefficients estimated by tap coefficient estimating section 15.
  • the weighted delay waves are added by an adder 70. As a result, a repli- cation signal is generated.
  • the tap coefficient estimator 15 since the tap coefficients are estimated so that the root mean square of the difference between the received signal and the replica signal is minimized, all tap coefficients are autonomously estimated by the tap coefficient estimator 15. Then, all tap coefficients converge to 0, and the functions of the array and the video equalizer are lost.
  • the tap coefficient input to the multiplier 65 provided for the tap corresponding to the preceding wave is defined as a fixed value (for example, 1), and when the tap coefficient by which the preceding wave is multiplied is set to 1, T delay wave to 4
  • the optimum tap coefficient to be multiplied by the T delay wave is estimated by the tap coefficient estimator 15 and is multiplied by the multipliers 66 to 69.
  • FIG. 6 shows a case where the tap coefficient by which the preceding wave is multiplied is set to a fixed value of 1 in the replica generating section of the conventional receiving apparatus
  • the present invention is not limited to this.
  • the fixed value any value can be used as long as it is a fixed constant, but “1”, which usually requires minimal processing, is often used.
  • the received signal components dispersed on the time axis are adjusted within the compensable range of the equalizer by adjusting the time of the delayed wave out of the compensable range by the equalizer.
  • the receiving performance is improved.
  • the path diversity effect for a maximum of 6 paths including the preceding wave Can be obtained.
  • the conventional receiving apparatus simply adjusts the time according to the preceding wave of each group and combines the received signals, so that the path diversity effect for six paths is not always obtained. Disclosure of the invention
  • An object of the present invention is to provide a receiving apparatus and the like that can always obtain a sufficient path diversity effect by always performing path diversity using the maximum number of paths possible in the apparatus configuration regardless of the dispersion state of received signal components. It is to provide a chemical treatment method.
  • the received signal component is distributed according to the dispersion state of the received signal component on the time axis so that the delay unit of the repli- cation generating unit is always used at the time of diversity combining. Time adjustment.
  • FIG. 1 is a main block diagram showing a schematic configuration of a conventional receiving apparatus.
  • FIG. 2 is a main block diagram showing a schematic configuration of a multiple array combining section of a conventional receiving apparatus.
  • FIG. 3 is a main block diagram showing a schematic configuration of a propagation path estimating unit of a conventional receiving apparatus.
  • FIG. 4A is a diagram illustrating an example of the delay profile.
  • FIG. 4B is a diagram illustrating an example of the delay profile.
  • FIG. 4C is a diagram illustrating an example of the delay profile.
  • FIG. 4D is a diagram illustrating an example of the delay profile.
  • FIG. 5 is a main block diagram showing a schematic configuration of a Viterbi equalizer of a conventional receiving apparatus.
  • FIG. 6 is a main block diagram showing a schematic configuration of a replica generation unit of a conventional receiving apparatus.
  • FIG. 7 is a main part block diagram showing a schematic configuration of the receiving apparatus according to one embodiment of the present invention.
  • FIG. 8 is a main block diagram showing a schematic configuration of the time adjustment amount control section of the receiving apparatus according to one embodiment of the present invention.
  • FIG. 9 is a main block diagram showing a schematic configuration of the replica generation unit of the receiving apparatus according to one embodiment of the present invention.
  • FIG. 1OA is a diagram showing an example of a delay profile of a received signal.
  • FIG. 10B is a diagram illustrating an example of a delay profile of a received signal.
  • FIG. 10C is a diagram showing an example of a delay profile of a received signal.
  • FIG. 7 is a main part block diagram showing a schematic configuration of the receiving apparatus according to one embodiment of the present invention.
  • FIG. 8 is a main block diagram showing a schematic configuration of the time adjustment amount control section of the receiving apparatus according to one embodiment of the present invention.
  • FIG. 9 is a main block diagram showing a schematic configuration of the replica generation unit of the receiving apparatus according to one embodiment of the present invention.
  • FIGS. 10A to 10C are diagrams illustrating an example of a delay profile of a received signal.
  • the multiple array combining unit 102 has the same number of processing systems as the number of antennas for combining the signals received by the antennas 101, and the result of combining after weighting for each antenna Are further synthesized.
  • Multiple array synthesis unit Since the configuration and function of 102 are the same as those of the multiple array combining section of the conventional receiving apparatus, detailed description of the multiple array combining section 102 is omitted.
  • the timing control unit 103 acquires the symbol synchronization timing from the output of the reception processing unit provided for each antenna in the multiple array combining unit 102. Note that the timing control section 103 can acquire the symbol synchronization timing from the output of any one of the reception processing sections.
  • Propagation path estimating section 104 estimates a delay profile from the output of a reception processing section provided for each antenna in multiple array combining section 102 and performs propagation path estimation. Since the configuration and function of the propagation path estimating unit 104 are the same as those of the conventional receiving apparatus, a detailed description of the propagation path estimating unit 104 will be omitted. An example of the output of the propagation path estimator 104 is shown in FIG. Note that the propagation path estimation unit 104 can perform propagation path estimation from the output of any one of the reception processing units.
  • the time adjustment amount control unit 105 detects how many synthesized signal components are generated when the received signal components are converged based on the time adjustment amount calculated by the propagation path estimation unit 104 . Then, the time adjustment amount control unit 105 compares the number of generated composite signal components with the number of delay elements included in the replica generation unit in the video equalizer 107 described later, If the numbers are different, the amount of time adjustment instructed to the time adjusting unit in the multiple array synthesizing unit 102 is reset so that the numbers match. Details will be described later.
  • the tap coefficient estimator 106 estimates a coefficient that minimizes the mean square value of the difference between the replica signal and the received signal (that is, a weighting coefficient based on the least squares method), and combines the estimated coefficients into a plurality of arrays. Output to the FFF in the unit 102 and the replica generation unit in the video equalizer 107. This coefficient is used in multipliers 305 to 309 in the FFF and replica generator.
