WO2000039374A1 - Fil comprenant du terephtalate de polytrimethylene - Google Patents

Fil comprenant du terephtalate de polytrimethylene Download PDF

Info

Publication number
WO2000039374A1
WO2000039374A1 PCT/JP1999/007361 JP9907361W WO0039374A1 WO 2000039374 A1 WO2000039374 A1 WO 2000039374A1 JP 9907361 W JP9907361 W JP 9907361W WO 0039374 A1 WO0039374 A1 WO 0039374A1
Authority
WO
WIPO (PCT)
Prior art keywords
dtex
yarn
gut
string
elongation
Prior art date
Application number
PCT/JP1999/007361
Other languages
English (en)
French (fr)
Inventor
Kazuto Oue
Hiroshi Yamazaki
Original Assignee
Asahi Kasei Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kabushiki Kaisha filed Critical Asahi Kasei Kabushiki Kaisha
Priority to US09/869,278 priority Critical patent/US6503623B1/en
Priority to AU18029/00A priority patent/AU1802900A/en
Priority to JP2000591255A priority patent/JP3194431B2/ja
Priority to EP99961440A priority patent/EP1167594A1/en
Publication of WO2000039374A1 publication Critical patent/WO2000039374A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/26Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist
    • D02G3/28Doubled, plied, or cabled threads
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/444Yarns or threads for use in sports applications
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10DSTRINGED MUSICAL INSTRUMENTS; WIND MUSICAL INSTRUMENTS; ACCORDIONS OR CONCERTINAS; PERCUSSION MUSICAL INSTRUMENTS; AEOLIAN HARPS; SINGING-FLAME MUSICAL INSTRUMENTS; MUSICAL INSTRUMENTS NOT OTHERWISE PROVIDED FOR
    • G10D3/00Details of, or accessories for, stringed musical instruments, e.g. slide-bars
    • G10D3/10Strings
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B51/00Stringing tennis, badminton or like rackets; Strings therefor; Maintenance of racket strings
    • A63B51/02Strings; String substitutes; Products applied on strings, e.g. for protection against humidity or wear
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/202Strands characterised by a value or range of the dimension given
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2025Strands twisted characterised by a value or range of the pitch parameter given
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/201Polyolefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • Y10T428/2969Polyamide, polyimide or polyester

