EP0376971B1 - Verfahren und anlage zur rückgewinnung von verwertbarem gas aus müll durch pyrolyse - Google Patents

Verfahren und anlage zur rückgewinnung von verwertbarem gas aus müll durch pyrolyse Download PDF

Info

Publication number
EP0376971B1
EP0376971B1 EP88907293A EP88907293A EP0376971B1 EP 0376971 B1 EP0376971 B1 EP 0376971B1 EP 88907293 A EP88907293 A EP 88907293A EP 88907293 A EP88907293 A EP 88907293A EP 0376971 B1 EP0376971 B1 EP 0376971B1
Authority
EP
European Patent Office
Prior art keywords
gas
water
washing
pyrolysis residue
installation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88907293A
Other languages
English (en)
French (fr)
Other versions
EP0376971A1 (de
Inventor
Bernd Michael Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PKA Pyrolyse Kraftanlagen GmbH
Original Assignee
PKA Pyrolyse Kraftanlagen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PKA Pyrolyse Kraftanlagen GmbH filed Critical PKA Pyrolyse Kraftanlagen GmbH
Priority to AT88907293T priority Critical patent/ATE69614T1/de
Priority to IN689/CAL/88A priority patent/IN170715B/en
Publication of EP0376971A1 publication Critical patent/EP0376971A1/de
Application granted granted Critical
Publication of EP0376971B1 publication Critical patent/EP0376971B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • C10J3/66Processes with decomposition of the distillation products by introducing them into the gasification zone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/101Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids with water only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0906Physical processes, e.g. shredding, comminuting, chopping, sorting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1628Ash post-treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/169Integration of gasification processes with another plant or parts within the plant with water treatments
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas

Definitions

  • the invention relates to a method for recovering usable gas from waste by pyrolysis according to the preamble of claim 1.
  • a system for carrying out the method for this is described in the preamble of claim 11.
  • the object of the present invention is to achieve a further reduction in environmentally harmful substances requiring disposal while maintaining a low-wastewater treatment process, with a further improvement in the efficiency of the system possibly being achieved at the same time.
  • this object is achieved in that at least a portion of the amount of liquid withdrawn from the wash water circuit of the gas washing system is introduced into the water bath through which the pyrolysis residues are discharged from the degassing drum, the impurities of the carbonization gas contained in the wash water being bound by the pyrolysis residue.
  • the pyrolysis residue absorbs more than 140 percent by weight of its own weight in liquid with a sufficient residence time.
  • a sufficient dwell time for total wetting should be maintained, which can be achieved, for example, by a screw conveyor system with a correspondingly slow speed.
  • the garbage entered in the degassing drum is previously removed by sorting out inert substances. This can be done using suitable sorting devices such as, for example, comb roller sorters.
  • the pyrolysis residue is introduced as an activated carbon filter into a filter device behind the drying tower of the gas washing system.
  • Sulfur components of the pyrolysis gas which mainly depend on the sulfur content of the coke used in the gas converter, are known to be difficult to remove from the pyrolysis gas. If you now connect a filter device to the gas scrubber, sulfur or fluorine compounds that have not been fully washed out can be absorbed by the activated carbon filter. Because the pyrolysis residues are used for this purpose, there are no significant additional costs and the pyrolysis residues are even put to sensible use in this way. This also means that the sulfur content in the exhaust gas is reduced cost-effectively far below the prescribed air limit values, which means that coke with a somewhat higher sulfur content can also be used inexpensively as a further advantage in the gas converter.
  • pollutant components from other productions can advantageously be disposed of in such a way that they are mixed with the liquid portion withdrawn from the water cycle. This means that in addition to the company's own almost pollution-free treatment of waste, the method according to the invention can still be used to remove pollutants from other plants.
  • the amount of wastewater from a pyrolysis gas plant that processes household waste is reduced by more than 50% and that in general, less than 100 liters of wastewater per ton of household waste disposal.
  • This amount of waste water is usually so polluted that untreated discharge is ecologically undesirable.
  • it can be achieved a significant and cost-effective reduction in pollutant pollution if it is provided in a further development according to the invention that the amount of liquid withdrawn from the water circuit of the gas washing system is pretreated in batches by ozone injection so that after the treatment the concentration of cyanide ⁇ 10 g / m3 and or phenols ⁇ 40 g / m3.
  • Such a pyrolysis residue which has a liquid content of approx. 60 percent by weight, is a particularly nutrient-rich carrier substance for anaerobic methane gas generators, which convert the absorbed biologically convertible groups of substances into useful gas, due to the balanced load values of phenols and cyanides due to the high carbon and ammonium content from gas scrubbing.
  • the ozone-controlled homogenization of the pollutants minimizes the risk of overdoses and thus the destruction of culture.
  • a short ozonization which is generally less than a quarter of a full ozonization time, is sufficient to achieve this homogenization effect.
  • the excess water not bound by the pyrolysis residue which generally corresponds to less than 50% of the portion withdrawn from the water cycle of the gas washing system, is fed to a rest ozonization. This can be done either in parallel with a use in a biogas plant or instead.
  • the COD can be reduced to below 400 mg oxygen per liter, the BOD to approx. 60 mg / m3 and the proportion of cyanide and phenols to generally below 0.1 g / m3.
  • this pyrolysis residue can be used for the energetic supply in lime kilns.
  • it can preferably be pressed into egg briquette-like pellets.
  • its calorific value may correspond approximately to that of lignite, which is sufficient for a smelting process. If the correct mixing ratios are observed, the inert substances are calcined or ceramized, which in particular also includes heavy metals.
  • ceramization of the metals is that the molar ratio of SiO2, Al2O3, CaO. ZnO, Fe2O3 and / or MgO on the one hand to the total molar proportion of the metals lead, chromium, manganese, cadmium, berilium, barium, selenium, arsenic, vanadium, antimony, bismuth, strontium and / or zircon is at least 6: 1.
  • a prerequisite for the integration of sulfur, chlorine and fluorine compounds is that the molar ratio of calcium, magnesium and sodium on the one hand to the total sulfur, chlorine and fluorine is at least 2: 1.
  • the mixing product should contain a maximum of 40 percent by weight of liquid and the calorific value should be at least 100 kilocalories / kg so that the fuel, for example, placed in a lime kiln, with the necessary dwell time and temperature can burn up, whereby the introduced metals oxidize and are taken up in the melts of CaO and MgO, where they form relatively inert ceramic complexes.
  • Sulfur compounds are absorbed as sulfites or sulfates, liquid chlorine and fluorine are bound to CaCl2 and CaF2.
  • the available useful energy can increase by more than 5% through a reduction in the own electricity requirement for the ozone plant for gas cleaning and through the improved energetic use of the pyrolysis residue.
  • the residues requiring final storage in the method according to the invention are several times smaller than the residues in a waste incineration plant, which are also highly toxic and must be disposed of as special waste.
  • the garbage is conveyed via a conveyor belt 1 into a primary crusher 2 for coarse crushing, a conveyor trough 3 and a conveyor belt 4 with a magnetic separating device 5 Garbage in a sorting device 6.
  • the heavier, wet, vegetable fraction is separated and falls into an underlying container or onto a conveyor belt 7.
  • inert substances can also be separated off in order to increase the carbon content of the pyrolysis substance.
  • the remaining waste fraction is fed to a thermal screw press 14 via a further conveyor belt 8, a further shredding device 9 and a downstream hydrocyclone 10, in which heavy parts are separated again via a line 11.
  • the waste together with the separated waste from the container 7 is fed via a feed line 12 to a biogas plant 13, which can be preceded by a fluid classifier for the pre-selection of inert heavy parts, which works, for example, according to the flushing method.
  • the formation of granules in a rapidly degassable structure and a size of approximately 3 to 50 mm is achieved in a known manner by frictional pressure at approximately 110 to 150 degrees Celsius.
  • fluff ie a loose waste form, or pellets, ie waste constituents compressed into briquettes
  • the waste components crushed in this way pass through a rotary valve 15 or other entry devices, such as stuffing screws in a degassing drum 16, in which carbonization gas is generated in a known manner at temperatures of 450 to 600 degrees Celsius, which is introduced into a high-temperature gas converter 19 via a discharge line 17 and a dust separating device 18.
