WO2000037532A2 - Verfahren zur herstellung von hochverzweigten polyolen auf der basis von glycidol - Google Patents
Verfahren zur herstellung von hochverzweigten polyolen auf der basis von glycidol Download PDFInfo
- Publication number
- WO2000037532A2 WO2000037532A2 PCT/EP1999/009773 EP9909773W WO0037532A2 WO 2000037532 A2 WO2000037532 A2 WO 2000037532A2 EP 9909773 W EP9909773 W EP 9909773W WO 0037532 A2 WO0037532 A2 WO 0037532A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyols
- glycidol
- glycidyl ether
- highly branched
- catalysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/26—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
- C08G65/2642—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
- C08G65/2645—Metals or compounds thereof, e.g. salts
- C08G65/2648—Alkali metals or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/04—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
- C08G65/22—Cyclic ethers having at least one atom other than carbon and hydrogen outside the ring
Definitions
- the invention relates to a process for the preparation of highly branched polyols by polymerizing glycidol in the presence of a hydrogen-active starter compound under basic catalysis.
- Branched glycidol-based polyols are usually made by combining glycidol with a compound containing hydroxyl groups, e.g. Glycerin, in the presence of inorganic (JP-A 61-43627) or organic acids (JP-A 58-198429) is reacted as catalysts.
- the polymers thus obtained usually have a low degree of polymerization.
- the polymerization of glycidol to form higher molecular weight products which have a narrow molecular weight distribution and complete incorporation of initiators cannot be achieved due to the competing cyclization reactions by cationic catalysis (Macromolecules, 27 (1994) 320; Macromol. Chem. Phys. 196 (1995 ) 1963).
- Dilution solvent used is distilled off continuously. More defined In this context, structure means that each molecule has the initiator (hydrogen-active starter compound) as the core unit and the degree of polymerization can be controlled via the monomer / initiator ratio.
- the invention relates to a process for the preparation of highly branched, highly branched glycidol-based polyols, which is characterized in that a solution which contains glycidol in dilute form is added to a hydrogen-active starter compound under basic catalysis, the solvent used for the monomer dilution being continuously distilled off becomes.
- hydrogen-active starter compounds examples include: methanol, ethanol, butanol, phenol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, 1, 2-propylene glycol, dipropylene glycol, polypropylene glycol, 1, 4-butanediol, hexamethylene glycol, bisphenol A, trimethylol propane, glycerol, pentaerythritol, sorbitol , Cane sugar, degraded starch, water, methylamine, ethylamine, propylamine, butylamine, stearylamine, aniline, benzylamine, o- and p-toluidine, ⁇ , ⁇ -naphthylamine, ammonia, ethylenediamine,
- functionalizable starter groups such as allyl glycerol, 10-undecenylamine, dibenzylamine, allyl alcohol, 10 -Undecenol.
- the starter compound is first partially deprotonated by a suitable reagent, for example by alkali or alkaline earth limetals, their hydrides, alkoxides, hydroxides or alkyls.
- a suitable reagent for example by alkali or alkaline earth limetals, their hydrides, alkoxides, hydroxides or alkyls.
- Alkali or alkaline earth metal hydroxides or alkoxides are preferably used, such as, for example, potassium hydroxide or methoxide.
- Any resulting reactive, volatile reaction products eg water, alcohol
- Degrees of deprotonation are usually 0.1% to 90% and preferably
- the basic initiator system prepared in this way, preferably under inert gas (for example N 2 , Ar), in an inert solvent I (0.1-90% by weight, based on the amount of the end product) dissolved or dispersed with a boiling temperature at least 5 ° C above the reaction temperature.
- Solvent I can be an aliphatic, cycloaliphatic or aromatic hydrocarbon (eg decalin, toluene, xylene) or an ether (eg glyme, diglyme, triglyme), preferably diglyme, and mixtures of these.
- the monomer is added in a solution which usually contains 80 to 0.1% by weight and preferably 50 to 1% by weight of glycidol in an inert solvent II.
- Solvent II can be an aliphatic, cycloaliphatic or aromatic hydrocarbon (eg hexane, cyclohexane, benzene) or an ether (eg diethyl ether, THF), preferably THF, or a mixture of these, the boiling temperature being at least 1 ° C. below the reaction temperature.
- the solvent II can also contain other additives such as stabilizers and up to 10% by weight, based on the solvent, of further comonomers, such as, for example, propylene oxide, ethylene oxide, butylene oxide, vinyloxirane, allyl glycidyl ether, isopropyl glycidyl ether and phenylglycidyl ether.
- Solvent II must be a solvent for glycidol, but not necessarily for the polyol.
- the monomer solution is slowly metered into the mixture of initiator and solvent I, preferably under an inert gas (for example N 2 , Ar).
- the metering rate is selected so that good temperature control is ensured under the given reaction conditions of reaction temperature, glycidol concentration, hydroxyl and catalyst concentration.
- solvent II is continuously distilled off from the reaction mixture.
- the reaction temperatures are usually 40 ° C to 180 ° C, preferably 80 ° C to 140 ° C.
- the reaction is preferably carried out under normal pressure or reduced pressure.
- the reaction mixture may undergo heterogenization in the course of the reaction, but this does not affect the reaction procedure as long as no precipitation occurs.
- all techniques known from the processing of polyether polyols for polyurethane applications can be used to process the alkaline polymer (HR
- the polyol is preferably worked up by neutralization.
- the alkaline polymer can first be dissolved in a suitable solvent (for example methanol)
- the neutralization is preferably carried out by acidification with dilute mineral acid (for example sulfuric acid) followed by filtration or treatment with adsorbent (for example magnesium silicate), particularly preferably by filtration over acidic ion exchangers. Further purification by precipitation (for example from methanol in acetone) can follow Finally, the product is freed from solvent residues in a vacuum at temperatures of 20 to 200 ° C.
- the polymerization can be carried out in a reactor system which consists of three essential components: a heatable reactor vessel with mechanical stirring unit, a metering unit and a system for solvent separation.
- the polyols represented in this way which are the subject of the application, have degrees of polymerization (based on an active hydrogen atom of the initiator) of 1 to 300, preferably 5 to 80.
- the molecular weight of the polyols according to the invention can be according to the anionic process by the monomer / initiator ratio to be controlled. The determination of the molar mass can e.g. done by vapor pressure osmosis.
- the polydispersities are less than 1.7 and preferably less than 1.5. You will be informed e.g. GPC calibrated with polypropylene glycol standards.
- the polyols contain the initiator used as the core unit, which can preferably be detected using MALDI-TOF mass spectrometry.
- Products are preferably colorless, but can also have a slightly yellowish color his.
- the proportion of branched units in the highly branched polyols can be determined from the intensities of the signals in the 13 C-NMR spectra.
- the triple substituted carbon of the branched units shows a resonance between 79.5 ppm and 80.5 ppm (measured in d 4 -methanol, inverse-gated technique).
- the proportion of branched units is three times the value of this integral value in relation to the sum of the integrals of all signals of all units (branched, linear and terminal).
- the polyols produced by the process described have 10 to 33 mol%, preferably 20 to 33 mol%, of branched units.
- a perfect dendrimer has 50 mol% branched and 50 mol%> terminal units.
- a linear polymer has no branched units, but only linear units and, depending on the initiator, one or two terminal units. With 20 to 33 mol% of branched units, the polyols described can thus be described as highly branched (see, for example, Acta Polymer., 48 (1997) 30; Acta Polymer., 48 (1997) 298).
- the highly branched polyols produced in this way are versatile, highly functional polymeric intermediates.
- the wide range of potential initiator molecules and the targeted control of the degree of polymerization (and thus the degree of functionalization) open up a wide range of applications, e.g. the use as a crosslinker and additive in polyurethane formulations, biocompatible polymers, lacquers, adhesives and polymer blends, as support materials for catalysts and active ingredients in medicine, biochemistry and synthesis.
- derivatizations can be carried out through targeted implementation of the functional groups.
- the hydroxyl groups can be esterified, etherified, aminated, alkylated, urethanized, halogenated, sulfonated, sulfated and oxidized, for example, by reactions known per se.
- the terminal 1, 2-diol groups can, for example, be acetalized or ketalized or subjected to diol cleavage. Double bonds which are introduced into the polyol, for example via the starter compound, can also be derivatized in a suitable form, for example by hydroformulation or radical or electrophilic addition.
- the polyols derivatized in this way in turn open up a multitude of possible uses, such as the use as crosslinking agents and additives in polyurethane formulations, biocompatible polymers, paints, adhesives and polymer blends, as support materials for catalysts and active ingredients in medicine, biochemistry and synthesis, as reaction compartments for the catalysis and production of nanoparticles.
- the highly branched polyols prepared according to the invention can be combined with a second (and optionally further) epoxy monomer such as e.g. Propylene oxide, ethylene oxide, butylene oxide, vinyl oxirane, glycidol, allyl glycidyl ether are converted into block copolymers. Ethylene oxide, propylene oxide, butylene oxide, vinyloxirane and mixtures thereof are preferably used.
- the highly branched polyol is reacted with the epoxy monomer / the epoxy monomer mixture in the same reactor vessel under basic catalysis without intermediate work-up, if appropriate using a solvent.
- Deprotonation of the highly branched polyol with the aid of the basic reagents described above can also be carried out. Degrees of deprotonation are usually 0.1% to 90% and preferably 5% to 20%, based on an OH group.
- the reaction temperatures are between -40 ° C and 200 ° C, preferably between 20 ° C and 180 ° C, particularly preferably between 60 ° C and 160 ° C.
- the reaction can be carried out at total pressures between 0.001 and 20 bar.
- the block copolymers are preferably worked up using the techniques already described above for working up polyether polyols.
- the block copolymers represented in this way have degrees of polymerization (based on an OH group of the highly branched polyol used) of 1 to 70, preferably 1 to 10.
- the molecular weight can be controlled according to the anionic process by the monomer / initiator ratio.
- the molecular weight can be determined, for example, by vapor pressure osmosis.
- the polydispersities are less than 2.0 and preferably less than 1.5. They are determined using a GPC calibrated, for example, with polypropylene glycol standards.
- the products are preferably colorless oils, but they can also have a slightly yellowish color.
- the polymers have OH numbers (mg KOH equivalents per g polymer) between 750 and 14, preferably between 400 and 30.
- the highly branched block copolymers thus produced are versatile, highly functional polymeric intermediates.
- the wide range of block copolymer compositions opens up a wide range of possible applications, such as use as crosslinking agents and additives in polyethane formulations, biocompatible polymers, paints, adhesives and polymer blends, as carrier materials for catalysts and active ingredients in medicine, biochemistry and synthesis, and as reaction compartments for catalysis and production of nanoparticles, the reaction compartment being understood as a spatially limited reaction space in the nanometer range.
- reaction mixture is dissolved in 150 mL of methanol and neutralized by filtration through an acidic ion exchanger (Amberlite ® IR-120).
- the filtrate is precipitated in 1600 ml of acetone and the polymer obtained is dried at 80 ° C. for 12 hours in vacuo.
- 33 g of a colorless, highly viscous liquid with a molecular weight of 3,700 (degree of polymerization 16 per active hydrogen) and a polydispersity of 1.15 are obtained. All molecules contain the initiator as the core unit and have 26% branched units.
- Example 1 In the procedure of Example 1, 6.0 g of polyethylene glycol with a molecular weight of 600 are reacted with 0.25 mL of potassium methoxide solution (25% in methanol) at 100 ° C., excess methanol is removed in vacuo and the residue in 10 mL dry diglyme dissolved. At a bath temperature of 140 ° C, 14 g glycidol in 100 mL dry THF are metered in at a rate of 5 mL per hour. The polymer is isolated as in Example 1. 19 g of a colorless, highly viscous liquid with a molecular weight of 2,000 (degree of polymerization 9.5 per active hydrogen) and a polydispersity of 1.13 are obtained. All molecules contain the initiator as the core unit and 26% branched units. Example 3 (stearylamine as initiator)
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyethers (AREA)
- Polyurethanes Or Polyureas (AREA)
- Epoxy Compounds (AREA)
- Adhesives Or Adhesive Processes (AREA)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AT99968792T ATE274016T1 (de) | 1998-12-22 | 1999-12-10 | Verfahren zur herstellung von hochverzweigten polyolen auf der basis von glycidol |
| JP2000589598A JP2002533495A (ja) | 1998-12-22 | 1999-12-10 | グリシドールに基づく高分岐ポリオールの製造方法 |
| CA002355727A CA2355727A1 (en) | 1998-12-22 | 1999-12-10 | Method for producing highly branched glycidol-based polyols |
| EP99968792A EP1141083B1 (de) | 1998-12-22 | 1999-12-10 | Verfahren zur herstellung von hochverzweigten polyolen auf der basis von glycidol |
| DE59910309T DE59910309D1 (de) | 1998-12-22 | 1999-12-10 | Verfahren zur herstellung von hochverzweigten polyolen auf der basis von glycidol |
| AU26607/00A AU2660700A (en) | 1998-12-22 | 1999-12-10 | Method for producing highly branched glycidol-based polyols |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19859300.7 | 1998-12-22 | ||
| DE19859300 | 1998-12-22 | ||
| DE19947631A DE19947631A1 (de) | 1998-12-22 | 1999-10-04 | Verfahren zur Herstellung von hochverzweigten Polyolen auf der Basis von Glycidol |
| DE19947631.4 | 1999-10-04 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2000037532A2 true WO2000037532A2 (de) | 2000-06-29 |
| WO2000037532A3 WO2000037532A3 (de) | 2000-10-12 |
Family
ID=26050935
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP1999/009773 Ceased WO2000037532A2 (de) | 1998-12-22 | 1999-12-10 | Verfahren zur herstellung von hochverzweigten polyolen auf der basis von glycidol |
Country Status (8)
| Country | Link |
|---|---|
| EP (1) | EP1141083B1 (enExample) |
| JP (1) | JP2002533495A (enExample) |
| AT (1) | ATE274016T1 (enExample) |
| AU (1) | AU2660700A (enExample) |
| CA (1) | CA2355727A1 (enExample) |
| ES (1) | ES2228168T3 (enExample) |
| TW (1) | TW498087B (enExample) |
| WO (1) | WO2000037532A2 (enExample) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007037469A1 (en) | 2005-09-29 | 2007-04-05 | Nippon Shokubai Co., Ltd. | Polyalkylene glycol monomer, polyalkylene glycol polymer containing the same, and application thereof |
| WO2010133381A1 (en) | 2009-05-18 | 2010-11-25 | Agfa Graphics Nv | Polymerizable polymeric photoinitiators and radiation curable compositions |
| EP2264082A1 (de) * | 2009-06-19 | 2010-12-22 | BYK-Chemie GmbH | Terminal ungesättigte, glycidol-basierte Markomonomere, daraus erhältliche Polymere, Herstellung und Verwendung |
| WO2011072829A1 (de) * | 2009-12-18 | 2011-06-23 | JOHANNES GUTENBERG-UNIVERSITÄT MAINZ vertreten durch den Präsidenten | Funktionelle verzweigte polyether copolymere sowie verfahren zu ihrer herstellung |
| EP2524938A1 (de) | 2011-05-18 | 2012-11-21 | Evonik Goldschmidt GmbH | Alkoxylierungsprodukte und Verfahren zu ihrer Herstellung mittels DMC-Katalysatoren |
| US10377914B2 (en) | 2013-08-22 | 2019-08-13 | Basf Se | Method for producing emulsion polymerisates |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007503514A (ja) * | 2003-08-26 | 2007-02-22 | スミスクライン・ビーチャム・コーポレイション | グリセロールおよびポリエチレングリコールのヘテロ官能性コポリマー、そのコンジュゲートおよび組成物 |
| CN101448873B (zh) * | 2006-05-19 | 2012-07-18 | 陶氏康宁东丽株式会社 | 聚醚类及其制造方法 |
| DE102008002704A1 (de) | 2007-07-02 | 2009-01-08 | Basf Se | Verfahren zur Verbesserung der Haftung von Verbundstoffen, bestehend aus geschäumten Polyurethan und massiven Materialien |
| JP2009249500A (ja) * | 2008-04-07 | 2009-10-29 | Hakuto Co Ltd | 重合性高分岐ポリマー及びその製造方法 |
| JP2009249605A (ja) * | 2008-04-10 | 2009-10-29 | Hakuto Co Ltd | 光重合性組成物 |
| JP5683115B2 (ja) * | 2009-01-29 | 2015-03-11 | 花王株式会社 | ポリグリセリルエーテル誘導体の製造方法 |
| KR20120047921A (ko) * | 2009-06-30 | 2012-05-14 | 바스프 에스이 | 과분지형 폴리올의 포스핀-개시 제조 방법 |
| WO2011141266A1 (de) | 2010-04-15 | 2011-11-17 | Basf Se | Verfahren zur herstellung von flammgeschützten polyurethan-schaumstoffen |
| JP6603549B2 (ja) * | 2015-11-05 | 2019-11-06 | 株式会社ダイセル | ポリグリセリン誘導体、及びこれを含有する皮膚外用剤 |
| PL3523382T3 (pl) | 2016-10-07 | 2021-05-31 | Basf Se | Sposób wytwarzania wodnych dyspersji |
| KR102241144B1 (ko) * | 2019-04-30 | 2021-04-15 | 부산대학교 산학협력단 | 이중 금속 시안화물 촉매를 이용한 초분지 폴리글리시돌 제조 방법 및 이에 의해 제조된 초분지 폴리글리시돌 |
| EP3828154A1 (de) * | 2019-11-29 | 2021-06-02 | Sika Technology Ag | Verzweigte copolymere als zusatzmittel zur viskositätsreduktion mineralischer |
| TW202416933A (zh) * | 2022-09-05 | 2024-05-01 | 日商資生堂股份有限公司 | 化妝料基劑 |
| WO2024142846A1 (ja) * | 2022-12-28 | 2024-07-04 | 株式会社 資生堂 | 化粧料組成物 |
| WO2024142844A1 (ja) * | 2022-12-28 | 2024-07-04 | 株式会社 資生堂 | 洗浄料組成物 |
| WO2024142843A1 (ja) * | 2022-12-28 | 2024-07-04 | 株式会社 資生堂 | 化粧料組成物 |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3233251A1 (de) * | 1982-09-08 | 1984-03-08 | Basf Ag, 6700 Ludwigshafen | Asymmetrische polyether-polyole, verfahren zu deren herstellung und deren verwendung fuer polyurethan-kunststoffe |
| EP0116978A3 (en) * | 1983-02-22 | 1986-04-30 | Union Carbide Corporation | Connected branch copolymers and method for their production |
| JPH09235246A (ja) * | 1996-02-29 | 1997-09-09 | Lion Corp | 分岐状ポリグリセリン鎖を有するポリグリセリン化合物の製造方法 |
-
1999
- 1999-12-10 AU AU26607/00A patent/AU2660700A/en not_active Abandoned
- 1999-12-10 AT AT99968792T patent/ATE274016T1/de not_active IP Right Cessation
- 1999-12-10 ES ES99968792T patent/ES2228168T3/es not_active Expired - Lifetime
- 1999-12-10 WO PCT/EP1999/009773 patent/WO2000037532A2/de not_active Ceased
- 1999-12-10 CA CA002355727A patent/CA2355727A1/en not_active Abandoned
- 1999-12-10 JP JP2000589598A patent/JP2002533495A/ja not_active Withdrawn
- 1999-12-10 EP EP99968792A patent/EP1141083B1/de not_active Expired - Lifetime
- 1999-12-20 TW TW088122375A patent/TW498087B/zh not_active IP Right Cessation
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8916678B2 (en) | 2005-09-29 | 2014-12-23 | Nippon Shokubai Co., Ltd. | Polyalkylene glycol monomer, polyalkylene glycol polymer containing the same, and application thereof |
| EP1928930A4 (en) * | 2005-09-29 | 2010-03-17 | Nippon Catalytic Chem Ind | POLYALKYLENE GLYCOL MONOMER, POLYALKYLENE GLYCOL POLYMER CONTAINING THE SAME AND APPLICATION THEREOF |
| EP3613791A1 (en) * | 2005-09-29 | 2020-02-26 | Nippon Shokubai Co., Ltd. | Polyalkylene glycol monomer, polyalkylene glycol polymer containing the same, and application thereof |
| WO2007037469A1 (en) | 2005-09-29 | 2007-04-05 | Nippon Shokubai Co., Ltd. | Polyalkylene glycol monomer, polyalkylene glycol polymer containing the same, and application thereof |
| WO2010133381A1 (en) | 2009-05-18 | 2010-11-25 | Agfa Graphics Nv | Polymerizable polymeric photoinitiators and radiation curable compositions |
| US8987410B2 (en) | 2009-06-19 | 2015-03-24 | Byk-Chemie Gmbh | Terminal unsaturated, glycidol-based macromonomers, polymers obtainable therefrom, preparation and use |
| WO2010145761A1 (de) * | 2009-06-19 | 2010-12-23 | Byk-Chemie Gmbh | Terminal ungesättigte, glycidol-basierte makromonomere, daraus erhältliche polymere, herstellung und verwendung |
| EP2264082A1 (de) * | 2009-06-19 | 2010-12-22 | BYK-Chemie GmbH | Terminal ungesättigte, glycidol-basierte Markomonomere, daraus erhältliche Polymere, Herstellung und Verwendung |
| WO2011072829A1 (de) * | 2009-12-18 | 2011-06-23 | JOHANNES GUTENBERG-UNIVERSITÄT MAINZ vertreten durch den Präsidenten | Funktionelle verzweigte polyether copolymere sowie verfahren zu ihrer herstellung |
| EP2524938A1 (de) | 2011-05-18 | 2012-11-21 | Evonik Goldschmidt GmbH | Alkoxylierungsprodukte und Verfahren zu ihrer Herstellung mittels DMC-Katalysatoren |
| DE102011076019A1 (de) | 2011-05-18 | 2012-11-22 | Evonik Goldschmidt Gmbh | Alkoxylierungsprodukte und Verfahren zu ihrer Herstellung mittels DMC-Katalysatoren |
| US9068044B2 (en) | 2011-05-18 | 2015-06-30 | Evonik Degussa Gmbh | Alkoxylation products and process for preparing them by means of DMC catalysts |
| US10377914B2 (en) | 2013-08-22 | 2019-08-13 | Basf Se | Method for producing emulsion polymerisates |
Also Published As
| Publication number | Publication date |
|---|---|
| ES2228168T3 (es) | 2005-04-01 |
| TW498087B (en) | 2002-08-11 |
| AU2660700A (en) | 2000-07-12 |
| ATE274016T1 (de) | 2004-09-15 |
| WO2000037532A3 (de) | 2000-10-12 |
| JP2002533495A (ja) | 2002-10-08 |
| EP1141083B1 (de) | 2004-08-18 |
| CA2355727A1 (en) | 2000-06-29 |
| EP1141083A2 (de) | 2001-10-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1141083B1 (de) | Verfahren zur herstellung von hochverzweigten polyolen auf der basis von glycidol | |
| DE19947631A1 (de) | Verfahren zur Herstellung von hochverzweigten Polyolen auf der Basis von Glycidol | |
| US6822068B2 (en) | Method for producing highly-branched glycidol-based polyols | |
| EP2093244B1 (de) | Neue Alkoxysilylgruppen tragende Polyetheralkohole durch Alkoxylierung epoxidfunktioneller Alkoxysilane an Doppelmetallcyanid (DMC)-Katalysatoren, sowie Verfahren zu deren Herstellung | |
| DE69411587T2 (de) | Endgruppen funktionalisierter isoprenpolymere mit geringer viskosität | |
| DE69617843T2 (de) | Katalysatoren für die Polymerisierung von Alkylenoxiden | |
| EP4065625B1 (de) | Polyethermodifizierte polybutadiene und verfahren zu deren herstellung | |
| DE2439200C2 (de) | Verfahren zur Herstellung von Epihalogenhydrinpolymerisaten mit endständigen Hydroxylgruppen | |
| EP0428003B1 (de) | Verfahren zur Herstellung von Polyetherglykolen | |
| DE10211664A1 (de) | Verfahren zur Herstellung hochverzweigter Polymere | |
| DE69514677T2 (de) | Alkoxysilylblockierungsmittel zur herstellung von am kettenende fuktionalisierten polymeren | |
| DE102011109614A1 (de) | Verfahren zur Herstellung von verzweigten Polyethercarbonaten und ihre Verwendung | |
| EP2245082A1 (de) | Hochfunktionelle polyetherole sowie deren herstellung und verwendung | |
| DE69403784T2 (de) | Butadienpolymere mit endständigen silylgruppen | |
| DE69424798T2 (de) | Verkappung von anionischen polymeren mit oxetanen | |
| DE69636776T2 (de) | Verfahren zur herstellung von etherderivaten | |
| DE10121807A1 (de) | Verfahren zur Herstellung von Polyetherpolyolen | |
| DE69509360T2 (de) | Polyetherglyole und alkohole aus 3,4-epoxy-1-ruten | |
| DE69505270T2 (de) | Polyätherglycole und alkohole aus 3,4-epoxy-1-burne, tetrahydrofuran und ein initiator | |
| EP0038009B1 (de) | Verfahren zur Herstellung von hydroxylgruppenhaltigen Polymeren | |
| DE69312006T2 (de) | Harzzusammensetzung für einen wässrigen Anstrich | |
| DE69509361T2 (de) | Polyetherglyole und alkohole aus 3,4-epoxy-1-butenen | |
| DE3410069A1 (de) | Verfahren zur herstellung von hydroxylgruppen enthaltenden polymeren | |
| EP4314111A1 (de) | Neue polyether auf basis von 2,3-epoxybutan und verfahren zu deren herstellung | |
| EP1576030B1 (de) | Verfahren zur herstellung von tetrahydrofuran-copolymeren |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1999968792 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 09868557 Country of ref document: US |
|
| ENP | Entry into the national phase |
Ref document number: 2355727 Country of ref document: CA Ref country code: CA Ref document number: 2355727 Kind code of ref document: A Format of ref document f/p: F Ref country code: JP Ref document number: 2000 589598 Kind code of ref document: A Format of ref document f/p: F |
|
| WWP | Wipo information: published in national office |
Ref document number: 1999968792 Country of ref document: EP |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| WWG | Wipo information: grant in national office |
Ref document number: 1999968792 Country of ref document: EP |