WO2000035564A1 - Systeme de regulation de gaz d'echappement pour moteurs a combustion interne, procede de regulation de gaz d'echappement et catalyseur de regulation de gaz d'echappement - Google Patents

Systeme de regulation de gaz d'echappement pour moteurs a combustion interne, procede de regulation de gaz d'echappement et catalyseur de regulation de gaz d'echappement Download PDF

Info

Publication number
WO2000035564A1
WO2000035564A1 PCT/JP1999/006951 JP9906951W WO0035564A1 WO 2000035564 A1 WO2000035564 A1 WO 2000035564A1 JP 9906951 W JP9906951 W JP 9906951W WO 0035564 A1 WO0035564 A1 WO 0035564A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
catalyst
mol
lean
internal combustion
Prior art date
Application number
PCT/JP1999/006951
Other languages
English (en)
French (fr)
Inventor
Masato Kaneeda
Kojiro Okude
Hidehiro Iizuka
Toshio Ogawa
Kosei Nagayama
Hisao Yamashita
Yuichi Kitahara
Osamu Kuroda
Morio Fujitani
Toshifumi Hiratsuka
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to CA002306627A priority Critical patent/CA2306627C/en
Priority to AU16839/00A priority patent/AU734673B2/en
Priority to US09/529,636 priority patent/US6630115B1/en
Priority to EP99959758A priority patent/EP1180390A4/en
Publication of WO2000035564A1 publication Critical patent/WO2000035564A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/688Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8986Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps

Definitions

  • the present invention relates to an exhaust gas purifying apparatus for an internal combustion engine, an exhaust gas purifying method, and an exhaust gas purifying catalyst.
  • a reducing atmosphere is ⁇ 2 concentration in the exhaust gas becomes a chemical stoichiometry or less necessary for complete combustion of the reducing components contained in exhaust gas (hereinafter, referred to as reducing atmosphere) in the lower It purifies N ⁇ x, HC and C ⁇ efficiently and does not show sufficient NO x purification performance in an oxidizing atmosphere. Therefore, there is a demand for the development of a catalyst that effectively purifies NOx among NOx, HC and C2 in an oxidizing atmosphere.
  • the present invention relates to a method for producing NOx contained in combustion exhaust gas of an oxidizing atmosphere discharged from an internal combustion engine, comprising an active component on a porous carrier, at least one of Rt, Pt, and Pd as the active component; And at least one selected from alkaline earth metals and a catalyst having Mn.
  • an active component on a porous carrier, at least one of Rt, Pt, and Pd as the active component; And at least one selected from alkaline earth metals and a catalyst having Mn.
  • alkali metal or alkaline earth metal may be used, but if two or more kinds are contained, the activity is further improved. It is thought that supporting two or more of these metals on a carrier would create new active sites in the catalyst.
  • the amount of alkali metal and alkali earth metal carried is less than 0.05 mol part per type, the effect of improving NOX purification performance is small, and if it is more than 3 ⁇ 1 part, alkali metal and alkali It is not preferable because the specific surface area of the earth metal itself decreases.
  • Mn exists in the form of a metal or an oxide or a complex oxide with A1, etc., and is thought to function to trap NOx in an oxidizing atmosphere, and further to improve the high-temperature durability of the catalyst. is there.
  • the inclusion of both Mn and at least one of the alkaline metal and alkaline earth metal further enhances the NOx trapping effect.
  • the porous carrier It is preferable that the rare earth metal be contained in an amount of 0.02 mol part or more and 0.5 mol part or less per 1.5 mol parts in terms of a metal element. If the amount is less than 0.02 mol part, the effect is small. If the amount is more than .5 mol part, the specific surface area of the catalyst decreases, which is not preferable.
  • the rare earth metal L a, N d, and C e are preferable.
  • the NOx purification rate is improved, and the S 0 X resistance is also improved. It is considered that the effect of improving S ⁇ x performance by T i and S i is due to the combination of T i and S i with Mn, alkali metal, and alkaline earth metal.
  • the NOx purification performance and heat resistance are improved.
  • the amounts of T i, C o, S i, N i, and Cu are preferably in the range of from 0.0 lmol part to 2 mol part in terms of metal element with respect to 1.5 mol part of the porous carrier.
  • the catalyst of the present invention may further comprise at least one of B and P.
  • B and P exist in the form of a simple substance or an oxide, or in the form of a complex oxide with at least one selected from alkali metals and A 1, and act to trap NO x in an oxidizing atmosphere and to reduce NO x It is thought to have the role of attracting CO, hydrocarbons, etc., which are agents, onto the catalyst surface, and also has the function of improving the heat resistance and S Ox resistance of the catalyst.
  • nitric acid compounds such as nitric acid compounds, acetic acid compounds, complex compounds, hydroxides, carbonate compounds, and organic compounds, and metals and metal oxides can be used.
  • Another embodiment of the present invention is an exhaust gas purification method for purifying exhaust gas discharged by lean burn operation by contacting the exhaust gas with the catalyst.
  • the N ⁇ X purification rate will gradually decrease. This is due to the increased trapping of NO x on the catalyst surface and weakening of the trapping action. If the NO x purification rate decreases in this way, it is desirable to temporarily switch to the operation at the stoichiometric air-fuel ratio or to the over-fuel operation to stir or reject the air-fuel ratio of the exhaust gas.
  • the NOx purification action becomes very active, and NOX trapped on the catalyst surface is quickly purified to regenerate the catalyst. Is done. For this reason, when returning to lean burn operation, a high ⁇ 0 X purification rate is exhibited. A few seconds to several minutes is sufficient for the stoichiometric air-fuel ratio or excessive fuel operation.
  • FIG. 1 shows an embodiment of the exhaust gas purifying apparatus of the present invention.
  • Fig. 1 shows an engine 99 that can be lean-pumped, an air intake system having an air cleaner 1, an air flow sensor 2, and a slot valve 3, an oxygen concentration sensor 7, a gas temperature sensor 8, and a catalyst outlet gas temperature sensor 9.
  • the exhaust system and the control unit (ECU) 11 having the exhaust gas purifying catalyst 10 and the like are shown.
  • the ECU 11 is composed of I ⁇ and LSI as input / output interfaces, an arithmetic processing unit MPU, a storage RAM storing many control programs, R ⁇ M, a timer and a counter, and the like.
  • FIG. 2 shows a case where a combustion catalyst 20 for hydrocarbons and C 0 is installed at a stage subsequent to the exhaust gas purification catalyst 10. In FIG. 2, hydrocarbons and CO not removed by the exhaust gas purification catalyst 10 are removed by the combustion catalyst 20.
  • a slurry composed of alumina powder and an alumina precursor and adjusted to be nitric acid was coated on a honeycomb made of cordierite (400 cells, Zinc 2 ), dried and fired, and the apparent volume of the honeycomb was 1 liter.
  • An alumina-coated honeycomb coated with 1.5 mol of alumina per Torr was obtained.
  • the alumina coated honeycomb was impregnated with a mixed solution of a dinitrodiammine Pt nitric acid solution and a Rh nitrate solution, dried at 200 ° C, and then fired at 600 ° C.
  • the above catalyst was subjected to a NOx purification test under the following conditions.
  • a 6 cc honeycomb catalyst was fixed in a quartz glass reaction tube. This reaction tube was inserted into an electric furnace, and the heating was controlled so that the gas introduced into the reaction tube had a temperature of 300 ° C., 400 ° C., and 500 ° C.
  • the gas introduced into the reaction tube is model gas (hereinafter referred to as stoichiometric gas) that assumes exhaust gas when the engine of the vehicle is operated at the stoichiometric air-fuel ratio, and the engine of the vehicle performs lean burn operation.
  • Model gas hereinafter referred to as “lean model gas”
  • lean model gas which assumed exhaust gas when the system was in use, was introduced by switching every three minutes.
  • the catalyst of the present invention has a clearly higher NO X purification rate than the comparative example catalyst, and is excellent in high-temperature durability performance.
  • Example catalysts 42 to 47 to which Co and Ni were added were prepared. Then, each catalyst was evaluated according to Test Example 1. The supported amounts of Cu, Co and Ni were all 0.1 mol in terms of metal element with respect to 1.5 mol of alumina.
  • Example Catalysts 48 to 51 were prepared by adding Ti and Si to Example Catalysts 21 and 36, respectively.
  • the loading amounts of Ti and Si were set at 0.1 mol in terms of metal elements for 1.5 mol of alumina.
  • Example Catalysts 36, 48, and 50 were added with 0.2 mol of Ce La and Nd in terms of metal element relative to 1.5 mol of alumina, respectively. was prepared. The test was the same as in Test Example 2.
  • Example Catalysts 52 and 58 In the same manner as in Example 1, to Example Catalysts 52 and 58, at least one of P and B was added in an amount of 0.1 mol in terms of element to 1.5 mol of alumina. 72 was prepared. The test was the same as in Test Example 2. (Test results)
  • Table 7 shows the NO X purification rates evaluated in Test Example 2.
  • the catalysts of Examples 67 to 72 clearly have higher NOx purification rates than the comparative example catalysts shown in Table 2 and have excellent high-temperature durability.
  • Table 8 shows the NO X purification rates at 400 ° C evaluated by Test Example 1.
  • the above catalyst has a high NOx purification rate of more than 80% when the supported amount of Mn is from 0.05 mol to 2iiiol in terms of metal element.
  • Table 9 shows the N 0 X purification rates at 400 ° C. evaluated by Test Example 1.
  • the supported amount of K, Sr and Na in each catalyst is 0.05 mol or more and 3 mol or less, the NOx purification rate at 400 ° C exceeds 80%, indicating a high NOx purification rate. .
  • Table 10 shows the N ⁇ X purification rates at 400 ° C evaluated according to Test Example 1.
  • the supported amounts of Rh, Pt, and Pd are Pt, respectively, 0.002 ol 0.05 mol or less, 13 ⁇ 411 0.000 3 mol or more, 0.1 mol or less, Pd 0.0 0 1 mol or more, 0.2 mol or less, NO x purification rate at 400 is 80% And a high N 0 X purification rate can be obtained.
  • Example 2 In the same manner as in Example 1, ⁇ 6, La and Xd were added to Example Catalysts 36 and 48, and a catalyst was prepared in which the content was changed. The test was the same as in Test Example 2.
  • Example Catalysts 36 and 48 were added to Example Catalysts 36 and 48, and a catalyst was prepared in which the content was further changed.
  • Table 12 shows the N 0 X purification rates at 400 ° C. evaluated by Test Example 1.
  • Example Catalyst 36 Ti and Si were added to change the content, and in Example 48, the Ti content was changed.
  • a catalyst was prepared by adding a catalyst or Si and changing its content.
  • Table 13 shows the N 0 X purification rates at 400 ° C. evaluated by Test Example 3.
  • Example 2 In the same manner as in Example 1, catalysts of Example Catalysts 70 and 71 in which the contents of P and B were changed were prepared. The test was the same as in Test Example 2.
  • Table 14 shows the NO X purification rates at 500 ° C. evaluated according to Test Example 2.
  • the N0x purification rate at 800 ° C and 500 ° C after heat resistance for 5 h is 8 Over 0%, high N 0 X purification rate is obtained.
  • Example catalyst 3 6, 4 8 Prepared in Example catalyst 3 6, 4 8 in the same manner as in Example 1, loading ratio of other components against the A 1 2 0 3 does not change, the catalyst was changed only Koti ring amount to the honeycomb volume 1 L did.
  • Table 15 shows the N 0 X purification rates at 400 ° C. evaluated by Test Example 1.
  • a 1 2 ⁇ 3 co one coating weight A 1 2 0 3 when relative honeycomb volume 1 L less 0.3 mol / L or more 4 mol / L in terms of 4 0 0 NO x purification rate of ° C is a 80% Exceeds and high N 0 X purification rates are obtained.
  • a catalyst in which only Rh and Pt were supported on an alumina-coated honeycomb in the same manner as in Example 1 was prepared as a hydrocarbon and CO combustion catalyst.
  • the contents of R h and P t were set to Rh O. O 2 mol and P t 0.01 mol with respect to 1.5 mol of alumina in terms of metal.
  • the test was performed in the same manner as in Test Example 1.
  • the hydrocarbon and C ⁇ removal rates were measured when a combustion catalyst was installed before or after the catalysts of Examples 36 and 48, and when no combustion catalyst was installed. .
  • the measurement temperature was 400.
  • Table 16 shows the NO x purification rates at 400 ° C. evaluated by Test Example 1.
  • Example catalyst 36 C 3 H e purification ratio (%), 400. C ⁇ Purification rate (%), 400 ° C No hydrocarbon and C0 combustion catalyst installed 93 94
  • Example catalyst 48 C a H e purification ratio (%), 400 ° C CO purification rates (%), 400 ° combustion catalyst uninstalled 92 94 C hydrocarbons and C 0
  • nitrogen oxides can be purified with high efficiency in an atmosphere in which oxygen is excessively present. It also has excellent heat resistance and SO x resistance, so it can maintain high purification performance for a long time.
  • the exhaust gas purifying catalyst of the present invention is capable of removing N 0 contained in exhaust gas from a lean burn vehicle at a high purification rate, and has extremely large industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