  • the processing or conversion of the carbonization gas takes place in the gas converter 19 over a coal or coke bed.
  • a gas converter of this type is described, for example, in DE-A-33 17 977.
  • the gas After passing through a heat exchanger 20, the gas passes into a gas scrubbing system which essentially consists of a water spray tower 21, a blower 22 and a cleaning cylon 23 and a droplet separator 24. Via a gas line 25, the cleaned gas reaches a gasometer 26, in which excess gas can be supplied to a flaring device 28 if too much gas is supplied via a secondary line 27.
  • a gas scrubbing system which essentially consists of a water spray tower 21, a blower 22 and a cleaning cylon 23 and a droplet separator 24.
  • the cleaned gas Via a gas line 25, the cleaned gas reaches a gasometer 26, in which excess gas can be supplied to a flaring device 28 if too much gas is supplied via a secondary line 27.
  • the gas normally passes from the gasometer 26 to a gas engine 29, which is connected to a generator 30, the burned exhaust gases being introduced into a chimney 32 via an exhaust gas line 31.
  • the gas converter 19 receives water via a line 33 and 34 coke via a coke inlet. Ash and slag is over a discharge line 35 is discharged. Possibly. To save energy, a coke return line 36 can also be provided for the coke freed from the slag.
  • a branch line 37 branches off from the gas line 25 and leads to a gas burner 38 which serves to supply heat to the degassing drum 16.
  • a gas burner 38 which serves to supply heat to the degassing drum 16.
  • an oil burner 39 or a separate gas burner is used to heat the smoldering drum. Subsequently, during operation, however, the heat required for the degassing drum 16 can be completely covered by the burner 38.
  • the scrubbing water obtained during gas cleaning passes into a scrubbing water tank 40 and then into a filter device 41 (usually a settling tank). Separated solids in the filter device are introduced into an ash container 43 via a line 42. The residues are removed from the ash container 43 via a discharge line 44 and introduced into the smoldering drum 16 again via the insertion device, possibly a cellular wheel sluice 15.
  • the cleaned washing water returns from the filter device 41 via a return line 45 after passing through a cooling tower 46 back into the spray tower 21 of the gas washing system.
  • a part of the cleaned wash water is in a Wash water neutralization system 47 is introduced, into which the vapor vapor condensate from the thermal screw press 14 is also introduced via a line 58, provided that it is not fed via line 65 to the reservoir 53 of the biogas system.
  • the wash water reaches the spray tower 21 via a return line 78 for circuit treatment, while a partial quantity reaches a circuit water batch treatment system 48 via a partial quantity removal line 79.
  • the washing water is chemically cleaned therein by appropriate chemicals, which are entered via line 49, provided that the chemical oxidation is not replaced by ozonization, as a result of which the residue-increasing additive addition can be greatly reduced.
  • the washing water is partially removed via a circuit line 50. passed through an air filter 51 to remove foams, exhaust gases being blown off through a line 52 over the chimney 32, and partly. there is a return via a line 80 into the spray tower 21.
  • the chemically and mechanically cleaned water passes from the circulating water batch treatment system 48 via a line 71 into the preliminary tank 53 of the biogas system. If necessary, sewage sludge, raw compost can also be placed in the storage tank or the like. What is indicated by the arrow "54".
  • the vapor vapor condensate if it has not been passed through the circulating water batch treatment system 48, can be introduced directly into the preliminary container 53 via a line 65.
  • the substances to be worked up in the biogas plant 13 arrive in a hydrolysis stage or a hydrogenator 56 from the pre-tank 53.
  • a countercurrent heat exchanger 57 connects to the hydrolysis stage 56 and receives its heat through a hot water line 62, which comes from the cooling tower 46 of the wash water cleaning system branches.
  • a coil heating system ensures a temperature rise in the methane area of the septic tank of 33 to 37 degrees Celsius. In this way, the excess heat from the pyrolysis plant is used for the biogas plant 13.
  • the biogas plant 13 is constructed in the usual way. As a phase-separated biogas plant, it can have a normal acid phase in the upper region in the middle shaft 63, while an acetic acid phase is present in the lower region.
  • the methane gas formed is drawn off via a methane gas line 59 and fed to the gas line 25 or the gas washing system of the pyrolysis system for cleaning via a buffer 60 and a compressor 61.
  • the digestate is discharged through a suction line 66 and a pre-dewatering device 68 fed, whereby it is brought to about 20% dry matter.
  • the solids contained in the fermentation residue can be brought to approx. 85% dry matter via a dry press 69.
  • the remaining fermentation water is collected in a lagoon 70 and, if necessary, fed to the treatment plant 48 or fed directly into the sewage system.
  • the substances separated in the circulating water batch treatment plant 48 can be fed to a sewage treatment plant via a line 64.
  • Pyrolysis residues are discharged in the degassing drum 16 via a water bath 72, the discharge e.g. can take place via screw conveyors.
  • the water bath 72 is supplied with the liquid required for wetting the pyrolysis residue via a partial liquid line 73.
  • the partial quantity line 73 branches off from the batch treatment system 48.
  • the pyrolysis residue wetted with liquid in this way is discharged via a line and can optionally be fed to the biogas plant 13 after treatment, for example ozonization or other cleaning.
  • the biogas plant 13 is of course only mentioned for example. It is not necessary for the invention itself. Instead of one Introducing the pyrolysis residues into the biogas plant 13, the pyrolysis residues can, if necessary, also be transported via a line 74 A to a lime kiln 77.
  • the pyrolysis residue can be introduced via a line 74 B after it has dried into a filter device 75 as an activated carbon filter.
  • the filter device 75 is located between the gas washing system and the gasometer 26.
  • the activated carbon obtained from the pyrolysis residue should be at least largely free of pollutants. This means that one operates in batches and introduces fresh water through a fresh water line 81 into the water bath instead of a water supply via the partial liquid quantity line 73 with contaminated circulating water.
  • the liquid portion removed from the water cycle can also be treated in an ozone injection system 76.
  • the ozone system 76 is connected to the batch treatment system 48. If the partial quantity withdrawn from the circuit via the partial quantity extraction line 79 is appropriately cleaned before it is introduced via the liquid partial quantity line 73 into the water bath 72 in the ozone system 76, the pyrolysis residue can also be used as an activated carbon filter in the filter device 75 in this procedure.
  • the function and mode of operation of a lime kiln 77, into which the pyrolysis residue is introduced via line 74 A, are generally known, which is why it is not discussed in more detail here.
  • the pyrolysis residue may be used as fuel together with other fuel components.
  • a direct line 74 A is present between the water bath 72 and the lime kiln 77.
  • the system according to the invention is designed so that not all units have to be in one place. For example, the biogas plant 13 and the lime kiln 77 are at a different location, and the substances can be transported there in any way.
  • the partial liquid quantity which has not been completely absorbed by the pyrolysis residue in the water bath 72 can, if necessary, also be passed through the ozone system 76, if necessary for full ozonization, before it is introduced into a sewage treatment plant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Coke Industry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Air Bags (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Detergent Compositions (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Rückgewinnung von verwertbarem Gas aus Müll durch Pyrolyse nach dem Oberbegriff von Anspruch 1. Eine Anlage zur Durchführung des Verfahrens hierzu ist im Oberbegriff von Anspruch 11 beschrieben.
  • Verfahren und Anlagen dieser Art sind z.B. aus der DE-A-33 47 554 und der DE-A-35 29 445 bekannt. Dabei findet eine sehr abwasserarme Rückgewinnung von verwertbarem Gas aus Müll statt, wozu das für die verschiedenen Stufen notwendige Wasser, insbesondere die für die Gaswaschanlage des in dem Gaswandler aufbereiteten Spaltgases notwendige Wassermenge im Kreislauf geführt wird. Um den Schadstoffpegel in der Gaswaschanlage konstant zu halten und eine Gasreinheit zu gewährleisten war es jedoch erforderlich, eine bestimmte Teilmenge dem Wasserkreislauf zu entziehen und durch Frischwasser zu ersetzen. Die entzogene Teilmenge bedurfte dabei einer Nachbehandlung, denn ihre Rückstände stellten ein Entsorgungsproblem dar. Dabei hatte sich auch herausgestellt, daß durch schwankende Konzentrationen an Zyaniden, Phenolen und Ammonium eine direkte Einbringung in eine evtl. mit der Pyrolyseanlage zusammenarbeitende Biogasanlagen problematisch war. Die schwankenden Konzentrationen verursachten nämlich Leistungsminderungen der Mikroben und in Extremfällen sogar eine Kulturvernichtung. Eine Neutralisation durch Beigabe chemischer Oxydationsstoffe und Flockungsmittel erhöhte jedoch die als Sondermüll zu entsorgende Rückstandsmenge.
  • Aus der US-A-3 862 887 ist ein Verfahren zur Rückgewinnung von Gas aus Müll durch Pyrolyse bekannt, bei dem das Schwelgas über eine Kläre zu einem Wasserbad geführt wird. Dabei wird jedoch das Schwelgas erst in einer Brennkammer von den Verunreinigungen befreit und dann erst in der Waschanlage gewaschen.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, unter Beibehaltung eines abwasserarmen Aufbereitungsverfahren eine weitere Reduzierung entsorgungsbedürftiger umweltschädlicher Stoffe zu erreichen, wobei ggf. gleichzeitig noch eine weitere Verbesserung des Wirkungsgrades der Anlage erreicht werden soll.
  • Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß in das Wasserbad, durch das die Pyrolysereststoffe aus der Entgasungstrommel ausgetragen werden, wenigstens ein Teil der dem Waschwasserkreislauf der Gaswaschanlage entzogenen Flüssigkeitsmenge eingebracht wird, wobei die im Waschwasser enthaltenen Verunreinigungen des Schwelgases durch den Pyrolysereststoff gebunden werden.
  • In überraschender Weise wurde nämlich festgestellt, daß der Pyrolysereststoff bei einer ausreichenden Verweilzeit mehr als 140 Gewichtsprozent seines Eigengewichtes an Flüssigkeit absorbiert. Dies bedeutet, daß von dem Waschwasser, das zum Teil oder vollständig aus dem Wasserkreislauf der Gaswaschanlage abgeschiedenen Mengen bestehen kann, in hohem Maße an sich binden kann. Dabei wurde festgestellt, daß diese Flüssigkeitsaufnahme um so größer ist, je größer der Kohlenstoffgehalt des Pyrolysereststoffes ist. Außerdem sollte eine genügende Verweilzeit für eine Totalbenetzung eingehalten sein, was z.B. durch ein Schneckenfördersystem mit entsprechend langsamer Drehzahl erreicht werden kann.
  • Zur Erhöhung des Kohlenstoffgehaltes in dem Pyrolysereststoff kann deshalb in einer weiteren Verbesserung der Erfindung vorgesehen sein, daß dem in die Entgasungstrommel eingetragenen Müll vorher durch Aussortierung Inertstoffe entzogen werden. Dies kann durch geeignete Aussortierungseinrichtungen wie z.B. Kammwalzensortierer erfolgen.
  • Dabei hat sich nun in unerwarteter Weise weiterhin gezeigt, daß der auf diese Weise behandelte Pyrolysereststoff eine Aktivkohlestruktur mit chemosorbierenden Eigenschaften erhält, wodurch dieser als Aktivkohle für beliebige Einsatzfälle eingesetzt werden kann.
  • In einer vorteilhaften Weiterbildung der Erfindung kann dabei vorgesehen sein, daß der Pyrolysereststoff als Aktivkohlefilter in eine Filtervorrichtung hinter dem Trockenturm der Gaswaschanlage eingebracht wird.
  • Schwefelanteile des Pyrolysereingases, die hauptsächlich vom Schwefelgehalt des im Gaswandler verwendeten Kokses abhängen, sind bekanntlich nur schwierig aus dem Pyrolysereingas zu entfernen. Schaltet man nun eine Filtervorrichtung der Gaswaschanlage nach, so können z.B. Schwefel- oder Fluorverbindungen, die nicht vollständig ausgewaschen wurden, durch den Aktivkohlefilter absorbiert werden. Dadurch, daß hierfür die Pyrolysereststoffe verwendet werden, fallen keine wesentlichen Mehrkosten an und der Pyrolysereststoff wird auf diese Weise sogar einer sinnvollen Verwendung zugeführt. Dies bedeutet auch, daß der Schwefelanteil im Abgas kostengünstig weit unter die vorgeschriebenen Luft-Grenzwerte reduziert wird, wodurch als weiterer Vorteil im Gaswandler damit auch günstig Koks mit etwas höherem Schwefelgehalt eingesetzt werden kann.
  • Durch die hohe Absorbtionsmöglichkeit des Pyrolysereststoffes kann im Bedarfsfalle in vorteilhafter Weise auch eine Entsorgung von Schadstoffkomponenten aus anderen Produktionen derart erfolgen, daß diese der dem Wasserkreislauf entzogenen Flüssigkeitsteilmenge beigemischt werden. Dies bedeutet, daß neben der eigenen nahezu schadstoffarmen Aufbereitung von Müll sich das erfindungsgemäße Verfahren weiterhin auch noch zur Beseitigung von Schadstoffen aus anderen Anlagen verwenden läßt.
  • Es wurde als weiterer Vorteil des erfindungsgemäßen Verfahrens festgestellt, daß die Abwassermenge eines Pyrolysegaswerkes, das Hausmüll verarbeitet, mehr als 50 % verringert wird und pro Tonne Hausmüllentsergung im allgemeinen weniger als 100 Liter Abwasser beträgt. Diese Abwassermenge ist in der Regel so Schadstoff belastet, daß eine unbehandelte Ableitung ökologisch unerwünscht ist. Es kann jedoch eine erhebliche und kostengünstige Reduzierung der Schadstoffbelastung erreicht werden, wenn in einer erfindungsgemäßen Weiterbildung vorgesehen ist, daß die dem Wasserkreislauf der Gaswaschanlage entzogene Flüssigkeitsmenge chargenweise durch Ozoninjektion so vorbehandelt wird, daß nach der Behandlung die Konzentration an Zyanid ≦ 10 g/m³ und oder Phenolen < 40 g/m³ ist.
  • Wird der Pyrolysereststoff auf diese Weise behandelt, kann er problemlos in Biogasanlagen eingebracht werden. Ein solcher Pyrolysereststoff, der ca. 60 Gewichtsprozent Flüssigkeitsanteil hat, ist aufgrund der ausgeglichenen Belastungswerte an Phenolen und Zyaniden wegen seines hohen Kohlenstoff- und Ammoniumanteiles aus der Gaswäsche eine besonders nährstoffreiche Trägersubstanz für anaerobe Methangasbildner, welche die absorbierten biologisch umsetzbaren Stoffgruppen in Nutzgas umwandeln. Die ozongesteuerte Homogenisierung der Schadstoffe minimiert dabei die Gefahr von Überdosierungen und damit eine Kulturzerstörung. Versuche haben gezeigt, daß zum Erreichen dieses Homogenisierungseffektes eine kurze Ozonisierung ausreichend ist, die in der Regel weniger als ein Viertel einer Vollozonisierungszeit beträgt.
  • Zur weiteren Reduzierung einer Schadstoffbelastung durch Abwasser kann vorgesehen sein, daß das von dem Pyrolysereststoff nicht gebundene Überschußwasser, das im allgemeinen weniger als 50 % der dem Wasserkreislauf der Gaswaschanlage entzogenen Teilmenge entspricht, einer Restozonisierung zugeführt wird. Dies kann dabei sowohl parallel zu einer Verwendung in einer Biogasanlage oder statt dessen durchgeführt werden. Durch eine Totalozonisierung des Überschußwassers läßt sich der CSB auf unter 400 mg Sauerstoff pro Liter, der BSB auf ca. 60 mg/m³ und der Anteil an Zyanid und Phenolen auf im allgemeinen unter 0,1 g/m³ senken. Da durch die erhebliche Bindung der dem Wasserkreislauf entzogenen Teilflüssigkeitsmenge in den Pyrolysereststoff jedoch nur ein wesentlich geringer Anteil des Abwassers auf diese Weise behandelt werden muß, ist für die Ozonisierung der Restmenge nur noch ein minimaler Energieaufwand notwendig. Im Gegensatz zu den bisher bekannten Verfahren ergibt sich damit bei dem erfindungsgemäßen Verfahren kein Entsorgungsproblem mehr.
  • Es wurde nun weiter ermittelt, daß als Alternative zu einem Einsatz des auf erfindungsgemäße Weise behandelten Pyrolysereststoffes in Biogasanlagen - oder parallel dazu - dieser Pyrolysereststoff zur energetischen Versorgung in Kalkbrandöfen verwendet werden kann, Hierzu kann er vorzugsweise zu eierbrikettartigen Pellets verpreßt werden. Es wurde nämlich in überraschender Weise festgestellt, daß bei Vorausscheidung eines Teiles der Inertstoffe vor der Entgasung sein Heizwert etwa dem von Braunkohle entsprechen kann, was für einen Schmelzprozeß ausreicht. Bei Beachtung der richtigen Mischungsverhältnisse erfolgt dabei eine Kalzinierung bzw. Keramisierung der inerten Stoffanteile, wobei dies insbesondere auch Schwermetalle einschließt.
  • Versuche haben dabei ergeben, daß bei einer entsprechenden Verpressung zwischen 400 und 550 kg/cm² zu eierbrikettartigen Pellets bei einem Vermischungsprodukt aus kalziumhaltigen Verbindungen wie Kalk, Kalkofenfilterstaub, Kalkhydrat oder Kalkhydratabfall mit einer Brennstoffkomponente wie Kohlenstaubabfall sowie schwefel-, chlor- und fluorhaltigen und schwermetallhaltigen Stoffen bei ca. 1200 Grad Celsius und einer Verweildauer von 45 bis 120 Minuten in diesem Temperaturbereich ein Ausbrand-Reststoff anfällt, bei dem nahezu 100 % des vorhandenen Gesamtchlor- und des Schwefelanteiles, sowie der Metalle keramisiert bzw. nahezu unauslaugbar in die Asche eingebunden werden. Dies bedeutet, daß auf diese Weise eine umweltfreundliche Beseitigung von Schadstoffen, insbesondere von Schwermetallen erreicht wird.
  • Voraussetzung für die Keramisierung der Metalle ist lediglich, daß das Molverhältnis von SiO₂ , Al₂O₃, CaO. ZnO, Fe₂O₃ und/oder MgO einerseits zum gesamten Molanteil der Metalle Blei, Chrom, Mangan, Kadmium, Berilium, Barium, Selen, Arsen, Vanadium, Antimon, Wismut, Strontium und/oder Zyrkon mindestens 6 : 1 beträgt.
  • Voraussetzung für die Einbindung von Schwefel-, Chlor- und Fluorverbindungen ist, daß das Molverhältnis von Kalzium, Magnesium und Natrium einerseits zum gesamten Schwefel, Chlor und Fluor mindestens 2 : 1 beträgt. Das Vermischungsprodukt soll dabei maximal 40 Gewichtsprozent Flüssigkeit enthalten und der Heizwert sollte mindestens 100 Kilokalorien/kg betragen, damit die Brennkörper, z.B. in einem Kalkofen eingebracht, bei der notwendigen Verweilzeit und Temperatur verglühen können, wobei die eingebrachten Metalle oxydieren und in die Schmelzen von CaO und MgO aufgenommen werden, wo sie relativ inerte keramische Komplexe bilden. Schwefelverbindungen werden als Sulfite oder Sulfate absorbiert, flüssiges Chlor und Fluor zu CaCl₂ und CaF₂ gebunden.
  • Mit Pyrolysereststoff durchgeführte Versuche haben ergeben, daß dieser dabei die Funktion der Brennstoffkomponente zur Temperaturerzeugung übernehmen kann. Die in ihm absorbierten Schadstoffkomponenten, die auch aus anderen Verursachern als dem Pyrolysegaswerk selbst stammen können und durch Beimischung in das Wasserbad des Pyrolysereststoffaustrages integriert wurden, lassen sich dabei umweltfreundlich entsorgen. Die Pyrolyseanlage hinterläßt damit keine Reststoffe, die einer Enddeponierung bedürfen.
  • Es wurde dabei auch festgestellt, daß nach Abzug des Eigenenergiebedarfes für den Betrieb der Anlagen sich die verfügbar gemachte Nutzenergie durch eine Reduzierung des Eigenstrombedarfes für die Ozonanlage zur Gasreinigung und durch die verbesserte energetische Nutzung des Pyrolysereststoffes um mehr als 5 % erhöhen kann.
  • Wenn der Pyrolysereststoff bei Biogasanlagen eingesetzt wird, läßt sich deren Wirtschaftlichkeit zur thermischen Umsetzung von Abfallstoffen erhöhen.
  • Die einer Endlagerung bedürfenden Rückstände bei dem erfindungsgemäßen Verfahren sind um ein mehrfaches geringer als die Rückstände bei einer Müllverbrennungsanlage, die darüberhinaus hochgiftig sind und als Sondermüll entsorgt werden müssen.
  • Eine erfindungsgemäße Anlage zur Durchführung des Verfahrens ist nachfolgend anhand der Zeichnung prinzipmäßig beschrieben.
  • Da eine derartige Anlage in ihrem grundsätzlichen Aufbau bereits aus DE-A-35 29 445 bekannt ist, werden nachfolgend nur die für die Erfindung wesentlichen Teile näher beschrieben. Eine Austragung der Pyrolysereststoffe aus der Entgasungstrommel über eine Schneckeneinrichtung ist in der DE-OS 33 47 554, siehe insbesondere die Fig. 7 und 8, beschrieben. Selbstverständlich sind statt der dargestellten Schnecken auch noch andere Austragseinrichtungen möglich. Voraussetzung ist lediglich, daß eine intensive Benetzung des Pyrolysereststoffes in dem Wasserbad bei einer entsprechenden Zeitdauer erfolgt.
  • Der Müll gelangt über ein Förderband 1 in einen Vorbrecher 2 zur Grobzerkleinerung, Eine Förderrinne 3 und ein Förderband 4 mit einer Magnetabscheideeinrichtung 5 transportieren den Müll in eine Sortiereinrichtung 6. In der Sortiereinrichtung 6 wird die schwerere vegetabile Naßfraktion abgeschieden und fällt in einen darunterliegenden Behälter oder auf ein Transportband 7. Ebenso können dabei auch inerte Stoffe abgetrennt werden, um den Kohlestoffanteil des Pyrolysestoffes zu erhöhen. Die übrige Müllfraktion wird über ein weiteres Transportband 8, eine nochmalige Zerkleinerungseinrichtung 9 und einem nachgeschalteten Hydrozyklon 10, in dem nochmals Schwerteile über eine Leitung 11 abgeschieden werden, einer Thermoschneckenpresse 14 zugeführt. Über die Leitung 11 wird der Müll zusammen mit dem abgeschiedenen Müll aus dem Behälter 7 über eine Zuleitung 12 einer Biogasanlage 13 zugeführt, der zur Vorausscheidung von inerten Schwerteilen ein Fluidklassifizierer vorgeschaltet sein kann, welcher z.B. nach dem Abschwemmverfahren arbeitet.
  • In der Thermoschneckenpresse 14 wird in bekannter Weise durch Reibungspressung bei ca. 110 bis 150 Grad Celsius eine Bildung von Granulaten in einer schnell entgasbaren Struktur und einer Größe von ca. 3 bis 50 mm erreicht.
  • Statt in Granulatform kann auch Fluff, d.h. eine lockere Müllform, oder Pellets, d.h. zu Briketts verpreßte Müllbestandteile, in der angegebenen Größe hergestellt werden, die in der Regel jedoch längere Entgasungszeiten benötigen. Die auf diese Weise zerkleinerten Müllbestandteile gelangen über eine Zellenradschleuse 15 oder sonstige Eintragsvorrichtungen, wie z.B. Stopfschnecken in eine Entgasungstrommel 16, in der bei Temperaturen von 450 bis 600 Grad Celsius in bekannter Weise Schwelgas erzeugt wird, das über eine Abzugsleitung 17 und eine Staubabscheideeinrichtung 18 in einen Hochtemperatur-Gaswandler 19 eingeführt wird. In dem Gaswandler 19 erfolgt die Aufarbeitung bzw. Umwandlung des Schwelgases über einem Kohle- bzw. Koksbett. Ein Gaswandler dieser Art ist z.B. in der DE-A-33 17 977 beschrieben.
  • Nach Durchgang durch einen Wärmetauscher 20 gelangt das Gas in eine Gaswaschanlage, die im wesentlichen aus einem Wassersprühturm 21, einem Gebläse 22 und einem Reinigungszylon 23 und einem Tropfenabscheider 24 besteht. Über eine Gasleitung 25 gelangt das gereinigte Gas zu einem Gasometer 26, in dem bei einer Anlieferung von zu viel Gas über eine Nebenleitung 27 überschüssiges Gas einer Abfackeleinrichtung 28 zugeführt werden kann.
  • Normalerweise gelangt das Gas von dem Gasometer 26 zu einem Gasmotor 29, der mit einem Generator 30 verbunden ist, wobei über eine Abgasleitung 31 die verbrannten Abgase in einen Kamin 32 eingeleitet werden.
  • Der Gaswandler 19 erhält über eine Leitung 33 Wasser und über einen Kokseintrag 34 Koks. Asche und Schlacke wird über eine Austragsleitung 35 ausgetragen. Ggf. kann zur Energieeinsparung auch noch eine Koksrückleitung 36 für den von der Schlacke befreiten Koks vorgesehen sein.
  • Von der Gasleitung 25 aus zweigt eine Nebenleitung 37 ab, welche zu einem Gasbrenner 38 führt, der zur Wärmezufuhr für die Entgasungstrommel 16 dient. Während der Anfahrphase der Anlage dient ein Ölbrenner 39 oder auch ein separater Gasbrenner zum Anheizen der Schweltrommel. Nachfolgend, im laufenden Betrieb hingegen, kann der für die Entgasungstrommel 16 erforderliche Wärmebedarf vollständig über den Brenner 38 gedeckt werden.
  • Das bei der Gasreinigung anfallende Waschwasser gelangt in einen Waschwassertank 40 und anschließend in eine Filtereinrichtung 41 (in der Regel ein Absetzbecken). Abgetrennte Feststoffe in der Filtereinrichtung werden über eine Leitung 42 in einen Aschebehälter 43 eingebracht. Über eine Austragsleitung 44 werden die Reststoffe aus dem Aschebehälter 43 abgeführt und über die Einschubvorrichtung, ggf. eine Zellenradschleuse 15 wieder in die Schweltrommel 16 eingebracht.
  • Das gereinigte Waschwasser gelangt aus der Filtereinrichtung 41 über eine Rückleitung 45 nach Durchgang durch einen Kühlturm 46 wieder in den Sprühturm 21 der Gaswaschanlage zurück. Ein Teil des gereinigten Waschwassers wird in eine Waschwasserneutralisationsanlage 47 eingeleitet, in die auch über eine Leitung 58 das Brüdendampfkondensat aus der Thermoschneckenpresse 14 eingeleitet wird, sofern es nicht über eine Leitung 65 dem Vorbehälter 53 der Biogasanlage zugeleitet wird.
  • Von der Waschwasserneutralisationsanlage 47 aus gelangt das Waschwasser über eine Rückleitung 78 zur Kreislaufbehandlung in den Sprühturm 21, während eine Teilmenge über eine Teilmengenentnahmeleitung 79 in eine Kreislaufwasser-Chargenbehandlungsanlage 48 gelangt. Darin erfolgt in bekannter Weise eine chemische Reinigung des Waschwassers durch entsprechende Chemikalien, die über Leitung 49 eingegeben werden, sofern die Chemikalienoxydation nicht durch Ozonisierung ersetzt wird, wodurch die rückstandserhöhende Additivzugabe stark verringert werden kann. Über eine Kreislaufleitung 50 wird das Waschwasser z.T. durch einen Luftfilter 51 zur Entfernung von Schäumungen geführt, wobei Abgase durch eine Leitung 52 über den Kamin 32 abgeblasen werden, und z.T. erfolgt eine Rückleitung über eine Leitung 80 in den Sprühturm 21.
  • Das chemisch und mechanisch gereinigte Wasser gelangt aus der Kreislaufwasser-Chargenbehandlungsanlage 48 über eine Leitung 71 in den Vorbehälter 53 der Biogasanlage. In den Vorbehälter kann bei Bedarf auch Klärschlamm, Rohkompost oder dgl. eingebracht werden, was durch den Pfeil "54" angedeutet ist. Über eine Leitung 65 kann das Brüdendampfkondensat, sofern es nicht durch die Kreislaufwasser-Chargenbehandlungsanlage 48 geführt worden ist, direkt in den Vorbehälter 53 eingebracht werden.
  • Von dem Vorbehälter 53 aus gelangen die in der Biogasanlage 13 aufzuarbeitenden Stoffe in eine Hydrolysestufe bzw. einen Hydrierer 56. An die Hydrolysestufe 56 schließt sich ein Gegenstromwärmetauscher 57 an, der seine Wärme durch eine Warmwasserleitung 62 erhält, die von dem Kühlturm 46 der Waschwasserreinigungsanlage aus abzweigt. In einem Faulraumboden 67 sorgt eine Rohrschlangenheizung für einen Temperaturanstieg im Methanbereich des Faulraumes von 33 bis 37 Grad Celsius. Auf diese Weise wird die überschüssige Wärme aus der Pyrolyseanlage für die Biogasanlage 13 verwendet.
  • Die Biogasanlage 13 ist in üblicher Weise aufgebaut. Als phasengetrennte Biogasanlage kann sie im mittleren Schacht 63 im oberen Bereich eine normale Säurephase aufweisen, während im unteren Bereich eine Essigsäurephase vorliegt. Das entstandene Methangas wird über eine Methangasleitung 59 abgezogen und über einen Puffer 60 und einen Kompressor 61 der Gasleitung 25 oder der Gaswaschanlage der Pyrolyseanlage zur Reinigung zugeleitet. Der Gärrückstand wird durch eine Saugleitung 66 ausgetragen und einer Vorentwässerungseinrichtung 68 zugeleitet, wodurch er auf ca. 20 % Trockensubstanz gebracht wird. Die im Gärrückstand enthaltenen Feststoffe können über eine Trockenpresse 69 auf ca. 85 % Trockensubstanz gebracht werden. Das verbleibende Gärwasser wird in einer Lagune 70 gesammelt und im Bedarfsfalle der Behandlungsanlage 48 zugeführt oder direkt in die Kanalisation eingeleitet.
  • Die in der Kreislaufwasser-Chargenbehandlungsanlage 48 abgeschiedenen Stoffe können über eine Leitung 64 einer Kläranlage zugeleitet werden.
  • Pyrolysereststoffe werden in der Entgasungstrommel 16 über ein Wasserbad 72 ausgetragen, wobei die Austragung z.B. über Schneckenfördereinrichtungen erfolgen kann. Das Wasserbad 72 wird über eine Flüssigkeitsteilmengenleitung 73 mit der erforderlichen Flüssigkeit zur Benetzung des Pyrolysereststoffes versorgt. Die Teilmengenleitung 73 zweigt dabei aus der Chargenbehandlungsanlage 48 ab.
  • Der auf diese Weise mit Flüssigkeit benetzte Pyrolysereststoff wird über eine Leitung abgeführt und kann ggf. nach einer Behandlung, z.B. Ozonisierung oder sonstigte Reinigung der Biogasanlage 13 zugeführt werden. Die Biogasanlage 13 ist selbstverständlich lediglich beispielsweise genannt. Für die Erfindung selbst ist sie nicht notwendig. Statt einer Einleitung der Pyrolysereststoffe in die Biogasanlage 13 können die Pyrolysereststoffe im Bedarfsfalle auch über eine Leitung 74 A zu einem Kalkbrennofen 77 transportiert werden.
  • Ebenso kann der Pyrolysereststoff über eine Leitung 74 B nach dessen Trocknung in eine Filtervorrichtung 75 als Aktivkohlefilter eingebracht werden. Die Filtervorrichtung 75 befindet sich dabei zwischen der Gaswaschanlage und dem Gasometer 26. In diesem Falle sollte die aus dem Pyrolysereststoff gewonnene Aktivkohle jedoch wenigstens weitgehend frei von Schadstoffen sein. Dies bedeutet, daß man hierzu chargenweise operiert und statt einer Wasserzufuhr über die Flüssigkeitsteilmengenleitung 73 mit verunreinigtem Kreislaufwasser Frischwasser über eine Frischwasserleitung 81 in das Wasserbad einführt.
  • Bei Bedarf kann die dem Wasserkreislauf entnommene Flüssigkeitsteilmenge auch in einer Ozoninjektionsanlage 76 behandelt werden. Die Ozonanlage 76 ist mit der Chargenbehandlungsanlage 48 zusammengeschaltet. Wird die dem Kreislauf über die Teilmengenentnahmeleitung 79 entnommene Teilmenge vor ihrer Einleitung über die Flüssigkeitsteilmengenleitung 73 in das Wasserbad 72 in der Ozonanlage 76 entsprechend gereinigt kann ggf. auch bei dieser Verfahrensweise der Pyrolysereststoff als Aktivkohlefilter in der Filtervorrichtung 75 eingesetzt werden.
  • Die Funktion und Wirkungsweise eines Kalkbrandofens 77, in den über die Leitung 74 A der Pyrolysereststoff eingebracht wird, sind allgemein bekannt, weshalb hier nicht näher darauf eingegangen wird. Der Pyrolysereststoff wird dabei ggf. zusammen mit anderen Brennstoffkomponenten als Brennstoff verwendet. Selbstverständlich ist es nicht erforderlich, daß zwischen dem Wasserbad 72 und dem Kalkbrandofen 77 eine direkte Leitung 74 A vorhanden ist. Die erfindungsgemäße Anlage ist so konzipiert, daß nicht alle Aggregate an einem gemeinsamen Ort stehen müssen. So können z.B. die Biogasanlage 13 und der Kalkbrandofen 77 an einem anderen Ort stehen, wobei der Transport der Stoffe auf beliebige Weise dorthin erfolgen kann.
  • Die Flüssigkeitsteilmenge, die in dem Wasserbad 72 von dem Pyrolysereststoff nicht vollständig aufgenommen worden ist, kann bei Bedarf vor dessen Einleitung in eine Kläranlage ebenfalls über die Ozonanlage 76, ggf. zur Vollozonisierung, geführt werden.
  • Selbstverständlich ist es nicht unbedingt erforderlich, daß die Flüssigkeitsteilmengenleitung 73 aus der Waschwasserneutralisationsanlage 47 abzweigt, vielmehr kann die Entnahme bei Bedarf auch an einer anderen Stelle der Kreislaufwasserführung erfolgen. Gleiches gilt für die Einschaltung der Ozoninjektionsanlage 76.

Claims (13)

1. Verfahren zur Rückgewinnung von verwertbarem Gas aus Müll durch Pyrolyse, wobei der vorzerkleinerte Müll zu Fluff, Granulat oder Pellets in eine Größe von 1 bis 50 mm aufbereitet und auf einen Trockensubstanzgehalt von mindestens 75 % gebracht und anschließend in eine beheizte Entgasungstrommel eingebracht wird, in der Schwelgas erzeugt und von den Reststoffen, wie Asche und anderen Bestandteilen abgetrennt wird, und wobei das Schwelgas in einem Gaswandler in Brenngas zerlegt wird, das in einer nachfolgenden Gaswaschanlage mit im Kreislauf geführten Waschwasser gereinigt wird, wobei dem Waschwasserkreislauf der Gaswaschanlage zur Begrenzung seiner Schadstoffkonzentration im Wasser des Kreislaufes eine Teilmenge entzogen und durch Frischwasser ersetzt wird, und wobei die aus der Schweltrommel auszutragenden Pyrolysereststoffe über ein Wasserbad ausgetragen werden, dadurch gekennzeichnet, daß in das Wasserbad (72) wenigstens ein Teil der dem Waschwasserkreislauf der Gaswaschanlage (21-24 und 47-51) entzogenen Flüssigkeitsteilmenge eingebracht wird, wobei die im Waschwasser enthaltenen Verunreinigungen des Schwelgases durch den Pyrolysereststoff gebunden werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet , daß dem in die Entgasungstrommel (16) eingetragenen Müll vorher durch Aussortierung Inertstoffe in solcher Menge entzogen werden, daß die aus der Entgasungstrommel ausgetragenen Pyrolysereststoffe mindestens 25 Gewichtsprozent Kohlenstoff enthalten.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet , daß der mit der Teilmenge des Waschwasserkreislaufes behandelte Pyrolysereststoff als Aktivkohlefilter eingesetzt wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet , daß der Pyrolysereststoff als Aktivkohlefilter in einer Filtervorrichtung (75) hinter der Gaswaschanlage (21-24) eingebracht wird.
5. Verfahren nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet , daß dem aus dem Waschwasserkreislauf entzogenen Kreislaufwasserkonzentrat Schadstoffkomponenten aus anderen Produktionen zu deren Entsorgung beigemischt werden.
6. Verfahren nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet , daß die dem Wasserkreislauf der Gaswaschanlage entzogene Flüssigkeitsmenge chargenweise durch Ozoninjektion so vorbehandelt wird, daß nach der Behandlung die Konzentration an Zyanid ≦ 10 g/m³ und oder Phenolen < 40 g/m³ ist.
7. Verfahren nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet , daß die dem Wasserkreislauf der Gaswaschanlage entnommene Flüssigkeitsteilmenge, welche nicht bei der Benetzung des Pyrolysereststoffes aufgesaugt wurde, einer weiteren chargenweisen Ozonisierung unterzogen wird, bis sein CSB < 400 mg O₂/Liter ist.
8. Verfahren nach Anspruch 1, dadurch gekennzeichnet , daß der mit der Flüssigkeitsmenge benetzte Pyrolysereststoff in Klär- oder Biogasanlagen (13) eingebracht wird.
9. Verfahren nach Anspruch 1, dadurch gekennzeichnet , daß der mit der Flüssigkeitsteilmenge benetzte Pyrolysereststoff in Kalkbrandöfen (77) eingegeben wird.
10. Anlage zur Durchführung des Verfahrens nach einem der Ansprüche 1 - 9 mit einer Müllzerkleinerungseinrichtung, mit einer Trocknungseinrichtung und einer Entgasungstrommel mit einem Einlaß für den vorzerkleinerten Müll, mit einem Auslaß für feste Pyrolysereststoffe und mit einer Schwelgasabzugsleitung, an die sich ein Gaswandler zur Gewinnung von Spaltgas anschließt, mit einer dem Gaswandler nachgeschalteten Gaswaschanlage und mit einem an den Auslaß für die pyrolysereststoffe sich anschließenden Wasserbad zu dessen Austragung, dadurch gekennzeichnet , daß von einer Einrichtung (48) der Gaswaschanlage eine Flüssigkeitsteilmengenleitung (73) zu dem Wasserbad (72) geführt ist.
11. Anlage nach Anspruch 10, dadurch gekennzeichnet , daß vor der Entgasungstrommel (16) eine Sortiereinrichtung (6) zur Aussortierung von Inertstoffen angeordnet ist.
12. Anlage nach Anspruch 10 oder 11, dadurch gekennzeichnet , daß hinter der Gaswaschanlage (21-24 und 47-51) eine Filtervorrichtung (75) angeordnet ist, in die der Pyrolysereststoff als Aktivkohlefilter einsetzbar ist.
13. Anlage nach einem der Ansprüche 10 - 12, dadurch gekennzeichnet , daß für die dem Wasserkreislauf der Gaswaschanlage (21-24) entzogene Flüssigkeitsteilmenge eine Ozoninjektionseinrichtung (76) vorgesehen ist.
EP88907293A 1987-08-13 1988-08-03 Verfahren und anlage zur rückgewinnung von verwertbarem gas aus müll durch pyrolyse Expired - Lifetime EP0376971B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AT88907293T ATE69614T1 (de) 1987-08-13 1988-08-03 Verfahren und anlage zur rueckgewinnung von verwertbarem gas aus muell durch pyrolyse.
IN689/CAL/88A IN170715B (de) 1987-08-13 1988-08-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873727004 DE3727004A1 (de) 1987-08-13 1987-08-13 Verfahren und anlage zur rueckgewinnung von verwertbarem gas aus muell durch pyrolyse
DE3727004 1987-08-13

Publications (2)

Publication Number Publication Date
EP0376971A1 EP0376971A1 (de) 1990-07-11
EP0376971B1 true EP0376971B1 (de) 1991-11-21

Family

ID=6333680

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88907293A Expired - Lifetime EP0376971B1 (de) 1987-08-13 1988-08-03 Verfahren und anlage zur rückgewinnung von verwertbarem gas aus müll durch pyrolyse

Country Status (18)

Country Link
EP (1) EP0376971B1 (de)
KR (1) KR960010986B1 (de)
AT (1) ATE69614T1 (de)
AU (1) AU2326288A (de)
BR (1) BR8807663A (de)
CA (1) CA1335863C (de)
CS (1) CS274679B2 (de)
DD (1) DD282023A5 (de)
DE (2) DE3727004A1 (de)
DK (1) DK35890A (de)
ES (1) ES2007989A6 (de)
FI (1) FI900660A0 (de)
GR (1) GR1000301B (de)
IN (1) IN170715B (de)
NO (1) NO174002C (de)
PL (1) PL154803B1 (de)
RU (1) RU1836406C (de)
WO (1) WO1989001505A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103624059A (zh) * 2012-08-22 2014-03-12 黄广禧 一种生活垃圾裂解处理工艺流程
CN103624055A (zh) * 2012-08-22 2014-03-12 黄广禧 利用秸秆与生活垃圾混合裂解抑制二恶英产生的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3933809A1 (de) * 1989-10-10 1991-04-18 Pyrolyse Kraftanlagen Pka Verfahren zur entsorgung von abfallstoffen
DE4009249A1 (de) * 1990-03-22 1991-09-26 Pyrolyse Kraftanlagen Pka Verfahren und anlage zur reinigung von abwaessern
EP0495766A3 (en) * 1991-01-14 1992-12-23 Tbr Gesellschaft F. Techn. Bodenreinigung Ges.M.B.H. Method for the utilization of residual material from pyrolysis and of pyrolysis gas
CN107971067B (zh) * 2017-12-03 2019-06-04 内蒙古维拉斯托矿业有限公司 一种破碎便于送料和筛选的裹泥矿石破碎机
CN107974261A (zh) * 2017-12-27 2018-05-01 利百川环保科技有限公司 一种生活垃圾废水废气处理系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862887A (en) * 1971-12-22 1975-01-28 Monsanto Enviro Chem Syst Method for processing heat-decomposable non-gaseous materials
US4126000A (en) * 1972-05-12 1978-11-21 Funk Harald F System for treating and recovering energy from exhaust gases
DE2423891A1 (de) * 1974-05-16 1975-12-04 Alfred Denne Verfahren zur gewinnung von adsorptionskohle aus der bei einem an sich bekannten muellverkokungsverfahren anfallenden muellschlacke sowie vorrichtung zur durchfuehrung des verfahrens
FI782355A (fi) * 1977-08-12 1979-02-13 Adolf H Borst Foerfarande foer kombinerat soputnyttjande och avfallsvattentillverkande och flerstegsfiltreringsanordning foer att genomfoera foerfarandet
US4256574A (en) * 1979-09-12 1981-03-17 Sterling Drug Inc. Ozone disinfection system
DE3317977A1 (de) * 1983-05-18 1984-11-22 Pka Pyrolyse Kraftanlagen Gmbh, 7080 Aalen Gaswandler
DE3347554C2 (de) * 1983-05-18 1986-08-07 Pka Pyrolyse Kraftanlagen Gmbh, 7080 Aalen Verfahren zur Gewinnung von verwertbarem Gas aus Müll durch Pyrolyse und Vorrichtung zum Durchführen des Verfahrens
DE3529445A1 (de) * 1985-08-16 1987-02-26 Pyrolyse Kraftanlagen Pka Verfahren zur rueckgewinnung von verwertbarem gas aus muell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103624059A (zh) * 2012-08-22 2014-03-12 黄广禧 一种生活垃圾裂解处理工艺流程
CN103624055A (zh) * 2012-08-22 2014-03-12 黄广禧 利用秸秆与生活垃圾混合裂解抑制二恶英产生的方法

Also Published As

Publication number Publication date
NO900670L (no) 1990-02-12
ATE69614T1 (de) 1991-12-15
CS559288A2 (en) 1990-10-12
DK35890D0 (da) 1990-02-12
GR1000301B (el) 1992-05-12
GR880100514A (en) 1989-05-25
FI900660A0 (fi) 1990-02-09
ES2007989A6 (es) 1989-07-01
KR890701712A (ko) 1989-12-21
NO174002B (no) 1993-11-22
PL154803B1 (en) 1991-09-30
CS274679B2 (en) 1991-09-15
CA1335863C (en) 1995-06-13
WO1989001505A1 (en) 1989-02-23
RU1836406C (ru) 1993-08-23
DK35890A (da) 1990-02-12
KR960010986B1 (ko) 1996-08-14
AU2326288A (en) 1989-03-09
NO900670D0 (no) 1990-02-12
DE3866357D1 (de) 1992-01-02
IN170715B (de) 1992-05-09
NO174002C (no) 1994-03-02
DE3727004A1 (de) 1989-02-23
EP0376971A1 (de) 1990-07-11
DD282023A5 (de) 1990-08-29
BR8807663A (pt) 1990-06-19
PL274155A1 (en) 1989-04-17

Similar Documents

Publication Publication Date Title
EP0262144B1 (de) Verfahren zur rückgewinnung von verwertbarem gas aus müll
DE2702048C2 (de) Verfahren zur Herstellung von Portlandzement
DE1943776C3 (de) Anlage zum Vernichten von festem Müll
DE69112385T2 (de) Gemeinsame behandlung von abwasser und abfällen von stahlwerken.
DE3347554C2 (de) Verfahren zur Gewinnung von verwertbarem Gas aus Müll durch Pyrolyse und Vorrichtung zum Durchführen des Verfahrens
DE69623034T2 (de) Verfahren und vorrichtung zur abfallbehandlung
DE19608093A1 (de) Verfahren zur Verwertung von Rest- und Abfallstoffen sowie heizwertarmen Brennstoffen in einem Zementofen
EP0465479B1 (de) Verfahren zur verwertung von klärschlamm
CN108977251A (zh) 一种利用生活垃圾制备生物质可燃炭的系统及方法
EP0123856B1 (de) Verfahren zur Entfernung bzw. Isolierung von Schadstoffen aus Abgasen
EP0185648A2 (de) Verfahren zur Entsorgung von Klärschlamm aus einer biologischen Abwasserreinigungsanlage
HUT64731A (en) Method and device for purifying waste water
EP0376971B1 (de) Verfahren und anlage zur rückgewinnung von verwertbarem gas aus müll durch pyrolyse
DE4103715A1 (de) Anlage und verfahren zur behandlung von hausmuell und hausmuellaehnlichen gewerbeabfaellen
DE2118850C3 (de) Verfahren zur Verwertung von Abfallprodukten
EP0347808A1 (de) Verfahren zur Behandlung von Klärschlamm
WO2001079123A1 (de) Konditionierungsverfahren biogener feststoffe
EP0958332B1 (de) Verfahren und vorrichtung zum verarbeiten von biologischen reststoffen, insbesondere klärschlamm
DE4238935C2 (de) Verfahren zur Überführung von organisches Material und Kunststoffe enthaltenden Abfallstoffen in ein pulverförmiges Zwischenprodukt und seine Verwendung
DE3316299A1 (de) Verfahren zum verbrennen von muell
DE4442100A1 (de) Verfahren und Anlage zur Aufbereitung von Klärschlamm zu einer Rohmehlkomponente für die Zementherstellung
EP0495814B1 (de) Verfahren zur entsorgung von abfallstoffen
DE3537595A1 (de) Verfahren und anlage zur verwertung von feuchten abfaellen, insbesondere klaerschlamm
DE2642451A1 (de) Verfahren zum verwerten von abfallstoffen insbesondere von muell und klaerschlamm
WO1983000046A1 (en) Device for manufacturing a storable, odourless solid fuel from waste material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19910214

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19911121

REF Corresponds to:

Ref document number: 69614

Country of ref document: AT

Date of ref document: 19911215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3866357

Country of ref document: DE

Date of ref document: 19920102

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88907293.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960109

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960804

EUG Se: european patent has lapsed

Ref document number: 88907293.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980803

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980807

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980827

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980829

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980831

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19981008

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19981125

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990803

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

BERE Be: lapsed

Owner name: PKA PYROLYSE KRAFTANLAGEN G.M.B.H.

Effective date: 19990831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990803

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000428

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST