WO2000071934A1 - Verfahren zur thermischen entsorgung von heizwertreichen fraktionen aus müll in fossil gefeuerten kraftwerksanlagen - Google Patents

Verfahren zur thermischen entsorgung von heizwertreichen fraktionen aus müll in fossil gefeuerten kraftwerksanlagen Download PDF

Info

Publication number
WO2000071934A1
WO2000071934A1 PCT/EP2000/004743 EP0004743W WO0071934A1 WO 2000071934 A1 WO2000071934 A1 WO 2000071934A1 EP 0004743 W EP0004743 W EP 0004743W WO 0071934 A1 WO0071934 A1 WO 0071934A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
pyrolysis
gas
steam generator
coke
Prior art date
Application number
PCT/EP2000/004743
Other languages
English (en)
French (fr)
Inventor
Eckhard Dubslaff
Hans-Joachim Sander
Detlef Witt
Bernhard Hinze
Ralf Peter
Original Assignee
Veag Vereinigte Energiewerke Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19925011A external-priority patent/DE19925011C2/de
Application filed by Veag Vereinigte Energiewerke Ag filed Critical Veag Vereinigte Energiewerke Ag
Publication of WO2000071934A1 publication Critical patent/WO2000071934A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • F23G5/0273Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage using indirect heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/006General arrangement of incineration plant, e.g. flow sheets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • F23G5/16Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/442Waste feed arrangements
    • F23G5/444Waste feed arrangements for solid waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/70Blending
    • F23G2201/701Blending with additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/10Combustion in two or more stages
    • F23G2202/102Combustion in two or more stages with supplementary heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/20Waste heat recuperation using the heat in association with another installation
    • F23G2206/201Waste heat recuperation using the heat in association with another installation with an industrial furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/20Waste heat recuperation using the heat in association with another installation
    • F23G2206/203Waste heat recuperation using the heat in association with another installation with a power/heat generating installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/00001Exhaust gas recirculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/50206Pelletising waste before combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Definitions