明 細 書
内燃機関の排ガス浄化装置、 排ガス浄化方法及び排ガス浄化触媒 技術分野
本発明は、 自動車エンジン等の内燃機関から排出される燃焼排ガスの ように、 N O xを含有する排ガスから N O xを効率良く浄化する排ガス 浄化装置, 排ガス浄化方法および排ガス浄化触媒に係わる。 背景技術
近年、 燃料消費量の削減の観点から、 自動車用内燃機関において空燃 比を燃料希薄とするリーンバーンエンジンが有望視されている。 しかし、 このエンジンの排ガスは、 該排ガス中に含まれる〇2 濃度が該排ガスに 含まれる還元成分を完全燃焼するのに必要な化学量論比を超える酸化雰 囲気 (以下、 酸化雰囲気という) となる。 従来の三元触媒は、 排ガス中 の〇2 濃度が該排ガスに含まれる還元成分を完全燃焼するのに必要な化 学量論量又はそれ以下となる還元雰囲気 (以下、 還元雰囲気という) 下 において効率良く N〇 x, H C及び C〇を浄化するものであって、 酸化 雰囲気下においては充分な N O x浄化性能を示さない。 従って、 酸化雰 囲気下において N O x, H C及び C〇の中で特に N〇 Xを効果的に浄化 する触媒の開発が望まれている。
リ一ンバーンエンジン用の排ガス浄化方法として、 W O 9 3 /07363 及び W O 9 3ノ 0 8 3 8 3には、 排ガス通路に N 0 x吸収剤を設置する 方法が提案されている。 該 N O x吸収剤は、 燃料希薄燃焼時に排ガス中 の N O Xを吸収し、 排ガス中の酸素濃度が低下すると吸収した N O Xを 放出する能力を有する。 また、 特開平 8— 299793 号では、 燃料希薄燃焼時に排ガス中の N 0 x を吸着する N 0 X吸着成分と N 0 Xを還元する N O X還元成分とを有す る触媒を排気通路に設置することを提案している。
しかし、 自動車排ガスに対する環境規制が強化される中、 リーンバー ンエンジン対応の N O X触媒には更に高い N 0 X浄化性能と耐久性能が 求められる。 本発明は N 0 X浄化性能および耐久性、 特に耐熱性能, 耐 S〇 X性能に優れた排ガス浄化触媒と該触媒を備えた排ガス浄化装置お よび排ガス浄化方法を提供することにある。 発明の開示
本発明は内燃機関から排出される酸化雰囲気の燃焼排ガス中の N O X を、 多孔質担体上に活性成分を有し、 活性成分として R t, P t及び P dの少なくとも 1つと、 アル力リ金属及びアル力リ土類金属から選ば れた少なく とも 1種と、 M nを有する触媒を用いて浄化することにある。 アルカリ金属, アルカリ土類金属は 1種でもよいが 2種以上含むと更 に活性が向上する。 これら金属の 2種以上を担体上に担持することによ リ触媒に新たな活性点が生じる為ではないかと考えられる。 アルカリ金 属及びアルカリ土類金属の担持量は多孔質担体 1 . 5 mol部に対して金属 元素換算で、 1種類当り 0 . 0 5 IRO1部以上 3 mol 部以下が好ましい。 こ こで moi 部とは、 各成分の mol 数換算での含有比率を表したものであり、 例えば A成分 1 . 5 mol部に対して B成分の担持量が 3 mol 部ということ は、 A成分の絶対量の多少にかかわらず、 mol数換算で Aが 1 . 5に対し Bが 3の割合で担持されていることを意味する。 アル力リ金属及びアル カリ土類金属担持量が 1種類当たり 0 . 0 5 mol部より少ないと N O X浄 化性能改善の効果は少なく 3 πιο1 部より多いとアルカリ金属, アルカリ 土類金属自身の比表面積が低下するため好ましくない。
多孔質担体は基材上に担持しても良く、 その場合基材 1 Lに対し多孔 質担体の担持量を 0. 3mol以上 4moi 以下とすると λ' 0 x浄化性能にと つて好ましい。 多孔質担体の担持量が 0. 3mol部より少ないと活性成分 の分散性が悪くなり、 4mol 部より多いと多孔質担体自体の比表面積が 低下するため好ましくない。
Mnは金属又は酸化物又は A 1 などとの複合酸化物の形態で存在し、 酸化雰囲気下において NO Xを捕捉する働きをするものと考えられ、 更 に触媒の高温耐久性能を向上させる働きがある。 またアル力リ金属及び アルカリ土類金属の少なく とも 1つと Mnの両方を含むことにより、 更 に NO Xの捕捉効果が高まる。
Mn担持量は多孔質担体 1. 5mol部に対して金属元素換算で、 0.05 mol 部以上 2mol 部以下が好ましい。 M n担持量が 0. 0 5 mol部より少 ないと効果は少なく、 2mol 部より多いと触媒の比表面積が低下するた め好ましくない。
R h, P t , P dは、 NO xの浄化性能, 高温耐久性能を高める。 こ れらの貴金属はすべて含まれることが性能改善上最も望ましい。
貴金属の担持量は多孔質担体 1. 5 mol部に対して金属元素換算で P t の場合は 0. 0 0 2mol部以上 0. 0 5mol部以下、 R hの場合は 0.0003 ol 部以上 0. 0 1 mol部以下、 P dの場合は 0. 0 0 1 mol部以上 0. 2 ol 部以下とすることが望ましい。 貴金属の担持量が上記範囲に示す量 よリ少ないと効果は少なく、 上記範囲に示す量より多いと貴金属自身の 比表面積が小さくなり、 やはり効果が少ない。
上記成分に加えて、 希土類金属の少なく とも 1種を担持させると、 よ り NO X浄化性能及び高温耐久性能が向上する。 この場合、 多孔質担体 1. 5 mol部に対して金属元素換算で、 希土類金属を 1種あたり 0.0 2 mol部以上 0.5mol 部以下含むことが好ましい。 0.0 2 mol部より少な いと効果が少なく ◦ .5mol部より多いと触媒の比表面積が低下するため 好ましくない。 希土類金属としては L a, N d , C eが好ましい。
さらに、 T i , S iの少なくとも 1種を担持させることにより、 NOx 浄化率が向上し、 また耐 S 0 X性能も向上する。 T i, S iによる耐 S〇 x性能向上の効果は、 T i, S iが M n及びアルカリ金属, アル力 リ土類金属と複合化することによるものと考えられる。 また C o, N i, C uの少なく とも 1種を担持させることにより N O x浄化性能および耐 熱性が向上する。 T i, C o, S i, N i, C uの量は、 多孔質担体 1.5mol部に対して金属元素換算で、 各々が 0.0 lmol部以上 2mol 部 以下の範囲とすることが好ましい。
本発明の触媒は、 更に Bと Pの少なく とも 1つを含むことができる。
Bおよび Pは単体または酸化物の形態、 もしくはアルカリ金属, A 1 から選ばれた少なくとも 1種との複合酸化物の形態で存在し、 酸化雰囲 気下において NO xを捕捉する働き、 及び還元剤である CO, 炭化水素 等を触媒表面上に引きつける役割を持つものと考えられ、 更に触媒の耐 熱性, 耐 S Ox性を向上させる働きがある。 触媒調製時の B又は Pを混 ぜる順序、 或いは燃成温度等をコン トロールすることにより、 酸化物の 形態や複合酸化物の形態で存在させることができる。
Bまたは Pの担持量は多孔質担体 1. 5mol部に対して元素換算で、 各 々 0.0 1 mol部以上 2iiol 部以下とすることが好ましい。 Bまたは Pの 担持量が 0.0 1 mol 部より少ないと効果は少なく、 2 mol部より多いと 触媒の比表面積が低下するため好ましくない。
触媒の調製方法は、 含浸法, 混練法, 共沈法, ゾルゲル法, イオン交 換法, 蒸着法等の物理的調製方法や化学反応を利用した調製方法等いず れも適用可能である。
触媒調製時の出発原料としては、 硝酸化合物, 酢酸化合物, 錯体化合 物, 水酸化物, 炭酸化合物, 有機化合物などの種々の化合物や金属及び 金属酸化物を用いることができる。
多孔質担体には、 アルミナ, チタニア, シリカ, シリカ一アルミナ, ジルコニァ, マグネシァ等の金属酸化物や複合酸化物等を用いることが できる。 アルミナが最も好ましい。 本発明の触媒は、 基材にコ一ティ ン グして用いることができる。 基材はコージェライ トが最適である力 ス テンレスのように金属製のものを用いても良好な結果を得ることができ る。
N〇 x浄化触媒の形状は、 ハニカム形状を始めとし、 ペレツ 卜状, 板 状, 粒状, 粉末状等いずれも適用できる。 ハニカムが最も望ましい。 本発明の触媒は、 内燃機関の希薄燃焼運転時に排出された排ガスに含 まれる N O Xを高い浄化率で浄化する効果を有する。 本発明の触媒によ る N 0 X浄化効果は、 希薄燃焼排ガスに含まれる N 0 Xを触媒表面に捕 捉して排ガス中から除去する作用と、 捕捉した N 0 Xを還元浄化する作 用によるものと推定される。 N〇 xの捕捉は、 吸収又は化学吸着等によ るものと推定される。
希薄燃焼運転時の排ガスは、 酸素を該排ガス中の還元成分 (H C, C O ) を完全燃焼するのに必要な化学量論量を超える高い濃度で含み酸 化雰囲気にある。 このように酸化雰囲気にある排ガスを、 以下ではリー ン排ガス或いは空燃比がリーンの排ガスと呼ぶ。 また、 理論空燃比で燃 焼された内燃機関から排出された排ガスを、 ス卜ィキ排ガス或いは空燃 比がス 卜ィキの排ガスと呼ぶ。 理論空燃比よりも燃料過剰で運転された 内燃機関から排出された排ガスは、 酸素濃度が該排ガスに含まれる還元 成分を完全燃焼するのに必要な化学量論量未満であリ還元雰函気にある。 このように還元雰囲気にある排ガスをリツチ排ガス或いは空燃比がリッ チの排ガスと呼ぶ。
本発明の一実施態様は、 希薄燃焼運転される内燃機関の排ガス流路に 前記触媒を備えた排ガス浄化装置にある。
本発明の他の実施態様は、 希薄燃焼運転によって排出された排ガスを 前記触媒に接触させて浄化するようにした排ガス浄化方法にある。
本発明の触媒を空燃比がリ一ンの排ガスに接触させ続けると、 N〇 X 浄化率が次第に低下するようになる。 この原囚は、 触媒表面の N O x捕 捉量が増加し、 捕捉作用が弱まることによる。 このように N O x浄化率 が低下してきたならば、 一時的に理論空燃比の運転或いは燃料過剰運転 に切り替えて、 排ガスの空燃比をス 卜ィキ或いはリツチすることが望ま しい。 本発明の触媒は、 ス トィキ或いはリッチの排ガスにさらすことに より、 N O x浄化作用が非常に活発に行われるようになり、 触媒表面に 捕捉されていた N O Xが速やかに浄化されて触媒が再生される。 このた め、 Πίび希薄燃焼運転に戻したときに高い Ν 0 X浄化率を示すようにな る。 理論空燃比或いは燃料過剰運転にする時間は、 数秒ないし数分間で 十分である。
本発明の触媒は、 H C, C Oを燃焼する燃焼触媒と組み合わせて用い ることができる。 H C, C〇を燃焼する燃焼触媒には、 アルミナ担体に P t , R hを担持した触媒或いはアルミナ担体に A gと M nを担持した 触媒を用いることが望ましい。 これらの燃焼触媒は、 本発明の触媒の上 流側或いは下流側もしくはその両方に置くことができる。 図面の簡単な説明
第 1図は、 本発明の一実施例を示す排ガス浄化装置の概略図である。 第 2図は、 自動車エンジンの排ガスを排気する流路に NO X浄化触媒 と燃焼触媒を設置した状態を示す図である。 発明を実施するための最良の形態
第 1図は、 本発明の排ガス浄化装置の一実施例を示している。
第 1図には、 リーンパ一ン可能なエンジン 9 9, エアクリーナー 1 と エアフローセンサー 2とスロッ 卜バルブ 3を擁する吸気系、 酸素濃度セ ンサー 7, 俳ガス温度センサー 8, 触媒出口ガス温度センサー 9, 排ガ ス浄化触媒 1 0等を擁する排気系及び制御ユニッ ト (ECU) 1 1等が 示されている。 E CU 1 1は入出力インターフェイスとしての I 〇, L S I , 演算処理装置 MPU, 多数の制御プログラムを記憶させた記憶 装置 RAM及び R〇M、 タイマ一カウンタ一等により構成される。
エンジンへの吸入空気はエアク リーナー 1によりろ過された後エアフ 口一センサ一 2により計量され、 スロッ トバルブ 3を経て、 さらにイン ジェクタ一 5から燃料噴射を受け混合気としてエンジン 9 9に供給され る。 エアフローセンサ一信号その他のセンサ一信号は E CU (Engine Control Unit) 1 1へ入力される。
E CUでは内燃機関の運転状態及び排ガス浄化触媒の状態を評価して 運転空燃比を決定し、 インジェクター 5の噴射時間等を制御して混合気 の燃料濃度を所定値に設定する。 シリンダ一に吸入された混合気は E C U 1 1からの信号で制御される点火プラグ 6により着火され燃焼す る。 燃焼排ガスは排気浄化系に導かれる。 排気浄化系には排ガス浄化触 媒 1 0が設けられ、 ス 卜ィキ運転時にはその三元触媒機能により排ガス o 中の N〇 x, H C, C Oを浄化し、 また、 リーン運転時には N 0 x捕捉 能により N 0 Xを浄化すると同時に併せ持つ燃焼機能により、 H C, COを浄化する。 さらに E C Uの判定及び制御信号により、 リーン運転 時には排ガス浄化触媒の N 0 X浄化能力を常時判定して、 N 0 X浄化能 力が低下した場合、 燃焼の空燃比等をリツチ側にシフ 卜して触媒の NOx 捕捉能を回復させる。 以上の操作によりリーン運転、 ストィキ (含むリ ツチ) 運転の全てのエンジン燃焼条件下における排ガスを効果的に浄化 する。 なお酸素濃度センサ 7に代えて AZFセンサ一を用いてもよい。 第 2図は排ガス浄化触媒 1 0の後段に炭化水素および C 0の燃焼触媒 2 0を設置した場合を示している。 第 2図において、 排ガス浄化触媒 1 0で除去されなかった炭化水素および COは、 燃焼触媒 2 0によって 除去される。
以下、 具体的な例で本発明を説明するが、 本発明はこれらの実施例に 限定されるものではない。
「実施例 1」
アルミナ粉末とアルミナの前駆体からなり硝酸酸性に調製したスラリ ーをコージェライ 卜製ハニカム (4 0 0セル Zinc2 ) にコ一ティ ングし た後、 乾燥焼成して、 ハニカムの見掛けの容積 1 リッ トルあたり 1.5 mol のアルミナをコーティングしたアルミナコー トハニカムを得た。 該 アルミナコー 卜ハニカムに、 ジニロ 卜ジアンミン P t硝酸溶液と硝酸 Rh溶液の混合溶液を含浸した後、 2 0 0 °Cで乾燥、 続いて 6 0 0 °Cで 焼成した。 次に、 硝酸 N a溶液, 硝酸 Mn溶液および硝酸 P d溶液の混 合溶液を該 P t, Rh担持ハニカムに含浸し、 2 0 0°Cで乾燥、 続いて 6 0 0 °Cで焼成した。 以上により、 アルミナ 1. 5molに対して、 金属換 算で R h 0.0 0 2 2mol, P t 0.0 1 4 mol, a 0.8 mol. Mn0.2 mol , P d 0.0 1 4 molを含有する実施例触媒 1 を得た。 以下この触媒 を 0.8 N a M n P d— R h P t ZA 1203 のように表記する。 同様に して、 Mn, P d, R h , P tの担持量は変えず、 N aの代りに L i , K, R b, C s, M g , C a , S r, B aをそれぞれ 0.8 mol担持した 実施例触媒 2〜9、 また Mn, P d, R h, P tの担持量は変えず、 ァ ルカリ金属, アル力リ土類金属を 2種以上含む実施例触媒 1 0〜4 1 を 得た。 更に実施例触媒 1 と同様にして比較例触媒として、 Mnを含まず、 アルミナ 1.5 molに対して、 金属換算で R h 0.0 0 2 2 mol, P t 0.0 1 4 mol, P d 0.0 1 4mol及び0. 8 IIlolのN a, L i , K, R b , C s , M g , C a , S r, B aを担持した比較例触媒 1〜 9、 また同様 に Mnを含まず、 P d , R h, P tの担持量は変えずに、 アルカリ金属, アルカリ土類金属を 2種以上含む比較例触媒 1 0〜 1 4を得た。
[試験例 1 ]
(試験方法)
上記触媒に対して、 次の条件で NO x浄化試験を行った。 容量 6ccの ハニカム触媒を石英ガラス製反応管中に固定した。 この反応管を電気炉 中に挿入し、 反応管に導入されるガス温度が 3 0 0 °C, 4 0 0 °C, 5 00 °Cとなるように加熱制御した。 反応管に導入されるガスは、 自動車のェ ンジンが理論空燃比で運転されているときの排ガスを想定したモデルガ ス (以下ストィキモデルガス) と、 自動車のエンジンがリーンバーン運 転を行っているときの排ガスを想定したモデルガス (以下、 リーンモデ ルガス) を 3分毎に切り替えて導入した。 ストィキモデルガスの組成は、 N 0 X: 1 0 0 Oppm , C a H e : 6 0 0 ppm , CO : 0.6 %, C 02 : 1 2 %, O 2 : 0.5 %, H 2 : 0.3 %, H 2 O : 1 0 %, N 2 : 残部とし た。 リーンモデルガスの組成は、 N 0 X : 6 0 Oppm , C 3 H B : 5 0 0 ppm, C O : 0. 1 %, C〇 2 : 1 0 %, 02 : 5 % , H2 o : 1 0 %, N2 : 残部とした。 この時、 触媒出入口の N〇 x濃度を測定し、 リーンに切 リ替え 1分後の N 0 X浄化率を次式により算出した。
NO x浄化率(%)= (入口ガス中の NO x濃度一出口ガス中の NO X 濃度) ÷入口ガス中の NO X濃度 X 1 0 0 以上のようにして NO X浄化率を求める試験を試験例 1 とする。
(試験結果)
実施例触媒 1〜4 1, 比較例触媒 1〜 1 4を、 試験例 1によリ評価し た結果を第 1表に示す。 なお、 いずれの触媒も燃料リッチ燃焼運転時の N〇 X浄化率は 3 00 °Cで常に 9 0 %以上、 4 0 0 °Cでは 1 00 %であ り、 三元性能も十分に具備している。 本究明の触媒はリーン燃焼運転と ス卜ィキ燃焼運転を複数回繰り返しても各運転中の NO X浄化率は不変 であった。 また、 リーン燃焼運転において H C及び C〇浄化率は 9 0 % 以上であった。 アルカリ金属とアルカリ土類金属の少なく とも 1つと Mn及び R h, P t , P dを全て含む実施例は、 比較例触媒よりも明ら かに N 0 X浄化率が高い。
Figure imgf000013_0001
挲 ΐ m
ΐ ΐ
/66df/13d fr9SSe/00 ΟΛ [試験例 2 ]
(試験方法)
実施例触媒 1, 3, 8, 1 1 , 1 8, 2 1 , 3 3, 3 6, 3 8, 4 0. 比較例触媒 1〜5, 1 1, 1 3 を 8 0 0 °Cで 5 h焼成し、 その後は試験 例 1の方法で試験を行った。
(試験結果)
試験結果を第 2表に示す。 本発明の触媒は、 比較例触媒よりも明らか に NO X浄化率が高く、 高温耐久性能に優れている。
第 2表
Figure imgf000014_0001
「実施例 2」
実施例 1 と同様の方法で、 実施例触媒 2 1, 3 6にそれぞれ C u, C o, N i を添加した実施例触媒 4 2〜4 7を調製した。 そして試験例 1 により各触媒の評価を行った。 C u, C o , N iの担持量はいずれも アルミナ 1.5molに対し金属元素換算で 0. lmolとした。
(試験結果)
試験結果を第 3表に示す。 第 1表に示した比較例触媒 1〜 1 4に対し, C o, N i , C uを添加した実施例触媒の活性は高い。
第 3表
Figure imgf000015_0001
「実施例 3」
実施例 1 と同様の方法で実施例触媒 2 1 , 3 6にそれぞれ T i , S i を添加した実施例触媒 4 8〜5 1 を調製した。 T i, S iの担持量はァ ルミナ 1.5molに対しいずれも金属元素換算で 0. l molとした。
[試験例 3]
(試験方法)
試験例 1において、 反応管中に S〇2 添加リーンガスのみを 1.5 h 流通させた。 リーンガスへの S 02添加量は 0.0 1 %とした。 この後、 試験例 1の方法で N 0 X浄化率を測定した。 測定温度は 4 0 0でとした, (試験結果)
実施例触媒 4 8〜 5 1, 比較例触媒 1, 3を、 試験例 3により評価し た結果を第 4表に示す。 実施例触媒 4 8〜5 1は、 比較例触媒 1 , 3よ リも NO X浄化率が高く、 S 0 X耐久性能に優れている。
第 4表
Figure imgf000016_0001
「実施例 4」
実施例 1 と同様の方法で実施例触媒 3 6, 4 8 , 5 0にそれぞれ C e L a , N dをアルミナ 1.5molに対し金属元素換算で 0.2mol添加した 実施例触媒 5 2〜6 0を調製した。 試験は試験例 2と同様とした。
(試験結果)
試験例 2により評価した NO X浄化率を第 5表に示す。 実施例触媒 5 2〜 6 0は第 2表に示した比較例触媒よりも明らから N 0 X浄化率が高 く、 高温耐久性能に優れている。 第 5表 触 媒 NOx浄化率 (%)
Figure imgf000017_0001
「実施例 5」
実施例 1 と同様の方法で実施例触媒 5 2 , 5 8から貴金属の 1種を除 いた実施例触媒 6 1 6 6を調製した。 試験は試験例 2と同様とした。 (試験結果)
試験例 2により評価した NO X浄化率を第 6表に示す。 実施例触媒 6 1 6 6は第 2表に示した比較例触媒よリも明らかに NOx浄化率が高 高温耐久性能に優れている。 第 6表 触 媒 NO x浄化率 (%)
Figure imgf000018_0001
「実施例 6」
実施例 1 と同様の方法で実施例触媒 5 2, 5 8に対して、 それぞれ P, Bの少なく とも 1種をアルミナ 1.5molに対し元素換算で 0. 1 mol添加 した実施例触媒 6 7〜7 2を調製した。 試験は試験例 2と同様とした。 (試験結果)
試験例 2によリ評価した NO X浄化率を第 7表に示す。 実施例触媒 6 7〜 7 2は第 2表に示した比較例触媒よリも明らかに NO X浄化率が高 く、 高温耐久性能に優れている。
第 7表
Figure imgf000019_0001
「実施例 7 J
実施例 1 と同様の方法で、 実施例触媒 1 1 , 3 3にそれぞれ T i をァ ルミナ 1.5molに対し金属元素換算で 0. 1 mol添加した触媒、 及び実施 例触媒 3 6, 4 8の Mn含有量を変化させた触媒を調製した。 試験は試 験例 1 と同様とした。
(試験結果)
試験例 1により評価したときの 4 0 0°Cでの NO X浄化率を第 8表に 示す。 上記触媒は Mnの担持量が金属元素換算で 0.0 5mol〜 2iiiol の とき NOx浄化率が 8 0 %を超え、 高い NO x浄化率を示す。 触 媒 NOx浄化率(%),400°C 触 媒 NOx浄化率(%) ,400'C
LiKPdTi- RhPt/Al203 73 LiNaKPd-RhPt/Al203 70
LiK0.02MnPdTi-RhPt/Al203 75 LiNaK0.02MnPd-RhPt/Alz 03 75
LiK0.05MnPdTi-RhPt/Al203 83 LiNaK0.05MnPd-RhPt/Al203 82
LiK0.2 nPdTi-RhPt/Al203 92 LiNaK0.2MnPd-RhPt/Al203 99
LiK0.4MnPdTi-RhPt/Al203 98 LiNaK0.4MnPd-RhPt/Al203 99
LiK1.4MnPdTi-RhPt/Al203 90 LiNaK1.4MnPd-RhPt/Al203 93
LiK2MnPdTi-RhPt/Al¾0, 82 LiNaK2HnPd-RhPt/Al203 86
LiK3HnPdTl-RhPt/Al203 68 LiNaK3MnPd-RhPt/AU 03 71
SrMgPdTi-RhPt/Al20, 69 NaHgPdTi-RhPt/Al203 71
SrMg0.02MnPdTi-RhPt/Al203 75 NaMg0.02MnPdTi-RhPt/Al203 73
SrMg0.05MnPdTi-RhPt/Al203 81 NaMg0.05MnPdTi-RhPt/Al803 81
SrMg0.2MnPdTi-RhPt/Al203 85 NaMg0.2MnPdTi-RhPt/Al203 96
SrHg0.4MnPdTi-RhPt/Al20, 93 NaMg0.4HnPdTi-RhPt/Al 203 93
SrMgl ·4ΜηΡ£ΓΠ-ΐηιΡΐ7Α1ζ03 88 NaMgl .4MnPdTi-RhPt/Alz 03 88
SrMg2MnPdTi-RhPt/Al203 83 NaMg2MnPdTi-RhPt/Al203 83
SrMg3MnPdTi- RhPt/Al: 0, 62 NaMg3MnPdTi-RhPt/Al20, 65
「実施例 8」
実施例 1 と同様の方法で実施例触媒 1 1, 3 3にそれぞれ T i をアル ミナ 1, 5molに対し金属元素換算で 0. l mol添加した触媒と、 更に K, S rの含有量を変化させた触媒、 及び実施例触媒 3 6 , 4 8について、 K, N a含有量を変化させた触媒を調製した。 試験は試験例 1 と同様と した。
(試験結果)
試験例 1により評価した 4 0 0 °Cでの N 0 X浄化率を第 9表に示す。 それぞれの触媒において K, S r , N aの担持量が 0.0 5 mol以上 3 mol 以下のとき、 4 0 0 °Cの N 0 X浄化率が 8 0 %を超え、 高い NO x浄化 率を示す。
Figure imgf000022_0001
o
「実施例 9 J
実施例 1 と同様の方法で実施例触媒 4 8の R h, P t , P d含有量を 変化させた触媒を調製した。 試験は試験例 1 と同様とした。
(試験結果)
試験例 1によリ評価した 4 0 0 °Cでの N〇 X浄化率を第 1 0表に示す, Rh, P t, P dの担持量が金属換算でそれぞれ、 P tの場合 0.002 ol 以上 0.0 5mol以下、 1¾ 11の場合0.0 00 3mol以上 0, 0 1 mol 以下、 P dの場合 0.0 0 1 mol 以上 0 , 2 mol 以下のとき、 4 0 0での N O x浄化率が 8 0 %を超え、 高い N 0 X浄化率が得られる。
Figure imgf000024_0001
「実施例 1 o」
実施例 1 と同様の方法で実施例触媒 3 6, 4 8に〇 6, L a , X dを 添加し、 さらにその含有量を変化させた触媒を調製した。 試験は試験例 2と同様とした。
(試験結果)
試験例 2により評価した 4 0 0 °Cでの NO X浄化率を第 1 1表に示す < C Θ , L a , N dの担持量が金属換算で 0.0 2mol以上 0.5mol以下の とき 8 0 0 °C, 5 h耐熱後の 4 0 0°Cの NO x浄化率が 8 0 %を超え、 高い NO X浄化率が得られる。
触 媒 NOx浄化率(%),400°C 触 媒 NOx浄化率(%) ,400'C
LiNaKMnPd-RhPt-0.01Ce/Al203 75 NaMgMnPdTi-RhPt-0.01Ce/Al203 76
LiNaKMnPd-RhPt-0.02Ce/Al203 82 NaMgMnPcTn- RhPい 0.02Ce/Al203 87
し iNaKMnPd - RhPt - 0, 2Ce/Al203 95 NaMgMnPdTi- hPt-0.2Ce/Al203 95
LiNaKMnPd-RhPt-0.5Ce/Al203 91 NaMgMnPdTi-RhPt-0.5Ce / A 1203 94
LiNaKMnPd-RhPt-0.8Ce/AL 0a 73 NaMgMnPdTi-RhPt-0.8Ce/Al20a 71
し iNaKMnPd - RhPt - 0,01La/Al203 75 NaMgMnPdTi-RhPt-0.01La/Al203 76
LiNaKMnPd- RhPt- 0.02La/Al203 85 NaMgMnPdTi-RhPt-0.02La/Al203 85
LiNaKMnPd-RhPt-0.2La/ Al2 Oa 96 Na gMnPdTi-RhPt-0.2La/Al203 92
LiNaKMnPd-RhPt-0.5La/Al20a 88 NaMgMnPdTi-RhPt-0.5La/Al203 82
LiNaKMnPd-RhPt-0.8La/Al203 74 NaMgMnPdTi-RhPt-0.8La/Al203 63
LiNaKMnPd-RhPt-0.01Nd/Al203 66 NaMgMnPdTi-RhPt-0.01Nd/Al20a 70
し iNaKMnPd-RhPt-0.02Nd/Al203 81 NaMgMnPdTi-RhPt-0.02Nd/Al203 82
し iNaKMnPd- RhP 0.2Nd/Al203 93 Na gMnPdTi-RhPt-O.2Nd/Al203 91
LiNaKMnPd-RhPt-0.5Nd/Al203 84 NaMgMnPdTi-RhPt-0.5Nd/Al203 84
LiNaKMnPd-RhPt-0.8Nd/Alz 0, 69 NaMgMnPdTi-RhPt-0.8Nd/Al203 75
Figure imgf000026_0001
「実施例 1 1」
実施例 1 と同様の方法で実施例触媒 3 6, 4 8に C u, C 0 , N i を 添加し、 さらにその含有量を変化させた触媒を調製した。
(試験結果)
試験例 1により評価した 4 0 0 °Cでの N 0 X浄化率を第 1 2表に示す。
C u, C o , N iの担持量が金属換算で 0.0 1 mol以上 2mol 以下のと き 4 0 0 °CのNO x浄化率が8 0 %を超え、 高い NO X浄化率が得られ る。
Figure imgf000028_0002
Figure imgf000028_0001
o
「実施例 1 2」
実施例 1 と同様の方法で実施例触媒 3 6に関しては T i , S i を添加 しその含有量を変化させた触媒、 実施例 4 8に閲しては T iの含有量を 変化させた触媒または S i を添加しその含有量を変化させた触媒を調製 した。
(試験結果)
試験例 3により評価した 4 0 0 °Cでの N 0 X浄化率を第 1 3表に示す。
T i, S iの担持量が金属換算で 0 . 0 1 mol以上 2 mol 以下のとき SOx 被毒後の 4 0 0 °Cの N 0 X浄化率が 5 0 %を超え、 高い N 0 x浄化率が 得られる。
第 1 3表
Figure imgf000030_0001
「実施例 1 3」
実施例 1 と同様の方法で実施例触媒 7 0, 7 1の P, Bの含有量を変 化させた触媒を調製した。 試験は試験例 2と同様とした。
(試験結果)
試験例 2によリ評価した 5 0 0 °Cでの NO X浄化率を第 1 4表に示す。
P , Bの担持量がアルミナ 1. 5inolに対しそれぞれ元素換算で 0.0 1 mol 以上 2niol 以下のとき 8 0 0 °C, 5 h耐熱後の 5 0 0 °Cの N 0 x浄 化率が 8 0 %を超え、 高い N 0 X浄化率が得られる。
触媒 NOx浄ィ匕率(%) ,500で 触媒 NOx浄化率(%),500
LiNaKMnPdTi0.01P-RhPt-Ce/Al203 95 LiNaK讓 TiO.OlB - RhPt- Ce/A 03 95
LiNaKMnPdTiP-RhPt-Ce/Al203 92 LiNaKMnPdTilB-RhPt-Ce/Al203 88
LiNaKMnPdTi2P-RhPt-Ce/Al203 86 LiNaKMnPdTi2B-RhPt-Ce/Al203 81
LiNaKMnPdTi3P-RhPt-Ce/Alz 03 73 LiNaKMnPdTi3B-RhPt-Ce/Alz0, 71
≠ 4 「実施例 1 4」
実施例 1 と同様の方法で実施例触媒 3 6, 4 8において、 A 1203に 対する他成分の担持比率は変えず、 ハニカム容積 1 Lに対するコーティ ング量のみを変化させた触媒を調製した。
(試験結果)
試験例 1により評価した 4 0 0 °Cでの N 0 X浄化率を第 1 5表に示す。
A 123コ一ティング量が A 1203換算でハニカム容積 1 Lに対して 0.3mol/L以上 4mol/L 以下のとき 4 0 0°Cの NO x浄化率が 8 0 %を超え、 高い N 0 X浄化率が得られる。
Figure imgf000034_0001
≠ 5 「実施例 1 5」
炭化水素および COの燃焼触媒として、 実施例 1 と同様の方法でアル ミナコー トハニカムに R h, P tのみを担持した触媒を調製した。 R h, P tの含有量は金属換算でアルミナ 1. 5molに対して、 Rh O. O 0 2 mol , P t 0.0 1 mol とした。 試験は試験例 1 と同様とし、 実施例触 媒 3 6, 4 8の前段又は後段に燃焼触媒を設置した場合、 また燃焼触媒 を設置しない場合について、 その炭化水素及び C〇除去率を測定した。 測定温度は 4 0 0でとした。
(試験結果)
試験例 1により評価した 4 0 0°Cでの NO x浄化率を第 1 6表に示す。 燃焼触媒を設置することにより、 炭化水素, C〇除去性能が向上する。
実施例触媒 36 C3He浄化率(%),400。C 〇〇浄化率(%), 400°C 炭化水素および C 0の燃焼触媒未設置 93 94
炭化水素および COの燃焼触媒前段に設置 98 99
炭化水素および C 0の燃焼触媒後段に設置 99 100
実施例触媒 48 CaHe浄化率(%),400°C CO浄化率(%),400°C 炭化水素および C 0の燃焼触媒未設置 92 94
炭化水素および C 0の燃焼触媒前段に設置 99 97
炭化水素および C Oの燃焼触媒後段に設置 99 100
β 6 以上詳述したように、 本発明によれば、 酸素が過剰に存在する雰囲気 下において、 窒素酸化物を高効率で浄化することができる。 また耐熱性 能, 耐 S O x性能も優れているため、 高い浄化性能を長期間維持するこ とができる。 産業上の利用可能性
自動車排ガスは、 世界的に排気規制, 燃費規制の方向にあり、 リーン バーン車の市場は確実に拡大すると予想される。 自動車排ガスの浄化触 媒には、 従来、 三元触媒が使用されてきたが、 三元触媒ではリーンバー ン車の排ガスに含まれる N〇 Xを浄化することができない。 本発明の排 ガス浄化触媒は、 リ―ンバーン車の排ガスに含まれる N 0 を高い浄化 率で除去できるものであリ、 産業上の利用可能性は極めて大きい。

Claims

請 求 の 範 囲
1 . 空燃比がリーンの排ガスと空燃比がリツチ或いはス トイキの排ガス とが流入する内燃機関排ガス流路に排ガス浄化触媒を備えた排ガス浄化 装置において、 前記排ガス浄化触媒が多孔質担体と該多孔質担体上に担 持された活性成分とを有し、 前記活性成分が R h, P t及び P dから選 ばれた少なく とも 1つと、 アル力リ金属とアル力リ土類金属から選ばれ た少なくとも 1つと、 M nとを含むことを特徴とする内燃機関の排ガス 浄化装置。
2 . 請求の範囲第 1項に記載の排ガス浄化装置において、 前記活性成分 が更に T i と S i の少なく とも 1つを含むことを特徴とする内燃機関の 排ガス浄化装置。
3 . 請求の範囲第 1項に記載の排ガス浄化装置において、 前記活性成分 が更に C u, C 0及び N iから選ばれた少なく とも 1つを含むことを特 徴とする内燃機関の排ガス浄化装置。
4 . 請求の範囲第 1項に記載の排ガス浄化装置において、 前記活性成分 が更に希土類金属の少なく とも 1つを含むことを特徴とする内燃機関の 排ガス浄化装置。
5 . 請求の範囲第 1項に記載の排ガス浄化装置において、 前記活性成分 が更に Pと Bの少なく とも 1つを含むことを特徴とする内燃機関の排ガ ス浄化装置。
6 . 請求の範囲第 1項に記載の排ガス浄化装置において、 前記排ガス流 路に設置された前記排ガス浄化触媒の上流側と下流側の少なく とも一方 に排ガスに含まれる H Cと C 0を燃焼する燃焼触媒を備えたことを特徴 とする内燃機関の排ガス浄化装置。
7 . 希薄燃焼運転される内燃機関から排出された排ガスを排ガス浄化触 媒に接触させることによって浄化するようにした排ガス浄化方法におい て、 前記排ガスを多孔質担体上に R h, P t及び P dから選ばれた少な く とも 1つとアル力リ金属及びアル力リ土類金属から選ばれた少なく と も 1つと M nとを有する触媒に接触させるようにしたことを特徴とする 内燃機関の排ガス浄化方法。
8. 請求の範囲第 7項に記載の排ガス浄化方法において、 前記内燃機関 の運転を希薄燃焼運転から理論空燃比運転又は燃料過剰運転に一時的に 切リ換え、 排ガスの空燃比をス卜ィキ又はリツチにして前記排ガス浄化 触媒を再生することを特徴とする内燃機関の排ガス浄化方法。
9. 請求の範囲第 7項に記載の排ガス浄化方法において、 前記排ガスを H Cと C〇を燃焼する燃焼触媒に接触させた後、 前記排ガス浄化触媒に 接触させることを特徴とする内燃機関の排ガス浄化方法。
1 0. 請求の範囲第 7項に記載の排ガス浄化方法において、 前記排ガス 浄化触媒で浄化した排ガスを更に H Cと C 0を燃焼する燃焼触媒に接触 させることを特徴とする内燃機関の排ガス浄化方法。
1 1. 多孔質担体と該担体上に担体された活性成分とを具備し、 該活性 成分が Rh, P t及び P dから選ばれた少なく とも 1つとアルカリ金属 及びアル力リ土類金属から選ばれた少なく とも 1つと Mnとを含み、 該 活性金属の担持量が前記多孔質担体 1. 5molに対し、 金属元素換算で Rhが 0.0 0 0 3— 0.0 1 mol, P tが 0.00 2— 0.0 5 moi, P d が 0.0 0 1 — 0.2niol 、 アル力リ金属とアル力リ土類金属が 1種類当 たり 0.0 5— 3 mol , M nが 0.0 5— 2 mol よりなることを特徴とす るリーン NO X浄化触媒。
1 2. 請求の範囲第 1 1項に記載のリーン NO X浄化触媒において、 前 記 R h, P t及び P dの全てを含むことを特徴とするリ一ン N 0 X浄化 触媒。
1 3. 請求の範囲第 1 1項に記載のリーン NO x浄化触媒において、 前 記活性成分が更に T i と S iの少なく とも 1つを含み、 該 T i と S iの 1種類当たりの担持量が前記多孔質担体 1.5molに対し金属元素換算で 0.0 1 — 2iaolよりなることを特徴とするリーン NO x浄化触媒。
1 4. 請求の範囲第 1 1項に記載のリーン N〇 x浄化触媒において、 前 記活性成分が更に N i, C o及び C uの少なく とも 1つを含み、 該 N i, C o及び C uの 1種類当たりの担持量が前記多孔質担体 1.5molに対し 金属元素換算で 0.0 1 — 2molよりなることを特徴とするリーン NO X 浄化触媒。
1 5. 請求の範囲第 1 1項に記載のリーン N〇 x浄化触媒において、 前 記活性成分が更に希土類金属の少なく とも 1つを含み、 該希土類金属の 1種類当たりの担持量が前記多孔質担体 1.5molに対し金属元素換算で 0.0 2 - 0.5mol よりなることを特徴とするリ一ン N〇 x浄化触媒。
1 6. 請求の範囲第 1 1項に記載のリーン NO x浄化触媒において、 前 記活性成分が更に Pと Bの少なく とも 1つを含み、 該 Pと Bの 1種類当 たりの担持量が前記多孔質担体 1.5moiに対し金属元素換算で 0.0 1 - 2mol よりなることを特徴とするリ一ン N〇 X浄化触媒。
1 7. 請求の範囲第 1 1項に記載のリーン NO X浄化触媒において、 前 記多孔質担体が基材上に担持され、 該多孔質担体の担持量が前記基材 1 リツ トルに対し 0.3 _ 4 molよりなることを特徴とするリーン NO x浄 化触媒。
PCT/JP1999/006951 1998-12-11 1999-12-10 Systeme de regulation de gaz d'echappement pour moteurs a combustion interne, procede de regulation de gaz d'echappement et catalyseur de regulation de gaz d'echappement WO2000035564A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002306627A CA2306627C (en) 1998-12-11 1999-12-10 Internal combustion engine exhaust gas purification apparatus, exhaust gas purification process and exhaust gas purification catalyst
AU16839/00A AU734673B2 (en) 1998-12-11 1999-12-10 Internal combustion engine exhaust gas purification apparatus, exhaust gas purification process and exhaust gas purification cayalyst
US09/529,636 US6630115B1 (en) 1998-12-11 1999-12-10 Exhaust emission control process for internal combustion engines
EP99959758A EP1180390A4 (en) 1998-12-11 1999-12-10 METHOD, DEVICE AND CATALYST FOR EXHAUST GAS EMISSION CONTROL IN INTERNAL COMBUSTION AS ENGINES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/352272 1998-12-11
JP35227298A JP3952617B2 (ja) 1998-12-11 1998-12-11 内燃機関の排ガス浄化装置,排ガス浄化方法及び排ガス浄化触媒

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/529,636 A-371-Of-International US6630115B1 (en) 1998-12-11 1999-12-10 Exhaust emission control process for internal combustion engines
US10/419,884 Continuation US6841511B2 (en) 1998-12-11 2003-04-22 Internal combustion engine exhaust gas purification apparatus, exhaust gas purification process and exhaust gas purification catalyst

Publications (1)

Publication Number Publication Date
WO2000035564A1 true WO2000035564A1 (fr) 2000-06-22