  • the Viterbi equalizer 107 generates a replica signal, and performs a determination using a bi-bit algorithm using the difference between the received signal component subjected to time adjustment and array synthesis and the replica signal as likelihood information.
  • temporary combining section 201 converges and combines received signal components based on the time adjustment amount (that is, the time between preceding waves of each group) calculated by propagation path estimating section 104. .
  • the dispersion state detection unit 202 detects the dispersion state of the received signal component. Further, the dispersion situation detection unit 202 calculates how many symbol delays the combined signal component exists from the combined result in the temporary combining unit 201.
  • the time adjustment amount resetting unit 203 determines the dispersion state of the received signal component and the time spread of the synthesized signal component generated when the received signal component is converged as instructed by the propagation path estimating unit 104 ( That is, the number of symbol lengths of the combined signal component) and the maximum delay amount that can be compensated by the video equalizer 107, the received signal component is instructed by the propagation path estimation unit 104.
  • the convergence it is determined whether or not all the delay elements of the replica generation unit in the video equalizer 107 are used. That is, the time adjustment amount resetting unit 203 determines whether or not the number of the received signal components after the combination is equal to the number of the delay elements of the replica generation unit. Then, if the numbers do not match, the time adjustment amount resetting section 203 calculates a time adjustment amount that matches the number, and the calculated time adjustment amount is used as the multiple array combining section 10. Output to the time adjustment section in 2.
  • the time adjustment amount resetting unit 203 sets the sampling timing of the most delayed component of the extracted received signal components to the maximum delay time that can be compensated for by the video equalizer 107. Such a time adjustment amount is calculated.
  • delay sections 301 to 304 delay an input signal so that the receiving apparatus captures a received signal component at each sampling time.
  • the number of delay units is arbitrary, but here we assume four.
  • the receiving device can capture up to 4 T delay waves here.
  • Multipliers 305 to 309 multiply each of the known signal components or the symbol sequence candidates by the tap coefficients estimated by tap coefficient estimating section 106.
  • the tap coefficient multiplied by the preceding wave is fixed (1 in this case) so that all tap coefficients do not converge to zero.
  • Each delayed wave weighted by the tap coefficient is added by the adder 310.
  • Signals subjected to various distortions in the propagation path are received by the antenna 101.
  • the reception processing is performed on the received signal by the multiple array combining unit 102.
  • the symbol control timing is detected by the timing control unit 103 using the reception signal subjected to the reception processing.
  • Propagation path estimation is performed by the propagation path estimating unit 104 using the received signal subjected to the reception processing. Also, in order to keep the variance of the received signal component within the range where delay compensation by the video equalizer 107 is possible, the propagation path estimator 104 estimates the amount of time adjustment for the delayed wave. Is done.
  • the estimated time adjustment amount is corrected by the time adjustment amount control unit 105 so that all the delay elements of the replica generation unit in the video equalizer 107 are used.
  • FIG. 1OA shows the time adjustment amount estimated by the propagation path estimating unit 104.
  • the distance on the time axis between the first component of Group A and the first component of Group B is estimated as a time adjustment amount so that Group A and Group B are combined.
  • the delay wave of each group is synthesized by the temporary synthesizing unit 201 in the time adjustment amount control unit 105.
  • Figure 10B shows how the delayed waves of each group are combined.
  • the distribution status detector 202 Using the result of the synthesis, the delay of the most delayed wave is detected, and the detected maximum delay is compared with the number of delay elements in the replica generator.
  • the maximum delay is 3 T as shown in FIG. 10B, and the number of delay units 301 to 304 of the replica generation unit is four. 3 0 4 is not used. Therefore, it is determined that it is necessary to reset the time adjustment amount instructed by the time adjustment unit in the multiple-array combining unit 102, assuming that the effect of the path diversity cannot be sufficiently obtained.
  • the unit delay time T is added to or subtracted from the time adjustment amount by the time adjustment amount resetting unit 203, and the maximum delay of the synthesized signal component is obtained. Is calculated as the amount of time adjustment for to match the number of delay elements in the replica generation unit.
  • the unit delay time T is determined according to the amount of delay in each delay unit. Therefore, if the delay amount in each delay unit is one symbol time, addition and subtraction of one symbol time is performed, and if the delay amount in each delay unit is 12 symbol times, addition and subtraction of 12 symbol times are performed. .
  • the maximum delay can be made to match the number of delay elements in the replica generator as shown in FIG.
  • the adjustment amount is output to the time adjustment unit in the multi-array synthesis unit 102.
  • the received signal after the reception processing is time-adjusted based on the corrected time adjustment amount output from the time adjustment amount control unit 105, and is array-combined at each sampling timing.
  • the difference between the received signal and the replica signal calculated by the video equalizer 107 is transmitted to the tap coefficient estimator 106. Then, the tap coefficient estimating unit 106 estimates a new tap coefficient such that the mean square of the difference between the received signal and the replica signal is minimized. The estimated tap coefficients are transmitted to the Viterbi equalizer 107. As a result, the tap coefficients in the replica generation unit in the video equalizer 107 are updated.
  • the received signal component is distributed according to the dispersion state of the received signal component on the time axis so that the delay unit of the replica generation unit is always used at the time of diversity combining. Therefore, path diversity using the maximum number of paths possible as far as the device configuration can be always performed.
  • the present embodiment a configuration using a plurality of adaptive 'array / antennas has been described, but the present invention is not limited to this condition. That is, the present embodiment can be applied to a case where only one array of adaptive array antennas is used, and a case where a normal antenna is used without using an adaptive array antenna.
  • the present invention can be applied to a base station device used in a wireless communication system and a communication terminal device that performs wireless communication with the base station device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Noise Elimination (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

明 細 書 受信装置及び等化処理方法 技術分野
本発明は、 受信装置及び等化処理方法に関し、 特に等化器のタップ係数を 適応アルゴリズムに基づいて随時更新する受信装置及び等化処理方法に関す る。 背景技術
従来の受信装置は、 等化処理の前に、 時間軸上に分散する受信信号成分を 等化器の補償可能な範囲内で且つなるベく時間的に短い範囲内に集束させる 以下、 図 1から図 6を用いて、 従来の受信装置について説明する。 図 1は、 従来の受信装置の概略構成を示す要部ブロック図である。 図 2は、 従来の受 信装置の複数アレイ合成部の概略構成を示す要部ブロック図である。 図 3は, 従来の受信装置の伝搬路推定部の概略構成を示す要部ブロック図である。 図 4 A〜図 4 Dは、 遅延プロファイルの一例を示す図である。 図 5は、 従来の 受信装置のビ夕ビ等化器の概略構成を示す要部プロック図である。 図 6は、 従来の受信装置のレプリカ生成部の概略構成を示す要部プロック図である。 まず、 図 1を用いて、 従来の受信装置の全体構成について説明する。 図 1 において、 複数アレイ合成部 1 2は、 各アンテナ 1 1によって受信された信 号を合成する処理系統をアンテナ数と同数有し、 アンテナ毎に重み付けされ た後合成された結果を更に合成する。
タイミング制御部 1 3は、 複数アレイ合成部 1 2内にアンテナ毎に設けら れた受信処理部の出力からシンボル同期タイミングを獲得する。 なお、 タイ ミング制御部 1 3は、 シンボル同期タイミングをいずれか一つの受信処理部 の出力から獲得することができる。 伝搬路推定部 1 4は、 複数アレイ合成部 1 2内にアンテナ毎に設けられた 受信処理部の出力から遅延プロファイルを推定し、 受信信号成分の時間軸上 における分散状況を把握する。 つまり、 伝搬路推定部 1 4は、 伝搬路推定を 行う。 そして、 伝搬路推定部 1 4は、 後述するビ夕ビ等化器 1 6での遅延補 償が可能な範囲内に受信信号成分の分散を収めるために、 遅延波に対する時 間調整量 (図 4 Dに示す τ ) を算出し、 複数アレイ合成部 1 2内の時間調整 部 2 2に出力する。 伝搬路推定部 1 4は、 いずれか一つの受信処理部の出力 から伝搬路推定を行うことができる。
タップ係数推定部 1 5は、 レプリカ信号と受信信号との差分の 2乗平均値 を最小とする係数 (すなわち、 最小自乗法に基づいた重み付け係数) を推定 し、 この推定した係数を複数アレイ合成部 1 2内のフィード · フォーヮー ド, フィルタ (F F F ) 2 3とビ夕ビ等化器 1 6内のレプリカ生成部 5 6に 出力する。 この係数は、 F F F 2 3およびレプリカ生成部 5 6内の乗算器 6 5〜 6 9において使用される。
ビ夕ビ等化器 1 6は、 レプリカ信号を生成し、 アレイ合成された受信信号 成分とレプリカ信号との差分を尤度情報として、 受信信号に対してビ夕ビア ルゴリズムを用いた判定を行う。
次いで、 図 2を用いて、 複数アレイ合成部 1 2の構成を説明する。 ここで は、 例えば、 アレイ素子が 2つ、 パスグループが 2つ、 の場合について説明 するが、 アレイ素子数及びパスグループ数は任意である。
図 2において、 受信処理部 2 1は、 各アンテナからの受信信号に対しそれ ぞれ受信処理を行う。 時間調整部 2 2は、 伝搬路推定部 1 4の出力に基づい て受信処理後の受信信号を遅延させる。 F F F 2 3は、 タップ係数推定部 1 5から指示された夕ップ係数に基づいて受信信号に対して重み付け処理を行 う。 合成部 2 4は、 各アレイ ·各パスの F F F処理後の信号をすベて合成す る。
次いで、 図 3を用いて、 伝搬路推定部 1 4の構成を説明する。 図 3におい て、 遅延プロファイル推定部 3 1は、 受信信号成分の遅延プロファイルを推 定する。 遅延プロファイルの一例を図 4 Aに示す。
最大値検出部 3 2は、 推定された遅延プロファイルの時間軸上に分散する 受信信号成分のパワーの中から最大値を検出する。 しきい値設定部 3 3は、 受信状態が良好なパスのみが選択されるようなしきい値をパワーの最大値に 基づいて設定する。 しきい値の定め方は任意であり、 例えば、 最大値の何% 分という決め方や、 最大値から所定値を減算するという決め方等が考えられ る。 しきい値設定時の遅延プロファイルを図 4 Bに示す。
抽出部 3 4は、 受信パワーがしきい値設定部 3 3によって設定されたしき い値を上回るパスのみを抽出する。 パス抽出後の遅延プロファイルを図 4 C に示す。
グループ分け部 3 5は、 抽出されたパスをグループ (パス群) に分ける。 このグループ分けは、 ビタビ等化器 1 6において補償可能な最大遅延時間を 考慮した上で、 ビ夕ビアルゴリズムの状態数がなるべく小さくなるように行 われる。
例えば、 図 4 Cにおいては、 パス抽出後の最遅延成分の遅延時間は 6丁で ある。 ここで、 ビ夕ビ等化器 1 6において補償可能な最大遅延時間を 4 T遅 延までとすると、 図 4 Cに示すような遅延プロファイルを持つ受信信号を時 間調整なしにビ夕ビ等化器 1 6に入力した場合、 補償範囲外の遅延波の影響 により受信性能が大幅に劣化してしまう。
そこで、 ここでは、 3 T遅延間隔毎 (4成分毎) に 1グループを定めるも のとすると、 図 4 Dに示すように、 グループ Aとグループ Bの 2グループを 設定することができる。 後に時間調整部 2 2においてこれらグループに対し て時間調整が行われた場合、 最遅延成分の遅延時間は 3 Tであるため、 4 T 遅延まで補償可能なビ夕ビ等化器 1 6において十分に等化処理できる状態と なる。
グループ分け部 3 5は、 しきい値を超えた受信信号成分の分散状況の許す 範囲で可能な限り少ない遅延時間間隔毎にグループを定めて状態数がなるベ く少なくなるようにするか、 または、 等化器で補償可能な範囲に合わせてグ ループ分けを行う。 なお、 グループ数は 2とは限られず、 任意である。 時間調整量検出部 3 6は、 時間調整量を検出する。 すなわち、 時間調整量 検出部 3 6は、 グループ分け結果に基づいて、 最遅延グループに他のグルー プを合成するためには各グループをそれぞれどの程度遅延させたらよいか検 出する。 ここで、 例えば、 図 4 Dでは、 グループは全部で 2つであるため、 時間調整量検出部 3 6は、 最遅延グループであるグループ Bにグループ Aを 合成させるためのグループ Aの時間調整量てを検出し、 時間調整部 2 2に伝 達する。 すなわち、 時間調整量ては、 各グループの先頭成分の時間軸上での 距離である。 つまり、 時間調整量ては、 各グループの先行波に合わせて決定 される。 なお、 最遅延グループ以外のグループが複数ある場合には、 時間調 整量検出部 3 6は、 グループ毎に時間調整量を検出する。
次いで、 図 5を用いて、 ビ夕ビ等化器 1 6の構成を説明する。 図 5におい て、 減算器 5 1は、 受信信号からレプリカ信号を減算する。 誤差パワー算出 部 5 2は、 減算器 5 1における減算結果から誤差分のパワーを算出する。 ビ夕ビ演算部 5 3は、 例えば最尤系列推定を行う M L S E回路であり、 算 出された誤差分のパワーの値を尤度情報として受信信号の判定を行う。 メモリ 5 4は、 既知信号を保持する。 スィッチ 5 5は、 タイミング制御部 1 3の出力であるシンボル同期タイミングに基づいて、 既知信号を用いた夕 ップ係数推定時にはメモリ 5 4に格納された既知信号をレプリカ生成部 5 6 に出力し、 それ以外の時はビ夕ビ演算部 5 3の出力である受信信号のシンポ ル系列候補をレプリカ生成部 5 6に出力する。
レプリカ生成部 5 6は、 伝搬路推定部 1 4の出力に基づいて遅延させた既 知信号又は受信信号のシンボル系列候補に、 タップ係数推定部 1 5によって 推定されたタップ係数を乗じることにより、 レプリカ信号を生成する。 次いで、 図 6を用いて、 レプリカ生成部 5 6の構成について説明する。 図 6において、 遅延部 6 1〜6 4は、 受信装置が各サンプリングタイミングに おける受信信号成分を取り込むために、 入力信号を遅延させる。 遅延部の数 は任意であるが、 ここでは 4つとする。 また、 各遅延部での遅延量を 1シン ポル時間とすると、 受信装置は、 最大で 4 T遅延波まで取り込むことができ る。
乗算器 6 5〜6 9は、 既知信号成分またはシンボル系列候補それぞれに、 タップ係数推定部 1 5によって推定されたタップ係数を乗じる。 重み付け処 理された各遅延波は、 加算器 7 0によって加算される。 これにより、 レプリ 力信号が生成される。
ここで、 タップ係数は受信信号とレプリカ信号との差の 2乗平均が最小に なるように推定されるため、 すべてのタップ係数がタップ係数推定部 1 5に よって自律的に推定される構成とするとすベてのタップ係数が 0に収束して しまい、 アレイ及びビ夕ビ等化器の機能が失われてしまう。
そこで、 通常は、 先行波に対応するタップに設けられた乗算器 6 5に入力 されるタップ係数を固定値 (例えば 1 ) と定め、 先行波に乗算されるタップ 係数を 1とした場合に 1 T遅延波〜 4 T遅延波に乗算される最適なタップ係 数をタップ係数推定部 1 5によって推定し、 乗算器 6 6〜6 9によって乗じ るようにする。
なお、 図 6は、 従来の受信装置のレプリカ生成部において、 先行波へ乗算 されるタップ係数を固定値 1とした場合を表わしたものであるが、 これに限 られるものではない。 つまり、 固定値としては、 固定的に定められた定数で あればどのような値でも用いることができるが、 通常は最低限の処理で済む 「1」 が用いられる場合が多い。
このように、 従来の受信装置でも、 等化器で補償可能な範囲外の遅延波を 時間調整することによって時間軸上に分散した受信信号成分を等化器の補償 可能な範囲内に収め、 受信性能の向上を図っている。
しかしながら、 従来の受信装置では、 各グループの先行波に合わせて受信 信号を合成するため、 充分なパスダイバーシチ効果を得られないという問題 がある。
すなわち、 例えば、 受信装置が最大で 5 T遅延波まで取り込むことができ るようにレプリカ生成部に遅延素子が 5つ設けられているとすると、 先行波 も含め最大で 6パス分のパスダイバーシチ効果を得ることができる。 しかし ながら、 従来の受信装置では、 単に各グループの先行波に合わせて時間調整 を行い受信信号を合成しているため、 常に 6パス分のパスダイバ一シチ効果 が得られるとは限られない。 発明の開示
本発明の目的は、 受信信号成分の分散状況によらず、 常に装置構成上可能 な限り最多のパス数を用いたパスダイバーシチを行うことにより十分なパス ダイバーシチ効果を得ることができる受信装置及び等化処理方法を提供する ことである。
上記目的を達成するために、 本発明では、 ダイバーシチ合成時に、 レプリ 力生成部が有する遅延部が常にすベて用いられるように、 時間軸上における 受信信号成分の分散状況に応じて受信信号成分の時間調整を行う。 図面の簡単な説明
図 1は、 従来の受信装置の概略構成を示す要部ブロック図である。
図 2は、 従来の受信装置の複数ァレイ合成部の概略構成を示す要部ブロッ ク図である。
図 3は、 従来の受信装置の伝搬路推定部の概略構成を示す要部プロック図 である。
図 4 Aは、 遅延プロファイルの一例を示す図である。
図 4 Bは、 遅延プロファイルの一例を示す図である。
図 4 Cは、 遅延プロファイルの一例を示す図である。 図 4 Dは、 遅延プロファイルの一例を示す図である。
図 5は、 従来の受信装置のビタビ等化器の概略構成を示す要部ブロック図 である。
図 6は、 従来の受信装置のレプリカ生成部の概略構成を示す要部プロック 図である。
図 7は、 本発明の一実施の形態に係る受信装置の概略構成を示す要部プロ ック図である。
図 8は、 本発明の一実施の形態に係る受信装置の時間調整量制御部の概略 構成を示す要部ブロック図である。
図 9は、 本発明の一実施の形態に係る受信装置のレプリカ生成部の概略構 成を示す要部プロック図である。
図 1 O Aは、 受信信号の遅延プロファイルの一例を示す図である。
図 1 0 Bは、 受信信号の遅延プロファイルの一例を示す図である。
図 1 0 Cは、 受信信号の遅延プロファイルの一例を示す図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 添付図面を参照して詳細に説明する。 図 7は、 本発明の一実施の形態に係る受信装置の概略構成を示す要部プロ ック図である。 図 8は、 本発明の一実施の形態に係る受信装置の時間調整量 制御部の概略構成を示す要部ブロック図である。 図 9は、 本発明の一実施の 形態に係る受信装置のレプリカ生成部の概略構成を示す要部ブロック図であ る。 図 1 0 A〜図 1 0 Cは、 受信信号の遅延プロファイルの一例を示す図で ある。
まず、 図 7を用いて、 本実施の形態に係る受信装置の全体構成について説 明する。 図 7において、 複数アレイ合成部 1 0 2は、 各アンテナ 1 0 1によ つて受信された信号を合成する処理系統をアンテナ数と同数有し、 アンテナ 毎に重み付けをされた後合成された結果を更に合成する。 複数アレイ合成部 1 0 2の構成及び機能は従来の受信装置の複数アレイ合成部と同様であるた め、 複数アレイ合成部 1 0 2についての詳しい説明は省略する。
タイミング制御部 1 0 3は、 複数アレイ合成部 1 0 2内にアンテナ毎に設 けられた受信処理部の出力からシンボル同期タイミングを獲得する。 なお、 タイミング制御部 1 0 3は、 シンボル同期タイミングをいずれか一つの受信 処理部の出力から獲得することができる。
伝搬路推定部 1 0 4は、 複数アレイ合成部 1 0 2内にアンテナ毎に設けら れた受信処理部の出力から遅延プロファイルを推定し、 伝搬路推定を行う。 伝搬路推定部 1 0 4の構成及び機能は従来の受信装置の伝搬路推定部と同様 であるため、 伝搬路推定部 1 0 4についての詳しい説明は省略する。 伝搬路 推定部 1 0 4の出力の一例を図 1 O Aに示す。 なお、 伝搬路推定部 1 0 4は、 いずれか一つの受信処理部の出力から伝搬路推定を行うことができる。
時間調整量制御部 1 0 5は、 伝搬路推定部 1 0 4によって算出された時間 調整量に基づいて受信信号成分を集束させた場合に、 合成信号成分が何成分 生成されるかを検出する。 そして、 時間調整量制御部 1 0 5は、 生成される 合成信号成分の数と後述するビ夕ビ等化器 1 0 7内のレプリカ生成部が有す る遅延素子の数とを比較し、 それらの数が異なる場合にはそれらの数が一致 するように、 複数アレイ合成部 1 0 2内の時間調整部に指示する時間調整量 を再設定する。 詳しくは後述する。
タップ係数推定部 1 0 6は、 レプリカ信号と受信信号との差分の 2乗平均 値を最小とする係数 (すなわち最小自乗法に基づいた重み付け係数) を推定 し、 この推定した係数を複数アレイ合成部 1 0 2内の F F Fとビ夕ビ等化器 1 0 7内のレプリカ生成部に出力する。 この係数は、 F F Fおよびレプリカ 生成部内の乗算器 3 0 5〜3 0 9において使用される。
ビタビ等化器 1 0 7は、 レプリカ信号を生成し、 時間調整されアレイ合成 された受信信号成分とレプリカ信号との差分を尤度情報として、 ビ夕ビアル ゴリズムを用いた判定を行う。 次いで、 図 8を用いて、 時間調整量制御部 1 0 5の構成について説明する。 図 8において、 仮合成部 2 0 1は、 伝搬路推定部 1 0 4によって算出された 時間調整量 (すなわち、 各グループの先行波間の時間) に基づいて受信信号 成分を集束させて、 合成する。
分散状況検出部 2 0 2は、 受信信号成分の分散状況を検出する。 さらに、 分散状況検出部 2 0 2は、 仮合成部 2 0 1における合成結果から合成信号成 分が何シンボル遅延まで存在するか算出する。
時間調整量再設定部 2 0 3は、 受信信号成分の分散状況と、 伝搬路推定部 1 0 4の指示通りに受信信号成分を集束させた場合に生成される合成信号成 分の時間広がり (つまり、 合成信号成分が何シンボル長にわたり存在する か) と、 ビ夕ビ等化器 1 0 7において補償可能な最大遅延量とから、 伝搬路 推定部 1 0 4の指示通りに受信信号成分を集束させた場合にビ夕ビ等化器 1 0 7内のレプリカ生成部の遅延素子がすべて用いられるか否か判定する。 すなわち、 時間調整量再設定部 2 0 3は、 合成後の受信信号成分の数がレ プリカ生成部の遅延素子の数と一致するか否かを判定する。 そして、 時間調 整量再設定部 2 0 3は、 それらの数が一致しないならば、 それらの数が一致 するような時間調整量を算出し、 算出した時間調整量を複数ァレイ合成部 1 0 2内の時間調整部に出力する。
換言すれば、 時間調整量再設定部 2 0 3は、 抽出された受信信号成分のう ち最遅延成分のサンプリングタイミングがビ夕ビ等化器 1 0 7において補償 可能な最大遅延時間に一致するような時間調整量を算出する。
次いで、 図 9を用いて、 ビ夕ビ等化器 1 0 7内のレプリカ生成部の構成に ついて説明する。 図 9において、 遅延部 3 0 1〜3 0 4は、 受信装置が各サ ンプリング夕イミングにおける受信信号成分を取り込むために、 入力信号を 遅延させる。 遅延部の数は任意であるが、 ここでは 4つとする。 ここで、 各 遅延部での遅延量を 1シンポル時間とするならば、 ここでは、 受信装置は最 大で 4 T遅延波まで取り込むことができる。 乗算器 3 0 5〜3 0 9は、 既知信号成分またはシンボル系列候補それぞれ に、 タップ係数推定部 1 0 6によって推定されたタップ係数を乗じる。 なお, すべてのタツプ係数が 0に収束しないように、 先行波に乗算されるタツプ係 数は固定値 (ここでは 1 ) とする。 タップ係数で重み付けされた各遅延波は、 加算器 3 1 0によって加算される。 これにより、 レプリカ信号が生成される。 図 9に示すように本実施の形態に係る受信装置のレプリカ生成部では、 常 にすベての遅延部 3 0 1〜 3 0 4が用いられる。 よって、 よりパスダイバー シチ効果が得られ、 受信性能の改善が図られるようになる。
次いで、 上記構成を有する受信装置の動作について説明する。
伝搬路において様々な歪みを受けた信号がアンテナ 1 0 1によって受信さ れる。 受信信号に対して、 複数アレイ合成部 1 0 2によって受信処理が行わ れる。 受信処理された受信信号を用いて、 タイミング制御部 1 0 3によって シンポル同期タイミングが検出される。
受信処理された受信信号を用いて、 伝搬路推定部 1 0 4によって伝搬路推 定が行われる。 また、 ビ夕ビ等化器 1 0 7での遅延補償が可能な範囲内に受 信信号成分の分散を収めるために、 伝搬路推定部 1 0 4によって、 遅延波に 対する時間調整量が推定される。
推定された時間調整量は、 時間調整量制御部 1 0 5によって、 ビ夕ビ等化 器 1 0 7内のレプリカ生成部の有する遅延素子がすべて用いられるように修 正される。
伝搬路推定部 1 0 4によって推定された時間調整量てを図 1 O Aに示す。 ここでは、 グループ Aとグループ Bとが合成されるように、 グループ Aの先 頭成分とグループ Bの先頭成分との時間軸上の距離が時間調整量てとして推 定されている。
そして、 この時間調整量てに基づいて、 時間調整量制御部 1 0 5内の仮合 成部 2 0 1によって、 各グループの遅延波が合成される。 各グループの遅延 波が合成された様子を図 1 0 Bに示す。 分散状況検出部 2 0 2によって、 こ の合成結果を用いて最遅延波が何遅延なのかが検出され、 検出された最大遅 延とレプリカ生成部の遅延素子の数とが大小比較される。 ここでは、 仮合成 の結果図 1 0 Bに示すように最大遅延が 3 Tとなり、 また、 レプリカ生成部 の遅延部 3 0 1〜 3 0 4の数は 4つであるので、 このままでは遅延部 3 0 4 が用いられない。.よって十分にパスダイバーシチの効果が得られないとして、 複数アレイ合成部 1 0 2内の時間調整部に指示される時間調整量の再設定が 必要と判断される。
時間調整量の再設定が必要と判断されると、 時間調整量再設定部 2 0 3に よって、 時間調整量てに対して単位遅延時間 Tが加減算され、 合成された信 号成分の最大遅延がレプリカ生成部における遅延素子の数と一致するための 時間調整量て ' が算出される。 また、 単位遅延時間 Tは、 各遅延部での遅延 量に応じて定まるものである。 よって、 各遅延部での遅延量が 1シンボル時 間ならば、 1シンボル時間の加減算が行われ、 各遅延部での遅延量が 1 2 シンボル時間ならば、 1 2シンボル時間の加減算が行われる。
図 1 0 Bに示すような場合、 て ' ==て一 Tとすると図 1 0 Cに示すように 最大遅延をレプリカ生成部における遅延素子の数と一致させることができる ため、 この新たな時間調整量て ' =て—Tが複数アレイ合成部 1 0 2内の時 間調整部に出力される。
受信処理後の受信信号は、 時間調整量制御部 1 0 5の出力である修正済み の時間調整量に基づいて時間調整され、 各サンプリングタイミングにおいて アレイ合成される。
ビ夕ビ等化器 1 0 7によって算出された受信信号とレプリカ信号との差分 は、 タップ係数推定部 1 0 6に伝達される。 そして、 タップ係数推定部 1 0 6によって、 受信信号とレプリカ信号との差分の 2乗平均が最小となるよう に、 新たなタップ係数が推定される。 推定されたタップ係数はビタビ等化器 1 0 7に伝達される。 これにより、 ビ夕ビ等化器 1 0 7内のレプリカ生成部 におけるタップ係数が更新される。 このように、 本実施の形態によれば、 ダイバーシチ合成時に、 レプリカ生 成部が有する遅延部が常にすベて用いられるように、 時間軸上における受信 信号成分の分散状況に応じて受信信号成分の時間調整を行うため、 常に装置 構成上可能な限り最多のパス数を用いたパスダイバーシチを行うことができ る。
なお、 本実施の形態においては、 ァダプティブ 'アレイ ·アンテナを複数 系列用いる構成について説明したが、 本発明はこの条件に限定されるもので はない。 つまり、 本実施の形態は、 ァダプティブ ·アレイ ·アンテナを一系 列のみ用いる場合でも、 ァダブティブ ·アレイ 'アンテナを用いず通常のァ ンテナを用いる場合でも、 適用することができる。
又、 本実施の形態においては、 受信信号成分の受信レベルに応じて、 レブ リ力信号生成時に固定値が入力される夕ップの位置を可変とすることも可能 である。
以上説明したように、 本発明によれば、 常に装置構成上可能な限り最多の パス数を用いたパスダイバーシチを行うことができるため、 パスダイバーシ チ効果が向上し、 誤り率を向上させることができる。
本明細書は、 平成 1 1年 5月 3 1日出願の特願平 1 1一 1 5 2 3 0 1号に 基づくものである。 この内容はすべてここに含めておく。 産業上の利用可能性
本発明は、 無線通信システムにおいて使用される基地局装置や、 この基地 局装置と無線通信を行う通信端末装置に適用することが可能である。

Claims

請求の範囲
1 . 時間軸上に分散した所定の数の信号成分を重み付けした後に合成する 合成器と、 時間軸上に分散した受信信号成分を前記合成器において合成可能 な範囲に収まるように集束させる集束器と、 集束された受信信号成分のうち で最も遅延量が大きい信号成分のサンプリングタイミングが前記合成器にお いて合成可能な範囲中の最遅延時間に一致するように前記集束器を制御する 制御器と、 を具備する受信装置。
2 . 制御器は、 合成器の有する遅延素子と同数の信号成分が生成されるよ うに集束器を制御する請求項 1記載の受信装置。
3 . 所定の方向から到来する信号のみを受信する複数のァダプティブ ·ァ レイ ·アンテナと、 各ァダプティブ 'アレイ ·アンテナによって受信された 信号を重み付けした後に加算するアレイ受信器と、 を具備する請求項 1記載 の受信装置。
4 . 受信装置を搭載する通信端末装置であって、 受信装置は、 時間軸上に 分散した所定の数の信号成分を重み付けした後に合成する合成器と、 時間軸 上に分散した受信信号成分を前記合成器において合成可能な範囲に収まるよ うに集束させる集束器と、 集束された受信信号成分のうちで最も遅延量が大 きい信号成分のサンプリングタイミングが前記合成器において合成可能な範 囲中の最遅延時間に一致するように前記集束器を制御する制御器と、 を具備 する。
5 . 請求項 4記載の通信端末装置と無線通信を行う基地局装置。
6 . 受信装置を搭載する基地局装置であって、 受信装置は、 時間軸上に分 散した所定の数の信号成分を重み付けした後に合成する合成器と、 時間軸上 に分散した受信信号成分を前記合成器において合成可能な範囲に収まるよう に集束させる集束器と、 集束された受信信号成分のうちで最も遅延量が大き い信号成分のサンプリングタイミングが前記合成器において合成可能な範囲 中の最遅延時間に一致するように前記集束器を制御する制御器と、 を具備す る。
7 . 請求項 6記載の基地局装置と無線通信を行う通信端末装置。
8 . 時間軸上に分散した所定の数の信号成分を重み付けした後に合成する 合成工程と、 時間軸上に分散した受信信号成分を前記合成工程において合成 可能な範囲に収まるように集束させる集束工程と、 集束された受信信号成分 のうちで最も遅延量が大きい信号成分のサンプリング夕イミングが前記合成 工程において合成可能な範囲中の最遅延時間に一致するように前記集束工程 を制御する制御工程と、 を具備する等化処理方法。
PCT/JP2000/003446 1999-05-31 2000-05-30 Recepteur et procede d'egalisation WO2000074267A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00931605A EP1102420A4 (en) 1999-05-31 2000-05-30 RECEIVER AND EQUALIZATION METHOD
AU49508/00A AU4950800A (en) 1999-05-31 2000-05-30 Receiver and equalizing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP15230199A JP3739597B2 (ja) 1999-05-31 1999-05-31 無線受信装置及び等化処理方法
JP11/152301 1999-05-31

Publications (1)

Publication Number Publication Date
WO2000074267A1 true WO2000074267A1 (fr) 2000-12-07

Family

ID=15537540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003446 WO2000074267A1 (fr) 1999-05-31 2000-05-30 Recepteur et procede d'egalisation

Country Status (6)

Country Link
EP (1) EP1102420A4 (ja)
JP (1) JP3739597B2 (ja)
KR (1) KR100403662B1 (ja)
CN (1) CN1157002C (ja)
AU (1) AU4950800A (ja)
WO (1) WO2000074267A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434281B1 (ko) * 2001-10-16 2004-06-05 엘지전자 주식회사 이동 통신 시스템에서 시간 동기 장치 및 방법
AU2003249433A1 (en) * 2002-08-02 2004-02-25 Koninklijke Philips Electronics N.V. Differential decoder followed by non-linear compensator
CN103220067A (zh) * 2012-01-18 2013-07-24 普天信息技术研究院有限公司 一种下行数据的接收处理方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514130A (ja) * 1990-09-20 1993-01-22 Kawasaki Steel Corp デイジタルフイルタ
JPH06120774A (ja) * 1992-10-01 1994-04-28 Matsushita Electric Ind Co Ltd データ受信装置
JPH06350328A (ja) * 1993-06-04 1994-12-22 Clarion Co Ltd アダプティブ・アレイ・アンテナ装置
JPH09116388A (ja) * 1995-10-16 1997-05-02 Sony Corp 有限長インパルス応答フイルタ、デイジタル信号処理装置及びデイジタル信号処理方法
JPH10336083A (ja) * 1997-06-03 1998-12-18 N T T Ido Tsushinmo Kk アダプティブアレイ受信機
JP2000188567A (ja) * 1998-12-22 2000-07-04 Ntt Mobil Communication Network Inc 受信信号系列推定方法及びこの方法を用いたアダプティブ受信機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2684888B2 (ja) * 1991-08-06 1997-12-03 国際電信電話株式会社 アダプティブアレイアンテナ制御方式
US5671221A (en) * 1995-06-14 1997-09-23 Sharp Microelectronics Technology, Inc. Receiving method and apparatus for use in a spread-spectrum communication system
FR2737362B1 (fr) * 1995-07-25 1997-10-10 Matra Communication Procede de selection des retards de propagation retenus pour recevoir des messages transmis par radiocommunication a etalement de spectre
FI100494B (fi) * 1995-11-20 1997-12-15 Nokia Telecommunications Oy Menetelmä vastaanottimen ohjaamiseksi ja vastaanotin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514130A (ja) * 1990-09-20 1993-01-22 Kawasaki Steel Corp デイジタルフイルタ
JPH06120774A (ja) * 1992-10-01 1994-04-28 Matsushita Electric Ind Co Ltd データ受信装置
JPH06350328A (ja) * 1993-06-04 1994-12-22 Clarion Co Ltd アダプティブ・アレイ・アンテナ装置
JPH09116388A (ja) * 1995-10-16 1997-05-02 Sony Corp 有限長インパルス応答フイルタ、デイジタル信号処理装置及びデイジタル信号処理方法
JPH10336083A (ja) * 1997-06-03 1998-12-18 N T T Ido Tsushinmo Kk アダプティブアレイ受信機
JP2000188567A (ja) * 1998-12-22 2000-07-04 Ntt Mobil Communication Network Inc 受信信号系列推定方法及びこの方法を用いたアダプティブ受信機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1102420A4 *

Also Published As

Publication number Publication date
CN1306704A (zh) 2001-08-01
EP1102420A1 (en) 2001-05-23
CN1157002C (zh) 2004-07-07
JP2000341184A (ja) 2000-12-08
EP1102420A4 (en) 2004-12-22
AU4950800A (en) 2000-12-18
KR100403662B1 (ko) 2003-10-30
KR20010072102A (ko) 2001-07-31
JP3739597B2 (ja) 2006-01-25

Similar Documents

Publication Publication Date Title
EP1806890B1 (en) Adaptive equalization apparatus and method
JP2697648B2 (ja) 判定帰還形等化器
EP0755141B1 (en) Adaptive decision feedback equalization for communication systems
CN100399809C (zh) 使用空间分集和波束形成接收数字电视信号的方法和装置
JP3591581B2 (ja) 適応アンテナ受信装置
JPH1198066A (ja) 復調器及び復調方法
WO2004098116A2 (en) Adaptation structure and methods for analog continuous time equalizers
JP2001119372A (ja) 符号分割多重アクセスネットワークにおいて多重伝送された信号を検出するための装置及び方法
JP3851478B2 (ja) 適応アレーアンテナ装置
WO1995010892A1 (fr) Recepteur de signaux a etalement du spectre
KR100403067B1 (ko) 수신 장치, 통신 단말 장치, 기지국 장치 및 레플리커 신호 생성 방법
WO2000074267A1 (fr) Recepteur et procede d'egalisation
JP3304035B2 (ja) ダイバーシチ受信装置
JP2002204192A (ja) 受信方法及び受信機
JPH08331025A (ja) 適応干渉キャンセル受信機
JP4815638B2 (ja) 無線通信システムのためのマルチユーザ等化方法及び装置
JP4219866B2 (ja) アダプティブアンテナ
JP2868012B1 (ja) 受信方法および受信装置
JP4216256B2 (ja) 適応型マルチユーザ干渉キャンセラおよびマルチユーザ検出器
US6763077B1 (en) Receiving apparatus and array combining method
EP1126633A1 (en) Radio receiver and adaptive receiving method
JP4606647B2 (ja) 適応送受信機
JPH11225100A (ja) 受信方法および受信装置
JP2004096603A (ja) 信号分離方法および受信装置
JPH1079618A (ja) 適応アンテナ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00800904.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 09744338

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000931605

Country of ref document: EP

Ref document number: 1020017001250

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000931605

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017001250

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1020017001250

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2000931605

Country of ref document: EP