Definitions

  • the present invention relates to a polymethylene terephthalate fiber, particularly a polymethylene terephthalate multifilament fiber having a single fiber fineness of 1 to 56 dtex.
  • the present invention relates to a yarn having a total fineness of 2000 to 220 dtex, a gut using the yarn, and a musical instrument string. Background art
  • Polymethylentelephthalate fibers are similar to nylon fibers in terms of soft texture derived from low elastic modulus, excellent elastic recovery, and washability. It is an epoch-making fiber that has properties similar to polyethylene terephthalate fiber, such as air consistency, dimensional stability, and yellowing resistance, but it is a raw material for polymethylene terephthalate fiber.
  • trimethylethylene glycol is expensive and production on a commercial scale has been rarely performed until now.
  • technology for industrially producing trimethylene glycol was inexpensively developed, and its characteristics are now being commercialized into clothing, power supplies, etc. You.
  • polytrimethylene terephthalate fiber has hardly been applied to fields other than clothing.
  • Polytrimethyl terephthalate multifilament fiber is used as a product in fields other than apparel by using unified yarn without weaving or knitting. There is no single yarn fineness of 1 to 5 6 dtex Polymethylentene terephthalate Multi-filament fibers are combined and unified, and the total fineness is 2000 to 2200.There is no dtex yarn. .
  • the multifilament yarn of the present invention is a yarn having a total fineness of 200-200 dtex by combining filaments having a single yarn fineness exceeding 56 dtex. It has higher strength, elastic recovery, and stress retention than, has excellent water resistance, flexibility, and uniformity of yarn, and can be used as it is or with glued and / or coated yarn It is suitable for applications, especially for strings for gut instruments.
  • the guts of racquets such as tennis battons are made of synthetic fibers such as nylon fibers and animal muscles such as cattle and sheep intestines, whale muscles, etc. Provides coated natural guts. It is said that this natural gut has good resilience, controllability, shot feeling, and hold feeling because it stretches more moderately even when stretched with high tension. However, the durability and water resistance are low and expensive. On the other hand, synthetic fiber guts have good durability and water resistance, but when used for a long time in a state where the guts are strengthened and the resilience is improved, the guts gradually disappear.
  • the gut using nylon fiber has a high official moisture regain, and has the property of elongation when wet, and when the gut gets wet, the gut tension is loosened and the elasticity is reduced. The shot feeling and hold feeling deteriorate.
  • high modulus fibers such as aramide fibers have a high breaking strength and low elongation. There was a problem that the elasticity was low because the gut did not elongate when hit, and the impact resistance was lacking because the impact could not be absorbed.
  • Japanese Unexamined Patent Publication No. Hei 5—2 628 862 discloses that a 657 denier polymethylentelephthalate monofilament fiber is used as a gut for a racket.
  • the property that the Young's modulus at break and the elongation at break are larger than that of nylon is very suitable as a gut of a racket.
  • multiple length polymethylentelephthalate monofilaments must be joined together using a polymer coating. Is described. However, there is no description of physical properties or performance as an actual gut. In addition, there is no description of the total fineness as a multifilament or gut.
  • the denier of the disclosed monofilament is as large as 657 denier, and if many gutters of this thickness are used as a gut, the initial elasticity is good, but Elasticity decreases with time. Furthermore, there was a problem that the shot feeling, controllability, and impact resistance were poor.
  • Japanese Patent Application Laid-Open No. 5-262882 describes a yarn for a guitar as a use of polytrimethylene terephthalate monofilament. There is no description of the configuration, effects, etc. Disclosure of the invention
  • An object of the present invention is to synthesize polytrimethylene terephthalate fibers, particularly polymethylene terephthalate multifilament fibers having a single yarn fineness of 1 to 56 dtex. It provides a yarn with a total fineness of 2000 to 2200 dtex. This yarn has high strength, high elastic recovery, high stress retention, water resistance, and flexibility. It has the property of having excellent yarn homogeneity.
  • Another object of the present invention is to provide a gut and a musical instrument string using the thread. It is to be.
  • Another specific object of the present invention is to be able to strongly stretch a frame of a racquet such as tennis, to have high resilience when stretched, to maintain resilience for a long time, and to have impact resistance and durability. It is to provide a gut having excellent resistance and water resistance.
  • Still another specific object of the present invention is to provide a string having excellent tuning properties with little change in pitch with time and humidity.
  • the present inventors combined multifilament fibers of poly (methylene terephthalate) having a single fiber fineness of 1 to 56 dtex to obtain a total fineness of 200 to 200. It has been found that the above object can be achieved by solving a conventional problem by using a 0 dtex yarn, and the present invention has been achieved.7 ⁇ -That is, the present invention relates to polymethylene terephthalate. Yarn with a total fineness of 200-200 dtex made by combining fibers, especially polymethylene terephthalate multifilament fibers with a fineness of 1-56 dtex Article
  • the polytrimethylene terephthalate fiber refers to a polyester fiber having a trimethylene terephthalate unit as a main repeating unit, and a trimethylene terephthalate unit.
  • the total amount of other acid components and / or glycol components as ternary components is less than about 50 mol%, preferably not more than 30 mol%, more preferably not more than 20 mol%, and furthermore, Preferably, it includes polymethylene terephthalate contained in an amount of 10 mol% or less.
  • Polytrimethylene terephthalate is synthesized by combining terephthalic acid or a functional derivative thereof with trimethylene glycol or a functional derivative thereof in the presence of a catalyst under appropriate reaction conditions. You. In this synthesis process, an appropriate one or more tertiary components may be added to obtain a copolymerized polyester, or a polymethylene terephthalate such as polyethylene terephthalate may be used. Polyesters other than the above, nylon and polymethylene terephthalate may be separately synthesized and then blended or composite-spun (sheath core, side-by-side, etc.).
  • Examples of the third component to be added include aliphatic dicarboxylic acids (oxalic acid, adipic acid, etc.), alicyclic dicarboxylic acids (cyclohexanedicarboxylic acid, etc.), aromatic dicarboxylic acids (isophthalic acid, Sodium sulfoisophtalic acid, etc.), aliphatic glycols (ethylene glycol, 1,2—propylene glycol, tetramethylen glycol, etc.), alicyclic glycols (cyclohexane dimethyl ethanol, etc.), aromatic Aliphatic glycols (eg, 1,4-bis (S-hydroxyethoxy) benzene), polyether glycols (polyethylene glycol, polypyrene pyrene glycol, etc.), aliphatic oxycarboxylic acids ( ⁇ -oxy) Carboxylic acid, etc.), and aromatic oxycarboxylic acid (eg, hydroxybenzoic acid).
  • an anti-glazing agent such as titanium dioxide, a stabilizer such as phosphoric acid, Bluing agents such as lute, ultraviolet absorbers such as hydroxybenzophenone derivatives, crystallization nucleating agents such as talc, lubricating agents such as aerosil, antioxidants such as 7-dundanol derivatives, and difficulties It may contain a flame retardant, an antistatic agent, a pigment, a fluorescent brightener, an infrared absorber, an antifoaming agent, and the like.
  • an undrawn yarn is obtained at a winding speed of about 150 mZ, and then it is twisted at about 2 to 3.5 times.
  • Normal method direct drawing method (spin draw method) directly connected to spinning and drawing process, high-speed spinning method with a winding speed of 500 Om / min or more (spin take-up method), spinning, and once in a water bath Any method such as a method of stretching after cooling may be adopted.
  • the polymethylene terephthalate multi-filament fiber having a single yarn fineness of 1 to 56 dtex obtained as described above is plied to give a total fineness of 200 to 200.
  • the yarn of the polytrimethylene terephthalate multifilament fiber of the present invention can be obtained.
  • the single filament fineness of the poly (trimethylene terephthalate) multi-filament fiber is from 1 to 56 dtex, preferably from 5.6 to 44 dtex. Within this range, the resulting yarn has high strength, elastic recovery, and high stress retention, and is flexible and excellent in homogeneity. If the single-fiber fineness is less than 1 dtex, single-fiber breakage is likely to occur during spinning and twisting, resulting in a decrease in strength and a reduction in the abrasion strength of the yarn. On the other hand, if the single fiber fineness exceeds 56 dtex, the cooling of the multifilaments becomes insufficient and the multifilaments may be fused to each other, resulting in poor uniformity of the yarn.
  • the polymethylene terephthalate has a high crystallization rate
  • the single fiber fineness exceeds 56 dteX
  • cooling becomes insufficient
  • the crystal orientation in the fiber cross-sectional direction becomes non-uniform. That is, the outer layer of the fiber cross section has a high degree of crystal orientation, but the center has a high degree of crystal orientation.
  • the strength and elastic recovery of the fiber decrease, and the stress retention of the yarn decreases.
  • the total fineness before the twining is preferably from 56 to 560 dtex.
  • the physical properties of the polymethylene terephthalate multi-filament fiber before the twining are such that the tensile strength is 2.6 cN (centinewon) / dtex or more, preferably 3.3 c NZ. dtex or more.
  • the elongation at break is preferably 25% or more, more preferably 30 to 60%, more preferably 40 to 50%, and the elongation at break exceeds 60%. Therefore, the elastic recovery rate tends to decrease.
  • the elastic modulus is preferably 18 to 36 cN dtex, more preferably 20 to 30 cN / dtex, and the elastic recovery at 20% elongation is preferably 60 to 99%. More preferably, it is 70 to 99%.
  • U% can be used as a parameter for evaluating the quality of the multifilament before the plying, for example. U% is a parameter indicating the uniformity in the longitudinal direction of the fiber cross section, and the preferred U% is 3.0% or less, and more preferably 2.5% or less.
  • the yarn of the present invention is a yarn having a total fineness of 2000 to 2200 dtex obtained by plying the multifilament fibers. If it is less than 2000 dte, it is not used for gut chords and the like due to low yarn strength and wear strength. On the other hand, when it exceeds 2200 dtex, the diameter of the yarn becomes too large, so that it is difficult to ply and integrate the yarn, and it is particularly unsuitable for gut strings. In addition, by combining a plurality of multifilaments having a toe fineness of 56 to 560 dtex into a total fineness of 200 to 2200 dtex, a yarn is obtained.
  • the physical properties of the plied yarn are a tensile strength of 50 to 100 N (Newton), preferably 60 to 80 ON.
  • the breaking elongation is 25 to 80%, preferably 35 to 60%, and more preferably 40 to 50%.
  • the yarn exhibits an elastic recovery at 20% elongation of 60 to 99%, preferably 70 to 99%, and more preferably 75 to 99%.
  • the stress retention at a stress of 49.0 N is 60% or more, preferably 70% or more, and more preferably 75% or more.
  • Multifilament yarns can be combined in a non-twisted state, aligned and combined, interlaced together, multi-filament multifilament combined with an interlace. Dozens of strands are twisted and twisted together, non-twisted multifilaments are twisted and twisted, several twisted and twisted multifilaments are combined There is a method of twisting several tens of strands and twisting them, and is used as a non-twisted yarn, a single twisted yarn, a multi-twisted yarn, a kama twisted yarn, and a wall twisted yarn.
  • the number of twists is not particularly limited, but is usually 150 O TZm or less, preferably 100 to 100 TZm, and more preferably 20 to 500 O TZm.
  • Machines for twisting and twisting these yarns include an Italy twisting machine, an up twister, a double twister, a covering machine, a twisting machine, a ring twisting machine, and a double twisting machine.
  • the thread of the present invention is suitable for, for example, ropes, strings, industrial sewing threads, and the like, in addition to guts and strings for musical instruments.
  • the poly (methylene terephthalate) multi-filament fiber is obtained by subjecting the raw yarn or the ligated yarn before the ligating to a heat treatment under a fixed length or an elongation before bonding or bonding.
  • a heat treatment temperature is not particularly limited, but is usually in the range of 150 to 200 ° C, preferably in the range of 160 to 180 ° C. Below 150 ° C, the effect of improving the crystal orientation is insufficient, and above 200 ° C, the yarn strength tends to decrease.
  • the processing time is usually preferably 20 seconds to 2 minutes.
  • the elongation rate in the fixed length or elongation heat treatment is 0 to 10%, preferably 0 to 5%.
  • the stress retention tends to decrease.
  • the breaking elongation of the fiber exceeds 60%, it can be reduced to 30 to 60%, preferably 40 to 50% by this constant length or stretching heat treatment.
  • the inventors of the present invention have conducted intensive studies on the gut, and have found that a single fiber fineness of 1 to 56 dtex is obtained by plying a multifilament lenticular reference multifilament fiber.
  • the use of yarn with a total fineness of 700-200 dtex as a gut solves the drawbacks of conventional guts, and provides high elasticity, impact resistance, and high elasticity.
  • the elastic recovery rate is higher than that of the conventional gut, the gut is strongly stretched and tension is applied to the yarn, that is, the yarn is elongated by 5 to 25%. Since the elastic recovery rate at the time is high, the initial stress retention rate is high, and the fluctuation of the gut tension with time is small. In addition, it has high initial resilience, maintains high resilience for a long time, and has excellent elongation and excellent elastic recovery when hit with a ball. A gut with good controllability can be obtained.
  • the polytrimethylene terephthalate multi-filament is used.
  • the physical properties of the ment fiber yarns are as follows: tensile strength is 230 N or more, preferably 300 N or more, and if the tensile strength is less than 230 N If the total fineness exceeds 2200 dtex for the purpose of increasing strength and low breaking strength, the gut diameter will increase, resulting in poor elasticity, shot feeling, controllability and impact resistance. I don't like it. Further, the elongation at break is 25% or more, preferably 40 to 50%. If the elongation at break is less than 25%, the elongation of the gut after stretching in the racket is small, and the impact resistance and the feeling of holding tend to be poor.
  • the gut tends to loosen due to the decrease in tension, and the tension tends to decrease, resulting in poor elasticity.
  • the elastic recovery at 20% elongation is 60-99%, preferably 70-99%, and 49.
  • the stress retention at ON stress is 70% or more, especially 75% The above is preferred.
  • the stress retention at a stress of 205.9 N is preferably 70% or more, particularly preferably 75% or more. If the elastic recovery rate is less than 60% or the stress retention rate is less than 70%, the gut tension is greatly reduced, and the elasticity after the rack is stretched tends to decrease over time. There is. Further, it is preferable that the residual elongation of the yarn is in the range of 1.5 to 8%, particularly 2.0 to 6.0%, because the impact resistance of the gut is excellent.
  • the single filament fineness of the multifilament yarn is 1 to 56 dtex, preferably 5.6 to 44 dtex. If it is less than ldtex, the wear strength is low and the durability of the gut is poor. If it exceeds 56 dtex, the fiber diameter becomes large and the crystal orientation in the cross-sectional direction becomes uneven.In particular, the crystal orientation is high in the outer layer of the cross section, but the crystal orientation is low in the center, and the strength and elasticity Recovery rate is low. As a result, the elastic recovery of the gut decreases, the stress retention decreases, and in particular, the elasticity decreases, which is not preferable.
  • the total fineness is from 700 to 220 dtex, and if it is less than 700 dtex, the breaking strength as gut is Insufficiently, the high tension of 50 to 60 pounds on the racket makes it difficult to stretch the racket, and the ball is more likely to be cut by hitting the ball.
  • the dtex exceeds 2 000 dtex, the diameter of the gut becomes large, the resilience and impact resistance are deteriorated, and the shot feeling of holding and control is poor. Is a gut.
  • a yarn having a total fineness of 700-200 dtex obtained by plying polytrimethylene terephthalate multifilament fibers having a single yarn fineness of 1 to 56 dtex is obtained.
  • the weight ratio to the fiber constituting the gut is preferably at least 50% or more, more preferably 70% or more, and further preferably 90% or more. If it is less than 50%, the object of the present invention is not sufficiently achieved.
  • a multifilament yarn having a total fineness of 56 to 560 dtex is used as a method for producing a gut using a polymethylene terephthalate multifilament fiber.
  • the total fineness is set to 700,000 to 2,200 dtex by combining the two yarns, and then glued with a bonding agent and covered with a polymer to form a gut.
  • Multifilament yarn with a fineness of 5 6 — 5600 dtex is laid down to a total fineness of 100 to 600 dtex, and then 4 to 22 of these yarns are re-used.
  • Polymethylentelephthalate monofilament 1 to 20 filaments are used as the core yarn, and the side yarn is single yarn fineness 1 to 56 dtex.
  • the fibers other than polymethylene lentephthalate with a fineness of 10 to 60 dtex are used.
  • the gut yarn obtained by these methods is made into a gut by bonding with an adhesive, coating with a polymer, or the like. Filling gaps between filaments and using an adhesive, polymer, etc. to coat the outermost layer, and bonding and coating by impregnation, coating, etc., to prevent gut wear Durability is further improved and is preferred. Furthermore, it is more preferable to form a coating layer of a fluorine resin or a silicone resin on the coating layer.
  • the present invention is not particularly limited to these methods.
  • the total fineness obtained by twining polytrimethylene terephthalate multifilament fibers having a single yarn fineness of 1 to 56 dtx is 70%. It is sufficient if the gut is constituted as a core yarn or side yarn by a dtex yarn, or as a whole, and if desired, 50 wt% or less, preferably 30 wt% or less. Within the range of not more than% by weight, another synthetic fiber may be mixed with the core yarn or the side yarn or a part thereof by ply twisting or the like.
  • the adhesive may be a urethane resin, an epoxy resin, an acrylic resin, a silicone resin, a polyvinyl alcohol resin, a polyamide resin, or a polyester.
  • Resins, polycarbonate resins, and acrylate ultraviolet curable resins are useful.From the viewpoints of adhesion to polymethylene terephthalate fiber, flexibility, and bending resistance, In particular, urethane resins and acryl resins are preferred.
  • the polymer a molten polymer or a polymer dissolved in an appropriate solvent can be used for coating.
  • a polyamide resin, a urethane resin, a polyester resin, a fluorine resin, a silicone resin, and the like are useful.
  • the multifilament yarn is preferably twisted at 100 T / m or less, particularly 20 to 50 OT / m, and tightly bound. No twist may be used as long as the unity of time is maintained. When twisting exceeds 100 Tm, both strength and elastic modulus tend to decrease.
  • the gut of the present invention is suitable for tennis, tennis, squash and the like.
  • the present inventors have conducted intensive studies on strings for musical instruments, and as a result, plied polytrimethylentelephthalate multifilament fibers having a single fiber fineness of 1 to 56 dtex.
  • a yarn with a total fineness of 2000-1400 dtex as a musical instrument string, the disadvantages of conventional strings can be solved, and the pitch change with time and humidity changes is small.
  • the present inventors succeeded in obtaining a string for musical instruments having excellent tuning properties, and reached the present invention.
  • the elasticity recovery rate is high compared with the conventional string, the pitch change with time is small even if it tunes
  • the physical properties of the poly (trimethylene terephthalate) multifilament fiber yarn are preferably tensile strength of 52 N or more, and more preferably 60 N or more. If the tensile strength is less than 52 N, when the string is formed, the breaking strength of the string is low and there may be a practical problem. The tension applied to the musical instrument must be reduced, and Difficult to play.
  • the elongation at break is preferably 25 to 60%, more preferably 40 to 50%. If the elongation at break is less than 25%, When the tuning is repeated with stretching, the strings are cut off relatively quickly and the strings have a short life, and if it exceeds 60%, the elastic recovery rate tends to be low and the pitch change tends to be large. .
  • the elastic modulus is 18-36 c NZ dtex, preferably 20-36 c NZ dtex, and the elastic recovery at 20% elongation is 60-99%, preferably 70- It is 9 9%. If the elastic modulus is less than 18 cN / dteX and the elastic recovery rate is less than 60%, the pitch change is large and a long time is required to obtain a stable pitch, and the tuning property tends to be poor.
  • the stress retention at a stress of 49.0 N is preferably 70% or more, particularly preferably 75% or more. If it is less than 70%, the pitch change over time after tuning over a musical instrument tends to be large.
  • the single filament fineness of the multifilament yarn is 1 to 56 dtex, preferably 5.6 to 44 dtex.
  • the string is less than l dtex, when the string is formed, the abrasion strength of the string becomes low, a single thread may be broken during the performance, the pitch may be changed, and the durability of the string may be deteriorated. If it exceeds 56 dtex, the fiber diameter becomes large and the crystal orientation in the cross-sectional direction becomes non-uniform.
  • the elastic recovery rate is low, and as a result, when used as a musical instrument string, the string loosens over time and the pitch change increases, and it takes a long time to tune to a stable pitch and tuning Inferior to A yarn with a total fineness of 2000 to 1400 dtex is used. If it is less than 2000 dtex, the tensile strength of the instrument string will be insufficient, and the string may break during playing or tuning, making it unsuitable for practical use. On the other hand, if it exceeds 1400 dtex, the diameter of the string becomes too large, making it difficult to play.
  • the method for producing the musical instrument string of the present invention includes a method in which a plying or plied multi-filament yarn is used as a string as it is, or a plying or plied multi-filament multi-filament.
  • a method of bonding a string to a string by resin bonding Multifilament ply-twisted or resin-bonded whole yarn is immersed in a synthetic polymer to improve abrasion and durability, coated with coating, etc.
  • the present invention is not particularly limited to these methods. In short, it is a polytrimethylentelephthalate multifilament having a single yarn fineness of 1 to 56 dtx.
  • the total fineness of the fiber is 200 000 to 140 000 dtex
  • the string is composed, and if necessary, within 30% by weight or less, preferably 20% by weight or less, other parts around or around the multifilament may be used.
  • Synthetic fibers may be twisted and covered.
  • Polyurethane, multi-filament, and multi-filament yarns are bonded with urethane resin, epoxy resin, iso- cinate resin, and acrylic resin.
  • urethane resin epoxy resin, iso- cinate resin, and acrylic resin.
  • Lily resin, Silicone resin, Polyvinyl alcohol resin, Polyamide resin, Polyester resin, Polycarbonate resin, Acrylate UV curable Resins and the like are useful.
  • Urethane resins and acrylic resins are preferred from the viewpoints of adhesion to polymethylene terephthalate fiber, flexibility and bending resistance.
  • the synthetic polymer for coating the outermost layer a molten polymer or a polymer dissolved in an appropriate solvent can be used for coating.
  • a polyamide resin, a urethane resin, a polyester resin, a fluorine resin, a silicone resin, and the like are useful.
  • the multifilament fiber is preferably twisted at a rate of 100 OT / m or less, particularly 20 to 500 T / m, and tightly bound. As long as the cohesiveness is maintained, no twist may be used. If twisting exceeds 100 T / m, both tensile strength and elastic modulus tend to decrease.
  • the strings for musical instruments of the present invention are, for example, strings of guitars, ukuleles, harps, violins, violas, cembalos, contrano's, ryutes, shamisen, koto, etc. Can be used. It can also be used as a telegut for stringed instruments such as violins and violas.
  • parts represent parts by weight.
  • the evaluation method in the examples is as follows.
  • the elastic modulus was measured according to JIS-L-101.
  • the elastic recovery rate at 20% elongation was as follows: the sample was subjected to an initial load of 0.010 cN / dtex and stretched at a constant rate of 20% elongation per minute, resulting in an elongation of 20%. At this point, we reverse the contraction at the same speed, and draw a stress-strain curve. When the residual elongation when the stress is reduced to 0.0109 cN / dtex during shrinkage is equal to the initial load, let L be the following equation.
  • the yarn is stretched under the condition of a tensile speed of 20 cmZm in, a stress of 205.9 N is applied to the yarn, the elongation when left for 1 hour is assumed to be A1, and the elongation is further performed.
  • the elongation at ON stress was defined as A 2
  • a 2 — A 1 was defined as the residual elongation.
  • the prepared gut is stretched in a racket with warp and weft yarns of 22 N (50 lbs), and 30 tennis school amateur players are actually hit with a hard tennis ball to provide elasticity.
  • An ungated survey was conducted for impact resistance. This survey was conducted twice, one day after the installation and 20 days after the installation.
  • a string is stretched over a classical guitar (made by Kawai musical instrument), and a tuning meter (M0 de 1 DTR-1 made by KORG) and a microphone (made by Sony F-V) are set to each pitch (frequency) in the open state. Tuning was performed using 600 P). After tuning, the strings were left as they were, and the frequency after aging was measured to evaluate the change in pitch.
  • the set pitch in the released state, and the ambient temperature at the time of tuning and chronological change evaluation are as follows.
  • the produced string is suspended on a classical guitar (made by Kawai Musical Instruments), the second string is 986 Hz (Sh), the third string is 784 Hz (S), and the fourth string is 58 After tuning to 7 Hz ( ⁇ ), perform fingering for 1 hour a day, and adjust the pitch after fingering. The number of days was measured until the deviation became stable within a semitone. On the second and subsequent days, he tuned and played his finger.
  • ⁇ : pitch is stable in less than 7 days
  • the prepared string was repeatedly subjected to tuning and fingering until the string was broken in the same manner as in the evaluation of the stringability.
  • Unstretched yarn was obtained at a spinning temperature of 256 ° C and a spinning speed of 1200 mZ using a high-powered polytrimethylene terephthalate chip of 1.1, and then a hot roll temperature of 6 0 ° C, hot plate temperature 1 4 0 The flame was spread at a temperature of ° C, a draw ratio of 2.5, and a draw speed of 800 mZ to obtain a drawn yarn of 23.5 dtex / 35 f.
  • the physical properties of the obtained yarn were 3.7 c NZ dtex in strength, 35% in elongation, 20 c NZ dtex in elasticity, 85% in elasticity recovery, and 1.0% in U%.
  • ⁇ sp / c is used to dissolve the polymer at 0 ° C at a concentration of 1 g / deciliter of phenol at 0 ° C, and then transfer the resulting solution to the host. It was transferred to a viscosity tube, measured at 35 ° C, and calculated by the following equation.
  • the obtained 2 35 dte / 35 f polymethylentelephthalate multi-filament fibers are combined into 14 filaments, and 3290 dte xZ 490 f
  • the multifilament yarn was obtained. Furthermore, five multifilament yarns were plied to obtain a yarn of 16450 dTX / 2450 f. The yarn was twisted at 70 TZm.
  • Table 1 shows the gut performance and the results of the filling test.
  • the gut of the present invention has excellent homogeneity, high mechanical strength, The test showed durable elasticity and impact resistance.
  • the obtained 330 mtex / 6 f polymethylene terephthalate multi-filament fiber was combined into 13 filaments to obtain 4290 dtex / 78 f yarn. . Further, the five yarns were set up on a clear and twisted, and twisted at 7 O TZm to obtain a yarn of 2450 dtex 39 f.
  • the resulting gut had a breaking strength of 7100 N, an elongation of 36%, a stress retention of 49.0 N at 75%, a stress retention of 205.9 N at 75%, and elasticity.
  • the recovery rate was 73% and the residual elongation was 5.5%.
  • Table 1 shows the gut performance and the results of the filling test.
  • the gut of the present invention was excellent in homogeneity, high in mechanical strength, and good in resilience and impact resistance in a filling test.
  • Example 2 In the same manner as in Example 2, a drawn yarn of 220 dtex / 10 f was obtained. .
  • the physical properties of the obtained yarn were a strength of 3.6 cN / dtex, an elongation of 38%, an elasticity of 20 cN / dtex, an elastic recovery of 84%, and U% 1: 8%.
  • the obtained 22 0 dtex / 10 f of polymethylentelephthalate multifilament fiber is plied by 11 filaments, and 2 4 2 0 dtx // 1 1 0 f I got a thread. Further, these three yarns were twisted at 10 O TZm to obtain a yarn of ⁇ 260 dtex / 330 f. Next, the yarn is burned with a urethane-based adhesive, Burnock 16-410, 100 parts, a cross-linking agent, Burnock DN-950, 10 parts, and a cross-linking accelerator.
  • a part of Chris Bon Accel T was immersed in a solution prepared by mixing 1 part (manufactured by Dainippon Ink) and toluene with 50 parts, squeezed with a mangle, dried and dried at 170 ° C for 1 minute. % Elongation heat treatment was performed. Thereafter, a coating layer was formed on the outermost layer with a molten nylon 6 resin to produce a gut.
  • the resulting gut had a breaking strength of 260 N, an elongation of 34%, a stress retention of 49.0 N at 79%, and a stress retention at 250.59 N of 80% elasticity.
  • the recovery rate was 80% and the residual elongation was 3.2%.
  • Table 1 shows the gut performance and the results of the filling test.
  • the gut of the present invention was excellent in homogeneity, and had good resilience and impact resistance in a filling test.
  • Example 2 a drawn yarn of 84 dtex / 75 f was obtained. Physical properties of the obtained yarn were a strength of 3.7 c NZ dtex, an elongation of 35%, an elastic modulus of 21 c NZ dtex, an elastic recovery rate of 87%, and a U% of 1.2%.
  • the obtained 84 dtex / 75 f polymethylene terephthalate multi-filament fiber is plied by 20 yarns, and the 1680 dtex x 150 f multi-filament is obtained. Thread Furthermore, this multi-fi One filament yarn was twisted at 10 O TZm, and a yarn of 18480 dtx Z166500 f was obtained. Next, the yarn was burned with 100 parts of Burnock DF-407, a urethane-based adhesive, 10 parts of Burnock DN-950, a cross-linking agent, and a cross-linking accelerator.
  • a part of Crisbon Axel T is immersed in a solution prepared by mixing 1 part (manufactured by Dainippon Ink) and toluene with 50 parts, squeezed with a mangle, dried and dried at 170 ° C for 1 minute. % Elongation heat treatment was performed. After that, a coating layer was formed on the outermost layer with the molten poly (methylene terephthalate) resin to produce a gut. The obtained gut had a breaking strength of 64 N, an elongation of 33%, a stress retention of 49.0 N at 83%, and a stress retention of 250.9 N at 83%. The elastic recovery was 84% and the residual elongation was 4.3%.
  • Table 1 shows the gut performance and the results of the filling test.
  • the gut of the present invention was excellent in homogeneity, and had good resilience, impact resistance and durability in a filling test.
  • Unstretched yarn was obtained at a spinning temperature of 26.5 ° C and a spinning speed of 1100 mZ using a 1.0-liter polymethylene terephthalate chip.
  • the hot roll temperature was 60 ° C and the hot plate temperature was 140.
  • drawing was performed at a draw ratio of 2.5 times and a drawing speed of 700 mZ to obtain a drawn yarn of 250 dtex 23 f.
  • the physical properties of the obtained yarn were 3.3 c NZ d tex, an elongation of 36%, an elasticity of 22 c NZ d tex, an elastic recovery rate of 87%, and a U% of 1.3%.
  • the resulting 250 m dtex / 23 f polymethylentelephthalate is conjugated to 9 multifilament fibers to form a 2250 dtex / 2 7 f multifiber.
  • a lamb thread was obtained.
  • four of the multifilament yarns were twisted while being twisted at 90 TZm to obtain a yarn of 900 dtx / 828 f.
  • This thread is used as the core thread and as the side thread 4 7
  • a thread obtained by tying two threads of 0 dtex / 14f nylon 66 (manufactured by Asahi Chemical Industry Co., Ltd.) is used.
  • a constant-length heat treatment was performed at 70 ° C for 1 minute. After that, a coating layer was formed on the outermost layer with the molten nylon 6 resin to produce a gut.
  • the resulting gut had a breaking strength of 6100 N, an elongation of 33%, a stress retention of 49.0 N at 85%, a stress retention of 205.9 N at 84%, The elastic recovery was 78% and the residual elongation was 3.6%.
  • Table 1 shows the gut performance and the results of the filling test.
  • the gut of the present invention was excellent in homogeneity, high in mechanical strength, and exhibited durable elasticity and impact resistance in a filling test.
  • Example 2 Twenty nine fibers of the 23.5 dtex / 35 f polytrimethyl terephthalate multi-filament fiber obtained in Example 1 were plied, and 6 8 15 dtex / 1 A multifilament yarn of 0 15 f was obtained.
  • Example 2 Using this yarn, a gut was produced in the same manner as in Example 1. The obtained gut had a breaking strength of 2 25 N, an elongation of 33%, a stress retention of 47.9 N, 79%, and a stress retention of 205.9 N, 78%. , Elastic recovery rate
  • Example 2 a drawn yarn of 84 dtex / 105 f was obtained.
  • the physical properties of the obtained yarn were strength 3.0 cN / dtex, elongation 35%, elasticity 22 cN / dtex, elastic recovery 86, U% 3.2%. Poor homogeneity.
  • the obtained 84 dtex / 105 f polymethylentelephthalate — Twenty-five multifilaments are plied, and 1680 ⁇ tex / 210 It is a multifilament yarn of 0 f. Further, this multifilament yarn was twisted at 10 O TZm to obtain a yarn of 18480 dtex / 2310 f.
  • a gut was produced from the obtained yarn in the same manner as in Example 5.
  • the obtained gut had a breaking strength of 52.5 N, an elongation of 34%, a stress retention of 49.0 N at 83%, and a stress retention of 205.9 N at 81%.
  • the elastic recovery was 83% and the residual elongation was 4.5%.
  • Table 1 shows the gut performance and the results of the filling test.
  • the gut of Comparative Example 1 was slightly inferior in homogeneity, and the results of the filing test showed that the gut had good resilience and impact resistance, but the gut was cut quickly and had a high durability. It was inferior.
  • Example 2 a drawn yarn of 280 dtex / 4f was obtained.
  • the physical properties of the obtained yarn were as follows: strength 2.7 c / dtex, elongation 39%, elasticity 21 c NZ dtex, elasticity recovery 70% 3.6%. I was wearing it.
  • the obtained 280 dtex / 4 f polytrimethylentelephthalate multi-filament fibers are combined into 14 filaments, and 3920 dtex / x
  • a yarn of 56 f was obtained. Further, five of these yarns were set up on a clear and twisted at 7 OT / m to obtain a yarn of 1960 dtex / 280 f.
  • a gut was produced from the obtained yarn in the same manner as in Example 2.
  • the obtained gut had a breaking strength of 501 N, an elongation of 37%, a stress retention of 49.0 N at 65%, and a stress retention of 205.9 N at 66 N. , Elastic recovery rate
  • Table 1 shows the gut performance and the results of the filling test.
  • the gut of Comparative Example 2 was slightly inferior in homogeneity, and the results of the filling test were inferior in both resilience and impact resistance.
  • a gut was prepared in the same manner as in Comparative Example 2, except that the constant-length heat treatment was changed to a 5% relaxation heat treatment.
  • the resulting gut had a breaking strength of 49.8 N, an elongation of 41%, a stress retention of 68.6 N at 62 .6 N, a stress retention of 205.9 N at 61 .1 N, and an elasticity.
  • the recovery rate was 58% and the residual elongation was 9.6%.
  • Table 1 shows the gut performance and the results of the filling test.
  • the gut of Comparative Example 3 was slightly inferior in homogeneity, and the results of the filling test were inferior in both elasticity and impact resistance.
  • Example 3 Twenty-eight polymethylene telephthalate multifilament fibers of 220 dtex Zl0f obtained in Example 3 were conjugated to form a fiber, and 610 dtex / 2 280 The thread of f was obtained. Further, four of the multifilament yarns were twisted at 7 OT / m to obtain a yarn of 2640 dtex / 112 f.
  • a gut was produced from the obtained yarn in the same manner as in Example 3.
  • the obtained gut had a breaking strength of 840 N, an elongation of 35%, a stress retention of 49.0 N at 78%, and a stress retention of 205.9 N at 7.8 N.
  • the elastic recovery was 79% and the residual elongation was 6.8%.
  • Table 1 shows the gut performance and the results of the filling test.
  • the gut of Comparative Example 4 was inferior in both impact resistance and impact resistance in the result of the filling test.
  • Polymethylene terephthalate similar to that used in Example 1 After melting at 260 ° C, spinning, cooling in a water bath at 15 ° C, and further passing through a hot water bath at 70 ° C, then the two rolls placed between three rolls The film was stretched, relaxed, and heat set through a heater and wound up. The peripheral speeds of the rolls were set to 10.5 mZ min, 42.3 mZ min, and 42.3 m / min, respectively, in the order closest to the spinneret.
  • the temperature was set at 100 ° C. and a monofilament of 660 dtex was obtained.
  • the physical properties of the obtained monofilament are as follows: strength 2.6 c NZ dte X, elongation 45%, elasticity 22 c NZ dtex, elastic recovery 65%, U% 3.5 %.
  • a gut was prepared from this yarn in the same manner as in Example 3.
  • the resulting gut had a breaking strength of 402 N, an elongation of 40%, a stress retention of 49.0 N at 65%, a stress retention of 205.9 N at 64%, The elastic recovery was 60% and the residual elongation was 7.6%.
  • Table 1 shows the gut performance and the results of the filling test. This gut was less resilient in filling test results.
  • Nylon 6 6 Fiber Multifilament 9 40 dtex xl 40 f (Registered trademark, Leona; manufactured by Asahi Kasei Kogyo; strength 6.2 cN / dte X, elongation 28%, elastic modulus 6 17 lines of 5 cN / dtex and elastic recovery rate 65 were aligned and twisted to 70 TZm to obtain a multifilament yarn of 144280 dtex x 238 0 f. .
  • a gut was produced from the obtained yarn in the same manner as in Example 1.
  • the obtained gut had a breaking strength of 843N, an elongation of 27%, a stress retention of 48.0N at 68%, and a stress retention at 205.9N of 66%.
  • the gut of Comparative Example 6 has good homogeneity, but the results of the furing test show that the initial resilience is good, but that it decreases over time and that the impact resistance is also remarkably excellent. Did not. This decrease was remarkable under high humidity conditions.
  • Example 1 instead of the 23.5 dtex / 35 f polymethylene terephthalate multifilament fiber, the 23.5 dtex / 35 f polyethylene terephthalate multifilament was used.
  • a gut was prepared in the same manner as in Example 1 except that filament fibers (manufactured by Asahi Kasei Corporation) were used.
  • the strength and elongation, elastic modulus, U%, and elastic recovery of polyethylene terephthalate fiber multifilament were 4. lc NZ dtex, 3397 c NZ dtex, and 1.5%, respectively.
  • the resulting gut had a breaking strength of 638 N, an elongation of 31%, and 4.9 a stress retention rate of 57% at ON and a stress retention rate of 205.9 N.
  • the retention was 55%, the elastic recovery was 24%, and the residual elongation was 1.2%.
  • Table 1 shows the performance of the obtained gut and the results of the filling test.
  • the gut of Comparative Example 7 was inferior in both elasticity and impact resistance.
  • Example 6 The gut obtained in Example 6 was unsuitable as a gut because a thread was broken due to insufficient strength while being stretched in the racket.
  • Example 3 Using the poly (trimethylene terephthalate) multifilament fiber of 220 dtex / 10 f obtained in Example 3, 10 multifilaments were plied at 170 ° C. A constant-length heat treatment was performed for 1 minute to obtain a multifilament yarn of 220 dtex / 100 f. Obtained The twisted yarn had a tensile strength of 79 N, an elongation of 38%, a stress retention of ON at 79% and an elastic recovery of 84%.
  • a 0.16 mm steel piano wire was spirally wound around the multifilament yarn to obtain the fourth string of the guitar.
  • Table 2 shows the results of evaluating the pitch change (condition 1), string adjustability, string durability and performance of the obtained strings.
  • the string according to the present invention has little pitch change due to aging and humidity change, is excellent in tuning and durability, and is a string that is playable.
  • the obtained poly (trimethylene terephthalate) multifilament fibers of 220 dtex x 200 f were plied and subjected to a constant-length heat treatment at 170 ° for 1 minute, and then subjected to 220 A multifilament yarn of 0 dtex / 2 00 f was obtained.
  • the obtained yarn had a tensile strength of 77 N, an elongation of 364 9 and a stress retention of 80% when ON, and an elastic recovery of 85%.
  • a 16 mm steel piano wire was spirally wound to obtain the fourth string of the guitar.
  • Table 2 shows the results of evaluating the pitch change (condition 1), string adjustability, string durability and performance of the obtained strings.
  • the string of the present invention has almost no pitch change due to aging and humidity changes. It had excellent tuning and durability, and was a playable string.
  • Example 2 Seventy-three (33) dtex / 6f polytrimethyl terephthalate multifilament fibers obtained in Example 2 were conjugated and subjected to a constant length heat treatment at 170 ° C for 1 minute. Thus, a multifilament yarn of 23.1 dte / 42 f was obtained. The obtained yarn had a tensile strength of 82 N, an elongation of 38%, and a stress retention of 49. ON at 75% and an elastic recovery of 77% .o
  • a 0.16 mm steel piano wire was spirally wound around the multifilament yarn to obtain the fourth string of the guitar.
  • Table 2 shows the results of evaluating the pitch change (condition 1), string adjustability, string durability and performance of the obtained strings.
  • the string according to the present invention has little pitch change due to aging and humidity change, is excellent in tuning and durability, and is a string that is playable.
  • the polyfilament multifilament fiber of 220 dtex / 10 f obtained in Example 3 was used, and this multifilament was combined into 10 filaments.
  • the yarn was threaded to obtain a multifilament yarn of 2200 dtex / 100f.
  • these three yarns were used to promote cross-linking with 100 parts of Burnock 16--4 16 which is a urethane-based adhesive and 10 parts of Burnock DN-950 which is a cross-linking agent.
  • Crisbon Axel T manufactured by Dainippon Ink Co., Ltd.
  • 50 parts of toluene were immersed in a liquid prepared by squeezing with a mangle, and immediately twisted to 10 OTZ m. After applying, drying was performed, and a constant-length heat treatment was performed at 170 ° C for 1 minute.
  • Table 2 shows the results of the evaluation of the pitch change (condition 3), the tuning property, the durability of the strings, and the performance of the obtained strings.
  • the string of the present invention had little change in pitch due to aging, was excellent in adjustability and durability, and was a playable string.
  • the undrawn yarn is drawn at a spinning temperature of 265 ° C and a spinning speed of 1200 m / min. And then hot-rolled at a temperature of 60 ° C, a hotplate temperature of 140 ° C, a draw ratio of 3, and a drawing speed of 800m / min. A drawn yarn was obtained.
  • the tensile elongation, elastic modulus, U% and elastic recovery of the drawn yarn were 3.4 cN / dtex, 38%, 20 cN / dtex, 1.8% and 84%, respectively. .
  • the obtained polyester fiber of 280 dtex / 10 f multifilament fiber is multiplied by 5 filaments to form a multifilament of 140 dtex Z 50 f.
  • the filament yarn was obtained.
  • 10 parts of these yarns were added to 100 parts of a urethane-based adhesive, ie, bark 16-4 11 1, and 100 parts of a bridging agent, ie, bar-knock DN-95 0 10.
  • Chris Bon Accel T which is a crosslinking accelerator, is immersed in a solution prepared by mixing 1 part (manufactured by Dainippon Ink) and toluene with 50 parts, and is squeezed with a mangle.
  • the resulting yarn (string) had a tensile strength of 466 N, an elongation of 37%, a stress retention of 49. ON, a modulus of 75% and an elastic recovery of 79%.
  • the string of the present invention has little change in pitch due to aging, has excellent tuning properties and durability, and is a string that is playable.
  • the polyfilament multifilament fiber of 220 dtex / 10 f obtained in Example 3 was used, and this multifilament was combined into 10 double yarns. After that, a twist of 100 T / m is applied, and a multifilament yarn of 220 dtex / 100 f is used as a core component fiber, and a twist of 220 dtex / 100 f is used.
  • Nylon 66 fiber multifilament (made by Asahi Kasei Kogyo Co., Ltd.) Two coils are wound spirally, and at the same time, tie hose AG—940 HV, which is a polyurethane adhesive, is used for 10 times.
  • the obtained composite yarn had a tensile strength of 95 N, an elongation of 36%, a stress retention of 49. ON at 78%, and an elastic recovery of 79%. Furthermore, a 0.16 mm steel piano wire was spirally wound to obtain the fourth string of the guitar ⁇ -o
  • Table 2 shows the results of evaluating the pitch change (condition 1), string adjustability, string durability and performance of the obtained strings.
  • the string according to the present invention has little pitch change due to aging and humidity change, is excellent in tuning and durability, and is a string that is playable.
  • the polytrimethylene terephthalate fiber multifilament of 220 dtex x 10 f obtained in Example 3 was further combined with 10 filaments, and A multifilament yarn of 200 dtex / 100 f was obtained.
  • This multifilament yarn had high strength, elastic recovery, and stress retention, and was excellent in water resistance, flexibility, and yarn homogeneity.
  • Burnock DF-407 which is a urethane-based adhesive
  • Burnock DN-950 which is a cross-linking agent
  • 1 part of Burnock DN-950 which is a cross-linking agent
  • 0 parts, 1 part of the crosslinking accelerator Chris Bon Accel T (manufactured by Dainippon Ink Co., Ltd.) and 100 parts of toluene were immersed in a liquid prepared by mixing, and squeezed with a mangle. Twisting of TZm was performed, followed by drying, and heat treatment at 170 ° C for 1 minute at a constant length. After that, the surface was coated with the molten nylon 6 resin to prepare a 1504 dtex Z700f thread, which was used as the third string of the guitar.
  • the obtained yarn (string) had a tensile strength of 537 N, an elongation of 39%, a stress retention at 49.ON of 77%, and an elastic recovery of 83%.
  • Table 2 shows the results of the evaluation of the pitch change (condition 2), the tuning, the durability of the strings, and the performance of the obtained strings.
  • the strings of Example 13 had almost no change in pitch due to aging, but were too thick to play and were unsuitable as guitar strings.
  • Example 7 instead of the polymethylene terephthalate fiber multifilament of 220 dtex / 10 f, 220 dtex xl 0 used in Example 12 was used.
  • the fourth string of the guitar was obtained in the same manner as in Example 7, except that the nylon 66 fiber multifilament of f was used.
  • the tensile strength, elastic modulus, U%, and elastic recovery of Nylon 66 fiber multifilament were 4.3 cN / dtex, 3211 cNZ dtex, and 2.1%, respectively.
  • the tensile strength of the yarn is 94 N
  • the elongation is 33%
  • the tensile strength of the yarn is 49 N.
  • the stress retention at ON is 65% and the elastic recovery is 6%. 5%.
  • Table 2 shows the results of evaluating the pitch change (condition 1), string adjustability, string durability and performance of the obtained strings.
  • the string of Comparative Example 9 had a large pitch change due to a change with time and a change in humidity, and was inferior in string adjustability.
  • Example 7 the poly (ethylene terephthalate) multifilament of 220 dtex / 10 f was replaced with the poly (ethylene terephthalate) multifilament of 220 dtex / 10 f.
  • the fourth string of the guitar was obtained in the same manner as in Example 7, except that the insert fiber (manufactured by Asahi Kasei Corporation) was used.
  • the tensile strength, elastic modulus, U% and elastic recovery of the polyethylene terephthalate fiber multifilament were 4.Oc NZ dtex, 34%, 97 cN / dtex, 1 5% and 25%, and the tensile strength of the 220 dtex / 100 f yarn is 88 N, the elongation is 34%, 49. The stress retention at ON is 49%, The elastic recovery was 24%.
  • Table 2 shows the results of evaluating the pitch change (condition 1), string adjustability, string durability and performance of the obtained strings.
  • the string of Comparative Example 10 had a large pitch change due to aging, and was inferior in string adjustability.
  • Table 2 shows the results of evaluating the pitch change (condition 1), string adjustability, string durability and performance of the obtained strings.
  • the string of Comparative Example 11 showed little change in pitch due to aging and humidity, but was inferior in durability.
  • the obtained 25-dtex / 3 f polytrimethylene terephthalate fiber multifilament was combined into 10 filaments and subjected to a constant-length heat treatment at 170 ° C for 1 minute.
  • a multifilament yarn of 0 dtex / 30 f was obtained.
  • the obtained yarn had a tensile strength of 72 N, an elongation of 40%, and a stress retention of 49 ON when the elastic recovery was 61%.
  • a 0.16 mm steel piano wire was spirally wound around the multifilament yarn to obtain the fourth string of the guitar.
  • Table 2 shows the results of evaluating the pitch change (condition 1), string adjustability, string durability and performance of the obtained strings.
  • the strings of Comparative Example 12 had a large pitch change due to aging, and were poor in stringability.
  • Comparative Example 1 3 A multifilament yarn of 235 dtex / 30 f was obtained in the same manner as in Comparative Example 12 except that the constant-length heat treatment was changed to a 5% relaxation heat treatment.
  • the obtained yarn had a tensile strength of 70 N, an elongation of 44%, a stress retention at 49.0 N of 60%, and an elastic recovery of 57%.
  • a 0.16 mm steel piano wire was spirally wound around the multifilament yarn to obtain the fourth string of the guitar.
  • Table 2 shows the results of evaluating the pitch change (condition 1), string adjustability, string durability and performance of the obtained strings.
  • the string of Comparative Example 13 had a large pitch change due to aging and was poor in tuning.
  • Example 3 Using the polytrimethylene terephthalate fiber multifilament of 220 dtex / 10 f obtained in Example 3, six more multifilaments were plied, and 17 A constant-length heat treatment was performed at 0 ° C for 1 minute to obtain a multifilament yarn having 132 dtex / 60 f.
  • the obtained yarn had a tensile strength of 47 N, an elongation of 38%, an elastic recovery of 84%, and a low tensile strength. Note that the stress retention at 49. ON could not be measured because the yarn was cut.
  • a 0.16 mm steel piano wire was spirally wound around the multifilament yarn to obtain the fourth string of the guitar.
  • Example 2 Using the same polytrimethylene terephthalate chip as in Example 1, melted at 260 ° C, spun, cooled once in a water bath at 15 ° C, and passed through a hot water bath at 70 ° C. Stretch, relax, heat set and wind through three rolls and two heaters installed between the rolls Was. The peripheral speed of the roll was set to 8.5 mZmin, 31.4 m / min, and 31.4 mZmin, respectively, in order from the position close to the spinneret. The temperature was set at 100 ° C, and a monofilament of 600 dtex was obtained. The physical properties of the obtained monofilament are as follows: strength 2.4 c NZ dtex, elongation 48%, elastic modulus 20 cdtex, 49 9. stress retention at ON 58%, elastic recovery The rates were 60% and U% 3.7%.
  • This monofilament was used as the second string of the guitar.
  • Table 2 shows the results of the evaluation of the pitch change (condition 3), the tuning, the durability of the strings, and the performance of the obtained strings.
  • the string of Comparative Example 15 had a large pitch change due to aging, and was inferior in tuning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Artificial Filaments (AREA)
  • Stringed Musical Instruments (AREA)

Description

明 細 書 ポリ ト リ メ チレンテレフタ レー トカヽらなる糸条 技術分野
本発明は、 ポ リ ト リ メ チレンテレフタ レー ト系繊維、 特に、 単糸 繊度力く 1 ~ 5 6 d t e xのポ リ 卜 リ メ チ レ ンテ レフ タ レ一 卜 マルチ フ ィ ラメ ン ト繊維を合糸してなる、 トータル繊度が 2 0 0 0〜 2 2 0 0 0 d t e xの糸条、 この糸条を用いたガッ ト、 及び楽器用弦に 関する ものである。 背景技術
ポ リ 卜 リ メ チ レ ンテ レフ タ レー ト繊維は、 低弾性率から由来する ソ フ トな風合い、 優れた弾性回復率といったナイ ロ ン繊維に類似し た性質と、 ウ ォ ッ シュア ン ドウ エア一性、 寸法安定性、 耐黄変性と いったポ リ エチ レ ンテ レフ タ レー ト繊維に類似した性質を併せ持つ 画期的な繊維であるが、 ポリ ト リ メ チレンテレフタ レー ト繊維の原 料である 卜 リ メ チ レ ングリ コールが高価であり、 今まで商業的規模 での生産は殆ど行われていなかった。 しかし、 数年前から工業的に 安価に ト リ メ チ レ ングリ コールを製造する技術が開発され、 現在そ の特徴を活かして、 衣料、 力一ぺッ ト等への商品化が進められてい る。
しかしながら、 ポリ ト リ メ チレンテレフタ レー ト繊維は衣料以外 の分野への応用は殆ど行われていなかった。
又、 ポリ ト リ メ チ レ ンテレフ タ レー トマルチフ ィ ラ メ ン ト繊維を 製織や編立てを行わず、 合糸して一体化した糸条を用いて衣料以外 の分野で商品と して使用されている例がなく 、 単糸繊度が 1〜 5 6 d t e xのポ リ ト リ メ チ レンテ レフ タ レー トマルチフ ィ ラ メ ン ト繊 維を合糸して一体化してなる、 トータル繊度が 2 0 0 0〜 2 2 0 0 0 d t e xの糸条はなかった。
従来、 公知技術では、 本願の出願人により出願された W0 9 9 / 1 1 8 4 5号明細書に、 単糸繊度 0. 0 0 0 1 1 〜 1 1 d t e xで 、 トータル繊度 5. 6〜 1 1 0 0 d t e xのポ リ 卜 リ メ チ レ ンテ レ フ タ レー トマルチフ イ ラメ ン ト繊維が記載されているが、 この繊維 の使われ方は、 この繊維を製織や編立てを行い布帛状態にして商品 にする事にあり、 本発明のように、 単糸繊度が 1 ~ 5 6 d t e xの ポ リ ト リ メ チ レ ンテ レフ タ レー トマルチフ ィ ラ メ ン ト繊維を合糸 し て一体化してなる ト ータル繊度力く 2 0 0 0〜 2 2 0 0 0 d t e xの 糸条を、 製織や編立てを行わず、 糸条をそのままあるいは糸条を接 着及び/又は被覆してガッ 卜や楽器用弦等に使用する用途について は全く記載されていない。
本発明のマルチフ ィ ラメ ン ト糸条は、 単糸繊度が 5 6 d t e xを 超えるフ ィ ラメ ン トを合糸して トータル繊度 2 0 0 0 - 2 2 0 0 0 d t e xの糸条と したものに比べ強度、 弾性回復率、 応力保持率が 高く 、 耐水性、 柔軟性、 糸の均質性に優れる特性を持ち、 糸条をそ のまま、 あるいは糸条を接着及び 又は被覆して使用される用途に 好適であり、 特にガッ トゃ楽器用弦に適する。
従来テニスゃバ ト ミ ン ト ン等のラケ ッ 卜のガッ 卜 には、 ナイ ロ ン 繊維等の合成繊維や牛や羊の腸、 鯨筋等の動物筋に適度の撚りをか けて樹脂により コーティ ングした天然ガッ 卜が提供されている。 こ の天然ガッ トは、 高テンシ ョ ンで張設しても更に適度の伸びが有る ため、 弹発性、 コ ン ト ロール性、 打球感、 ホール ド感は良好である と言われているが、 耐久性、 耐水性が低く 、 高価であるという問題 力くある。 これに対して、 合成繊維製のガッ トは耐久性、 耐水性は良好であ るが、 ガッ 卜の張りを強く し反発性を良く した状態で長時間使用 し た場合、 徐々にガッ 卜が伸長して、 ガッ 卜のテンシ ョ ンが低下して 弾発性が低く なり、 打球感、 ホール ド感が悪く なり、 ガッ トが切断 する前にでも しばしばガッ トを張り替える必要があった。 ナイ ロ ン 繊維を使用 したガッ トは公定水分率が高く 、 湿潤状態になると更に 伸長する特性があり、 ガッ 卜が濡れた場合にはガッ トテンシ ョ ンの 緩みが大き く 、 弾発性が低下し、 打球感、 ホール ド感が悪く なる。 また、 ァラ ミ ド繊維等の高弾性率繊維は破断強度が高く低伸度であ るため、 ガッ トを強く張っても経時的にテ ンシ ョ ンが変動すること は少ないが、 ボールが当たった時にガッ 卜が伸びないため弾発性が 低く 、 且つ衝撃が吸収出来ないため、 耐衝撃性に欠けるという問題 があった。
特開平 5 — 2 6 2 8 6 2号公報には、 6 5 7 デニールのポ リ ト リ メ チ レンテ レフ タ レー トモノ フ ィ ラ メ ン ト繊維をラケ ッ 卜のガッ ト と して使用すると、 ナイ ロ ンより も破断時のャング率が低く伸びが 大きい特性がラケッ 卜のガッ 卜と して非常に好適である事が記載さ れている。 また、 ラケッ ト用ガッ トを構成するには、 多重長さのポ リ ト リ メ チ レ ンテ レフ タ レー トモノ フィ ラ メ ン 卜をポ リ マ一被覆を 用いて 1 本に結合される事が記載されている。 しかしながら、 実際 のガッ ト と しての物性や性能の記載はない。 又、 マルチフ イ ラメ ン 卜及びガッ 卜と しての トータル繊度の記載はない。 しかも開示され ているモノ フ ィ ラメ ン トのデニールは 6 5 7 デニールと太く 、 この 太さのものを多数本使用してガッ トと した場合、 初期の弾発性は良 好であるが、 経時的に弾発性が低下する。 更に、 打球感、 コン ト 口 ール性、 耐衝撃性に劣るという問題があった。
このような現状から、 ラケッ 卜のフ レームに強く張ることができ 、 弾発性が良好で、 長時間良好な弾発性を保ち、 且つ耐衝撃性、 コ ン ト ロ一ル性に優れた高耐久性ガッ トの出現が望まれていた。
又、 楽器用弦については、 従来、 楽器用弦は金属弦、 ナイ ロ ン弦 、 天然弦が主と して使用されている。 ナイ ロ ン弦は楽器に架張して 調律しても経時的に弦が緩み易く 、 調律しても短時間で再調律が必 要で安定した音程になるのに非常に時間がかった。 又、 ナイ ロ ン弦 は吸湿性がある為、 湿度変化により弦が緩んだり張ったりするため 音程が変化し、 必ずしも満足し得る ものではなかった。 又、 天然弦 は、 ナイ ロ ン弦に比べると一定の低湿度下では音程の経時的な変化 は少ないものの、 天然性であるが故に糸径の均一性に劣るため、 局 部的な応力集中により切れやすく 、 又、 高価であると言う問題があ つた。
このよ う な現状から、 経時変化、 湿度変化に対して音程の変化が 少ない、 調弦性の優れた楽器用弦の出現が望まれていた。
特開平 5 — 2 6 2 8 6 2 号公報には、 ポリ ト リ メ チレンテレフタ レー トモノ フ ィ ラ メ ン トの用途と してギター用の糸が記載されてい るが、 具体的な製造方法、 構成、 効果等については全く記載されて いない。 発明の開示
本発明の目的は、 ポリ ト リ メチレンテレフタ レー ト繊維、 特に、 単糸繊度が 1 〜 5 6 d t e xのポ リ 卜 リ メ チ レ ンテ レフ タ レ一 トマ ルチフ ィ ラ メ ン ト繊維を合糸してなる トータル繊度が 2 0 0 0〜 2 2 0 0 0 d t e xの糸条を提供する ものであり、 この糸条は、 強度 、 弾性回復率、 応力保持率が高く 、 耐水性、 柔軟性、 糸の均質性に 優れるという特性を有するものである。
本発明の他の目的は、 この糸条を用いたガッ ト、 楽器用弦を提供 することである。
本発明の他の具体的な目的は、 テニス等のラケッ 卜のフ レームに 強く 張ることができ、 張ったときの弹発性が高く 、 長時間弹発性を 保ち、 且つ耐衝撃性、 耐久性、 耐水性に優れたガッ 卜を提供するこ とである。
本発明の更に他の具体的な目的は、 経時変化、 湿度変化に対して 音程変化が少ない、 調弦性の優れた弦を提供するこ とである。
本発明者らは、 単糸繊度が 1 〜 5 6 d t e xのポ リ 卜 リ メチ レ ン テレフタ レー 卜のマルチフィ ラメ ン ト繊維を合糸して トータル繊度 力く 2 0 0 0〜 2 2 0 0 0 d t e xの糸条とすることで、 従来の課題 を解決し、 上記の目的を達成できるこ とを見いだし、 本発明に到達 し 7<- 即ち、 本発明は、 ポ リ ト リ メ チレンテレフタ レー ト繊維、 特に、 単糸繊度が 1 ~ 5 6 d t e xのポ リ ト リ メ チレンテレフタ レー トマ ルチフ ィ ラメ ン ト繊維を合糸してなる トータル繊度が 2 0 0 0〜 2 2 0 0 0 d t e xの糸条であり、
また、 単糸繊度が 1 〜 5 6 d t e xのポリ ト リ メ チレンテレフタ レー トマルチフ ィ ラメ ン ト繊維を合糸してなる ト ータル繊度が 7 0 0 0〜 2 2 0 0 0 d t e xの糸条からなるガッ ト、
及び、 単糸繊度が 1 〜 5 6 d t e xのポ リ ト リ メチレンテレフタ レー トマルチフ イ ラメ ン ト繊維を合糸してなる トータル繊度が 2 0 0 0〜 1 4 0 0 0 d t e xの糸条からなる楽器用弦である。
本発明において、 ポリ ト リ メチレンテレフタ レ一 ト系繊維とは、 ト リ メ チレンテレフタ レ一 ト単位を主たる繰り返し単位とするポ リ エステル繊維をいい、 ト リ メ チ レ ンテ レフ タ レー ト単位を約 5 0 モ ル%以上、 好ま しく は 7 0 モル%以上、 より好ま しく は 8 0 モル% 以上、 さ らに好ま しく は 9 0 モル%以上のものをいう。 従って、 第 三成分と して他の酸成分及び/又はグリ コール成分の合計量が、 約 5 0 モル%未満、 好ま しく は 3 0 モル%以下、 より好ま し く は 2 0 モル%以下、 さ らに好ま しく は 1 0 モル%以下の範囲で含有された ポ リ ト リ メチレンテレフタ レ一 卜を包含する。
ポリ ト リ メチレンテレフタ レー トは、 テレフタル酸又はその機能 的誘導体と、 ト リ メチ レングリ コール又はその機能的誘導体とを、 触媒の存在下で、 適当な反応条件下に結合せしめることにより合成 される。 この合成過程において、 適当な一種又は二種以上の第三成 分を添加して共重合ポリエステルと してもよいし、 又、 ポ リエチレ ンテレフタ レ一 ト等のポ リ ト リ メ チレンテレフタ レ一 ト以外のポ リ エステル、 ナイ ロ ンとポ リ ト リ メ チレンテレフタ レー トを別個に合 成した後、 ブレン ドしたり、 複合紡糸 (鞘芯、 サイ ドバイサイ ド等 ) してもよい。
添加する第三成分と しては、 脂肪族ジカルボン酸 (シユウ酸、 ァ ジピン酸等) 、 脂環族ジカルボン酸 (シク ロへキサンジカルボン酸 等) 、 芳香族ジカルボン酸 (イ ソ フ タル酸、 ソ ジゥムスルホイ ソフ タル酸等) 、 脂肪族グリ コール (エチレングリ コール、 1 , 2 —プ ロ ピレングリ コール、 テ トラメ チレングリ コール等) 、 脂環族グリ コール (シク ロへキサンジメ タノ ール等) 、 芳香族を含む脂肪族グ リ コール ( 1, 4 一 ビス ( S —ヒ ドロキシエ トキシ) ベンゼン等) 、 ポリエーテルグリ コール (ポリエチレングリ コール、 ポリプ口 ピ レングリ コール等) 、 脂肪族ォキシカルボン酸 ( ω —ォキシ力プロ ン酸等) 、 芳香族ォキシカルボン酸 ( Ρ —ォキシ安息香酸等) 等が 挙げられる。 又、 1 個又は 3個以上のエステル形成性官能基を有す る化合物 (安息香酸等、 グリセリ ン等) も、 重合体が実質的に線状 である範囲内で使用出来る。
さ らに、 二酸化チタ ン等の艷消剤、 リ ン酸等の安定剤、 酢酸コバ ル ト等の青味付け剤、 ヒ ドロキシベンゾフ エ ノ ン誘導体等の紫外線 吸収剤、 タルク等の結晶化核剤、 ァエロ ジル等の易滑剤、 七 ンダー ドフ ユ ノ ール誘導体等の抗酸化剤、 難燃剤、 制電剤、 顔料、 蛍光増 白剤、 赤外線吸収剤、 消泡剤等が含有されていてもよい。
本発明において、 ポ リ ト リ メ チレンテレフタ レ一 卜繊維の紡糸に ついては、 1 5 0 0 mZ分程度の巻取り速度で未延伸糸を得た後、 2〜 3 . 5倍程度で延撚する通常法、 紡糸一延撚工程を直結した直 延法 (ス ピン ドロー法) 、 巻取り速度 5 0 0 O m/分以上の高速紡 糸法 (ス ピンテイ クアップ法) 、 紡糸後、 一旦水浴で冷却してから 延伸する方法など何れの方法を採用 しても良い。
以上のようにして得られた単糸繊度 1〜 5 6 d t e xのポ リ ト リ メチレンテレフタ レー 卜マルチフ ィ ラメ ン ト繊維を、 合糸して 卜一 タル繊度が 2 0 0 0〜 2 2 0 0 0 d t e xの糸条とすることにより 、 本発明のポリ ト リ メチレンテレフタ レー トマルチフ ィ ラメ ン ト繊 維の糸条を得ることができる。
本発明において、 ポリ ト リ メチレンテレフタ レー トマルチフ イ ラ メ ン ト繊維の単糸繊度は 1 ~ 5 6 d t e xであり、 好ま し く は 5 . 6 ~ 4 4 d t e xである。 この範囲内では、 得られる糸条は、 強度 、 弾性回復率、 応力保持率が高く 、 柔軟でしかも均質性に優れたも のになる。 単糸繊度が 1 d t e x未満では、 紡糸延撚時に単糸切れ が起こ りやすく 、 強度低下が起こ り、 糸条の摩耗強度が低く なる。 一方、 単繊維繊度が 5 6 d t e xを超えると、 マルチフ ィ ラメ ン ト の冷却が不十分になりマルチフィ ラメ ン ト同士が融着する事があり 、 糸の均質性が悪く なる。 しかも、 ポリ 卜 リ メ チレンテレフタ レー 卜は結晶化速度が速いため、 単糸繊度が 5 6 d t e Xを超えると冷 却が不十分となり、 繊維断面方向の結晶配向性が不均一となる。 即 ち、 繊維断面外層部は、 結晶配向度が高いが、 中心部は結晶配向度 が低く なるため、 繊維の強度や弾性回復率が低く なり、 糸条の応力 保持率が低下する。
また、 本発明において、 合糸前の トータル繊度は 5 6 - 5 6 0 d t e xが好ま しい。 この合糸前のポリ 卜 リ メ チレンテレフタ レ一 ト マルチフ ィ ラメ ン ト繊維の物性は、 引張強度は 2 . 6 c N (セ ンチ ニュー ト ン) / d t e x以上、 好ま しく は 3 . 3 c NZ d t e x以 上である。 又、 破断伸度は 2 5 %以上が好ま し く 、 より好ま し く は 3 0 〜 6 0 % さ らに好ま しく は 4 0 〜 5 0 %であり、 破断伸度が 6 0 %を超えると、 弾性回復率が低く なる傾向にある。 弾性率は 1 8 〜 3 6 c Nノ d t e xが好ま しく 、 より好ま しく は 2 0 〜 3 0 c N/ d t e xであり、 2 0 %伸長時の弾性回復率は 6 0 〜 9 9 %が 好ま し く 、 より好ま しく は 7 0 〜 9 9 %である。 又、 合糸する前の マルチフ ィ ラメ ン 卜の品質を評価するパラメ 一ターと しては、 例え ば、 U %を用いることができる。 U %は、 繊維断面の長さ方向の均 質性を示すパラメ ータであり、 好ま しい U %は 3 . 0 %以下、 さ ら に好ま し く は 2 . 5 %以下である。
本発明の糸条は、 このマルチフィラメ ン ト繊維を合糸してなる ト —タル繊度が 2 0 0 0 〜 2 2 0 0 0 d t e xの糸条である。 2 0 0 0 d t e 未満では、 糸条の強度や摩耗強度が低いためガッ トゃ弦 等には用いられない。 又、 2 2 0 0 0 d t e xを超えると、 糸条の 直径が太く なりすぎて合糸して一体化するこ とが困難となり、 特に ガッ トゃ弦には不適となる。 また、 トー夕ル繊度が 5 6 〜 5 6 0 d t e xのマルチフィ ラメ ン トを複数本合糸して トータル繊度を 2 0 0 0 〜 2 2 0 0 0 d t e xの糸条とするこ とにより、 糸条の断面形 状が真円に近いものが容易に得られ、 しかも、 糸条断面方向の物性 がより均質となる。 特にガッ 卜や楽器用弦では、 この真円断面形状 と糸条断面方向の物性の均質性が要求されており、 好適なものとな る。
合糸された糸条の物性は、 引張強度が 5 0 - 1 0 0 0 N (ニュー ト ン) 、 好ま しく は 6 0 ~ 8 0 O Nである。 又、 破断伸度は 2 5〜 8 0 %、 好ま し く は 3 5〜 6 0 %、 さ らに好ま し く は 4 0〜 5 0 % である。 2 0 %伸長時の弾性回復率は 6 0〜 9 9 %、 好ま しく は 7 0〜 9 9 %、 さ らに好ま しく は 7 5〜 9 9 %を示す糸条である。 ま た、 4 9 . 0 Nの応力における応力保持率は 6 0 %以上、 好ま し く は 7 0 %以上、 さ らに好ま しく は 7 5 %以上である。
マルチフ ィ ラメ ン ト繊維の合糸方法は、 無撚状態で引き揃えて合 糸する方法、 イ ンター レースで合糸する方法、 イ ンタ一 レースで合 糸したマルチフ ィ ラメ ン ト同志数本〜数十本を更に加撚して合糸す る方法、 無撚合糸したマルチフ ィ ラ メ ン トを合撚して合糸する方法 、 合撚合糸したマルチフ ィ ラ メ ン ト同志数本〜数十本を更に合撚し て合糸する方法等があり、 無撚糸、 片撚糸、 諸撚糸、 駒撚糸、 壁撚 糸と して使用される。 また撚数についても特に限定されないが、 通 常 1 5 0 O TZm以下、 好ま しく は 1 0〜 1 0 0 0 TZm、 さ らに 好ま し く は 2 0 - 5 0 O TZmである。 1 O T/m未満ではマルチ フ ィ ラ メ ン 卜の収束性が得られ難く単糸がばらけて取り扱い難く な る。 又、 1 5 0 O TZmを超えると強度低下が大き く なる。 これら の撚糸して合糸する機械は、 イタ リ ー撚糸機、 アップツイスター、 ダブルツイ スター、 カバ リ ングマシ ン、 合撚機、 リ ング撚糸機、 複 合撚糸機等が使用される。
本発明の糸条は、 ガッ ト、 楽器用弦の他に、 例えばロープ、 ひも 、 産業用縫糸等にも好適である。
本発明において、 ポ リ ト リ メチレンテレフタ レー トマルチフイ ラ メ ン ト繊維は、 合糸前の原糸又は合糸した糸条を接着処理前又は接 着処理時に更に定長または伸張下で熱処理を行う ことにより、 繊維 の結晶配向が促進され、 弾性回復率と応力保持率が向上し、 ガッ ト や弦に用いた場合に張設テンシ ョ ンの経時的な低下が少なく なるの で好ま しい。 熱処理温度は特に限定されないが、 通常 1 5 0〜 2 0 0 °C、 好ま しく は 1 6 0〜 1 8 0 °Cの範囲で行われる。 1 5 0 °C未 満では結晶配向の向上効果が不十分であり、 2 0 0 °Cを越えると原 糸強度が低下する傾向がある。 また、 処理時間は通常 2 0秒〜 2分 間が好ま しい。 また、 定長または伸張熱処理における伸張率は 0〜 1 0 %、 好ま しく は 0 ~ 5 %である。 一方、 弛緩状態で熱処理を行 う と応力保持率が低下する傾向がある。 また、 繊維の破断伸度が 6 0 %を越える場合は、 この定長または伸張熱処理により 3 0〜 6 0 %ヽ 好ま しく は 4 0 - 5 0 %にすることができる。
次に、 本発明者らは、 ガッ 卜について鋭意検討した結果、 単繊維 繊度 1 〜 5 6 d t e xのポ リ ト リ メ チ レンテ レフ タ レ一 トマルチフ イ ラメ ン ト繊維を合糸してなる、 トータル繊度が 7 0 0 0〜 2 2 0 0 0 d t e xの糸条をガッ 卜と して用いるいることで、 従来からの ガッ 卜の持つ欠点を解決し、 高弾発性、 耐衝撃性、 高耐久性のガッ トを得ることに成功し、 本発明に到達した。
以下、 本発明のガッ トにっき詳述する。
本発明によれば、 従来のガッ 卜に比べて弾性回復率が高いため、 ガッ トに強く張って糸条にテンシ ョ ンが掛かった状態、 即ち、 糸条 が 5〜 2 5 %伸長された時の弾性回復率が高いため、 初期の応力保 持率が高く 、 かつ経時的なガッ ト張設テンシ ョ ンの変動が少ない。 また、 初期弹発性が高いとともに長時間高弾発性を保持し、 且つ、 ボールを打球した時は適度な伸びと優れた弾性回復性により、 耐衝 撃性に優れ、 ホール ド感、 コ ン ト ロール性も良いガッ トが得られる のである。
本発明において、 ポリ ト リ メチレンテレフタ レー トマルチフイ ラ メ ン ト繊維糸条の物性は、 引張強度は 2 3 0 N以上、 好ま し く は 3 0 0 N以上であり、 引張強度が 2 3 0 N未満の場合は、 ガツ 卜にし た場合の破断強度が低く 、 破断強力を上げる目的で 2 2 0 0 0 d t e xを越える トータル繊度にすると、 ガッ トの直径が太く なり、 弾 発性、 打球感、 コ ン ト ロール性、 耐衝撃性が悪く なり好ま し く ない 。 又、 破断伸度は 2 5 %以上、 好ま しく は 4 0〜 5 0 %である。 破 断伸度が 2 5 %未満では、 ラケッ 卜に張設後のガッ 卜の伸びが少な く 、 耐衝撃性、 ホール ド感が悪く なる傾向があり、 5 0 %を超える と、 弾性回復率が低く なるのでガッ 卜が緩みやすく 、 テンシ ョ ン低 下が起きて弾発性が悪く なる傾向がある。 2 0 %伸長時の弾性回復 率は 6 0〜 9 9 %、 好ま し く は 7 0〜 9 9 %であり、 4 9 . O Nの 応力における応力保持率は 7 0 %以上、 特に 7 5 %以上が好ま しい 。 また、 2 0 5 . 9 Nの応力における応力保持率は 7 0 %以上、 特 に 7 5 %以上が好ま しい。 弾性回復率が 6 0 %未満、 または応力保 持率が 7 0 %未満では、 ガッ トテンシ ョ ンの低下が大き く 、 ラケッ 卜に張設後の弾発性が経時変化と共に低下してく る傾向がある。 ま た、 糸条の残留伸度は 1 . 5〜 8 %、 特に 2 . 0〜 6 . 0 %の範囲 にあると、 ガッ トの耐衝撃性が優れるので好ま しい。
本発明において、 マルチフィ ラメ ン ト糸条の単糸繊度は 1〜 5 6 d t e xであり、 好ま しく は 5 . 6〜 4 4 d t e xである。 l d t e x未満では摩耗強度が低く ガッ 卜の耐久性が悪く なる。 5 6 d t e xを超えると繊維径が太く なるため断面方向の結晶配向性が不均 一となり、 特に断面外層部は結晶配向度が高いが、 中心部は結晶配 向度が低く なり、 強度、 弾性回復率が低く なる。 その結果、 ガッ ト の弾性回復率が低く なり、 応力保持率が低下し、 特に弾発性が低下 するので好ま しく ない。 ト一タル繊度は 7 0 0 0〜 2 2 0 0 0 d t e xであり、 7 0 0 0 d t e x未満ではガッ トと しての破断強力が 不足になり、 ラケッ 卜に 5 0〜 6 0 ポン ドの高テンシ ョ ンで張設が 困難となり、 更に打球によりガッ 卜が切れ易く なるという欠点を生 じる。 又、 2 2 0 0 0 d t e xを越えると、 ガッ 卜にした時の直径 が太く なり、 弾発性、 耐衝撃性共に悪く なり、 更にホール ド感ゃコ ン ト ロ一ル性の悪い打球感のガッ 卜となる。
本発明において、 単糸繊度 1 〜 5 6 d t e xのポリ ト リ メチレン テレフタ レ一 トマルチフィ ラメ ン ト繊維を合糸してなる トータル繊 度が 7 0 0 0〜 2 2 0 0 0 d t e xの糸条が、 ガッ トを構成する繊 維に占める重量比率は、 少なく とも 5 0 %以上が好ま しく、 より好 ま し く は 7 0 %以上、 さ らに好ま しく は 9 0 %以上である。 5 0 % 未満の場合は、 本発明の目的が十分には達成されない。
ポ リ ト リ メチレンテレフタ レー トマルチフ ィ ラメ ン ト繊維を用い てガッ トを作製する方法と しては、 例えば、 トータル繊度 5 6〜 5 6 0 d t e xのマルチフ ィ ラメ ン ト原糸を 1 3〜 4 0 0本合糸して トータル繊度を 7 0 0 0〜 2 2 0 0 0 d t e x となし、 次いで、 接 着剤により接着、 ポ リマーにより被覆してガッ トとする方法、 予め ト一タル繊度 5 6 — 5 6 0 d t e xのマルチフ ィ ラ メ ン ト原糸を 卜 —タル繊度 1 0 0 0〜 6 0 0 0 d t e xに合糸してから、 更にこの 糸条 4 ~ 2 2本を再合糸して トータル繊度 7 0 0 0〜 2 2 0 0 0 d t e X となし、 次いで接着剤により接着、 ポリ マーにより被覆して ガッ 卜 とする方法、 又は、 6 6 0〜 1 1 0 0 0 d t e xのポ リ ト リ メ チ レ ンテ レフ タ レ一 トモノ フ ィ ラ メ ン ト 1 〜 2 0 本を芯糸と し、 側糸に単糸繊度 1 〜 5 6 d t e xのマルチフィ ラメ ン トを配置して トータル繊度を 7 0 0 0〜 2 2 0 0 0 d t e x となす方法、 単糸繊 度 1 〜 5 6 d t e xのポ リ ト リ メ チ レ ンテ レフ タ レー トマルチフ ィ ラメ ン ト繊維を 3 0〜 1 0 0 0 0本合糸して芯糸と し、 側糸に単糸 繊度 1 0〜 6 0 d t e xのポ リ ト リ メ チ レンテ レフタ レ一 卜以外の 合成繊維を配置する方法、 更には芯糸並びに側糸にもマルチフィ ラ メ ン 卜を配置して芯糸のデニールを側糸のデニールより細 したり 、 あるいは太く する等の方法がある。
これらの方法で得られたガッ ト糸条は、 接着剤により接着、 ポリ マーによる被覆等によりガッ トとする。 フィ ラメ ン ト間空隙の充塡 接着並びに最外層を被覆するために接着剤、 ポリマー等を用いて、 含浸、 コーティ ング等により接着、 被覆層を設けると、 ガッ 卜の摩 耗を防止すると共に耐久性が更に向上し好ま しい。 また更に、 被覆 層の上にフ ッ素樹脂、 シ リ コーン樹脂による被覆層を形成すると更 に好ま しい。
本発明ではこれらの方法に特に限定される ものではなく 、 要は、 単糸繊度が 1 ~ 5 6 d t xのポリ ト リ メ チレンテレフタ レ一 トマル チフィ ラメ ン ト繊維を合糸した トータル繊度が 7 0 0 0 - 2 2 0 0 0 d t e xの糸条によって、 芯糸または側糸と してあるいは全部を 構成したガッ 卜であればよ く、 所望により、 5 0重量%以下、 好ま し く は 3 0重量%以下の範囲内において、 芯糸または側糸あるいは 一部に他の合成繊維が合撚等で混合されていてもよい。
本発明において、 接着剤と しては、 ウ レタ ン系樹脂、 エポキシ系 樹脂、 ア ク リ ル系樹脂、 シ リ コー ン系樹脂、 ポ リ ビニルアルコール 系樹脂、 ポリ ア ミ ド系樹脂、 ポリエステル系樹脂、 ポ リ カーボネー ト系樹脂、 ァク リ レー ト系紫外線硬化性樹脂等が有用であり、 ポリ ト リ メ チレンテレフタ レー ト繊維への接着性や柔軟性、 耐屈曲性の 面からは、 特にゥ レタ ン系樹脂、 アタ リル系樹脂が好ま しい。 又、 ポリマーと しては、 溶融ポリマ一又は適当な溶剤に溶解したポリマ —を被覆に用いることができる。 ポリマーの種類と しては、 ポリ ア ミ ド系樹脂、 ウ レタ ン系樹脂、 ポ リ エステル系樹脂、 フ ッ素系樹脂 、 シリ コーン系樹脂等が有用である。 本発明において、 マルチフ ィ ラ メ ン ト糸条は、 1 0 0 0 T / m以 下、 特に 2 0〜 5 0 O T / mの加撚を施し、 強固に結束させること が好ま しいが、 加工時の結束性さえ保たれれば、 無撚であっても良 い。 1 0 0 0 T mを超える加撚を施すと、 強度、 弾性率共に低下 する傾向がある。
本発明のガッ トは、 テニス、 パ ト ミ ン ト ン、 スカ ッ シュ等に好適 である。
さ らに、 本発明者らは、 楽器用弦について鋭意検討した結果、 単 繊維繊度が 1 〜 5 6 d t e xのポリ ト リ メ チ レ ンテ レフ タ レー トマ ルチフ ィ ラメ ン ト繊維を合糸して、 トータル繊度 2 0 0 0 - 1 4 0 0 0 d t e xの糸条を楽器用弦と して用いることで、 従来からの弦 の持つ欠点を解決し、 経時変化、 湿度変化に対する音程変化が少な い、 調弦性に優れた楽器用弦を得ることに成功し、 本発明に到達し た。
以下、 本発明の楽器用弦につき詳述する。
本発明によれば、 従来の弦に比べて弾性回復率が高く 、 楽器に架 張して調律しても経時的な音程変化が少なく 、 比較的短時間で安定 した音程となる調弦性に優れ、 又、 湿度変化があっても弦が緩んだ り、 張ったりすることがなく安定した音程の楽器用弦が得られるの である。
本発明において、 ポリ ト リ メチレンテレフタ レー 卜マルチフイ ラ メ ン ト繊維糸条の物性は、 引張強度は 5 2 N以上が好ま しく 、 さ ら に好ま し く は 6 0 N以上である。 引張強度が 5 2 N未満の場合は、 弦にした場合、 弦の破断強度が低く実用的に問題となる場合があり 、 楽器に架張する張力を低く しなければならず、 弦がダブついて演 奏しにく く なる。 又、 破断伸度は 2 5〜 6 0 %が好ま しく、 さ らに 好ま し く は 4 0 - 5 0 %である。 破断伸度が 2 5 %未満では、 弦を 架張して調律を繰り返した場合、 弦の切断が比較的早く起こ り寿命 の短い弦となり、 6 0 %を超えると、 弾性回復率が低く な-り、 音程 変化が大き く なる傾向がある。 弾性率は 1 8〜 3 6 c NZ d t e x 、 好ま しく は 2 0〜 3 6 c NZ d t e xであり、 2 0 %伸長時の弾 性回復率は 6 0〜 9 9 %、 好ま しく は 7 0〜 9 9 %である。 弾性率 が 1 8 c N/ d t e X未満、 並びに弾性回復率が 6 0 %未満では、 音程変化が大き く安定した音程を得るのに長時間を要し調弦性が劣 る傾向がある。 また、 4 9. 0 Nの応力における応力保持率は 7 0 %以上、 特に 7 5 %以上が好ま しい。 7 0 %未満では、 楽器に架張 して調律した後の経時的な音程変化が大き く なる傾向がある。
本発明において、 マルチフ ィ ラメ ン ト糸条の単糸繊度は 1 〜 5 6 d t e x、 好ま しく は 5. 6〜 4 4 d t e xである。 l d t e x未 満では、 弦にした場合、 弦の摩耗強度が低く なり、 演奏中に単糸切 れを起こ し音程が変化するする場合があり、 弦の耐久性も悪く なる 。 5 6 d t e xを超えると、 繊維径が太く なるため断面方向の結晶 配向性が均一でなく なり、 特に、 断面外層部は結晶配向するが、 中 心部は結晶配向が不十分になり、 強度、 弾性回復率が低く なり、 そ の結果、 楽器弦と して用いると経時的に弦が緩み音程変化が大き く なるばかり力、、 安定した音程に調律するのに長時間を要し調弦性に 劣る ものとなる。 トータル繊度は 2 0 0 0〜 1 4 0 0 0 d t e xの 糸条が使用される。 2 0 0 0 d t e x未満では楽器弦と しての引張 強度が不十分になり、 演奏中や調律時に弦が切断する場合があり実 用に適さないものとなる。 又、 1 4 0 0 0 d t e xを越えると、 弦 の直径が太く なりすぎて演奏しにく いものとなる。
本発明の楽器用弦の製造方法と しては、 合糸、 合撚されたマルチ フ ィ ラ メ ン ト糸条をそのまま弦とする方法、 又、 合糸、 合撚された マルチフ ィ ラ メ ン ト糸条を樹脂接着して弦とする方法、 又、 合糸、 合撚、 樹脂接着したマルチフ ィ ラメ ン 糸条全体を、 摩耗性、 耐久 性を高めるため合成ポリマーによる浸漬、 コ一ティ ング等で被覆し て弦とする方法、 又、 合成ポリマーで被覆された糸条の合成ポ リマ —若し く はその上に撥水性を高めるためフ ッ素樹脂、 シリ コーン樹 脂による被覆層を設けて弦とする方法、 又、 合糸、 合撚、 または、 接着剤で接着したマルチフ ィ ラメ ン ト糸条の周りを直径 0 . 0 8 〜 1 . O m mの鋼、 銅、 アルミ、 ステン レス、 白金、 銅等の金属ピア ノ線で螺旋状に巻いて弦とする方法等があるが、 本発明ではこれら の方法に特に限定される ものではなく 、 要は、 単糸繊度が 1 〜 5 6 d t xのポリ ト リ メ チ レンテ レフ タ レー トマルチフ ィ ラメ ン ト繊維 の トータル繊度が 2 0 0 0〜 1 4 0 0 0 d t e xの糸条によって構 成されている弦であればよ く 、 所望により、 3 0重量%以下、 好ま しく は 2 0重量%以下の範囲内において、 マルチフ ィ ラ メ ン トの一 部又はその周りに他の合成繊維が合撚、 カバリ ングされていてもよ い。
ポ リ 卜 リ メ チ レ ンテ レフ タ レ一 卜マルチフ ィ ラ メ ン ト糸条を接着 する樹脂と しては、 ウ レタ ン系樹脂、 エポキシ系樹脂、 イ ソ シァネ ー ト系樹脂、 ア ク リ ル系樹脂、 シ リ コー ン系樹脂、 ポ リ ビニルアル コール系樹脂、 ポ リ ア ミ ド系樹脂、 ポ リ エステル系樹脂、 ポ リ カー ボネー ト系樹脂、 ァク リ レー ト系紫外線硬化性樹脂等が有用である 。 ポ リ ト リ メチレンテレフタ レ一 ト繊維への接着性や柔軟性、 耐屈 曲性の面から、 ウ レタン系樹脂、 アク リル系樹脂が好ま しい。
本発明において、 最外層を被覆する合成ポ リマーと しては、 溶融 ポ リマー又は適当な溶剤に溶解したポ リマーを被覆に用いることが できる。 ポリマーの種類と しては、 ポリ ア ミ ド系樹脂、 ウ レタ ン樹 脂、 ポ リ エステル系樹脂、 フ ッ素系樹脂、 シ リ コーン系樹脂等が有 用である。 本発明において、 マルチフ ィ ラメ ン ト繊維は、 1 0 0 O T/m以 下、 特に 2 0〜 5 0 0 T / mの加撚を施し、 強固に結束ざせること が好ま しいが、 加工時の結束性さえ保たれれば、 無撚であっても良 い。 1 0 0 0 T/mを超える加撚を施すと引張強度、 弾性率共に低 下する傾向にある。
本発明の楽器用弦は、 例えば、 ギター、 ウ ク レ レ、 ハープ、 バイ ォ リ ン、 ビオラ、 チェ ンバロ、 コ ン ト ラノく'ス、 リ ュー ト、 三味線、 琴等の弦と して使用できる。 又、 バイオリ ン、 ビオラ等の弦楽器の テ一ルガッ ト用と しても用いることが出来る。
発明を実施するための最良の形態
以下、 実施例により本発明を説明する。
なお、 部は、 重量部を表す。
また、 実施例における評価方法は下記の通りである。
( 1 ) 強伸度特性の評価
東洋ボール ドウ ィ ン社製テンシロ ンを用い、 試料長 2 0 c m、 引 張速度 2 0 c mZm i nの条件で引張強伸度 ( c NZ d t e x、 %
) 、 初期弾性率 ( c N Z d t e x ) を測定した。
( 2 ) 弾性率の測定
弾性率は J I S— L一 1 0 1 3 に準じて測定した。
( 3 ) 弾性回復率の評価
2 0 %伸長時の弾性回復率は、 試料に 0. 0 1 0 9 c N/ d t e xの初荷重をかけ、 毎分 2 0 %伸びの一定割合の速度で伸ばし、 伸 度 2 0 %になったところで今度は逆に同じ速度で収縮させて、 応力 —歪曲線を画く 。 収縮中、 応力が初荷重と等しい 0. 0 1 0 9 c N / d t e xにまで低下した時の残留伸度を L とすると、 下記式で算
|jd し 。 2 0 %伸長時の弹性回復率 = ( 2 0 - L ) / 2 0 X 1 0 0 (%) ( 4 ) U %の測定
ツェルべガーウースター社の U S T E R T E S T E R 3 を用い て測定した。
( 5 ) 応力保持率の評価
東洋ボール ドウイ ン社製テンシロ ンを用い、 試料長 2 0 c m、 引 張速度 2 0 c m/m i nの条件で伸長して糸条に 4 9. O N及び 2 0 5. 9 Nの応力を掛け、 そのまま 2 4 時間放置後の応力を測定し 、 応力の保持率を算出した。 応力保持率が高い程経時的なガッ トテ ンシ ヨ ン及び弦の緩みが少なく 、 弹発性、 音程変化の耐久性が良好 な事を示す。
( 6 ) 残留伸度の測定
東洋ボール ドウ ィ ン社製テ ンシロ ンを用い、 糸条試料長 2 0 c m
、 引張速度 2 0 c mZm i nの条件で伸長して糸条に 2 0 5. 9 N の応力を加え、 1 時間放置した時の伸度を A 1 と し、 更に伸長を行 い 2 5 5. O Nの応力になった時の伸度を A 2 と して、 A 2 — A 1 を残留伸度と した。
残留伸度の値が低い程、 ガッ 卜にボールが当たった時ガッ 卜が伸 びないため、 耐衝撃性が劣る事を示す。
( 7 ) フ ィ ー リ ングテス ト
作製したガッ トを、 ラケッ 卜に縦糸、 横糸 2 2 3 N ( 5 0 ポン ド ) で張設し、 3 0人のテニススクールのアマチュアプレーヤーに実 際に硬式テニスボールを打球させ、 弾発性、 耐衝撃性についてアン ゲー ト調査を行った。 この調査は、 ガッ トに張設して 1 日後及び 2 0 日後について 2 回行った。
® : 3 0人中 2 4人以上が良いと答えた場合
〇 : 3 0人中 1 8〜 2 3人が良いと答えた場合 Δ : 3 0人中 1 5〜 1 7人が良いと答えた場合 X : 3 0人中 1 4人以下が良いと答えた場合 ―
( 8 ) 耐久性評価
上記ラケッ トを 5本使用し、 テニスボールマシ ンで.、 打ち出 し速 度 1 0 0 k m/時、 打ち出し間隔 1 5 回 Z分、 打ち出 し距離 5 0 c mで、 硬式用テニスボールを用いガッ 卜が切断するまで打ち続け、 切断した平均回数を求めた。
( 9 ) 音程変化の評価
クラ シッ クギター (河合楽器製) に弦を架張し、 解放状態で各音 程 (周波数) にチューニングメ ータ (コルグ社製 M 0 d e 1 D T R — 1 ) とマイ ク (ソニー製 F— V 6 0 0 P ) を用い調律した。 調律 後は、 弦をそのままの状態にして経時変化後の周波数を測定して音 程の変化を評価した。 尚、 解放状態の設定音程、 及び、 調律時、 経 時変化評価時の雰囲気温度は下記の通りである。
〔条件 1 〕 2 0 °C X 6 5 %R H雰囲気下で、 5 8 7 H z (レ) の音 程に調律した後、 2 0 °C X 8 5 % R H雰囲気下で 1 2 時間放置後の 周波数を測定した。
〔条件 2〕 2 0 °C X 6 5 % R H雰囲気下で、 7 8 4 H z (ソ) の音 程に調律し、 同様の雰囲気下で 2 4 時間放置後の周波数を測定した
〔条件 3〕 2 0 °C X 6 5 % R H雰囲気下で、 9 8 6 H z (シ) の音 程に調律し、 同様の雰囲気下で 2 4時間放置後の周波数を測定した
( 1 0 ) 調弦性評価
作製した弦を、 クラ シッ クギター (河合楽器製) に架張し、 第 2 弦は 9 8 6 H z (シ) 、 第 3弦は 7 8 4 H z (ソ) 、 第 4弦は 5 8 7 H z (レ) に調律後、 1 日 1 時間の指弾を行い、 指弾後の音程の ずれが半音以内と安定するまで繰り返し、 その日数を測定した。 尚、 二日目以降は調律を行ってから指弾を行った。
◎ : 1 日目で音程が安定
〇 : 3 曰未満で音程が安定
Δ : 7 日未満で音程が安定
X : 7 日以上で音程が安定
( 1 1 ) 弦の耐久性評価
作製した弦を、 調弦性評価と同様にして、 調律と指弾を弦が破断 するまで繰り返し行った。
◎ : 1 5 日以上切断せず
0 : 1 4 日以内で切断
Δ: 7 日以内で切断
: 3 日以内で切断
( 1 2 ) 演奏のしゃすさ評価
作成した弦と、 それ以外の弦と して市販弦 (ヤマハ製 S — 1 0 ) を用い、 クラ シッ クギター (河合楽器製) に架張し調律した後、 3 0人のアマチュアプレーヤ一に実際に演奏しても らい、 作成した弦 の演奏のしゃすさについてアンケー 卜調査を行った。
© : 3 0人中 2 4人以上が良いと答えた場合
〇 : 3 0人中 1 8〜 2 3人が良いと答えた場合
Δ: 3 0人中 1 5〜 1 7人が良いと答えた場合
X : 3 0人中 1 4人以下が良いと答えた場合 実施例 1
s pZ c力く 1 . 1 のポリ 卜 リ メチレンテレフタ レー トチップを 用いて、 紡糸温度 2 6 5 °C、 紡糸速度 1 2 0 0 mZ分で未延伸糸を 得、 次いで、 ホッ トロール温度 6 0 °C、 ホッ トプレー ト温度 1 4 0 °C、 延伸倍率 2. 5倍、 延伸速度 8 0 0 m Z分で延燃して、 2 3 5 d t e x / 3 5 f の延伸糸を得た。 得られた原糸の物性ば、 強度 3 . 7 c NZ d t e x、 伸度 3 5 %、 弾性率 2 0 c N Z d t e x、 弾 性回復率 8 5 %、 U % 1 . 0 %であっ た。
η s p / c は、 ポ リ マーを 9 0 °Cで 0 — ク ロ 口 フ エ ノ ールの 1 g /デシリ ッ トルの濃度で溶解し、 その後、 得られた溶液をォス ト ヮ ノレ ド粘度管に移し 3 5 °Cで測定し、 下記式により算出した。
s p / c = (T/T 0 — 1 ) / C
T : 試料溶液の落下時間 (秒)
Τ 0 : 溶剤の落下時間 (秒)
C : 溶液濃度 ( g Ζデシ リ ッ トル)
得られた 2 3 5 d t e / 3 5 f のポ リ ト リ メ チ レ ンテ レフ タ レ ー ト マルチフ ィ ラ メ ン ト繊維を 1 4本合糸し、 3 2 9 0 d t e xZ 4 9 0 f のマルチフ ィ ラ メ ン ト糸条を得た。 更に、 このマルチフ ィ ラメ ン ト糸条を 5本合糸し、 1 6 4 5 0 d t X / 2 4 5 0 f の糸条 を得た。 この糸条を 7 0 T Z mの加撚を施した。
次いで、 この糸条をゥ レタ ン系接着剤であるバ一ノ ッ ク 1 6 - 4 1 6 を 1 0 0部、 架橋剤であるバ一ノ ッ ク D N— 9 5 0 を 1 0部、 架橋促進剤であるク リ スボンアクセル Tを 1 部 (大日本イ ンキ社製 ) 、 トルエンを 5 0部で調合した液に浸漬し、 マングルで絞液後乾 燥を行い、 1 7 0 °Cで 1 分間定長熱処理を行った。 その後、 溶融し たナイ ロ ン 6樹脂により最外層に被覆層を形成しガッ トを作製した 。 得られたガッ トは、 破断強度 5 7 8 N、 伸度 3 2 %、 4 9. O N 時の応力保持率 8 4 %、 2 0 5. 9 N時の応力保持率 8 5 %、 弾性 回復率 8 0 %、 残留伸度 4. 8 %であった。
ガッ トの性能及びフィ ーリ ングテス トの結果を表 1 に示した。 本発明のガッ トは、 均質性に優れ、 機械的強度も高く 、 フィ 一リ ングテス 卜において耐久性のある弾発性、 耐衝撃性を示した。
実施例 2
77 S P Z C力く 1 . 1 のポリ ト リ メチレンテレフタ レー トチップを 用いて、 紡糸温度 2 6 0 °C、 紡糸速度 1 1 0 O m/分で未延伸糸を 得、 次いで、 ホッ ト ロール温度 6 0。C、 ホッ トプレー ト温度 1 4 0 °C、 延伸倍率 2. 5倍、 延伸速度 6 0 O mZ分で延撚して、 3 3 0 d t e x / 6 f の延伸糸を得た。 得られた原糸の物性は、 強度 3 . 5 c N/ d t e x、 伸度 3 9 %、 弾性率 2 1 c N/ d t e x、 弾性 回復率 7 7 %、 U % 2 . 1 %であった。
得られた 3 3 0 d t e x / 6 f のポ リ ト リ メ チレンテレフタ レ一 トマルチフ ィ ラ メ ン ト繊維を 1 3本合糸して、 4 2 9 0 d t e x / 7 8 f の糸条を得た。 更に、 この糸条 5本をク リ ールに立て引き揃 えて 7 O TZmの加撚を施し、 2 1 4 5 0 d t e x 3 9 0 f の糸 条を得た。 次いでこの糸条を、 ウ レタ ン系接着剤であるァク リ ディ ッ ク A— 1 9 0 を 1 0 0部、 架橋剤であるタイホース A G— 9 4 0 H Vを 1 0部 (大日本イ ンキ社製) 、 トルエンを 5 0部で調合した 液に浸漬し、 マングルで絞液後乾燥を行い、 1 7 0 °Cで 1 分間定長 熱処理を行った。 その後、 溶融したポ リ 卜 リ メチレンテレフタ レ一 ト樹脂により最外層に被覆層を形成し、 ガッ トを作製した。 得られ たガッ トは、 破断強度 7 1 0 N、 伸度 3 6 %、 4 9 . 0 N時の応力 保持率 7 5 %、 2 0 5 . 9 N時の応力保持率 7 5 %、 弾性回復率 7 3 %、 残留伸度 5 . 5 %であった。
ガッ 卜の性能及びフィ 一 リ ングテス 卜の結果を表 1 に示した。 本発明のガッ トは、 均質性に優れ、 機械的強度も高く 、 フィ ーリ ングテス トにおいて弾発性、 耐衝撃性が良好であった。
実施例 3
実施例 2 と同様にして、 2 2 0 d t e x / 1 0 f の延伸糸を得た 。 得られた原糸の物性は、 強度 3 . 6 c N / d t e x、 伸度 3 8 % 、 弾性率 2 0 c N/ d t e x、 弾性回復率 8 4 %、 U % 1 : 8 %で あった o
得られた 2 2 0 d t e x / 1 0 f のポ リ 卜 リ メ チ レ ンテ レフ タ レ ー トマルチフィ ラメ ン ト繊維を 1 1 本合糸して、 2 4 2 0 d t x // 1 1 0 f の糸条を得た。 更にこの糸条 3本を 1 0 O TZmの加撚を 施し、 Ί 2 6 0 d t e x / 3 3 0 f の糸条を得た。 次いでこの糸条 を、 ウ レタ ン系接着剤であるバーノ ッ ク 1 6 — 4 1 6 を 1 0 0部、 架橋剤であるバーノ ッ ク D N— 9 5 0 を 1 0部、 架橋促進剤である ク リ スボンアクセル Tを 1 部 (大日本イ ンキ社製) 、 トルエンを 5 0部で調合した液に浸漬し、 マングルで絞液後乾燥を行い、 1 7 0 °Cで 1 分間、 5 %伸長熱処理を行った。 その後、 溶融したナイ ロ ン 6樹脂により最外層に被覆層を形成しガッ トを作製した。 得られた ガッ トは、 破断強度 2 6 0 N、 伸度 3 4 %、 4 9 . 0 N時の応力保 持率 7 9 %、 2 0 5 . 9 N時の応力保持率 8 0 % 弾性回復率 8 0 %、 残留伸度 3 . 2 %であった。
ガッ 卜の性能及びフィ ー リ ングテス 卜の結果を表 1 に示した。 本発明のガッ トは、 均質性に優れ、 フ ィ ー リ ングテス トにおいて 弾発性、 耐衝撃性が良好であった。
実施例 4
実施例 1 と同様にして、 8 4 d t e x / 7 5 f の延伸糸を得た。 得られた原糸の物性は、 強度 3 . 7 c NZ d t e x、 伸度 3 5 %, 弾性率 2 1 c NZ d t e X、 弾性回復率 8 7 %、 U % 1 . 2 %であ つた。
得られた 8 4 d t e x / 7 5 f のポ リ ト リ メ チレンテレフタ レ一 トマルチフ ィ ラメ ン ト繊維を 2 0本合糸して、 1 6 8 0 d t e xZ 1 5 0 0 f のマルチフ ィ ラメ ン ト糸条に した。 更にこのマルチフ ィ ラメ ン ト糸条 1 1 本を 1 0 O TZmの加撚行い、 1 8 4 8 0 d t x Z 1 6 5 0 0 f の糸条を得た。 次いでこの糸条を、 ウ レタン系接着 剤であるバーノ ッ ク D F— 4 0 7を 1 0 0部、 架橋剤であるバ一ノ ッ ク D N— 9 5 0 を 1 0部、 架橋促進剤であるク リ スボンアクセル Tを 1 部 (大日本イ ンキ社製) 、 トルエンを 5 0部で調合した液に 浸漬し、 マングルで絞液後乾燥を行い、 1 7 0 °Cで 1 分間、 3 %伸 長熱処理を行った。 その後、 溶融したポリ 卜 リ メチレンテレフタ レ ー ト樹脂により最外層に被覆層を形成し、 ガッ トを作製した。 得ら れたガッ トは、 破断強度 6 4 0 N、 伸度 3 3 %、 4 9. 0 N時の応 力保持率 8 3 %、 2 0 5. 9 N時の応力保持率 8 3 %、 弾性回復率 8 4 %、 残留伸度 4. 3 %であった。
ガッ 卜の性能及びフ ィ ー リ ングテス 卜の結果を表 1 に示した。 本発明のガッ トは、 均質性に優れ、 フィ ー リ ングテス トにおいて 弾発性、 耐衝撃性が良好で且つ耐久性を有していた。
実施例 5
s p Z c力く 1 . 0のポ リ 卜 リ メ チ レンテ レフ タ レー ト チ ッ プを 用いて、 紡糸温度 2 6 5 °C、 紡糸速度 1 1 0 0 mZ分で未延伸糸を 得、 次いで、 ホッ ト ロール温度 6 0 °C、 ホッ トプレー ト温度 1 4 0 。C、 延伸倍率 2. 5倍、 延伸速度 7 0 0 m Z分で延撚して、 2 5 0 d t e x 2 3 f の延伸糸を得た。 得られた原糸の物性は、 強度 3 . 3 c NZ d t e x、 伸度 3 6 %、 弾性率 2 2 c NZ d t e x、 弾 性回復率 8 7 %、 U %は 1 . 3 %であった。
得られた 2 5 0 d t e x / 2 3 f のポ リ ト リ メ チ レンテ レフ タ レ — トマルチフ ィ ラ メ ン ト繊維を 9本合糸し、 2 2 5 0 d t e x/ 2 0 7 f のマルチフ ィ ラメ ン ト糸条を得た。 更にこのマルチフ ィ ラメ ン ト糸条 4本を 9 O TZmの加撚をしながら合糸し、 9 0 0 0 d t x / 8 2 8 f の糸条を得た。 この糸条を芯糸と し、 側糸と して 4 7 0 d t e x/ 1 4 f のナイ ロ ン 6 6 (旭化成工業社製) を 1 2本合 糸した糸を、 ウ レタ ン系接着剤であるバーノ ッ ク 1 6 — 4 1 6 を 1
0 0部、 架橋剤であるバーノ ッ ク D N— 9 5 0 を 1 0部、 架橋促進 剤であるク リ スボンアクセル Tを 1 部 (大日本イ ンキ社製) 、 トル ェンを 5 0部で調合した液に浸潰し、 マングルで絞液してから芯糸 に側糸を 1 0 0 T Z mの割合でカバリ ングしてから乾燥を行い、 1
7 0 °Cで 1 分間定長熱処理を行った。 その後、 溶融したナイ ロ ン 6 樹脂により最外層に被覆層を形成し、 ガッ トを作製した。 得られた ガッ トは、 破断強度 6 1 0 N、 伸度 3 3 %、 4 9. 0 N時の応力保 持率 8 5 %、 2 0 5. 9 N時の応力保持率 8 4 %、 弾性回復率 7 8 %、 残留伸度 3. 6 %であった。
ガッ 卜の性能及びフィ ー リ ングテス 卜の結果を表 1 に示した。 本発明のガッ トは、 均質性に優れ、 機械的強度も高く 、 フィ ー リ ングテス トにおいて耐久性のある弾発性、 耐衝撃性を示した。
実施例 6
実施例 1 で得られた 2 3 5 d t e x / 3 5 f のポリ ト リ メ チ レ ン テ レフ タ レ一 トマルチフ ィ ラ メ ン ト繊維を 2 9本合糸し、 6 8 1 5 d t e x / 1 0 1 5 f のマルチフ ィ ラ メ ン ト糸条を得た。
この糸条を用い、 実施例 1 と同様にしてガッ トを作製した。 得ら れたガッ トは、 破断強度 2 2 5 N、 伸度 3 3 %、 4 9. 0 N時の応 力保持率 7 9 %、 2 0 5. 9 N時の応力保持率 7 8 %、 弾性回復率
8 0 %であった。 残留伸度は糸切れのため測定できなかった。
比較例 1
実施例 1 と同様にして、 8 4 d t e x/ 1 0 5 f の延伸糸を得た 。 得られた原糸の物性は、 強度 3. 0 c N / d t e x、 伸度 3 5 % 、 弾性率 2 2 c N/ d t e x、 弾性回復率 8 6 , U % 3. 2 %で あり、 糸の均質性が劣っていた。 得られた 8 4 d t e x / 1 0 5 f のポ リ ト リ メ チ レンテ レフ タ レ — ト繊維マルチフ ィ ラ メ ン トを 2 0本合糸して、 1 6 8 0 ά t e x / 2 1 0 0 f のマルチフ ィ ラメ ン ト糸条にした。 更にこのマルチフ イ ラメ ン ト糸条 1 1 本を 1 0 O TZmの加撚行い、 1 8 4 8 0 d t e x / 2 3 1 0 0 f の糸条を得た。
得られた糸条を、 実施例 5 と同様にしてガッ 卜を作製した。 得ら れたガッ トは、 破断強度 5 2 5 N、 伸度 3 4 %、 4 9. 0 N時の応 力保持率 8 3 %、 2 0 5. 9 N時の応力保持率 8 1 %、 弾性回復率 8 3 %、 残留伸度 4. 5 %であった。
ガッ 卜の性能及びフ ィ 一リ ングテス トの結果を表 1 に示した。 比較例 1 のガッ トは、 やや均質性が劣っており、 フ ィ ー リ ングテ ス ト結果では、 弾発性、 耐衝撃性は良好であつたが、 ガッ トの切断 が早く 、 耐久性が劣るものであった。
比較例 2
実施例 2 と同様にして 2 8 0 d t e x/ 4 f の延伸糸を得た。 得 られた原糸の物性は、 強度 2. 7 c / d t e x、 伸度 3 9 %、 弹 性率 2 1 c NZ d t e x、 弹性回復率 7 0 % 3. 6 %であり 糸の均質性が劣つていた。
得られた 2 8 0 d t e x / 4 f のポリ ト リ メ チ レ ンテ レフ タ レー トマルチフ ィ ラ メ ン ト繊維を 1 4本合糸して、 3 9 2 0 d t e x /
5 6 f の糸条を得た。 更に、 この糸条 5本をク リ ールに立て引き揃 えて 7 O T/mの加撚を施し、 1 9 6 0 0 d t e x / 2 8 0 f の糸 条を得た。
得られた糸条を、 実施例 2 と同様にしてガッ トを作製した。 得ら れたガッ トは、 破断強度 5 0 1 N、 伸度 3 7 %、 4 9. 0 N時の応 力保持率 6 5 %、 2 0 5. 9 N時の応力保持率 6 6 %、 弾性回復率
6 5 %、 残留伸度 5. 8 %であった。 ガッ トの性能及びフイ ーリ ングテス 卜の結果を表 1 に示した。 比較例 2のガッ トは、 やや均質性が劣っており、 フィ 一リ ングテ ス ト結果では、 弾発性、 耐衝撃性共に劣る ものであった。
比較例 3
定長熱処理を、 5 %弛緩熱処理に変えたこと以外は、 比較例 2 と 同様に行いガッ トを作成した。
得られたガッ 卜は、 破断強度 4 9 8 N、 伸度 4 1 %、 6 8 . 6 N 時の応力保持率 6 2 %、 2 0 5 . 9 N時の応力保持率 6 1 %、 弾性 回復率 5 8 %、 残留伸度 9 . 6 %であった。
ガッ 卜の性能及びフ ィ ーリ ングテス 卜の結果を表 1 に示した。 比較例 3のガッ トは、 やや均質性が劣っており、 フ ィ ー リ ングテ ス ト結果では、 弾発性、 耐衝撃性共に劣る ものであつた。
比較例 4
実施例 3 で得られた 2 2 0 d t e x Z l 0 f のポ リ ト リ メ チレン テ レフ タ レー トマルチフ ィ ラメ ン ト繊維を 2 8本合糸して、 6 1 6 0 d t e x / 2 8 0 f の糸条を得た。 更に、 このマルチフ ィ ラ メ ン ト糸条 4本を 7 O T / mの加撚を施し、 2 4 6 4 0 d t e x / 1 1 2 0 f の糸条を得た。
得られた糸条を、 実施例 3 と同様にしてガッ トを作製した。 得ら れたガッ トは、 破断強度 8 4 0 N、 伸度 3 5 %、 4 9 . 0 N時の応 力保持率 7 8 %、 2 0 5 . 9 N時の応力保持率 7 8 %、 弾性回復率 7 9 %、 残留伸度 6 . 8 %であった。
ガッ 卜の性能及びフ ィ ー リ ングテス トの結果を表 1 に示した。 比較例 4 のガッ トは、 フ ィ ー リ ングテス ト結果では、 弹発性、 耐 衝撃性共に劣るものであった。
比較例 5
実施例 1 で用いたのと同様のポリ 卜 リ メ チレンテレフタ レ一 トチ ップを、 2 6 0 °Cで溶解後、 紡糸し、 一旦 1 5 °Cの水浴で冷却し、 更に 7 0 °Cの湯浴を通してから、 3 つのロールとロール間に設置し た 2 つのヒーターを通して延伸、 リ ラ ッ クス、 熱セッ トを行い巻き 取った。 ロールの周速度は、 紡口に近い順に各々 1 0. 5 m Z m i n、 4 2. 3 mZm i n、 4 2. 3 m/m i nに設定し、 ヒーター は、 紡口に近い順に各々 7 0 °C、 1 0 0 °Cに設定し、 6 6 0 d t e xのモノ フ ィ ラメ ン トを得た。 得られたモノ フ ィ ラ メ ン 卜の物性は 、 強度 2. 6 c NZ d t e X、 伸度 4 5 %、 弾性率 2 2 c NZ d t e x、 弾性回復率は 6 5 %、 U % 3. 5 %であつた。
このモノ フ ィ ラ メ ン ト 2 5本を 1 0 O T/mの加撚を施して、 1 6 5 0 0 d t e xのモノ フ ィ ラメ ン トの糸条を得た。
この糸条を、 実施例 3 と同様にしてガッ 卜を作成した。 得られた ガッ トは、 破断強度 4 0 2 N、 伸度 4 0 %、 4 9. 0 N時の応力保 持率 6 5 %、 2 0 5. 9 N時の応力保持率 6 4 %、 弾性回復率 6 0 %、 残留伸度 7. 6 %であった。
ガッ 卜の性能及びフィ ーリ ングテス 卜の結果を表 1 に示した。 このガッ トは、 フィ ーリ ングテス ト結果では弾発性の劣る もので あった。
比較例 6
ナイ ロ ン 6 6繊維マルチフ ィ ラメ ン ト 9 4 0 d t e xZ l 4 0 f (登録商標、 レオナ ; 旭化成工業社製 ; 強度 6. 2 c N/ d t e X 、 伸度 2 8 %、 弾性率 6 5 c N/ d t e x、 弾性回復率 6 5 を 1 7本引き揃え、 7 0 TZmの加撚を施し、 1 4 2 8 0 d t e xZ 2 3 8 0 f のマルチフ ィ ラメ ン ト糸条を得た。
得られた糸条を、 実施例 1 と同様にしてガッ トを作製した。 得ら れたガッ トは、 破断強度 8 4 3 N、 伸度 2 7 %、 4 9. 0 N時の応 力保持率 6 8 %、 2 0 5. 9 N時の応力保持率 6 6 %、 弾性回復率 6 2 %、 残留伸度 1 . 9 %であった。
得られたガッ 卜の性能及びフ ィ ーリ ングテス 卜の結果を—表 1 に示 し o
比較例 6 のガッ トは、 均質性は良いものの、 フ ィ ー リ ングテス ト 結果では、 初期の弾発性は良いが、 経時的に低下がみられ、 耐衝撃 性も格段に優れたものではなかった。 また、 高湿度条件下ではこの 低下が顕著であつた。
比較例 7
実施例 1 において、 2 3 5 d t e x / 3 5 f のポ リ ト リ メ チ レ ン テレフタ レー トマルチフィ ラメ ン ト繊維の代わりに、 2 3 5 d t e x / 3 5 f のポ リ エチ レンテ レフ タ レー トマルチフ ィ ラ メ ン ト繊維 (旭化成工業 (株) 社製) を用いたこと以外は、 実施例 1 と同様に してガッ トを作成した。 尚、 ポリエチレンテレフタ レー ト繊維マル チフ イ ラメ ン 卜の強伸度、 弾性率、 U%並びに弾性回復率は、 各々 4. l c NZ d t e x、 3 3 9 7 c NZ d t e x、 1 . 5 %並 びに 2 5 %であり、 得られたガッ トは、 破断強度 6 3 8 N、 伸度 3 1 %、 4 9. O N時の応力保持率 5 7 %、 2 0 5. 9 N時の応力保 持率 5 5 %、 弾性回復率 2 4 %、 残留伸度 1 . 2 %であった。
得られたガッ 卜の性能及びフィ 一 リ ングテス 卜の結果を表 1 に示 した。
比較例 7のガッ トは、 弾発性、 耐衝撃性と もに劣る ものであった
表 1
Figure imgf000032_0001
比較例 8
実施例 6で得られたガッ トは、 ラケッ 卜に張設中に、 強力不足の ため糸切れが発生し、 ガッ 卜と しては不適であつた。
実施例 Ί
実施例 3で得られた 2 2 0 d t e x/ 1 0 f のポリ ト リ メチレン テレフタ レー トマルチフィ ラメ ン ト繊維を用い、 このマルチフィ ラ メ ン トを 1 0本合糸し、 1 7 0 °Cで 1 分間定長熱処理を行い、 2 2 0 0 d t e x/ 1 0 0 f のマルチフ ィ ラメ ン ト糸条を得た。 得られ た糸条は、 引張強度 7 9 N、 伸度 3 8 %、 4 9. O N時の応力保持 率 7 8 %、 弾性回復率 8 4 %であった。
このマルチフィ ラメ ン ト糸条の周りに 0. 1 6 mmのスチールの ピアノ線を螺旋状に巻き、 ギターの第 4弦を得た。
得られた弦について、 音程変化の評価 (条件 1 ) 、 調弦性、 弦の 耐久性及び演奏のしゃすさを評価した結果を表 2 に示した。
本発明の弦は、 経時変化、 湿度変化による音程変化が殆どなく 、 調弦性、 耐久性に優れ、 演奏のしゃすい弦であった。
実施例 8
s p / c = l . 0 のポ リ ト リ メ チレンテレフタ レ一 トチップを 用いて、 紡糸温度 2 6 5 °C、 紡糸速度 1 2 0 0 m/分で未延伸糸を 得、 次いで、 ホッ ト ロール温度 6 0 °C、 ホッ トプレー ト温度 1 4 0 °C、 延伸倍率 3倍、 延伸速度 8 0 0 mZ分で延撚して、 2 2 0 d t e x / 2 0 0 f の延伸糸を得た。 延伸糸の強伸度、 弾性率、 U %並 びに弾性回復率は、 各々 3. 5 c NZ d t e x、 3 6 %、 2 1 c N / d t e x、 1 . 6 %並びに 8 6 %であった。
得られた 2 2 0 d t e xZ 2 0 0 f のポリ ト リ メ チレンテレフタ レー トマルチフィ ラメ ン ト繊維を 1 0本合糸して、 1 7 0 ° で 1 分 間定長熱処理を行い、 2 2 0 0 d t e x / 2 0 0 0 f のマルチフィ ラメ ン ト糸条を得た。 得られた糸条は、 引張強度 7 7 N、 伸度 3 6 4 9. O N時の応力保持率 8 0 %、 弾性回復率 8 5 %であった このマルチフィ ラメ ン ト糸条の周りに 0. 1 6 mmのスチールの ピアノ線を螺旋状に巻き、 ギターの第 4弦を得た。
得られた弦について、 音程変化の評価 (条件 1 ) 、 調弦性、 弦の 耐久性及び演奏のしゃすさを評価した結果を表 2 に示した。
本発明の弦は、 経時変化、 湿度変化による音程変化が殆どなく 、 調弦性、 耐久性に優れ、 演奏のしゃすい弦であった。
実施例 9
実施例 2で得られた 3 3 0 d t e x / 6 f のポリ ト リ メチレ ンテ レフ タ レー トマルチフ ィ ラメ ン ト繊維を 7本合糸して、 1 7 0 °Cで 1 分間定長熱処理を行い、 2 3 1 0 d t e / 4 2 f のマルチフ ィ ラメ ン ト糸条を得た。 得られた糸条は、 引張強度 8 2 N、 伸度 3 8 %、 4 9 . O N時の応力保持率 7 5 %、 弾性回復率 7 7 %であった o
このマルチフ ィ ラ メ ン ト糸条の周り に 0 . 1 6 m mのスチールの ピアノ線を螺旋状に巻き、 ギターの第 4弦を得た。
得られた弦について、 音程変化の評価 (条件 1 ) 、 調弦性、 弦の 耐久性及び演奏のしゃすさを評価した結果を表 2 に示した。
本発明の弦は、 経時変化、 湿度変化による音程変化が殆どなく 、 調弦性、 耐久性に優れ、 演奏のしゃすい弦であった。
実施例 1 0
実施例 3で得られた 2 2 0 d t e x / 1 0 f のポ リ ト リ メ チ レ ン テ レフ タ レー トマルチフ ィ ラ メ ン 卜繊維を用い、 このマルチフ イ ラ メ ン トを 1 0本合糸して、 2 2 0 0 d t e x / 1 0 0 f のマルチフ イ ラメ ン ト糸条を得た。 次いでこの糸条 3本を、 ウ レタ ン系接着剤 であるバーノ ッ ク 1 6 — 4 1 6 を 1 0 0部、 架橋剤であるバーノ ッ ク D N— 9 5 0 を 1 0部、 架橋促進剤であるク リ スボンアクセル T を 1 部 (大日本イ ンキ社製) 、 トルエンを 5 0部で調合した液に浸 漬し、 マングルで絞液して、 直ちに 1 0 O T Z mの加撚を施してか ら乾燥を行い、 1 7 0 °Cで 1 分間定長熱処理を行った。
その後、 溶融したポリ ト リ メチレンテレフタ レー ト樹脂で表面被 覆を行って、 6 6 0 0 d t e x / 3 0 0 f の糸条を作成し、 ギター の第 2弦を得た。 この糸条 (弦) は、 引張強度 2 2 3 N、 伸度 3 5 %、 4 9. 0 N時の応力保持率 7 8 %、 弾性回復率 8 0 %であった o
得られた弦について、 音程変化の評価 (条件 3 ) 、 調弦性、 弦の 耐久性及び演奏のしゃすさを評価した結果を表 2 に示した。
本発明の弦は、 経時変化による音程変化が殆どなく、 調弦性、 耐 久性に優れ、 演奏のしゃすい弦であった。
実施例 1 1
η s / c = 1 . 1 のポ リ ト リ メ チ レ ンテ レフ タ レー ト チ ッ プを 用いて、 紡糸温度 2 6 5 °C、 紡糸速度 1 2 0 0 m/分で未延伸糸を 得、 次いで、 ホッ トロール温度 6 0 °C、 ホッ トプレー ト温度 1 4 0 °C、 延伸倍率 3倍、 延伸速度 8 0 0 m /分で延撚して、 2 8 0 d t e x / 1 0 f の延伸糸を得た。 延伸糸の強伸度、 弾性率、 U %並び に弾性回復率は、 各々 3. 4 c N/ d t e x、 3 8 %、 2 0 c N / d t e x、 1 . 8 %並びに 8 4 %であった。
得られた 2 8 0 d t e x/ 1 0 f のポ リ ト リ メ チ レ ンテ レフ タ レ — トマルチフ ィ ラ メ ン ト繊維を 5本合糸して、 1 4 0 0 d t e x Z 5 0 f のマルチフ ィ ラ メ ン ト糸条を得た。 次いでこの糸条 1 0本を 、 ウ レタ ン系接着剤であるバ一ノ ッ ク 1 6 — 4 1 1 を 1 0 0部、 架 橋剤であるバーノ ッ ク D N— 9 5 0 を 1 0部、 架橋促進剤であるク リ スボンアクセル Tを 1 部 (大日本イ ンキ社製) 、 トルエンを 5 0 部で調合した液に浸漬し、 マングルで絞液して、 直ちに 1 0 0 TZ mの加撚を施してから乾燥を行い、 1 7 0 °Cで 1 分間定長熱処理を 行った。 その後、 溶融したナイ ロ ン 6樹脂で表面被覆を行って、 1 4 0 0 0 d t e x / 5 0 0 f の糸条を作成し、 ギターの第 3弦を得 た。 得られた糸条 (弦) は、 引張強度 4 6 6 N、 伸度 3 7 %、 4 9 . O N時の応力保持率 7 5 %、 弾性回復率 7 9 %であった。
得られた弦について、 音程変化の評価 (条件 2 ) 、 調弦性、 弦の 耐久性及び演奏のしゃすさを評価した結果を表 2 に示した。
本発明の弦は、 経時変化による音程変化が殆どなく 、 調弦性、 耐 久性に優れ、 演奏のしゃすい弦であった。
実施例 1 2
実施例 3で得られた 2 2 0 d t e x / 1 0 f のポ リ ト リ メ チ レ ン テ レフ タ レー トマルチフ ィ ラメ ン ト繊維を用い、 このマルチフ イ ラ メ ン トを 1 0本合糸した後、 1 0 0 T/mの加撚を施し、 2 2 0 0 d t e x / 1 0 0 f のマルチフ ィ ラメ ン ト糸条を芯成分繊維と して 、 2 2 0 d t e x/ 1 0 f のナイ ロ ン 6 6繊維マルチフ ィ ラ メ ン ト (旭化成工業 (株) 社製) 2本を螺旋状に巻き付けて、 同時に、 ゥ レタ ン系接着剤であるタイホース A G— 9 4 0 H Vを 1 0 0部、 架 橋剤であるバーノ ッ ク D N— 9 5 0 を 1 0部、 架橋促進剤であるク リ スボンアクセル Tを 1部 (大日本イ ンキ社製) 、 トルエンを 5 0 部で調合した液に浸漬し、 マングルで絞液して、 直ちに 1 0 0 TZ mの加撚を施してから乾燥を行い、 1 7 0 °Cで 1 分間定長熱処理を 行って、 2 6 4 0 d t e x / 1 2 0 f の複合糸条を得た。
得られた複合糸条は、 引張強度 9 5 N、 伸度 3 6 %、 4 9. O N 時の応力保持率 7 8 %、 弾性回復率 7 9 %であった。 更に、 0. 1 6 mmのスチールのピアノ線を螺旋状に巻き、 ギターの第 4弦を得 ^- o
得られた弦について、 音程変化の評価 (条件 1 ) 、 調弦性、 弦の 耐久性及び演奏のしゃすさを評価した結果を表 2 に示した。
本発明の弦は、 経時変化、 湿度変化による音程変化が殆どなく 、 調弦性、 耐久性に優れ、 演奏のしゃすい弦であった。
実施例 1 3
実施例 3で得られた 2 2 0 d t e xZ l 0 f のポリ 卜 リ メチレン テレフタ レー ト繊維マルチフイ ラメ ン トを更に 1 0本合糸して、 2 2 0 0 d t e x / 1 0 0 f のマルチフ ィ ラ メ ン ト糸条を得た。 この マルチフ ィ ラメ ン ト糸条は、 強度、 弾性回復率、 応力保持率が高く 、 耐水性、 柔軟性、 糸の均質性に優れたものであった。
次いで、 このマルチフ ィ ラ メ ン ト糸条 7本を、 ウ レタ ン系接着剤 であるバーノ ッ ク D F — 4 0 7 を 5 0部、 架橋剤であるバーノ ッ ク D N - 9 5 0を 1 0部、 架橋促進剤であるク リ スボンアクセル Tを 1 部 (大日本イ ンキ社製) 、 トルエンを 1 0 0部で調合した液に浸 潰し、 マングルで絞液して、 直ちに 1 0 O TZmの加撚を施してか ら乾燥を行い、 1 7 0 °Cで 1 分間定長熱処理を行った。 その後、 溶 融したナイ ロ ン 6樹脂で表面被覆を行つて、 1 5 4 0 0 d t e xZ 7 0 0 f の糸条を作成し、 この糸条をギターの第 3弦と した。
得られた糸条 (弦) は、 引張強度 5 3 7 N、 伸度 3 9 %、 4 9 . O N時の応力保持率 7 7 % 弾性回復率 8 3 %であった。
得られた弦について、 音程変化の評価 (条件 2 ) 、 調弦性、 弦の 耐久性及び演奏のしゃすさを評価した結果を表 2 に示した。
実施例 1 3の弦は、 経時変化による音程変化は殆どないが、 弦が 太すぎて演奏しにく く、 ギター弦と しては不適であった。
比較例 9
実施例 7 において、 2 2 0 d t e x / 1 0 f のポ リ ト リ メ チ レン テレフ タ レー ト繊維マルチフ イ ラ メ ン トの代わり に、 実施例 1 2 で 用いた 2 2 0 d t e xZ l 0 f のナイ ロ ン 6 6 繊維マルチフ ィ ラ メ ン トを用いたこと以外は、 実施例 7 と同様にしてギターの第 4弦を 得た。 尚、 ナイ ロ ン 6 6繊維マルチフ ィ ラメ ン トの強伸度、 弾性率 、 U %並びに弾性回復率は、 各々 4 . 3 c N/ d t e x、 3 2 3 1 c NZ d t e x、 2 . 1 %並びに 6 5 %であり、 2 2 0 0 d t e xZ l 0 0 f 糸条の引張強度は 9 4 N、 伸度 3 3 %、 4 9 . O N 時の応力保持率 6 5 %、 弾性回復率 6 5 %であった。 得られた弦について、 音程変化の評価 (条件 1 ) 、 調弦性、 弦の 耐久性及び演奏のしゃすさを評価した結果を表 2 に示した。
比較例 9の弦は、 経時変化、 湿度変化による音程変化が大き く 、 調弦性に劣るものであった。
比較例 1 0
実施例 7 において、 2 2 0 d t e x / 1 0 f のポリ ト リ メチ レ ン テ レフ タ レー トマルチフ ィ ラメ ン ト繊維の代わり に、 2 2 0 d t e x / 1 0 f のポ リエチレンテレフタ レー トマルチフィ ラメ ン ト繊維 (旭化成工業 (株) 社製) を用いたこと以外は、 実施例 7 と同様に してギターの第 4弦を得た。 尚、 ポリエチレンテレフタ レー ト繊維 マルチフ ィ ラ メ ン トの強伸度、 弾性率、 U %並びに弾性回復率は、 各々 4. O c NZ d t e x、 3 4 %、 9 7 c N/ d t e x , 1 . 5 %並びに 2 5 %であり、 2 2 0 0 d t e x / 1 0 0 f 糸条の引張強 度は 8 8 N、 伸度 3 4 %、 4 9. O N時の応力保持率 4 9 %, 弾性 回復率 2 4 %であった。
得られた弦について、 音程変化の評価 (条件 1 ) 、 調弦性、 弦の 耐久性及び演奏のしゃすさを評価した結果を表 2 に示した。
比較例 1 0の弦は、 経時変化による音程変化が大き く 、 調弦性に 劣る ものであった。
比較例 1 1
比較例 1 と同様にして、 8 4 d t e x / 1 0 5 f の延伸糸を得た 。 得られた原糸の物性は、 強度 3. 2 c N/ d t e x、 伸度 3 5 % 、 弾性率 2 2 c N/ d t e x、 弾性回復率 8 6 %、 U % 3. 2 %で あり、 糸の均質性が劣っていた。
得られた 8 4 d t e x/ 1 0 5 f のポリ ト リ メチレンテレフタ レ ー ト繊維マルチフィ ラメ ン トを 2 5本合糸して、 2 1 0 0 d t e x / 2 6 2 5 f のマルチフィ ラメ ン ト糸条にした。 得られた糸条は、 引張強度 6 7 N、 伸度 3 4 %、 4 9. O N時の応力保持率 8 0 %、 弾性回復率 8 6 %であった。 この糸条の周りに 0. 1 6 mmのスチ ールのピアノ線を螺旋状に巻き、 ギターの第 4弦を得た。
得られた弦について、 音程変化の評価 (条件 1 ) 、 調弦性、 弦の 耐久性及び演奏のしゃすさを評価した結果を表 2 に示した。
比較例 1 1 の弦は、 経時変化、 湿度変化による音程変化は殆どな いが、 耐久性に劣るものであった。
比較例 1 2
7? s p Z c = l . 0のポ リ ト リ メ チレンテレフタ レー トチップを 用い、 紡糸温度 2 6 5 °C、 紡糸速度 1 0 0 0 mZ分で未延伸糸を得 、 次いで、 ホッ トロール温度 6 0 °C、 ホッ トプレー ト温度 1 4 0 °C 、 延伸倍率 3倍、 延伸速度 6 0 O mZ分で延撚して、 2 3 5 d t e x / 3 f の延伸糸を得た。 延伸糸の強伸度、 弾性率、 U %並びに弾 性回復率は、 各々 3. l c N/ d t e x、 4 0 %、 2 0 c N/ d t e x、 3. 5 %並びに 6 4 %であり、 糸の均質性が劣っていた。 得られた 2 3 5 d t e x / 3 f のポリ ト リ メ チレンテレフタ レ一 ト繊維マルチフ ィ ラメ ン トを 1 0本合糸し、 1 7 0 °Cで 1 分間定長 熱処理を行い、 2 3 5 0 d t e x / 3 0 f のマルチフ ィ ラメ ン ト糸 条を得た。 得られた糸条は、 引張強度 7 2 N、 伸度 4 0 %、 4 9. O N時の応力保持率 6 4 弾性回復率 6 1 %であった。
このマルチフィ ラメ ン ト糸条の周りに 0. 1 6 mmのスチールの ピアノ線を螺旋状に巻き、 ギターの第 4弦を得た。
得られた弦について、 音程変化の評価 (条件 1 ) 、 調弦性、 弦の 耐久性及び演奏のしゃすさを評価した結果を表 2 に示した。
比較例 1 2の弦は、 経時変化による音程変化が大き く、 調弦性に 劣る ものであった。
比較例 1 3 定長熱処理を、 5 %弛緩熱処理に変えたこと以外は、 比較例 1 2 と同様にして 2 3 5 0 d t e x / 3 0 f のマルチフイ ラ ン ト糸条 を得た。 得られた糸条は、 引張強度 7 0 N、 伸度 4 4 %、 4 9 . 0 N時の応力保持率 6 0 %、 弾性回復率 5 7 %であった。
このマルチフィ ラメ ン ト糸条の周りに 0 . 1 6 m mのスチールの ピアノ線を螺旋状に巻き、 ギターの第 4弦を得た。
得られた弦について、 音程変化の評価 (条件 1 ) 、 調弦性、 弦の 耐久性及び演奏のしゃすさを評価した結果を表 2 に示した。
比較例 1 3の弦は、 経時変化による音程変化が大き く 、 調弦性に 劣る ものであった。
比較例 1 4
実施例 3で得られた 2 2 0 d t e x / 1 0 f のポリ ト リ メ チレン テレフタ レ一 ト繊維マルチフイ ラメ ン トを用い、 このマルチフ イ ラ メ ン トを更に 6本合糸し、 1 7 0 °Cで 1 分間定長熱処理を行い、 1 3 2 0 d t e x / 6 0 f のマルチフィ ラメ ン ト糸条を得た。 得られ た糸条は、 引張強度 4 7 N、 伸度 3 8 %、 弾性回復率 8 4 %であり 、 引張強度が低いものであった。 なお、 4 9 . O N時の応力保持率 は、 糸条が切断したため測定できなかった。
このマルチフィ ラメ ン ト糸条の周りに 0 . 1 6 m mのスチールの ピアノ線を螺旋状に巻き、 ギターの第 4弦を得た。
得られた弦を、 ギターの第 4弦と して適正な張力で架張すると、 弦が切断し、 ギター弦と しては不適であった。
比較例 1 5
実施例 1 と同様のポリ ト リ メチレンテレフタ レー トチップを用い て、 2 6 0 °Cで溶解後、 紡糸し、 一旦 1 5 °Cの水浴で冷却し、 更に 7 0 °Cの湯浴を通してから、 3つのロールとロール間に設置した 2 つのヒータ一を通して延伸、 リ ラ ッ クス、 熱セッ トを行い巻き取つ た。 ロールの周速度は、 紡口に近い順に各々 8. 5 mZm i n、 3 1 . 4 m/m i n、 3 1. 4 mZm i nに設定し、 ヒーターは、 紡 口に近い順に各々 7 0 °C、 1 0 0 °Cに設定し、 6 6 0 0 d t e Xの モノ フ ィ ラメ ン トを得た。 得られたモノ フ ィ ラ メ ン トの物性は、 強 度 2. 4 c NZ d t e x、 伸度 4 8 %、 弾性率 2 0 c d t e x 、 4 9. O N時の応力保持率 5 8 %、 弾性回復率 6 0 %、 U % 3. 7 %であった。
このモノ フィ ラメ ン トをギター第 2弦と した。
得られた弦について、 音程変化の評価 (条件 3 ) 、 調弦性、 弦の 耐久性評価及び演奏のしゃすさを評価した結果を表 2 に示した。 比較例 1 5 の弦は、 経時変化による音程変化が大き く 、 調弦性に 劣るものであった。
表 2
音程変化
回復 N (H z ) 演奏の 牛 Ζθ 調弦性 耐久性 しゃす 保持 設定 測定 判 定 さ 周波数 周波数
Q A
关維 ( oQ 587 583 〇 ◎ ◎ ◎ 夫 rtE ^J 0 8Π 587 585 〇 o ◎
77 587 580 〇 o ◎ ◎
7Q
OU i O 986 984 〇 ◎ ◎ o
7Q
^Ι 丄丄 j 784 782 〇 o ◎ o
^mv\丄乙 i Q
0 587 579 〇 o ◎ ◎
QO
关 ΰ也 丄 00 77 784 780 〇 o ◎ X ie;
平乂 リ 0 J f 587 493 X Δ o o
587 523 X X o o 比較例 11 86 80 587 581 〇
比較例 12 61 64 587 554 X X ◎ 〇 比較例 13 57 60 587 543 X X ◎ 〇 比較例 14 84 切断 切断 X 切断 比較例 15 60 58 986 952 X X 〇 〇

Claims

請 求 の 範 囲
1 . 単糸繊度が 1〜 5 6 d t e xのポ リ ト リ メ チ レンテ レフ タ レ — トマルチフ ィ ラメ ン ト繊維を合糸してなる トータル繊度が 2 0 0 0〜 2 2 0 0 0 d t e xの糸条。
2 . 4 9 . 0 Nの応力における応力保持率が 7 0 %以上である請 求項 1 記載の糸条。
3 . 4 9 . 0 Nの応力における応力保持率が 7 0 %以上、 弾性回 復率が 7 0 %以上である請求項 1 記載の糸条。
4 . 単糸繊度が 1〜 5 6 d t e xのポ リ ト リ メ チ レ ンテレフタ レ 一卜マルチフ ィ ラ メ ン ト繊維を合糸してなる トータル繊度が 7 0 0 0 — 2 2 0 0 0 d t e xの糸条からなるガッ ト。
5 . 4 9 . 0 Nの応力における応力保持率が 7 0 %以上である請 求項 4記載のガッ ト。
6 . 4 9 . 0 Nの応力における応力保持率が 7 0 %以上、 弾性回 復率が 7 0 %以上である請求項 4記載のガッ ト。
7. 単糸繊度が 1〜 5 6 d t e xのポリ ト リ メチレンテレフタ レ ー トマルチフ ィ ラ メ ン ト繊維を合糸してなる トータル繊度が 2 0 0 0〜 1 4 0 0 0 d t e xの糸条からなる楽器用弦。
8 . 4 9 . O Nの応力における応力保持率が 7 0 %以上である請 求項 7記載の楽器用弦。
9 . 4 9 . 0 Nの応力における応力保持率が 7 0 %以上、 弾性回 復率が 7 0 %以上である請求項 7記載の楽器用弦。
PCT/JP1999/007361 1998-12-28 1999-12-27 Fil comprenant du terephtalate de polytrimethylene WO2000039374A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/869,278 US6503623B1 (en) 1998-12-28 1999-12-27 Yarn comprising polytrimethylene terephthalate
AU18029/00A AU1802900A (en) 1998-12-28 1999-12-27 Yarn comprising polytrimethylene terephtharate
JP2000591255A JP3194431B2 (ja) 1998-12-28 1999-12-27 ポリトリメチレンテレフタレートからなる糸条
EP99961440A EP1167594A1 (en) 1998-12-28 1999-12-27 Yarn comprising polytrimethylene terephtharate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP37271798 1998-12-28
JP10/372717 1998-12-28
JP14583299 1999-05-26
JP11/145832 1999-05-26

Publications (1)

Publication Number Publication Date
WO2000039374A1 true WO2000039374A1 (fr) 2000-07-06

Family

ID=26476849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/007361 WO2000039374A1 (fr) 1998-12-28 1999-12-27 Fil comprenant du terephtalate de polytrimethylene

Country Status (8)

Country Link
US (1) US6503623B1 (ja)
EP (1) EP1167594A1 (ja)
JP (1) JP3194431B2 (ja)
KR (1) KR100404355B1 (ja)
CN (1) CN1101863C (ja)
AU (1) AU1802900A (ja)
TW (1) TW480296B (ja)
WO (1) WO2000039374A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287688B1 (en) 2000-03-03 2001-09-11 E. I. Du Pont De Nemours And Company Partially oriented poly(trimethylene terephthalate) yarn
JP2002201548A (ja) * 2000-11-06 2002-07-19 Asahi Kasei Corp 表皮材用織物
US6685859B2 (en) 2000-03-03 2004-02-03 E. I. Du Pont De Nemours And Company Processes for making poly(trimethylene terephthalate) yarn
WO2021210292A1 (ja) * 2020-04-16 2021-10-21 朝日インテック株式会社 ラケット用ストリングおよびラケット

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652964B1 (en) * 1997-08-18 2003-11-25 Asahi Kasei Kabushiki Kaisha Polyester fiber and fabric prepared therefrom
WO2001057297A1 (fr) * 2000-02-04 2001-08-09 Asahi Kasei Kabushiki Kaisha Tissu elastique
US6782923B2 (en) * 2001-11-13 2004-08-31 Invista North America, S.A.R.L. Weft-stretch woven fabric with high recovery
US6923925B2 (en) 2002-06-27 2005-08-02 E. I. Du Pont De Nemours And Company Process of making poly (trimethylene dicarboxylate) fibers
US6921803B2 (en) 2002-07-11 2005-07-26 E.I. Du Pont De Nemours And Company Poly(trimethylene terephthalate) fibers, their manufacture and use
US20060063452A1 (en) * 2003-06-27 2006-03-23 Moore Steven C Adhesive coated sewing thread
US20040265585A1 (en) * 2003-06-27 2004-12-30 Moore Steven Clay Adhesive coated sewing thread
KR20060067928A (ko) * 2003-07-14 2006-06-20 후지 케미칼 가부시키가이샤 인공 모발 및 그 제조방법
US7217876B2 (en) * 2003-11-14 2007-05-15 Gore Enterprise Holdings, Inc. Strings for musical instruments
US20050272336A1 (en) * 2004-06-04 2005-12-08 Chang Jing C Polymer compositions with antimicrobial properties
US20060174745A1 (en) * 2005-02-08 2006-08-10 D Addario James Method for coating wire for a musical instrument string, and coated string
US7666501B2 (en) 2005-12-07 2010-02-23 E. I. Du Pont De Nemours And Company Poly(trimethylene terephthalate)/poly(alpha-hydroxy acid) bi-constituent filaments
CN101512053B (zh) * 2006-09-14 2012-10-10 东丽株式会社 聚酯纤维、编织物、车辆座椅及聚酯纤维的制造方法
DE102006053406B3 (de) * 2006-11-10 2008-06-26 Gustav Pirazzi & Comp. Kg Musiksaite
US8729399B2 (en) * 2010-05-31 2014-05-20 Hitachi Metals, Ltd. Flat cable and method for fabricating the same
KR101253085B1 (ko) * 2011-04-08 2013-04-10 주식회사 덕우실업 초박형직물제조용 폴리에스테르 저수축필라멘트사의 제조방법
EP3132905A4 (en) * 2014-04-17 2017-04-26 Asahi Kasei Kabushiki Kaisha Short rubber reinforcement fiber, rubber composition containing said short fiber, and power transmission belt
US9845555B1 (en) * 2015-08-11 2017-12-19 Parkdale, Incorporated Stretch spun yarn and yarn spinning method
IT201700036730A1 (it) * 2017-04-04 2018-10-04 Mimmo Peruffo Uso di un polimero termoplastico per la realizzazione di corde per strumenti musicali e attrezzi sportivi

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104216A (ja) * 1981-12-14 1983-06-21 Teijin Ltd ポリトリメチレンテレフタレ−ト繊維の製造法
EP0547553A1 (en) * 1991-12-18 1993-06-23 Hoechst Celanese Corporation Poly(1,3-propylene terephthalate)
WO1996000808A1 (en) * 1994-06-30 1996-01-11 E.I. Du Pont De Nemours And Company Process for making poly(trimethylene terephthalate) bulked continuous filaments, the filaments thereof and carpets made therefrom
JPH11229276A (ja) * 1998-02-18 1999-08-24 Asahi Chem Ind Co Ltd 加工性の優れたポリエステル繊維

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3204399B2 (ja) 1997-09-03 2001-09-04 旭化成株式会社 ポリエステル繊維及びそれを用いた布帛
JPH11172526A (ja) * 1997-11-26 1999-06-29 Asahi Chem Ind Co Ltd 低熱応力ポリエステル繊維及びその紡糸方法
US6284370B1 (en) * 1997-11-26 2001-09-04 Asahi Kasei Kabushiki Kaisha Polyester fiber with excellent processability and process for producing the same
US6287688B1 (en) * 2000-03-03 2001-09-11 E. I. Du Pont De Nemours And Company Partially oriented poly(trimethylene terephthalate) yarn

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104216A (ja) * 1981-12-14 1983-06-21 Teijin Ltd ポリトリメチレンテレフタレ−ト繊維の製造法
EP0547553A1 (en) * 1991-12-18 1993-06-23 Hoechst Celanese Corporation Poly(1,3-propylene terephthalate)
WO1996000808A1 (en) * 1994-06-30 1996-01-11 E.I. Du Pont De Nemours And Company Process for making poly(trimethylene terephthalate) bulked continuous filaments, the filaments thereof and carpets made therefrom
JPH11229276A (ja) * 1998-02-18 1999-08-24 Asahi Chem Ind Co Ltd 加工性の優れたポリエステル繊維

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287688B1 (en) 2000-03-03 2001-09-11 E. I. Du Pont De Nemours And Company Partially oriented poly(trimethylene terephthalate) yarn
US6333106B2 (en) 2000-03-03 2001-12-25 E. I. Du Pont De Nemours And Company Draw textured poly(trimethylene terephthalate) yarn
US6672047B2 (en) 2000-03-03 2004-01-06 E. I. Du Pont De Nemours And Company Processes of preparing partially oriented and draw textured poly(trimethylene terephthalate) yarns
US6685859B2 (en) 2000-03-03 2004-02-03 E. I. Du Pont De Nemours And Company Processes for making poly(trimethylene terephthalate) yarn
US6998079B2 (en) 2000-03-03 2006-02-14 E. I. Du Pont De Nemours And Company Process of making partially oriented poly(trimethylene terephthalate) yarn
JP2002201548A (ja) * 2000-11-06 2002-07-19 Asahi Kasei Corp 表皮材用織物
WO2021210292A1 (ja) * 2020-04-16 2021-10-21 朝日インテック株式会社 ラケット用ストリングおよびラケット

Also Published As

Publication number Publication date
CN1101863C (zh) 2003-02-19
AU1802900A (en) 2000-07-31
KR20010082771A (ko) 2001-08-30
KR100404355B1 (ko) 2003-11-05
TW480296B (en) 2002-03-21
EP1167594A1 (en) 2002-01-02
CN1332814A (zh) 2002-01-23
JP3194431B2 (ja) 2001-07-30
US6503623B1 (en) 2003-01-07

Similar Documents

Publication Publication Date Title
WO2000039374A1 (fr) Fil comprenant du terephtalate de polytrimethylene
CN104918665B (zh) 球拍用弦线及其制造方法
US4449353A (en) Gut string for sports rackets
US4586708A (en) Sports racket strings of a synthetic thermoplastic polymeric material
US6978593B2 (en) Composite synthetic string for tennis racket
JP2003154039A (ja) ストリング
US11293119B2 (en) Musical instrument string and sports racket string, and method for producing said string
JPH03205070A (ja) ガットの製造法
JP2826055B2 (ja) ラケット用ガット及びその製造方法
JP5228296B2 (ja) ガット
US20110136601A1 (en) Racket string and method for producing the same and racket strung with the same
JPH0938245A (ja) 合成ストリング及びその製造方法
JP4060089B2 (ja) ポリエステルモノフィラメント
JPS6336365Y2 (ja)
JP4867205B2 (ja) ストリングス
JP2000262653A (ja) ストリング
JP2003129332A (ja) ポリエステルモノフィラメント
JP2006325717A (ja) ストリングス
JPH0987940A (ja) 複合糸
JP3318247B2 (ja) ラケット用ストリング
JPS58118776A (ja) ガツトの製造方法
JPH07148285A (ja) ラケット用ガット
JPH01239182A (ja) 複合紐状品
JPH07275403A (ja) テニスラケット用ガット
JPH11107035A (ja) ポリアミドモノフィラメント

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99815190.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2000 18029

Country of ref document: AU

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999961440

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020017008180

Country of ref document: KR

Ref document number: 09869278

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020017008180

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1999961440

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017008180

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999961440

Country of ref document: EP