  • the invention relates to a method for the thermal disposal of high-calorific fractions from waste and / or residues in fossil-fired power plants, in particular lignite-fired power plants with wet flue gas desulfurization.
  • a power plant with fuel waste incineration in particular hard coal waste incineration, which has a main boiler with hard coal combustion, a steam turbine set downstream of the main boiler, consisting of a high-pressure turbine and at least one turbine downstream of the high-pressure turbine low pressure, is connected to a refuse firing, the heat released during the operation of the turboset is used by a steam-side connection of the refuse boiler to the inlet of an intermediate superheater located between the high pressure turbine and the low pressure turbine.
  • EP 0 302 310 in which the smoldering-burning pyrolysis process from Siemens is coupled to an integrated steam power plant for generating electricity for thermal waste disposal.
  • This further extends DE 44 40 984 in that the power plant is connected to the waste disposal system at two points, so that on the one hand a part of the hot exhaust gas, which the gas turbine of the power plant emits, is used in the waste disposal system and, on the other hand, that generated in the waste facility Steam is used in addition to the power plant steam to operate the steam turbine of the power plant
  • DE 44 42 136 describes a process for the combustion of fossil fuels and waste, whereby a fossil-fueled large boiler system is combined with a small waste incineration plant.
  • the waste gases from the waste incineration process are used in a suitable location in a ratio ⁇ 30% flue gas without prior use of heat from waste incineration of> 70% flue gas from fossil fuel introduced into a fossil-fired boiler.
  • Example D shows, among other things, the use of the flue gases from waste incineration to dry the coal in the power plant and the task of unburning the incineration ash on the coal and fine grinding both components
  • the task of the gauze together with the coal in the power plant process is not described, nor are there any dependencies between the gauze supply and the firing process
  • the invention is based on the object of integrating the thermal disposal of high-calorific fractions of gauze and / or residues into a fossil power plant process in such a way that separate garbage combustion is no longer necessary and the coke formed in the pyrolysis is partially or completely contaminated, in particular chlorine, are exempted and the resulting waste products are disposed of in a residue-free and environmentally friendly manner
  • the gauze / residues are processed and treated and pressed to known pellets / briquettes or subjected to a thermal treatment (homogenization) to form coke-like material and high-energy gas and, if necessary, controlled depending on the gas and gas required
  • Coke analyzes and the amounts of gas and coke with additives the coal flow in the unloading bunker and / or a coal belt and / or a steam generator bunker and / or a coal distributor in front of or in the area of a coal chute and / or a flue gas suction in a proportion of max.
  • the coke formed during the pyrolysis from gauze and / or residues is washed in a washer, in particular in a single-stage and / or multi-stage water and / or process water of a water bath and / or an immersion bath and / or a nozzle bath of pollutants, especially from chlorine, in a proportion of ⁇ 50% and then the chlorine-reduced coke is fed to a conventional combustion process of a downstream steam generator
  • the gauze / residual material prepared and treated on the landfill is either compressed in containers or delivered as pellets and / or briquettes with a length of 2 - 8 cm and a diameter / width of 1 - 5 cm.
  • the thermal treatment of the processed garbage / residues is realized by pyrolysis. This is not necessary for delivery as a pellet / briquette
  • the high-energy gas generated in the pyrolysis is partly used to maintain the pyrolysis process and the resulting waste heat in the downstream steam generator.
  • clear sludge can also be added in part is limited to a maximum of 3%.
  • the high-energy synthesis gas that continues to be generated during pyrolysis is limited in the coal dust burner area to an amount of ⁇ 2% of the amount of flue gas generated by the combustion of fossil fuels.
  • the exhaust gas heat that is generated during pyrolysis is reduced by direct introduction into the conventional steam generator and / or integrated into the flue gas stream after the boiler and used for energy
  • the pellets and / or briquettes are mechanically pressed to a length of 2 - 8 cm and a diameter / width of 1 - 5 cm
  • the admixture of pellets and / or briquettes per boiler is limited to max. 5 t / h with a heating output of max. 6%
  • Fig 1 - the scheme of a garbage incineration with upstream thermal treatment
  • Fig. 2 the diagram of a coaling plant with pellet / briquette feed on average
  • the garbage is delivered in a garbage bunker 1
  • a garbage bunker can be dispensed with if the delivery is made as pressed bales or in so-called press containers. In this case, an adequate stack storage area must be kept Subsequently, the gauze is picked up by suitable crane systems 2 and, if necessary, sieved and crushed according to its structure, in order to then go to task 3. From there, the transport takes place via appropriate devices 5 into the thermal recycling device, for example into a pyrolysis tube 6 the required chemical properties of the pyrolysis gas are achieved, additives 4, such as lime, are added before entering the pyrolysis tube 6
  • the gas 7 generated in the pyrolysis has a temperature of approximately 500 ° C. and is transported away by means of a blower 8. As shown in the example, part of the gas can be freed of solids in a filter 9 and then burned in a separate combustion chamber 10 The pyrolysis gas is ignited by an oil or gas burner. The air required for the combustion is sucked in from the waste bunker 1 or, if not available, directly from the environment.
  • the gas 11 produced in the combustion chamber 10 during combustion has a temperature of approx 1300 ° C and is used to heat the pyrolysis tube 6
  • the exhaust gas 12 still has a temperature of about 1000 ° C after heat is given off to the pyrolysis tube 6 and must therefore be cooled in a heat exchanger 13 to about 600 ° C in order to then to be brought into the combustion chamber of a conventional steam generator below the level of the flue gas suction by means of suction.
  • the heat exchanger 13 serves thereby simultaneously heating up the intake combustion air 18
  • the other partial flow of the pyrolysis gas is blown and burned directly into the conventional steam generator in the vicinity of the coal dust burner.
  • the heat of the exhaust gas 12 and the burned pyrolysis gas 7 is raised in the steam generator used conventional way and thus leads to the saving of fossil fuel
  • coke 15 can either be added directly to the trench bunker, the belt system between the trench bunker and the boiler bunker or, as shown in FIG. 1, to the coal in the boiler bunker 16, crushed by the downstream mill 17 and by means of a dust burner in the boiler with the Coal burned together
  • the coke should preferably be added before the first coal preparation stage.
  • the ratio of the quantity of coke fed to the amount of coal burned in the boiler is ⁇ 2%, so that it can be easily used in the power plant process is made possible
  • the coal 20 arriving in wagons 19 arrives in the trench bunker 21 and is conveyed via the coal belt 22 into the crusher building 23, where the coal 20 is fed either directly via the roller screen grate 24 or via the crusher 25 onto the coal belt 26 which contains the coal 20 gives up the steam generator bunker 27 From the respective steam generator bunker 27, the coal 20 passes through the associated distributor 28 into the flue gas suction 29.
  • a connector 30 is arranged on the distributor 28 for introducing the pellets 32 transported via a screw conveyor 31.
  • the pellets 32 are fed via the wagons or not shown Container vehicles are transported, temporarily stored and, by means of suitable means of transport, get into the template container 34, from which they are removed by means of a screw conveyor 31.
  • the mill 35 is jointly ground and dried.
  • the mixture 36 is then passed on the S pigeon burners 37, which are arranged on the boiler 38
  • processed and / or pretreated and / or untreated and / or sorted and / or unsorted garbage 39 and / or residual material are either pressed in containers or pressed as pellets and / or as briquettes and / or in bulk with an edge length of max ⁇ 200 mm burned in fossil-fired power plants.
  • these are coal-fired power plants with a wet flue gas desulfurization system.
  • the thermal treatment of the garbage 39 and / or residual material is carried out via pyrolysis 40 Edge length of 200 mm per piece in the greatest extent of a thermal treatment (homogenization) in the form of a pyrolysis 40 with a pyrolysis tube as a control unit subjected to a fossil-fired power plant.
  • coke 41 and Energy-rich gas The coke 41 is in a one-stage and / or multi-stage washer 42, the water and / or service water being at ambient temperature, in a water bath and / or immersion bath and / or shower bath of pollutants, especially chlorine, in a proportion of> 50%
  • pollutants especially chlorine
  • the chlorine-free coke 43 is then freed together with the energiereic hen gas and coal in a conventional combustion process fed to a downstream steam generator 47
  • the wash water 44 which is formed in the washer 42 and mixed with about ⁇ 100 g / l of chloride, is added to the flue gas desulfurization water 45 typically obtained in the power plant process in an amount of about ca 5% to about ⁇ 10%, and together with the steam boiler ash 46 as stabilizer 48 spent on a landfill

Abstract

Die Erfindung betrifft ein Verfahren zur thermischen Entsorgung von heizwertreichen Fraktionen aus Müll und/oder Reststoffen in fossil gefeuerten Kraftwerksanlagen, gekennzeichnet dadurch, daß der Müll/Reststoffe (2) aufbereitet und behandelt und zu an sich bekannten Pellets/Briketts gepreßt oder einer thermischen Behandlung (Homogenisierung) zur Bildung von koksartigem Material (15) und energiereichem Gas (7) unterzogen und ggf. gesteuert in Abhängigkeit von jeweils notwendigen Gas- und Koksanalysen sowie der Gas- und Koksmengen mit Additiven versetzt, dem Kohlestrom einem Anteil von max. 5 % der Zuteiler-Kohlemenge ab vorzugsweise 60 % Feuerungsleistung des Kessels dirkt aufgegeben, zusammen einer Kohlemühle zugeführt sowie im Dampferzeuger verbrannt wird, wobei das bei der thermischen Behandlung entstandene energiereiche Gas (7) teilweise vollständig auf direktem Wege dem Dampferzeuger (14) zugeführt und unter teilweisem oder vollständigem Verzicht auf eine separate Reinigung (10) verbrannt wird.

Description

VERFAHREN ZUR THERMISCHEN ENTSORGUNG VON HEIZWERTREICHEN FRAKTIONEN AUS MÜLL IN FOSSIL GEFEUERTEN KRAFTWERKSANLAGEN
Die Erfindung betrifft ein Verfahren zur thermischen Entsorgung von heizwertreichen Fraktionen aus Müll und/oder Reststoffen in fossil gefeuerten Kraftwerksanlagen, insbesondere Braunkohlekraftwerken mit nasser Rauchgasentschwefelung.
Die mechanisch-biologische Vorbehandlung von Restmüll gewinnt ständig an
Bedeutung bei der umweltfreundlichen Handhabung und Entsorgung von Müll.
Damit verbunden ist die Erzeugung hochkalorischer Fraktionen, die prinzipiell als Brennstoffe nutzbar sind.
Bei der thermischen Behandlung von Müll reicht es für einen effizienten Betrieb der Anlagen nicht mehr aus, den Müll lediglich zu verbrennen und eventuell im geringen Umfang die Abwärme zu nutzen.
Bekannt ist es, den Betrieb von fossil gefeuerten Kraftwerken mit Müllfeuerungen gleich welcher Art (Rostfeuerung, Vergasung, Verschweiung) in der Weise zu kombinieren, daß sich zwischen beiden thermischen Prozessen Synergieeffekte ergeben, die genutzt werden. Dies hat den Vorteil, daß sich der bei der thermischen Müllbehandlung ergebende Dampf oder die Abwärme in einem ohnehin vorhandenen Kraftwerksprozeß nutzbringend einsetz n läßt.
Hierfür gibt es eine Reihe von Beispielen, wie DE 30 44 991 , wo ein Kraftwerk mit Brennstoff-Müllverbrennung, insbesondere Steinkohlen-Müllverbrennung, welches einen Hauptkessel mit Steinkohlenfeuerung, einen dem Hauptkessel nachgeschalteten Dampfturbosatz, bestehend aus einer Hochdruckturbine und mindestens einer der Hochdruckturbine nachgeschalteten Turbine niederen Drucks, aufweist, mit einer Müllfeuerung, deren freiwerdende Wärme im Betrieb des Turbosatzes durch eine dampfseitige Verbindung des Müllkessels mit dem Einlaß eines zwischen Hochdruckturbine und der Turbine niederen Drucks liegenden Zwischenüberhitzers genutzt wird, verbunden ist.
Ein weiteres Beispiel hierfür gibt EP 0 302 310 wieder, worin zur thermischen Abfallentsorgung der Schwel-Brenn-Pyrolyse-Prozeß der Fa. Siemens mit einem integrierten Dampfkraftwerk zur Stromerzeugung gekoppelt ist. Dies baut DE 44 40 984 dahingehend weiter aus, daß das Kraftwerk an zwei Stellen mit der Abfallentsorgungsanlage verbunden ist, so daß einerseits ein Teil des heißen Abgases, das die Gasturbine des Kraftwerkes abgibt, in der Abfallentsorgungsanlage genutzt wird und andererseits der in der Abfallanlage erzeugte Dampf neben dem Kraftwerksdampf zum Betrieb der Dampfturbine des Kraftwerkes genutzt wird
Darüber hinaus wird in DE 44 42 136 ein Verfahren zur Verbrennung von fossilen Brennstoffen und Abfall beschrieben, wobei eine fossil befeuerte Großkes- selanlage mit einer kleinen Abfallverbrennungsanlage kombiniert wird Die Abgase der Abfallverbrennung werden dabei ohne vorherige Warmenutzung an geeigneter Stelle im Verhältnis < 30 % Rauchgas aus Abfallverbrennung zu > 70 % Rauchgas aus fossilem Brennstoff in einen fossil befeuerten Kessel eingeleitet Beispiel D zeigt u a die Verwendung der Rauchgase der Abfallver- brennung zur Mahltrocknung der Kohle im Kraftwerk sowie die Aufgabe des Unverbrannten der Abfallverbrennungsasche auf die Kohle und die Feinmahlung beider Bestandteile
Allen kombinierten Verfahren von thermischer Abfallentsorgung und Kraftwerk- sprozeß ist gemeinsam, daß
- zwei unabhängig voneinander zu bauende Anlagen notwendig sind,
einen doppelten Planungs-, Invest- und Betriebsaufwand verursa- chen, wobei
- die Synergieeffekte deutlich begrenzt sind und eine eigene Abgasreinigung sowie eine eigene energetische Nutzungseinheit erforderlich ist
Es ist bekannt, vorsortierten Mull zusammen mit Kohle in Kraftwerken zu verbrennen (DE 41 26 838 C1 , DE 40 1 1 706 A1 ) Der Mull wird nach seiner Sortierung und evtl Zerkleinerung gesondert behandelt
Die Aufgabe des Mulls zusammen mit der Kohle in den Kraftwerksprozeß wird nicht beschrieben Auch werden keine Abhängigkeiten zwischen Mullzufuhr und Feuerungsprozeß genannt Der Erfindung hegt die Aufgabe zugrunde, die thermische Entsorgung von heizwertreichen Fraktionen Mull und/oder Reststoffen in einen fossilen Kraftwerksprozeß so zu integrieren, daß keine separate Mullverbrennung mehr notwendig ist und der bei der Pyrolyse entstehende Koks teilweise bzw vollständig von Schadstoffen, insbesondere von Chlor, befreit sowie die dabei entstehenden Abprodukte ruckstandsfrei und umweltfreundlich verbracht werden
Dies wird erfindungsgemaß dadurch erreicht, daß der Mull/Reststoffe aufbereitet und behandelt und zu an sich bekannten Pellets/Briketts gepreßt oder einer thermischen Behandlung (Homogenisierung) zur Bildung von koksartigem Material und energiereichem Gas unterzogen und ggf gesteuert in Abhängigkeit von jeweils notwendigen Gas- und Koksanalysen sowie der Gas- und Koksmengen mit Additiven versetzt, dem Kohlestrom im Entladebunker und/oder einem Kohleband und/oder einem Dampferzeugerbunker und/oder einem Kohlezuteiler vor oder im Bereich eines Kohlefallschachtes und/oder einer Rauchgasrucksaugung in einem Anteil von max 5 % der Zuteiler-Kohlemenge ab vorzugsweise 60 % Feuerungsleistung des Kessels direkt aufgegeben, zusammen einer Kohle- muhle zugeführt sowie im Dampferzeuger verbrannt wird, wobei das bei der thermischen Behandlung entstandene energiereiche Gas teilweise oder voll- standig auf direktem Wege dem Dampferzeuger zugeführt und unter teilweisem oder vollständigem Verzicht auf eine separate Reinigung verbrannt wird
Zur Realisierung wird der bei der Pyrolyse aus Mull und/oder Reststoffen entstehende Koks in einem Wascher, insbesondere in einem einstufigen und/oder mehrstufigen mit Umgebungstemperatur temperierten Wasser und/oder Brauchwasser eines Wasserbades und/oder eines Tauchbades und/oder eines Dusenbades von Schadstoffen, speziell von Chlor, im Anteil von ≥ 50 % befreit und anschließend der chlorreduzierte Koks einem konventionellen Verbrennungsprozeß eines nachgeschalteten Dampferzeugers zugeführt
Der auf der Deponie aufbereitete und behandelte Mull/Reststoff wird entweder in Containern zwischenverpreßt oder als Pellets und/oder Briketts mit einer Lange von 2 - 8 cm und einem Durchmesser/Breite von 1 - 5 cm verpreßt angeliefert Die thermische Behandlung des aufbereiteten Mulls/Reststoffe wird über eine Pyrolyse realisiert Bei einer Anlieferung als Pellet/Brikett ist dies nicht notwendig Das in der Pyrolyse entstandene energiereiche Gas wird teilweise zur Erhaltung des Pyrolyseprozesses und die dabei entstehende Abwarme im nachgeschalteten Dampferzeuger verwendet Zur Pyrolyse des Mulls/Reststoffe kann auch anteilig Klarschlamm hinzugegeben werden Die Zugabemenge des bei der Py- rolyse entstehenden koksartigen Materials zur verfeuerten Kohlemenge pro Kessel wird auf max 3 % begrenzt Das bei der Pyrolyse weiterhin entstehende energiereiche Synthesegas wird im Bereich der Kohlenstaubbrenner in einer Menge von < 2 % der durch die Verbrennung der fossilen Brennstoffe entstandenen Rauchgasmenge begrenzt Die bei der Pyrolyse darüber hinaus entstehende Abgaswarme wird durch direkte Einleitung in den konventionellen Dampferzeuger und/oder in den Rauchgasstrom nach Kessel eingebunden und energetisch verwertet Die Pellets und/oder Briketts werden auf eine Lange von 2 - 8 cm und einen Durchmesser/Breite von 1 - 5 cm mechanisch gepreßt Die Zumischung von Pellets und/oder Briketts pro Kessel ist auf max 5 t/h bei einer Feuerungswarmeleistung von max 6 % begrenzt
Dabei bestehen für die Mitverbrennung von Abfallen in Kraftwerken folgende grundsätzliche Prämissen
1 Der Energieerzeugungsprozeß aus Braunkohle bleibt der bestimmende und durch die Mitverbrennung/Verwertung darf technologisch keine negative Beeinflussung erfolgen Die Mitverbrennung/Verwertung darf zu keiner Beeinträchtigung der Verwertungs- bzw der Deponie- fahigkeit der Kraftwerksreststoffe Asche, Gips und REA-Abwasser fuhren
2 Durch die Mitverbrennung/Verwertung darf die Umweltvertraglichkeit des Gesamtprozesses nicht in Frage gestellt werden
Durch aufwendige und intensive Versuche wurde gefunden, daß bei der erfin- dungsgemaßen Einstellung des Prozesses durch zielgerichtete Zugabe von Pellets und/oder Briketts einerseits die Gefahr eines Anbackens von weichpla- stischen Bestandteilen des Mulls an den Ventilatormuhlen sowie im Brenner vermieden, die thermische Überlastung der Kohlemuhle unterbunden und andererseits die befürchteten Schaden durch Hochtemperaturkorrosion an den Heiz- flachen des Kessels insbesondere infolge des erhöhten Chlorgehaltes der Rauchgase verhindert werden konnte Dabei hat sich herausgestellt, daß bei einem wesentlich höheren Chloreintrag des Mulls gegenüber der Kohle die Chlorkonzentration der Brennstoff-Abfall-Mischung (BRAM) von < 2,5 % auszu- gehen ist, um negative Korrosionsfolgen zu vermeiden
Darüber hinaus entstehen bei der Mitverbrennung von Pyrolysegas und des -kokses sowie der Einleitung von bei der Pyrolyse entstehenden Abgas keine Einschränkungen des Kraftwerksprozesses, respektive des Kernprozesses
Die Vorteile einer vorgeschalteten Pyrolyseanlage sind
Die vollständige bzw teilweise Einsparung einer separaten Rauch- gasreinigungseinπchtung, der Entfall einer eigenständigen energetischen Nutzungseinheit und damit die erhebliche Reduzierung von Invest- und Entsorgungskosten
In drei Ausfuhrungsbeispielen soll nachfolgend die Erfindung naher erläutert werden Dabei zeigt
Fig 1 - das Schema einer Mullverbrennung mit vorgeschalteter thermischer Behandlung
Fig 2 - das Schema einer Bekohlungsanlage mit Pellet/Brikettaufgabe im Schnitt
Fig 3 - das Schema der Verfahrensweise zur Schadstoffbeseitigung von Chlor aus Koks
Ausfuhrungsbeispiel 1
Die Anlieferung des Mulls erfolgt in einem Mullbunker 1 Auf einen Mullbunker kann verzichtet werden wenn die Anlieferung als gepreßte Ballen bzw in so- genannten Preßcontainern erfolgt In diesem Fall ist eine ausreichende Stapel- Lagerflache vorzuhalten Nachfolgend wird der Mull durch geeignete Krananlagen 2 aufgenommen und entsprechend seiner Struktur ggf gesiebt und zerkleinert, um danach in die Aufgabe 3 zu gelangen Von dort aus erfolgt der Transport über entsprechende Einrichtungen 5 in die thermische Verwertungsvorrichtung, z B in ein Pyrolyse- Rohr 6 Damit die erforderlichen chemischen Eigenschaften des Pyrolyse- Gases erreicht werden, erfolgt vor Eintritt in das Pyrolyse-Rohr 6 eine Zugabe von Additiven 4, wie z B Kalk
Das bei der Pyrolyse erzeugte Gas 7 besitzt eine Temperatur von ca 500 °C und wird mittels Geblase 8 abtransportiert Dabei kann, wie im Beispiel gezeigt, ein Teil des Gases in einem Filter 9 von Feststoffen befreit und anschließend in einer separaten Brennkammer 10 verbrannt werden Das Anzünden des Pyrolyse-Gases erfolgt durch einen Ol- bzw Gas-Brenner Die für die Verbrennung erforderliche Luft wird aus dem Mullbunker 1 oder wenn nicht vorhanden direkt aus der Umgebung angesaugt Das bei der Verbrennung in der Brennkammer 10 entstehende Gas 11 besitzt eine Temperatur von ca 1300 °C und dient der Beheizung des Pyrolyse-Rohres 6 Das Abgas 12 besitzt nach Wärmeabgabe an das Pyrolyse-Rohr 6 immer noch eine Temperatur von ca 1000 °C und muß daher in einem Wärmetauscher 13 auf ca 600 °C abgekühlt werden, um anschließend mittels Saugzug in die Brennkammer eines konventionellen Dampferzeugers unterhalb der Ebene der Rauchgasrucksaugung verbracht zu werden Der Wärmetauscher 13 dient dabei gleichzeitig zur Aufheizung der angesaugten Verbrennungsluft 18 Der andere Teilstrom des Pyrolyse-Gases wird dabei auf direktem Wege in den konventionellen Dampferzeuger in der Nahe der Kohlenstaubbrenner eingebla- sen und verbrannt Die Warme des Abgases 12 und des verbrannten Pyrolyse- Gases 7 wird im Dampferzeuger auf herkömmliche Art und Weise genutzt und fuhrt so zur Einsparung an fossilen Brennstoff
Erfindungsgemaß hat sich überraschenderweise gezeigt, daß bei einem Men- genverhaltnis der eingebrachten Gasmengen aus Pyrolyse-Gas 7 zur im Dampferzeuger selbst durch die Verbrennung der fossilen Brennstoffe erzeugten Rauchgasmenge < 2 % sowie bei einer Abgasmenge < 5 % und durch die Zugabe von Additiven (Kalk) zum Mull 4 der Schadstoffgehalt wie Chlorwasserstoff Fluorwasserstoff usw derart drastisch reduziert wird, daß eine Gefahr- düng der Kesselheizflachen Kanäle 14 usw nicht vorhanden und die Einhaltung der gesetzlich vorgegebenen Emissionsgrenzwerte ohne zusätzliche Rei- nigung des Pyrolyse-Gases 7 gegeben ist Der bei der Pyrolyse anfallende
Koks 15 kann dem Kohlestrom in Abhängigkeit der örtlichen Gegebenheiten entweder in den Grabenbunker direkt, der Bandanlage zwischen Grabenbunker und Kesselbunker oder wie in der Figur 1 dargestellt in den Kesselbunker 16 der Kohle zugegeben, durch die nachgeschaltete Mühle 17 zerkleinert und mittels Staubbrenner im Kessel mit der Kohle zusammen verbrannt werden Um eine optimale Mischung des Kokses mit der Kohle zu erreichen, sollte vorzugsweise die Koksaufgabe vor der ersten Kohleaufbereitungsstufe erfolgen Das Verhältnis der aufgegebenen Koksmenge zur im Kessel verbrannten Koh- lemenge ist dabei < 2 %, so daß eine unkomplizierte Verwertung im Kraftwerksprozeß ermöglicht wird
Ausfuhrungsbeispiel 2
Die in Waggons 19 ankommende Kohle 20 gelangt in den Grabenbunker 21 und wird über das Kohleband 22 in das Brechergebaude 23 gefordert, wo die Kohle 20 über den Walzensiebrost 24 entweder direkt oder über den Brecher 25 auf das Kohleband 26 aufgegeben wird, welches die Kohle 20 den Dampferzeugerbunkern 27 aufgibt Aus dem jeweiligen Dampferzeugerbunker 27 gelangt die Kohle 20 über den dazugehörigen Zuteiler 28 in die Rauchgasrucksaugung 29 Am Zuteiler 28 ist ein Stutzen 30 zur Einleitung der über einen Schneckenförderer 31 transportierten Pellets 32 angeordnet Die Pellets 32 werden über die nicht dargestellten Waggons oder Containerfahrzeuge antransportiert, zwischengelagert und gelangen mittels geeigneter Transportmittel in den Vorlage- behalter 34, aus dem sie mittels Schneckenförderer 31 entnommen werden Nach Einspeisung der Pellets 32 in den Kohlestrom erfolgt in der Mühle 35 die gemeinsame Aufmahlung und Trocknung Danach erfolgt die Weiterleitung des Gemisches 36 zu den Staubbrennern 37, die am Kessel 38 angeordnet sind
Ausfuhrungsbeispiel 3
Beim Verfahren zur thermischen Entsorgung von heizwertreichen Fraktionen mit hohem bis niedrigem Heizwert wird aufbereiteter und/oder vorbehandelter und/oder unbehandelter und/oder sortierter und/oder unsortierter Mull 39 und/oder Reststoff entweder in Containern zwischenverpreßt oder als Pellets und/oder als Briketts verpreßt und/oder in loser Form mit einer Kantenlange von max ≤ 200 mm in fossil gefeuerten Kraftwerksanlagen verbrannt Insbesondere handelt es sich um Kohlekraftwerke mit einer nassen Rauchgasent- schwefelungsanlage Die thermische Behandlung des Mulls 39 und/oder Reststoffes wird über eine Pyrolyse 40 realisiert Dabei wird der Mull 39 und/oder Reststoff mit einer max Kantenlange von 200 mm pro Stuck in der größten Ausdehnung einer thermischen Behandlung (Homogenisierung) in Form einer Pyrolyse 40 mit einem Pyrolyse-Rohr als Vorschaltaniage vor einer fossil gefeuerten Kraftwerksanlage unterzogen Beim Prozeß der Pyrolyse 40 des Mulls 39 und/oder Reststoffes entstehen Koks 41 und energiereiches Gas Der Koks 41 wird in einem einstufigen und/oder mehrstufigen Wascher 42, wobei das Wasser und/oder Brauchwasser Umgebungstemperatur aufweist, in einem Wasserbad und/oder Tauchbad und/oder Dusenbad von Schadstoffen, speziell von Chlor, im Anteil von > 50 % befreit Anschließend wird der von Chlor befreite Koks 43 gemeinsam mit dem energiereichen Gas und mit Kohle in einem konventionellen Verbrennungsprozeß einem nachgeschalteten Dampferzeuger 47 zugeführt
Durch zusätzliche intensive Versuche wurde dabei herausgefunden, daß bei einem wesentlich höherem Chloreintrag des Mulls 39 und/oder Reststoffes ge- genuber der Kohle die Chlorfraktion des Gas/Koksgemisches von ≤ 40 kg HCI/h einzuhalten ist, um negative Korrosionsfolgen in den Anlagen zu vermeiden
Das im Wascher 42 entstehende mit ca < 100 g/l Chlorid versetzte Waschwasser 44 wird dem im Kraftwerksprozeß üblicherweise anfallenden Rauchgasent- schwefelungswasser 45 in einer Menge von ca ≤ 5 % bis ca < 10 % zugesetzt, und zusammen mit der Dampfkesselasche 46 als Stabihsat 48 auf einer Deponie verbracht
Durch die Erfindung werden folgende Vorteile erzielt
umweltfreundliche Verbringung der beim Prozeß entstehenden Abprodukte durch ruckstandsfreie Beseitigung im vorhandenen Kraftwerksprozeß weitestgehende Befreiung des bei der Pyrolyse entstehenden Kokses von Schadstoffen, insbesondere von Chlor - Verwendung des beim Waschprozeß entstehenden Waschwassers als Sta- bilisat bei der Verbringung der Dampfkesselasche auf die Deponie Aufstellung der verwendeten Bezugszeichen
1 Müllbunker 36 Gemisch
2 Krananlage 37 Staubbrenner 3 Aufgabe 38 Kessel
4 Additivzugabe 39 Müll
5 Transporteinrichtung 40 Pyrolyse
6 Pyrolyse-Rohr 41 Koks
7 Pyrolyse-Gas (Synthesegas) 42 Wäscher 8 Gebläse 43 Koks
9 Filter 44 Waschwasser
10 separate Brennkammer 45 Rauchgasentschwefelungswasser
11 Gas 46 Dampfkesselasche
12 Pyrolyse-Abgas 47 Dampferzeuger 13 Wärmetauscher 48 Stabilisat
14 Rauchgaskanal
15 Pyrolyse-Koks
16 Kesselbunker
17 Mühle 18 Verbrennungsluft
19 Waggon
20 Kohle
21 Grabenbunker
22 Kohleband 23 Brechergebäude
24 Walzensiebrost
25 Brecher
26 Kohleband
27 Dampferzeugerbunker 28 Zuteiler
29 Rauchgasrucksaugung
30 Stutzen
31 Schneckenförderer
32 Pellets 33 Waggon
34 Vorlagebehälter
35 Mühle

Claims

Patentansprüche
1 . Verfahren zur thermischen Entsorgung von heizwertreichen Fraktionen aus Müll und/oder Reststoffen in fossil gefeuerten Kraftwerksanlagen, insbesondere Kohlekraftwerken mit nasser Rauchgasentschwefelung, g e k e n n z e i c h n e t d a d u r c h, daß der Müll/Reststoffe aufbereitet und behandelt und zu an sich bekannten Pellets/Briketts gepreßt oder einer thermischen Behandlung (Homogenisierung) zur Bildung von koksartigem Material und energiereichem Gas unterzogen und ggf. gesteuert in Abhängigkeit von jeweils notwendigen Gas- und Koksanalysen sowie der Gas- und Koksmengen mit Additiven versetzt, dem Kohlestrom im Entladebunker und/oder einem Kohleband und/oder einem Dampferzeugerbunker und/oder einem Kohlezuteiler vor oder im Bereich eines Kohlefallschachtes und/oder einer Rauchgasrucksaugung in einem Anteil von max. 5 % der Zutei- ler-Kohlemenge ab vorzugsweise 60 % Feuerungsleistung des Kessels direkt aufgegeben, zusammen einer Kohlemühle zugeführt sowie im Dampferzeuger verbrannt wird, wobei das bei der thermischen Behandlung entstandene energiereiche Gas teilweise oder vollständig auf direktem Wege dem Dampferzeuger zugeführt und unter teilweisem oder vollständigem Verzicht auf eine sepa- rate Reinigung verbrannt wird.
2. Verfahren nach Anspruch 1 , gekennzeichnet dadurch, daß die thermische Behandlung des aufbereitetem Mülls/Reststoffe über eine Pyrolyse realisiert wird.
3. Verfahren nach Anspruch 1 und 2, gekennzeichnet dadurch, daß das in der Pyrolyse entstandene energiereiche Gas teilweise zur Erhaltung des Pyrolyseprozesses und die dabei entstehende Abwärme im nachgeschalteten konventionellen Dampferzeuger verwendet wird.
4. Verfahren nach Anspruch 1 bis 3, gekennzeichnet dadurch, daß zur Pyrolyse des Mülls/Reststoffen anteilig auch Klärschlamm verwendet wird.
5. Verfahren nach Anspruch 1 , gekennzeichnet dadurch, daß die Verbrennung im Dampferzeuger im Bereich über die Kohlenstaubbrenner und/oder über einen Rost und/oder über eine Wirbelschicht realisiert wird. 6 Verfahren nach Anspruch 1 und 2, gekennzeichnet dadurch, daß der aufbereitete und behandelte Mull in Containern zwischenverpreßt wird
7 Verfahren nach Anspruch 1 bis 6, gekennzeichnet dadurch, daß die Zumi- schung des bei der Pyrolyse entstehenden koksartigen Materials auf max 3 % der pro Kessel verfeuerten Kohlemenge begrenzt wird
8 Verfahren nach Anspruch 1 bis 7, gekennzeichnet dadurch, daß das bei der thermischen Behandlung entstandene energiereiche Gas im Bereich der Koh- lenstaubbrenner in einer Menge von < 2 % der durch die Verbrennung der fossilen Brennstoffe entstandenen Rauchgasmenge pro Kessel beschrankt wird
9 Verfahren nach Anspruch 1 bis 8, gekennzeichnet dadurch, daß die bei der Pyrolyse entstehende Abgaswarme durch direkte Einleitung in den konventio- nellen Dampferzeuger und/oder in den Rauchgasstrom nach Kessel eingebunden und energetisch verwertet wird
10 Verfahren nach Anspruch 1 , gekennzeichnet dadurch, daß die Pellets und/oder Briketts auf eine Lange von 2 - 8 cm und einem Durchmesser/Breite von 1 - 5 cm mechanisch gepreßt werden
1 1 Verfahren nach Anspruch 1 und 7, gekennzeichnet dadurch, daß die Zumischung Pellets und/oder Briketts auf max 5 t/h pro Kessel bei einer Feue- rungswarmeleistung von max 6 % begrenzt wird
12 Verfahren nach Anspruch 1 und 2, gekennzeichnet dadurch, daß der bei der Pyrolyse aus Mull und/oder Reststoffen entstehende Koks in einem Wascher, insbesondere in einem einstufigen und/oder mehrstufigen mit Umgebungstemperatur temperierten Wasser und/oder Brauchwasser eines Wasserbades und/oder eines Tauchbades und/oder eines Dusenbades von Schadstoffen, speziell von Chlor, im Anteil von > 50 % befreit und anschließend der chlorre- duzierte Koks einem konventionellen Verbrennungsprozeß eines nachgeschalteten Dampferzeugers zugeführt wird 13 Verfahren nach Anspruch 1 , 2 und 12, gekennzeichnet dadurch, daß das im Wascher entstehende mit ca < 100 g/l Chlorid versetzte Waschwasser dem im Kraftwerksprozeß anfallenden Rauchgasentschwefelungswasser in einer Menge von ca < 5 % bis ca < 10 % zugesetzt wird und gemeinsam mit der Dampfkesselasche als Stabihsat auf der Deponie verbracht wird
14 Verfahren nach Anspruch 1 und 2, gekennzeichnet dadurch, daß unbehan- delter Mull/Reststoff mit hohem bis niedrigem Heizwert unsortiert in loser Form mit einer Kantenlange von max 200 mm pro Mullstuck und/oder pro Reststoff der Pyrolyse unterzogen wird
Hierzu 3 Seiten Zeichnungen
PCT/EP2000/004743 1999-05-25 2000-05-23 Verfahren zur thermischen entsorgung von heizwertreichen fraktionen aus müll in fossil gefeuerten kraftwerksanlagen WO2000071934A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19925011.1 1999-05-25
DE19925011A DE19925011C2 (de) 1999-05-25 1999-05-25 Verfahren zur thermischen Entsorgung von heizwertreichen Fraktionen aus sortiertem Müll und/oder Reststoffen in fossil gefeuerten Kraftwerksanlagen
DE10027200.2 2000-05-23
DE10027200A DE10027200A1 (de) 1999-05-25 2000-05-23 Verfahren zur thermischen Entsorgung von heizwertreichen Fraktionen aus sortiertem Müll und/oder Reststoff in fossil gefeuerten Kraftwerksanlagen, insbesondere Braunkohlekraftwerken mit nasser Rauchgasentschwefelung

Publications (1)

Publication Number Publication Date
WO2000071934A1 true WO2000071934A1 (de) 2000-11-30

Family

ID=26005925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/004743 WO2000071934A1 (de) 1999-05-25 2000-05-23 Verfahren zur thermischen entsorgung von heizwertreichen fraktionen aus müll in fossil gefeuerten kraftwerksanlagen

Country Status (2)

Country Link
DE (1) DE10027200A1 (de)
WO (1) WO2000071934A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1498659A1 (de) * 2003-07-17 2005-01-19 Industrial Energy Management Solutions, Inc. Vergasungssystem
US6871603B2 (en) 2002-03-25 2005-03-29 Home Farms Technologies Inc. Gasification system
WO2005068908A1 (de) * 2004-01-15 2005-07-28 Swb Erzeugung Gmbh & Co. Kg Verfahren zur energetischen nutzung von ersatzbrennstoffen, pyrolyseanlage für ersatzbrennstoffe sowie kombination aus pyrolyseanlage und feuerungsanlage zur verfeuerung von pyrolysegasen
EP2808377A1 (de) * 2013-05-31 2014-12-03 Cleanstgas GmbH Anlage zum Vergasen von stückigen Brennstoffen
CN104593026A (zh) * 2015-01-28 2015-05-06 中国重型机械研究院股份公司 一种规模化低阶粉煤低温热解装置及方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1562492A (en) * 1976-08-02 1980-03-12 Foster Wheeler Power Prod Pyrolysis of waste
DE3044991A1 (de) 1980-11-28 1982-07-01 Steag Ag, 4300 Essen Kraftwerk fuer brennstoff-muellverbrennung, insbesondere steinkohlen-muellverbrennung mit einspeisung des muellkesseldampfes in die kalte zwischenueberhitzerleitung eines turbosatzes
US4676824A (en) * 1984-08-04 1987-06-30 Metallgesellschaft Aktiengesellschaft Process for generating heat and producing sponge iron
EP0302310A1 (de) 1987-08-03 1989-02-08 Siemens Aktiengesellschaft Verfahren und Anlage zur thermischen Abfallentsorgung
DE4011706A1 (de) 1990-04-11 1991-10-24 Hoelter Heinz Brennstoff aus muell und kohle
DE4126838C2 (de) 1991-08-14 1994-06-09 Hoelter Heinz Verfahren zur Müllentsorgung
US5471937A (en) * 1994-08-03 1995-12-05 Mei Corporation System and method for the treatment of hazardous waste material
DE19538736A1 (de) * 1994-11-03 1996-05-09 Volkswagen Ag Abfallverbrennungsverfahren und Vorrichtung hierfür
DE4440984A1 (de) 1994-11-17 1996-05-23 Siemens Ag Kraftwerk mit einer Gasturbine
DE4442136A1 (de) 1994-11-26 1996-05-30 Hoelter Heinz Verfahren zur Verbrennung von fossilem Brennstoff und Abfall
DE19510390A1 (de) * 1995-03-22 1996-09-26 Siemens Ag Verfahren und Anlage zur thermischen Behandlung von Abfall
FR2762613A1 (fr) * 1997-04-25 1998-10-30 Traidec Sa Installation pour le traitement par thermolyse et pour la valorisation energetique des dechets

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1562492A (en) * 1976-08-02 1980-03-12 Foster Wheeler Power Prod Pyrolysis of waste
DE3044991A1 (de) 1980-11-28 1982-07-01 Steag Ag, 4300 Essen Kraftwerk fuer brennstoff-muellverbrennung, insbesondere steinkohlen-muellverbrennung mit einspeisung des muellkesseldampfes in die kalte zwischenueberhitzerleitung eines turbosatzes
US4676824A (en) * 1984-08-04 1987-06-30 Metallgesellschaft Aktiengesellschaft Process for generating heat and producing sponge iron
EP0302310A1 (de) 1987-08-03 1989-02-08 Siemens Aktiengesellschaft Verfahren und Anlage zur thermischen Abfallentsorgung
DE4011706A1 (de) 1990-04-11 1991-10-24 Hoelter Heinz Brennstoff aus muell und kohle
DE4126838C2 (de) 1991-08-14 1994-06-09 Hoelter Heinz Verfahren zur Müllentsorgung
US5471937A (en) * 1994-08-03 1995-12-05 Mei Corporation System and method for the treatment of hazardous waste material
DE19538736A1 (de) * 1994-11-03 1996-05-09 Volkswagen Ag Abfallverbrennungsverfahren und Vorrichtung hierfür
DE4440984A1 (de) 1994-11-17 1996-05-23 Siemens Ag Kraftwerk mit einer Gasturbine
DE4442136A1 (de) 1994-11-26 1996-05-30 Hoelter Heinz Verfahren zur Verbrennung von fossilem Brennstoff und Abfall
DE19510390A1 (de) * 1995-03-22 1996-09-26 Siemens Ag Verfahren und Anlage zur thermischen Behandlung von Abfall
FR2762613A1 (fr) * 1997-04-25 1998-10-30 Traidec Sa Installation pour le traitement par thermolyse et pour la valorisation energetique des dechets

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6871603B2 (en) 2002-03-25 2005-03-29 Home Farms Technologies Inc. Gasification system
EP1498659A1 (de) * 2003-07-17 2005-01-19 Industrial Energy Management Solutions, Inc. Vergasungssystem
WO2005068908A1 (de) * 2004-01-15 2005-07-28 Swb Erzeugung Gmbh & Co. Kg Verfahren zur energetischen nutzung von ersatzbrennstoffen, pyrolyseanlage für ersatzbrennstoffe sowie kombination aus pyrolyseanlage und feuerungsanlage zur verfeuerung von pyrolysegasen
EP2808377A1 (de) * 2013-05-31 2014-12-03 Cleanstgas GmbH Anlage zum Vergasen von stückigen Brennstoffen
CN104593026A (zh) * 2015-01-28 2015-05-06 中国重型机械研究院股份公司 一种规模化低阶粉煤低温热解装置及方法

Also Published As

Publication number Publication date
DE10027200A1 (de) 2001-11-29

Similar Documents

Publication Publication Date Title
DE102008054038B3 (de) Verfahren und Vorrichtung zur Reduzierung von Schadstoffemissionen in Verbrennungsanlagen
EP0171097B1 (de) Verfahren zur Erzeugung von Eisenschwamm
EP0465479B1 (de) Verfahren zur verwertung von klärschlamm
EP0442902B1 (de) Vorrichtung und verfahren zur behandlung kontaminierten bodens
EP0543133B1 (de) Verfahren und Vorrichtung zur Behandlung eines zu einem Dickschlamm entwässerten Klärschlammes
EP2375152B1 (de) Vorrichtung und Verfahren zur Heißgaserzeugung mit integrierter Erhitzung eines Wärmeträgermediums
EP0338103A1 (de) Verfahren zum Vermindern der Schadstoffemissionen beim Betrieb von Kohleverbrennungseinrichtungen
EP1436366A1 (de) Verfahren zur stromerzeugung aus kohlenstoffhaltigem material
WO2000071934A1 (de) Verfahren zur thermischen entsorgung von heizwertreichen fraktionen aus müll in fossil gefeuerten kraftwerksanlagen
DE19925011C2 (de) Verfahren zur thermischen Entsorgung von heizwertreichen Fraktionen aus sortiertem Müll und/oder Reststoffen in fossil gefeuerten Kraftwerksanlagen
DE4442136C2 (de) Verfahren zur Verbrennung von fossilem Brennstoff und Abfall
WO1990012986A1 (de) Verfahren zur verwertung von abfallstoffen sowie einrichtung zur aufbereitung solcher stoffe
DE4209166A1 (de) Verfahren und einrichtung zur katalytischen entfernung von schadstoffen aus rauchgas
EP0376971B1 (de) Verfahren und anlage zur rückgewinnung von verwertbarem gas aus müll durch pyrolyse
EP0728713A2 (de) Verfahren zur Verwertung von Reststoffen bei der Zementherstellung
WO2005068908A1 (de) Verfahren zur energetischen nutzung von ersatzbrennstoffen, pyrolyseanlage für ersatzbrennstoffe sowie kombination aus pyrolyseanlage und feuerungsanlage zur verfeuerung von pyrolysegasen
DE102010049379A1 (de) Vorrichtung zum energetischen Verwerten von festen organischen Abfällen
DE4425117A1 (de) Verfahren zur Verbrennung von Klärschlamm in einem Wirbelschichtkessel
DE19621751C1 (de) Abfallentsorgungsanlage
DE4436216C2 (de) Verfahren zur rückstandsarmen Verbrennung von Biostoffen, insbesondere naturbelassenem Holz, in Kessel mit Kohlenstaubfeuerung
DE19729597A1 (de) Verfahren zum Betrieb einer Schwel-Brenn-Anlage und nach diesem Verfahren arbeitende Anlage
AT403726B (de) Verfahren zur verbrennung von biomasse
DE19510390A1 (de) Verfahren und Anlage zur thermischen Behandlung von Abfall
EP3899370A1 (de) Verfahren und vorrichtung zur nachverbrennung von in einer mono-klärschlammverbrennungsanlage anfallender klärschlammasche
DE19925565A1 (de) Verfahren und Anlagen zur energetischen Verwertung von Klärschlamm

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CU CZ MX NO PL US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase