WO2000062785A1 - Remedes - Google Patents

Remedes Download PDF

Info

Publication number
WO2000062785A1
WO2000062785A1 PCT/JP2000/002432 JP0002432W WO0062785A1 WO 2000062785 A1 WO2000062785 A1 WO 2000062785A1 JP 0002432 W JP0002432 W JP 0002432W WO 0062785 A1 WO0062785 A1 WO 0062785A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfated
acidic
hgf
growth factor
polysaccharide
Prior art date
Application number
PCT/JP2000/002432
Other languages
English (en)
French (fr)
Inventor
Hiroaki Sagawa
Takeshi Sakai
Eiji Kobayashi
Tuo-Ping Li
Hiromu Ohnogi
Kaori Nishimura
Eiji Nishiyama
Hua-Kang Wu
Shigetoshi Mizutani
Ikunoshin Kato
Original Assignee
Takara Shuzo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Shuzo Co., Ltd. filed Critical Takara Shuzo Co., Ltd.
Priority to KR1020017012954A priority Critical patent/KR100727339B1/ko
Priority to JP2000611921A priority patent/JP4261071B2/ja
Priority to EP00917309A priority patent/EP1175907A4/en
Priority to AU38373/00A priority patent/AU3837300A/en
Publication of WO2000062785A1 publication Critical patent/WO2000062785A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7024Esters of saccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/163Sugars; Polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/212Starch; Modified starch; Starch derivatives, e.g. esters or ethers
    • A23L29/219Chemically modified starch; Reaction or complexation products of starch with other chemicals
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/256Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin from seaweeds, e.g. alginates, agar or carrageenan
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • A23L29/37Sugar alcohols
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/125Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives containing carbohydrate syrups; containing sugars; containing sugar alcohols; containing starch hydrolysates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/20Removal of unwanted matter, e.g. deodorisation or detoxification
    • A23L5/27Removal of unwanted matter, e.g. deodorisation or detoxification by chemical treatment, by adsorption or by absorption
    • A23L5/273Removal of unwanted matter, e.g. deodorisation or detoxification by chemical treatment, by adsorption or by absorption using adsorption or absorption agents, resins, synthetic polymers, or ion exchangers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • A61K31/122Ketones having the oxygen directly attached to a ring, e.g. quinones, vitamin K1, anthralin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7004Monosaccharides having only carbon, hydrogen and oxygen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7016Disaccharides, e.g. lactose, lactulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/702Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/737Sulfated polysaccharides, e.g. chondroitin sulfate, dermatan sulfate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/69Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing fluorine
    • A61K8/70Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing fluorine containing perfluoro groups, e.g. perfluoroethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/732Starch; Amylose; Amylopectin; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to the use of a physiologically active acidic sugar compound as a medicine, food, beverage, feed, or cosmetic.
  • Known acidic polysaccharides derived from seaweed include sulfated polysaccharides such as rhamnan sulfate derived from algae, sulfated galactan derived from red algae, and sulfated fucose-containing polysaccharide derived from brown algae.
  • fucoidan is a sulfated-fucose-containing polysaccharide contained in brown algae, echinoderms and the like, and contains sulfated fucose as a constituent sugar.
  • Shark cartilage also contains sulfated polysaccharides.
  • Sulfated polysaccharides such as fucoidan
  • fucoidan are known to have cancer growth inhibitory activity, cancer metastasis inhibitory activity, anticoagulant activity, antiviral activity, etc., and are expected to be developed for use as pharmaceuticals .
  • Heparin, heparan sulfate, and low-molecular-weight heparin having an average molecular weight of 4400 to 560 are known as substances having a hepatocyte growth factor ⁇ -inducing activity (Japanese Unexamined Patent Publication (Kokai) No. 6-312). No. 941), and there is no report on the growth factor production-inducing action of other sulfated polysaccharides such as fucoidan and synthetic sulfated polysaccharides. Disclosure of the invention
  • An object of the present invention is to find new physiological actions of various acidic sugar compounds, for example, acidic polysaccharides, for example, fucoidan, and the like.
  • the purpose of the present invention is to induce the growth factor production of various acidic sugar compounds, for example, acidic polysaccharides, for example, fucoidan.
  • hepatocyte growth factor production induction To provide a medicine, food, drink, feed or cosmetic using the action of inducing insulin-like growth factor production or nerve growth factor production.
  • the first invention of the present invention is selected from an acidic polysaccharide having a growth factor production-inducing action, a degradation product thereof, an acidic oligosaccharide, an acidic monosaccharide, an acidic sugar alcohol, and salts thereof.
  • the present invention relates to a therapeutic or preventive agent for a disease requiring induction of growth factor production, characterized by containing an active ingredient (excluding heparin and heparan sulfate) as an active ingredient.
  • a second invention of the present invention is directed to a growth comprising an acidic polysaccharide having a growth factor production-inducing action, a degradation product thereof, an acidic oligosaccharide, an acidic monosaccharide, an acidic sugar alcohol, and a salt thereof. It relates to food, beverage (hereinafter sometimes referred to as food and drink) or feed for inducing factor production.
  • a third invention of the present invention is directed to a growth comprising an acidic polysaccharide having a growth factor production-inducing action, a degradation product thereof, an acidic oligosaccharide, an acidic monosaccharide, an acidic sugar alcohol, and a salt thereof.
  • the present invention relates to a cosmetic for inducing factor production.
  • the fourth invention of the present invention relates to a growth factor production regulator comprising an acidic polysaccharide, a decomposition product thereof, an acidic oligosaccharide, an acidic monosaccharide, an acidic sugar alcohol, and a salt thereof. .
  • a preferred example of the acidic polysaccharide having a growth factor production-inducing action is a sulfated polysaccharide.
  • the sulfated polysaccharide are algae-derived sulfated animals, animal-derived sulfated polysaccharides, for example, sulfates derived from echinoderms.
  • Sulfated polysaccharides such as sea cucumber, sulfated polysaccharides from fish, such as shark cartilage, sulfated polysaccharides from microorganisms, sulfated polysaccharides from plants, such as sulfated polysaccharides from mugwort, Synthetic sulfated polysaccharides can be suitably used.
  • sulfated polysaccharide derived from algae having a growth factor production inducing action rhamnan sulfate, sulfated galactan, or sulfated fucose-containing polysaccharide can be suitably used.
  • Dextran sulfate sodium, sulfated starch , Sulfated curdlan, sulfated pectin, etc., and highly sulfated sulfated polysaccharide obtained by sulfation of sulfated polysaccharide can be preferably used.
  • Fucoidan can be suitably used as the sulfated fucose-containing polysaccharide.
  • Acidic oligosaccharides are preferably sulfated oligosaccharides, for example, sulfated maltose, sulfated lactose, sulfated sucrose, sulfated trehalose, sulfated lactulose, sulfated melibiose, sulfated cellobiose, sulfated isosaccharide.
  • R is OH or OS 0 3 H.
  • R is ⁇ _H or ⁇ _S 0 3 H.
  • the acidic monosaccharide preferably a sulfated monosaccharide, for example sulfated gluco one scan, sulfated galactose, sulfated xylose, sulfate Compound 2-deoxy-glucose, sulfated rosin and sulfated mannose can be used.
  • sulfated sugar alcohols such as sulfated glucitol can also be used.
  • sulfated oligosaccharides, sulfated monosaccharides, and sulfated sugar alcohols may be prepared by a general synthesis method.
  • the position of the sulfate group and the number of sulfate groups in these sugar compounds are not particularly limited as long as these sulfated oligosaccharides, sulfated monosaccharides, and sulfated sugar alcohols exhibit a growth factor production inducing action.
  • a degradation product of an acidic polysaccharide having a growth factor production-inducing action can also be used.
  • the degradation products also include heparin degradation products having a molecular weight of 400 or less and heparan sulfate degradation products, which have a growth factor production inducing action.
  • the substances exemplified as the acidic polysaccharide, its decomposed product, acidic oligosaccharide, acidic monosaccharide, and acidic sugar alcohol can be used alone or in combination of two or more, and their salts can also be used suitably.
  • the growth factors include hepatocyte growth factor, insulin-like growth factor, And nerve growth factor.
  • the therapeutic or prophylactic agent of the first invention of the present invention, the food, beverage or feed of the second invention, and the cosmetic of the third invention include an acidic polysaccharide, a degradation product thereof, an acidic oligosaccharide, and an acidic monosaccharide.
  • a substance selected from a compound, minoxidil, and carpronium chloride is exemplified.
  • the food, beverage or feed of the second invention of the present invention is preferably a food, drink or feed for inducing hepatocyte growth factor production, insulin-like growth factor production or nerve growth factor production induction. is there.
  • the cosmetic of the third invention of the present invention is preferably a cosmetic for inducing hepatocyte growth factor production, for inducing insulin-like growth factor production, or for inducing nerve growth factor production.
  • Examples of the cosmetic according to the third aspect of the present invention include lotions, emulsions, creams, packs, bath preparations, facial cleansers, bath stones and bath detergents.
  • FIG. 1 is a diagram showing the elution pattern of Fucoidan derived from Gagome kelp DEA E—Cell mouth Fine A—800 column.
  • Fig. 2 shows a calibration curve of the sulfuric acid content using a sodium sulfate solution as a standard sample. ⁇ The best mode for carrying out the invention
  • the acidic polysaccharide having a growth factor production inducing action is a growth factor production inducing agent.
  • acidic polysaccharides such as alginic acid, pectin, pectic acid, and hyaluronic acid
  • sulfated polysaccharides such as chondroitin sulfate, keratan sulfate, and dermatan sulfate
  • animal-derived sulfated polysaccharides For example, sulfated polysaccharides derived from echinoderms, sulfated polysaccharides derived from fish, such as sulfated polysaccharides derived from shark cartilage, acidic polysaccharides derived from plants, such as sulfated polysaccharides derived from mugwort, sulfated polysaccharides derived from bitter gourd, and aloe Sulfated
  • Algal-derived sulfated polysaccharides include algal-derived rhamnan sulfate and red algae-derived sulfated galactan, such as maxa, ogonori, giant gelp, pterocladia capiracea, carrageenan, agar, agarose, rygaropectin, vorphylan, and brown algae.
  • Sulphated fucose-containing polysaccharides e.g., fucoidan, sulphated fucogalactan, sulphated fucoglucuronomannan, glucuronoxylofucane, sargassan, glucuronomannogalactan, xylofucoglucuronane, ascofuirane, glucuronogalactofan And sulfated glucuronofucan can be used.
  • fucoidan, sulfated fucogalactan, ⁇ -force lagenan, chondroitin sulfate ⁇ ⁇ , chondroitin sulfate D, alginic acid, aga pectin can be suitably used in the present invention.
  • acidic polysaccharides derived from cyanobacteria for example, sulfated polysaccharides derived from Spirulina
  • acidic polysaccharides derived from green algae for example, sulfated polysaccharides derived from chlorella can be used.
  • sulfated polysaccharide derived from Spirulina is useful for improving liver function due to its effect of inducing hepatocyte growth factor production, and has a remarkable effect on, for example, improving symptoms of hepatitis C.
  • Phosphorylated polysaccharides for example, nucleic acids are also included in the acidic polysaccharide of the present invention.
  • the fucoidan derived from the algae described above is preferably exemplified.
  • the polysaccharide is a component having a growth factor production-inducing action.
  • Echinoderms for example, sea cucumber Fucoidan derived from sea urchin, sea urchin, starfish and the like may be used.
  • degradation products and salts of these exemplified acidic polysaccharides can also be used without particular limitation as long as they exhibit a growth factor production inducing action.
  • Each of these acidic polysaccharides may be prepared by a known method, and a purified product or the acidic polysaccharide-containing material can be used in the present invention.
  • a sulfated polysaccharide fraction can be suitably used, and as the fraction, a sulfated polysaccharide fraction derived from algae and a sulfated polysaccharide fraction derived from shark cartilage can be suitably used. Algae, sea cucumber, shark cartilage, etc. can be used as raw materials for the sulfated polysaccharide-containing material.
  • seaweeds such as Gagome kombu, Ma kombu, Tororo kombu, Hibama evening, Mozuku, Okinazumozuku, Wakame, Kurome, Alame, Kajime, Letsonia nigrescens, Ascophyllum nodossum, etc. It contains a large amount of fucoidan suitable for use in the present invention, and is suitable as a raw material.
  • the synthetic sulfated polysaccharide used in the present invention is not particularly limited as long as it has a growth factor production-inducing effect, but the use of a sulfated polysaccharide conventionally used as a pharmaceutical is preferred.
  • Dextran sulfate sodium is exemplified as the synthetic sulfated polysaccharide.
  • the compound is a sodium salt of a sulfated ester obtained by sulfating a partially decomposed product of dextran produced by fermentation of sucrose by means of Leucon osto c o c me s ent e r o en de s van Tieghem.
  • synthetic sulfated polysaccharides such as sulfated starch, sulfated curdlan, and sulfated pectin can be used, and highly sulfated sulfated polysaccharide obtained by sulfation of sulfated polysaccharide can be preferably used.
  • the position of the sulfate group of the sulfated polysaccharide used in the present invention is not particularly limited as long as it exhibits a growth factor production-inducing action.
  • the sulfated polysaccharide in which the 2-position of the constituent sugar is sulfated, fucoidan, ⁇ -force lagenan , Chondroitin sulfate D and their degradation products are preferably used in the present invention. Can be used.
  • the sulfate content (or the number of sulfate groups) of the sulfated polysaccharide is not particularly limited as long as it exhibits a growth factor production inducing action.
  • the degradation products of the acidic polysaccharides include oligosaccharides and monosaccharides.
  • oligosaccharides and monosaccharides having a sulfate group at the 2-position such as fucose-12-sulfate and glucose-12-sulfate, are used.
  • sulfated monosaccharides, sulfated oligosaccharides, and sulfated polysaccharides may be prepared by a general synthesis method thereof, and preparations and purified products can be used in the present invention.
  • an oligosaccharide is defined as a saccharide compound in which monosaccharides are connected in a range of 2 to 10 and a polysaccharide is defined as a saccharide compound in which 11 or more monosaccharides are connected.
  • fucoidan can be prepared from gagome kelp, and the fucoidan can be separated into fucoidan containing glucuronic acid (referred to as U-fucoidan) and fucoidan not containing glucuronic acid (referred to as F-fucoidan). Each fucoidan can be used. Also, sulfated fucogalactans can be prepared from gagome kelp and used.
  • aga mouth vectin can be prepared from agar and used.
  • U-fucoidan and F-fucoidan are separated using anion exchange resin, surfactant, etc. after preparing fucoidan from Gagome kelp.
  • the abundance ratio of U-fucoidan and F-fucoidan derived from Gagome kelp is about 1: 2
  • U-fucoidan contains fucose, mannose, galactose, glucuronic acid, etc.
  • the sulfuric acid content is about 20%
  • F-fucoidan Contains fucose and galactose, has a sulfuric acid content of about 50%, and a molecular weight of about 200,000 for both substances. (Summary of the 18th Carbohydrate Symposium, pp. 159, 199) 96 years).
  • a fucoidan solution prepared from Gagome kelp is applied to a DEAE-Cell Mouth Fine A-800 column, and then eluted with a NaC1 containing buffer by a concentration gradient method to obtain U-fucoidan and F-fucoidan.
  • Fig. 1 shows an example. That is, Fig. 1 shows the separation between U-fucoidan and F-fucoidan, where the front peak is U-fucoidan and the rear peak is F-fucoidan. It is.
  • sulfated polysaccharide derived from maxa sulfated polysaccharide derived from ogonori, sulfated polysaccharide derived from pterocladia, sulfated polysaccharide derived from other algae
  • fucoidan derived from Hiba-ma fucoidan derived from mozuku
  • fucoidan derived from okinazmozuku fucoidan derived from wakame, and lessonia.
  • Fucoidan, fucoidan derived from ascophyllum, and fucoidan derived from other algae can be prepared by known methods and used in the present invention.
  • Sea cucumber containing fucoidan includes, for example, sea cucumber described in Japanese Patent Application Laid-Open No. HEI 4-91027. Fucoidan can be prepared from sea cucumber by the method described in the gazette.
  • the degradation product of an acidic polysaccharide having a growth factor production-inducing activity of the present invention for example, a degradation product of a sulfated polysaccharide or fucoidan is prepared by a known method such as an enzymatic method, a chemical method, or a physical method. Then, a degraded product having a desired growth factor production-inducing action can be selected and used.
  • the decomposed product is, depending on the acidic polysaccharide to be decomposed, obtained by decomposing the acidic polysaccharide, and generally has a molecular weight of preferably 100,000 to 200, more preferably 30,000 to 100,000. In the range of
  • a preferred method for preparing the decomposed product of the acidic polysaccharide used in the present invention is an acid decomposition method. By decomposing the acidic polysaccharide by acid, a degraded product having a growth factor production-inducing action can be prepared.
  • the acid-decomposing conditions of the acidic polysaccharide used in the present invention are not particularly limited as long as the decomposed product having a growth factor production inducing action (hereinafter referred to as the decomposed product of the present invention) is generated.
  • the decomposition product of the present invention is produced by dissolving or suspending an acidic polysaccharide in an aqueous acid solution or the like and reacting it. In addition, by heating during the reaction, the time required for producing the decomposition product of the present invention is reduced.
  • the type of acid that dissolves or suspends the acidic polysaccharide is not particularly limited, but may be a salt.
  • Inorganic salts such as acid, sulfuric acid, and nitric acid, organic acids such as citric acid, formic acid, acetic acid, lactic acid, and ascorbic acid, and solid acids such as cation exchange resin, cation exchange fiber, and cation exchange membrane can be used. .
  • the concentration of the acid is also not particularly limited, but it can be preferably used at a concentration of about 0.001 to 5 normal, more preferably about 0.01 to 1 normal.
  • the reaction temperature is not particularly limited, but is preferably 0 to 200 ° C., and more preferably 20 to 130 ° C.
  • the reaction time is not particularly limited, but is preferably set to several seconds to several days.
  • the type and concentration of the acid, the reaction temperature and the reaction time may be appropriately selected depending on the amount of the decomposition product used in the present invention and the degree of polymerization of the decomposition product.
  • organic acids such as citric acid, lactic acid, and malic acid are used, and the acid concentration is several 1011] ⁇ to several ⁇ [, and the heating temperature is 50 to 11
  • the decomposition product of the present invention can be prepared by appropriately selecting the heating time from 0 ° C, preferably from 70 to 95 ° C, and the heating time from several minutes to 24 hours.
  • Examples of the acid hydrolyzate of fucoidan include an acid hydrolyzate of fucoidan derived from gagome kelp.
  • the hydrolyzate is used as a dietary fiber having a strong growth factor production inducing effect, particularly a hepatocyte growth factor production inducing effect, and a new physiological function. Can be.
  • the degradation product of the present invention can be fractionated by using the growth factor production inducing action as an index.
  • the acid degradation product can be subjected to molecular weight fractionation by gel filtration, fractionation using a molecular weight fractionation membrane, or the like.
  • the molecular weight is more than 250,000, the molecular weight is more than 250,000 to 1,000, and the molecular weight is more than 100,000.
  • Any molecular weight fraction having a molecular weight of 0 to 500 or more and a molecular weight of 500 or less can be prepared, and a fraction having a molecular weight of 500 or less can be prepared using Cell mouth fine GCL-25. 0 to more than 300, molecular weight more than 300 to 200, molecular weight more than 200 to 100, molecular weight more than 100 to 500, molecular weight less than 500 Can be adjusted to any molecular weight fraction Wear.
  • molecular weight fractionation can be performed industrially using an ultrafiltration membrane.
  • a fraction having a molecular weight of 30,000 or less can be converted to the same FE-FUS- By using T653, a fraction having a molecular weight of 6000 or less can be prepared.
  • a fraction with a molecular weight of 500 or less can be obtained by using a nanofilter membrane, and an arbitrary molecular weight fraction can be prepared by combining these gel filtration methods and molecular weight fractionation methods. .
  • a degradation product of an acidic polysaccharide having a growth factor production-inducing effect examples include a compound represented by the formula (I) and a compound represented by the formula (II). These compounds can be prepared by the methods described in WO 97/26896, Ban Frett and WO 99/41288, pamphlet. Sulfated polysaccharides and oligosaccharides having a repeating structure of the compound represented by the formula (I) can also be used as the sulfated polysaccharide having a growth factor production-inducing action of the present invention.
  • the compound represented by the formula (I) is capable of converting the above-mentioned F-fucoidan into an endo-sulfated polysaccharide degrading enzyme (F-fucoidan-specific degrading enzyme) produced by Alteromonas sp. SN-1009 (FERM BP-5747). It can be obtained by treating and purifying from the decomposition product. Regarding the content and site of the sulfate group in the compound, any one can be purified from the decomposition product.
  • the degradation product also contains a multimer of the compound represented by the formula (I), and can be separated and purified according to the purpose.
  • the compound represented by the formula (II) is an end-sulfated polysaccharide-degrading enzyme (U-fucoidan-specific degrading enzyme) produced by the above-mentioned U-fucoidan and produced by Flavopacterium sp. SA-0082 (FERM BP-5402). And then purified from the decomposed product. Regarding the content and site of the sulfate group in the compound, any one can be purified from the decomposition product. In the decomposition product Contains a multimer having a compound represented by the formula (II) as a basic skeleton, and can be separated and purified according to the purpose.
  • Examples of the compound represented by the formula (I) include a compound represented by the following formula (VI). Examples of the compound represented by the formula (II) include a compound represented by the following formula (VII).
  • a polymer of glucuronic acid and mannose can be obtained by subjecting fucoidan derived from Gagome kelp to heat treatment in the presence of an organic acid, and this polymer is also used as the acidic polysaccharide having a growth factor production-inducing effect of the present invention. be able to. Further, a polymer having an arbitrary degree of polymerization can be prepared by adjusting the heat treatment conditions and the heating time.
  • the acidic polysaccharide having a growth factor production-inducing action in the present invention includes synthetic sulfated polysaccharide, and includes cellulose, starch, mannan, xylan, alginic acid, pectin, pectic acid, fructan, arabinan, chitin, pullulan, and xyloglucan. , Dextran, starch and the like can be used.
  • synthetic sulfated polysaccharides such as ribofuranan sulfate, xylofuranan sulfate, lentinan sulfate, curdlan sulfate, and mannopyranan sulfate
  • synthetic sulfated alkyl polysaccharides such as ribofuranan sulfate having a palmitoyl group
  • synthetic sulfated alkyl polysaccharides such as ribofuranan sulfate having a palmitoyl group
  • sulfated polysaccharides highly sulfated sulfated polysaccharides, and highly sulfated degradation products may be prepared by known methods, and the degradation products can be prepared by known methods and used in the present invention.
  • commercially available dextran sulfate and sulfated cellulose can be used, and salts of synthetic sulfated polysaccharides and the like may be used.
  • the acidic oligosaccharides preferably include sulfated oligosaccharides.
  • the acidic monosaccharides preferably include sulfated monosaccharides. No. Such sulfated oligosaccharides or sulfated monosaccharides are prepared by using the corresponding oligosaccharides and monosaccharides as raw materials by known methods. It can be prepared by oxidation. Further, these salts can also be suitably used.
  • sulfated polysaccharides sulfated polysaccharides, sulfated oligosaccharides, fatty acid derivatives of sulfated monosaccharides, and the like are also included in the sulfated polysaccharide, sulfated oligosaccharide, and sulfated monosaccharide of the present invention. These can be used alone or in combination of two or more.
  • the growth factor desired to induce production in the present invention is not particularly limited as long as it has an activity of promoting cell growth.
  • Hepatocyte growth factor (HGF), nerve growth factor (NGF), neurotrophic factor Epidermal growth factor, milk-derived growth factor, fibroblast growth factor, brain-derived fibroblast growth factor, acidic fibroblast growth factor, platelet-derived growth factor, platelet basic protein, connective tissue activating peptide, insulin -Like growth factor (IGF), colony-forming stimulating factor, erythropoietin, thrombopoetin, T cell growth factor, interleukins (eg, interleukins 2, 3, 4, 5, 7, 9, 11, 1, 15), B Cell growth factor, cartilage-derived factor, cartilage-derived growth factor, bone-derived growth factor, skeletal growth factor, endothelial cell growth factor, endothelial cell-derived growth factor, eye-derived growth factor, testis-derived growth Offspring, Sertoli cell-derived growth factor, mammary gland stimulating factor, spinal cord-derived growth
  • NT- 7. Glial cell line-derived neurotrophic factor, stem cell factor, mitodocaine, pleioto-oral fin, Ephrin, Angiopoietin, activin, tumor necrosis factor, interferon and the like.
  • At least one selected from the group consisting of HGF, NGF, and IGF from the viewpoint of prevention and treatment of liver disease, prevention and treatment of neurological disease, and prevention and treatment of diabetes. It is preferable to induce production using the active ingredient according to the present invention.
  • HGF has a hepatocyte proliferation effect, a protein synthesis promoting effect, a cholestasis ameliorating effect, and a preventive effect on renal damage caused by drugs.
  • HGF mRNA is expressed in brain and kidney It is also synthesized in the lungs and the like, and is a mesodermal cell growth factor that has a proliferative activity on hepatic parenchymal cells, renal tubular cells, epidermal cells and the like. Therefore, by inducing the production of hepatocyte growth factor, it is possible to treat or prevent hepatitis, severe hepatitis, fulminant hepatitis, cirrhosis and intrahepatic cholestasis, chronic nephritis, pneumonia, and wound.
  • IGF has various physiological actions on various cells. By inducing the production of IGF, it is possible to treat or prevent II type 1 diabetes (insulin-independent) and growth disorders (dwarfism).
  • NGF is an endogenous growth factor that maintains the survival and function of nerve cells and elongates nerve cells according to the concentration gradient of NGF.
  • senile dementia such as Alzheimer's disease It can be used to treat or prevent diseases that require repair and regeneration of nerve function, such as diseases, peripheral nerve disorders, cerebrovascular disorders, brain tumors, cerebral apex, head trauma degenerative diseases, and anesthetic drug intoxication.
  • the therapeutic or prophylactic agent of the present invention has a neurotrophic factor production-inducing effect
  • the therapeutic or prophylactic agent of the present invention has an effect of inducing NGF / neurotrophic factor production, resulting in amyotrophic lateral sclerosis, It is useful for the treatment and prevention of drug-induced peripheral neuropathy, diabetic peripheral neuropathy, Alzheimer's disease, Parkinson's disease, sensory neuropathy, pigmentary retinopathy, macular degeneration and the like.
  • the acidic polysaccharide, its decomposed product, acidic oligosaccharide, acidic monosaccharide, acidic sugar alcohol, or a salt thereof used in the present invention has a growth factor production-inducing effect, and produces a growth factor using these compounds as active ingredients. And a therapeutic or prophylactic agent for a disease which requires the following.
  • the therapeutic or prophylactic agent for diseases requiring growth factor production induction of the present invention is selected from the acidic polysaccharides, their degradation products, acidic oligosaccharides, acidic monosaccharides, acidic sugar alcohols, and salts thereof used in the present invention.
  • the active ingredient may be used as an active ingredient and combined with a known pharmaceutical carrier to form a formulation.
  • the preparation of the preparation is pharmaceutically acceptable from those selected from the acidic polysaccharides, their degradation products, acidic oligosaccharides, acidic monosaccharides, acidic sugar alcohols, and salts thereof used in the present invention.
  • liquid or solid carrier Add solvents, dispersants, emulsifiers, buffers, stabilizers, excipients, binders, disintegrants, lubricants, etc. as necessary, and solidify tablets, granules, powders, powders, capsules, etc. Preparations, usually solutions, suspensions, emulsions and the like. Before use, it can be made into a dried product which can be made into a liquid form by adding an appropriate carrier.
  • Pharmaceutical carriers can be selected according to the above dosage forms.
  • oral preparations for example, starch, lactose, sucrose, mannite, carboxymethylcellulose, corn starch, inorganic salts and the like are used.
  • a binder, a disintegrant, a surfactant, a lubricant, a fluidity promoter, a flavoring agent, a coloring agent, a fragrance, and the like can be further added.
  • the acidic polysaccharide used in the present invention is prepared according to a conventional method.
  • the selected substance is dissolved or suspended in distilled water for injection, physiological saline, aqueous solution of glucose, vegetable oil for injection, sesame oil, laccase oil, soybean oil, corn oil, propylene glycol, polyethylene glycol, etc. It is prepared by adding a bactericide, a stabilizer, a tonicity agent, a soothing agent and the like, if necessary.
  • the therapeutic or prophylactic agent of the present invention is administered by an appropriate administration route depending on the dosage form.
  • the administration method is not particularly limited, and can be used internally, externally, or by injection.
  • injectables can be administered, for example, intravenously, intramuscularly, subcutaneously, intradermally, etc., and external preparations include suppositories and the like.
  • the dose of the therapeutic or prophylactic agent of the present invention is appropriately determined depending on the dosage form, administration method, purpose of use, and the age, weight, symptoms, etc. of the patient to which it is applied.
  • the amount of the acidic polysaccharide used in the present invention, the hydrolyzate thereof, the acidic oligosaccharide, the acidic monosaccharide, the acidic sugar alcohol, or the salt thereof, which is used in the present invention is preferably 0.00 per adult per day. It is the amount to be 1-2000 mg O kg.
  • the dose varies depending on various conditions as described above. In some cases, less than the amount given may be sufficient, and in other cases it may be necessary to exceed the range.
  • the therapeutic or prophylactic agent of the present invention can be administered orally as it is in a desired dose range, or can be added to any food or drink to be taken on a daily basis.
  • the acidic polysaccharide used in the present invention, a decomposition product thereof, an acidic oligosaccharide, an acidic monosaccharide, an acidic sugar alcohol, or a salt thereof is used as a raw material for a food or drink for inducing growth factor production. Is also good.
  • HGF promotes the proliferation of not only hepatocytes but also many epithelial cells such as bile duct epithelial cells, renal tubular epithelial cells, and gastric mucosal cells.
  • HGF is a multifunctional active substance showing extremely diverse physiological activities, by inducing motility of an epithelial cell, inducing angiogenesis, and morphogenesis as seen in the formation of a lumen of an epithelial cell. In other words, it promotes the proliferation of epithelial cells and repairs motility and induces morphogenesis such as angiogenesis in various organs when repairing the damage to the organs.
  • HGF has a hepatocyte proliferation effect, a protein synthesis promoting effect, a cholestasis ameliorating effect, and a preventive effect on renal damage caused by drugs. For these reasons, it is expected to be used as a therapeutic agent for severe hepatitis, cirrhosis and intrahepatic cholestasis. However, HGF itself has not been put to practical use as a therapeutic drug. Furthermore, in gene therapy A method for introducing the HGF gene has been attempted, but it is far from practical use due to side effects of acting at an unnecessary time and place.
  • HGF can be induced arbitrarily rather than administered externally, it is effective for the treatment and prevention of diseases that require enhanced HGF expression, such as hepatitis, cirrhosis, and hepatic cholestasis. and considered Erare, even far, IL one 1, prostaglandin E,, E 2, induction acting on heparin and the like have been confirmed to. IL- 1, prostaglandin E,, E 2, by inducing transcription of HGF gene induces the production of HGF.
  • HGF heparin is known to induce HGF production, it does not induce transcription of the HGF gene, but rather promotes the steps following translation of mRNA and induces the production of HGF. In other words, there is no effect of inducing HGF production when transcription of the HGF gene is not induced. On the other hand, when the transcription of the HGF gene is induced, marked production induction is observed.
  • the active ingredient according to the present invention does not necessarily directly induce the transcription of growth factors such as HGF, but when such transcription is induced, it significantly promotes such transcription, and furthermore, translation. It is estimated that it can also promote the post-transcriptional steps such as the above, and has the effect of inducing the enhancement of growth factor production as a result.
  • growth factor production inducing effect means an effect of inducing an increase in growth factor production, and such an effect occurs, for example, before and after administration of an active ingredient to a human. Judgment is based on enhancement of growth factors.
  • when transcription is induced means, for example, that the transcription of HGF is performed at a time when it is necessary, and according to the active ingredient, the transcription of HGF occurs at an early stage when the transcription of HGF is promoted. This means that transcription is further promoted, and that HGF is not overproduced thereafter, and thus HGF production is enhanced when needed in the body.This makes it possible to induce HGF production extremely safely.
  • the therapeutic or prophylactic agent of the present invention synergistically enhances the growth factor production-inducing effect of the acidic polysaccharide, its degradation product, acidic oligosaccharide, acidic monosaccharide, acidic sugar alcohol, or a salt thereof used in the present invention. Substances that increase the substance can be further included.
  • the term “substance that synergistically increases” as used in the present invention means that if the active ingredient of the present invention is used in combination with the substance, transcription induction is actively performed by the substance, and as a result, the active ingredient of the present invention Growth factor production-inducing action is synergistically increased.
  • the acidic polysaccharide, the decomposed product thereof, the acidic oligosaccharide, the acidic monosaccharide, the acidic sugar alcohol, or the substance that synergistically increases the growth factor production-inducing action of the salt used in the present invention is such an acidic polysaccharide.
  • shyogaol and gingerdiol contained in ginger and the like, curcumin contained in macaques and the like are also substances that increase the HGF production inducing effect
  • the acidic polysaccharide used in the present invention, its decomposed product, acidic oligosaccharide, acidic It can be used as a substance that synergistically increases the HGF production inducing action of sugar, acidic sugar alcohol, or a salt thereof.
  • the cytokines mention may be made of the IL- 1, etc., as the Burosutagura engine such, mention may be made of the prostaglandin, E 2, etc. ⁇
  • Examples of the compound having a cyclopentene ring include a compound represented by the following formula (III) and a derivative thereof.
  • compounds having a cyclopentene ring represented by each of the following formulas (III) to (V) can induce transcription of the HGF gene in the same manner as prostaglandins E 1 and E 2 .
  • the production of HGF can be remarkably increased by synergistic action with the acidic polysaccharide, its decomposed product, acidic oligosaccharide, acidic monosaccharide, acidic sugar alcohol, or a salt thereof used in the above.
  • cytokines cytokines, prostaglandins, compounds having a cyclopentene ring, which have an HGF transcription-inducing action
  • the growth factor production-inducing action of the acidic polysaccharide, its degraded product, acidic oligosaccharide, acidic monosaccharide, acidic sugar alcohol, or a salt thereof used in the present invention is synergistically increased, and is extremely high.
  • the effect of inducing the production of HGF is obtained.
  • the mixture may be used as a raw material for food or drink or feed for inducing growth factor production.
  • the compound represented by the formula (III) may be produced by any method, including a chemical synthesis method (Carbohydrate Res., Vol. 2478, pp. 217-222 (1993), Helvetica). Helvetica Chimic a Acta, Vol. 55, pp. 2838-2844 (1972)], and contains peronic acid, a peronic acid derivative, a peronic acid and / or a peronic acid derivative. It is also possible to use a cyclopentenone produced in a heat-treated product of at least one selected from a sugar compound, a sugar compound-containing substance containing a humic acid and / or a peronic acid derivative, and a purified product thereof. it can.
  • the compound represented by the formula (IV) can be obtained, for example, by reacting a compound represented by the formula (III) with glutathione.
  • the compound represented by the formula (V) can be obtained, for example, by reacting a compound represented by the formula (III) with propionic anhydride.
  • the therapeutic or prophylactic agent of the present invention synergistically increases the growth factor production-inducing effect of the acidic polysaccharide, its decomposed product, acidic oligosaccharide, acidic monosaccharide, acidic sugar alcohol or a salt thereof used in the present invention.
  • the content of the substance is not particularly limited as long as the induction action can be synergistically increased, and is usually 0.001 to 200 Omg / kg per adult per day. It is.
  • the substance that synergistically increases the inducing action may be formulated in combination with the acidic polysaccharide used in the present invention, a degradation product thereof, an acidic oligosaccharide, an acidic monosaccharide, an acidic sugar alcohol, and a salt thereof. Or may be formulated separately.
  • the method of formulation and the mode of administration may be performed according to the method described in the present specification, and the desired effects of the present invention such that the growth factor production induction is synergistically increased.
  • the acidic polysaccharide, its degraded product, acidic oligosaccharide, acidic monosaccharide, acidic sugar alcohol, or a salt thereof used in the present invention also has a heparanase inhibitory activity, a cancer metastasis inhibitory activity, an angiogenesis inhibitory activity. Having. Therefore, a cancer metastasis inhibitor and an angiogenesis inhibitor can be manufactured and provided using a substance selected from these as an active ingredient.
  • the compound represented by the formula (I) derived from fucoidan has a potent heparanase inhibitory action and a cancer metastasis inhibitory action, and a pharmaceutical composition containing the compound as an active ingredient is extremely useful as a cancer metastasis inhibitor.
  • a pharmaceutical composition containing the compound as an active ingredient is extremely useful as a cancer metastasis inhibitor.
  • Foods and drinks containing the compound are also highly valuable as foods and drinks for suppressing cancer metastasis and angiogenesis.
  • Growth factor production having a growth factor production-inducing effect, comprising an acidic polysaccharide used in the present invention, a degradation product thereof, an acidic oligosaccharide, an acidic monosaccharide, an acidic sugar alcohol, or a salt thereof.
  • the food, drink or feed for induction is a growth sensitive to the acidic polysaccharide, its decomposed product, acidic oligosaccharide, acidic monosaccharide, acidic sugar alcohol or salt thereof used in the present invention by its growth factor production inducing action. It is extremely useful for improving or preventing the symptoms of diseases requiring induction of factor production, or improving the body length of organisms as described below.
  • the term “containing” in the food, beverage or feed of the present invention or the cosmetic described below includes the meaning of containing, adding or diluting, and the term “containing” means the present invention in a food, beverage or feed.
  • additional refers to a mode in which the active ingredient used in the present invention is included.
  • addition refers to a mode in which the active ingredient used in the present invention is added to a raw material of food, feed, or feed. It refers to a mode in which a raw material for food, beverage or feed is added to the active ingredient.
  • the above-mentioned substances that synergistically increase the growth factor production-inducing action for example, those selected from cytokines, prostaglandins, and compounds having a cyclopentene ring, may be further contained to improve the symptoms of the disease. It is preferable from the viewpoint of contributing to prevention or improvement of body length.
  • the active ingredient, the growth factor, or the growth factor Preferred embodiments of the substance that synergistically increases the inducing action are the same as in the case of the therapeutic or prophylactic agent.
  • the food or drink or feed of the present invention from the viewpoint of hepatic disease improvement, neurological disease improvement, and diabetes improvement, for the purpose of inducing hepatocyte growth factor production, inducing insulin-like growth factor production, or inducing nerve growth factor production. Food and drink or feed are preferred.
  • the method for producing the food or beverage of the present invention is not particularly limited as long as the food or beverage having a growth factor production-inducing action can be obtained.
  • blending, cooking, processing, etc. may be performed according to those of general foods, and can be produced by the method for producing such foods or drinks.
  • the active ingredient contains at least one selected from the group consisting of the acidic polysaccharides, their decomposed products, acidic oligosaccharides, acidic monosaccharides, acidic sugar alcohols and salts thereof.
  • Examples of the food or beverage of the present invention include, but are not particularly limited to, processed cereals (flour-processed products, processed starches, premixed products, varieties, macaroni, bans, bean jam, buckwheat) , Fu, Bifun, Harusame, Packed rice cake, etc., Oil and fat products (Plastic oils and fats, Tempura oil, Salad oil, Mayonnaise, Dressing, etc.), Soybean products (Tofu, Miso, Natto, etc.), Meat products ( Ham, bacon, pressed ham, sausage, etc.), marine products (frozen surimi, kamaboko, chikuwa, hampan, sweet fish fried, tsumire, streaks, fish meat ham, sausage, bonito flakes, processed fish eggs, canned seafood, tsukudani etc.), milk Products (raw milk, cream, yogurt, butter, cheese, condensed milk, powdered milk, ice cream, etc.), processed vegetables and fruits (pastes
  • the food or beverage of the present invention contains an acidic polysaccharide having a growth factor production-inducing action, a degradation product thereof, an acidic oligosaccharide, an acidic monosaccharide, an acidic sugar alcohol, and a salt thereof.
  • the shape is not particularly limited as long as it contains the necessary amount for expressing its physiological functions, and includes tablets, granules, capsules, and other forms that can be taken orally. I do.
  • the algae-derived sulfated polysaccharide having a growth factor production-inducing action and its decomposed products, such as fucoidan and its decomposed products, are used as health food materials having both the physiological function and the dietary fiber function as food or beverage production materials. Is extremely useful.
  • An acidic polysaccharide having a growth factor production-inducing action in the food or beverage of the present invention, a degradation product thereof, an acidic oligosaccharide, an acidic monosaccharide, an acidic sugar alcohol, and a salt thereof active ingredient.
  • the content of the active ingredient is not particularly limited and can be appropriately selected from the viewpoint of its functionality and physiological activity.
  • the content of the active ingredient is, for example, 10 to 9 parts by weight or more, preferably 10 to 10 parts by weight per 100 parts by weight of food. - 7 a to 2 parts by weight, for example, a beverage 1 0 0 parts by weight per 1 0-9 parts by weight or more, preferably 1 0-7 to 2 parts by weight.
  • the active ingredient may be ingested in an amount of 0.01 to 200 mg / kg per day for an adult, and the desired effect of the present invention, in which growth factor production is induced orally, is obtained.
  • an acidic polysaccharide having a growth factor production-inducing action, a degradation product thereof, an acidic oligosaccharide, an acidic monosaccharide, an acidic sugar alcohol, and a salt thereof are selected. Is provided.
  • the organisms are, for example, farm animals, pet animals, and the like, and the farm animals include livestock, laboratory animals, poultry, fish, crustaceans, and shellfish.
  • the feed include a feed for improving physical condition based on a growth factor production inducing action.
  • the breeding agent include an immersion agent, a feed additive, and a beverage additive.
  • an acidic polysaccharide having a growth factor production-inducing action is included in these inventions.
  • Acidic oligosaccharides, acidic monosaccharides, acidic sugar alcohols, and salts thereof are effective in improving the breeding efficiency of living organisms, such as survival rate, fattening rate, spawning rate, litter rate, weaning rate, etc. Having.
  • An acidic polysaccharide having a growth factor production-inducing action, a degradation product thereof, an acidic oligosaccharide, an acidic monosaccharide, an acidic sugar alcohol, or a salt thereof is usually selected from the group consisting of 1 kg body weight of the target organism and preferably 0.1 mg / day. 0 to 200 mg is administered and added to or mixed with the raw material of the artificial blended feed, or mixed with the powdered raw material of the artificial blended feed, and further added to and mixed with other raw materials.
  • Acid polysaccharide having growth factor production-inducing activity, its degradation products, acid oligosaccharides, acid monosaccharides, acid sugar alcohols, and salts thereof, but the final content in the target organism feed Is not particularly limited and may be used according to the purpose, but a ratio of 0.001 to 15% by weight is appropriate. For example, for the purpose of improving liver function, a ratio of 0.01 to 10% by weight is appropriate.
  • animal raw materials such as fish meal, casein, and squid meal
  • plant raw materials such as soybean kashiwa, flour, starch
  • microbial raw materials such as feed yeast
  • cod liver Oils animal fats and oils
  • animal fats and oils such as squid liver oil
  • vegetable fats and oils such as soybean oil and rapeseed oil
  • vitamins, minerals, amino acids, antioxidants and other artificial compound feeds may be mentioned.
  • the method for producing the feed of the present invention is not particularly limited, and the composition may be the same as that of a general feed.
  • Acid polysaccharide having a growth factor production-inducing action in the produced feed, its decomposed product, acidic oligosaccharide It is sufficient that an effective amount is selected from acidic monosaccharides, acidic sugar alcohols and salts thereof.
  • an acidic polysaccharide having a growth factor production-inducing action, a decomposition product thereof, an acidic oligosaccharide, an acidic monosaccharide, an acidic sugar alcohol, or a salt thereof is selected from pools, aquariums, holding tanks or breeding area water, It can also be administered by directly adding it to seawater or the like and immersing the target organism. This immersion method is particularly effective when the feed intake of the target organism is reduced.
  • the concentration of an acidic polysaccharide having a growth factor production-inducing action in water or seawater, a decomposition product thereof, an acidic oligosaccharide, an acidic monosaccharide, an acidic sugar alcohol, or a salt thereof is not particularly limited. However, the ratio is preferably 0.001 to 1% by weight.
  • beverages containing substances selected from the group consisting of acidic polysaccharides, their degradation products, acidic oligosaccharides, acidic monosaccharides, acidic sugar alcohols, and salts thereof, which have a growth factor production-inducing effect are ingested by the target organism as breeding beverages. You may let it.
  • the concentration of an acidic polysaccharide having a growth factor production-inducing action, a degradation product thereof, an acidic oligosaccharide, an acidic monosaccharide, an acidic sugar alcohol, or a salt thereof in the beverage is not particularly limited, and may be selected depending on the purpose. It is advisable to use it, but a ratio of 0.001 to 1% by weight is suitable.
  • a breeding agent for living organisms such as an immersion agent, comprising an active ingredient selected from an acidic polysaccharide having a growth factor production-inducing action, a decomposition product thereof, an acidic oligosaccharide, an acidic monosaccharide, an acidic sugar alcohol, and a salt thereof.
  • Feed additives and beverage additives are blends known per se And a manufacturing method.
  • the organisms to which the present invention can be applied are not limited, but the cultured animals include horses, cows, pigs, sheep, goats, livestock such as camels, llamas, etc., experimental animals such as mice, rats, guinea pigs, and egrets, chickens and ducks.
  • Turkey, ostrich and other poultry red sea bream, turtle, flounder, flounder, yellowtail, yellowtail, flatfish, tuna, swordfish, au, salmon, trout, tiger eel, eel, dojiyo, catfish and other fish, kuruma shrimp, black tiger And crustaceans such as evening lobsters and crabs; crabs such as abalone, sazae, scallops and oysters; and pet animals such as dogs and cats, and are widely applicable to land and underwater animals.
  • the physical condition of crustaceans, shellfish, and pet animals is improved, and as a result, bacterial or viral infections of the target organism are prevented or treated, and the symptoms are significantly improved in infected organisms. You.
  • the health of the target organism is maintained, and its survival rate, growth rate, spawning rate, lactation rate, weaning rate, growth rate, etc. are remarkably improved.
  • these farmed animals are (1) frequent due to bacterial infection, and due to cultivation in a limited area, once an infectious disease occurs, they are immediately infected and annihilated.
  • (3) Farmed animals in a small breeding area are highly stressed, rub the body surface on breeding facilities and cause abrasions, and individual bacteria and parasites adhere to them.
  • there were problems such as reduced feeding and reduced growth due to stress.
  • the feed of the present invention can improve the condition of cultured animals raised in a small area due to its physical condition improving effect. Significantly reduces stress, prevents rubbing of the body surface on breeding facilities, increases appetite, growth rate, litter rate, Egg rate, weaning rate, disease prevention rate, etc. can be significantly improved.
  • the acidic polysaccharide, degraded product thereof, acidic oligosaccharide, acidic monosaccharide, acidic sugar alcohol, or a salt thereof having a growth factor production-inducing effect of the present invention is useful as an active ingredient of cosmetics.
  • a viewpoint contributing to a desired effect is to include a substance that synergistically increases the growth factor production inducing action, for example, a substance selected from cytodynamics, prostaglandins, and a compound having a cyclopentene ring. Is preferred.
  • preferred embodiments of the active ingredient, the growth factor, or the substance that synergistically increases the growth factor production-inducing action are the same as those of the therapeutic or prophylactic agent.
  • cosmetics for inducing hepatocyte growth factor production, for inducing insulin-like growth factor production, or for inducing nerve growth factor production are preferred.
  • Fucoidan and its decomposed products are particularly suitable as the active ingredient of the cosmetic.
  • F-fucoidan and Z or its decomposed products, or a compound represented by the formula (I) has a growth factor production-inducing effect.
  • a biocosmetic having an HGF production inducing action can be provided.
  • the content of acidic polysaccharide, its degradation product, acidic oligosaccharide, acidic monosaccharide, acidic sugar alcohol, or a salt thereof in the cosmetic for inducing growth factor production is usually preferably 0.0001 to 20% by weight. %, More preferably 0.001 to 5% by weight.
  • the cosmetic for inducing growth factor production for example, for inducing HGF production of the present invention can be produced by a conventional method according to a known combination.
  • the cosmetics for inducing growth factor production of the present invention include, for example, lotions, emulsions, creams, packs, bath preparations, facial cleansers, bath stones or bath detergents.
  • the cosmetic of the present invention is applied in a desired amount, for example, a lotion according to each use form. If it is applied to the entire human face, for example, it is preferable to use about 0.01 to 5 g, more preferably about 0.1 to 2 g per use, The desired effect of the present invention is obtained in which the vesicles are activated, and a beautiful skin effect is obtained.
  • the present invention also provides a growth factor production inducer containing, as an active ingredient, an acidic polysaccharide, a degradation product thereof, an acidic oligosaccharide, an acidic monosaccharide, an acidic sugar alcohol, and a salt thereof. However, the production inducer is also useful for studying the function of growth factors and for screening pharmaceuticals for diseases related to growth factors.
  • the present invention provides a growth factor production regulator containing, as an active ingredient, an acidic polysaccharide, a degradation product thereof, an acidic oligosaccharide, an acidic monosaccharide, an acidic sugar alcohol, and a salt thereof.
  • the growth factor production inducer and the growth factor production regulator of the present invention may be prepared by using the above-mentioned active ingredient and preparing the preparation by a known preparation method.
  • the growth factor production inducer include the therapeutic agent and the like.
  • the growth factor production regulator of the present invention means a preparation that promotes the transcription of a growth factor in the early stage of the induction of the transcription of a growth factor in a living body.
  • the growth factor production regulator of the present invention has a remarkable effect that the growth factor production is enhanced and the growth factor production is not excessive only when the growth factor production is required.
  • the fucoidan used in the present invention and its decomposition products have a particularly strong growth factor production inducing action and growth factor production regulating action, and are extremely useful as active ingredients used in the preparation of the present invention.
  • Heparin which has been known to induce HGF production, does not promote the transcription of HGF mRNA, but fucoidan and its degradation products induce the transcription of HGF mRNA at the early stage where the transcription of HGF mRNA is promoted. Further promote. In vivo, HGF mRNA is not always transcribed, but is transcribed when needed. Fucoidan and fucoidan degradation products, for example, 7- 12 SF d-F described below, further promote HGF transcription only in the early stages of its transcription in vivo, and then overproduce HGF. It is an extremely safe regulator of HGF production in that HGF production is promoted only when it is needed in the body without producing it.
  • the therapeutic or prophylactic agent, food or drink, or the like can be used for the purpose of adjusting the induction of growth factor production as it is.
  • the dose of the growth factor production regulator is not particularly limited as long as it can regulate the growth factor production, but the dose of the active ingredient according to the present invention, for example, a human dose
  • the dose of the component is preferably from 0.01 to 200 mg / kg (body weight).
  • the extract is selected from a mugwort extract, an extract of two-spotted gourd, an aloe extract, a chrysanthemum extract, a chlorella extract, and a spirulina extract having a growth factor production-inducing effect.
  • a therapeutic or prophylactic agent for a disease requiring growth factor production induction, comprising an extract as an active ingredient, may be provided.
  • growth factor production containing an extract selected from a mugwort extract, an alga extract, an aloe extract, a chrysanthemum extract, a chlorella extract, and a spirulina extract having a growth factor production-inducing effect as an active ingredient.
  • Food and drink or feed for induction may be provided.
  • a growth factor producing agent containing an extract selected from a mugwort extract, an algae extract, an aloe extract, a chrysanthemum extract, a chlorella extract, and a spirulina extract, which has a growth factor production inducing action, as an active ingredient.
  • a cosmetic amount for guidance may be provided.
  • the extraction and purification of the extract from such plants and microorganisms can be performed by the following known methods. Raw materials such as plant fruits, seeds, leaves, stems, roots, rhizomes, etc., and microorganisms are collected at an appropriate time and used as such or as they are after being subjected to a drying process such as normal air drying. When the raw material is squeezed liquid or sap of a plant, it can be used as it is as the raw material for extraction.
  • the extraction of the extract containing the active ingredient from the dried plant or microorganism is performed as follows by a known method. After pulverizing or pulverizing the raw material, it can be carried out by a batch or continuous extraction method using a solvent.
  • a solvent water, alcohol such as chloroform, alcohols such as ethanol, methanol and isopropyl alcohol, ketones such as acetone methyl ethyl ketone, and hydrophilic or lipophilic solvents such as methyl acetate and ethyl acetate are used alone. Or as a mixture.
  • the extraction temperature is usually 0 ⁇ 1 5 0 ° C, the line La preferably 5 to 1 2 0 e C
  • the extraction time is about 10 minutes to 20 days, and the amount of the solvent is usually 1 to 30 times, preferably 2 to 20 times the weight of the dry raw material.
  • the extraction operation may be performed by stirring, immersion, or a combination.
  • the extract used in the present invention includes those obtained by removing insoluble residues by filtration or centrifugation from the crude extract obtained in the previous operation. In some cases, an insoluble residue is used as an active ingredient.
  • Purification of the active ingredient from the crude extract may be performed by any known method for purifying an active ingredient derived from a plant, and a two-phase solvent separation method, a column chromatography method, etc. may be used alone or in combination. Is preferred.
  • the obtained extract as an active ingredient, depending on the purpose, drugs, food and drink, feed, cosmetics, etc. Can be manufactured.
  • the production thereof may be performed according to the method according to the first to third inventions of the present invention.
  • the content of the extract in the product for each purpose can be determined from its growth factor production-inducing action, but it is generally preferably 0.001 to 100% by weight in the normal product, more preferably 0.1 to 30% by weight, more preferably 0.1 to 20% by weight
  • the cooled product was subjected to solid-liquid separation to prepare a solid-liquid separation supernatant of about 900 liters.
  • the solid-liquid separation supernatant (360 l) was concentrated to 20 l using FE10-FC-FUS0382 (manufactured by Daicel) (fraction molecular weight: 30,000).
  • the operation of adding 20 liters of tap water and concentrating the solution to 20 liters was performed 5 times, desalting was performed, and 25 liters of an extract derived from Gagome kelp was prepared.
  • One liter of the extract was freeze-dried to obtain 13 g of dried fucoidan derived from Gagome kelp.
  • a dried product of fucoidan derived from sea kelp was prepared from the dried and crushed sea kelp.
  • a dried fucoidan derived from Lesonia nigrescens was prepared from a dry powder of Lessonia nigrescence (trade name: Seaweed Powder: sold by Andes Trading Co., Ltd.).
  • Fractions 43 to 49, fractions 50 to 55, and fractions 56 to 67 were obtained in the order of elution. Next, these fractions were desalted by electrodialysis and then lyophilized. Fractions 43-49: I fraction (34 Omg), fractions 50-55: II fraction (870 mg), fractions: 56-67 III fractions (2.64 g) were each prepared.
  • Fig. 1 shows the elution pattern of fucoidan derived from Gagome kelp DEAE-cell mouth fine A-800 ram.
  • the vertical axis represents the absorbance at 530 nm (solid circles in the figure), the absorbance at 480 nm (white circles in the figure), and the conductivity (mS / cm: white in the figure) in the phenolic sulfuric acid method.
  • Square horizontal axis indicates fraction number
  • Alteromonas sp. SN-1 009 (FERM BP—574 7) is dispensed with 600 ml of an artificial seawater (manufactured by Jamarin Laboratories, Inc.) PH8.2 containing 0.25% glucose, 1.0% peptone, and 0.05% yeast extract. A sterilized (120 ° C, 20 minutes) 2-liter Erlenmeyer flask was inoculated, and cultured at 25 ° C for 26 hours to obtain a seed culture solution.
  • 20 liters of medium consisting of artificial seawater PH8.0 containing 1 in a 30-liter jar fermenter. C, sterilized for 20 minutes. After cooling, 600 ml of the above seed culture was inoculated, and cultured at 24 for 24 hours under the conditions of aeration of 10 liters per minute and a stirring speed of 250 revolutions per minute. After completion of the culture, the culture was centrifuged to obtain cells and a culture supernatant.
  • the obtained culture supernatant was concentrated by an ultrafiltration machine equipped with a hollow fiber with a rejection molecular weight of 10,000, and then subjected to 85% saturated ammonium sulfate folding. The resulting precipitate was collected by centrifugation and collected for 10 minutes. 1 Dialyze sufficiently against OmM Tris-monohydrochloride buffer (pH 8.2) containing 1% artificial seawater to obtain 600 ml of end-type sulfated polysaccharide-degrading enzyme solution that selectively acts on sulfated polysaccharide. Prepared.
  • the suspension in the extract was filtered to prepare a filtrate, and the filtration residue was washed with 3.5 liters of 10 OmM sodium chloride to obtain a further filtrate.
  • the precipitate formed in the non-filtrate is removed by centrifugation, the temperature of the supernatant is lowered to 5 ° C, the pH is adjusted to 2.0 with 0.5N hydrochloric acid, and the resulting precipitate of proteins and the like is centrifuged. And the resulting supernatant was immediately adjusted to pH 8.0 with 1 N sodium hydroxide.
  • This suspension was filtered through a stainless steel mesh having a mesh diameter of 32 // m, and the residue was washed with 10% ethanol containing 5 OmM calcium chloride.
  • the residue was suspended in 10 liters of 10% ethanol containing 5 OmM calcium chloride, stirred for 3 hours, and filtered and washed with a stainless steel wire mesh.
  • the residue was further suspended under the same conditions, stirred for 16 hours, and filtered and washed with a stainless steel wire mesh having a diameter of 32 / zm.
  • the filtrate and washing solution thus obtained were collected and ultrafiltered by an ultrafiltration machine equipped with a hollow fiber having a molecular weight cut-off of 300,000 to separate a filtrate and a non-filtrate.
  • the filtrate is concentrated to about 3 liters using a rotary evaporator and centrifuged. To obtain a supernatant.
  • the resulting supernatant was desalted with an electrodialyzer equipped with a membrane with an exclusion molecular weight of 300, and calcium acetate was added to this solution to 0.1 M, and the resulting precipitate was removed by centrifugation. .
  • the supernatant was applied to DEAE-Cell mouth fine (4 liter resin), which had been equilibrated with 5 OmM calcium acetate, and washed well with 5 OmM calcium acetate and 5 OmM sodium chloride. Eluted with a gradient of 80 OmM sodium chloride. The amount collected at this time was 500 ml per tube. The fraction collected was analyzed by cellulose acetate membrane electrophoresis (Analytical Biochemistry, Vol. 37, pp. 197-202 (1970)), and the sodium chloride concentration was found to be about 0. Sulfated sugar eluted at 4 M (fraction number around 63) is uniform.
  • fraction number 63 was first concentrated to 150 ml, sodium chloride was added to a concentration of 4 M, and Pheny 1-cell mouth fine (resin amount 200) equilibrated in advance with 4 M sodium chloride. ml) and washed thoroughly with 4M sodium chloride. The non-adsorbed sulfated saccharide fraction was collected and desalted with an electrodialyzer equipped with a membrane with an excluded molecular weight of 300 to obtain 505 ml of a desalted solution.
  • the sulfated saccharide formed one peak, and the fractions 63 to 70, the central part of the peak, were collected, and an electrode with a membrane with an excluded molecular weight of 300 was attached. After desalting with a gas filter, the solution was freeze-dried to obtain 112 mg of a dried product of the compound represented by the following formula (VI).
  • the compound is referred to as 7-12 SFd-F.
  • the enzymatically treated F-fucoidan solution is concentrated with a rotary evaporator so that the final concentration of the enzymatically treated F-fucoidan is 2%, and then dialyzed in distilled water to obtain a 2% enzymatically treated F-fucoidan solution.
  • HPLC column temperature: 35 ° C
  • mobile phase 50mNaCl
  • flow rate 0.5ml / min
  • detection: RI ATT 8
  • the solution was exchanged with OmM sodium chloride.
  • An equal volume of 40 OmM calcium acetate was added to this solution, and the mixture was stirred and centrifuged.
  • the resulting supernatant was adjusted to pH 2 with 1 N hydrochloric acid while cooling with ice.
  • the resulting precipitate was removed by centrifugation, and the resulting supernatant was adjusted to pH 8.0 with 1N sodium hydroxide.
  • This solution was concentrated to 1 liter by ultrafiltration, and the solution was exchanged with 10 OmM sodium chloride.
  • the precipitate formed at this time was removed by centrifugation.
  • To remove the hydrophobic substances in the supernatant obtained add 1 M sodium chloride to the supernatant and equilibrate with 1 M sodium chloride. (Manufactured by Kogyo Co., Ltd.). After concentrating this fraction with an ultrafilter, the solution was exchanged with 2 OmM sodium chloride and lyophilized. The lyophilizate weighed 29.3 g.
  • Reference Example 2 120 g of the sulfated polysaccharide prepared in (2) was prepared in Reference Example 2— (1) of 2 OmM calcium chloride, 30 OmM sodium chloride, 10% ethanol, and 10 U. Suspended in 8 liters of 2 OmM imidazole buffer (pH 7.5) containing endo-sulfated polysaccharide-degrading enzyme, stirred at 25 ° C for 3 days, and fitted with a 100,000 exclusion molecular weight holofiber Ultrafiltration was performed using an external filtration device while adding the above buffer solution.
  • 2 OmM imidazole buffer pH 7.5
  • the filtrate was collected, concentrated to 1.5 liters by an evaporator, completely desalted by a desalter, and equilibrated with 5 mM imidabule-HCl buffer (PH 6.5) containing 3 OmM sodium chloride in advance.
  • the solution was applied to a 3 liter column of DEAE-Cell mouth Fine A-800, washed with 6 liters of the same buffer, and then eluted with a concentration gradient of sodium chloride from 3 OmM to 50 OmM.
  • the liquid volume required for elution was 48 liters.
  • the eluate was collected in 180 ml aliquots and the sugar content was —Measured by the sulfuric acid method. The absorbance at 232 nm was also measured.
  • the obtained treatment solution is centrifuged, and the supernatant is removed to 2 liters using an ultrafiltration machine equipped with a 100,000 molecular weight excluded holofiber. After concentration, the resulting precipitate was removed by centrifugation. The resulting supernatant was cooled to 5 ° C, and 0.5 N hydrochloric acid was added to adjust the pH to 2.0, followed by stirring for 30 minutes, and the resulting precipitate was removed by centrifugation. The pH of the supernatant was adjusted to 8.0 with 0.5 N sodium hydroxide, and the solution was replaced by 2 OmM sodium chloride by ultrafiltration. After adjusting the pH of the solution to 8.0, the supernatant obtained by centrifugation was freeze-dried to obtain 90.5 g of fucoidan derived from wakame mekabu. Reference Example 7
  • the obtained treatment solution was centrifuged, and the supernatant was concentrated to 2 liters by an ultrafiltration machine equipped with a hollow fiber having a molecular weight of 100,000, and the resulting precipitate was removed by centrifugation.
  • the supernatant was subjected to ultrafiltration while adding an extract to remove the dye.
  • the pH was adjusted to 2.0 by adding 0.5 N hydrochloric acid, the mixture was stirred for 30 minutes, and the resulting precipitate was removed by centrifugation.
  • the pH of the supernatant was adjusted to 8.0 with 0.5N sodium hydroxide, and the solution was replaced with 2 OmM sodium chloride by ultrafiltration. After the pH of the solution was adjusted to 8.0, the supernatant obtained by centrifugation was lyophilized to obtain 71 g of Fucoidan derived from Hiba-ma.
  • fucoidan derived from ascophyllum nodosum was prepared from dried powder of Ascophyllum nodosum (trade name: Algin Gold: sold by Andes Trading Co., Ltd.).
  • Reference Example 8 fucoidan derived from ascophyllum nodosum was prepared from dried powder of Ascophyllum nodosum (trade name: Algin Gold: sold by Andes Trading Co., Ltd.).
  • Reference Example 11 2 g of fucoidan derived from Gagome kelp prepared by the method described in (1) was dissolved in 100 ml of water, and the pH was adjusted to 3 with citric acid. The mixture was subjected to time treatment to prepare an acid decomposition product of the fucoidan. The hydrolyzate was subjected to molecular weight fractionation by gel filtration using Cellulofine GCL-300 or Cell mouth Fine GCL-25, and the molecular fraction was more than 2500 (A fraction). More than 1000 (B fraction), more than 100 000 to 50,000 (C fraction), more than 500 000 to 200 (D fraction), more than 2000 It was fractionated into more than 500 (E fraction) and less than 500 (F fraction). Further, these fractions and the acid decomposed product were each desalted and freeze-dried to prepare an acid decomposed product and an acid decomposed product.
  • Reference Example 9 2 g of fucoidan derived from Gagome kelp prepared by the method described in (1) was dissolved in 100 ml of water
  • the solution was exchanged with an ultrafilter to obtain a 1 OmM sodium chloride solution. After removing the insoluble matter in the solution by centrifugation, the solution was freeze-dried to obtain 2.3 g of a dried sulfated polysaccharide fraction derived from maxa.
  • Reference Example 10 4.4 g of sulfated polysaccharide derived from ogonori was prepared from 50 g of dried ogonori according to the method described in (1). Similarly, 1.0 Og of sulfated polysaccharide derived from ⁇ telocladia was prepared from dried Verocladilla villasella.
  • the obtained supernatant was concentrated to 1.2 liters with an ultrafilter equipped with a holofiber having a molecular weight cut off of 100,000, and then insolubles were removed by centrifugation. The mixture was allowed to stand at 5 ° C for 24 hours. The generated precipitate was removed by centrifugation, and the obtained supernatant was exchanged with an ultrafilter to obtain a 10 OmM sodium chloride solution. After cooling the solution to 4 ° C or lower, the pH was adjusted to 2.0 with hydrochloric acid, and the resulting precipitate was removed by centrifugation. The pH of the obtained supernatant was adjusted to 8.0 with sodium hydroxide, concentrated to 2 liters, and the solution was exchanged with 2 OmM sodium chloride by an ultrafilter. After insoluble matter in the solution was removed by centrifugation, the solution was freeze-dried to obtain 41 g of a dried product of the fucoidan fraction derived from Lesonia.
  • the sodium chloride eluted fractions near 25 OmM, 530 mM, and 70 OmM were each dialyzed against pure water at 50 Om 1 each, lyophilized, and the lyophilized product was subjected to DEAE 33 fractions. , DEAE 37 fraction, and DE AE 40 fraction, and 57 mg, 24 mg, and 62 mg were obtained, respectively.
  • Agar powder (manufactured by Nacalai Tesque, Inc.) (500 mg) was suspended in 100 ml of distilled water and heated to dissolve the agar. Then, it was cooled to 45 ° C and kept at 45 ° C.
  • the residue was added to the mixture, cooled at 120 ° C, and centrifuged at a low temperature to obtain a precipitate.
  • the precipitate was dissolved in distilled water and freeze-dried to prepare a powdery spirulina-derived sulfated polysaccharide-containing fraction.
  • SSP-II Spirulina sulfated polysaccharide fraction
  • SSP-III Sulfated polysaccharide fraction-III
  • SSP-IV Spirulina sulfated polysaccharide fraction-IV
  • Chlorella polymer fraction added to DEAE-cell mouth Fine A-800 column ( ⁇ 3 ⁇ 14.2 cm) equilibrated with 1 OmM imidazo-l-lu HCl buffer (pH 7.0) containing 10% ethanol and 5 OmM sodium chloride After washing the column with 297 ml of the same buffer, the column was eluted with a gradient of sodium chloride from 0.05M (200 ml) to 2M (200 ml). The eluate was fractionated at 10 ml per tube. Of the eluted fractions, fractions No. 63 to 68 were named Chlorella sulfated polysaccharide fraction I (CPS-I), and fractions Nos.
  • CPS-I Chlorella sulfated polysaccharide fraction I
  • Chlorella sulfated polysaccharide fraction II (CPS-I). II). CSP-I and CSP-II were sufficiently dialyzed against distilled water and lyophilized to give 14 Omg and 20 Omg, respectively.
  • the mixture was cooled at 120 ° C and centrifuged at low temperature to obtain a precipitate and a supernatant of a mugwort supernatant.
  • the precipitate was dissolved in distilled water and freeze-dried to prepare a fraction containing a sulfated polysaccharide derived from a sagebrush in the form of a powder.
  • the sulfated polysaccharide fraction of Artemisia leaf was added to 3 liters of 1% OmM imidazole-hydrochloride buffer containing 10% ethanol and 10% OmM sodium chloride (pH 7. Dialysis with 0).
  • the dialyzed sulfated polysaccharide fraction (327 ml) was equilibrated with the same buffer DE AE—Cell mouth fine A—800 force
  • the column was washed with 273 ml of buffer, and then eluted with a gradient of 0.1 M (200 ml) -2 M (200 ml) sodium chloride.
  • sorghum leaf sulfated polysaccharide fraction-I YSP-I
  • fractions Nos. 155 to 200 were sulphated with sorghum leaf
  • the polysaccharide fraction—II YSP-II was named YSP-I and YSP-1 [, respectively. .
  • sorghum leaf sulfated polysaccharide fractions—I 1-2 YSP-II-2
  • fractions Nos. 71 to 90 were named as sorghum leaf sulfate.
  • the fractionated polysaccharide fraction—II-13 (YSP-II-3) was named, and fractions Nos. 91 to 120 were named Sorghum leaf sulfated polysaccharide fraction—II-14 (YSP-II-4).
  • YSP-II-2, YSP-II-3 and YSP-II-4 were dialyzed sufficiently against distilled water and lyophilized to give 39.5 mg, 61 mg and 57.3 m, respectively. .
  • a commercially available edible two-gauri was crushed with a mixer and the crushed product was freeze-dried to obtain a dried two-gauri.
  • the operation of suspending the dried two gourd 10 in 100 ml of a closed mouth form and filtering the insoluble fraction was repeated 5 times. Thereafter, the operation of suspending in 100 ml of ethanol, filtering and recovering the insoluble fraction was repeated three times. Ethanol was completely removed from the insoluble fraction obtained by this operation, and suspended in 100 ml of distilled water. The suspension was kept warm for 1 hour and then filtered. The filtrate was added with 2.5 volumes of ethanol, cooled at -20 ° C, and centrifuged at low temperature to obtain a precipitate. This The precipitate was dissolved in distilled water and freeze-dried to prepare a powdery fraction containing sulfated polysaccharide.
  • the remaining green leaf surface portion, from which the transparent leaf portion was collected by the above method was pulverized and freeze-dried.
  • the operation of suspending 3.43 g of the lyophilized product in a 10-Om 1 pore-form and filtering to collect an insoluble fraction was repeated three times. Thereafter, the operation of suspending in 100 ml of ethanol, filtering and collecting the insoluble fraction was repeated three times. Ethanol was completely removed from the insoluble fraction obtained by this operation, and suspended in 10 Oml of distilled water. The suspension was kept at 60 ° C. for 1 hour and then filtered.
  • lacto Ichisu 222mg (0. 62mmo 1) was dissolved in pyridine 1 Om l, was added Py r ⁇ S_ ⁇ 3 7 8 5 mg (4. 9mmo 1) at room temperature, a few minutes at room temperature, The mixture was stirred at 60 ° C for 1 hour, and then sulfated in the same manner as in Reference Example 14- (1). 476 mg of lactose sodium salt was prepared.
  • Sucrose 220mg of (0. 62mmo 1) was dissolved in pyridine 1 OML, after addition of Py r ⁇ S 0 3 785mg ( 4. 9mmo 1) at room temperature, a few minutes at room temperature, and stirred for 60 ° C1 hours Thereafter, 481 mg of sulfated sucrose sodium salt was prepared in the same manner as in Reference Example 14- (1).
  • the group supplemented with fucoidan derived from Gagome kelp had significantly higher HGF production than the control with distilled water.
  • Gagome kelp Yuki fucoidan has been shown to induce heparin or heparin, since the production of HGF is significantly increased compared to the case where heparin or low-molecular-weight heparin is added. It was shown to have a higher activity of promoting HGF production than heparin, which has an average molecular weight of about 5,000.
  • Example 11 The I, II, and III fractions prepared by the method described in Reference Example 11 (2) under the same conditions as in Example 1 (1), and prepared by the method described in Reference Example 2 7-12 S Fd_F, 6-2 S prepared by the method described in Reference Example 4, Wakame mekabu-derived fucoidan prepared by the method described in Reference Example 6, and Hibama Yufu-derived fucoidan prepared by the method described in Reference Example 7 Each HGF production inducing effect was measured. Tables 2 to 4 show the results. Sample concentration HGF production
  • the amount of HGF produced by the control was 9.9 ng / ml.
  • the fractions of fucoidan derived from Gagome kelp, ie, U-fucoidan, F-fucoidan A strong HGF production-inducing effect was observed in fucoidan derived from Hibama evening, fucoidan derived from wakame mekabu, 7-12 SFd-F derived from F-fucoidan, and 6-2 S derived from U-fucoidan.
  • the fucoidan derived from makombu kelp, the fucoidan derived from Lesonia nigrescens described in Reference Example 11 (1), the fucoidan derived from ascophyllum nodsum described in Reference Example 7, the acid hydrolyzate described in Reference Example 8, and the A to F fractions were also obtained, respectively. A strong HGF production inducing effect was observed.
  • fractions of fractions 12 to 13 were subjected to structure determination, and the analytical value was consistent with the analytical value of the compound represented by the following formula (VIII) described in WO 91/26896 pamphlet. HGF production-inducing activity was observed in a polymer of glucuronic acid and mannose.
  • Example 11- (1) A commercially available solution of I-Ichiragi-ginan (manufactured by Nacalai Tesque) was prepared, and its GF production inducing action was measured according to the method of Example 11- (1). As shown in Table 7, I-carrageenan showed an HGF production inducing effect.
  • Example 11- (1) In the same manner as in Example 11- (1), the fucoidan derived from the resin prepared in Reference Example 10- (3) (Sample I), the DEAE33 fraction (Sample II), and the DEAE37 fraction (Sample 3), the HGF production-inducing activity of the DEAE40 fraction (sample 4) was examined. Each sample was added to a final concentration of 1, 10 and 100 gZm1. As shown in Table 14, samples 1 to ⁇ ⁇ all induced HGF production. Table 14 Amount of HGF produced (%)
  • Example 1 Sulfated fucogalactan described in Reference Example 3— (2) under the same conditions as (1), agaropectin described in Reference Example 12, and chondroitin sulfate B (manufactured by Seikagaku Corporation) The activity of chondroitin sulfate D (Seikagaku Corporation) for inducing HGF production was examined. Each sample was added so that the final concentration was 1, 10 and 100 / zgZm1. As shown in Tables 15 to 17, sulfated fucogalactan, transgalactin, and chondroitin sulfate induced HGF production. Table 15 Sample concentration HGF production
  • Spirulina-derived sulfated polysaccharide Artemisia-derived sulfated The polysaccharide was added to a final concentration of 1, 10, 100 g / m1.
  • Chlorella-derived sulfated polysaccharides, bivalve-derived sulfated polysaccharides, aloe mesophyll-derived sulfated polysaccharides, and aloe leaf surface-derived sulfated polysaccharides have final concentrations of 1, 10, 100, 100, and 100 / m1, respectively. It was added so that it might become.
  • Example 3 In the same manner as in Example 11 (1), the Spirulina fractions SSP-I (Sample I), SSP-II (Sample II), and SSP prepared in Reference Example 13— (2) were prepared. HGF production inducing activities of - ⁇ (sample 3) and SSP-IV (sample 4) were examined. Each sample was added to a final concentration of 1, 10, 100 / ZgZm1. As shown in Table 21, all of samples 1 to ⁇ induced HGF production. Table 21.Amount of HGF concentration (%)
  • Example 14 In the same manner as in Example 11- (1), the CSP-1 fraction of chlorella extract prepared in Reference Example 13- (4) (sample I) and the CSP-II fraction (sample The HGF production-inducing activity of 2) was examined. Sample I was added so that the final concentration was 100, 100 / g / m1, and Sample I was added so that the final concentration was 100 gZm1. As shown in Table 22, Samples (1) and (2) induced HGF production. Table 22 Production of sample HGF Sample 1 1 0 1 1 1 1
  • Example 11 The amount of HGF produced by the control was 11.4 ng Zml.
  • the YAP fraction (sample 1) and the YSP-I fraction (sample 2) of the Artemisia extract prepared in Reference Example 13- (6) were prepared.
  • the activity was examined. Each sample was added to a final concentration of 1, 10 and 100 zgZm1. As shown in Tables 23 and 24, all of samples 1 to ⁇ induced HGF production.
  • Example 11 The sulfated malto-sodium salt, sulfated maltotriose sodium salt, sulfated lactose sodium salt, sulfated sucrose sodium salt prepared in Reference Example 14 by the same method as (1).
  • Salt sulfated trehalose sodium salt, sulfated glucose sodium salt, sulfated lactulose sodium salt, sulfated melibiose sodium salt, sulfated galactose sodium salt, sulfated mannose sodium salt, sulfated xylose sodium salt, sulfated 2- Deoxy-glucose sodium salt, sulfated glucitol sodium salt, sulfated cellobiose sodium salt, sulfated isomaltose sodium salt, sulfated llanose sodium salt, sulfated palatinose sodium salt, sulfated sodium salt, sulfated ma Investigate the HGF production-inducing activity of tohexaose sodium salt, sulfated maltohepnoose sodium salt, sulfated dodecyl-maltohexaose sodium salt, sulfated starch sodium salt, sulfated cur
  • Each sample was added to a final concentration of 1, 10 0, 100 g / m1, or 100, 100 g / m1, or 100 gZm1.
  • the same amount of distilled water as the sample was added.
  • each non-sulfated sugar HGF production-inducing activity was measured at the same concentration as the sulfated saccharide.
  • the HGF production of the control was 11.1 ng Zm 1 for sulfated cellobiose sodium salt, 11.3 ng gZm 1 for sulfated isomaltose sodium salt, and 8 for sulphated sodium llananose and sulphated sodium palatinose. It was 6 ng / m1.) Table 3 2 Sample HGF production
  • Example 11 The synergistic effect on the HGF production-inducing effect of gagome kelp Yulai fucoidan described in Reference Example 11 (1), prostaglandin, and IL-11 was examined in the same manner as (1).
  • Fucoidan samples were added to a final concentration of 1, 10, 100 1gZm1. PGE, was added so as to be 0.1, 1 uM, and 1 ng / ml. As a control, the same amount of distilled water as the sample was added.
  • Example 2- (1) In the same manner as in Example 2- (1), the synergistic effect of 7-12 SF d-F of Reference Example 2, prostaglandin, and IL-11 on the induction of HGF production was examined. 7—12 SF d—F and PGE! And IL-1 were added simultaneously, and the synergistic effect of HGF production inducing activity was examined. Each 7-1 2 SF d-F was added to a final concentration of 1, 10 and 100 gZm1. PGE, and IL-11 were simultaneously added to each of the 7-1 ⁇ 2 SF d ⁇ F added cells. PGE! Was added at 0.1, 1 zM, and 1--1 was added at 0.1, 1 ng / ml.
  • the concentration of fucoidan derived from Gagome kelp described in Reference Example 11 (1) is 1, 10 and 100 gZm1, and that of heparin (Wako Pure Chemical Industries) is 1 and 10 gZm1.
  • heparin Wako Pure Chemical Industries
  • As a control the same amount of distilled water as the sample was added. All experiments were performed in triplicate, and the average value was used. The results are shown in Table 39. In Table 39, the HGF production of the control was expressed as 100%.
  • HL-60 cells promyelocytic leukemia cells: ATCC CCL-240
  • RPMI 1640 medium containing 10% fetal bovine serum at lxl 0 5 cells / m 1
  • the cells were suspended in RPMI 1640 medium containing fetal calf serum, and 500 1 of each suspension was placed in a 48-well cell culture plate. Thereafter, 10 nM of 12-0-tetradecanoylphorbol 13-acetate (TPA: manufactured by Gibco BRL) was added, and a test sample was added at the same time. After culturing for 20 hours after the addition, the medium was recovered, and the amount of HGF in the medium was measured using an HGF ELISA kit.
  • TPA 12-0-tetradecanoylphorbol 13-acetate
  • the test samples were added such that the final concentration of the fucoidan derived from Gagome kelp described in Reference Example 1- (1) was 1, 10, 100 ⁇ g Zm1. Heparin was added so as to be 1,10 g / m1. As a control, the same amount of distilled water as the sample was added. All experiments were performed in triplicate, and the average value was used. The results are shown in Table 40. In Table 40, the control HGF production was expressed as 100%. All of the cell groups to which the fucoidan sample was added had significantly increased HGF production compared to the control with distilled water. In addition, HGF production was significantly increased compared to the addition of heparin. This indicates that the fucoidan has a higher activity of promoting HGF production than heparin, which has been confirmed to induce HGF. Table 40 Sample HGF production
  • MRC-5 cell suspension 500 1 suspended in DME medium containing 10% fetal calf serum at 1 X 10 5 cells / m1 was placed in a 48-well cell culture plate, and 37 ° C, 53 ⁇ 4C0 was replaced with 1% DME culture area containing fetal bovine serum after 24 hours of culture in the 2 presence. Thereafter, the sample was added, and the cells were further cultured for 24 hours. The medium was collected, and the amount of HGF in the medium was measured using an HGF ELISA kit.
  • the medium was recovered, and the amount of HGF in the medium was measured using the Quantikine Human Hepatocyte Growth Factor (HG F) ELISA Kit (Funakoshi, Code.RS-064 1-00). .
  • HG F Quantikine Human Hepatocyte Growth Factor
  • the cells were washed with PBS, and the cells were washed with 500 lysis buffer (50 mM HE PES H7.4.4 lOmM EDTA 0.13 ⁇ 4 TritonXlOO, 1 mM PMSF, 1 ugm 1 pepstatin A 1 ng / m 11 e up eptin).
  • HGF Human Hepatocyte Growth Factor
  • HGF Quantikine Human Hepatocyte Growth Factor
  • Reference Example 1 The fucoidan derived from Gagome kelp described in (1) has a final concentration of 1, 10 and lOO gZml. It was added so that it might become. As a control, the same amount of distilled water as the sample was added. All experiments were performed in duplicate, and the average was used. The results are shown in Table 50. In Table 50, the production amount of HGF in the control was represented as 100%.
  • the medium was collected, and the amount of HGF in the medium was measured using a Quantikine Human Hepatocyte Growth Factor (HGF) ELISA Kit (Funakoshi, Code. RS-0641-00).
  • HGF Human Hepatocyte Growth Factor
  • 500 1 of cell lysis buffer 5 OmM HEPES pH 7.4, 1 OmM EDT A, 0.1% Triton X 100, lmMPMSF, 1 ng / m 1 ep statin A 1 g / m 11 e epeptin).
  • centrifugation was performed to prepare a supernatant (cell extract), and the amount of HGF in the cells was measured in the same manner as the HGF concentration in the medium.
  • HGF production was expressed as 100% negative control.
  • the inhibition rate was calculated based on the amount of HGF produced when only 7-12 SFd-F at each concentration was added, and the inhibition rate (%) of the cycloheximide-added fraction was calculated.
  • 7-12SFd-F was added to a final concentration of 1, 10, 100 gZm1.
  • As a negative control the same amount of distilled water as the sample was added. All experiments were performed in triplicate, and the average value was used.
  • Tables 51 and 52 the addition of cycloheximide reduced the total amount of HGF in both the cells and the medium in the medium containing the 7-12SFd-F group.
  • the medium was collected, and the amount of HGF in the medium was measured using Quantikine Human Hepatocyte Growth Factor (HGF) ELISA Kit (Funakoshi, Code. RS-0641-00).
  • HGF Quantikine Human Hepatocyte Growth Factor
  • the amount of HGF produced was expressed as 100% of a negative control.
  • the inhibition rate was calculated based on the amount of HGF produced when only each concentration of fucoidan was added, and the inhibition rate (%) of the fraction containing actinonomycin D was calculated.
  • Reference Example 11 The fucoidan derived from Gagome kelp described in (1) was added to a final concentration of 1, 10, 100 ng / m1. As a negative control, the same amount of distilled water as the sample was added. All experiments were performed in duplicate, and the average value was used.
  • actinomycin D RNA synthesis inhibitor: manufactured by Sigma
  • HGF Human Hepatocyte Growth Factor
  • the amount of HGF produced is Negative control was expressed as 100%.
  • the inhibition rate was calculated based on the amount of HGF produced when only 7-12 SF d-F of each concentration was added, and the inhibition rate () of the actinomycin D-added fraction was calculated. 7-12 SFd-F was added so that the final concentration was 1,10.1000 g / m1.
  • As a negative control the same amount of distilled water as the sample was added. All experiments were performed in triplicate, and the average was used.
  • addition of actinomycin D caused either of the total amount of HGF in the medium, cells and medium in the group containing 7- 12 SF d-F to be added. was also inhibited in a dose-dependent manner.
  • a partial hepatectomy was surgically performed as follows. That is, the rat was laparotomized under ether anesthesia, about 30% of the liver was ligated to the root blood vessel with surgical suture, and then resected. The laparotomy was sutured with a suture needle.
  • the fucoidan derived from Gagome kelp described in Reference Example 11 (1) was intraperitoneally administered at intervals of 12 hours immediately after the first excision.
  • the control group received saline intraperitoneally.
  • mice Twenty-four or seventy-two hours after hepatectomy, rats were bled from the abdominal aorta under anesthesia, and plasma with 0.1% ethylenediaminetetrasodium acetate was centrifuged. The amount of HGF in plasma was measured using an HGF ELISA kit (manufactured by Tokushu Immune Laboratory Co., Ltd.).
  • Table 56 The results are shown in Table 56.
  • the numbers in the table represent the mean soil standard error, and the numbers in parentheses indicate the number of rats per group. * In the table is 5% or less compared to the control group ⁇ Table 5 6 Matari JHLS ⁇ JTILT ⁇ i ⁇ g Z ml
  • the fucoidan-treated group tended to increase plasma HGF levels 24 hours after hepatectomy, and a significant increase was observed 72 hours after hepatectomy.
  • fucoidan induces HGF production, promotes rapid regeneration after surgery in liver disease requiring surgery, and is useful for restoring the function of the remaining liver.
  • Partial hepatectomy was performed by surgical treatment using a 7-week-old male Wistar rat.
  • the abdomen was opened under ether anesthesia, and about 30% of the liver was excised after ligating the blood vessel at the root with surgical suture.
  • the laparotomy was sutured with a suture needle.
  • Enzyme-treated F-fucoidan prepared in Reference Example 2-(4) was administered orally in two doses in the morning and evening, with the first dose immediately after excision. A saline was administered to the control group.
  • the rats were bled from the abdominal aorta under anesthesia, and plasma with 0.1% ethylenediaminetetraacetate sodium was separated by centrifugation.
  • the amount of HGF in the plasma was measured using an HGF ELISA kit (Special Immune Laboratory).
  • Table 57 Plasma HGF concentration (ng / ml) group 24 hours physiological saline 0.184 g 0.33 (6) Enzyme-treated F-fucoidan 0.505 ⁇ 0.97 * (5) (1 g / kg / ⁇ ay)
  • the group treated with enzyme-treated F-fucoidan showed a significant increase 24 hours after hepatectomy compared to the control group.
  • Hs 68 cells ATCC CRL-1 635
  • a human neonatal foreskin epithelial cell line that highly expresses h-IGF-1, a type of insulin-like growth factor were cultured in 10% fetal serum (FBS: BioWitacker) in DMEM medium containing Ltd.) (Gibco-BRL), 5% C0 2 presence cells at 37 ° C for the cultured to saturation in the incubator, in Toribushin one EDTA solution (Bio Huy Tucker Co.)
  • the cells were suspended in the above medium to a volume of 3 ⁇ 10 3 cells, and 200 (11 was dispensed into each well of a 96-well microphone ⁇ -titer plate.
  • the fucoidan derived from Gagome kelp, the I fraction, the II fraction, and the II I fraction exhibited h-IGF-1 production-inducing activity.
  • the h-IGF-1 ⁇ production induction activity showed the highest value at the first hour after addition of the sample at 12 to 100 gZm1. No toxicity or growth inhibitory activity on Hs 68 cells was observed in each sample. The same h-IGF-1 production-inducing activity was also observed for the other acidic polysaccharides, their degradation products, acidic oligosaccharides, acidic monosaccharides and salts thereof described in Reference Examples.
  • Rat fibroblast L-M cells (ATCC CCL-1.2) were grown in ⁇ 199 medium (ICN) containing 0.5% of paptoptone (Dicca) for 1.5%. x 1 0 5 cells / m suspended and sown aseptically cultured by 0. 1 ml in 96 well plates in 1.
  • gagome kelp-derived fucoidan promoted the nerve growth factor production of L-M cells in a concentration-dependent manner. Furthermore, the fraction showed the same activity.
  • the other acidic polysaccharides, their degradation products, acidic oligosaccharides, acidic monosaccharides and salts thereof described in Reference Examples also exhibited the same NGF production inducing action. Table 62 Sample NGF production increase
  • Example 11 Fucoidan derived from Gagome kelp prepared in Example 1 (1) was suspended and dissolved in ethanol at a concentration of 3%, and applied to the back of a mouse at a concentration of 200 ⁇ 1 per mouse. Ethanol was similarly applied to the control group. The administration was once a day and was performed for 8 consecutive days. On the ninth day after the start of administration, the skin was separated, and the HGF activity in the skin was measured with an ELISA kit (Special Immune Laboratory).
  • Example 26 described below Comparing the lotion of the present invention described in (1) with a control lotion containing no fucoidan, a 25-year-old adult female aged 20 to 35 years An inspection was performed. As a result, the number of people judged to be more effective is shown in Table 65. Table 6 5 Skin Moistness Skin Smoothness Skin Rebound Lotion 21 19 16
  • Example 3 In the same manner as in Example 1, the highly sulfated form of F-fucoidan prepared in Example 11-1 (1) (sample 1) was prepared in Example 11-1 (2). Of the highly sulfated form of 12SFd-F (sample 2), the F-fucoidan (sample 3) prepared in Reference Example 1-1 (2), and the 7-1SFd-F (sample 4) prepared in Reference Example 2. HGF production induction activity was examined. Each sample was added to a final concentration of 1, 10, 100 g / ml. As a control, the same amount of distilled water as the sample was added.
  • Table 66 The results are shown in Table 66.
  • the HGF production of the control was expressed as 100%. All experiments were performed in duplicate, and the average value was used.
  • samples 1 to ⁇ induced HGF production.
  • the activity of inducing HGF production in the highly sulfated form was higher than that in the unsulfated form. From this result, it was clarified that the HGF production inducing activity of existing natural sulfated sugars was enhanced by further sulfation treatment.
  • the sulfuric acid content was determined by heating a 0.2 mL (1 to 1 OmgZml) solution of IN HC in each sample at 105 ° C for 4 hours, of which 0.1N was added to 0.1 ml.
  • NHDF cells human normal dermal fibroblasts: Bio Wittaker
  • a DMEM medium containing 10% fetal bovine serum were added to DMEM containing 10% fetal bovine serum to make lxl O 5 cells Zml.
  • the cells were suspended in a medium, placed in a 48-well cell culture plate at 500; / 1, and cultured for 24 hours. Then, the medium was replaced with a DMEM medium containing 1% fetal calf serum, and ⁇ Tetradecanoylphorbol 13-acetate (TPA: give (Commercially available from BRL) and a sample.
  • TPA Tetradecanoylphorbol 13-acetate
  • HGF in the medium was recovered using the Quantikine Human Hepatocyte Growth Factor (HG F) ELISA Kit (Funakoshi, Code.RS-064 1-00). The amount was measured. The amount of HGF produced was expressed as 100% of a negative control.
  • the fucoidan described in Reference Example 11 (1) was added to each sample so that the final concentration was 1, 10 and 100 g / m 1. Heparin was added so as to be 1, 10 gZm1. As a negative control, the same amount of distilled water as the sample was added.
  • the culture of the induction experiment was performed by adding 10 nM TPA simultaneously with the sample addition. All experiments were performed in triplicate, and the average was used.
  • DMEM medium containing human neonatal foreskin cells: Dainippon Pharmaceutical ATCC CRL -1 635) 1 to 1 x 1 0 5 ce 1 1 s Zm 1 and Do so that The cells were suspended in DMEM medium containing 0% fetal calf serum, placed in a 500/1 all-48-well cell culture plate, and cultured for 24 hours. Thereafter, the medium was replaced with a DMEM medium containing 1% fetal bovine serum, and 10 nM TPA and a sample were added. In addition, the classification in which only the sample was added without adding TPA was also performed.
  • This medium was collected, and the amount of HGF in the medium was measured using Quan tikine Human Hepatocyte Growth Factor (HGF) ELISA Kit. Further, after washing the cells with PBS, 500 cells of lysis buffer (50 mM HEPES pH 7.4, 10 mM EDTA, 0.1% Triton x l O O. l mM PMS F. 1 ug / m 1 pepstatin A, 1 g / m 11 eupeptin). After sonication for further complete dissolution, centrifugation was performed to prepare a supernatant (cell extract), and the amount of HGF in the cells was measured in the same manner as the HGF concentration in the medium.
  • lysis buffer 50 mM HEPES pH 7.4, 10 mM EDTA, 0.1% Triton x l O O. l mM PMS F. 1 ug / m 1 pepstatin A, 1 g / m 11 eupeptin.
  • the 7-12 SFd-F prepared in Reference Example 2 (3) was added so that the final concentration would be 0.1, 1, 10, and 100 g / m1.
  • As a negative control the same amount of distilled water as the sample was added. All experiments were performed in triplicate, and the average was used. The results are shown in Tables 69-71. No significant HGF production was observed in the absence of TPA. However, when TPA was added, the amount of HGF in the cells decreased in a concentration-dependent manner of 7_12 SF d-F, and the amount of HGF in the medium and the amount of total HGF decreased to 7—12 SF d—F Increased in a concentration-dependent manner, and the total HGF amount was significantly increased as compared with the control without addition.
  • ND is 0 c Table 7 shown below detection limit Hs68Z7 - 1 2 SF dF cells HGF amount (pg / Well) one 1 2 SF dF TP A None 1 0 nMTPA g / m 1)
  • MRC were cultured in DMEM medium containing 1 0% fetal bovine serum - 5 cells (. CC 1 7 1: Dainippon Pharmaceutical Co., Ltd., cod e 02- 02 1) a 2. 5 x 1 0 5 ce 1 1
  • the cells were suspended in a DMEM medium containing 10% fetal bovine serum at a concentration of s / ml, placed in a 6-well cell culture plate, and cultured at 37% for 24 hours in the presence of 5% carbon dioxide. After that, the medium was replaced with DMEM medium containing 1% fetal calf serum, and the cells were further cultured for 22 hours.
  • RNA PCR Kit ver.2.1 (Takara Shuzo, R019A).
  • N 6 (Takara Shuzo, 3801) was performed at 30 at 10 minutes, at 42 ° C. for 30 minutes, and at 99 eC for 5 minutes.
  • the primer described in SEQ ID NO: 1 in the Sequence Listing was used as a sense primer, and the primer described in SEQ ID NO: 2 in the Sequence Listing was used as an antisense primer.
  • the product amplified by this primer is 415 bp.
  • a primer described in SEQ ID NO: 3 in the Sequence Listing was used as a sense primer, and a primer described in SEQ ID NO: 4 in the Sequence Listing was used as an antisense primer.
  • the product amplified by this primer is 275 bp. PCR was performed using PJ9600 (manufactured by PerkinElmer).
  • NHDF cells human normal dermal fibroblasts: manufactured by Bio Whittaker
  • the activity of inducing HGF production by SF d-F was examined. The results are shown in Tables 72-74.
  • the amount of HGF in the cells depends on the concentration of 7-12 SF d-F
  • the amount of HGF and total HGF in the medium increased in a 7-12SFd_F concentration-dependent manner, and the amount of total HGF increased significantly compared to the control without 7-12SFd-F.
  • the amount of HGF in the cells decreased in a concentration-dependent manner of 7-12 SFd-F, and the amounts of HGF in the medium and total HGF decreased to 7-12 SFd-F.
  • NHDF cells human normal skin fibroblasts cultured in DMEM medium containing 10% fetal bovine serum were cultured in 10% fetal bovine blood at a density of 2.5 x 10 5 ce 11 s nom.
  • the cells were suspended in a DMEM medium containing clarified cells, placed in 2 ml portions in a 6-well cell culture plate, and cultured at 37 eC for 24 hours in the presence of 5% carbon dioxide. Then, the medium was replaced with DMEM medium containing 1 fetal calf serum, and prepared with 10 nM Tetradecanoylphorbol 13-acetate (TPA: manufactured by Gibco BRL) and Reference Example 2— (3).
  • d—F It was added to a final concentration of 100 ⁇ g / ml.
  • RNeasy Mini Kit QIAGEN
  • RT PCR was performed in the same manner as in Example 14 except that the PCR cycle was set to 28 cycles. After the reaction, 2% agarose gel electrophoresis and ethidium microbial staining were performed, and the gel was observed under UV irradiation.
  • HL 60 cells human promyelocytic leukemia cells
  • RPMI 1640 medium containing 10% fetal bovine serum were cultured in 1% fetal bovine serum to a concentration of 5 x 10 5 ce 11 s / m 1.
  • RPM 11 640 medium containing, and 500 1 were placed in a 48-well cell culture plate. Then, 1 01 1 ⁇ Ding? And eight samples were added. After the addition, the cells were cultured for 24 hours. In addition, the classification in which only the sample was added without adding TPA was also performed. Collect this medium and use it for Quantikine Human Hepatocyte Growth.
  • the amount of HGF in the medium was measured using the Factor (HGF) ELISA Kit. After washing the cells with PBS, 500 cells of lysis buffer (50 mM HEP ES pH 7.4, lOmM EDTA, 0.1% Tritonx 100.1 mM
  • the amount of HGF in the cells did not change with the concentration of 7-12 SF dF.
  • the amount of HGF in the medium also increased at 100; g / m1, but there was no significant change with the concentration of 7-12 SFd-F.
  • TPA was added, the amount of HGF in cells did not change with the concentration of 7-12 SFd-F, but was generally low.
  • the amount of HGF and total HGF in the medium increased significantly depending on the concentration of 7-12 SF d-F, and the total HGF amount was higher than that of the control without the addition of 7-12 SF d-F. Was significantly increased.
  • HL 60 cells human promyelocytic leukemia cells
  • RPMI 1640 medium containing 10% fetal calf serum are RPMI containing 1% fetal calf serum so as to become Sxl OS cells sZml.
  • the cells were suspended in a medium and each 2 ml was placed in a 6-well cell culture plate. Thereafter, 1 OnM TPA and 7-12 SFd-F prepared in Reference Example 2- (3) were added to a final concentration of 10 OgZml.
  • the same classification was performed without adding TPA and adding only 7-12 SFd-F. Further cultivation was performed, and total RNA was extracted at 4, 6, 8, and 10 hours. For extraction of total RNA, an RNeasy Mini Kit (QIAGEN) was used.
  • RT-PCR was performed in the same manner as in Example 14 except that the PCR cycle was changed to 32 cycles. After the reaction, 2% agarose gel electrophoresis and ethidium umbide staining were performed, and the gel was observed under UV irradiation.
  • Kikuna was freeze-dried to obtain a Kikuna freeze-dried product.
  • the operation of suspending 10 g of the lyophilized Kikuna powder in a 10-Om 1 black-mouthed form and filtering the insoluble fraction was repeated three times. Thereafter, the operation of suspending in 10 Om1 of ethanol, filtering, and collecting the insoluble fraction was repeated three times. Ethanol was completely removed from the insoluble fraction obtained by this operation, and suspended in 10 Om1 of distilled water. The suspension was kept warm at 60 for 1 hour and then filtered. The filtrate was added with 2.5 volumes of ethanol, cooled at 120 and centrifuged at low temperature to obtain a precipitate. The precipitate was dissolved in distilled water and freeze-dried to obtain a powdery sugar-containing fraction, Kikuna extract.
  • Example 191-1 (1) HGF production-inducing activity of the Kikuna extract prepared in Example 191-1 (1) was examined in the same manner as in Example 1-1 (1). Samples were added to a final concentration of 1,10,100 g / m1. As a negative control, the same amount of distilled water as the sample was added. The amount of HGF produced was expressed as a negative control 100%. The results are shown in Table 78. All experiments were performed in duplicate, and the average was used. As shown in Table 78, the Kikuna extract induced the production of HGF. Table 78 Kikuna extract (zgZml) HGF production (%)
  • Example 79 Production amount of HGF in the fraction of the mugwort supernatant
  • the acetone-washed residue was washed four times with 90% ethanol and four times with 80% ethanol in the same manner as the acetone wash to obtain an ethanol-washed residue.
  • the above operation was performed once again from the beginning, and a total of 200 g of ethanol washing residue of the mugwort leaves was obtained.
  • YPS-II Artemisia Leaf Polymer Fraction I
  • YPS-III Artemisia Leaf Polymer Fraction-III
  • fractions 1 to 32 are named Mulberry Leaf Macromolecule Fraction II Il (YPS-III-1), and fractions No. 3 from 3 to 53 are Mulberry Leaf Macromolecule Fraction 1 in-2 (YPS-III-2), and fractions Nos. 54 to 66 were named as Artemisia leaf macromolecule fraction III-3 (YPS-III-3).
  • YPS-II Il, YPS-III-2, and YPS-III-3 were dialyzed sufficiently against water and freeze-dried to obtain 20.llmg, 32.59mg, and 113.75mg of each lyophilizate. .
  • Example 11 In the same manner as in Example 1 (1), fractions of the Artemisia extract prepared in Examples 21- (2) and 21- (3), YPS (sample I), YPS-I ( The HGF production-inducing activity of Sample I), YPS-II (Sample 3), and YPS-III (Sample I) was measured. The results are shown in Table 80. As a result, the fractions of these extracts showed HGF production-inducing activity. Table 80 Sample HGF production
  • Example 21-(4) In the same manner as in Example 1-(1), peach prepared in Example 21-(4) The HGF production-inducing activity of the fractions of the forage extract, YPS-III-1 (sample I), YPS-III-12 (sample II), and YPS-III-3 (sample 3) was measured. The results are shown in Table 81. As a result, the fractions of these mugwort extracts showed HGF production inducing activity. Table 8 1 Addition amount HGF production amount (%)
  • fucoidan derived from Gagome kelp described in Reference Example 1- (1) 30 g was dissolved in 12 L of distilled water with stirring at room temperature for 30 minutes. This suspension was centrifuged at 10,000 xg for 40 minutes, and the supernatant was collected. This was aseptically filtered through a membrane filter (0.22 / m) (manufactured by Millipore) to obtain 21.4 g of a freeze-dried product. This was designated as Takar a konbu fucoidan B f (hereinafter referred to as fucoidan ⁇ )).
  • Example 1 In the same manner as in (1), the HGF production-inducing activity of fucoidan Bf (sample I) was measured. The results are shown in Table 82. However, the experiment was performed in duplicate, and the average value was used. As a result, Fucoidan B ⁇ showed HGF production inducing activity Table 82 Addition amount HGF production amount (%)
  • Example 11 In the same manner as in (1), the HGF production inducing activity of French Fucoidan (sample I) prepared in Example 23- (1) was measured. The results are shown in Table 83. As a result, F-rich showed HGF production inducing activity. Table 8 3 Addition amount Production of HGF (%)
  • fetal bovine serum NHDF cells were cultured in DMEM medium containing (human normal skin peel fibroblast cells) 1 X 1 0 5 ce 1 1 sZm 1 and so as to 10% fetal bovine serum'm free DMEM The cells were suspended in a medium, and 500 1 of each was placed in a 48-well cell culture plate and cultured for 24 hours. Thereafter, the medium was replaced with a DMEM medium containing 1% fetal bovine serum, and 10 g / ml or 100 zg Zml of minoxidil (manufactured by Wako Pure Chemical Industries) and a sample were added.
  • DMEM medium containing (human normal skin peel fibroblast cells) 1 X 1 0 5 ce 1 1 sZm 1 and so as to 10% fetal bovine serum'm free DMEM
  • the cells were suspended in a medium, and 500 1 of each was placed in a 48-well cell culture plate and cultured for 24 hours. Thereafter, the medium was replaced with
  • ND indicates below the detection limit. Further, c Table 8 6 NHDF / 7 of NT indicates not evaluated - 1 2 SF d - F medium HGF concentration (pg / ml)
  • the survival rate 72 hours after the start of the experiment was 1 out of 8 cases in the control group and 7 out of 8 cases in the fucoidan administration group. Furthermore, an improvement effect was also observed in serum biochemical values in surviving cases. Table 8 shows the results.
  • Figure 7 shows. Table 87 Group GPT (UZ1) GOT (U / 1) Total pyrilvin
  • a medicament effective for a disease requiring growth factor production comprising a substance exhibiting a growth factor production inducing activity as an active ingredient.
  • the medicament has HGF production inducing activity, h-IGF production inducing activity, NGF / neurotrophic factor production inducing activity in the living body, and the like. It is useful as a therapeutic or preventive agent for diseases requiring factor production.
  • acidic polysaccharides and sulfated polysaccharides having a growth factor production-inducing action can be manufactured using a product selected from the group consisting of dextran sulfate, sodium dextran sulfate, chondroitin sulfate-rich shark cartilage extract, their degradation products, acidic oligosaccharides, acidic monosaccharides and their salts, Ingestion as daily food or drink can improve the symptoms of diseases that require the production of growth factors. Further, a feed having the same physiological function is provided.
  • the acidic polysaccharides and sulfated-fucose-containing polysaccharides used in the present invention which have an HGF production-inducing effect, such as those selected from fucoidan, degradation products thereof, acidic oligosaccharides, acidic monosaccharides and salts thereof are effective.
  • Functional foods and drinks and functional feeds as ingredients are functional foods and drinks or feeds that are useful for maintaining the homeostasis of living organisms by their growth factor production inducing action.
  • the present invention also provides a NoGF cosmetic for inducing HGF production, which is extremely useful for skin health management and the like. Further, a cancer metastasis inhibitor is provided.
  • Also provided is a growth factor production inducer which is useful for studying the function of growth factors and for screening pharmaceuticals for diseases related to growth factors.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Food Science & Technology (AREA)
  • Epidemiology (AREA)
  • Nutrition Science (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Birds (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

明 細 書 治療剤 技術分野
本発明は生理活性を有する酸性糖化合物の医薬、 食品、 飲料、 飼料、 又は化粧 料としての用途に関する。 背景技術
海藻由来の酸性多糖としては、 綠藻類由来のラムナン硫酸、 紅藻類由来の硫酸 化ガラクタン、 褐藻類由来の硫酸化フコース含有多糖等の硫酸化多糖が知られて いる。 例えば、 フコィダンは褐藻類、 棘皮動物等に含まれている硫酸化フコース 含有多糖であり、 硫酸化フコースを構成糖として含むものである。 またサメ軟骨 等も硫酸化多糖を含有している。
硫酸化多糖、 例えばフコィダンの生理作用としてはがん増殖抑制活性、 がん転 移抑制活性、 抗凝血活性、 抗ウィルス活性等が知られており、 医薬品としての用 途開発が期待されている。
肝細胞増殖因子產生誘導作用を有する物質としてはへパリン、 へパラン硫酸、 平均分子量 4 4 0 0〜5 6 0 0の低分子化へパリンが知られているが (特開平 6 - 3 1 2 9 4 1号公報)、 その他の硫酸化多糖、 例えばフコィダン、 合成硫酸化 多糖等の成長因子産生誘導作用についての報告はない。 発明の開示
本発明は種々の酸性糖化合物、 例えば酸性多糖、 例えばフコィダン等の新たな 生理作用を見出すことにあり、 その目的は種々の酸性糖化合物、 例えば酸性多糖 、 例えばフコィダン等の成長因子産生誘導作用、 特に肝細胞増殖因子産生誘導作 用、 ィンスリン様増殖因子産生誘導作用又は神経成長因子産生誘導作用を利用し た医薬、 食品、 飲料、 飼料又は化粧料を提供することにある。
本発明を概説すれば、 本発明の第 1の発明は成長因子産生誘導作用を有する酸 性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール、 及びこれら の塩から選択されるもの (但し、 へパリン、 へパラン硫酸を除く) を有効成分と して含有することを特徵とする成長因子産生誘導を要する疾患の治療剤又は予防 剤に関する。
本発明の第 2の発明は、 成長因子産生誘導作用を有する酸性多糖、 その分解物 、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール、 及びこれらの塩から選択される ものを含有してなる成長因子産生誘導用の食品、 飲料 (以下、 飲食品という場合 がある) 又は飼料に関する。
本発明の第 3の発明は、 成長因子産生誘導作用を有する酸性多糖、 その分解物 、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール、 及びこれらの塩から選択される ものを含有してなる成長因子産生誘導用の化粧料に関する。
本発明の第 4の発明は、 酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸 性糖アルコール、 及びこれらの塩から選択されるものを含有してなる成長因子産 生調整剤に関する。
本発明において、 成長因子産生誘導作用を有する酸性多糖としては、 好ましく は硫酸化多糖が例示され、 硫酸化多糖としては藻類由来の硫酸化多糖、 動物由来 の硫酸化多糖、 例えば棘皮動物由来の硫酸化多糖、 例えばナマコ由来の硫酸化多 糖、 魚類由来の硫酸化多糖、 例えばサメ軟骨由来の硫酸化多糖、 微生物由来の硫 酸化多糖、 植物由来の硫酸化多糖、 例えばョモギ由来の硫酸化多糖、 合成硫酸化 多糖が好適に使用できる。
また、 成長因子産生誘導作用を有する藻類由来の硫酸化多糖としてはラムナン 硫酸、 硫酸化ガラクタン、 又は硫酸化フコース含有多糖が好適に使用することが できる。 合成硫酸化多糖としてはデキストラン硫酸ナトリウム、 硫酸化スターチ 、 硫酸化カードラン、 硫酸化べクチン等が例示され、 更に硫酸化多糖の硫酸化に より得られる高硫酸化硫酸化多糖が好適に使用できる。 また硫酸化フコース含有 多糖としてはフコィダンが好適に使用することができる。 酸性ォリゴ糖としては 好ましくは硫酸化オリゴ糖であり、 例えば硫酸化マルト一ス、 硫酸化ラク トース 、 硫酸化スクロース、 硫酸化トレハロース、 硫酸化ラクッロース、 硫酸化メリビ オース、 硫酸化セロビオース、 硫酸化イソマルトース、 硫酸化ッラノース、 硫酸 化パラチノース、 硫酸化マルト トリオース、 硫酸化マルトへキサオース、 硫酸化 マルトへプタオース、 硫酸化ドデシルーマルトへキサオース、 下記式 ( I ) で表 される化合物又は下記式 ( I I ) で表される化合物が使用できる。
Figure imgf000005_0001
(式中、 Rは O H又は O S 03 H である。 )
Figure imgf000006_0001
(式中、 Rは〇H又は〇S 03 H である。 ) また酸性単糖としては、 好ましくは硫酸化単糖であり、 例えば硫酸化グルコ一 ス、 硫酸化ガラクトース、 硫酸化キシロース、 硫酸化 2—デォキシ—グルコース 、 硫酸化夕ロース及び硫酸化マンノースが使用できる。 また酸性糖アルコールと しては、 糖アルコールの硫酸化物、 例えば硫酸化グルシトール等も使用できる。 これらの硫酸化オリゴ糖、 硫酸化単糖、 硫酸化糖アルコールはそれらの一般的な 合成方法にて調製しても良い。 これらの糖化合物中の硫酸基の位置、 硫酸基の数 は、 これらの硫酸化オリゴ糖、 硫酸化単糖、 硫酸化糖アルコールが成長因子産生 誘導作用を示す限り、 特に限定はない。
本発明においては成長因子産生誘導作用を有する、 酸性多糖の分解物も使用す ることができる。 当該分解物には成長因子産生誘導作用を有する、 分子量 4 0 0 0以下のへパリン分解物、 へパラン硫酸分解物も包含される。
前記酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコールに例 示される物質は、 各々単独で若しくは 2種以上混合して用いることができ、 また それらの塩も好適に使用できる。
本発明において、 成長因子としては肝細胞増殖因子、 インスリン様増殖因子、 及び神経成長因子が例示される。
本発明の第 1の発明の治療剤又は予防剤、 第 2の発明の食品、 飲料又は飼料、 及び第 3の発明の化粧料には、 酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖 、 酸性糖アルコール、 又はこれらの塩の成長因子産生誘導作用を相乗的に増加さ せる物質をさらに含有させることができ、 当該物質としてはサイト力イン類、 プ ロスタグランジン類、 シクロペンテン環を有する化合物、 ミノキシジル、 及び塩 化カルプロニゥムから選択される物質が例示される。
また、 本発明の第 2の発明の食品、 飲料又は飼料は、 好適には肝細胞増殖因子 産生誘導用、 ィンスリン様増殖因子産生誘導用又は神経成長因子産生誘導用の食 品、 飲料又は飼料である。
また、 本発明の第 3の発明の化粧料は、 好適には肝細胞増殖因子産生誘導用、 ィンスリン様増殖因子産生誘導用又は神経成長因子産生誘導用の化粧料である。 本発明の第 3の発明の化粧料としては、 ローション類、 乳液類、 クリーム類、 パック類、 浴用剤、 洗顔剤、 浴用石ゲン又は浴用洗剤が例示される。
尚、 本発明にかかる 「酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性 糖アルコール、 及びこれらの塩から選択されるもの」 を本明細書において単に Γ 有効成分」 という場合がある。 図面の簡単な説明
第 1図は、 ガゴメ昆布由来フコィダンの D E A E —セル口ファイン A— 8 0 0 カラム溶出パターンを示す図である。
第 2図は、 硫酸ナトリゥム溶液を標準試料とした硫酸含量の検量線を示す図で あ ο 発明を実施するための最良の形態
本発明において成長因子産生誘導作用を有する酸性多糖とは、 成長因子産生誘 導作用を有すれば良く、 特に限定はないが、 アルギン酸、 ぺクチン、 ぺクチン酸 、 ヒアルロン酸等の酸性多糖、 コンドロイチン硫酸、 ケラタン硫酸、 デルマタン 硫酸等の硫酸化多糖、 動物由来の硫酸化多糖、 例えば棘皮動物由来の硫酸化多糖 、 魚類由来の硫酸化多糖、 例えばサメ軟骨由来の硫酸化多糖、 植物由来の酸性多 糖、 例えばョモギ由来の硫酸化多糖、 二ガウリ由来の硫酸化多糖、 アロエ由来の 硫酸化多糖、 菊葉由来の硫酸化多糖、 微生物由来の硫酸化多糖、 例えばクロレラ 由来の硫酸化多糖、 スピルリナ由来の硫酸化多糖、 藻類由来の硫酸化多糖等が好 適に使用することができる。
藻類由来の硫酸化多糖としては藻類由来のラムナン硫酸、 紅藻類由来の硫酸化 ガラクタン、 例えばマクサ、 ォゴノリ、 ジャイアントゲルプ、 プテロクラディア カピラセァ、 カラギーナン、 寒天類、 ァガロース、 了ガロぺクチン、 ボルフィ ラン、 褐藻類由来の硫酸化フコース含有多糖、 例えばフコィダン、 硫酸化フコガ ラクタン、 硫酸化フコグルクロノマンナン、 グルクロノキシロフカン、 サルガッ サン、 グルクロノマンノガラクタン、 キシロフコグルクロナン、 ァスコフイラン 、 グルクロノガラクトフカン、 硫酸化グルクロノフカン等が使用することができ る。 特に、 フコィダン、 硫酸化フコガラクタン、 λ—力ラゲナン、 コンドロイチ ン硫酸 Β、 コンドロィチン硫酸 D、 アルギン酸、 ァガ口べクチン等が本発明に好 適に使用することができる。 また藍藻類由来の酸性多糖、 例えばスピルリナ由来 の硫酸化多糖、 緑藻類由来の酸性多糖、 例えばクロレラ由来の硫酸化多糖を使用 することができる。 特にスピルリナ由来の硫酸化多糖はその肝細胞増殖因子産生 誘導作用により、 肝機能の改善に有用であり、 例えば C型肝炎の症状改善に著効 を有する。 またリン酸化多糖類、 例えば核酸も本願発明の酸性多糖に包含される 本発明に使用する硫酸化フコース含有多糖としては、 好ましくは前出の藻類由 来のフコィダンが例示されるが、 硫酸化フコースを構成成分とする多糖で成長因 子産生誘導作用を有するものであれば特に限定はなく、 棘皮動物、 例えばナマコ 、 ゥニ、 ヒトデ等由来のフコィダンを使用してもよい。
これらは単独で若しくは 2種以上混合して用いることができる。 また、 これら 例示される酸性多糖の分解物や塩も成長因子産生誘導作用を示す限り、 特に限定 なく使用することができる。
これらの酸性多糖の調製はそれぞれ公知の方法で調製すれば良く、 精製物又は 当該酸性多糖含有物等を本発明に使用することができる。 酸性多糖含有物として は硫酸化多糖画分が好適に使用でき、 当該画分としては藻類由来硫酸化多糖画分 、 サメ軟骨由来の硫酸化多糖画分が好適に使用できる。 また硫酸化多糖含有物の 原料として藻類、 ナマコ、 サメ軟骨等が使用できる。 例えばガゴメ昆布、 マ昆布 、 トロロ昆布、 ヒバマ夕、 モズク、 ォキナヮモズク、 ワカメ、 クロメ、 ァラメ、 カジメ、 レツソニァ ニグレセンス、 ァスコフィラム ノ ドッサム等の昆布目、 ながもつも目、 ひばまた目等の海藻は特に本発明の使用に好適なフコィダンを多 く含んでおり、 原料として好適である。
本発明に使用される合成硫酸化多糖としては、 成長因子産生誘導作用を有する ものであれば良く特に限定はないが、 これまでに医薬品として使用されてきた硫 酸化多糖の使用が好適である。 当該合成硫酸化多糖としてはデキストラン硫酸ナ トリゥムが例示される。 当該化合物は L eu c on o s t o c me s en t e r o i de s van T i e g h emによるショ糖の発酵によって生産された デキストランの部分分解物を硫酸化して得た硫酸化エステルのナトリゥム塩であ 。
また本発明においては硫酸化スターチ、 硫酸化カードラン、 硫酸化べクチン等 の合成硫酸化多糖が使用でき、 更に硫酸化多糖の硫酸化により得られる高硫酸化 硫酸化多糖が好適に使用できる。
本発明に使用する硫酸化多糖の硫酸基の位置は、 成長因子産生誘導作用を発現 すれば特に限定はないが、 構成糖の 2位が硫酸化された硫酸化多糖、 フコィダン 、 λ—力ラゲナン、 コンドロイチン硫酸 D、 それらの分解物が本発明に好適に使 用することができる。 また、 硫酸化多糖の硫酸含量 (若しくは硫酸基数) は、 成 長因子産生誘導作用を発現すれば特に限定はない。 なお、 酸性多糖の分解物はォ リゴ糖、 単糖も包含し、 本発明において 2位が硫酸基を有するオリゴ糖、 単糖、 例えばフコース一 2—硫酸、 グルコース一 2—硫酸を使用することができる。 こ れらの硫酸化単糖、 硫酸化オリゴ糖、 硫酸化多糖はそれらの一般的な合成法によ り調製しても良く、 調製物、 精製物を本発明に使用することもできる。 なお本発 明においてオリゴ糖とは単糖が 2個から 1 0個の範囲でつながった糖化合物、 多 糖とは単糖が 1 1個以上つながった糖化合物と定義する。
例えばガゴメ昆布からフコィダンを調製し、 該フコィダンをグルクロン酸含有 フコィダン (U—フコィダンと称す) とグルクロン酸非含有フコィダン (F—フ コィダンと称す) に分離することができ、 本発明の有効成分としてそれぞれのフ コィダンを使用することが出来る。 またガゴメ昆布から硫酸化フコガラクタンを 調製し、 使用することができる。
更に寒天からァガ口べクチンを調製し、 使用することができる。
U—フコィダン及び F—フコィダンはガゴメ昆布からフコィダンを調製後、 陰 イオン交換樹脂、 界面活性剤等を用いて分離される。 ガゴメ昆布由来の U—フコ ィダン及び F—フコィダンの存在比は約 1 : 2であり、 U—フコィダンはフコー ス、 マンノース、 ガラクトース、 グルクロン酸等を含み硫酸含量は約 2 0 %、 F —フコイダンはフコースとガラクトースを含み、 硫酸含量は約 5 0 %、 分子量は 両物質共に約 2 0万を中心に分布している (第 1 8回糖質シンポジウム要旨集、 第 1 5 9頁、 1 9 9 6年) 。
例えばガゴメ昆布から調製したフコィダン溶液を D E A E—セル口ファイン A - 8 0 0カラムにアプライ後、 N a C 1含有緩衝液にて濃度勾配法により溶出さ せることにより、 U—フコィダンと F—フコィダンに分離することができる。 第 1図にその 1例を示す。 すなわち第 1図は U—フコィダンと F—フコィダンの分 離を示す図であり、 図中前ピークが U—フコィダン、 後ピークが F—フコィダン である。
また例えばマクサ由来硫酸化多糖、 ォゴノリ由来硫酸化多糖、 プテロクラディ ァ由来硫酸化多糖、 他の藻類由来の硫酸化多糖、 ヒバマ夕由来フコィダン、 モズ ク由来フコィダン、 ォキナヮモズク由来フコィダン、 ワカメ由来フコィダン、 レ ッソニァま来フコィダン、 ァスコフィラム由来フコィダン、 他の藻類由来のフコ イダンもそれぞれ公知の方法で調製し、 本発明に使用することができる。
フコィダンを含有するナマコとしては、 例えば特開平 4一 9 1 0 2 7号公報に 記載のナマコがあり、 当該公報記載の方法にてナマコよりフコィダンを調製する ことができる。
また本発明の成長因子産生誘導作用を有する、 酸性多糖の分解物、 例えば硫酸 化多糖、 フコィダンの分解物は、 酵素学的方法、 化学的方法、 物理的方法等の公 知の方法にて調製し、 目的の成長因子産生誘導作用を有する分解物を選択し、 使 用することができる。
尚、 分解物とは、 分解対象とする酸性多糖にもよるが、 酸性多糖を分解して得 た、 概ね分子量が好ましくは 1 0万〜 2 0 0、 より好ましくは 3万〜 1 0 0 0の 範囲のものをいう。
本発明で使用する酸性多糖の分解物の好適な調製方法としては酸分解法があり 、 当該酸性多糖を酸分解することにより、 成長因子産生誘導作用を有する分解物 を調製することができる。
本発明で使用する酸性多糖の酸分解条件は、 成長因子産生誘導作用を有する分 解物 (以下、 本発明の分解物と称す) が生成する条件であれば、 特に限定はない o
例えば酸性多糖を酸水溶液等に溶解またはけん濁し、 反応させることにより、 本発明の分解物が生成する。 また、 反応時に加熱することにより、 本発明の分解 物の生成に必要な時間が短縮される。
酸性多糖を溶解又はけん濁する酸の種類は、 特に限定するものではないが、 塩 酸、 硫酸、 硝酸等の無機塩、 クェン酸、 ギ酸、 酢酸、 乳酸、 ァスコルビン酸等の 有機酸、 また陽イオン交換樹脂、 陽イオン交換繊維、 陽イオン交換膜等の固体酸 が使用可能である。
酸の濃度も特に限定はないが、 好ましくは 0. 0 0 0 1〜5規定、 より好まし くは 0. 0 1〜1規定程度の濃度で使用可能である。 また、 反応温度も特に限定 は無いが好ましくは 0〜2 0 0で、 より好ましくは 2 0〜1 3 0°Cに設定すれば 良い。
また、 反応時間も特に限定するものではないが、 好ましくは数秒〜数日に設定 すれば良い。 酸の種類と濃度、 反応温度及び反応時間は本発明に使用する分解物 の生成量、 分解物の重合度により適宜選択すれば良い。 例えば、 フコィダンの分 解物の製造に際しては、 クェン酸、 乳酸、 リンゴ酸等の有機酸を使用し、 酸の濃 度は数 1 011 ]\〜数^[、 加熱温度は 5 0〜1 1 0°C、 好適には 7 0〜 9 5 °C、 加 熱時間は数分〜 2 4時間の範囲から適宜選択することにより、 本発明の分解物を 調製することができる。 フコィダンの酸分解物としてはガゴメ昆布由来フコイダ ンの酸分解物が例示され、 当該分解物は成長因子産生誘導作用、 特に肝細胞増殖 因子産生誘導作用の強 、新生理機能を有する食物繊維として使用することができ 。
本発明の分解物は成長因子産生誘導作用を指標として分画することができ、 例 えば酸分解物をゲルろ過法、 分子量分画膜による分画法等により分子量分画する ことができる。
ゲルろ過法の例としては、 セル口ファイン GCL— 3 0 0を使用し、 例えば分 子量 2 5 0 0 0超、 分子量 2 5 0 0 0〜 1 0 0 0 0超、 分子量 1 0 0 0 0〜 5 0 0 0超、 分子量 5 0 0 0以下等の任意の分子量画分を調製でき、 セル口ファイン GCL- 2 5を用い、 例えば分子量 5 0 0 0以下の画分を分子量 5 0 0 0〜3 0 0 0超、 分子量 3 0 0 0〜 2 0 0 0超、 分子量 2 0 0 0〜 1 0 0 0超、 分子量 1 0 0 0〜5 0 0超、 分子量 5 0 0以下等の任意の分子量画分に調製することがで きる。
また、 限外ろ過膜を用いて工業的に分子量分画を行うことができ、 例えばダイ セル社製 FE 1 0 -FUSO 382を使用することにより分子量 30000以下 の画分を、 同 FE— FUS— T653を使用することにより分子量 6000以下 の画分を調製することができる。 更にナノフィルター膜を使用することにより分 子量 500以下の画分を得ることもでき、 これらのゲルろ過法、 分子量分画法を 組み合せることにより、 任意の分子量画分を調製することができる。
本発明で使用できる成長因子産生誘導作用を有する、 酸性多糖の分解物、 例え ばフコィダンの分解物としては、 式 (I)で表される化合物、 式 (I I)で表さ れる化合物が例示され、 これらの化合物は国際公開第 97 / 26896号バンフ レツト、 国際公開第 99 / 41288号パンフレツト記載の方法で調製すること ができる。 なお、 式 (I) で表される化合物の繰返し構造を有する硫酸化多糖、 及びォリゴ糖も本発明の成長因子産生誘導作用を有する硫酸化多糖として使用す ることができる。
式 ( I)で表される化合物は前出 F—フコィダンを、 アルテロモナス sp. SN- 1009 (FERM B P— 5747 )が産生するエンド型硫酸化多糖分 解酵素 (F—フコィダン特異的分解酵素) で処理し、 その分解物より精製するこ とにより得ることができる。 当該化合物中の硫酸基の含量、 部位についてはその 分解物中より、 任意のものを精製することができる。 また当該分解物中には式 ( I)で表される化合物の多量体も含有されており、 目的に応じて分離、 精製する ことができる。
式 (I I) で表される化合物は前出 U—フコィダンを、 フラボパクテリゥム sp. SA- 0082 (FERM BP— 5402) が産生するェンド硫酸化 多糖分解酵素 (U—フコィダン特異的分解酵素) で、 処理し、 その分解物より精 製することにより得ることができる。 当該化合物中の硫酸基の含量、 部位につい てはその分解物中より、 任意のものを精製することができる。 また当該分解物中 には式 ( I I ) で表される化合物を基本骨格とする、 その多量体も含有されてお り、 目的に応じて分離、 精製することができる。
なお式 ( I ) で表される化合物の例としては後述の式 (V I ) で表される化合 物がある。 また式 ( I I ) で表される化合物の例としては後述の式 (V I I ) で 表される化合物がある。
またガゴメ昆布由来フコィダンを有機酸存在下で、 加熱処理することによりグ ルクロン酸とマンノースの重合体を得ることができ、 この重合体も本発明の成長 因子産生誘導作用を有する酸性多糖として使用することができる。 また加熱処理 条件、 加熱時間を調整することにより任意の重合度の重合体を調製することがで きる。
本発明における成長因子産生誘導作用を有する酸性多糖としては、 合成硫酸化 多糖が包含され、 セルロース、 デンプン、 マンナン、 キシラン、 アルギン酸、 ぺ クチン、 ぺクチン酸、 フラクタン、 ァラビナン、 キチン、 プルラン、 キシログル カン、 デキストラン、 スターチ等の硫酸化物を使用することができる。 さらに例 えば、 リボフラナン硫酸、 キシロフラナン硫酸、 レンチナン硫酸、 カードラン硫 酸、 マンノピラナン硫酸等の合成硫酸化多糖やパルミ トイル基を有するリボフラ ナン硫酸等の合成硫酸化アルキル多糖を使用することができる。 更に硫酸化多糖 やその分解物を硫酸化することにより、 高硫酸化硫酸化多糖又は高硫酸化分解物 を調製することができる。 これらの硫酸化多糖、 高硫酸化硫酸化多糖、 高硫酸化 分解物はそれぞれ公知の方法で調製すれば良く、 その分解物も公知の方法で調製 し、 本発明に使用することができる。 また市販のデキストラン硫酸、 硫酸化セル ロースを使用でき、 それら合成硫酸化多糖等の塩等を使用しても良い。
酸性オリゴ糖としては、 好ましくは硫酸化オリゴ糖を挙げることができ、 また 、 酸性単糖としては、 好ましくは硫酸化単糖を挙げることができ、 それぞれ具体 的には、 前記と同様のものが挙げられる。 かかる硫酸化オリゴ糖又は硫酸化単糖 は、 それぞれ対応するオリゴ糖、 単糖を原料として、 それぞれ公知の方法にて硫 酸化して調製することができる。 また、 これらの塩も好適に使用できる。 さらに また硫酸化多糖、 硫酸化オリゴ糖、 硫酸化単糖の脂肪酸誘導体等も本発明の硫酸 化多糖、 硫酸化オリゴ糖、 硫酸化単糖に包含される。 これらは各々単独で若しく は 2種以上混合して使用できる。
本発明における産生誘導を所望する成長因子とは細胞の成長を促進する活性を 有していれば特に限定はないが、 肝細胞増殖因子 (HGF)、 神経成長因子 (N GF)、 神経栄養因子、 上皮成長因子、 ミルク由来成長因子、 線維芽細胞成長因 子、 脳由来線維芽紬胞成長因子、 酸性線維芽細胞成長因子、 血小板由来成長因子 、 血小板塩基性タンパク、 結合組織活性化ペプチド、 インスリン様増殖因子 (I GF)、 コロニー形成刺激因子、 エリスロポエチン、 スロンボポェチン、 T細胞 成長因子、 インタ一ロイキン類 (例えばインターロイキン 2、 3、 4、 5、 7、 9、 1 1、 1 5) 、 B細胞成長因子、 軟骨由来因子、 軟骨由来成長因子、 骨由来 成長因子、 骨格成長因子、 内皮細胞成長因子、 内皮細胞由来成長因子、 眼由来成 長因子、 精巣由来成長因子、 セルトリ細胞由来成長因子、 乳腺刺激因子、 脊髄由 来成長因子、 マクロファージ由来成長因子、 リサイクル間葉成長因子、 形質転換 増殖因子一ひ、 形質転換増殖因子一 、 へパリン結合性 EG F様増殖因子、 アン フィレグリン、 SDGF、 ベータ一セルリン、 ェピレグリン、 ニューレグリン 1 , 2, 3、 血管内皮増殖因子、 ニューロトロフィ ン、 BDNF、 NT— 3、 NT —4、 NT- 5. NT- 6. NT- 7. グリア細胞株由来神経栄養因子、 幹細胞 因子、 ミツ ドカイン、 プレイオト口フィン、 Ephr i n、 Ang i opo i e t i n、 ァクチビン、 腫瘍壊死因子、 インタ一フエロン類等が例示される。
これらの中では、 肝疾患の予防,治療、 神経性疾患の予防,治療、 糖尿病の予. 防 -治療という観点から、 HGF、 NGF、 I GFからなる群より選択される少 なくとも 1種を本発明にかかる有効成分を用いて産生誘導するのが好ましい。
HGFは肝細胞増殖作用、 タンパク合成促進作用、 胆汁うっ滞改善作用、 さら には薬剤による腎障害の予防作用などを示す。 また HGFの mRNAは脳、 腎臓 、 肺等でも合成されており、 肝実質細胞、 腎細尿管細胞、 表皮細胞等にも増殖活 性がある、 中胚葉性細胞成長因子である。 従って、 肝細胞増殖因子の産生を誘導 することにより、 肝炎、 重症肝炎、 劇症肝炎、 肝硬変及び肝内胆汁うっ滞、 慢性 腎炎、 肺炎、 創傷の治療又は予防を行うことができる。
I G Fは種々の細胞に多彩な生理作用を有する。 I G Fの産生を誘導すること によって、 I I 一型糖尿病 (インスリン非依存性) や成長障害疾患 (小人症) の 治療又は予防を行うことができる。
N G Fは神経細胞の生存や機能を維持したり、 N G Fの濃度勾配に従つて神経 細胞を伸長させたりする内因性の成長因子であり、 N G Fの産生を誘導すること により、 アルツハイマー病等の老人痴呆症や末梢神経障害、 脳血管障害、 脳腫瘍 、 脳尖、 頭部外傷変性疾患、 麻酔薬物中毒などによる神経機能の修復再生を要す る疾患の治療又は予防を行うことができる。 また本発明の治療剤又は予防剤は神 経栄養因子の産生誘導作用を示し、 さらに本発明の治療剤又は予防剤は N G F · 神経栄養因子の産生誘導作用により、 筋萎縮性側索硬化症、 薬剤障害性末梢神経 障害、 糖尿病性末梢神経障害、 アルツハイマー病、 パーキンソン病、 感覚神経障 害、 色素性網膜症、 黄斑変性症等の治療、 予防に有用である。
本発明で使用する酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖ァ ルコール、 又はこれらの塩は成長因子産生誘導作用を有し、 これらの化合物を有 効成分として成長因子産生を要する疾患の治療剤又は予防剤を製造することがで きる。
本発明の成長因子産生誘導を要する疾患の治療剤又は予防剤は、 本発明で使用 する酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール、 及び これらの塩から選択されるものを有効成分とし、 これを公知の医薬用担体と組合 せ製剤化すれば良い。 当該製剤の製造は一般的には、 本発明で使用する酸性多糖 、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール、 及びこれらの塩か ら選択されるものを薬学的に許容できる液状又は固体状の担体と配合し、 かつ必 要に応じて溶剤、 分散剤、 乳化剤、 緩衝剤、 安定剤、 賦形剤、 結合剤、 崩壊剤、 滑沢剤等を加えて、 錠剤、 顆粒剤、 散剤、 粉末剤、 カプセル剤等の固形剤、 通常 液剤、 懸濁剤、 乳剤等とすることができる。 またこれを使用前に適当な担体の添 加によって液状となし得る乾燥品とすることができる。
医薬用担体は、 上記剤型に応じて選択することができ、 経口剤の場合は、 例え ばデンプン、 乳糖、 白糖、 マンニッ ト、 カルボキシメチルセルロース、 コーンス ターチ、 無機塩等が利用される。 また経口剤の調製に当っては、 更に結合剤、 崩 壊剤、 界面活性剤、 潤沢剤、 流動性促進剤、 矯味剤、 着色剤、 香料等を配合する こともできる。
一方、 非経口剤の場合は、 常法に従い、 本発明の有効成分である、 本発明で使 用する酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール及び これらの塩から選択されるものを希釈剤としての注射用蒸留水、 生理食塩水、 ブ ドウ糖水溶液、 注射用植物油、 ゴマ油、 ラッカセィ油、 ダイズ油、 トウモロコシ 油、 プロピレングリコール、 ポリエチレングリコール等に溶解ないし懸濁させ、 必要に応じ、 殺菌剤、 安定剤、 等張化剤、 無痛化剤等を加えることにより調製さ れる。
本発明の治療剤又は予防剤は、 剤形に応じた適当な投与経路で投与される。 投 与方法も特に限定はなく、 内用、 外用及び注射によることができる。 注射剤は、 例えば静脈内、 筋肉内、 皮下、 皮内等に投与し得、 外用剤には座剤等も包含され 。
本発明の治療剤又は予防剤としての投与量は、 その剤形、 投与方法、 使用目的 及びこれに適用される患者の年齢、 体重、 症状等によって適宜設定され、 一定で. はないが一般には製剤中に含有される本発明で使用される酸性多糖、 その分解物 、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール、 及びこれらの塩から選択される ものの量が成人 1 日当り好ましくは 0 . 0 1〜2 0 0 O m g Z k gとなる量であ る。 もちろん投与量は、 前記のように種々の条件によって変動するので、 上記投 与量より少なレ、量で十分な場合もあるし、 あるいは範囲を超えて必要な場合もあ る。 経口剤の場合、 本発明の治療剤又は予防剤は所望の投与量の範囲内において 、 そのまま経口投与できるほか、 任意の飲食品に添加して日常的に摂取させるこ ともできる。 また本発明で使用される酸性多糖、 その分解物、 酸性オリゴ糖、 酸 性単糖、 酸性糖アルコール、 及びこれらの塩から選択されるものを成長因子産生 誘導用の飲食品の原料として用いても良い。
部分肝切除を受けた肝臓は、 速やかに再生し、 もとのサイズになる。 この肝再 生因子の本体は、 長年不明であつたが、 劇症肝炎患者の血漿中に HGFが見出さ れ、 その患者血漿から、 単離、 精製された (J. Clin. Invest., 88 414-419, 1988)。 さらに、 ヒト HGFの cDNAもクローニングされ、 HGFの 1次構造 も明らかにされた (Biochem. Biophys. Res. Commun. , 163 967-973, 1989)。 また、 細胞の運動性を亢進させる s c a t t e r f a c t o r (SF) 及び、 腫瘍細胞障害因子である t umo r cy t o t ox i c f a c t o r (TC F) と HGFが同一物質であることも明らかになった (Pro Natl. Acad. Sci. USA. 88 7001-7005, 1991 : Biochem. Biophys. Res. Commun. , 180 1151-1 158, 1991 ) o
HGFは肝細胞だけでなく胆管上皮細胞、 腎尿細管上皮細胞、 胃粘膜細胞など 多くの上皮細胞の増殖を促進させる。 また、 上皮細胞の運動性の亢進や血管新生 、 上皮細胞の管腔形成で見られるような形態形成を誘導し、 HGFは極めて多彩 な生理活性を示す多機能活性物質である。 つまり、 様々な臓器において、 その臓 器の障害を修復する際の上皮細胞の増殖の促進、 運動性の亢進や血管新生などの 形態形成の誘導等を行う。
HGFは肝細胞増殖作用、 タンパク合成促進作用、 胆汁うっ滞改善作用、 さら には薬剤による腎障害の予防作用などを示す。 これらのことからも、 重症肝炎、 肝硬変及び肝内胆汁うっ滞の治療薬として期待されている。 しかしながら、 HG Fそのものを治療薬として実用化するには至っていない。 さらに、 遺伝子治療で HGFの遺伝子を導入する方法も試みられているが、 不必要な時期、 場所で作用 することによる副作用により、 これも実用化には遠い。 このように、 HGFを外 から投与するのではなく、 任意に誘導できるのであれば、 肝炎、 肝硬変、 肝內胆 汁うっ滞等の HGF発現増強を必要とする疾患の治療及び予防に有効であると考 えられ、 これまでにも、 I L一 1、 プロスタグランジン E, 、 E2 、 へパリン等 に誘導作用が確認されている。 I L— 1、 プロスタグランジン E, 、 E2 は、 H G F遺伝子の転写を誘導することにより、 H G Fの産生を誘導する。
一方で、 へパリンには HGF産生誘導作用が知られているが、 HGF遺伝子の 転写は誘導せず、 m R N Aの翻訳以降のステップを促進して H G Fの産生を誘導 する。 つまり、 HGF遺伝子の転写が誘導されていない状態では、 HGF産生誘 導効果はない。 反対に、 HGF遺伝子の転写が誘導されている状態においては顕 著な産生誘導が見られる。
また、 本発明にかかる有効成分は、 必ずしも HGF等の成長因子の転写誘導を 直接的に行うものではないが、 それらの転写が誘導される際に、 かかる転写を有 意に促進し、 さらに翻訳等の転写以降の段階をも促進することができるものと推 定され、 結果として成長因子の産生の増強を誘導するという作用を有する。 すな わち、 本発明にいう 「成長因子産生誘導作用」 とは、 成長因子の産生の増強を誘 導する作用を意味し、 かかる作用は、 例えばヒトへの有効成分の投与前後におけ る成長因子の増強により判断する。 ここで、 「転写が誘導される際に」 とは、 例 えば HGFの転写はそれが必要な時期に行われており、 前記有効成分によれば、 HGFの転写が促進されている初期にその転写が更に促進され、 その後 HGFが 過剰生産とはならず、 従って HGFの生産が体内に必要な時に増強されるという. ことを意味しており、 これにより極めて安全に HGFの産生誘導を行い得る。 本発明の治療剤又は予防剤においては、 本発明で使用する酸性多糖、 その分解 物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール、 又はこれらの塩の成長因子産 生誘導作用を相乗的に増加させる物質を更に含有させることができる。 本発明にいう 「相乗的に増加させる物質」 とは、 本発明にかかる有効成分と該 物質を併用すれば、 該物質により転写誘導が積極的に行われ、 結果として本発明 にかかる有効成分の成長因子産生誘導作用が相乗的に増加されるものである。 本発明で使用する酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖ァ ルコール、 又はこれらの塩の成長因子産生誘導作用を相乗的に増加させる物質と しては、 かかる酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコ —ル、 又はこれらの塩の成長因子産生誘導作用を相乗的に増加させる作用を有す る物質であれば特に限定はなく、 例えばサイト力イン類、 プロスタグランジン類 、 シクロペンテン環を有する化合物、 ミノキシジル、 及び塩化カルプロニゥムか ら選択される物質が例示される。 また生姜等に含まれるシヨーガオール、 ジンジ ヤーオール等、 ゥコン等に含まれるクルクミン等も、 H G F産生誘導作用を増加 する物質であり、 本発明で使用する酸性多糖、 その分解物、 酸性オリゴ糖、 酸性 単糖、 酸性糖アルコール、 又はこれらの塩の H G F産生誘導作用を相乗的に増加 する物質として使用することができる。
サイトカイン類としては、 前記 I L— 1等を挙げることができ、 ブロスタグラ ンジン類としては、 前記プロスタグランジン 、 E 2 等を挙げることができる ο
また、 シクロペンテン環を有する化合物としては下記式 ( I I I ) で表される 化合物及びその誘導体が例示される。
これらは各々単独で若しくは 2種以上混合して使用することができる。
例えば、 下記式 ( I I I ) 〜 (V) でそれぞれ表されるシクロペンテン環を有 する化合物は、 プロスタグランジン E , 、 E 2 と同様に、 H G F遺伝子の転写を. 誘導することができ、 本発明で使用する酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール、 又はこれらの塩との相乗作用により H G Fの産生 を顕著に増加させることができる。 すなわち H G Fの転写誘導作用を有するサイ トカイン類、 プロスタグランジン類、 シクロペンテン環を有する化合物、 生姜由 来化合物、 ゥコン由来化合物から選択される物質と、 本発明で使用する酸性多糖 、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール、 及びこれらの塩か ら選択されるものとを混合物として併用することにより、 本発明で使用する酸性 多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール、 又はこれらの 塩の成長因子産生誘導作用が相乗的に増加され、 非常に高い H G Fの産生誘導効 果が得られる。
また当該混合物を成長因子産生誘導用の飲食品、 又は飼料の原料として用いて も良い。
Figure imgf000021_0001
H N— CH— CH,— CH2— C— NH—
OOH 〇
Figure imgf000021_0002
〇一 C— C 9 H,
(V) 例えば、 式 (I I I)で表される化合物の製造方法は国際公開第 98/1 33 28号パンフレツ ト、 式 ( I V)で表される化合物は国際公開第 98 / 3929 1号バンフレツ ト、 式 (V)で表される化合物は国際公開第 98 Z 40346号 パンフレツ 卜にそれぞれ記載されており、 これらに記載の方法により製造するこ とができる。
式 (I I I)で表される化合物の製造方法はいかなる方法でもよく、 化学合成 法 〔カーボハイドレートリサーチ (Carbohydrate Res. )、 第 2478巻、 第 2 17〜222頁 ( 1 993 )、 ヘルべチカ キミ力 ァクタ (Helvetica Chimic a Acta)、 第 55巻、 第 2838〜 2844頁 (1 972)〕 で合成しても良く 、 また、 ゥロン酸、 ゥロン酸誘導体、 ゥロン酸及び 又はゥロン酸誘導体を含有 する糖化合物、 ゥ口ン酸及ぴ 又はゥロン酸誘導体を含有する糖化合物含有物か ら選択される少なくとも 1種の物の加熱処理物中に生成するシクロペンテノン、 その精製物を使用することもできる。 式 (IV)で表される化合物は、 例えば式 (I I I)で表される化合物とグルタチオンを反応させることにより得ることが できる。 また、 式 (V)で表される化合物は、 例えば式 (I I I)で表される化 合物と無水プロピオン酸と反応させることにより得ることができる。
本発明の治療剤又は予防剤において、 本発明で使用する酸性多糖、 その分解物 、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール又はこれらの塩の成長因子産生誘 導作用を相乗的に増加させる物質の含有量は、 当該誘導作用を相乗的に増加させ ることができる程度であれば良く、 特に限定はないが、 通常、 成人 1日当たり、 好ましくは 0. 001〜200 Omg/kgとなる量である。 当該誘導作用を相 乗的に増加させる物質は、 本発明で使甩する酸性多糖、 その分解物、 酸性オリゴ 糖、 酸性単糖、 酸性糖アルコール及びこれらの塩から選択されるものと合わせて 製剤化しても良く、 又別に製剤化しても良い。 製剤化の方法、 投与の態様は、 本 明細書に記載の方法に準じて行えば良く、 成長因子産生誘導が相乗的に増加する というような本発明の所望の効果が得られる。 本発明で使用する酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖ァ ルコール、 又はこれらの塩はまた、 へパラナーゼ阻害活性を有し、 がん転移抑制 活性、 血管新生抑制活性を有する。 従って、 これらのものから選択されるものを 有効成分としてがん転移抑制剤、 血管新生抑制剤を製造、 提供することができる
。 特にフコィダン由来の式 ( I ) で表される化合物は強力なへパラナーゼ阻害作 用とがん転移抑制作用を有し、 該化合物を有効成分として含有する医薬組成物は がん転移抑制剤として極めて有用である。 また当該化合物を含有してなる飲食品 はがん転移抑制用、 血管新生抑制用の飲食品として価値の高いものである。
成長因子産生誘導作用を有する、 本発明で使用する酸性多糖、 その分解物、 酸 性オリゴ糖、 酸性単糖、 酸性糖アルコール、 及びこれらの塩から選択されるもの を含有してなる成長因子産生誘導用の食品、 飲料又は飼料は、 その成長因子産生 誘導作用により、 本発明で使用する酸性多糖、 その分解物、 酸性オリゴ糖、 酸性 単糖、 酸性糖ァルコール又はこれらの塩に感受性を示す成長因子産生誘導を要す る疾患の症状改善、 予防若しくは後述のように生物の体長改善に極めて有用であ 。
尚、 本発明の食品、 飲料又は飼料、 或いは後述の化粧料にいう 「含有」 の語は 、 含有、 添加、 希釈の意を含むものであり、 含有とは食品、 飲料又は飼料中に本 発明で使用される有効成分が含まれるという態様を、 添加とは食品、 钦料又は飼 料の原料に、 本発明で使用される有効成分を添加するという態様を、 希釈とは本 発明で使用される有効成分に、 食品、 飲料又は飼料の原料を添加するという態様 をいうものである。
また、 成長因子産生誘導作用を相乗的に増加させる前記物質、 例えば、 サイト 力イン類、 プロスタグランジン類、 シクロペンテン環を有する化合物から選択さ れるものをさらに含有させることが、 前記疾患の症状改善、 予防若しくは体長改 善に資する観点から好ましい。
尚、 本発明の飲食品においても、 前記有効成分、 成長因子、 又は成長因子産生 誘導作用を相乗的に増加させる物質の好ましい態様は、 前記治療剤又は予防剤の 場合と同様である。 特に本発明の飲食品又は飼料としては、 肝疾患改善、 神経性 疾患改善、 糖尿病改善という観点から、 肝細胞増殖因子産生誘導用、 インスリン 様増殖因子産生誘導用、 又は神経成長因子産生誘導用の飲食品又は飼料が好まし い。
本発明の食品又は飲料の製造法は、 成長因子産生誘導作用を有する当該食品又 は飲料が得られる限り特に限定はない。 例えば、 配合、 調理、 加工等は一般の食 品のものに従えばよく、 かかる食品又は飲料の製造法により製造することができ 、 製造された食品又は飲料に成長因子産生誘導作用を有する本発明で使用する酸 性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール及びこれらの 塩から選択されるものが有効成分として含有されていれば良い。
本発明の食品又は飲料とは、 特に限定はないが、 例えば穀物加工品 (小麦粉加 ェ品、 デンプン類加工品、 プレミックス加工品、 麵類、 マカロニ類、 バン類、 あ ん類、 そば類、 麩、 ビ一フン、 はるさめ、 包装餅等) 、 油脂加工品 (可塑性油脂 、 てんぷら油、 サラダ油、 マヨネーズ類、 ドレッシング等) 、 大豆加工品 (豆腐 類、 味噌、 納豆等) 、 食肉加工品 (ハム、 ベーコン、 プレスハム、 ソーセージ等 ) 、 水産製品 (冷凍すりみ、 かまぼこ、 ちくわ、 はんぺん、 さつま揚げ、 つみれ 、 すじ、 魚肉ハム、 ソーセージ、 かつお節、 魚卵加工品、 水産缶詰、 つくだ煮等 ) 、 乳製品 (原料乳、 クリーム、 ヨーグルト、 バター、 チーズ、 練乳、 粉乳、 ァ イスクリーム等) 、 野菜 ·果実加工品 (ペースト類、 ジャム類、 漬け物類、 果実 飲料、 野菜飲料、 ミ ックス飲料等) 、 菓子類 (チョコレート、 ビスケッ ト類、 菓 子パン類、 ケーキ、 餅菓子、 米菓類等) 、 アルコール飲料 (日本酒、 中国酒、 ヮ イン、 ウィスキー、 焼酎、 ウォッカ、 ブランデー、 ジン、 ラム酒、 ビール、 清涼 アルコール飲料、 果実酒、 リキュール等) 、 嗜好飲料 (緑茶、 紅茶、 ウーロン茶 、 コーヒー、 清涼飲料、 乳酸飲料等) 、 調味料 (しょうゆ、 ソース、 酢、 みりん 等) 、 缶詰 ·瓶詰め ·袋詰め食品 (牛飯、 釜飯、 赤飯、 カレー、 その他の各種調 理済み食品) 、 半乾燥又は濃縮食品 (レバ一ペースト、 その他のスプレツ ド、 そ ば, うどんの汁、 濃縮スープ類) 、 乾燥食品 (即席麵類、 即席カレ一、 インス夕 ントコーヒー、 粉末ジュース、 粉末スープ、 即席味噌汁、 調理済み食品、 調理済 み飲料、 調理済みスープ等) 、 冷凍食品 (すき焼き、 茶碗蒸し、 うなぎかば焼き 、 ハンバーグステーキ、 シユウマイ、 餃子、 各種スティック、 フルーツカクテル 等) 、 固形食品、 液体食品 (スープ等) 、 香辛料類等の農産 ·林産加工品、 畜産 加工品、 水産加工品等が挙げられる。
本発明の食品又は飲料としては、 成長因子産生誘導作用を有する酸性多糖、 そ の分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール、 及びこれらの塩から選 択されるものが含有されており、 その生理機能を発現するための必要量が含有さ れていれば特にその形状に限定は無く、 タブレッ ト状、 顆粒状、 カプセル状等の 形状の経口的に摂取可能な形状物も包含する。 なお、 成長因子産生誘導作用を有 する藻類由来の硫酸化多糖及びその分解物、 例えばフコィダン及びその分解物は 、 当該生理作用と食物繊維機能を合わせ持つ健康食品素材として、 食品又は飲料 の製造素材として極めて有用である。
本発明の食品又は飲料中の成長因子産生誘導作用を有する酸性多糖、 その分解 物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール及びこれらの塩から選択される もの (有効成分) の食品又は飲料中の含有量は特に制限されず、 その官能と生理 活性の点より適宜選択できるが、 有効成分の含有量は、 例えば食品 1 0 0重量部 当たり 1 0— 9重量部以上、 好ましくは 1 0 - 7〜2重量部であり、 例えば飲料 1 0 0重量部当たり 1 0— 9重量部以上、 好ましくは 1 0— 7〜2重量部である。
又、 成人 1 日当たり、 有効成分が 0 . 0 1〜2 0 0 O m g / k gとなるように 摂取すれば良く、 経口的に成長因子産生誘導が行われるという本発明の所望の効 果が得られる。
また本発明により、 成長因子産生誘導作用を有する酸性多糖、 その分解物、 酸 性オリゴ糖、 酸性単糖、 酸性糖アルコール、 及びこれらの塩から選択されるもの を含有してなる生物用飼料が提供される。
さらに該飼料を生物に投与することを特徴とする生物の飼育方法が提供される また成長因子産生誘導作用を有する酸性多糖、 その分解物、 酸性オリゴ糖、 酸 性単糖、 酸性糖アルコール、 及びこれらの塩から選択されるものを含有すること を特徴とする生物飼育用剤が提供される。
これらの発明において、 生物とは例えば養殖動物、 ぺット動物等であり、 養殖 動物としては家畜、 実験動物、 家禽、 魚類、 甲殻類又は貝類が例示される。 飼料としては成長因子産生誘導作用に基づく体調改善用飼料が例示される。 生物飼育用剤としては浸漬用剤、 飼料添加剤、 飲料用添加剤が例示される。 これらの発明において、 成長因子産生誘導作用を有する酸性多糖、 その分解物
、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール、 及びこれらの塩から選択される ものは、 生物の飼育効率、 例えば生存率、 肥育率、 産卵率、 産仔率、 離乳率等を 向上させる効果を有する。
成長因子産生誘導作用を有する酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単 糖、 酸性糖アルコール、 及びこれらの塩から選択されるものは通常、 対象生物の 体重 l k g、 1 日当たり好ましくは 0 . 0 1〜2 0 0 O m g投与され、 人工配合 飼料の原料中に添加混合させるか、 人工配合飼料の粉末原料と混合した後、 その 他の原料にさらに添加混合させることができる。
成長因子産生誘導作用を有する酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単 糖、 酸性糖アルコール、 及びこれらの塩から選択されるものの、 最終的に得られ た対象生物用飼料中の含有量は特に限定はなく、 目的に応じて使用すれば良いが 、 0 . 0 0 1〜1 5重量%の割合が適当である。 例えば、 肝機能を改善するとい うことを目的とする場合には、 0 . 0 1〜 1 0重量%の割合が適当である。 人工配合飼料としては、 魚粉、 カゼイン、 イカミールなどの動物性原料、 大豆 柏、 小麦粉、 デンプンなどの植物性原料、 飼料用酵母などの微生物原料、 タラ肝 油、 イカ肝油、 などの動物性油脂、 大豆油、 菜種油等の植物性油脂、 ビタミン類 、 ミネラル類、 アミノ酸、 抗酸化剤等を原料とする人工配合飼料が挙げられる。 また魚肉ミンチ等の魚類用飼料が挙げられる。
本発明の飼料の製造方法に特に限定は無く、 また配合も一般の飼料に準ずるも のであればよく、 製造された飼料中に成長因子産生誘導作用を有する酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール及びこれらの塩から選 択されるもの有効量が含有されていればよい。
また成長因子産生誘導作用を有する酸性多糖、 その分解物、 酸性オリゴ糖、 酸 性単糖、 酸性糖アルコール、 及びこれらの塩から選択されるものをプール、 水槽 、 保持タンク又は飼育領域の水、 海水等に直接、 添加し、 対象生物を浸漬するこ とにより、 投与することもできる。 この浸漬方法は対象生物の飼料摂取量が低下 したときに特に有効である。
水又は海水中の成長因子産生誘導作用を有する酸性多糖、 その分解物、 酸性ォ リゴ糖、 酸性単糖、 酸性糖アルコール、 及びこれらの塩から選択されるものの濃 度は特に限定はなく、 目的に応じて使用すれば良いが、 好ましくは 0 . 0 0 0 0 1〜 1重量%の割合が適当である。
また成長因子産生誘導作用を有する酸性多糖、 その分解物、 酸性オリゴ糖、 酸 性単糖、 酸性糖アルコール、 及びこれらの塩から選択されるものを含有する飲料 を飼育用飲料として対象生物に摂取させても良い。
該飲料中の成長因子産生誘導作用を有する酸性多糖、 その分解物、 酸性オリゴ 糖、 酸性単糖、 酸性糖アルコール、 及びこれらの塩から選択されるものの濃度は 特に限定はなく、 目的に応じて使用すれば良いが、 好ましくは 0 . 0 0 0 1〜1 重量%の割合が適当である。
成長因子産生誘導作用を有する酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単 糖、 酸性糖アルコール、 及びこれらの塩から選択されるものを有効成分とする生 物飼育用剤、 例えば浸漬用剤、 飼料添加剤、 飲料用添加剤はそれ自体公知の配合 及び製造方法で作製すれば良い。
本発明が適用できる生物としては限定は無いが、 養殖動物としては、 馬、 牛、 豚、 羊、 山羊、 らくだ、 ラマ等の家畜、 マウス、 ラット、 モルモット、 ゥサギ等 の実験動物、 鶏、 ァヒル、 七面鳥、 駝鳥等の家禽、 マダイ、 イシダイ、 ヒラメ、 カレイ、 ブリ、 ハマチ、 ヒラマサ、 マグロ、 シマアジ、 ァュ、 サケ 'マス類、 ト ラフグ、 ゥナギ、 ドジヨウ、 ナマズ等の魚類、 クルマエビ、 ブラックタイガー、 夕イシヨウェビ、 ガザミ等の甲殻類等、 ァヮビ、 サザェ、 ホ夕テ貝、 カキ等の貝 類、 ペット動物としてはィヌ、 ネコ等が挙げられ、 陸上 ·水中動物に広く適用で きる。
成長因子産生誘導作用を有する酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単 糖、 酸性糖アルコール、 及びこれらの塩から選択されるものを含有する飼料を摂 取させること、 又は成長因子産生誘導作用を有する酸性多糖、 その分解物、 酸性 オリゴ糖、 酸性単糖、 酸性糖アルコール、 及びこれらの塩から選択されるものの 含有液に対象生物を浸漬することにより、 家畜、 実験動物、 家禽、 魚類、 甲殻類 、 貝類、 ぺット動物等の体調が改善され、 その結果、 対象生物の細菌性感染症、 ウィルス性感染症が予防又は治療され、 感染生物においてはその症状が顕著に改 善される。 また対象生物の健康が保持され、 その生存率、 成長率、 産卵率、 産仔 率、 離乳率、 生育率等の改善が顕著である。
またこれらの養殖動物は ( 1 ) 細菌感染による疾病が頻繁に発生し、 限られた 領域での養殖のために、 伝染病が発生するとたちまちに感染して全滅する、 (2 ) 寄生虫病、 栄養性疾病、 環境性疾病、 腫瘍等が発生し易い、 (3 ) 狭い飼育領 域での養殖動物はストレスが大きく、 飼育施設に体表をこすりつけ擦り傷を発生 させ、 個々に細菌や寄生虫が付着し易い、 (4 ) またストレスにより餌食いが低 下して、 成長が遅くなる等の問題があつたが、 本発明の飼料はその体調改善作用 により、 狭い領域で飼育されている養殖動物のストレスを大幅に低減させ、 飼育 施設への体表のこすりつけが発生せず、 食欲が旺盛になり、 成長率、 産仔率、 産 卵率、 離乳率、 疾病予防率等を顕著に向上させることができる。
成長因子産生誘導作用を有する、 本発明で使用する酸性多糖、 その分解物、 酸 性オリゴ糖、 酸性単糖、 酸性糖アルコール、 又はこれらの塩は化粧料の有効成分 として有用であり、 本発明により本発明で使用する酸性多糖、 その分解物、 酸性 オリゴ糖、 酸性単糖、 酸性糖アルコール、 及びこれらの塩から選択されるものを 有効成分とする成長因子、 例えば H G F産生誘導用の化粧料が提供される。
また、 成長因子産生誘導作用を相乗的に増加させる前記物質、 例えば、 サイト 力イン類、 プロスタグランジン類、 シクロペンテン環を有する化合物から選択さ れるものを含有させることが、 所望の効果に資する観点から好ましい。
尚、 本発明の化粧料においても、 前記有効成分、 成長因子、 又は成長因子産生 誘導作用を相乗的に増加させる物質の好ましい態様は、 前記治療剤又は予防剤の 場合と同様である。 特に本発明の化粧料としては、 上皮細胞の活性化という観点 から、 肝細胞増殖因子産生誘導用、 インスリン様増殖因子産生誘導用、 又は神経 成長因子産生誘導用の化粧料が好ましい。
当該化粧料の有効成分としてはフコィダン及びその分解物が特に好適であり、 例えば F—フコィダン及び Z又はその分解物、 又は式 ( I ) で表される化合物を 有効成分とする成長因子産生誘導作用、 例えば H G F産生誘導作用を有するバイ ォ化粧品が提供できる。 成長因子産生誘導用の化粧料における酸性多糖、 その分 解物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール、 又はこれらの塩の含有量は 通常好ましくは 0 . 0 0 0 1〜2 0重量%、 より好ましくは 0 . 0 0 1〜5重量 %である。
本発明の成長因子産生誘導用、 例えば H G F産生誘導用の化粧料は、 公知の配 合に準じて常法に従って製造することができる。 本発明の成長因子産生誘導用の 化粧料としては、 例えばローション類、 乳液類、 クリーム類、 パック類、 浴用剤 、 洗顔剤、 浴用石ゲン又は浴用洗剤等を包含するものである。
本発明の化粧料を、 それぞれの用途形態に応じて所望の量、 例えばローション 類であれば、 例えばヒトの顔面全体に適用するような場合、 1回の使用当たり好 ましくは 0. 0 l〜5 g、 より好ましくは 0. 1〜2 g程度を用いれば、 上皮細 胞が活性化され、 美肌効果が得られるという本発明の所望の効果が得られる。 本発明はまた、 酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖アル コール、 及びこれらの塩から選択されるものを有効成分として含有する成長因子 産生誘導剤を提供するものであるが、 当該産生誘導剤は成長因子の機能研究、 成 長因子に関連する疾病用医薬のスクリーニングにも有用である。
さらに本発明は、 酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖ァ ルコール、 及びこれらの塩から選択されるものを有効成分として含有する成長因 子産生調整剤を提供する。
本発明の成長因子産生誘導剤、 成長因子産生調整剤は、 上記の有効成分を使用 し、 公知の製剤化方法にて製剤を製造すればよい。 成長因子産生誘導剤としては 、 前記治療剤等もその一例として挙げることができる。 また、 本発明の成長因子 產生調整剤とは、 生体内において、 成長因子の転写誘導初期に成長因子の転写を 促進する製剤を意味する。 本発明の成長因子産生調整剤により、 成長因子の産生 が必要な状態時にのみ、 成長因子の産生が増強され、 成長因子の産生が過剰とな らないという著効を有する。
本発明に使用されるフコィダン及びノ又はその分解物は特に強い成長因子産生 誘導作用、 成長因子産生調整作用を有し、 本発明の製剤に使用する有効成分とし て極めて有用である。
従来 HGF産生誘導作用が知られていたへパリンは HGFの mRNAの転写は 促進しないが、 フコィダン及びその分解物は、 HGFの mRNAの転写が促進さ れている初期段階で、 その mRNAの転写を更に促進する。 生体内では HGFの mRNAは常には転写されておらず、 必要な時期に転写されている。 フコィダン 及びフコィダン分解物、 例えば後述の 7— 1 2 SF d— Fは、 生体内で HGFの 転写が促進されている初期にのみその転写を更に促進し、 その後 HGFが過剰生 産とはならず、 H G Fの生産状況が体内に必要な時にのみ促進されるという点に おいて極めて安全な H G F産生調整物質である。
従って、 本発明の別の態様においては、 前記治療剤又は予防剤、 飲食品等を、 そのまま成長因子産生誘導を調整する目的で使用することもできる。 成長因子産 生調整剤の投与量としては、 成長因子産生を調整することが可能であれば特に限 定されるものではないが、 本発明にかかる有効成分の投与量、 例えばヒトに対す る有効成分の投与量が、 好ましくは 0 . 0 1〜2 0 0 O m g / k g (体重) とな るような量を挙げることができる。
尚、 本発明に使用する成長因子産生誘導作用を有する酸性多糖、 例えばフコィ ダン及び Z又はその分解物はラッ 卜への経口投与において 1 gZk gを経口単回 投与しても死亡例は認められない。 またデキストラン硫酸ナトリゥムも安全な化 合物である。 また本発明で使用するその他の酸性多糖、 その分解物、 酸性オリゴ 糖、 酸性単糖、 酸性糖アルコール、 又はこれらの塩は、 その生理的有効量をラッ トに経口投与しても毒性は認められない。
また、 別の態様として、 本発明においては、 成長因子産生誘導作用を有するョ モギ抽出物、 二ガウリ抽出物、 アロエ抽出物、 菊菜抽出物、 クロレラ抽出物、 及 びスピルリナ抽出物から選択される抽出物を有効成分とする成長因子産生誘導を 要する疾患の治療剤又は予防剤を提供してもよい。
また、 成長因子産生誘導作用を有するョモギ抽出物、 二ガウリ抽出物、 アロエ 抽出物、 菊菜抽出物、 クロレラ抽出物、 及びスピルリナ抽出物から選択される抽 出物を有効成分として含有する成長因子産生誘導用の飲食品、 又は飼料を提供し てもよい。
さらにまた、 成長因子産生誘導作用を有するョモギ抽出物、 二ガウリ抽出物、 アロエ抽出物、 菊菜抽出物、 クロレラ抽出物、 及びスピルリナ抽出物から選択さ れる抽出物を有効成分として含有する成長因子産生誘導用の化粧量を提供しても よい。 かかる植物、 微生物からの前記抽出物のの抽出精製は、 次のような公知の方法 で行うことができる。 原料である植物の果実、 種子、 葉、 茎、 根、 根茎等、 また 微生物を、 適当な時期に採取し、 そのままか、 通常空気乾燥等の乾燥工程を行つ た後、 抽出原料とする。 原料が植物の搾汁液や樹液の場合はそのまま抽出原料と して用いることもできる。
上記の乾燥した植物体、 微生物からの前記有効成分を含有する抽出物の抽出は 、 公知の方法により以下のように行う。 原料を粉砕もしくは紬切した後、 溶媒を 用いてバッチ式もしくは連続式の抽出方法で行うことができる。 抽出溶媒として は、 水、 クロ口ホルムまたはエタノール、 メタノール、 イソプロピルアルコール 等のアルコール類、 アセトンメチルェチルケトン等のケトン類、 酢酸メチル、 酢 酸ェチル等の親水性もしくは親油性の溶媒が、 単独で、 もしくは混合液として用 いることができる。 抽出温度は通常 0〜1 5 0 °C、 好ましくは 5〜1 2 0 eCで行 ラ
抽出をバッチ式で行う場合、 抽出時間は 1 0分〜 2 0日間程度であり、 溶媒量 は乾燥原料当たり通常 1〜3 0倍重量、 好ましくは 2〜 2 0倍重量用いる。 抽出 操作は、 攪拌によっても浸漬放置によってもよく、 また組み合わせてもよい。 抽 出操作は必要に応じて 2〜3回繰り返してもよい。 連続抽出法としては、 還流冷 却器とサイフォンを組み合わせたソックスレー抽出器を用いた方法等があげられ 、 溶媒量、 抽出時間等は前記のバッチ式抽出法の条件と同様である。
本発明に使用される抽出物には、 前期の操作で得た粗抽出液から不溶性残査を ろ過もしくは遠心分離により取り除いたものも含まれる。 また不溶性残查を活性 成分として使用する場合もある。
粗抽出液からの活性成分の精製は、 公知の植物由来の活性成分の精製方法であ ればどのようなものでもよいが、 二相溶媒分離法、 カラムクロマトグラフィー法 等を単独または組み合わせて用いることが好ましい。
得られた抽出物を有効成分とし、 目的に応じ薬剤、 飲食品、 飼料及び化粧料等 を製造することができる。 それらの製造は、 本発明の第 1〜第 3の発明にかかる 前記方法に準じて行なえばよい。
各目的に応じた製品中の抽出物の含有量はその成長因子産生誘導作用より決定 することができるが、 概ね通常製品中に好ましくは 0. 0 0 1〜1 0 0重量%、 より好ましくは 0. 0 1〜3 0重量%、 さらに好ましくは 0. 1〜2 0重量%で あ o
尚、 本発明にかかる、 これら抽出物は、 その有効量をラッ トに経口投与しても 毒性は認められない。 以下、 実施例を挙げて、 本発明を更に具体的に説明するが、 本発明はこれらの 記載に何ら限定されるものではない。 尚、 実施例における各成分の配合について の%は重量%を意味する。 参考例 1
( 1 ) ガゴメ昆布を充分乾燥後、 乾燥物 2 0 k gを自由粉砕機 (奈良機械製作 所製) により粉砕した。
水道水 9 0 0 リツ トルに塩化カルシウム二水和物 (日本曹達社製) 7. 3 kg を溶解し、 次にガゴメ昆布粉砕物 2 0 k gを混合した。 液温 1 2でから液温 9 0 eCとなるまで水蒸気吹込みにより 4 0分間昇温させ、 次いで攪拌下 9 0〜9 5°C に 1時間保温し、 次いで冷却し、 冷却物 1 1 0 0リツトルを得た。
次いで固液分離装置 (ウェストファリアセパレ一夕一社製 CNA型) を用い、 冷却物の固液分離を行い、 約 9 0 0リツ トルの固液分離上清液を調製した。 固液分離上清液 3 6 0リツ トルをダイセル社製 FE 1 0 -FC-FUS 0 3 8 2 (分画分子量 3万) を用い、 2 0リッ トルまで濃縮した。 次いで水道水を 2 0 リツ トル加え、 また 2 0リツ トルまで濃縮するという操作を 5回行い、 脱塩処理 を行い、 ガゴメ昆布由来の抽出液 2 5リッ トルを調製した。 該抽出液 1 リットルを凍結乾燥し、 ガゴメ昆布由来フコィダン乾燥物 1 3 gを 得た。
上記方法に準じ、 マ昆布乾燥粉砕物からマ昆布由来フコイダン乾燥物を調製し た。 また同様に、 レソニァ ニグレセンス (Lessonia nigrescence) の乾燥粉末 (商品名シーウィード パウダー:アンデス貿易株式会社販売) からレソニァ ニグレセンス由来フコィダン乾燥物を調製した。
(2) 参考例 1一 ( 1 ) 記載のフコィダン乾燥物 7 gを、 5 OmMの塩化ナト リウムと 1 0 %のエタノールを含む 2 OmlV [のィミダブ一ル緩衝液 (pH 8. 0 ) 700 mlに溶解し、 遠心分離により不溶物を除去した。 DEAE—セルロフ ァイン A— 800カラム (01 1. 4 cmx 48 cm) を同緩衝液にて平衡化し 、 遠心分離上清をアプライ後、 同緩衝液で洗い、 塩化ナトリウムの 5 OmMから 1. 95 Mの濃度勾配により溶出させた (1フラクション: 250ml)。 フエ ノール硫酸法及び力ルバブール硫酸法にて、 総糖量及びゥロン酸含量を求め、 溶 出順にフラクション 43〜49、 フラクション 50〜55、 フラクション 56〜 67の画分を得た。 次に、 これらの画分を電気透析により脱塩後凍結乾燥し、 フ ラクシヨン 43〜49より I画分 (34 Omg)、 フラクション 50〜55より I I画分 (870m g)、 フラクション 56〜 67より I I I画分 (2. 64 g ) をそれぞれ調製した。
第 1図にガゴメ昆布由来フコィダンの DEAE—セル口ファイン A— 800力 ラム溶出パターンを示す。 第 1図において縦軸は力ルバゾール硫酸法での 530 nmの吸光度 (図中黒丸) 、 フエノール硫酸法での 480 nmの吸光度 (図中白 丸) 、 及び電導度 (mS/cm:図中白四角) 、 横軸はフラクション番号を示す
参考例 2
(1) アルテロモナス s p. SN- 1 009 (FERM BP— 574 7) を、 グルコース 0. 25%、 ペプトン 1. 0%、 酵母エキス 0. 0 5 %を含む人工海水 (ジャマリンラボラトリ一社製) PH8. 2からなる培地 6 0 0m 1を分注して殺菌した ( 1 20°C、 20分間) 2リッ トルの三角フラスコに 接種し、 2 5°Cで 2 6時間培養して種培養液とした。 ペプトン 1. 0%、 酵母 エキス 0. 02 %、 下記参考例 2— (2) に記載の硫酸化多糖 0. 2%、 及 び消泡剤 (信越化学工業社製 KM70) 0. 0 1 %を含む人工海水 PH8. 0か らなる培地 20リッ トルを 30リットル容のジャーファメンターに入れて 1 20 。C、 20分間殺菌した。 冷却後、 上記の種培養液 6 0 0 m lを接種し、 24 で 24時間、 毎分 1 0リットルの通気量と毎分 25 0回転の攪拌速度の条件で培養 した。 培養終了後、 培養液を遠心分離して菌体及び培養上清を得た。 得られた培 養上清を、 排除分子量 1万のホロファイバ一を装着させた限外ろ過機により濃縮 後 8 5%飽和硫安塩折し、 生じた沈殿を遠心分離により集め、 1 0分の 1濃度の 人工海水を含む 2 OmMのトリス一塩酸緩衝液 (pH 8. 2) に対して充分透析 し、 60 0 m lの硫酸化多糖に選択的に作用するェンド型硫酸化多糖分解酵素液 を調製した。
(2) 乾燥したガゴメ昆布 2 kgを直径 l mmのスクリーンを装着させたカツ ターミル (増幸産業社製) により粉砕し、 得られた昆布のチップを 20リッ トル の 80%エタノール中に懸濁し、 25°Cで 3時間攪拌し、 ろ紙でろ過後、 残渣を 充分洗浄した。 得られた残渣を、 9 5 °Cに加温した 4 0リットルの 5 OmMの塩 化ナトリウムを含む 2 OmMリン酸ナトリウム緩衝液 pH 6. 5に懸濁し、 時々 攪拌しながら 9 5 'Cで 2時間処理し、 硫酸化多糖を抽出した。
抽出液中の懸濁物を、 ろ過し、 ろ液を調製した後、 ろ過残渣を 3. 5リッ トル の 1 0 OmM塩化ナトリウムにより洗浄し、 更にろ液を得た。
両ろ液を合わせた後、 30°Cまで温度を下げ、 3 0 0 0 Uのアルギン酸リア一 ゼ (ナガセ生化学工業社製) を添加後、 エタノールを 4リットル加え 25°Cで 2 4時間攪拌した。 次に遠心分離を行い、 得られた上清を排除分子量 1 0万のホロ ファイバ一を備えた限外ろ過機により 4リッ トルに濃縮し、 更に、 1 0%のエタ ノールを含む 1 0 OmMの塩化ナトリウムにより、 着色性物質がろ過されなくな るまで限外ろ過を続けた。
非ろ過液中に生じた沈殿は遠心分離により除去し、 この上清を 5 °Cまで温度を 下げ、 0. 5N塩酸により pHを 2. 0とした後、 生じたタンパク質等の沈殿を 遠心分離により除去し、 得られた上清を速やかに 1 N水酸化ナトリウムにより p Hを 8. 0とした。
次に、 排除分子量 1 0万のホロファイバーを装着させた限外ろ過機により限外 ろ過を行い、 2 OmM塩化ナトリウム pH 8. 0により完全に溶媒置換後、 再度 p Hを 8. 0として遠心分離後、 凍結乾燥を行い、 約 9 5 gの硫酸化多糖を調製 した。
(3) 乾燥したガゴメ昆布 2 k gを直径 1 mmのスクリーンを装着させた力ッ ターミルにより粉砕し、 得られた昆布のチップを 2 0リットルの 8 0%ェタノ一 ル中に懸濁し、 25°Cで 3時間攪拌し、 ろ紙でろ過後、 残渣を充分洗浄した。 得 られた残渣を、 3 0m lの上記参考例 2— ( 1 ) で調製したェンド型硫酸化多糖 分解酵素液、 1 0%のエタノール、 1 0 0 mMの塩化ナトリウム、 5 0mMの塩 化カルシウム、 及び 5 OmMのィミダゾールを含む 2 0リッ トルの緩衝液 (ρΗ 8. 2) に懸濁し、 25 °Cで 4 8時間攪拌した。 この懸濁液を網目の直径 3 2 // mのステンレス金網でろ過し、 残渣を 5 OmMの塩化カルシウムを含む 1 0 %の エタノールで洗浄した。 更にその残渣を 1 0 リットルの 5 OmM塩化カルシウム を含む 1 0%のエタノール中に懸濁し、 3時間攪拌後、 ステンレス金網でろ過、 洗浄した。 更にその残渣を同条件で懸濁後、 1 6時間攪拌し、 直径 32 /zmのス テンレス金網でろ過、 洗浄した。
こうして得られたろ液及び洗浄液を集め、 排除分子量 3 0 0 0のホロファイバ 一を装着させた限外ろ過機により限外ろ過し、 ろ過液と非ろ過液に分離した。 このろ過液をロータリーエバポレーターで約 3リッ トルに濃縮後、 遠心分離し て上清を得た。 得られた上清を排除分子量 300の膜を装着させた電気透析器に より脱塩し、 この溶液に 0. 1 Mとなるように酢酸カルシウムを添加し、 生じた 沈殿を遠心分離により除去した。 この上清をあらかじめ 5 OmMの酢酸カルシゥ ムにより平衡化させた DEAE—セル口ファイン (樹脂量 4リッ トル) にかけ、 5 OmMの酢酸カルシウム及び 5 OmMの塩化ナトリウムで充分洗浄後、 50 m M〜80 OmMの塩化ナトリウムのグラジェントにより溶出させた。 この時の分 取量は 1本当り 500 mlで行った。 分取した画分をセルロースァセテ一ト膜電 気泳動法 [アナリティカル バイオケミストリー (Analytical Biochemistry ) 、 第 37巻、 第 197〜202頁 (1970) ] により分析したところ塩化ナトリウム濃度 が約 0. 4 Mで溶出される硫酸化糖 (フラクションナンバー 63付近) が均一で あつ 7こ o
そこで、 まずフラクションナンバー 63の液を 1 50mlに濃縮後、 濃度が 4 Mとなるように塩化ナトリウムを添加し、 あらかじめ 4Mの塩化ナトリウムによ り平衡化した Pheny 1—セル口ファイン (樹脂量 200 ml) にかけ、 4M の塩化ナトリウムにより充分洗浄した。 非吸着性の硫酸化糖画分を集め、 排除分 子量 300の膜を装着させた電気透析器により脱塩し、 脱塩液 505 mlを得た
O
得られた脱塩液のうち 4 Om 1を 1 0 のエタノールを含む 0. 2 Mの塩化ナ トリウムによって平衡化させたセル口ファイン GCL— 90のカラム (4. 1 c mx 87 cm) にかけて、 ゲルろ過を行った。 分取は 1フラクション当り 9. 2 m 1で行った。
全フラクションに対して総糖量の分析をフエノール硫酸法 〔アナリティカル ケミストリー (Analytical Chemistry)、 第 28巻、 第 350頁 (1956) 〕 により行 つ τこ。
この結果、 硫酸化糖は 1つのピークを形成したので、 そのピークの中央部分、 フラクションナンバー 63〜70を集め、 排除分子量 300の膜を装着させた電 気透折器により脱塩後、 凍結乾燥し、 1 1 2mgの下記式 (V I) で表される化 合物の乾燥品を得た。 以下、 該化合物を 7— 1 2 S F d— Fと称す。
Figure imgf000038_0001
(4) 参考例 1— (2) で調製した I I I画分 (F—フコィダン) の 2. 5% 水溶液 80mlに 1M トリス塩酸緩衝液 (pH7. 6) を 1 6ml、 1 M C a C 12 水溶液を 1 6 m 1、 4M Na C 1水溶液を 24 in 1、 参考例 2— ( 1 ) で得たェンド型硫酸化多糖分解酵素液を 8 m 1、 蒸留水を 1 76 m 1添加し、 30°Cで 3時間加熱した。 この酵素処理 F—フコィダン溶液を酵素処理 F—フコ ィダンの最終濃度が 2%になるようにロータリーェヴアポレーターで濃縮し、 そ の後蒸留水中で透析操作を行い、 2 %酵素処理 F一フコィダン水溶液を調製した 。 この試料を HPLC (カラム: SB802. 5、 カラム温度: 35°C、 移動相: 50m Na Cl、 流速: 0.5ml/min、 検出: RI ATT= 8) で分析した。 その結果、 試料中 の約 40%が 7— 1 2 SFd— Fであることが明らかになった。 参考例 3
( 1 ) 乾燥ガゴメ昆布 2 k gを穴径 1 mmのスクリーンを装着した力ッ夕一ミ ル (増幸産業社製) により破砕し、 20リツ トルの 80%エタノール中で 25°C 、 3時間攪拌後ろ過、 洗浄した。 得られた残さを 5 OmMの塩化カルシウム、 1 0 OmMの塩化ナトリウム、 1 0 %のエタノール、 及び参考例 2— ( 1 ) で調製 したアルテロモナス s p. SN- 1 0 0 9 (FERM BP- 5747) ェンド型硫酸化 多糖分解酵素を 1 U含む 2 0リットルの 3 OmMィミダゾ一ル緩衝液 (pH 8. 2) に懸濁し、 25°Cで 2日攪拌し、 次いで穴径 32 /zmのステンレス金網でろ 過し、 洗浄した。 得られた残さを 1 0 OmMの塩化ナトリゥ厶、 1 0 %のェタノ ール、 及び 4 gのアルギン酸リアーゼ (ナガセ生化学工業製) を含む 4 0リット ルのリン酸ナトリウム緩衝液 (pH 6. 6) に懸濁し、 2 5で、 4日攪拌後、 遠 心分離し上清を得た。 得られた上清中に含まれるアルギン酸の低分子化物を除去 するため排除分子量 1 0万のホロファイバーを装着した限外ろ過機により 2リッ トルに濃縮後、 1 0%のエタノールを含む 1 0 OmMの塩化ナトリウムで溶液交 換した。 この溶液に等量の 4 0 OmM酢酸カルシウムを添加攪拌後、 遠心分離し 、 得られた上清を氷冷しながら、 1 Nの塩酸で pH2とした。 生じた沈殿を遠心 分離により除去し、 得られた上清を 1 Nの水酸化ナトリウムにより pH 8. 0と した。 この溶液を限外ろ過により 1 リッ トルに濃縮後、 1 0 OmMの塩化ナトリ ゥムで溶液交換した。 この時生じた沈殿は遠心分離により除去した。 得られた上 清中の疎水性物質を除去するため、 上清に 1 Mとなるように塩化ナトリウムを加 えて、 1 Mの塩化ナトリゥムで平衡化した 3リッ トルのフエニルセル口ファイン カラム (生化学工業製) にかけ、 素通り画分を集めた。 この画分を限外ろ過機に より濃縮後、 2 OmMの塩化ナトリウムで溶液交換し、 凍結乾燥した。 凍結乾燥 物の重量は 2 9. 3 gであった。
(2) 上記の凍結乾燥物 1 5 gを 4 0 OmMの塩化ナトリゥム及び国際公開第 97 26 8 9 6号パンフレット記載のフラボパクテリゥム s p. SA— 0 0 82 (FERM BP- 5402) を培養し、 該培養物から得られたェンド型硫酸化多糖分解 酵素を 9 U含む 1. 5 リッ トルの 5 OmMトリス塩酸緩衝液に溶解し、 25 で 6日反応後、 エバポレーターで約 3 0 0 m lに濃縮した。 濃縮液を排除分子量 3 500の透析チューブに入れて徹底的に透析し、 透析チューブ内に残った液を、 5 OmMの塩化ナトリゥムで平衡化した 4リッ トルの DE AE—セル口ファイン A— 8 0 0にかけ、 5 OmM塩化ナトリウムで充分洗浄後、 5 0〜 6 5 0 mMの 塩化ナトリゥムの濃度勾配による溶出を行った。 更に同カラムを 65 OmMの塩 化ナトリウムで充分溶出させた。 溶出画分のうち 6 5 OmMの塩化ナトリウムで 溶出した画分を硫酸化フコガラクタン画分として集め、 排除分子量 1 0万の限外 ろ過機により濃縮後、 1 OmMの塩化ナトリウムで溶液を置換し、 凍結乾燥して 硫酸化フコガラクタンの凍結乾燥物を 0. 8 5 g得た。 得られた硫酸化フコガラ クタンは、 構成糖としてガラクトースとフコースを含有し、 そのモル比は、 約 2 : 1であった。 参考例 4
参考例 2— (2) で調製した硫酸化多糖 1 20 gを 2 OmMの塩化カルシウム 、 30 OmMの塩化ナトリウム、 1 0%のエタノール、 及び 1 0 Uの参考例 2— ( 1 ) で調製したエンド型硫酸化多糖分解酵素を含む 8リットルの 2 OmMィミ ダゾール緩衝液 (pH7. 5) に懸濁し、 25 °Cで 3日間攪拌し、 排除分子量 1 0万のホロファイバーを装着させた限外ろ過装置を用い、 上記緩衝液を添加しな がら限外ろ過した。
限外ろ過内液に 34 Uの参考例 3— (2) で調製したエンド型硫酸化多糖分解 酵素を添加して、 25でで 2日間攪拌し、 排除分子量 1 0万のホロファイバーを 装着させた限外ろ過を行い、 水を添加しながら限外ろ過した。
ろ液を集め、 エバポレーターで 1. 5リッ トルに濃縮後、 脱塩装置により完全 に脱塩し、 あらかじめ 3 OmMの塩化ナトリウムを含む 5mMのィミダブールー 塩酸緩衝液 (PH 6. 5) で平衡化した 3リッ トルの DEAE—セル口ファイン A— 8 0 0のカラムにかけ、 6 リットルの同緩衝液で洗浄後、 3 OmMから 5 0 OmMの塩化ナトリゥムの濃度勾配による溶出を行った。 溶出に要した液量は 4 8リットルであった。 溶出液は 1 8 0m lずつ分取し、 その糖含量をフヱノール —硫酸法により測定した。 また、 232 nmにおける吸光度も同時に測定した。 1 3 OmMから 1 7 OmMの塩化ナトリゥ厶溶出画分が一つのピークを形成した ので、 これらの画分を集め、 脱塩装置により脱塩後、 凍結乾燥し、 5. 85 gの オリゴ糖を得た。 このオリゴ糖は質量分析により、 分子量 1 1 28であり NMR 分析により下記式 (V I I) で表される化合物であることを確認した。 以下、 該 化合物を 6— 2Sと称す。
Figure imgf000041_0001
参考例 6
市販のワカメ メカブの乾燥物 1 k gを穴の径が 1 mmのスクリーンを装着さ せたカッターミルにより破砕後、 1 0リツトルの 80 %エタノール中に懸濁し、 3時間攪拌後、 ろ紙によりろ過し、 残査を得た。 残查を 5 OmMの塩化ナトリウ ムを含む 4 OmMのリン酸緩衝液 (pH 6. 5) 20リッ トルに懸濁し 95 で 2時間処理した。 処理液を 37°Cまで冷却後、 1 0%となるようにエタノールを 添加し、 市販のアルギン酸リア一ゼ K (ナガセ一生化学工業社製) を 1 2000 U添加後、 室温で 24時間攪拌した。 得られた処理液を遠心分離し、 その上清を 排除分子量 1 0万のホロファイバーを装着させた限外ろ過機により 2リッ トルに 濃縮後、 生じた沈殿を遠心分離により除去した。 得られた上清を 5 °Cに冷却後 0 . 5 Nの塩酸を添加して pHを 2. 0とした後 30分間攪拌し、 生じた沈殿を遠 心分離により除去した。 上清の pHを 0. 5 Nの水酸化ナトリウムにより 8. 0 とし、 限外ろ過により溶液を 2 OmMの塩化ナトリウムに置換した。 溶液の pH を 8. 0に調整後、 遠心分離して得られた上清を凍結乾燥し、 9 0. 5 gのワカ メ メカブ由来フコィダンを得た。 参考例 7
粉砕したヒバマ夕 (Fucus vesiculosus ) の乾燥物 1 kgを、 1 0リツ トルの 8 0%エタノール中に懸濁し、 3時間攪拌後、 ろ紙によりろ過し、 残查を得た。 残査を 1 0 OmMの塩化ナトリウムを含む 3 OmMのリン酸緩衝液 (pH 6. 0 ) 30リツ トルに懸濁し 95°Cで 2時間処理した。 処理液を 3 7°Cまで冷却後、 1 0 0 gの活性炭を添加し 3 0分間攪拌した。 市販のアルギン酸リアーゼ Kを 3 00 0 U添加後、 1 0%となるようにエタノールを添加し室温で 24時間攪拌し た。 得られた処理液を遠心分離し、 その上清を排除分子量 1 0万のホロファイバ 一を装着させた限外ろ過機により 2リットルに濃縮後、 生じた沈殿を遠心分離に より除去した。 この上清に抽出液を加えながら限外ろ過し、 色素を除去した。 得 られた非ろ過液を 5でに冷却後 0. 5 Nの塩酸を添加して pHを 2. 0とした後 30分間攪拌し、 生じた沈殿を遠心分離により除去した。 上清の pHを 0. 5N の水酸化ナトリウムにより 8. 0とし、 限外ろ過により溶液を 2 OmMの塩化ナ トリウムに置換した。 溶液の pHを 8. 0に調整後、 遠心分離して得られた上清 を凍結乾燥し、 7 1 gのヒバマ夕由来フコィダンを得た。
上記方法に準じ、 ァスコフィラム ノ ドスム (Ascophyllum nodosum ) の乾燥 粉末 (商品名アルギンゴールド:アンデス貿易株式会社販売) からァスコフイラ ム ノ ドスム由来フコィダンを調製した。 参考例 8
参考例 1 一 ( 1 ) 記載の方法で調製したガゴメ昆布由来フコィダン 2 gを 1 0 0m lの水に溶解し、 その pHをクェン酸にて pH 3に調整後、 1 0 0°Cで 3時 間処理し、 当該フコィダンの酸分解物を調製した。 この加水分解物をセルロファ イン GCL— 3 0 0、 又はセル口ファイン GCL— 2 5によるゲルろ過で分子量 分画し、 分子画 2 5 0 0 0超 (A画分) 、 2 5 0 0 0〜 1 0 0 0 0超 (B画分) 、 1 0 0 0 0〜5 0 0 0超 (C画分) 、 5 0 0 0〜2 0 0 0超 (D画分) 、 2 0 0 0〜5 0 0超 (E画分) 、 5 0 0以下 (F画分) に分画した。 更にこれらの画 分及び酸分解物をそれぞれ脱塩後凍結乾燥を行い、 酸分解物及び酸分解物の各分 画物を調製した。 参考例 9
市販の塩蔵モズク 5 kgを 2 0リツトルのエタノールと混合し、 はさみで細断 した。 1晚放置後ろ紙でろ過し、 得られた残查を 1 2. 5 リッ トルの水に懸濁し 、 9 5 °Cで 2時間処理した。 処理液をろ紙によりろ過後、 3 5 OmMの塩化ナト リゥムを含む 2. 5%の塩化セチルピリジニゥム溶液を 2 6 0 Om 1添加し 3日 放置した。 上清部分を廃棄し、 沈殿部分を遠心分離して、 その上清も廃棄した。 得られた沈殿に 2. 5リッ トルの 3 5 OmlV [の塩化ナトリウムを添加後、 ホモジ ナイザーで均一にし遠心分離した。 この洗浄操作を 3回繰り返した。 得られた沈 殿に 4 0 Om 1の 4 0 OmM 塩化ナトリウムを添加後、 ホモジナイザーで均一 にし、 8 0 %となるようにエタノールを添加して 3 0分間攪拌後ろ紙でろ過した 。 得られた残渣に 5 0 0 m lの塩化ナトリゥ厶飽和 8 0 %エタノールを添加後、 ホモジナイザーで均一にし、 1 リッ トルとなるように塩化ナトリウム飽和エタノ —ルを添加して 3 0分間攪拌後ろ紙でろ過した。 この洗浄操作をろ液の 2 6 O n mの吸光度がゼロになるまで繰り返した (通常 5回) 。 得られた残査を 1. 5リ ットルの 2 Mの塩化ナトリウムに溶解後、 不溶物を遠心分離により除去し、 あら かじめ 2 Mの塩化ナトリゥムにより平衡化した 1 0 0m lの DEAEセルロファ イン A— 8 0 0のカラムを素通しさせた。 素通り画分を排除分子量 1 0万のホロ ファイバーを装着させた限外ろ過機により 2リットルに濃縮後、 限外ろ過により 溶液を 2 mMの塩化ナトリゥムに置換した。 この溶液を遠心分離して得られた上 清を凍結乾燥し、 22. 9 gのモズク由来フコィダンを得た。 参考例 1 0
( 1 ) 乾燥したマクサ 5 0 gをはさみで細断し、 5 0 0 m 1の 8 0 %ェタノ一 ル中に懸濁後 25 °Cで 3時間攪拌し、 ろ紙でろ過した。 得られた残さを 1 リット ルの 1 0 OmMの塩化ナトリゥムを含む 3 OmMのリン酸ナトリゥム緩衝液 (P H 6. 5) に懸濁し、 95°Cで 2時間処理後、 穴径 1 0 6 /mのステンレス製ふ るいでろ過した。 得られたろ液に上記のリン酸ナトリウム緩衝液を加え、 3リツ トルとし、 5 gの活性炭を添加し、 25°Cで 1晚攪拌後、 遠心分離した。 得られ た上清を排除分子量 1 0万のホロファイバーを装着させた限外ろ過機で 20 0 m
1に濃縮後、 限外ろ過機により溶液交換して 1 OmM塩化ナトリウム溶液とした 。 溶液中の不溶物を遠心分離により除去後、 凍結乾燥し、 マクサ由来硫酸化多糖 画分の乾燥物を 2. 3 g得た。
(2) 参考例 1 0— ( 1 ) 記載の方法により乾燥ォゴノリ 5 0 gよりォゴノリ 由来硫酸化多糖 4. 4 gを調製した。 また、 同様に乾燥べテロクラディア キヤ ビラセラより、 ぺテロクラディア由来硫酸化多糖 1. O gを調製した。
(3) —① 市販の乾燥レソニァ ニグレセンスの粉末 1 k gを 1 0リッ トル の 8 0%エタノール中に懸濁後 25°Cで 3時間攪拌し、 ろ紙でろ過した。 得られ た残さを 20リッ トルの 1 0 OmMの塩化ナトリゥムを含む 3 OmMのリン酸ナ トリウム緩衝液 (pH 6. 5) に懸濁し、 9 5°Cで 2時間処理後、 穴径 1 0 6 / mのステンレス製ふるいでろ過した。 得られたろ液に 1 0 O gの活性炭、 2. 4 リットルのエタノール、 6, 0 0 0 Uのアルギン酸リア一ゼ Kを添加し、 2 5°C で 22時間攪拌後、 遠心分離した。 得られた上清を排除分子量 1 0万のホロファ ィバーを装着させた限外ろ過機で 1. 2リッ トルに濃縮後、 遠心分離により不溶 物を除去し、 5°Cで 24時間放置した。 生じた沈殿を遠心分離により除去し、 得 られた上清を限外ろ過機により溶液交換して 1 0 OmM塩化ナトリウム溶液とし た。 この溶液を 4 °C以下に冷却後、 塩酸により pHを 2. 0とし、 生じた沈殿を 遠心分離により除去した。 得られた上清の pHを水酸化ナトリウムにより 8. 0 とし、 2リッ トルに濃縮後、 限外ろ過機により 2 OmMの塩化ナトリウムに溶液 交換した。 この溶液中の不溶物を遠心分離により除去後、 凍結乾燥し、 レソニァ 由来フコィダン画分の乾燥物を 4 1 gを得た。
(3) —② 上記の凍結乾燥物 6 gを 1 0 OmMの塩化ナトリウムを含む 60 Om lの 2 OmMイミダブールー塩酸緩衝液 (pH 6) に溶解し、 あらかじめ同 緩衝液で平衡化した 5リットルの DEAE—セル口ファイン A— 8 0 0にかけ、 1 0リツ トルの同緩衝液で洗浄後、 1 0 0〜 1 6 0 OmMの塩化ナトリゥムの濃 度勾配による溶出を行った。 溶出に使用した液量は 1 3リッ トルで、 分取は 1本 あたり 5 0 Om 1で行った。 溶出画分のうち 25 OmM, 5 3 0 mM、 及び 70 OmM付近の塩化ナトリウム溶出画分をそれぞれ 5 0 Om 1ずつ純水で透析し、 凍結乾燥して凍結乾燥物をそれぞれ DEAE 3 3画分、 DEAE 37画分、 DE AE 4 0画分と命名し、 それぞれ 57mg、 24mg、 及び 6 2mg得た。 参考例 1 1
マナマコを 5 k g解体し、 内臓を除去し、 体壁を集めた。 体壁湿重量 20 O g 当り 5 0 Om 1のアセトンを加え、 ホモジナイザーで処理後ろ過し、 残渣をこれ 以上着色物質がなくなるまでアセトンで洗浄した。 この残渣を吸引乾燥し、 1 4 0 gの乾燥物を得た。 この乾燥物に 0. 4 Mの食塩水 2. 8リットルを加え、 1 00でで 1時間処理後、 ろ過し、 残渣を 0. 4 Mの食塩水で充分洗浄し、 抽出液 3. 7リツトルを得た。 この抽出液に 5 %のセチルピリジニゥムクロリ ドを沈殿 が生じなくなるまで加え、 生じた沈殿を遠心分離で集めた。 この沈殿を 0. 4M の食塩水に懸濁後再度遠心分離し、 得られた沈殿に 1 リッ トルの 4 M食塩水を添 加し、 ホモジナイザーで処理後、 攪拌しながら 4リットルのエタノールを添加し 、 1時間攪拌後、 ろ過し、 沈殿を得た。 この沈殿に対して、 80%エタノールに 懸濁後ろ過という工程を上清の 260 nmの吸光度が 0になるまで繰り返した。 得られた沈殿を 2リットルの 2M食塩水に懸濁し、 不溶物を遠心分離により除去 した。 上清を排除分子量 3万の膜を備えた限外ろ過装置により限外ろ過し、 完全 に脱塩後、 凍結乾燥し 3. 7 gのナマコ由来フコィダンを得た。 参考例 1 2
寒天末 (ナカライテスク株式会社製) 500mgを 1 00mlの蒸留水に懸濁 後、 加熱し、 寒天を溶解させた。 その後、 45 °Cまで冷却し 45 °Cで保温した。
この寒天溶解液に X 50 /Sァガラーゼバッファー (FMC社製: /3ァガラ一 ゼに付属) を 2ml添加し、 l U/zz l ァガラーゼ (FMC社製) 1 00^ 1を添加した。 この溶液を 45でで 24時間保温後、 2. 5倍量のエタノールを 添加し、 冷却後遠心分離して、 沈澱を回収した。 この沈澱を乾燥し、 20mlの 蒸留水に溶解した。 この溶解液を凍結乾燥してパウダー状のァガ口べクチン画分 を調製した。 参考例 1 3
(1) スピルリナ プラテンシス (Spirulina platensis ) の乾燥菌体 1 0 g を 1 00m 1のクロ口ホルムに懸濁し、 ろ過して不溶画分を回収する操作を 5回 繰り返した。 その後、 1 0 Om 1のエタノールに懸濁してろ過し、 不溶画分を回 収する操作を 3回繰り返した。 この操作で得た不溶画分からエタノールを完全に 除去し、 1 0 Om 1の蒸留水に懸濁した。 この懸濁液を 1時間 60°Cで保温した 後、 遠心分離して上清を得た。 この上清をさらにろ過し、 濾液に 2. 5倍量のェ 夕ノールを添加して、 一 20°Cで冷却した後、 低温で遠心分離して沈殿を得た。 この沈殿を蒸留水に溶解し、 凍結乾燥してパウダー状のスピルリナ由来の硫酸化 多糖を含有する画分を調製した。
(2) 乾燥スピルリナ粉末 (発売: (株) スピルリナ研究所) 2 O gをホモジ ナイザー (日本精機社製) に入れ、 4 0 0 m lのァセトンを加え、 8 0 0 0 r p m、 1 0分間ホモジナイズした。 ホモジネートを濾紙で濾過して、 残渣を得た。 残渣を前記の操作と同じようにアセトン洗浄を 3回繰り返し、 アセトン洗浄残渣 を得た。 アセトン洗浄残渣をアセトン洗浄と同じように、 9 0 %エタノールで 4 回、 8 0%エタノールで 4回洗浄し、 エタノール洗浄残渣を得た。
エタノール洗浄残渣に 6 0 0 m 1の 1 0 OmMの塩化ナトリウムと 1 0 %エタ ノールを含む 3 OmMのリン酸緩衝液 (pH7. 0) を加え、 室温で 1 8時間攪 拌した。 この混合物を 1 0 0 0 0 r pmで 4 0分間遠心分離し、 上清を得た。 上 清に混入した不溶物を濾紙で濾過して、 粗抽出物 (濾液) を得た。 得られた粗抽 出物を排除分子量 1万のホロファイバーを装着させた限外濾過装置で 30 Om l まで濃縮した後、 2リッ トルの 1 0%エタノールを含む 1 0 OmM塩化ナトリウ 厶を加えながら限外濾過した。 この後、 1 0%エタノール及び 5 OmMの塩化ナ トリウムを含む 1 OmMイミダゾールー塩酸緩衝液 (pH 7. 0) に溶媒置換し 、 スピルリナ高分子画分を 24 0 m lを得た。
スピルリナ高分子画分を 1 0 %エタノール及び 5 OmM塩化ナトリウムを含む 1 OmMィミダゾ一ルー塩酸緩衝液 (pH7. 0) で平衡化した D E AE—セル 口ファイン A— 8 0 0カラム (Φ3χ 14.2cm ) に添加して、 同じ緩衝液 3 60 m 1でカラムを洗浄した後、 0. 0 5M (20 Om 1 ) カヽら 2M (20 Om 1 ) までの塩化ナトリゥムのグラジェントにより溶出させた。 溶出液は一本あたり 1 Om lで分画した。 溶出画分のうち、 フラクション No.14 から 30までをスピルリ ナ硫酸化多糖画分— I (SSP-I ) 、 フラクション No.69 から 77までをスピルリナ 硫酸化多糖画分— I I (SSP-II) 、 フラクション No.78 から 83までをスピルリナ 硫酸化多糖画分- I I I (SSP-III ) 、 フラクション No.84から 99までをスピル リナ硫酸化多糖画分— IV (SSP-IV) とそれぞれ名付けた。 SSP-I、 SSP-IK SS Ρ-ΙΠ 及び SSP-IVを蒸留水に対して充分透析し、 凍結乾燥したところ、 それぞれ 200mg、 260mg、 1 00 m g及び 60 m gであった。
(3) クロレラ ブルガリス (Chlorel la vulgaris) の乾燥菌体 1 O gを 1 0 Omlのクロ口ホルムに懸濁し、 ろ過して不溶画分を回収する操作を 3回繰り返 した。 その後、 1 0 Om 1のエタノールに懸濁してろ過し、 不溶画分を回収する 操作を 3回繰り返した。 この操作で得た不溶画分からエタノールを完全に除去し 、 1 00m 1の蒸留水に懸濁した。 この懸濁液を 1時間 60°Cで保温した後、 ろ 過した。 濾液に 2. 5倍量のエタノールを添加して、 一 20°Cで冷却した後、 低 温で遠心分離して沈殿を得た。 この沈殿を蒸留水に溶解し、 凍結乾燥してパウダ 一状のクロレラ由来の硫酸化多糖を含有する画分を調製した。
(4) 乾燥クロレラ粉末 (発売: (株) クロレラ 'センタ一) 20 gをホモジ ナイザ一 (日本精機社製) に入れ、 400 m 1のアセトンを加え、 8000 r p m、 1 0分間ホモジナイズした。 ホモジネートを濾紙で濾過して、 残渣を得た。 残渣を以上の操作と同じようにアセトン洗浄を 3回繰り返し、 アセトン洗浄残渣 を得た。 アセトン洗浄残渣をアセトン洗浄と同じように、 90%エタノールで 4 回、 80 エタノールで 4回洗浄し、 エタノール洗浄残渣を得た。
エタノール洗浄残渣に 600 m 1の 1 00 mMの塩化ナトリウムと 1 0 %エタ ノールを含む 3 OmMのリン酸緩衝液 (pH7. 0) を加え、 室温で 1 8時間攪 拌した。 この混合物を 1 0000 r pmで 40分間遠心分離し、 上清を得た。 上 清に混入した不溶物を濾紙で濾過して、 粗抽出物 (濾液) を得た。 得られた粗抽 出物を排除分子量 1万のホロフアイバーを装着させた限外濾過装置で 310ml まで 濃縮した後、 3リットルの 1 0%エタノールを含む 1 0 OmM塩化ナトリウムを 加えながら限外濾過した。 この後、 1 0%エタノール及び 5 OmMの塩化ナトリ ゥムを含む 1 OmMイミダゾールー塩酸緩衝液 (pH7. 0) に溶媒置換し、 ク πレラ高分子画分を 203 mlを得た。
クロレラ高分子画分を 1 0%エタノール及び 5 OmM塩化ナトリウムを含む 1 OmMィミダゾ一ルー塩酸緩衝液 (pH7. 0) で平衡化した D E A E—セル口 ファイン A— 800カラム (Φ3χ 14.2cm ) に添加して、 同じ緩衝液 297 m 1でカラムを洗浄した後、 0. 05M (200ml) から 2M (200ml) ま での塩化ナトリウムのグラジェントにより溶出させた。 溶出液は一本あたり 1 0 mlで分画した。 溶出画分のうち、 フラクション No.63から 68までをクロレラ硫 酸化多糖画分一 I (CPS-I ) と名付け、 フラクション No.69 から 75までをクロレ ラ硫酸化多糖画分一 I I (CPS-II) と名付けた。 CSP-I 及び CSP-IIを蒸留水に対 して充分透析し、 凍結乾燥したところ、 それぞれ 1 4 Omg及び 20 Omgであ つた。
(5)市販のョモギ (Altemisia princeps pampan :阪本漢方堂製) を粉砕し たョモギ粉末 1 08を1 0 Om 1のクロ口ホルムに懸濁し、 ろ過して不溶画分を 回収する操作を 3回繰り返した。 その後、 1 0 Om 1のエタノールに懸濁してろ 過し、 不溶画分を回収する操作を 5回繰り返した。 この操作で得た不溶画分から エタノールを完全に除去し、 1 0 Om 1の蒸留水に懸濁した。 この懸濁液を 1時 間 60°Cで保温した後、 ろ過した。 濾液に 2. 5倍量のエタノールを添加して、 一 20°Cで冷却した後、 低温で遠心分離して沈殿とョモギ上清画分を得た。 この 沈殿を蒸留水に溶解し、 凍結乾燥してバウダ一状のョモギ由来の硫酸化多糖を含 有する画分を調製した。
(6)乾燥ョモギ葉 (発売:阪本漢方堂) 50 gをホモジナイザー (日本精機 社製) に入れ、 50 Om 1のアセトンを加え、 8000 r pm、 1 0分間ホモジ ナイズした。 ホモジネートを濾紙で濾過して、 残渣を得た。 以上の操作を 2度行 レ、、 得られた 1 00 gのョモギ葉の残渣をホモジナイザーに入れ、 50 Om 1の アセトンを加えて、 8000 r pm、 1 0分間ホモジナイズした。 ホモジネート を濾紙で濾過し、 残渣を得た。 この操作を 4回繰り返し、 アセトン洗浄残渣を得 た。 アセトン洗浄残渣をアセトン洗浄と同じように、 90%エタノールで 4回、 8 0%エタノールで 4回洗浄し、 エタノール洗浄残渣を得た。
エタノール洗浄残渣に 5リッ トルの 1 0 OmMの塩化ナトリウムと 1 0%エタ ノ一ルを含む 3 OmMのリン酸緩衝液 (pH 8. 0) を加え、 室温で 1 9時間攪 拌した。 この混合物を濾紙で濾過して、 粗抽出物 (濾液) を得た。 得られた粗抽 出物を排除分子量 1万のホロファイバーを装着させた限外濾過装置で 2リットル まで濃縮した後、 1 0リツトルの 1 0%エタノールを含む 1 0 OmM塩化ナトリ ゥムを加えながら限外濾過した。 この後、 5 0 0 m lまで濃縮し、 1 0%ェタノ —ル及び 5 OmMの塩化ナトリウムを含む 1 OmMイミダゾールー塩酸緩衝液 ( pH 7. 0) に溶媒置換した。 この液をビーカーに移し、 l gの活性炭を入れ、 室温で 4 0分間攪拌した後、 1 0 0 0 0 r pm、 4 0分間遠心分離した。 上清に 混入した活性炭は濾紙で濾過して、 除去した。 このようにして、 ョモギ葉高分子 画分を 5 6 0 m lを得た。
ョモギ葉高分子画分を 1 0%エタノール及び 5 OmM塩化ナトリウムを含む 1 OmMイミダゾ一ルー塩酸緩衝液 (pH 7. 0) で平衡化した D E AE—セル口 ファイン A— 8 0 0カラム (Φ3.5 X 31cm) に添加して、 同じ緩衝液 94 0 m 1でカラムを洗浄した後、 0. 0 5M (6 0 0m l ) から 2M (6 00m l ) ま での塩化ナトリウムのグラジェントにより溶出させた。 溶出液は一本あたり 1 0 m lで分画した。 溶出画分のうち、 フラクション No.180から 202 までをョモギ葉 酸性多糖画分 (YAP ) と名付け、 フラクション No.203から 270 までをョモギ葉硫 酸化多糖画分 (YSP ) と名付けた。 YAPを蒸留水に対して充分透折し、 凍結乾燥 したところ、 25 0 mgであった。
ョモギ硫酸化多糖画分をさらに分画するために、 ョモギ葉硫酸化多糖画分を 3 リッ トルの 1 0%エタノール及び 1 0 OmM塩化ナトリウムを含む 1 OmMィミ ダゾール-塩酸緩衝液 (pH7. 0) で透析した。 透析した硫酸化多糖画分 (3 27m l ) を同じ緩衝液で平衡化した DE A E—セル口ファイン A— 8 0 0力 ラム ((D3cm x 14.2cm) に添加した。 カラムを 273mlの緩衝液で洗浄した後 、 0. 1M (200ml) -2M (200ml) の塩化ナトリゥムのグラジェン トで溶出した。 溶出液は 1本あたり 5mlで分画した。 溶出画分のうち、 フラク シヨン NO.140から 154 までをョモギ葉硫酸化多糖画分— I (YSP-I ) と名付け、 フラクション No.155から 200 までをョモギ葉硫酸化多糖画分— I I (YSP- II) と 名付けた。 YSP-I と YSP- 1【をそれぞれ蒸留水に対して、 充分透析し、 凍結乾燥し たところ、 それぞれ 2017 2及び1 3 Omgであった。
YSP-II (1 1 9. 4mg) に 1 0 %エタノールを 59. 71111及ぴ0. 2 M塩 化ナトリウムを含む 1 OmMィミダゾ一ルー塩酸緩衝液 (pH7. 0) を加え、 室温で一晩攪拌して溶解した。 溶解した YSP-I Iは同じ緩衝液で平衡化した D E A E—セル口ファイン A— 800カラム (02.5 X 10.2cm) に添加した。 カラム を 200 m 1の緩衝液で洗浄した後、 0. 2M (1 00ml) — lM (1 00m 1 ) の塩化ナトリゥムのグラジェン卜で溶出した。 溶出液は 1本あたり 5m 1で 分画した。 溶出画分のうち、 フラクション No.54から 70までをョモギ葉硫酸化多 糖画分— I 1— 2 (YSP-II-2) と名付け、 フラクション No.71 から 90までをョモ ギ葉硫酸化多糖画分— I I一 3 (YSP-II-3) と名付け、 フラクション No.91 から 1 20までをョモギ葉硫酸化多糖画分— I I一 4 (YSP-II-4) と名付けた。 YSP - II -2、 YSP-II-3及び YSP-II-4をそれぞれ蒸留水に対して、 充分透析し、 凍結乾燥し たところ、 それぞれ 39. 5mg、 6 1mg、 57. 3 m であった。
(7)市販の食用二ガウリをミキサーで粉砕した粉砕物を凍結乾燥し、 二ガウ リ乾燥物を得た。 二ガウリ乾燥物 1 0 を1 00m 1のクロ口ホルムに懸濁し、 ろ過して不溶画分を回収する操作を 5回繰り返した。 その後、 1 00mlのエタ ノールに懸濁してろ過し、 不溶画分を回収する操作を 3回繰り返した。 この操作 で得た不溶画分からエタノールを完全に除去し、 1 00m 1の蒸留水に懸濁した 。 この懸濁液を 1時間 60てで保温した後、 ろ過した。 濾液に 2. 5倍量のエタ ノールを添加して、 — 20°Cで冷却した後、 低温で遠心分離して沈殿を得た。 こ の沈殿を蒸留水に溶解し、 凍結乾燥してパウダー状の硫酸化多糖を含有する画分 を調製した。
(&) 市販のキダチアロエの葉 5枚から透明状の葉肉部分を回収し、 凍結乾燥 した。 このアロエ葉肉凍結乾燥物 0. 48 1 gを 1 0 Οπι 1の蒸留水に懸濁した 。 この懸濁液を 1時間 60てで保温した後、 ろ過した。 濾液に 2. 5倍量のエタ ノールを添加して、 — 20でで冷却した後、 低温で遠心分離して沈殿を得た。 こ の沈殿を蒸留水に溶解し、 凍結乾燥してバウダー状のァ口ェ葉肉由来硫酸化多糖 を含有する画分を調製した。
—方、 上記方法で透明状の葉肉部分を回収した残りの緑色の葉表面部分を粉砕 後、 凍結乾燥した。 その凍結乾燥物 3. 43 gを 1 0 Om 1のクロ口ホルムに懸 濁し、 ろ過して不溶画分を回収する操作を 3回繰り返した。 その後、 1 00ml のエタノールに懸濁してろ過し、 不溶画分を回収する操作を 3回繰り返した。 こ の操作で得た不溶画分からエタノールを完全に除去し、 1 0 Omlの蒸留水に懸 濁した。 この懸濁液を 1時間 60°Cで保温した後、 ろ過した。 濾液に 2. 5倍量 のエタノールを添加して、 一 2 (TCで冷却した後、 低温で遠心分離して沈殿を得 た。 この沈殿を蒸留水に溶解し、 凍結乾燥してパウダー状のアロエ葉表面物由来 硫酸化多糖を含有する画分を調製した。 参考例 1 4
( 1 ) D— ( + ) —グルコース 200 mg ( 1. 1 mmo 1 ) をピリジン 1 0 mlに溶解し、 室温にて Pyridine Sulfer Trioxide Complex (Py r · S〇3 : 東京化成) 1. 05 g (6. 6 mmo 1 ) を添加した後、 室温数分、 60 °C 1時 間攪拌した。 反応液を水で希釈し、 飽和水酸化バリウム水溶液で pHを中性付近 に調整してから減圧乾固した。 得られた濃縮物に再度水を添加し再び減圧乾固し た。 この操作をもう一度繰り返した。 得られた濃縮物に少量の水を添加し遠心で 硫酸バリウムの沈澱を除去し、 得られた上清を陽イオン交換カラム 〔アンバーラ イト I RA— 1 20 (Na+ ) (オルガノ) 〕 に供した。 その結果得られたカラ ム素通り画分を減圧濃縮し硫酸化 D— ( + ) -グルコース ナトリウム塩 70 0 mgを調製した。
(2) D— ( + ) —ガラク トース 24 Omg ( 1. 3mmo 1 ) をピリジン 1 0 m 1に溶解し、 室温にて Py r ' S03 1. 05 g (6. 6mmo 1 ) を添加 した後、 室温数分、 6 0で 1時間攪拌し、 以下、 参考例 1 4一 ( 1 ) と同様の操 作で、 硫酸化 D— ( + ) —ガラクトース ナトリゥム塩 4 0 6 mgを調製した。
(3) D— ( + ) —マンノース 20 Omg ( 1. 3mm o 1 ) をピリジン 1 0 m 1に溶解し、 室温にて Py r ' S03 1. 05 g (6. 6mmo 1 ) を添加し た後、 室温数分、 6 O'C 1時間攪拌し、 以下、 参考例 1 4一 ( 1 ) と同様の操作 で、 硫酸化 D— ( + ) —マンノース ナトリウム塩 70 Omgを調製した。
(4) マルトース 205 mg (0. 5 7mmo 1 ) をピリジン 1 Om lに溶解 し、 室温にて Py r · S 03 8 1 6 mg (5. 2mmo 1 ) を添加した後、 室温 数分、 60度 1時間攪拌し、 以下、 参考例 1 4 - ( 1 ) と同様の操作で、 硫酸化 マルトース ナトリウム塩 52 Omgを調製した。 ·
(5) マルト トリオース 2 0 Omg ( 0. 4mmo 1 ) をピリジン 1 Om 1に 溶解し、 室温にて Py r ' SOs 7 0 Omg (4. 4 mm o 1 ) を添加した後、 室温数分、 6 0度 1時間攪拌し、 以下、 参考例 1 4一 ( 1 ) と同様の操作で、 硫 酸化マルトトリオース ナトリウム塩 42 Omgを調製した。
(6) トレハロース 25 Omg (0. 73mmo 1 ) をピリジン 1 0 m 1に溶 解し、 室温にて Py r · S03 1. 1 g ( 7 mm o 1 ) を添加した後、 室温数分 、 6 0°C 1時間攪拌し、 以下、 参考例 1 4一 ( 1 ) と同様の操作で、 硫酸化トレ ハロース ナトリウム塩 75 Omgを調製した。
(7) ラクト一ス 222mg (0. 62mmo 1 ) をピリジン 1 Om lに溶解 し、 室温にて Py r · S〇3 7 8 5 mg (4. 9mmo 1 ) を添加した後、 室温 数分、 60°C 1時間攪拌し、 以下、 参考例 1 4一 ( 1 ) と同様の操作で、 硫酸化 ラクトース ナトリウム塩 476 mgを調製した。
(8) スクロース 220mg (0. 62mmo 1 ) をピリジン 1 Omlに溶解 し、 室温にて Py r · S 03 785mg (4. 9mmo 1 ) を添加した後、 室温 数分、 60°C1時間攪拌し、 以下、 参考例 1 4— (1) と同様の操作で、 硫酸化 スクロース ナトリウム塩 48 1 mgを調製した。
(9) ラクッロース 370 m g ( 1. 08 mm 01 ) をピリジン 1 0 in 1に溶 解し、 室温にて P y r · S O3 1. 38 g (8. 8mmo 1 ) を添加した後、 室 温数分、 60 °C 1時間攪拌し、 以下、 参考例 1 4一 ( 1 ) と同様の操作で、 硫酸 化ラクッロース ナトリウム塩 1 gを調製した。
(1 0) メリビオース 379 m g ( 0. 9mmo 1 ) をピリジン 1 0 m 1に溶 解し、 室温にて Py r · SOs 1. 43 g (9. Ommo 1 ) を添加した後、 室 温数分、 60 °C 1時間攪拌し、 以下、 参考例 1 4— ( 1 ) と同様の操作で、 硫酸 化メリビオース ナトリウム塩 95 Omgを調製した。
(1 1 ) D— ( + ) —キシロース 1 5 Omg ( 1. Ommo 1 ) をピリジン 1 0 m 1に溶解し、 室温にて Pyr ' SO3 770mg (4. 8mmo 1 ) を添加 した後、 室温数分、 60 °C 1時間攪拌し、 以下、 参考例 1 4一 ( 1 ) と同様の操 作で、 硫酸化 D— ( + ) —キシロース ナトリウム塩 35 Omgを調製した。
(1 2) 2—デォキシーグルコース 20 Omg ( 1. 2mm 01 ) をピリジン 1 0mlに溶解し、 室温にて Py r ' S03 920 m g ( 5. 8mmo l) を添 加した後、 室温数分、 60°C1時間攪拌し、 以下、 参考例 1 4一 (1) と同様の 操作で、 硫酸化 2—デォキシーグルコース ナトリウム塩 50 Omgを調製した
O
(1 3) D—グルシトール 1 50 m g ( 0. 83 mm o 1 ) をピリジン 1 0 m 1に溶解し、 室温にて Py r ■ S 03 955 mg (6mmo 1) を添加した後、 室温数分、 60°C1時間攪拌し、 以下、 参考例 1 4一 (1) と同様の操作で、 硫 酸化 D—グルシトール ナトリゥム塩 57 Omgを調製した。 (1 4) セロビオース 1 47mg (0. 43 mm o 1 ) をジメチルスルフォキ シド 5m 1に溶解し、 室温にて Py r · S 03 657 mg (4. 1 3mmo 1 ) を添加した後、 室温数分、 60°C1時間攪拌し、 以下、 参考例 1 4一 (1) と同 様の操作で、 硫酸化セロビオース ナトリウム塩 23 Omgを得た。
( 1 5) ィソマルトース 62mg (0. 1 8mmo 1 ) をピリジン 5m 1に溶 解し、 室温にて P y r · S 03 275 mg ( 1. 73mmo 1 ) を添加した後、 室温数分、 60 °C 1時間攪拌し、 以下、 参考例 1 4一 ( 1 ) と同様の操作で、 硫 酸化イソマルトース ナトリウム塩 1 62mgを得た。
(1 6) ッラノース 293mg (0. 86 mm 01 ) をピリジン 5mlに溶解 し、 室温にて Py r ' S03 1 3 1 Omg (8. 22mmo 1 ) を添加した後、 室温数分、 60°C 1時間攪拌し、 以下、 参考例 1 4一 ( 1 ) と同様の操作で、 硫 酸化ッラノース ナトリウム塩 835 mgを得た。
(1 7) パラチノース 31 5mg (0. 875 mmo 1 ) をピリジン 5mlに 溶解し、 室温にて Py r · S 03 1. 34 mg (8. 4mmo l) を添加した後 、 室温数分、 60 °C 1時間攪拌し、 以下、 参考例 1 4一 ( 1 ) と同様の操作で、 硫酸化パラチノース ナトリゥム塩 845 mgを得た。
(1 8) ひ一 D—夕ロース 56mg (0. 31 mm 01 ) をピリジン 5mlに 溶解し、 室温にて Py r - SO3 300mg (l. 9mmo 1 ) を添加した後、 室温数分、 60 °C 1時間攪拌し、 以下、 参考例 1 4一 ( 1 ) と同様の操作で、 硫 酸化 D- 夕ロース ナトリウム塩 1 5 Omgを得た。
(1 9) ひ—サイクロデキストリン 7 gの完全ァセチル化体を無水酢酸と硫酸 の混合液 (49 : 1) により処理することによりマルトへキサオースの完全ァセ チル化体を得、 これをメタノール中、 ナトリウムメ トキシド (NaOMe) で 脱ァセチル化することにより、 マルトへキサオース 1. 5 gを得た。 マルトへキ サオース 79mg (0. 83mmo 1 )、 ピペリジン硫酸 1. 33 gをジメチル スルフォキシド (DMSO) 5mlに溶解し、 80°C2時間攪拌した。 反応液を 冷却後、 分子量 1 000カツ 卜の透析膜にて 2日間透析した。 得られた透析内液 を陽イオン交換カラム 〔アンバーライト I RA— 1 20 (Na+ ) (オルガノ) 〕 に供じた。 その結果得られたカラム素通り画分を減圧濃縮し硫酸化マルトへキ サオースナトリウム塩 1 67 mgを調製した。
(20) —サイクロデキストリン 2. 2 gの完全ァセチル化体を無水酢酸と 硫酸の混合液 (49 : 1) により処理することによりマルトヘプ夕オースの完全 ァセチル化体得、 これをメタノール中、 NaOMeで脱ァセチル化することによ り、 マルトヘプ夕オース 0. 5 gを得た。 マルトヘプ夕オース 2 Omg (0. 8 3mmo l) 、 ピぺリジン硫酸 325 m gを DMS 05 m 1に溶解し、 80 °C 2 時間攪拌した後、 以下、 参考例 1 4— (1 9) と同様の操作で、 硫酸化マルトへ プ夕オースナトリウム塩 45. 6mgを調製した。
(21) マルトへキサオースの完全ァセチル化体をジクロロメタン中、 トリク ロロァセトニトリル、 炭酸カリウム存在下攪拌することにより、 ァセチル化マル トへキサオースのィミデート体を得た。 ァセチル化マルトへキサオースのィミデ ―ト体とドデカノールをジクロロメタン中、 トリフルォロメタンスルホン酸トリ メチルシリルを触媒として反応し、 得られた反応物を脱ァセチル化することによ りドデシルーマルトへキサオースを得た。 ドデシルーマルトへキサオース 370 mg (0. 32mmo 1 ) を DMS〇 1 0mlに溶解し、 80°Cにて 2時間攪拌 した後、 以下、 参考例 1 4一 (1 9) と同様の操作で、 硫酸化ドデシルーマルト へキサオースナトリゥム塩 70 Omgを調製した。
(22) スターチ 276mgを DMSO l 0mlに溶解し、 室温にて Py r · S 03 2. 76 gを添加した後、 80°Cにて 2時間攪拌した。 反応液を冷却後、 ァ セトンを添加し、 生じた不溶画分をメタノールで数回洗浄した後、 水で希釈して 陽イオン交換カラム 〔アンバーライト I RA— 1 20 (Na+ ) (オルガノ) 〕 に供じた。 その結果得られたカラム素通り画分を減圧濃縮し、 硫酸化スターチナ トリウム塩 350mgを調製した。 (23) カードラン 1 1 1 mgを DMS〇 5m 1に溶解し、 室温にて Py r · SOs 1. 1 1 gを添加した後、 8 0°Cにて 2時間攪拌した。 反応液を冷却後、 アセトンを添加し、 生じた不溶画分を水で希釈し、 飽和重炭酸ナトリウム水で P H中性付近に中和した後、 分子量 1 0 0 0カツ トの透析膜にて 1日間透析した。 得られた透析内液を陽イオン交換カラム 〔アンバーライト I RA— 1 2 0 ( a + ) (オルガノ) 〕 に供じた後、 減圧乾固することにより硫酸化カードランナト リウム塩 1 8 Omgを調製した。
(24) ぺクチン 26 7111£を01^3051111に溶解し、 室温にて Py r · S 〇3 2. 6 7 gを添加した後、 8 0°Cにて 2時間攪拌した。 反応液を冷却後、 参 考例 1 4— (23) と同様の操作で、 硫酸化べクチンナトリゥム塩 3 84 mgを 調製した。 実施例 1
( 1 ) 1 X 1 05 c e l l s Zm l となるように 1 0 %牛胎児血清を含んだ D ME培地に懸濁した MR C- 5細胞 (CCL 1 7 1 :大日本製薬社製、 c o d e . 0 2 - 0 2 1 ) 5 0 0 1を 4 8穴の細胞培養プレートに入れ、 37。C、 5 % C02 存在下で 24時間培養後に 1 %牛胎児血清を含んだ DME培地に交換した 。 その後、 試料として参考例 1一 ( 1 ) に記載のガゴメ昆布由来フコイダンを最 終濃度が 1、 1 0、 1 0 0 gZm l となるように添加し、 さらに 24時間培養 した後、 培地を回収し、 Quantikine Human Hepatocyte Growth Factor (HGF ) ELISA Kit (フナコシ社製、 C o d e. RS- 0 64 1- 00) を用いて、 培 地中の H G Fの量を測定した。
コントロールとして試料と同量の蒸留水を添加した。 コントロールの HGF量 は 7. S n gZm lであり、 この値を 1 0 0 %とした、 各試料添加区の HG F産 生量を表 1に示す。 なお、 実験は全て 2連で行い、 その平均値を採用した。 表 1 ガゴメ昆布由来フコィダン HGFの産生量
Figure imgf000058_0001
0 1 00
1 2 1 4
1 0 339
1 00 339
ガゴメ昆布由来フコィダン添加群は、 蒸留水添加のコントロールより、 有意に HGFの産生量が増加していた。 またへパリン、 あるいは低分子化へパリンを添 加した場合に比べ、 顕著に HGFの産生量が増加することにより、 ガゴメ昆布由 来フコィダンはこれまで HGFの産生誘導が確認されているへパリンあるいは平 均分子量約 5000の低分子化へパリンより高い HGF産生を促進する活性を有 ることが示された。
( 2 ) 実施例 1一 ( 1 ) と同一の条件で、 参考例 1一 ( 2 ) 記載の方法で調製 した I画分、 I I画分、 I I I画分、 参考例 2記載の方法で調製した 7— 1 2 S Fd_F、 参考例 4記載の方法で調製した 6-2 S、 参考例 6記載の方法で調製 したワカメ メカブ由来フコィダン、 及び参考例 7記載の方法で調製したヒバマ 夕由来フコィダンのそれぞれの H G F産生誘導作用を測定した。 その結果を表 2 〜4に示す。 試料 濃度 HGFの産生量
(UL s m 1 ) (%)
I画分 1 1 67
1 0 0 234
I I画分 1 20 8
1 0 0 3 5 9
I I I画分 1 1 4 6
1 0 0 2 9 1
(3ン卜 ϋ- -ルの HGF産生量は 8. 3 n g/m 1であった。 )
表 3 試料 濃度 HGFの産生量
Figure imgf000060_0001
ヒノくマ夕由来フコィダン 1 1 4 8
1 0 2 4 6
1 0 0 3 3 5 ワカメ メカブ由来 1 1 7 9
フコィダン 1 0 2 5 0
1 0 0 2 9 1
7 - 1 2 S F d -F 1 1 4 9
1 0 2 7 6
1 0 0 3 3 9
(コントロールの HGF産生量は 8. 6 n gZm lであった。 )
試料 濃度 HGFの産生量
Figure imgf000060_0002
6 - 2 S 1 0 1 1 2
1 0 0 2 4 6
(コントロールの HGF産生量は 9. 9 n gノ m lであった。 ) ガゴメ昆布由来フコィダンの分画物、 即ち、 U—フコィダン、 F—フコィダン 、 ヒバマ夕由来フコィダン、 ワカメ メカブ由来フコィダン、 F—フコィダン由 来の 7— 1 2 SFd— F、 U—フコィダン由来の 6— 2 Sにそれぞれ強い HGF 産生誘導作用が認められた。 また、 参考例 1一 ( 1 ) 記載のマ昆布由来フコイダ ン、 レソニァ ニグレセンス由来フコィダン、 参考例 7記載のァスコフィラム ノ ドスム由来フコィダン、 参考例 8記載の酸分解物、 及び A〜F画分もそれぞれ 強い H G F産生誘導作用が認められた。
(3) ー① 参考例 1一 ( 1 ) 記載の方法で調製したガゴメ昆布由来フコイダ ンの 2%溶液をクェン酸又は硫酸で pH 3に調製し、 それぞれを 1 0 0°Cで加熱 し、 3 0分後、 1時間後、 2時間後、 4時間後にそれぞれの加水分解液を調製し 、 その HGF産生誘導作用を実施例 1 - ( 1 ) と同一の条件で測定した。 なお試 料は酸分解液の 1 0倍希釈液を用いた。
表 5 試料 加熱時間 HGFの産生量
{%) 未分解液 4 4 8 硫酸分解液 3 0分間 3 6 4
1時間 3 8 5
2時間 3 6 8
4時間 3 4 5 未分解液 4 8 0 クェン酸分解液 3 0分間 4 0 2
1時間 4 2 9
2時間 3 9 7
4時間 3 4 1
(コントロールの HGF産生量は 8. 6 n g/ 1であった。 )
(3) —② 実施例 1一 (3) —①で調製したガゴメ昆布由来フコィダンのク ェン酸存在下での 4時間加熱処理物をゲルろ過により分画した。
すなわちトヨパール HW4 0 C 1. 5リットルを充塡したカラムを水で平衡 化し、 このカラムにガゴメ昆布由来フコィダンの加熱処理物 1 0m lをアプライ し、 その後流速 l m lノ分で水で溶出した。 最初の 6 8 0 m lは、 そのまま溶出 し、 その後 1 4m lづっ分画し、 加熱処理物のゲルろ過分画物を得た。
この分画物を TLC (溶媒、 酢酸プチル:酢酸:水 = 3 : 4 : 3、 検出剤オシ ォノール硫酸) で分析し、 スポットのパターンより、 分画 1 2〜1 3、 1 6〜1 7、 26〜40等のゲルろ過分画として集め、 凍結乾燥した。 得られた各画分の の凍結乾燥物を、 1 0 Omg/m 1になるように水に再溶解し、 その HGF産生 誘導作用を実施例 1一 (1) と同一の条件で測定した。
その結果、 分画 1 2〜1 3、 及び分画 1 6〜1 7の各々の分画物に HGF産生 誘導活性が認められた。
分画 1 2〜1 3の分画物は構造決定を行い、 その分析値は、 国際公開第 91/ 26896号パンフレツトに記載の下記式 (V I I I) で表される化合物の分析 値と一致し、 グルクロン酸とマンノースの重合体に H G F産生誘導活性が認めら れた。
Figure imgf000063_0001
(4)市販のデキストラン硫酸ナトリウム (シグマ社製) 溶液を調製し、 その HGF産生誘導作用を実施例 1一 (1)記載の方法にしたがって測定した。 表 6 に示すように、 デキストラン硫酸ナトリウムは HGF産生誘導作用を示した。 表 6 デキストラン硫酸ナトリウム HGFの産生量
(平均分子量) ( g/m 1 )
1万 1 5 88
1 0 655
1 0 0 78 7
8千 1 3 95
1 0 5 73
1 0 0 6 95
5千 1 3 9 8
1 0 4 2 1
1 0 0 5 65
(コントロールの HGF產生量は 6. 7ngZmlであった。 )
(5) 市販の; I一力ラギ一ナン (ナカライテスク社製) の溶液を調製し、 その GF産生誘導作用を実施例 1一 ( 1 ) の方法に従って測定した。 表 7に示すよ うに; I—カラギーナンは HGF産生誘導作用を示した。
λ—力ラギーナン HGFの産生量
{p. g/m 1 ) (%)
1 1 5 2
1 0 1 4 0
(コントロールの HGF産生量は 1 3. 4 n g/ 1であった。 )
(6) —① 市販のアルギン酸 (和光純薬社製:膨潤性) の溶液を調製し、 そ の HGF産生誘導作用を実施例 1 - ( 1 ) の方法に従って測定した。 表 8に示す ようにアルギン酸は HGF産生誘導作用を示した。 表 8 アルギン酸 HGFの産生量
( z /m 1 ) {%)
1 1 2 5
1 0 1 5 4
1 0 0 3 2 7
(コントロールの HGF量は 7. 3 n g/m lであった。 )
( 6) ー② 同様に、 アルギン酸 (膨潤性、 和光純薬社製:試料①) 、 アルギ ン酸 (非膨潤性、 和光純薬社製:試料②) 、 アルギン酸 ( 1 0 0〜1 5 Ocp、 和 光純薬社製:試料③) 、 アルギン酸 ( 3 0 0〜 4 0 0 cp、 和光純薬社製:試料④ ) 、 アルギン酸 (5 0 0〜6 0 Ocp. 和光純薬社製:試料⑤) の HGF産生誘導 活性を検討した。 表 9に示したように、 試料①から⑤は全て HGFの産生を誘導 した。 以上のことより、 酸性多糖であるアルギン酸にも HGF産生誘導活性があ ることが明らかになった。 表 9
HGFの産生量 ( )
試料① 試料② 試料③ 試料④ 試料⑤
1 0 1 54 1 38 1 1 5 1 27 1 04
1 00 327 1 58 1 84 1 52 1 87
(試料①、 ②のコントロールの HGF産生量は 7. 3ngZml、 試料③、 ④、 ⑤のコントロールの HGF産生量は 6. 7ngZmlであった。 )
(6) ー③ 同様に、 ぺクチン酸 (ナカライテスク社製) の HGF産生誘導活 性を検討した。 表 1 0に示したように、 ぺクチン酸は HGFの産生を誘導した。 以上のことより、 酸性多糖であるべクチン酸にも HGF産生誘導活性があるこ とが明らかになった。
表 1 0 試料 濃度 HGFの産生量
( g/m 1 ) ぺクチン酸 1 1 45
1 0 21 8
1 00 684
(コントロールの HGF産生量は 5. 91 n g/m 1であった。 )
(7) サケ精子 DNA (株式会社二チロ社製) の HGF産生誘導活性を検討し た。 DNAは最終濃度が 1、 1 0、 1 00 zgZm 1になるように添加した。 表 1 1に示したように、 サケ精子 DNAは HGF産生誘導活性を示した。 表 1 1 試料 HGFの産生量
( g/m 1 ) (%)
1 1 1 0
サケ精子 DNA 1 0 1 82
1 00 285
(コントロールの HGF産生量は 9. 9ngZmlであった。 )
(8)参考例 9、 1 1で調製したモズク由来フコィダン、 ナマコ由来フコイダ ンの溶液を調製し、 その HGF産生誘導作用を実施例 1 _ (1) の方法に従って 測定した。 表 1 2に示すように各フコィダンは HGF産生誘導作用を示した。 表 1 2 試料 HGFの産生量
(u g/m 1 ) ナマコ由来フコィダン 1 2 8 2
1 0 3 5 6
1 0 0 4 9 5 モズク由来フコィダン 1 2 1 8
1 0 2 7 9
1 0 0 3 0 7
(コントロールの HGF量は 7. 7 T n g/Zm lであった。 )
(9) 参考例 1 0で調製したマクサ由来硫酸化多糖 (試料①) 、 ォゴノリ由来 硫酸化多糖 (試料②) 、 ぺテロクラディア由来硫酸化多糖 (試料③) の溶液を調 製し、 実施例 1 - ( 1 ) と同様の方法で、 HGF産生誘導活性を検討した。 試料 ①、 ③は最終濃度が 1、 1 0、 1 0 0 gZm 1になるように、 試料②は最終濃 度が 1 0、 1 0 0 gZm lになるように添加した。 表 1 3に示したように、 試 料①から③は全て H G Fの産生を誘導した。 表 1 3 試料 HGFの産生量 in g/m 1 ) 試料① 1 1 00
1 0 1 77
1 0 0 1 6 9 試料② 1 0 1 1 7
1 00 1 98 試料③ 1 1 1 6
1 0 207
1 0 0 228
(コントロールの HGF産生量は 7. S n gZm lであった。 )
( 1 0) 実施例 1一 ( 1 ) と同様の方法で、 参考例 1 0— (3) で調製したレ ソニァ由来フコィダン (試料①) 、 DEAE33画分 (試料②) 、 DEAE37画分 (試料③ )、 DEAE40画分 (試料④) の HGF産生誘導活性を検討した。 それぞれの試料は 最終濃度が 1、 1 0、 1 0 0 gZm 1になるように添加した。 表 1 4に示した ように、 試料①から④は全て HGFの産生を誘導した。 表 1 4 濃度 HGFの産生量 (%)
ill g/m 1 ) 試料① 試料② 試料③ 試料④
1 1 38 1 0 5 235 1 2 1
1 0 1 67 22 1 25 3 254
1 0 0 33 1 2 6 5 2 6 1 29 5
(コントロールの HGF産生量は 1 1. 5 n gZm lであった。 )
( 1 1 ) 実施例 1— ( 1 ) と同一の条件で参考例 3— ( 2 ) 記載の硫酸化フコ ガラクタン、 参考例 1 2記載のァガロぺクチン、 コンドロイチン硫酸 B (生化学 工業社製) 、 コンドロイチン硫酸 D (生化学工業社製) の HGF産生誘導活性を 検討した。 それぞれの試料は最終濃度が 1、 1 0、 1 0 0 /zgZm 1になるよう に添加した。 表 1 5〜1 7に示したように、 硫酸化フコガラクタン、 了ガロぺク チン、 コンドロィチン硫酸は HGFの産生を誘導した。 表 1 5 試料 濃度 HGFの産生量
(n g/ 1 ) (%) 硫酸化フコガラクタン 1 1 94
1 0 35 5
1 0 0 4 29
(コントロールの HGF産生量は 4. S n gZm lであった。 ) 表 1 6 試料 HGFの産生量
( g/m 1 ) ァガロぺクチン 1 1 1 7
1 0 1 2 1
1 0 0 2 5 6
(コントロールの HGF産生量は 6. 7 n gZm lであった。 ) 表 1 7 試料 HGFの産生量
Figure imgf000071_0001
コンドロイチン硫酸 B 1 1 1 7
1 0 1 2 1
1 0 0 2 5 6 コンドロィチン硫酸 D 1 0 1 1 9
1 0 0 1 4 4
(コントロールの HGF産生量は 1 1. 9 n g/m lであった。 )
( 1 2) 実施例 1一 ( 1 ) と同一の方法で参考例 1 3— ( 1 ) 、 1 3 - (3) 、 1 3— (5) 、 1 3— (7) 、 1 3— (8) でそれぞれ調製したスピルリナ由 来硫酸化多糖、 クロレラ由来硫酸化多糖、 ョモギ由来硫酸化多糖、 二ガウリ由来 硫酸化多糖、 アロエ葉肉由来硫酸化多糖、 及びアロエ葉表面物由来硫酸化多糖の HGF産生誘導活性を検討した。 スピルリナ由来硫酸化多糖、 ョモギ由来硫酸化 多糖は最終濃度が 1、 1 0、 1 0 0 g/m 1になるように添加した。 クロレラ 由来硫酸化多糖、 二ガウリ由来硫酸化多糖、 アロエ葉肉由来硫酸化多糖、 アロエ 葉表面物由来硫酸化多糖はそれぞれ最終濃度が 1、 1 0、 1 0 0、 1 0 0 0 /m 1になるように添加した。 表 1 8〜2 0に示したように、 スピルリナ由来硫 酸化多糖、 クロレラ由来硫酸化多糖、 ョモギ由来硫酸化多糖、 二ガウリ由来硫酸 化多糖、 アロエ葉肉由来硫酸化多糖、 アロエ葉表面物由来硫酸化多糖は HGFの 産生を誘導した。 表 1 8 試料 HGFの産生量
(u s/m 1 ) (%) スピルリナ由来硫酸化多糖 1 1 4 9
1 0 2 9 3
1 0 0 3 9 8 クロレラ由来硫酸化多糖 1 1 0 8
1 0 1 4 9
1 0 0 1 7 5
1 0 0 0 3 9 6
(コントロールの HGF産生量は 7. 9 n gZm lであった。 ) 表 1 9 試料 HGFの産生量
{β g/ 1 ) (%) ョモギ由来硫酸化多糖 1 1 3 7
1 0 2 8 4 1 0 0 2 6 5
(コントロールの HGF産生量は 1 2. 7 n g/m 1であった。 )
表 20 試料 濃度 HGFの産生量
Figure imgf000074_0001
二ガウリ由来硫酸化多糖 1 1 1 1
1 0 1 04
1 0 0 1 33
1 0 0 0 1 9 0 アロエ葉肉由来 1 1 1 1
硫酸化多糖 1 0 1 25
1 00 1 50
1 0 0 0 4 0 1 アロエ葉表面物由来 1 1 06
硫酸化多糖 1 0 1 25
1 0 0 1 20
1 0 0 0 328
(コントロールの HGF産生量は 8. 7 n g/m 1であった。 )
( i 3) 実施例 1一 ( 1 ) と同様の方法で、 参考例 1 3— (2) で調整したス ピルリナ分画物 SSP-I (試料①) 、 SSP- II (試料②) 、 SSP- ΠΙ (試料③) 、 SS P - IV (試料④) の HGF産生誘導活性を検討した。 それぞれの試料は最終濃度が 1、 1 0、 1 0 0 /Z gZm 1になるように添加した。 表 2 1に示したように、 試 料①から④は全て H G Fの産生を誘導した。 表 2 1 濃度 HGFの産生量 (%)
in gZm 1 ) 試料① 試料② 試料③ 試料④
1 24 0 1 6 5 1 4 1 2 1 8
1 0 24 3 1 5 2 270 282
1 0 0 3 02 2 1 2 28 0 35 1
(コント -ルの HGF産生量は、 7. 3 n g/m 1であった,
( 1 4) 実施例 1一 ( 1 ) と同様の方法で、 参考例 1 3— (4) で調整したク ロレラ抽出物の CSP- 1 画分 (試料①) 、 CSP-II画分 (試料②) の HGF産生誘導 活性を検討した。 試料①は最終濃度が 1 0、 1 00 / g/m 1、 試料②は最終濃 度が 1 0 0 gZm 1になるように添加した。 表 22に示したように、 試料①、 ②は H G Fの産生を誘導した。 表 22 試料 HGFの産生量
Figure imgf000075_0001
試料① 1 0 1 1 1
1 0 0 1 7 3 試料② 1 0 0 1 7 5
(コントロールの HGF産生量は、 1 1. 4 n gZm lであった。 ) ( 1 5) 実施例 1一 ( 1 ) と同様の方法で、 参考例 1 3— (6) で調整したョ モギ抽出物の YAP画分 (試料①) 、 YSP-I 画分 (試料②) 、 YSP-II画分 (試料③ ) 、 YSP-II- 2画分 (試料④) 、 YSP-II -3画分 (試料⑤) 、 YSP-II-4画分 (試料⑥ ) の HGF産生誘導活性を検討した。 それぞれの試料は最終濃度が 1、 1 0、 1 0 0 zgZm 1になるように添加した。 表 2 3、 表 24に示したように、 試料① から⑥は全て HGFの産生を誘導した。 特に、 YSP- II画分 (試料③) 、 YSP-II— 3画分 (試料④) 、 YSP-II - 4画分 (試料⑤) に強い HGF産生誘導活性が確認 された。 表 23 試料 HGFの産生量
Figure imgf000076_0001
試料① 1 0 1 2 1
1 0 0 26 6 試料② 1 1 04
1 0 1 4 8
1 0 0 3 8 1 試料③ 1 328
1 0 38 6
1 0 0 3 9 0
(コントロールの HGF産生量は 1 1. 5 n gZm lであった。 ) 表 24
HGFの産生量 (%)
i g/ 1 ) 試料④ 試料⑤ 試料⑥
1 1 5 2 29 0 22 6
1 0 4 6 2 38 3 3 22
1 0 0 4 75 32 1 3 1 4
(コントロールの HGF産生量は 7. 7 n gZm lであった。 )
( 1 6) 実施例 1一 ( 1 ) と同一の方法で参考例 1 4で調製した硫酸化マルト —ス ナトリウム塩、 硫酸化マルト トリオース ナトリウム塩、 硫酸化ラク トー ス ナトリウム塩、 硫酸化スクロース ナトリウム塩、 硫酸化トレハロース ナ トリウム塩、 硫酸化グルコース ナトリウム塩、 硫酸化ラクッロース ナトリウ ム塩、 硫酸化メリビオース ナトリウム塩、 硫酸化ガラクトース ナトリウム塩 、 硫酸化マンノース ナトリウム塩、 硫酸化キシロース ナトリウム塩、 硫酸化 2—デォキシ—グルコース ナトリウム塩、 硫酸化グルシトール ナトリウム塩 、 硫酸化セロビオース ナトリウム塩、 硫酸化イソマルトース ナトリウム塩、 硫酸化ッラノース ナトリウム塩、 硫酸化パラチノース ナトリウム塩、 硫酸化 夕□—ス ナトリウム塩、 硫酸化マルトへキサオース ナトリウム塩、 硫酸化マ ルトヘプ夕オース ナトリウム塩、 硫酸化ドデシルーマルトへキサオース ナト リウム塩、 硫酸化スターチ ナトリウム塩、 硫酸化カードラン ナトリウム塩、 硫酸化べクチン ナトリウム塩の HGF産生誘導活性を検討した。 それぞれの試 料は最終濃度が 1、 1 0、 1 0 0〃 gZm 1、 又は 1 0、 1 0 0、 1 00 0〃g /m 1、 又は 1 0 0 gZm 1になるように添加した。 コントロールとして、 試 料と同量の蒸留水を添加した。 また、 硫酸化していないそれぞれの糖もそれぞれ の硫酸化糖と同濃度で H G F産生誘導活性を測定した。
表 25〜34に示したように、 硫酸化オリゴ糖、 硫酸化単糖は HGFの産生を 誘導した。 なお、 硫酸化されていないそれぞれの糖は、 HGFを誘導しなかった 更に硫酸化ドデシルーマルトへキサオース ナトリウム塩の結果より、 糖が脂 質により修飾を受けていても HGF産生誘導活性は保持されることが明らかにな つた c 表 25 試料 HGFの産生量
(u s/m 1 ) (%) 硫酸化マルトース 1 1 4 2
ナトリウム塩 1 0 273
1 0 0 4 3 9 硫酸化マルトトリオース 1 1 5 1
ナトリウム塩 1 0 28 6
1 0 0 3 87
(コントロールの HGF産生量は 8. T n gZm lであった。 )
表 2 6 試料 HGFの産生量
( ig m 1 ) (%) 硫酸化ラクトース 1 1 1 8
ナトリゥム塩 1 0 1 8 5
1 0 0 4 1 0 硫酸化スクロース 1 1 73
ナトリウム塩 1 0 3 5 5
1 0 0 5 0 1 硫酸化グルコース 1 1 7 8
ナトリウム塩 1 0 3 7 7
1 0 0 8 6 4
(コントロールの HGF産生量は 5. 5 n g/m 1であった。 ) 表 2 7 試料 濃度 HGFの産生量
( g/m 1 ) 硫酸化トレハロース 1 2 7 7
ナトリゥム塩 1 0 4 4 7
1 0 0 4 2 1
(コントロールの HGFの產生量は 4. 3 n gZm lであった。 ) 表 2 8 試料 濃度 HGFの産生量
( z g/m 1 ) (%) 硫酸化ガラクトース 1 0 0 1 6 6
ナトリゥム塩
(コントロールの HGF産生量は 1 2. 7 n g/m 1であった, 表 2 9 試料 濃度 HGFの産生量
( g/m 1 ) {%) 硫酸化マンノース 1 1 1 2
ナトリウム塩 1 0 1 7 5
1 0 0 4 5 6
(コントロールの HGF産生量は 6. 2 n gZm lであった。 )
表 3 0 試料 HGF産生量
( gZm 1 ) (%) 硫酸化ラクッロース 1 0 1 39 ナトリウム塩 1 0 0 3 76
1 0 0 0 5 8 3 硫酸化メリビオース 1 0 24 0 ナトリゥム塩 1 0 0 4 03
1 0 0 0 6 67 硫酸化キシロース 1 0 1 1 0 ナトリウム塩 1 0 0 1 1 2
1 0 0 0 2 84 硫酸化 2—デォキシ 1 0 1 27 グルコース ナトリゥム塩 1 0 0 1 02
1 0 0 0 2 3 9 硫酸化グルシトール 1 0 1 1 2 ナトリウム塩 1 0 0 20 3
1 0 0 0 3 35
(コントロールの HGF産生量は 5. 9 n gZm lであった。 ) 表 3 1 試料 濃度 HGF産生量
in g/m 1 ) 硫酸化セロビオース 1 0 1 0 0
ナトリゥム塩 1 0 0 1 4 3
1 0 0 0 5 4 6 硫酸化ィソマルト一ス 1 0 1 3 4
ナトリゥム塩 1 0 0 3 0 1
1 0 0 0 4 7 7 硫酸化ッラノース 1 0 1 2 7
ナトリゥム塩 1 0 0 2 0 3
1 0 0 0 3 7 9 硫酸化パラチノース 1 0 1 3 2
ナトリゥム塩 1 0 0 2 7 8
1 0 0 0 5 1 9
(コントロールの HGF産生量は硫酸化セロビオース ナトリウム塩が 1 1 . 1 n gZm 1、 硫酸化イソマルトース ナトリウム塩が 1 1. 3 n gZm 1、 硫酸化ッラノース ナトリウム塩と硫酸化パラチノース ナトリウム塩が 8. 6 n g/m 1であった。 ) 表 3 2 試料 HGFの産生量
(JI g/m 1 ) 硫酸化夕ロース 1 0 1 1 2
ナトリゥム塩 1 0 0 2 6 3
1 0 0 0 4 9 4
(コントロールの HGF産生量は 9. 5 n gZm lであった。 ) 表 3 3 試料 HGFの産生量
Figure imgf000083_0001
硫酸化マルトへキサオース 1 0 4 0 7
ナトリウム塩 1 0 0 5 7 1
1 0 0 0 7 6 1 硫酸化マルトへプタオース 1 0 3 4 1
ナトリウム塩 1 0 0 4 8 6
1 0 0 0 7 0 6 硫酸化ドデシルー 1 0 2 8 9 マルトへキサオース 1 0 0 3 7 1 ナトリウム塩 1 0 0 0 3 5 9
(コントロールの HGF産生量は 8. 1 5 n gZm lであった。 ) 表 34 試料 HGFの産生量
( z g/m 1 ) (%) 硫酸化スターチ 1 0 78 1
ナトリウム塩 1 00 864
1 000 804 硫酸化ガードラン 1 0 359
ナトリゥム塩 1 00 503
1 000 6 1 7 硫酸化ぺクチン 1 0 721
ナトリウム塩 1 00 780
1 000 648
(コントロールの HGF産生量は 8. 1 5ng//mlであった。 ) 実施例 2
( 1 ) 実施例 1一 ( 1 ) と同一の方法で参考例 1一 ( 1 ) 記載のガゴメ昆布由 来フコィダンとプロスタグランジン、 I L一 1との HGF産生誘導作用に対する 相乗効果について検討した。
すなわち当該フコィダンと PGE, (和光純薬社製) 、 I L一 1ひ (ジ ンザ ィム社製) を同時に添加し、 HGF産生誘導活性の相乗効果を検討した。
フコィダン試料は最終濃度が 1、 1 0、 1 00〃gZm 1になるように添加し た。 PGE, は 0. 1、 1 uM、 I L一 1ひは 1 n g/m 1になるように添加し た。 コントロールとして、 試料と同量の蒸留水を添加した。
それぞれ、 フコィダン試料あるいは PGE, 、 I L一 1ひの単独添加時の産生 量と比較して、 その相乗効果について検討した。
その結果を表 35、 3 6に示す。 表 35、 3 6において、 コントロールの HG F産生量を 1 0 0%として表した。 実験は全て 2連で行いその平均値を採用した 。 表 3 5、 3 6に示すようにフコィダンと、 PGE, 又は I L— 1 ひの同時添加 により、 H G Fの産生誘導に対する相乗効果が認められた。 表 35 フコィダン添加量 PGEi 添加量 ( αΜ)
(fi g/m 1 ) 0 0. 1 1
HGFの産生量 (%)
0 1 00 1 1 9 1 5 7 1 1 95 3 34 4 1 5
1 0 33 1 5 1 7 5 6 1
1 0 0 3 82 7 3 1 6 82
表 3 6 フコィダン添加量 I L- 1 ひ添加量 (n g/m 1 )
( g/ 1 ) 0 1
HGFの産生
0 1 0 0 1 6 3
1 2 0 6 4 2 1
1 0 3 5 0 6 7 2
1 0 0 4 0 3 7 8 0
(コントロールの HGF産生量は 9. 1 n gZm 1であった。 )
(2) 実施例 2— ( 1 ) と同様の方法で参考例 2の 7— 1 2 SF d— Fとプロ ス夕グランジン、 I L一 1 との HGF産生誘導作用に対する相乗効果について検 討した。 7— 1 2 SF d— Fと PGE! 、 I L- 1 ひを同時に添加し、 HGF産 生誘導活性の相乗効果を検討した。 それぞれの 7— 1 2 SF d— Fは最終濃度が 1、 1 0、 1 0 0 gZm 1になるように添加した。 それぞれの 7— 1 2 S F d 一 F添加細胞にさらに同時に PGE, 、 I L一 1 ひを添加した。 PGE! は、 0 . 1、 1 zM、 1しー 1 は、 0. 1、 1 n g/m 1になるように添加した。 ネ ガティブコントロールとして、 試料と同量の蒸留水を添加した。 それぞれ、 7— 1 2 SF d— Fあるいは PGE, 、 I L— 1 ひの単独添加の産生量と比較して相 乗効果について検討した。 HGFの産生量は、 蒸留水のみを添加したネガティブ コントロール 1 0 0 %として表した。 その結果を表 3 7、 3 8に示した。 実験は 全て 3連で行いその平均値を採用した。 表 37
7 - 1 2 S PGE, 添加量 ( /M)
F d-F 0. 1 1
添加量
( β g / 1 ) HGFの産生量 ( )
0 1 00 1 23 1 70 1 1 20 1 5 8 2 1 6
1 0 2 1 8 30 9 3 1 7 1 0 0 2 1 9 3 6 5 38 2
(コントロールの HGF産生量は 5. 1 n g/m 1であった。 )
表 38
7 - 1 2 S I L- 1 ひ添加量 (n gZm l )
Fd-F 0 0. 1 1
添加量
( g/m 1 ) HGFの産生量 ( )
0 1 0 0 1 30 1 5 1 1 1 4 0 1 6 8 1 5 9
1 0 1 9 1 1 54 20 8
1 0 0 2 0 3 25 5 222
(コントロールの HGF産生量は 5. 1 n g/m 1であった。 )
実施例 3
( 1 ) 1 X 1 05 c e 1 1 sZm 1 となるように 1 0 %牛胎児血清を含んだ D MEM培地に懸濁した KG— 1— C細胞 (グリオ一マ: ヒューマンサイエンス振 興財団販売) を 500 1ずつ 48穴の細胞培養プレートに入れ、 37 、 5 % C02 存在下で一晚培養後に 1 %牛胎児血清を含んだ DMEM培地に交換した。 その後、 被検試料を添加し、 さらに 20時間培養した後、 培地を回収し、 実施例 1記載の HGF EL I SA キットを用いて、 培地中の H G Fの量を測定した 被検試料はそれぞれ最終濃度が、 参考例 1一 (1) 記載のガゴメ昆布由来フコ イダンは、 1、 1 0、 1 00 gZm 1になるよう、 へパリン (和光純薬社製) は 1、 1 0 gZm 1になるように添加した。 またコントロールとして、 試料と 同量の蒸留水を添加した。 実験は全て 3連で行い、 その平均値を採用した。 結果 は表 39に示す。 表 39において、 コントロールの HGF産生量を 1 00%とし て表した。
フコイダン試料を添加した細胞群は全て、 蒸留水添加のコントロールより有意 に HGFの産生量が増加していた。 さらに、 へパリン添加よりも顕著に HGFの 産生量が増加していた。 このことより、 当該フコィダンには、 これまで HGFの 誘導が確認されているへパリンより高い H G Fの産生を促進する活性があること が示された
表 39 試料 HGFの産生量
( g/m 1 ) (96) ガゴメ昆布由来フコィダン 1 1 94
1 0 285
1 00 35 1 へパリンナトリウム塩 1 1 76
1 0 21 5
(コントロールの HGF産生量は 4. 4 n g/m 1であった。 )
(2) 1 0%牛胎児血清を含んだ RPM I 1 640培地で培養した HL— 60 細胞 (前骨髄性白血病細胞: ATCC CCL— 240) を l x l 05 c e l l s/m 1となるように 1 %牛胎児血清を含んだ RPM I 1 640培地に懸濁し、 500 1ずつ 48穴の細胞培養プレートに入れた。 その後、 1 0 nMの 1 2— 0—テトラデカノィルホルボール 1 3—アセテート (TPA :ギブコ BRL社 製) を添加し、 さらに、 被検試料を同時に添加した。 添加後 20時間培養した後 、 培地を回収し、 HGF EL I S A キットを用いて、 培地中の HGFの量を 測定した。
被検試料はそれぞれ最終濃度が、 参考例 1— (1) 記載のガゴメ昆布由来フコ イダンは、 1、 1 0、 1 00〃 gZm 1になるように添加した。 へパリンは、 1 、 1 0 g/m 1になるように添加した。 コントロールとして、 試料と同量の蒸 留水を添加した。 実験は全て 3連で行い、 その平均値を採用した。 結果は表 40 に示す。 表 40においてコントロールの HGFの産生量を 1 00%として表した フコィダン試料を添加した細胞群は全て、 蒸留水添加のコントロールより有意 に HGFの産生量が増加していた。 さらに、 へパリン添加よりも顕著に HGFの 産生量が増加していた。 このことより、 当該フコィダンには、 これまで HGFの 誘導が確認されているへパリンより高い HGFの産生を促進する活性があること が示ざれた。 表 40 試料 HGFの産生量
( g/m 1 ガゴメ昆布由来フコィダン 1 1 9 1
1 0 342
1 00 490 へパリンナトリゥム塩 1 140
1 0 1 89
(コントロールの HGFの産生量は 0. 4ng "mlであった。 ) 実施例 4
1 X 1 05 c e l l s/m 1となるように 1 0 %牛胎児血清を含んだ DME培 地に懸濁した MRC- 5細胞液 500 1を 48穴の細胞培養プレートに入れ、 37°C、 5¾C02 存在下で 24時間培養後に 1 %牛胎児血清を含んだ DME培 地に交換した。 その後、 試料を添加し、 さらに 24時間培養した。 この培地を回 収し、 HGF EL I SA キットを用いて、 培地中の HGFの量を測定した。 さらに、 細胞を PBSで洗浄後、 500 1の細胞溶解バッファー (5 OmM HEPES pH 7. 4、 1 OmM EDTA、 0. 1 % T r i t o nX 1 0 0、 1 mM PMSF、 1 fi g/ 1 p e p s t a t i nA 1 μ. g/m 1 1 e u p e p t i n) に溶解した。 さらに完全に溶解させるために超音波処理し てから、 遠心分離して上清 (細胞抽出液) を調製し、 細胞内の HGF量を培地中 の HGF濃度と同様に測定した。
被検試料である、 参考例 1一 ( 1 ) 記載のガゴメ昆布由来フコィダンは、 最終 濃度が、 1、 1 0、 1 0 0 ^ gZm 1になるように添加した。 コントロールとし て、 試料と同量の蒸留水を添加した。 実験は全て 2連で行いその平均値を採用し た。 その結果を表 4 1に示す。 表 4 1に示すように、 当該フコィダン添加群の培 地中の HGFは、 蒸留水添加のコントロールより有意に、 フコィダンの濃度依存 的に HGF量が増加していた。 一方、 細胞内の HGF量はフコィダンの濃度依存 的に減少していた。 次に、 細胞内外のトータル HGF量は濃度依存的に増加して いた。 このことより、 当該フコィダンには、 HGFの産生を促進する活性がある ことと細胞中からの HG Fの遊離を促進する働きがあることが示された。 表 4 1 ガゴメ昆布由来 HGFの産生量 (ngZwe 1 1 )
フコィダン
( i g/m l ) 培地中 細胞中 全量 コントロール 4. 2 5. 7 9. 8
1 9. 3 3. 2 1 2. 5
1 0 1 5. 9 0. 9 1 6. 8
1 0 0 1 6. 9 0. 4 1 7. 3
実施例 5
( 1 ) 1 X 1 05 c e 1 1 s/m 1 となるように 1 0 %牛胎児血清を含んだ D ME培地に懸濁した MRC— 5細胞液 50 0 1を 4 8穴の細胞培養プレートに 入れ、 3 7 °C、 5 % C 02 存在下で 24時間培養後に 1 %牛胎児血清を含んだ D ME培地に交換した。 その後、 試料を添加し、 さらに 0、 0. 5、 K 2、 4、 8、 1 2、 24時間培養した後、 培地を回収し、 HGF EL I SA キッ トを 用いて、 培地中の HGFの量を測定した。 参考例 1一 ( 1 ) 記載のガゴメ昆布由 来フコィダンは、 最終濃度が 1 0 ^gZm 1 となるように添加した。 コントロー ルとして、 試料と同量の蒸留水を添加した。 その結果を表 42に示す。 表 4 2に 示すように、 フコィダン添加群は、 コントロールより有意に時間依存的に HGF の産生量が増加していた。
このことより、 フコィダンには、 高い HGFの産生促進活性があり、 HGFの 産生量は、 経時的に増加することが示された。 表 42 培養時間 (時間)
0.5 2 4 8 12 24
HGFの産生量 (n g/m 1 ) コントロール 0.02 0.03 0.81 0.90 2.31 3.90 6.94 9.39 フコィダン添加 0.19 1.90 5.75 6.87 9.04 15.9 20.1 31.3
(2) 1 X 1 05 c e 1 1 sZm 1 となるように 1 0 %牛胎児血清を含んだ D ME培地に懸濁した MRC- 5細胞 (CCL 1 7 1 :大日本製薬社製、 c o d e. 0 2 - 0 2 1 ) 5 0 0〃 1を 4 8穴の細胞培養プレートに入れ、 37°C、 5%C02 存在下で 24時間培養後に 1 %牛胎児血清を含んだ DME培地に交換した。 その 後、 試料を添加し、 さらに 0、 0 . 5、 1 、 2、 4、 8 、 12、 24、 48、 72時間培 養した後、 培地を回収し、 Quantikine Human Hepatocyte Growth Factor (HG F) EL ISA Kit (フナコシ社製、 Code. RS- 0 64 1 - 0 0 ) を用いて、 培地中 の HGFの量を測定した。 さらに、 培地を回収した後、 細胞を PBSで洗浄後、 5 0 0 1の細胞溶解バッファ一 (50mM HE PES H7. 4 lOmM EDTA 0 . 1¾ Tr i t onXlOO、 1 mM PMSF、 1 u g m 1 p e p s t a t i n A 1 n g/m 1 1 e up e p t i n) に溶解した。 さ らに完全に溶解させるために超音波処理してから、 遠心分離して上清 (細胞抽出 液) を調製し、 細胞内の HGF量を培地中の HGF濃度と同様に測定した。 参考 例 1一 ( 1 ) 記載のガゴメ昆布由来フコィダンは、 最終濃度が 1 0 zg/m lに なるように添加した。 ネガティブコン トロールとして、 試料と同量の蒸留水を添 加した。 当該フコィダン添加群の培地中の HGF濃度は、 蒸留水添加のネガティ ブコントロールより有意に時間依存的に増加していた。 一方、 当該フコィダン添 加群の細胞内の HGF量は、 添加後、 4時間まで減少するが、 その後は一定の低 い値になった。 蒸留水添加のネガティブコントロールでは、 このような変化はな く、 常に増加傾向にあった。 このことより、 当該フコィダンには、 細胞から HG Fを遊離させる効果と HGFの產生を促進する活性があり、 H G Fの産生量は、 経時的に増加することが示された。 これらの結果を表 4 3〜4 5に示す。 表 4 3 培地中 H G F量の経時変化
0 0.5 1 — 2 4— _ 8 12 24 48 72
HGFの産生量 (n g/we 1 1 ) コントロール 0 0.11 0.19 0.29 1.07 1.56 2.34 3.46 7.45 10.5 フコィダン 添加 0.51 0.46 1.23 2.86 4.00 6.70 9.15 12.4 22.8 29.3 表 4 4 細胞中 HGF量の経時変化 培養時間 (時間)
0 0.5 1 2 4 8 12 24 48 72
HGFの產生量 (n g/we 1 1 ) コント ϋ-ル 0.51 0.52 0.66 0.56 0.71 0.63 0.86 0.73 1.02 1.20 フコィダン 添加 0.88 0.66 0. 5 0.46 0.25 0.29 0.20 0.20 0.18 0.23
表 4 5 培地中と細胞中の全 HGF量の経時変化 培養時間 (時間)
0.5 1 2 4 8 12 24 48 72
HGFの産生量 (n g/ e 1 1 ) コントロ-ル 0.51 0.63 0.85 0.84 1.78 2.19 3.19 4.19 8.47 11.6 フコィダン 添加 1.39 1.12 1.68 3.31 4.25 7.00 9.35 12.6 22.9 29.5
(3) 1 1 05 c e l l s Zm l となるように 1 0 %牛胎児血清を含んだ D ME培地に懸濁した MRC- 5細胞 (CCL 1 7 1 :大日本製薬社製、 c o d e. 02 —0 2 1 ) 5 0 0 1を 48穴の細胞培養プレートに入れ、 37°C、 5%C02 存 在下で 24時間培養後に 1 %牛胎児血清を含んだ DME培地に交換した。 その後 、 試料を添加し、 さらに 0、 0 . 5、 1 、 2、 4、 8、 12、 24、 48、 72時間培養 した後、 培地を回収し、 Quantikine Human Hepatocyte Growth Factor (HGF ) EL ISA Kit (フナコシ社製、 Code. RS- 0 6 4 1 - 0 0 ) を用いて、 培地中の HGFの量を測定した。 さらに、 培地を回収した後、 細胞を PBSで洗浄後、 5 0 0〃 1の細胞溶解バッファー (50mM HE PES pH7 . 4、 10mM E DTA、 0 . 1 % Tr i t o nXlOO、 1 mM PMSF、 1 g m 1 p e p s t a t i nA、 l g/m 1 1 e u p e p t i n) に溶角率した。 さりに 完全に溶解させるために超音波処理してから、 遠心分離して上清 (細胞抽出液) を調製し、 細胞内の HGF量を培地中の HGF濃度と同様に測定した。 7— 1 2 3 1ー?は、 最終濃度が 1 0〃g/m 1になるように添加した。 ネガティブコ ントロールとして、 試料と同量の蒸留水を添加した。 7— 1 2 SF d_F添加群 の培地中の HGF濃度は、 蒸留水添加のネガティブコントロールより有意に時間 依存的に増加していた。 一方、 7— 1 23? <^—?添加群の紬胞内の110?量は 、 添加後、 しばらくは減少するがその後増加に転じた。 蒸留水添加のネガティブ コントロールでは、 このような変化はなく、 常に一定であった。 このことより、 7— 1 2 SF d— Fには、 細胞から HGFを遊離させる効果と高い HGFの産生 を促進する活性があり、 HGFの産生量は、 経時的に増加することが示された。 その後は一定の低い値になった。 これらの結果を表 4 6〜4 8に示す。
表 4 6 培地中 HGF量の経時変化
培養時間 (時間)
0.5 1 2 4 8 12 24 48 72
HGFの産生量 (n gZwe 1 1 ) コント π-ル 0.14 0.33 0.36 0.63 1.29 1.60 2.54 3.89 7.99 13.3 7-12S
Fd-f添加 0.48 1.82 2.16 2.53 3.12 4.01 5.84 9.82 17.0 23.5
表 4 7 細胞中 H G F量の経時変化
培養時間 (時間)
0.5 1 2 4 8 12 24 48 72
HGFの産生量 (n g/we 1 1 ) コント π-ル 2.65 3.11 2.73 2.77 2.31 2.82 2.80 4.61 5.36 6.74 7-12S
Fd - F添加 2.79 1.78 1.65 1.31 1.06 1.31 1.07 1.56 2.66 3.09
表 4 8 培地中と細胞中の全 HGF量の経時変化 培養時間 (時間)
0.5 1 2 4 8 12 24 48 72
HGFの産生量 (n g/we 1 1 ) コントロ-ル 2.79 3.43 3.09 3.39 3.60 4.41 5.34 8.50 13.3 20.2 7-12S
Fd-F添加 3.26 3.60 3.81 3.84 4.18 5.31 6.91 11.4 19.7 26.6
(4) 1 X 1 05 c e l l s /m 1 となるように 1 0 %牛胎児血清を含んだ D ME培地に懸濁した MRC-5細胞 (CCL 1 7 1 :大日本製薬社製、 c o d e. 02 — 02 1 ) 5 0 0 ti 1を 4 8穴の細胞培養プレートに入れ、 3 7°C、 5 %C02 存在下で 24時間培養後に 1 %牛胎児血清を含んだ DME培地に交換した。 その 後、 試料を添加し、 さらに 24時間培養した。 この培地を回収し、 Quantikine H uman Hepatocyte Growth Factor (HGF) EL ISA Kit (フナコシ社製、 Code. RS- 0 64 1 - 00 ) を用いて、 培地中の HGFの量を測定した。 さらに、 細胞 を PBSで洗浄後、 500 1の細胞溶解バッファー (50mM HEPES pH 7 . 4、 10mM EDTA、 0 . 1% Tr i t o n xlOO、 1 mM PMSF、 1 p. g/ 1 p e p s t a t i nA^ 1 n g/m 1 l e up e p t i n) に 溶解した。 さらに完全に溶解させるために超音波処理してから、 遠心分離して上 清 (細胞抽出液) を調製し、 細胞内の HGF量を培地中の HGF濃度と同様に測 定した。 7— 1 2 SFd— Fは、 最終濃度が、 1、 1 0、 l O O ^gZm lにな るように添加した。 ネガティブコントロールとして、 試料と同量の蒸留水を添加 した。 実験は全て 3連で行いその平均値を採用した。 その結果、 表 4 9に示すよ うに、 7— 1 2 SF d— F添加群の培地中の HGFは、 蒸留水添加のネガティブ コントロールより有意に 7— 1 2 SF d-Fの濃度依存的に H G Fの産生量が増 加していた。 一方で、 細胞内の HGF量は 7— 1 2 SF d— Fの濃度依存的に減 少していた。 さらに、 細胞内外のトータル HGF量も濃度依存的に増加していた 。 このことより、 7— 1 2 SF d— Fには、 細胞から HGFを遊離させる効果と HGFの産生を促進する活性があることが示された。 この結果を表 4 9に示十。 表 4 9 7— 1 2 SF d-F添加時のHGFの産生量
7 - 1 23 (1ー?添加量 (最終濃度 g/m l ) 0 1 1 0 1 0 0
HGFの産生量 (n g/we 1 1 ) 培地中 5. 6 6 8. 4 6 1 7. 1 22. 0 細胞中 6. 28 6. 04 4. 1 5 1. 5 9
1 1. 9 1 4. 5 2 1. 3 23. 6
実施例 6
( 1 ) 1 X 1 05 c e 1 1 s /m 1 となるように 1 0 %牛胎児血清を含んだ D ME培地に懸濁した MR C— 5細胞液 5 0 0 1を 4 8穴の細胞培養プレートに 入れ、 37 °C、 5%C02 存在下で 24時間培養後に 1 %牛胎児血清を含んだ D ME培地に交換した。 その後、 最終濃度が 0、 1、 1 0 ; gZm 1になるように シクロへキシミ ド (タンパク合成阻害剤:ナカライテスク社製) を添加し、 さら に、 被検試料を添加した後、 24時間培養した。 この培地を回収し、 HGF E L I SAキッ トを用いて、 培地中の HGFの量を測定した。 参考例 1 — ( 1 ) 記 載のガゴメ昆布由来フコィダンは、 最終濃度が、 1、 1 0、 l O O gZm lに なるように添加した。 コントロールとして、 試料と同量の蒸留水を添加した。 実 験は全て 2連で行いその平均値を採用した。 その結果を表 5 0に示す。 表 5 0に おいてコントロールの HGFの産生量を 1 0 0 %として表した。
表 5 0に示すように、 シクロへキシミ ドを添加することにより、 当該フコイダ ン添加群の培地中の H G F濃度はシクロへキシミ ド濃度依存的に減少しており、 その阻害率は、 フコィダン無添加のコントロール群のシグロへキシミ ドによる阻 害と同程度にシクロへキシミ ドの濃度に依存して阻害されていた。 これらのこと より、 フコィダンによる HGFの産生誘導にはタンパク合成が関与することが明 らかになつた。 表 5 0 ガゴメ昆布由来 シクロへキシミ ド添加量 ( g/m l )
フコィダン 0 1 1 0
( gZm 1 ) HGFの産生量の対コントロール比 (%) コントロール 1 00 3 5 27
1 226 1 1 0 72
1 0 3 1 7 1 3 0 1 1 0
1 0 0 4 5 6 20 6 1 27
(コントロールの HGF產生量は 7. 3 n gZm lであった。 )
( 2 ) 1 X 1 05 c e 1 1 s /m 1 となるように 1 0 %牛胎児血清を含んだ D ME培地に懸濁した MRC-5細胞 (CCL 1 7 1 :大日本製薬社製、 c o d e. 02 — 0 2 1 ) 5 00 1を 4 8穴の細胞培養プレートに入れ、 37°C、 5%C02 存在下で 24時間培養後に 1 %牛胎児血清を含んだ DME培地に交換した。 その 後、 最終濃度が 0、 1、 1 0〃 g/m 1になるようにシクロへキシミ ド (タンパ ク合成阻害剤:ナカライテスク社製) を添加し、 さらに、 試料を添加した後、 2 4時間培養した。 この培地を回収し、 Quantikine Human Hepatocyte Growth Fac tor (HGF) ELISA Kit (フナコシ社製、 Code. RS- 064 1 - 00 ) を用い て、 培地中の HGFの量を測定した。 また、 細胞を PBSで洗浄後、 500 1 の細胞溶解バッファー (5 OmM HEPES pH 7. 4、 1 OmM EDT A、 0. 1 % Tr i t onX 1 00、 lmMPMSF、 1 n g/m 1 p ep s t a t i n A 1 g/m 1 1 e υ p e p t i n) に溶解した。 さらに完全 に溶解させるために超音波処理してから、 遠心分離して上清 (細胞抽出液) を調 製し、 細胞内の HGF量を培地中の HGF濃度と同様に測定した。 HGFの産生 量は、 ネガティブコントロール 1 00%として表した。 阻害率は、 各濃度の 7— 1 2SFd— Fのみを添加した際の HGFの産生量を基準にし、 シクロへキシミ ド添加画分の阻害率 (%) を算出した。 7— 1 2SFd— Fは、 最終濃度が、 1 、 1 0、 1 00 gZm 1になるように添加した。 ネガティブコントロールとし て、 試料と同量の蒸留水を添加した。 実験は全て 3連で行いその平均値を採用し た。 その結果、 表 5 1、 52に示すように、 シクロへキシミ ドを添加することに より、 7— 12SFd— F添加群の培地中、 細胞中と培地中の合計の HGF量は どちらもシクロへキシミ ド濃度依存的に減少しており、 これらのことより、 7— 12SFd— Fによる HGFの産生誘導は、 単なる細胞からの H G Fの遊離では なく、 タンパク合成が関与することが明らかになつた。
表 5 1 HGF産生誘導の阻害 (培地中)
7 - 1 2 S シクロへキシミ ド添加量 (^g/m 1 )
F d-F 0 1 1 0
添加量
{ g/m 1 )
HGFの産生量:% / シクロへキシミ ド無添加を
1 0 0%とした場合の阻害率:%
0 1 0 0/0 4 0/6 0 4 0/6 0 1 1 24/0 6 1/5 1 3 9/6 9
1 0 2 1 6/0 8 8/5 9 5 3/75 1 0 0 26 5 /0 1 1 7/5 6 74/72
表 52 HGF産生誘導の阻害 (細胞中と培地中の合計)
7 - 1 2 S シクロへキシミ ド添加量 ( ugZm l )
Fd-F 0 1 1 0
添加量
HGF産生量: / シクロへキシミ ド無添加を
1 0 0 %とした場合の阻害率: %
0 1 0 0/0 3 1/6 9 27/73 1 1 04/0 3 1/7 0 25/76
1 0 1 28/0 3 8/7 0 28/78 1 0 0 1 37/0 4 7/6 6 3 7/73
(3) i x i 05 c e l l s/m l となるように 1 0 %牛胎児血清を含んだ D ME培地に懸濁した MRC-5細胞 (CCL 1 7 1 :大日本製薬社製、 c o d e. 0 2 一 02 1 ) 50 0 1を 4 8穴の細胞培養プレートに入れ、 37°C、 5 %C02 存在下で 24時間培養後に 1 %牛胎児血清を含んだ DME培地に交換した。 その 後、 最終濃度が 0、 0. 1、 1 〃g/m 1になるようにァクチノマイシン D (R N A合成阻害剤: シグマ社製) を添加し、 さらに、 試料を添加した後、 24時間 培養した。 この培地を回収し、 Quantikine Human Hepatocyte Growth Factor ( HGF) EL ISA Kit (フナコシ社製、 Code. RS- 0 64 1 - 0 0 ) を用いて、 培 地中の HGFの量を測定した。 HGFの産生量は、 ネガティブコントロール 1 0 0%として表した。 阻害率は、 各濃度のフコィダンのみを添加した際の HGFの 産生量を基準にし、 ァクチノマイシン D添加画分の阻害率 (%) を算出した。 参 考例 1一 ( 1 ) 記載のガゴメ昆布由来フコィダンは、 最終濃度が、 1、 1 0、 1 0 0 n g/m 1になるように添加した。 ネガティブコントロールとして、 試料と 同量の蒸留水を添加した。 実験は全て 2連で行いその平均値を採用した。 その結 果、 表 5 3に示すように、 ァクチノマイシン Dを添加することにより、 当該フコ ィダン添加群の培地中の HG F濃度はァクチノマイシン D濃度に依存して阻害さ れた。 これらのことより、 フコィダンによる HGFの産生誘導には RNA合成が 関与する可能性が示唆され、 単なる細胞からの H G Fの遊離ではないことが明ら かになつた。
表 5 3 ガゴメ昆布由来 ァクチノマイシン D添加量 ( / g/m l )
フコィダン 0 0. 1 1 gZm l ) HGFの産生量:% / ァクチノマイシン D
無添加を 1 0 0 %とした場合の阻害率:%
0 1 0 0/0 7 9/2 1 8 3/1 7 1 24 4 /0 1 3 8/4 3 1 1 9/5 1
1 0 34 3/0 2 2 4/3 5 2 3 9/3 0 1 0 0 4 9 2/0 3 4 1 /3 1 2 8 5/4 2
(4) 1 X 1 05 c e l l s Zm l となるように 1 0 %牛胎児血清を含んだ D ME培地に懸濁した MRC- 5細胞 (CCL 1 7 1 :大日本製薬社製、 c o d e. 0 2 -0 2 1 ) 5 0 0 1を 4 8穴の細胞培養プレートに入れ、 3 7て、 5%C02 存在下で 24時間培養後に 1 %牛胎児血清を含んだ DME培地に交換した。 その 後、 最終濃度が 0、 0. 1、 1 〃 gZm 1になるようにァクチノマイシン D (R NA合成阻害剤: シグマ社製) を添加し、 さらに、 試料を添加した後、 2 4時間 培養した。 この培地を回収し、 Quant ikine Human Hepatocyte Growth Factor ( HGF) EL ISA Kit (フナコシ社製、 Code. RS- 0 6 4 1 - 0 0 ) を用いて、 培 地中の HGFの量を測定した。 また、 細胞を PBSで洗浄後、 5 0 0 lの紬胞 溶解バッファー (5 0mM HEPES pH 7. 4、 1 OmM EDTA、 0 . 1 % Tr i t o nX l 0 0, 1 mMPMS F, 1 n g/m 1 p e p s t a t i nA、 1 ug/m 1 1 e u p e p t i n) に溶解した。 さらに完全に溶解 させるために超音波処理してから、 遠心分離して上清 (細胞抽出液) を調製し、 細胞内の H G F量を培地中の H G F濃度と同様に測定した。 H G Fの産生量は、 ネガティブコントロール 1 0 0%として表した。 阻害率は、 各濃度の 7— 1 2 S F d— Fのみを添加した際の H G Fの産生量を基準にし、 ァクチノマイシン D添 加画分の阻害率 ( ) を算出した。 7— 1 2 SFd— Fは、 最終濃度が、 1、 1 0. 1 0 0 g/m 1になるように添加した。 ネガティブコントロールとして、 試料と同量の蒸留水を添加した。 実験は全て 3連で行いその平均値を採用した。 その結果、 表 54、 5 5に示すように、 ァクチノマイシン Dを添加することによ り、 7— 1 2 SF d— F添加群の培地中、 細胞中と培地中の合計の HGF量はど ちらもァクチノマイシン D濃度に依存して阻害された。 これらのことより、 7— 1 2 SF d— Fによる HGFの産生誘導には R N A合成が関与する可能性が示唆 され、 単なる細胞からの H G Fの遊離ではないことが明らかになつた。
表 54 HGF産生誘導の阻害 (培地中)
7 - 1 2 S ァクチノマイシン D添加量 ( gZm 1 )
Fd-F 0 0. 1 1
( z g/m 1 )
^[〇?の産生量:% / ァクチノマイシン D無添加を
1 00 %とした場合の阻害率:%
0 1 0 0/0 76/24 8 0/20 1 1 3 0/0 95/2 7 9 6/26
1 0 225/0 1 82/1 9 1 5 2/32 1 0 0 2 9 5 /0 2 1 2/2 8 1 8 7/4 8 表 5 5 HGF産生誘導の阻害 (細胞中と培地中の合計)
7 - 1 2 S ァクチノマイシン D添加量 (; gZm l ) F d-F 0 0. 1 1
( gZm 1 )
HGFの產生量:% Zァクチノマイシン D無添加を
1 0 0 %とした場合の阻害率:%
0 1 0 0/0 6 1 /3 9 5 9/4 1 1 9 8/0 6 4/3 5 6 1 /3 8
1 0 1 1 3/0 8 3/2 7 7 1/3 7 1 0 0 1 2 6/0 9 1 /2 8 8 1/3 6
実施例 7
( 1 ) 7週齢の雄 Wi s t a rラットを用い、 外科的処置により部分肝切除を 次のように行った。 すなわちエーテル麻酔下でラッ トを開腹し、 肝臓の約 3 0 % 部分を外科用縫合糸で根元の血管を結さっした後、 切除した。 開腹部は縫合針に より縫合した。
参考例 1一 ( 1 ) 記載のガゴメ昆布由来フコィダンは切除の直後を一回目とし 、 1 2時間間隔で腹腔内投与した。 コントロール群には生理食塩水を腹腔内投与 した。
肝切除後、 2 4時間あるいは 7 2時間目にラットを麻酔下で腹大動脈より採血 し、 0. 1 %エチレンジァミン四酢酸ニナトリウムによる血漿を遠心にて分離し た。 血漿中の HGF量は、 HGF EL I S A キッ ト (株式会社 特殊免疫研 究所製) を用いて測定した。
結果を表 5 6示す。 表中の数字は平均値土標準誤差を表し、 ( ) 内は一群あ たりのラットの匹数を示す。 また表中の *はコントロール群と比較して 5%以下 の危険率で有意な差を有することを意味する < 表 5 6 又 里 JHLS Ψ JTILT Γ i η g Z m lリ
(mg/k g) 24時間 Ί 2時間 生理食塩水 0.28 土 0.04 (4) 0.30 土 0.02 (3)
(コントロール群) ガゴメ昆布由来 0. 1 0.40 土 0.12 (4) 0.52 ± 0.06 (5)* フコィダン 1 0.65 ± 0.18 (4) 0.64 土 0.09 (2)*
フコィダン投与群はコントロール群に比べ、 肝切除 24時間後で、 血漿中の H GF量が上昇する傾向がみられ、 72時間後では有意な上昇がみられた。
以上、 フコィダンは HGF産生を誘導することにより、 外科的手術を必要とす る肝疾患において術後の速やかな再生を促すとともに、 残存肝の機能回復に有用 である。
(2) 7週齢の雄 Wistarラッ トを用い、 外科的処置により部分肝切除を行った 。 エーテル麻酔下で開腹し、 肝臓の約 3 0 %部分を外科用縫合糸で根元の血管を 結さっした後切除した。 開腹部は縫合針により縫合した。 参考例 2— (4) で調 製した酵素処理 F—フコィダンは切除の直後を一回目とし、 朝夕二回に分けて経 口投与した。 コントロール群には生理食塩水を投与した。 肝切除 24時間後にラ ットを麻酔下で腹大動脈より採血し、 0. 1 %エチレンジァミ ン四酢酸ニナトリ ゥムによる血漿を遠心にて分離した。 血漿中の HGF量は、 HGF ELISAキット (株式会社 特殊免疫研究所) を用いて測定した。
結果を表 5 7に示す。 表中の数字は平均値土標準誤差を表し、 ( ) 内は一群 あたりのラットの匹数を示す。 また表中の *は対照群と比較して 1 %以下の危険 率で有意な差を有する群を意味する。 表 57 血漿中 HGF濃度 (ng/ml) 群 24時間 生理食塩水 0. 1 84 士 0. 33 ( 6) 酵素処理 F—フコィダン 0. 505 ± 0. 97* (5) ( 1 g/k g/ά a y)
酵素処理 F—フコィダン投与群はコントロール群に比べ、 肝切除 24時間後で 有意な上昇がみられた。
以上、 フコィダン、 7— 1 2SFd— F高含有の F—フコィダンは HGF産生 を誘導することにより、 外科的手術を必要とする肝疾患において術後の速やかな 再生を促すともに、 残存肝の機能回復に有用である。 実施例 8
インスリン様増殖因子の一種である h— I G F— 1を高発現するヒト新生児包 皮上皮細胞株の Hs 68細胞 (ATCC CRL— 1 635 ) を 1 0%ゥシ胎児 血清 (FBS :バイオウイタッカー社製) を含む DMEM培地 (ギブコ BRL社 製) にて、 5%C02 存在下、 37°Cで細胞が培養器に飽和になるまで培養し、 トリブシン一 EDTA溶液 (バイオウイタッカー社製) で細胞を 3 X 1 03 個 ゥエルとなるように上記培地に懸濁し、 96穴マイク πタイタープレートの各ゥ エルに 200 (11ずつ分注した。 培養 5〜7日後、 ほぼ細胞が培養器に飽和にな つた時点で培地を捨て、 0、 1 2. 3、 37、 1 1 し 333、 1 0 0 0、 又は 3 0 0 0 / /m 1の参考例 1一 ( 2 ) 記載の I画分、 I I画分、 I I I画分、 又は参考例 1— ( 1 ) 記載のガゴメ昆布由来フコィダンを含有する上記培地を 2 0 0〃 1 /ゥエルで加えた。 24時間のタイムコースを取って、 1、 4、 1 2、 24時間目に経時的に培養上清を回収し、 Hs 6 8細胞に対する h— I GF産生 誘導活性を、 h— I GF— 1 EL I SA キット (ダイァグノスティックス社 製) を用いて測定した。 結果を表 5 8〜6 1に示す。 なお対照は試料無添加であ 。 表 5 8 ガゴメ昆布由来 培地中 h-IGF- 1濃度
フコィダン (ng/ml)
( g/ml) 1時間 4時間 12時間 24時間 対照 4.3 2.9 4.1 4.5
12.3 22.9 14.7 10.5 11.8
37 17.5 13.9 10.8 11.4
111 14.6 13.7 10.3 7.8
333 13.8 17.6 9.4 7.7
1000 13.9 14.7 14.6 7.5
3000 15.9 14.0 14.0 7.2 表 5 9
I画分 培地中 h- IGF-1 濃度
Og/ml) (ng/ml)
1時間 4時間 12時間 24時間 対照 6.8 5.4 5.0 5.0 12.3 13.9 10.5 7.6 7.3 37 19.0 11.7 8.3 10.1 111 20.4 11.0 9.5 9.9 333 18.7 12.2 10.9 10.3 1000 17.7 13.2 12.7 11.3 3000 19.0 12.1 13.1 11.7
表 6 0
Π画分 培地中 h-IGF - 1 濃度
(ng/ml)
Figure imgf000110_0001
1時間 4時間 12時間 24時間 対照 4.3 2.9 4.1 4.5 12.3 18.5 10.2 6.9 7.0 37 20.1 9.9 9.2 9.2 111 20.0 11.1 9.8 8.9 333 16.3 12.7 9.7 9.2 1000 17.0 12.2 10.0 8.8 3000 17.9 11.3 10.0 7.6
表 61
III 画分 培地中 h-IGF-1 濃度
(ng/ml)
(^g/ml) 1時間 4時間 12時間 24時間 対照 4.3 2.9 4.1 4.5
12.3 16.5 10.9 8.5 8.6
37 16.7 10.2 11.1 8.4
111 11.8 11.5 8.6 6.9
333 9.6 11.2 8.0 5.9
1000 7.9 10.4 10.6 6.6
3000 7.1 9.4 9.7 6.2
表 58〜6 1に示すようにガゴメ昆布由来フコィダン、 I画分、 I I画分、 及 ぴ I I I画分は h— I GF— 1産生誘導活性を示した。 h— I GF— 1產生誘導 活性は、 1 2〜1 00 gZm 1の試料添加により、 1時間目で最高値を示した 。 なお各試料において Hs 68細胞に対する毒性、 増殖抑制活性は認められなか つた。 参考例に記載の他の酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖及び それらの塩についても同様の h— I GF- 1産生誘導活性を認めた。 実施例 9
ラット繊維芽 L一 M細胞 (ATCC CCL- 1. 2) を 0. 5%のパク トぺ プトン (D i ί c ο社製) を含む Μ 1 99培地 ( I CN社製) で 1. 5 x 1 05 細胞/ m 1に懸濁し 96穴プレートに 0. 1mlずつまき無菌的に培養した。
3日間培養後、 培地をとり除き、 0. 5 %のゥシ血清アルブミ ン (シグマ社製 ) を含む M l 9 9培地に置き換えた。 これに参考例 1一 ( 1 ) 記載のガゴメ昆布 由来フコィダン例を終濃度が 0、 6 2. 5、 25 0、 1 0 0 0 gZm 1になる ように添加し、 24時間培養した。 コントロールとして蒸留水を添加したものを 用いた。 培養終了後、 培養液中の NGFの濃度をェンザィムィムノアツセィ法 ( NGF Em a X I mm u n o As s a y S y s t e m:プロメガ社製) にて測定した。 NGFの産生量は、 コントロールの NGFの産生量を 1 00%と して表した。 実験は全て 2連で行いその平均値を採用した。 その結果、 表 62に 示す。 表 6 2に示すように、 ガゴメ昆布由来フコィダンは濃度依存的に L一 M細 胞の神経増殖因子産生を促進した。 更にその分画物も同様の活性を示した。 また 参考例に記載の他の酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖及びそれら の塩も同様の N G F産生誘導作用を示した。 表 62 試料 NGFの産生量の増加
(f gZm 1; (.%) ガゴメ昆布由来 62. 5 1 1 7
フコィダン 25 0 1 6 6
1 0 0 0 1 79
(コントロールの NGF産生量は 1 5 5 p g/m 1であった。 ) 同様に、 参考例 1一 (2) に記載の I画分、 I I画分、 I I I画分について神 経増殖因子産生の促進活性を測定し、 各画分に活性を認めた。 その結果を表 6 3 に示す。 また、 参考例に記載の他の酸性多糖、 その分解物、 酸性オリゴ糖、 酸性 単糖及びそれらの塩も同様に NGF産生誘導作用を示した。 表 6 3 試料 NGFの産生量の増加
in g/m 1 )
I画分 25 0 5 0 5. 6
5 0 0 6 1 9. 6
1 0 0 0 8 0 6. 5
I I画分 25 0 6 64. 5
5 0 0 8 64. 5
1 0 0 0 1 1 3 7. 4
I I I画分 25 0 1 0 2 1. 1
5 0 0 1 1 8 7. 0
1 0 0 0 1 26 5. 0
(コントロールの NGF産生量は 5 0. 0 3 p g/m 1であった。 ) 実施例 1 0
( 1) 雄性 C 3HZHeマウスを日本 SLC社から購入し、 予備飼育の後 5週 齢より実験に用いた。 参考例 1一 ( 1 ) で調製したガゴメ昆布由来フコィダンを エタノールで 3 %濃度に懸濁溶解し、 マウスの背部に 1匹あたり 20 0 α 1づっ 塗布した。 対照群にはエタノールを同様に塗布した。 投与は 1 日 1回とし、 連日 8日間行った。 投与開始 9日目に皮膚を剝離し、 皮膚中の HGF活性を EL I S Aキッ ト (株式会社特殊免疫研究所) にて測定した。
結果を表 64に示す。 表中の数字は、 5例の平均値土標準誤差を表す。
皮膚中より抽出した HG F活性は、 フコィダン塗布群では対照群より明らかに 上昇し、 フコィダン塗布による H G F産生誘導作用が認められた。 表 64 皮膚中 HGF活性
(ng/g tissue ) 対照群 (N=5 ) 16.31 ±2.86
フコィダン塗布群 (N=5 ) 104.46 ±4.05 平均値土標準偏差
(2) 後述の実施例 26— ( 1 ) 記載の本発明の化粧水と、 フコィダンを含有 しない対照の化粧水とを比較して、 20〜35才の成人女性 25人に対しブライ ンドで官能検査を行った。 その結果、 より有効と判定した人数を表 6 5に示す。 表 6 5 肌のしっとりさ 肌のなめらかさ 肌のはり 本発明の化粧水 21 19 16
対照の化粧水 5 6 9
以上の結果、 フコィダンの HGF產生誘導作用により、 フコィダン配合の本発 明の化粧水は肌のしっとりさ、 なめらかさ、 はりのいずれも優れていることが示 された。 実施例 1 1
( 1 ) 参考例 1一 (2) 記載の方法で調製した F—フコィダン 9 8mgを DM SO 5m 1に溶解し、 室温にてピぺリジン硫酸 980 m gを添加した後、 80 °C にて 2時間攪拌した。 反応液を冷却後、 分子量 1 000カツ トの透析膜にて 2日 間透析した。 得られた透析内液を陽イオン交換カラム 〔アンバーライト IRA— 1 20 (Na + ) 〕 に供じた後、 減圧乾固することにより F—フコィダンの高硫 酸化体 98 mgを調製した。
(2) 参考例 2記載の方法で調製した 7— 1 2SFd-F 341118を0^:30 4mlに溶解し、 その後、 実施例 1 1一 (1) と同様の操作で、 7— 1 2SFd - Fの高硫酸化体 98 m gを調製した。
(3) 実施例 1と同様の方法で、 実施例 1 1一 (1) で調製した F—フコイダ ンの高硫酸化体 (試料①) 、 実施例 1 1一 (2) で調製した 7— 1 2SFd-F の高硫酸化体 (試料②) 、 参考例 1一 (2) で調製した F—フコィダン (試料③ ) 、 及び参考例 2で調製した 7— 1 2SFd-F (試料④) の HGF産生誘導活 性を検討した。 それぞれの試料は最終濃度が 1、 1 0、 1 00 g/mlになるよう に添加した。 コントロールとして、 試料と同量の蒸留水を添加した。
その結果を表 66に示す、 表 66において、 コントロールの HGF生産量を 1 00%として表した。 実験は全て 2連で行いその平均値を採用した。 表 66に示 したように、 試料①〜④は HGFの産生を誘導した。 さらに、 高硫酸化体におい て、 その HGF產生誘導活性は、 未高硫酸化処理のものより上昇した。 このこと より、 既に存在する天然の硫酸化糖もさらに硫酸化処理を施すことにより、 その HGF産生誘導活性が増強することが明らかになつた。
なお、 硫酸含量の定量は、 それぞれの試料の IN HC 1 0. 2ml (1〜1 OmgZml) 溶液を、 1 05°Cにて 4時間加熱し、 うち 0. 1mlに 0. 1N
HC 1溶液 1. 9m 1と 1 %塩化バリウム— 0. 5%ゼラチン溶液 0. 25m 1を添加し 20分間放置後、 500 nmの吸光度を測定することにより行った。 検量線は、 0、 1、 3、 5、 7、 1 0、 1 5、 2 OmM硫酸ナトリウムの 1 N HC 1溶液を標準試料として作成し、 この検量線から各試料の硫酸含量 (S〇3 換算) を求めた。 この検量線は第 2図に、 各試料の硫酸含量は表 67に示す c 表 66 濃度 HGFの産生量 (%)
g m l 試料① 試料② 試料③ 試料④
1 346 1 92 31 2 1 92 1 0 71 5 21 4 493 229 1 00 794 499 598 355
(コントロールの HGF産生量は、 8. 1 5 ngZmlであつ 。 ) 表 67 試料 硫酸含量 (S03 換算, %)
F—フコィダン 40
F—フコィダンの高硫酸化体 47
7 - 1 2 S F d -F 40
7- 1 2 SF d— Fの高硫酸化体 48
実施例 1 2
1 0%牛胎児血清を含んだ DMEM培地で培養した NHDF細胞 (ヒト正常皮 膚繊維芽細胞: Bio Wittaker社製) を l x l O5 c e l l s Zmlとなるように 1 0%牛胎児血清を含んだ DMEM培地に懸濁し、 500 ;/ 1ずつ 48穴の細胞 培養プレートに入れ、 24時間培養した。 その後、 1 %牛胎児血清を含んだ DM EM培地に交換し、 ΙΟηΜの Tetradecanoylphorbol 13- acetate (TPA:ギブ コ BR L社製) と試料を添加した。 添加後 20時間培養した後、 培地を回収し、 Quantikine Human Hepatocyte Growth Factor (HG F) ELISA Kit (フナ コシ社製、 Code. RS- 0 64 1 - 0 0 ) を用いて、 培地中の H G Fの量を測定し た。 HGFの産生量は、 ネガティブコントロール 1 0 0 %として表した。 試料は それぞれ最終濃度が、 参考例 1一 ( 1 ) 記載のフコィダンは 1、 1 0、 1 0 0 g/m 1になるように添加した。 へパリンは 1、 1 0 gZm 1になるように添 加した。 ネガティブコントロールとして、 試料と同量の蒸留水を添加した。 誘導 実験の培養は、 試料添加と同時に 1 0 nMの TPAを添加して行った。 実験は全 て 3連で行い、 その平均値を採用した。 その結果を表 6 8に示す。 フコィダンを 添加した細胞群は全て、 蒸留水添加のネガティブコントロールより有意に HG F の産生量が増加していた。 さらに、 へパリン添加よりも顕著に HGFの産生量が 増加していた。 このことより、 参考例 1一 ( 1 ) 記載のフコィダンには、 これま で H G Fの誘導が確認されているへパリンより高い H G Fの産生を促進する活性 があることが示された。 表 6 8 へパリ ン フコィダン
( g/m 1
0 1 00 1 0 0
1 9 5 0 1 1 4 0
1 0 2 1 70 24 70
1 0 0 277 0
(ただし、 コン トロールの HGF産生量は、 0. 2 0 n gノ m 1であった。 ) 実施例 1 3
1 0%牛胎児血清を含んだ DMEM培地で培養した Hs68細胞 (ヒト新生児包皮 細胞:大日本製薬社製 ATCC CRL -1635) を 1 x 1 05 c e 1 1 s Zm 1 とな るように 1 0 %牛胎児血清を含んだ DM EM培地に懸濁し、 5 0 0 / 1ずっ4 8 穴の細胞培養プレートに入れ、 24時間培養した。 その後、 1 %牛胎児血清を含 んだ DMEM培地に交換し、 1 0 nMの TPAと試料を添加した。 また、 TPA を添加せず、 試料のみを添加する区分も同様に行った。 この培地を回収し、 Quan tikine Human Hepatocyte Growth Factor (HGF) ELISA Kitを用いて、 培地中の HGFの量を測定した。 さらに、 細胞を PBSで洗浄後、 5 0 0 の 細胞溶解バッファ一 (50mM HEPES p H7 . 4、 10mM EDTA、 0 . 1 % Tr i t onx l O O. l mM PMS F. 1 u g/m 1 p e p s t a t i n A、 1 g/m 1 1 e u p e p t i n) に溶解した。 さらに完全に溶 解させるために超音波処理してから、 遠心分離して上清 (細胞抽出液) を調製し 、 細胞内の HGF量を培地中の HGF濃度と同様に測定した。 参考例 2— (3) で調製した 7— 1 2 SFd— Fは、 最終濃度が、 0. し 1、 1 0、 1 0 0 g /m 1になるように添加した。 ネガティブコントロールとして、 試料と同量の蒸 留水を添加した。 実験は全て 3連で行いその平均値を採用した。 その結果を表 6 9〜7 1に示す。 TPA無添加において顕著な HGFの産生は認められなかつ た。 しかし、 TP Aを添加した場合は、 細胞中の HGF量は、 7_ 1 2 SF d- Fの濃度依存的に低下し、 培地中の HGF量とトータル HGF量は 7— 1 2 SF d— Fの濃度依存的に増加し、 さらにトータル HGF量は、 無添加のコントロー ルより有意に増加していた。 また、 このように mRNAが増加している場合の H GF量の増加は、 TPA無処理で mRNA量が少ない場合と比較して、 非常に著 しいものであった。 このことより、 7— 1 2 SF d— Fは、 mRNAの転写が促 進され、 大量の HGFが必要とされている場合は、 HGFの遊離と産生を顕著に 促進することが明らかになつた。 表 6 9 Hs68/7 - 1 2 S F d - F培地中 H G F量 (pg/Well)
7 - 1 2 SF d-F TPA無し 1 0 nMTPA ( z g/m 1 )
0 N. D. 6 5. 5 4 0 N. D. 7 1. 0 4 1 N. D. 9 9. 2 5
1 0 N. D. 2 2 6. 1 4 1 0 0 N. D. 2 6 0. 4 9
N. D. は検出限界以下を示す c 表 7 0 Hs68Z7 - 1 2 S F d— F細胞中 H G F量 (pg/Well) 一 1 2 SF d-F TP A無し 1 0 nMTPA g/m 1 )
0 9 8. 6 2 1 5 5. 6 5 0 8 7. 6 0 1 5 1. 9 9 1 6 2. 4 7 1 4 2. 1 7
1 0 N. D. 1 2 0. 7 0 1 0 0 N. D. 9 5. 6 7
N. D. は検出限界以下を示す c 表 7 1 Hs68/ 7 - 1 2 SF d-Fトータル HGF量 (pg/Well)
7 - 1 2 SF d-F TPA無し 1 0 nMTP A
in g/ 1 )
0 22 1. 1 9
0 223. 02
1 24 1. 4 2
1 0 34 6. 84
1 0 0 3 5 6. 0 5
実施例 1 4
1 0%牛胎児血清を含んだ DMEM培地で培養した MRC - 5細胞 (CCし 1 7 1 :大日本製薬社製、 c o d e. 02— 02 1 ) を 2. 5 x 1 05 c e 1 1 s/ m l となるように 1 0%牛胎児血清を含んだ DMEM培地に懸濁し、 6穴の細胞 培養プレートに入れ、 5%炭酸ガス存在下、 37でで 24時間培養を行った。 そ の後、 1 %牛胎児血清を含んだ DMEM培地に交換し、 さらに 22時間培養を行 つた。 その後、 最終濃度が 1 0 0〃gZm lになるように参考例 2— (3) で調 製した 7— 1 2 SF d— Fを、 1 〃 g/m 1になるように LMへパリン (Celsus laboratories 社製) を、 1; Μになるようにジメチルスルホキシド (DMSO ) に溶かしたプロスタグランジン E, (PGEi ) (和光純薬工業社製) を添加 したそれぞれの培養液に交換した。 対照群として、 DMS〇を添加した培地を使 用した。 尚、 前記各添加物の溶媒がすべて 1 %になるように添加した。 さらに培 養を行い、 0、 2、 4 、 6、 8 、 10、 12、 24時間目に全 R N Aの抽出を行った。 全 RNAの抽出には RNeasy Mini Kit (QIAGEN社製) を使用した。 RT— PCR は、 RNA PCR Kit ver.2.1(宝酒造社製、 R019A)を使用した。 逆転写反応は全 RN Aに熱変性処理を行った後、 ランダムプライマー (N 6) (宝酒造社製、 3801) を使用して 3 0でで 1 0分、 4 2°Cで 30分、 9 9eCで 5分で行った。 HGFの mRN Aを検出するために、 センスプライマーとして配列表の配列番号 1に記載 のプライマーを、 アンチセンスプライマーとして配列表の配列番号 2に記載のプ ライマ一を用いた。 このプライマーにより増幅される産物は 415bp である。 また 半定量的な実験を行うためにハウスキーピング遺伝子である /S—ァクチンの検出 も行った。 プライマーは、 センスプライマ一として配列表の配列番号 3に記載の プライマ一を、 アンチセンスプライマ一として配列表の配列番号 4に記載のブラ イマ一を用いた。 このプライマ一により増幅される産物は 275bp である。 PCR は、 PJ9600 (パーキンエルマ一社製) により行った。 PCRサイクルは熱変性を 9 4 °Cで 2分行った後、 熱変性を 94 で 3 0秒、 ァニーリングを 5 9 °Cで 30 秒、 伸長反応を 72 °Cで 6 0秒のサイクルを 24サイクル行った。 反応後、 2% ァガロースゲル電気泳動及びェチジゥムブ口マイド染色を行い、 UV照射下でゲ ルを観察した。 すべてのサンプルにおいて HGFの mRNAが検出された。 コ ントロールに比べて、 PGE, による mRNAの誘導は認められたが、 7— 1 2 SF d— F及び LMへパリンによる mRNAの誘導は認められなかった。 このこ とより、 常に HGFの mRNAを転写しているような状態においては、 7— 1 2 S F d— F及び LMへパリンの添加による HGFの mRN Aの転写の促進は起こ らないことが明らかになり、 7— 1 2 SF d— F及び LMへパリンは、 過剰な H GFの産生誘導を起こさないことが明らかになった。 実施例 1 5
実施例 1 3で用いた HS 6 8細胞の代わりに NHDF細胞 (ヒト正常皮膚繊維 芽細胞: Bio Whittaker社製) を用い、 その他は実施例 1 3と同様にして、 NH DF細胞における 7― 1 2 SF d— Fによる HGF産生誘導活性について調べた 。 その結果を表 72〜 74に示す。
TPA無添加において、 細胞中の HGF量は、 7— 1 2 SF d— Fの濃度依存 的に低下し、 培地中の HGF量とトータル HGF量は 7— 1 2SFd_Fの濃度 依存的に増加し、 さらにトータル HGF量は、 7— 1 2SFd— F無添加のコン トロールより有意に増加していた。 このことから、 TP A無処理のような HGF の mRN Aが少ない場合でも、 細胞表面の HGFの遊離と HGFの合成の両方を 促進することが明らかになった。 さらに、 TP Aを添加した場合は、 細胞中の H GF量は、 7— 1 2 SFd— Fの濃度依存的に低下し、 培地中の HGF量とトー タル HGF量は 7— 1 2 SFd— Fの濃度依存的に増加し、 さらにトータル HG F量は、 7— 1 2SFd— F無添加のコントロールより有意に増加していた。 ま た、 このように mRNAが増加している場合の HGF量の増加は、 TPA無添加 で mRNA量が少ない場合と比較して、 非常に著しいものであった。 このことよ り、 7— 1 2SFd— Fは、 mRNAが少量の場合は少ないなりに HGFの遊離 と産生を促進し、 さらに、 mRNAの転写が促進され、 大量の HGFが必要とさ れている場合は、 HGFの遊離と産生を顕著に促進することが明らかになった。 表 72 NHDFZ7 - 1 2 S F d - F培地中 H G F量 (ng/Well)
7 - 1 2SFd-F TPA無し 1 0 n TPA
( g/m 1 )
0 N. D. 0. 39
1 0. 05 0. 68
1 0 0. 1 8 1. 22
1 00 0. 385 1. 625
N. D. は検出限界以下を示す。 表 73 NHDF/ 7 - 1 2 S F d— F細胞中 H G F量 (ng/Well)
7- 1 2 SF d-F TPA無し 1 0 n TP A
( gZm 1 )
0 0. 1 85 0. 24
1 0. 1 4 5 0. 1 9
1 0 0. 0 75 0. 1 2
1 0 0 0. 0 25 0. 0 5 5
表 74 NHDF/ 7 - 1 2 SF d - Fトータル HGF量 (ng/Well) 一 1 2 SFd - F TPA無し 1 0 nMTP A
(fi g/m 1 )
0 0. 6 3
1 0. 1 9 5 0. 8 7
1 0 0. 25 5 1. 3 35
1 0 0 0. 4 1 1. 6 8
実施例 1 6
1 0%牛胎児血清を含んだ DMEM培地で培養した NHDF細胞 (ヒト正常皮 膚繊維芽細胞) を 2. 5 X 1 05 c e 1 1 sノ m 1 となるように 1 0 %牛胎児血 清を含んだ D MEM培地に懸濁し、 2m lずつ 6穴の細胞培養プレートに入れ、 5%炭酸ガス存在下、 37 eCで 24時間培養した。 その後、 1 牛胎児血清を含 んだ DMEM培地に交換し、 1 0 nMの Tetradecanoylphorbol 13- acetate (T PA:ギブコ BR L社製) と参考例 2— (3) で調製した 7— 1 2 SF d— Fを 最終濃度が 1 00〃g /mlになるように添加した。 また、 TPAを添加せず、 7 一 1 2 SF d— Fのみを添加する区分も同様に行った。 さらに培養を行い、 4、 6、 8、 10時間目に全 RNAの抽出をおこなった。 全 RNAの抽出には RNeasy M ini Kit (QIAGEN) を使用した。 RT— PCRは PCRのサイクルを 28サイ クルにしたこと以外は、 すべて実施例 1 4と同様に行った。 反応後、 2%ァガロ ースゲル電気泳動及びェチジゥ厶ブ口マイド染色を行い、 UV照射下でゲルを観 察した。
その結果、 TPA無添加の場合、 HGFの mRNAの転写量は非常に少ないが 、 7— 1 2SFd— Fの添加により、 添加後、 4時間で、 若干の mRNAの転写 量の上昇が見られた。 一方、 TPAの添加により、 HGFの mRNA量は、 どの 時間においても、 顕著に上昇した。 TP Aと 7— 1 2 SF d— Fを添加した場合 は、 TPAだけを添加した場合と比較して、 HGFの mRNA量が、 添加後、 4 時間で、 増加していることが明らかになつたが、 6時間では、 7— 1 2SFd— Fの添加による差は無かった。 つまり、 7— 1 2SFd— Fは、 HGFを必要と して、 mRN Aの転写が活発に行われはじめた初期において、 顕著にその転写を 促進するが、 その後、 その促進効果は、 消失することが明らかになった。 このこ とより、 7— 1 2 SF d— Fは HGFが必要とされた瞬時の HGF産生を誘導し 、 その後過剰な HGF産生を誘導することは無いことが明らかになった。 実施例 1 7
1 0%牛胎児血清を含んだ RPMI 1 640培地で培養した HL 60細胞 (ヒ ト前骨髄性白血病細胞) を 5 X 1 05 c e 1 1 s/m 1 となるように 1 %牛胎児 血清を含んだ RPM 1 1 640培地に懸濁し、 500 1ずつ 48穴の細胞培養 プレートに入れた。 その後、 1 01 1^の丁?八を添加し、 さらに試料を添加した 。 添加後 24時間培養した。 また、 TPAを添加せず、 試料のみを添加する区分 も同様に行った。 この培地を回収し、 Quantikine Human Hepatocyte Growth Factor (HGF) ELISA Kitを用いて、 培地中の HG Fの量を測定した。 さら に、 細胞を P B Sで洗浄後、 5 0 0 1の細胞溶解バッファー (50mM HEP ES pH7 . 4、 lOmM EDTA、 0 . 1% T r i t o n x 1 0 0. 1 mM
PMS F、 1 j g/m 1 p e p s t a t i nA、 l g/m 1 1 e υ p e p t i n) に溶解した。 さらに完全に溶解させるために超音波処理してから、 遠 心分離して上清 (細胞抽出液) を調製し、 細胞内の HGF量を培地中の HGF濃 度と同様に測定した。 参考例 2— (3) で調製した 7— 1 2 SF d— Fは、 最終 濃度が、 1、 1 0、 1 0 0 gZm 1になるように添加した。 ネガティブコント ロールとして、 試料と同量の蒸留水を添加した。 実験は全て 3連で行いその平均 値を採用した。 その結果を表 7 5〜7 7に示す。
TPA無添加において、 細胞中の HGF量は、 7— 1 2 SF d— Fの濃度によ る変化は無かった。 培地中の HGF量も、 1 0 0 ; g/m 1で増加が見られたも のの、 7— 1 2 SF d— Fの濃度による顕著な変化は無かった。 また、 TPAを 添加した場合は、 細胞中の HGF量は、 7— 1 2 SF d— Fの濃度による変化は 無かったが、 全体的に低い値になっていた。 一方、 培地中の HGF量とトータル HGF量は、 7— 1 2 SF d— Fの濃度依存的に顕著に増加し、 さらにトータル HGF量は、 7— 1 2 SF d— F無添加のコントロールより有意に増加していた 。 また、 このように mRNAが増加している場合の HGF量の増加は、 TPA無 処理で mRNA量が少ない場合と比較して、 非常に著しいものであった。 このこ とより、 7— 1 2 SF d— Fは、 mRNAの転写が促進され、 大量の HGFが必 要とされている場合は、 HGFの遊離と産生を顕著に促進することが明らかにな つた。 表 75 HL60/7- 1 2 S F d— F培地中 HG F量 (pg/Well)
7 - 1 2 SFd-F TPA無し 1 0 nMTPA {β g/m 1 )
0 7 6. 74 2 6 1. 6 0 1 67. 1 0 2 9 5. 94
1 0 78. 54 4 64. 5 5 1 0 0 1 6 2. 8 5 84 3. 84
表 76 HL60/7 - 1 2 S F d - F細胞中 H G F量 (pg/Well)
7 - 1 2 SF d-F TPA無し 1 0 nMTPA in g/m 1 )
0 2 94. 1 2 8 3. 37 1 27 6. 6 7 8 9. 39
1 0 23 6. 30 6 7. 0 9 1 0 0 25 7. 04 8 5. 77
表 77 HL60/7- 1 2SFd-Fトータル HGF量 (pg/Well)
7 - 1 2 S F d -F TP A無し 1 0 nMTP A
β gZm 1 )
0 370. 85 344. 97 1 343. 77 385. 32
1 0 3 1 4. 84 531. 64
1 00 420. 26 929. 60
実施例 1 8
1 0%牛胎児血清を含んだ RPMI 1 640培地で培養した HL 60細胞 (ヒ ト前骨髄性白血病細胞) を S x l OS c e l l sZmlとなるように 1 %牛胎児 血清を含んだ RPM 1 1 640培地に懸濁し、 2mlずつ 6穴の細胞培養プレー トに入れた。 その後、 1 OnMの TPAと参考例 2— (3) で調製した 7— 1 2 SFd— Fを最終濃度が 1 0 O gZmlになるように添加した。 また、 TPA を添加せず、 7— 12 SFd— Fのみを添加する区分も同様に行った。 さらに培 養を行い、 4、 6、 8、 10時間目に全 RNAの抽出をおこなった。 全 RNAの抽 出には RNeasy Mini Kit (QIAGEN社製) を使用した。 RT— PCRは PCRサイ クルを 32サイクルにしたこと以外は実施例 1 4と同様に行った。 反応後、 2 % ァガロースゲル電気泳動及びェチジゥムブ口マイド染色を行い、 UV照射下でゲ ルを観察した。
その結果、 TPA無添加の場合、 HGFの mRNAの転写量は非常に少ないが 、 7— 1 2 SF d - Fの添加により、 添加後 4時間で、 若干の HGFの mRNA 量の上昇が見られた。 一方、 TPAの添加ににより、 HGFの mRNA量は、 ど の時間においても、 顕著に上昇した。 TP Aと 7— 1 2 SFd— Fを添加した場 合は、 TPAだけを添加した場合と比較して、 HGFの mRNA量が、 添加後、 4時間で増加していることが明らかになつたが、 6時間では、 7— 1 2 SF d— Fの添加による差は無かった。 つまり、 7— 1 2 SF d— Fは、 HGFを必要と して mRN Aの転写が活発に行われはじめた初期において、 顕著にその転写を促 進するが、 その後その促進効果は、 消失することが明らかになった。 このことよ り、 7— 1 2 SF d— Fは、 HGFが必要とされた瞬時の HGF産生を誘導し、 その後過剰な H G F產生を誘導することは無いことが明らかになつた。 実施例 1 9
( 1 ) 市販の菊菜を凍結乾燥し菊菜凍結乾燥物を得た。 この菊菜凍結乾燥物を 粉砕した菊菜粉末 1 0 gを 1 0 Om 1のクロ口ホルムに懸濁し、 ろ過して不溶画 分を回収する操作を 3回繰り返した。 その後、 1 0 Om 1のエタノールに懸濁し てろ過し、 不溶画分を回収する操作を 3回繰り返した。 この操作で得た不溶画分 からエタノールを完全に除去し、 1 0 Om 1の蒸留水に懸濁した。 この懸濁液を 1時間 60 で保温した後、 ろ過した。 瀘液に 2. 5倍量のエタノールを添加し て、 一 20でで冷却した後、 低温で遠心分離して沈殿を得た。 この沈殿を蒸留水 に溶解し、 凍結乾燥してパウダー状の糖を含有する画分、 菊菜抽出物を得た。
(2) 実施例 1一 ( 1 ) と同様の方法で、 実施例 1 9一 ( 1 ) で調製した菊菜 抽出物の HGF産生誘導活性を検討した。 試料は最終濃度が 1、 1 0、 1 0 0 g/m 1になるように添加した。 ネガティブコントロールとして、 試料と同量の 蒸留水を添加した。 HGFの産生量は、 ネガティブコントロール 1 0 0%として 表した。 その結果を表 7 8に示した。 実験は全て 2連で行いその平均値を採用し た。 表 78に示したように、 菊菜抽出物は HGFの産生を誘導した。 表 78 菊菜抽出物 ( zgZml) HGFの産生量 (%)
1 1 25
1 0 1 4 8
1 0 0 3 1 4
(ただし、 コントロールの HGF産生量は 8. 2 1 n gZm 1であった。 ) 実施例 20
実施例 1— ( 1 ) と同様の方法で、 参考例 1 3— (5) で調製したョモギ上清 画分の HGF産生誘導活性を測定した。 ただし、 ョモギ上清画分は培地量の 1 0 0 0分の 1量を添加した。 その結果を表 7 9に示した。 その結果、 ョモギ抽出物 は、 エタノール沈殿で沈殿しなレ、画分にも H G F産生誘導活性があることが明ら かになつた。 このことより、 エタノール沈殿で沈殿しない低分子画分にも活性が あることが考えられた。 表 79 ョモギ上清画分 HGFの産生量
添加量 {%)
0 1 0 0
1000 分の 1 添加 4 6 3
(ただし、 コントロールの HGF産生量は 4. 3 1 n gZm 1であった。 ) 実施例 2 1
( 1 ) 乾燥ョモギ葉 (発売:阪本漢方堂) 5 0 gをホモジナイザー (日本精機 社製) に入れ、 500ml のアセトンを加え、 8000rpm、 10分間ホモジナイズし、 濾 紙で濾過して、 残渣を得た。 以上の操作を 2度行い、 得られた 100gのョモギ葉の 残渣をホモジナイザーに入れ、 500ml のアセトンを加えて、 8000rpm、 10分間ホ 乇ジナイズし、 濾紙で濾過し、 残渣を得た。 この操作を 4回繰り返し、 アセトン 洗浄残渣を得た。 アセトン洗浄残渣をアセトン洗浄と同じように、 9 0 %ェ夕ノ ールで 4回、 8 0 %エタノールで 4回洗浄し、 エタノール洗浄残渣を得た。 以上 の操作を最初からもう一回行い、 合わせて 200 gのョモギ葉のエタノール洗浄残 渣を得た。
( 2 ) エタノール洗浄残渣に 10リットルの 100mM の塩化ナトリウムと 10%エタ ノールを含む 30m のリン酸緩衝液 (pH8, 0 ) を加え、 室温で 19時間攪拌し、 濾紙 で濾過して、 粗抽出物 (濾液) を得た。 得られた粗抽出物を排除分子量 1万のホ 口ファイバーを装着させた限外濾過装置で 2 リットルまで濃縮した後、 20リット ルの 10% エタノールを含む lOOmM塩化ナトリウムを加えながら限外濾過した。 こ の後、 668ml まで濃縮し、 1 gの活性炭を入れ、 室温で 30分攪拌した後、 10000r pm、 40分遠心分離し、 活性炭を除去した。 上澄みに残った微量の活性炭は No. 5c のフィルターで除去した。 活性炭処理液から 66. 8mlを取り、 蒸留水で充分に透析 した後、 凍結乾燥し、 670mg の乾燥物を得た。 この乾燥物をョモギ高分子画分 ( YPS ) と名付けた。 残った 601. 2ml の活性炭処理液を限外ろ過装置に入れ、 10% エタノール及び 50m の塩化ナトリウムを含む 10mMイミダブール- 塩酸緩衝液 (pH 7. 0 ) に溶媒置換して、 溶媒置換ョモギ高分子画分を得た。
( 3 ) 溶媒置換ョモギ高分子画分を 10% エタノール及び 50mM塩化ナトリウムを 含む 10mMィミダゾ一ル- 塩酸緩衝液 (PH7. 0 ) で平衡化した DEAE—セルロフアイ ン A- 800 カラム (Φ4. 05Χ 37. 8cm) に添加して、 同じ緩衝液 1200mlでカラムを 洗浄した後、 0. 1M (1000ml) から 2 M(lOOOml)までの塩化ナトリウムのグラジェ ントにより溶出させた。 溶出液は一本あたり 30mlで分画した。 溶出画分のうち、 フラクション 13から 33までをョモギ葉高分子画分一 I (YPS-I ) と名付け、 フ ラクシヨン No.69から 78までをョモギ葉高分子画分一 II (YPS-II) と名付け、 フ ラクシヨン No.79から 137 までをョモギ葉高分子画分—III (YPS-III ) と名付 け。 YPS-I、 YPS-IU YPS-III を蒸留水に対して充分透析し、 凍結乾燥した。 そ れぞれの凍乾物を 530mg、 420mg、 380mgを得た。
(4) YPS -III をさらに分画するために、 200mgの YPS- III を 50mlの 4M塩 化ナトリウムを含む 5mMイミダゾ一ル- 塩酸緩衝液 (ΡΗ8.0 ) に溶かし、 同じ 緩衝液で平衡化したフヱニルーセル口ファインカラム (Φ3.1 X 14.3 cm ) に添 加した。 200ml の同じ緩衝液で洗浄した後、 それぞれ 200ml の 1M塩化ナトリウム を含む 5mMィミダゾール-塩酸緩衝液 (pH8.0 )、 200ml の蒸留水、 200ml のェ 夕ノールで溶出した。
溶出液は一本あたり 10mlで分画した。 溶出画分のうち、 フラクション 1 から 32 までをョモギ葉高分子画分一 II I-l (YPS-III-1 ) と名付け、 フラクション No.3 3から 53までをョモギ葉高分子画分一 in-2(YPS-III- 2)と名付け、 フラクション No.54から 66までをョモギ葉高分子画分一 III- 3(YPS-III-3)と名付けた。 YPS - II I-l、 YPS-III-2、 YPS-III-3 を水に対して充分に透析後、 凍結乾燥して、 それ ぞれの凍乾物を 20. llmg、 32.59mg、 113.75mgを得た。
( 5 ) 実施例 1一 ( 1 ) と同様の方法で、 実施例 21— (2) 、 21— (3) で調製したョモギ抽出物の分画物、 YPS (試料①) 、 YPS — I (試料②) 、 YPS -II (試料③) 、 YPS - III (試料④) の HGF産生誘導活性を測定した。 その 結果を表 80に示した。 その結果、 これらのョ乇ギ抽出物の分画物は HGF産生 誘導活性を示した。 表 8 0 試料 HGFの産生量
in g/m 1 ) (%) 試料① 0 1 0 0
1 2 1 4
1 0 2 6 7
1 0 0 2 1 5 試料② 0 1 0 0
1 1 2 1
1 0 1 1 3
1 0 0 2 6 0 試料③ 0 1 0 0
1 0 1 2 9
1 0 0 24 3 試料④ 0 1 0 0
1 2 3 2
1 0 3 2 3
1 0 0 2 7 2
(ただし、 コントロールの HGF産生量は 8. 4 3 n gZm 1であった。 )
(6) 実施例 1 — ( 1 ) と同様の方法で、 実施例 2 1 — (4) で調製したョモ ギ抽出物の分画物、 YPS - III — 1 (試料①) 、 YPS — III 一 2 (試料②) 、 YP S 一 III -3 (試料③) の HGF産生誘導活性を測定した。 その結果を表 8 1に 示した。 その結果、 これらのョモギ抽出物の分画物は HGF産生誘導活性を示し た。 表 8 1 添加量 HGFの産生量 (%)
(^ /ml) 試料① 試料② 試料③
0 1 00 1 00 1 00
1 1 88 290 247
1 0 1 8 1 304 21 7
1 00 348 295 243
(ただし、 コントロールの HGF産生量は 8. 26 n gZin 1であった。 ) 実施例 22
参考例 1— ( 1 ) 記載のガゴメ昆布由来フコィダン 30 gを蒸留水 1 2 Lに室 温で 30分間攪拌溶解した。 この懸濁液を 1 0000 xgで 40分間遠心分離し 、 その上液を集めた。 これをメンブレンフィルタ一 (0. 22/ m) (ミリポア 社製) で無菌ろ過し、 凍結乾燥品 21. 4 gを得た。 これを Taka r aコンブ フコィダン B f (以下、 フコィダン Β ίと称す) とした。
実施例 1— (1) と同様の方法で、 フコィダン B f (試料①) の HGF産生誘 導活性を測定した。 その結果を表 82に示した。 ただし、 実験は 2連で行い、 そ の平均値を採用した。 その結果、 フコィダン B ίは HGF産生誘導活性を示した 表 82 添加量 HGFの産生量 (%)
{ g/m 1 ) 試料①
0 1 00
1 209
1 0 333
1 00 377
(ただし、 コントロールの HGF産生量は 9. 1 7 n gZm 1であった。 ) 実施例 23
(1)乾燥ガゴメコンブ 500 gを細断し、 1 0Lの 80%エタノールで洗浄 後、 50 Lの 1 mM塩化カリウムを含有する 1 0 %エタノール中にて、 25でで 3日間攪拌し、 網目の直径 32 mのステンレス金網でろ過してろ液約 45 Lを 得た。 このろ液 34 Lを 8 (TCで 3時間加熱した後、 50°Cまで冷却した。 これ を分子量 1万カツ卜の限外ろ過 OMEGAカセット (フィルトロン社製) で液温 50°Cに保ちながら濃縮した。 さらに 50°Cに加温した蒸留水 5 Lで脱塩を行い 、 同蒸留水 20 OmLを加えて流路を 2回洗浄して回収し濃縮液 1. 5 Lを得た 。 これを凍結乾燥し、 8. 2 gの F— r i c hフコィダンを得た。
(2) 実施例 1一 (1) と同様の方法で、 実施例 23— (1) で調製した F— r i chフコィダン (試料①) の HGF産生誘導活性を測定した。 その結果を表 83に示した。 その結果、 F— r i c hは HGF産生誘導活性を示した。 表 8 3 添加量 HGFの產生量 (%)
ill g/ 1 ) 試料①
0 1 0 0
1 1 1 7
1 0 1 8 6
1 00 244
(ただし、 コントロールの HGF産生量は 9. 60 n gZm 1であった。 ) 実施例 24
1 0%牛胎児血清を含んだ DMEM培地で培養した NHDF細胞 (ヒト正常皮 膚繊維芽細胞) を 1 X 1 05 c e 1 1 sZm 1となるように 10%牛胎児血清を含 んだ DMEM培地に懸濁し、 500 1ずつ 48穴の細胞培養プレートに入れ、 24時 間培養した。 その後、 1 %牛胎児血清を含んだ DMEM培地に交換し、 10 g / mlまたは、 100 zg Zmlのミノキシジル (和光純薬工業社製) と試料を添加した 。 なお、 F— r i c hフコィダン添加時については、 ミノキシジル 1 zgZm l 添加についても試験を行った。 また、 ミノキシジルを添加せず、 試料のみを添加 する区分も同様に行った。 この培地を回収し、 Quantikine Human Hepatocyte Growth Factor (HGF) EL ISA Kit を用いて、 培地中の HGFの量を測定 した。 試料として、 実施例 22で調製したフコィダン B ί、 実施例 23で調製し た F— r i c hフコィダン、 参考例 2— (3) で調製した 7— 1 23? (1—?を 、 最終濃度が、 1、 1 0、 1 0 0 g/m 1になるように添加した。 なお、 フ'コ ィダン B f については最終濃度が 0. 1 g/m 1添加についても試験を行った 。 ネガティブコントロールとして、 試料と同量の蒸留水を添加した。 実験は全て 3連で行いその平均値を採用した。 その結果を表 8 4〜8 6に示す。 ミノキシジル無添加において、 培地中の HGF量は、 フコィダン B i、 F- r i c hフコィダン、 7— 1 2 SF d— Fの濃度依存的に増加し、 無添加のコント ロールより有意に増加していた。 このことから、 ミノキシジル無処理のような H GFの mRNAが少ない場合でも、 細胞表面の HG Fの遊離と HGFの合成の両 方を促進することが明らかになった。 さらに、 ミノキシジルを添加した場合は、 培地中の HGF量は、 フコィダン B i、 F— r i chフコィダン、 7- 1 2SF d一 Fの濃度依存的に増加し、 無添加のコントロールより有意に増加していた。 また、 このように mRNAが増加している場合の HGF量の増加は、 ミノキシジ ル無処理で mRNA量が少ない場合と比較して、 非常に著しいものであった。 こ のことより、 フコィダン B f、 F— r i chフコィダン、 7— 1 2SFd— Fは 、 mRNAが少量の場合は少ないなりに HGFの遊離と産生を促進し、 さらに、 mRNAが大量に存在し、 大量の HGFが必要とされている場合は、 HGFの遊 離と産生を顕著に促進することが明らかになった。 表 84 NHDFZフコィダン B ί培地中 HGF濃度 (pg/ml) フコィダン B f ミノキシジル無し ミノキシジル ミノキシジル
(U g/m 1 ) 1 0 g/m 1 1 00 ^ g/τη 1
0 N. D. 1 26. 04 1 48. 83 0 300. 20 307. 00 478. 90 1 428. 83 448. 1 7 624. 60
1 0 79 1. 93 799. 90 794. 20 1 00 729. 33 709. 97 860. 23
N. D. は検出限界以下を示す c 表 8 5 NHDF/F- r i c hフコィダン培地中 H G F濃度 (pg/ml)
F— r i c h ノキシジル ミノキシジル ミノキシジル ミノキシジル フコィダン 無し 1 zg/ml 10 /ml 100 g/ml
( fi g/m 1 )
0 N. D. N. D. N. D. N. D.
1 1 32. 75 N. T. N. T. 20 3. 0 3
1 0 3 1 6, 90 2 3 9. 9 0 3 1 0. 20 4 34. 1 0 1 0 0 3 6 9. 33 372. 70 372. 70 5 37. 87
N. D. は検出限界以下を示す。 また、 N. T. は評価していないことを示す c 表 8 6 NHDF/ 7 - 1 2 S F d - F培地中 H G F濃度 (pg/ml)
7-12SFd-F ノキシジル無し ミノキシジル ミノキシジル
{p.g/ 1 ) 1 0 μ. g/m 1 1 0 0〃 g/m 1
0 N. D. N. D. 1 37. 20 1 228. 73 1 64. 00 37 8. 30
1 0 34 5. 9 3 3 76. 07 4 5 0. 8 3 1 0 0 4 39. 6 7 4 8 3. 20 820. 1 0
N. D. は検出限界以下を示す。 実施例 25
マウス (CDF 1系雌性 7週齢、 体重:約 2 0 k g)
に、 ガラク トサミン (2 OmgZマウス) と LPS (リポポリサッカライ ド: 0 . 0 3 /g/マウス) を同時に腹腔内投与し劇症肝炎による致死モデルを作製し 、 参考例 1— ( 1 ) 記載のフコィダンによる延命効果を検討した。 フコィダンは 蒸留水で 1 0%に調整し、 1 On^Zkg体重 (フコィダンとして 1 gZkg) の用量で、 ガラクトサミンと LPS同時投与の 1時間前および 1時間後の 2回強 制経口投与した。 コントロール群には同様に蒸留水を投与した。
実験開始 72時間後の生存率はコントロール群で 8例中 1例、 フコィダン投与 群で 8例中 7例であり、 フコィダン投与により顕著な延命効果が認められた。 さ らに、 生存例における血清生化学値にも改善効果が認められた。 その結果を表 8
7に示した。 表 87 群 GPT (UZ1 ) GOT (U/1 ) 総ピリルビン
(mg/d 1 ) コントロール 385 6 1 3 1. 0
フコィダン投与群 94 ± 22 233 ± 53 0. 3 ± 0. 02
実施例 26
( 1 ) ガゴメ昆布 5 0 0 gを細断し、 1 0リットルの 8 0 %エタノールで洗浄 後、 5 0リットルの 1 mM塩化カリウムを含有する 1 0%エタノール中にて内径 4 0 cmの容器で 25°Cで 2日間、 1分当り 1 20回転の速度で攪拌し、 フコィ ダンを抽出し、 抽出物を網目 32 t mのステンレス金網でろ過し、 フコィダン溶 液を調製した。
該フコィダン溶液 4 6リッ トルに、 1 gのパ一厶オイル (花王社製:化粧品用 :) を 1 リツトルのエタノールに溶解し調製した、 パ一ムオイル溶液 1 リットルを 攪拌しながら添加し、 更に 1 リツ トルのグリセロールを添加し、 化粧水を調製し た。 (2) 実施例 26— (1) で調製したフコィダン溶液に、 終濃度が 0. 02% となるようにゼラチン及び香料を添加しゼラチン使用の化粧水を得た。 また同様 にコラーゲンを添加しコラーゲン使用の化粧水を得た。 寄託された生物材料
( 1 ) 寄託機関の名称 ·あて名
通商産業省工業技術院生命工学工業技術研究所
日本国茨城県つくば市東 1丁目 1番 3号 (郵便番号 305 )
(2) 寄託された微生物
( i ) アルテロモナス (Alteromonas) s p. SN- 1 009
原寄託日 : 1 996年 2月 1 3日
国際寄託への移管請求日 : 1 996年 1 1月 1 5日
受託番号: FERM BP - 5747
(ii) フラボパクテリゥム (Flavobacterium) s p. S A- 0082 原寄託日 : 1 995年 3月 29日
国際寄託への移管請求日 : 1 996年 2月 1 5日
受託番号: FERM BP— 5402 産業上の利用可能性
本発明により成長因子産生誘導活性を示す物質を有効成分として含有する成長 因子産生を要する疾患に有効な医薬が提供される。 該医薬は、 生体内における H GF産生誘導活性、 h- I GF産生誘導活性、 NGF ·神経栄養因子産生誘導活 性等を有し、 肝炎、 糖尿病、 がん、 神経性疾患等のこれらの成長因子の産生を必 要とする疾患の治療剤又は予防剤として有用である。
更に、 成長因子産生誘導作用を有する酸性多糖、 硫酸化多糖、 例えばフコイダ ン、 デキストラン硫酸ナトリウム、 コンドロイチン硫酸高含有サメ軟骨抽出物、 それらの分解物、 酸性オリゴ糖、 酸性単糖及びそれらの塩から選択されるものを 用いて飲食品を製造することが可能になり、 日常の飲食品として摂取することに より、 成長因子の産生を要する疾患の症状改善等が可能となる。 また同様の生理 機能を有する飼料が提供される。
従って、 H G F産生誘導作用を有する、 本発明で使用する酸性多糖、 硫酸化フ コース含有多糖、 例えばフコィダン、 それらの分解物、 酸性オリゴ糖、 酸性単糖 及びそれらの塩から選択されるものを有効成分とする機能性飲食品、 機能性飼料 は、 その成長因子産生誘導作用により、 生体の恒常性の維持に有用な機能性飲食 品、 又は飼料である。
本発明により H G F産生誘導用ノ ィォ化粧料も提供され、 これらは肌の健康管 理等に極めて有用である。 更にがん転移抑制剤も提供される。
また成長因子の産生誘導剤も提供され、 当該誘導剤は成長因子の機能研究、 成 長因子に関連する疾病用医薬のスクリーニングに有用である。

Claims

請求の範囲
1 . 成長因子産生誘導作用を有する酸性多糖、 その分解物、 酸性オリゴ糖、 酸 性単糖、 酸性糖アルコール及びこれらの塩からなる群より選択されるもの (但し 、 へパリン、 へパラン硫酸を除く) を有効成分として含有することを特徴とする 成長因子産生誘導を要する疾患の治療剤又は予防剤。
2 . 酸性多糖が硫酸化多糖である請求項 1記載の治療剤又は予防剤。
3 . 硫酸化多糖が藻類由来の硫酸化多糖、 動物由来の硫酸化多糖、 植物由来の 硫酸化多糖、 微生物由来の硫酸化多糖又は魚類由来の硫酸化多糖である請求項 2 記載の治療剤又は予防剤。
4 . 硫酸化多糖が合成硫酸化多糖である請求項 2記載の治療剤又は予防剤。
5 . 硫酸化多糖がフコィダンである請求項 2記載の治療剤又は予防剤。
6 . 酸性単糖が硫酸化グルコース、 硫酸化ガラクトース、 硫酸化キシロース、 硫酸化 2—デォキシーグルコース、 硫酸化夕ロース又は硫酸化マンノースである 請求項 1記載の治療剤又は予防剤。
7 . 酸性オリゴ糖が硫酸化マルトース、 硫酸化ラクトース、 硫酸化スクロース 、 硫酸化トレハロース、 硫酸化ラクッロース、 硫酸化メリビオース、 硫酸化セロ ビオース、 硫酸化イソマルトース、 硫酸化ッラノース、 硫酸化パラチノース、 硫 酸化マルトトリオース、 硫酸化マルトへキサオース、 硫酸化マルトへプタオース 、 硫酸化ドデシルーマルトへキサオース、 下記式 ( I ) で表される化合物及び下 記式 (I I)で表される化合物からなる群より選択される硫酸化オリゴ糖である 請求項 1記載の治療剤又は予防剤。
Figure imgf000142_0001
(式中、 Rは OH又は OS〇3 H である。 )
Figure imgf000142_0002
(式中、 Rは 0H又は 0S03 H である。 )
8 . 成長因子が肝細胞増殖因子、 インスリン様増殖因子又は神経成長因子であ る請求項 1〜 7いずれか 1項に記載の治療剤又は予防剤。
9 . 酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール、 又 はそれらの塩の成長因子産生誘導作用を相乗的に増加させる物質をさらに含有し てなることを特徴とする請求項 1〜 8いずれか 1項に記載の治療剤又は予防剤。
1 0 . 酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール、 又はそれらの塩の成長因子産生誘導作用を相乗的に増加させる物質がサイトカイ ン類、 プロスタグランジン類及びシクロペンテン環を有する化合物からなる群よ り選択される物質である請求項 9記載の治療剤又は予防剤。
1 1 . 成長因子産生誘導作用を有する酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール、 及びこれらの塩からなる群より選択されるものを 含有してなる成長因子産生誘導用の食品、 飲料又は飼料。
1 2 . 酸性多糖が硫酸化多糖である請求項 1 1記載の食品、 飲料又は飼料。
1 3 . 硫酸化多糖が藻類由来の硫酸化多糖、 動物由来の硫酸化多糖、 植物由来 の硫酸化多糖、 微生物由来の硫酸化多糖又は魚類由来の硫酸化多糖である請求項 1 2記載の食品、 飲料又は飼料。
1 4 . 硫酸化多糖が合成硫酸化多糖である請求項 1 2記載の食品、 飲料又は飼 料。
1 5 . 硫酸化多糖がフコィダンである請求項 1 2記載の食品、 飲料又は飼料。
1 6 . 酸性単糖が硫酸化グルコース、 硫酸化ガラク トース、 硫酸化キシロース 、 硫酸化 2—デォキシーグルコース、 硫酸化夕ロース又は硫酸化マンノースであ る請求項 1 1記載の食品、 飲料又は飼料。
1 7 . 酸性オリゴ糖が硫酸化マルトース、 硫酸化ラク トース、 硫酸化スクロ一 ス、 硫酸化トレハロース、 硫酸化ラクッロース、 硫酸化メリビオース、 硫酸化セ ロビオース、 硫酸化イソマルト一ス、 硫酸化ッラノース、 硫酸化パラチノース、 硫酸化マルト トリオース、 硫酸化マルトへキサオース、 硫酸化マルトへプタオ一 ス、 硫酸化ドデシルーマルトへキサオース、 式 ( I ) で表される化合物及び式 ( I I ) で表される化合物からなる群より選択される硫酸化オリゴ糖である請求項 1 1記載の食品、 飲料又は飼料。
Figure imgf000144_0001
(式中、 Rは O H又は〇S〇3 H である。 )
Figure imgf000145_0001
(式中、 Rは〇H又は O S 03 H である。 )
1 8 . 肝細胞増殖因子産生誘導用、 インスリン様増殖因子産生誘導用、 又は神 経成長因子産生誘導用である請求項 1 1〜1 7いずれか 1項に記載の食品、 飲料 又は飼料。
1 9 . 酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール、 又はそれらの塩の成長因子産生誘導作用を相乗的に増加させる物質をさらに含有 してなることを特徴とする請求項 1 1〜 1 8のいずれか 1項に記載の食品、 飲料 又は飼料。
2 0 . 酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール、 又はそれらの塩の成長因子産生誘導作用を相乗的に増加させる物質がサイトカイ ン類、 プロスタグランジン類及びシクロペンテン環を有する化合物からなる群よ り選択される物質である請求項 1 9記載の食品、 飲料又は飼料。
2 1 . 成長因子産生誘導作用を有する酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール、 及びこれらの塩からなる群より選択されるものを 含有してなる成長因子産生誘導用の化粧料。
2 2 . 酸性多糖が硫酸化多糖である請求項 2 1記載の化粧料。
2 3 . 硫酸化多糖が藻類由来の硫酸化多糖、 動物由来の硫酸化多糖、 植物由来 の硫酸化多糖、 微生物由来の硫酸化多糖又は魚類由来の硫酸化多糖である請求項 2 2記載の化粧料。
2 4 . 硫酸化多糖が合成硫酸化多糖である請求項 2 2記載の化粧料。
2 5 . 硫酸化多糖がフコィダンである請求項 2 2記載の化粧料。
2 6 . 酸性単糖が硫酸化グルコース、 硫酸化ガラクトース、 硫酸化キシロース 、 硫酸化 2—デォキシーグルコース、 硫酸化タロース又は硫酸化マンノースであ る請求項 2 1記載の化粧料。
2 7 . 酸性オリゴ糖が硫酸化マルトース、 硫酸化ラクト一ス、 硫酸化スクロー ス、 硫酸化トレハロース、 硫酸化ラクッロース、 硫酸化メリビオース、 硫酸化セ ロビオース、 硫酸化イソマルトース、 硫酸化ッラノース、 硫酸化パラチノース、 硫酸化マルトトリオース、 硫酸化マルトへキサオース、 硫酸化マルトへプタオ一 ス、 硫酸化ドデシルーマルトへキサオース、 式 ( I ) で表される化合物及び式 ( I I ) で表される化合物からなる群より選択される硫酸化オリゴ糖である請求項 2 1記載の化粧料。
Figure imgf000147_0001
(式中、 Rは OH又は 0S03 H である。 )
Figure imgf000147_0002
(式中、 Rは〇H又は OS〇3 H である。 )
28. 肝細胞増殖因子産生誘導用、 ィンスリン様増殖因子産生誘導用、 又は神 経成長因子產生誘導用の化粧料である請求項 21〜27いずれか 1項に記載の化 粧料。
2 9 . 酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール、 又はそれらの塩の成長因子産生誘導作用を相乗的に増加させる物質をさらに含有 してなることを特徴とする請求項 2 1〜2 8のいずれか 1項に記載の化粧料。
3 0 . 酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール、 又はそれらの塩の成長因子産生誘導作用を相乗的に増加させる物質がサイトカイ ン類、 プロスタグランジン類及ぴシクロペンテン環を有する化合物から選択され る物質である請求項 2 9記載の化粧料。
3 1 . ローション類、 乳液類、 クリーム類、 パック類、 浴用剤、 洗顔剤、 浴用 石ゲン、 又は浴用洗剤である請求項 2 1〜3 0のいずれか 1項に記載の化粧料。
3 2 . 酸性多糖、 その分解物、 酸性オリゴ糖、 酸性単糖、 酸性糖アルコール及 びこれらの塩からなる群より選択されるものを有効成分として含有することを特 徵とする成長因子産生調整剤。
PCT/JP2000/002432 1999-04-15 2000-04-14 Remedes WO2000062785A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020017012954A KR100727339B1 (ko) 1999-04-15 2000-04-14 치료제
JP2000611921A JP4261071B2 (ja) 1999-04-15 2000-04-14 治療剤
EP00917309A EP1175907A4 (en) 1999-04-15 2000-04-14 REMEDIES
AU38373/00A AU3837300A (en) 1999-04-15 2000-04-14 Remedies

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
JP11/108499 1999-04-15
JP10806799 1999-04-15
JP11/108067 1999-04-15
JP11108499 1999-04-19
JP11454299 1999-04-22
JP11/114542 1999-04-22
JP11/129163 1999-05-10
JP12916399 1999-05-10
JP11/142343 1999-05-21
JP14234399 1999-05-21
JP15466299 1999-06-02
JP11/154662 1999-06-02
JP20098299 1999-07-14
JP11/200982 1999-07-14
JP11/275231 1999-09-28
JP27523199 1999-09-28
JP11/375606 1999-12-28
JP37560699 1999-12-28
JP2000/99941 2000-03-31
JP2000099941 2000-03-31

Publications (1)

Publication Number Publication Date
WO2000062785A1 true WO2000062785A1 (fr) 2000-10-26

Family

ID=27580235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002432 WO2000062785A1 (fr) 1999-04-15 2000-04-14 Remedes

Country Status (3)

Country Link
EP (1) EP1175907A4 (ja)
AU (1) AU3837300A (ja)
WO (1) WO2000062785A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039731A1 (fr) * 1999-11-30 2001-06-07 Takara Bio Inc. Produits cosmetiques
WO2002022140A1 (fr) * 2000-09-13 2002-03-21 Takara Bio Inc. Agents entretenant l'homéostase
JP2002114692A (ja) * 2000-09-29 2002-04-16 Arsoa Honsya Corp 肝機能改善剤
WO2002092114A1 (fr) * 2001-05-11 2002-11-21 Kabushiki Kaisha Yakult Honsha Agents prophylactiques et/ou remedes aux infections des poissons
JP2003339318A (ja) * 2002-05-28 2003-12-02 Sanei Gen Ffi Inc 長期保存に安定な茶類飲料とその製造方法
JP2006062983A (ja) * 2004-08-24 2006-03-09 Kyoto Sangyo Univ 組成物及びそれを含有する抗腫瘍剤
JP2007190004A (ja) * 2006-01-16 2007-08-02 Shinichi Shioda フコイダン入り健康補助食品
WO2008047663A1 (fr) * 2006-10-16 2008-04-24 Takara Bio Inc. Amplificateur d'activité pour une enzyme de détoxification
JP2012107002A (ja) * 2010-10-27 2012-06-07 Yakult Honsha Co Ltd ストレス緩和剤
WO2014157483A1 (ja) * 2013-03-29 2014-10-02 ダイソー株式会社 細胞培養用培地添加物
JP2018058807A (ja) * 2016-10-08 2018-04-12 株式会社ニューロゲン Hgf誘導剤
CN112457425A (zh) * 2020-12-09 2021-03-09 宁夏医科大学 一种具有抗肝癌细胞增殖活性的小球藻多糖的提纯方法
CN113015432A (zh) * 2018-11-09 2021-06-22 Sea6能源私人有限公司 包含硫酸化半乳糖的组合物及其实施方式
WO2022270598A1 (ja) 2021-06-23 2022-12-29 学校法人東京女子医科大学 動物細胞培養用組成物の製造方法、それにより得られる動物細胞培養用組成物及びそれを用いた動物細胞の培養方法
WO2023074850A1 (ja) * 2021-10-29 2023-05-04 キヤノン株式会社 細胞剥離液及び細胞剥離方法、細胞保存方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE409028T1 (de) * 2000-01-27 2008-10-15 Takara Bio Inc Arzneien zur behandlung von nervenerkrankungen
DE60202427T2 (de) 2001-10-24 2005-12-29 Takara Bio Inc., Otsu Sulfatiertes Fucan-Oligosaccharid
ITMI20021294A1 (it) * 2002-06-12 2003-12-12 Inalco Spa Polisaccaridi batterici o-solfatati e loro uso
US8519008B2 (en) 2003-01-22 2013-08-27 Purina Animal Nutrition Llc Method and composition for improving the health of young monogastric mammals
DE102005004643B4 (de) * 2005-01-28 2010-04-08 Innovent E.V. Technologieentwicklung Antivirale Kombinationen sowie ihre Verwendung
WO2012019021A1 (en) * 2010-08-04 2012-02-09 Wisconsin Alumni Research Foundation Methods and pharmaceutical compositions for treating adverse or deleterious sequellae of traumatic brain injury

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301824A (ja) * 1991-06-03 1993-11-16 Mitsubishi Kasei Corp 肝実質細胞増殖剤
WO1994021689A1 (en) * 1993-03-25 1994-09-29 Cancer Research Campaign Technology Limited Heparan sulphate oligosaccharides having hepatocyte growth factor binding affinity
JPH06312941A (ja) * 1992-08-24 1994-11-08 Toshiichi Nakamura Hgf産生促進剤
WO1995009637A1 (en) * 1993-10-07 1995-04-13 Glycomed Incorporated Highly sulfated maltooligosaccharides with heparin-like properties
JPH07173059A (ja) * 1993-12-16 1995-07-11 Mitsui Norin Kk 神経成長因子合成促進剤
WO1995026984A1 (fr) * 1994-03-31 1995-10-12 Snow Brand Milk Products Co., Ltd. Procede de production d'une composition renfermant le facteur de croissance 1 insulinoide bovin
WO1996009828A1 (en) * 1994-09-26 1996-04-04 Glycomed Incorporated Highly sulfated maltooligosaccharides with heparin-like properties
WO1996023003A1 (en) * 1995-01-27 1996-08-01 Amrad Operations Pty. Ltd. A therapeutic molecule
WO1997012598A2 (en) * 1995-10-06 1997-04-10 Mendes S.R.L. Dermatological and cosmetic compositions suitable for topical application, having modulating effect on the endogenous ceramide of the skin
WO1997026896A1 (en) * 1996-01-26 1997-07-31 Takara Shuzo Co., Ltd. Apoptosis inducers
EP0816381A1 (en) * 1995-03-10 1998-01-07 NAKAMURA, Toshikazu Peg-modified hgf
WO1998013328A1 (fr) * 1996-09-27 1998-04-02 Takara Shuzo Co., Ltd. Cyclopentenones, leur procede de preparation et leur utilisation
WO1998039291A1 (en) * 1997-03-05 1998-09-11 Takara Shuzo Co., Ltd. Compounds
WO1998040346A1 (fr) * 1997-03-11 1998-09-17 Takara Shuzo Co., Ltd. Derives cyclopentenone
WO1999041288A1 (fr) * 1998-02-17 1999-08-19 Takara Shuzo Co., Ltd. Saccharides sulfates

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301824A (ja) * 1991-06-03 1993-11-16 Mitsubishi Kasei Corp 肝実質細胞増殖剤
JPH06312941A (ja) * 1992-08-24 1994-11-08 Toshiichi Nakamura Hgf産生促進剤
WO1994021689A1 (en) * 1993-03-25 1994-09-29 Cancer Research Campaign Technology Limited Heparan sulphate oligosaccharides having hepatocyte growth factor binding affinity
WO1995009637A1 (en) * 1993-10-07 1995-04-13 Glycomed Incorporated Highly sulfated maltooligosaccharides with heparin-like properties
JPH07173059A (ja) * 1993-12-16 1995-07-11 Mitsui Norin Kk 神経成長因子合成促進剤
WO1995026984A1 (fr) * 1994-03-31 1995-10-12 Snow Brand Milk Products Co., Ltd. Procede de production d'une composition renfermant le facteur de croissance 1 insulinoide bovin
WO1996009828A1 (en) * 1994-09-26 1996-04-04 Glycomed Incorporated Highly sulfated maltooligosaccharides with heparin-like properties
WO1996023003A1 (en) * 1995-01-27 1996-08-01 Amrad Operations Pty. Ltd. A therapeutic molecule
EP0816381A1 (en) * 1995-03-10 1998-01-07 NAKAMURA, Toshikazu Peg-modified hgf
WO1997012598A2 (en) * 1995-10-06 1997-04-10 Mendes S.R.L. Dermatological and cosmetic compositions suitable for topical application, having modulating effect on the endogenous ceramide of the skin
WO1997026896A1 (en) * 1996-01-26 1997-07-31 Takara Shuzo Co., Ltd. Apoptosis inducers
WO1998013328A1 (fr) * 1996-09-27 1998-04-02 Takara Shuzo Co., Ltd. Cyclopentenones, leur procede de preparation et leur utilisation
WO1998039291A1 (en) * 1997-03-05 1998-09-11 Takara Shuzo Co., Ltd. Compounds
WO1998040346A1 (fr) * 1997-03-11 1998-09-17 Takara Shuzo Co., Ltd. Derives cyclopentenone
WO1999041288A1 (fr) * 1998-02-17 1999-08-19 Takara Shuzo Co., Ltd. Saccharides sulfates

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BELFORD, DAVID A. ET. AL.: "Investigation of the ability of several naturally occuring and synthetic polyanions to bind to and potentiate the biological activity of acidic fibroblast growth factor", J. CELL. PHYSIOL., vol. 157, no. 1, 1993, pages 184 - 189, XP002929613 *
PRESTRELSKI, STEVEN J. ET. AL.: "Binding of heparin to basic fibroblast growth factor induces a conformational change", ARCH. BIOCHEM. BIOPHYS., vol. 293, no. 2, 1992, pages 314 - 319, XP002929614 *
See also references of EP1175907A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039731A1 (fr) * 1999-11-30 2001-06-07 Takara Bio Inc. Produits cosmetiques
US7678368B2 (en) 1999-11-30 2010-03-16 Takara Bio Inc. Fucoidan-containing cosmetics
JP3831252B2 (ja) * 1999-11-30 2006-10-11 タカラバイオ株式会社 化粧料
WO2002022140A1 (fr) * 2000-09-13 2002-03-21 Takara Bio Inc. Agents entretenant l'homéostase
JP2002114692A (ja) * 2000-09-29 2002-04-16 Arsoa Honsya Corp 肝機能改善剤
JPWO2002092114A1 (ja) * 2001-05-11 2004-08-26 株式会社ヤクルト本社 魚介類の感染予防及び/又は治療剤
WO2002092114A1 (fr) * 2001-05-11 2002-11-21 Kabushiki Kaisha Yakult Honsha Agents prophylactiques et/ou remedes aux infections des poissons
JP2003339318A (ja) * 2002-05-28 2003-12-02 Sanei Gen Ffi Inc 長期保存に安定な茶類飲料とその製造方法
JP2006062983A (ja) * 2004-08-24 2006-03-09 Kyoto Sangyo Univ 組成物及びそれを含有する抗腫瘍剤
JP2007190004A (ja) * 2006-01-16 2007-08-02 Shinichi Shioda フコイダン入り健康補助食品
WO2008047663A1 (fr) * 2006-10-16 2008-04-24 Takara Bio Inc. Amplificateur d'activité pour une enzyme de détoxification
JP2012107002A (ja) * 2010-10-27 2012-06-07 Yakult Honsha Co Ltd ストレス緩和剤
WO2014157483A1 (ja) * 2013-03-29 2014-10-02 ダイソー株式会社 細胞培養用培地添加物
JPWO2014157483A1 (ja) * 2013-03-29 2017-02-16 株式会社大阪ソーダ 細胞培養用培地添加物
JP2018058807A (ja) * 2016-10-08 2018-04-12 株式会社ニューロゲン Hgf誘導剤
CN113015432A (zh) * 2018-11-09 2021-06-22 Sea6能源私人有限公司 包含硫酸化半乳糖的组合物及其实施方式
CN113015432B (zh) * 2018-11-09 2024-03-26 Sea6能源私人有限公司 包含硫酸化半乳糖的组合物及其实施方式
CN112457425A (zh) * 2020-12-09 2021-03-09 宁夏医科大学 一种具有抗肝癌细胞增殖活性的小球藻多糖的提纯方法
WO2022270598A1 (ja) 2021-06-23 2022-12-29 学校法人東京女子医科大学 動物細胞培養用組成物の製造方法、それにより得られる動物細胞培養用組成物及びそれを用いた動物細胞の培養方法
WO2023074850A1 (ja) * 2021-10-29 2023-05-04 キヤノン株式会社 細胞剥離液及び細胞剥離方法、細胞保存方法

Also Published As

Publication number Publication date
EP1175907A1 (en) 2002-01-30
AU3837300A (en) 2000-11-02
EP1175907A4 (en) 2004-12-29

Similar Documents

Publication Publication Date Title
WO2000062785A1 (fr) Remedes
JP5060012B2 (ja) 医薬又は化粧料
WO2002022140A1 (fr) Agents entretenant l&#39;homéostase
US6747015B2 (en) Low molecular weight polymannuronate
JP3831252B2 (ja) 化粧料
JP2009051836A (ja) 治療剤
CA2521991A1 (en) Arthritis preventing or treating agent
JP4852683B2 (ja) 大麦を発酵に付したものを有効成分とする血管新生阻害の作用を有する組成物
JP2019033758A (ja) アブラナ科植物の乳酸菌発酵物、該発酵物を含有する食品、化粧品及び上皮バリア増強剤、並びに該発酵物の製造方法
WO2004050078A1 (ja) 治療剤
KR101489732B1 (ko) 3,6-안하이드로-l-갈락토오스를 포함하는 대장암 예방 또는 치료용 조성물
WO2005095427A1 (ja) 血栓症の予防又は治療のための組成物
JP6462987B2 (ja) アブラナ科植物の乳酸菌発酵物、該発酵物を含有する食品、化粧品及び上皮バリア増強剤、並びに該発酵物の製造方法
JP2007008899A (ja) 血管新生抑制剤
JP4261071B2 (ja) 治療剤
KR20180042936A (ko) 치마버섯 분리 균사체 배양액을 유효성분으로 함유하는 숙취해소 및 간질환의 예방 및 치료용 약학조성물
CN114989258B (zh) 植物提取组合物在制备治疗便秘、减肥产品上的应用
JP2003313131A (ja) 医薬または化粧料
JP4054697B2 (ja) 便秘改善剤
JP7220457B2 (ja) ヒアルロン酸産生促進剤、関節機能改善剤、及び経口用組成物
JP4484028B2 (ja) 免疫強化剤及びその製造方法
KR100776956B1 (ko) 치료제
TWI228991B (en) Pharmaceuticals, foods, beverages, feeds or cosmetics inducing growth factor production
AU2003252655A1 (en) Remedy
KR101839186B1 (ko) 망막세포 재생효과를 갖는 군소 추출물의 용도

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00809051.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2000 611921

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017012954

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09958852

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000917309

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017012954

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000917309

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWR Wipo information: refused in national office

Ref document number: 1020017012954

Country of ref document: KR