Family

ID=18422933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006951 WO2000035564A1 (fr) 1998-12-11 1999-12-10 Systeme de regulation de gaz d'echappement pour moteurs a combustion interne, procede de regulation de gaz d'echappement et catalyseur de regulation de gaz d'echappement

Country Status (7)

Country Link
US (2) US6630115B1 (ja)
EP (1) EP1180390A4 (ja)
JP (1) JP3952617B2 (ja)
KR (1) KR100370486B1 (ja)
AU (1) AU734673B2 (ja)
CA (1) CA2306627C (ja)
WO (1) WO2000035564A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033118A1 (en) * 2001-10-12 2003-04-24 Johnson Matthey Public Limited Company Exhaust system including hydrocarbon scr catalyst
KR100464715B1 (ko) * 2001-06-08 2005-01-06 미쓰비시 지도샤 고교(주) 배기 가스 정화용 촉매

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3715211B2 (ja) * 2000-09-07 2005-11-09 本田技研工業株式会社 内燃機関の排気浄化装置
US20040043898A1 (en) * 2000-09-08 2004-03-04 Naomi Noda Method for producing catalyst body and carrier having alumina carried thereon
JP3826357B2 (ja) * 2001-02-19 2006-09-27 トヨタ自動車株式会社 水素生成触媒及び排ガス浄化用触媒
US7067453B1 (en) * 2001-07-13 2006-06-27 Innovatek, Inc. Hydrocarbon fuel reforming catalyst and use thereof
KR101225517B1 (ko) 2002-09-13 2013-01-23 존슨 맛쎄이 퍼블릭 리미티드 컴파니 압축 점화 엔진 및 그것을 위한 배기 시스템
RU2390331C2 (ru) 2004-06-04 2010-05-27 Камурус Аб Жидкие депо-препараты
JP3852466B2 (ja) * 2004-11-30 2006-11-29 いすゞ自動車株式会社 NOx浄化システム
EP1917095B1 (en) * 2005-07-12 2012-02-08 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst and process for producing it
US7682578B2 (en) 2005-11-07 2010-03-23 Geo2 Technologies, Inc. Device for catalytically reducing exhaust
US7682577B2 (en) 2005-11-07 2010-03-23 Geo2 Technologies, Inc. Catalytic exhaust device for simplified installation or replacement
JP2007130580A (ja) * 2005-11-10 2007-05-31 Toyota Motor Corp 排ガス浄化装置及び排ガス浄化方法
US7722828B2 (en) 2005-12-30 2010-05-25 Geo2 Technologies, Inc. Catalytic fibrous exhaust system and method for catalyzing an exhaust gas
JP2012035182A (ja) * 2010-08-05 2012-02-23 Daihatsu Motor Co Ltd 触媒組成物
KR20140105527A (ko) 2011-12-05 2014-09-01 카무러스 에이비 강력한 방출-조절된 펩티드 제형
SI2877155T1 (sl) 2012-07-26 2021-04-30 Camurus Ab Opioidne formulacije
MX2017011294A (es) * 2015-03-05 2017-12-07 WATT Fuel Cell Corp Quemadores de postcombustion incluyendo metodos para hacerlos y operarlos.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0362960A2 (en) * 1988-10-05 1990-04-11 Sakai Chemical Industry Co., Ltd., Use of a catalyst composition for denitrization and denitrizing catalysts
EP0613714A2 (en) * 1993-01-11 1994-09-07 Toyota Jidosha Kabushiki Kaisha Catalyst and process for purifying exhaust gases
JPH07155604A (ja) * 1993-12-10 1995-06-20 Nissan Motor Co Ltd 排気ガス浄化用触媒およびその製造方法
JPH09103652A (ja) * 1995-10-12 1997-04-22 Nissan Motor Co Ltd 排ガス浄化方法
JPH1043591A (ja) * 1996-07-31 1998-02-17 Osaka Gas Co Ltd 脱硝触媒
JPH10118458A (ja) * 1996-10-25 1998-05-12 Hitachi Ltd 窒素酸化物の浄化触媒及び浄化方法
JP2000042369A (ja) * 1998-07-30 2000-02-15 Hitachi Ltd 内燃機関の排ガス浄化装置,排ガス浄化方法及び排ガス浄化触媒

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440874A (en) 1982-04-14 1984-04-03 Engelhard Corporation Catalyst composition and method for its manufacture
JP2784444B2 (ja) 1988-10-05 1998-08-06 堺化学工業株式会社 窒素酸化物分解触媒
DE4008371A1 (de) * 1989-03-15 1990-09-20 Riken Kk Abgasreiniger und verfahren zum reinigen von abgasen
US5290530A (en) * 1991-05-31 1994-03-01 Kabushiki Kaisha Riken Method of cleaning exhaust gas
US5143707A (en) * 1991-07-24 1992-09-01 Mobil Oil Corporation Selective catalytic reduction (SCR) of nitrogen oxides
US5473887A (en) 1991-10-03 1995-12-12 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
DE69218777T2 (de) 1991-10-14 1997-08-14 Toyota Motor Co Ltd Abgasreinigungsanlage für brennkraftmaschinen
JP3320855B2 (ja) 1993-01-11 2002-09-03 トヨタ自動車株式会社 排気ガス浄化方法
US5552128A (en) * 1993-08-03 1996-09-03 Mobil Oil Corporation Selective catalytic reduction of nitrogen oxides
JP3374569B2 (ja) * 1995-01-10 2003-02-04 株式会社日立製作所 排ガス浄化触媒および浄化方法
JP3227074B2 (ja) * 1995-05-01 2001-11-12 株式会社日立製作所 リーンバーンとストイキ対応内燃機関の排気ガス浄化用触媒及び排気ガス浄化方法
JP3977883B2 (ja) * 1996-10-03 2007-09-19 株式会社日立製作所 内燃機関用排ガス浄化触媒

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0362960A2 (en) * 1988-10-05 1990-04-11 Sakai Chemical Industry Co., Ltd., Use of a catalyst composition for denitrization and denitrizing catalysts
EP0613714A2 (en) * 1993-01-11 1994-09-07 Toyota Jidosha Kabushiki Kaisha Catalyst and process for purifying exhaust gases
JPH07155604A (ja) * 1993-12-10 1995-06-20 Nissan Motor Co Ltd 排気ガス浄化用触媒およびその製造方法
JPH09103652A (ja) * 1995-10-12 1997-04-22 Nissan Motor Co Ltd 排ガス浄化方法
JPH1043591A (ja) * 1996-07-31 1998-02-17 Osaka Gas Co Ltd 脱硝触媒
JPH10118458A (ja) * 1996-10-25 1998-05-12 Hitachi Ltd 窒素酸化物の浄化触媒及び浄化方法
JP2000042369A (ja) * 1998-07-30 2000-02-15 Hitachi Ltd 内燃機関の排ガス浄化装置,排ガス浄化方法及び排ガス浄化触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1180390A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100464715B1 (ko) * 2001-06-08 2005-01-06 미쓰비시 지도샤 고교(주) 배기 가스 정화용 촉매
WO2003033118A1 (en) * 2001-10-12 2003-04-24 Johnson Matthey Public Limited Company Exhaust system including hydrocarbon scr catalyst

Also Published As

Publication number Publication date
CA2306627C (en) 2004-07-13
AU1683900A (en) 2000-07-03
KR20010052088A (ko) 2001-06-25
EP1180390A4 (en) 2003-06-04
JP3952617B2 (ja) 2007-08-01
AU734673B2 (en) 2001-06-21
US20030202925A1 (en) 2003-10-30
US6841511B2 (en) 2005-01-11
CA2306627A1 (en) 2000-06-11
KR100370486B1 (ko) 2003-02-11
JP2000176249A (ja) 2000-06-27
EP1180390A1 (en) 2002-02-20
US6630115B1 (en) 2003-10-07

Similar Documents

Publication Publication Date Title
US8752367B2 (en) Exhaust system for lean burn IC engine including particulate filter and NOx absorbent
KR100290272B1 (ko) 내연기관의 배기 가스 정화 장치 및 내연기관의 배기 가스 정화촉매
JP5826285B2 (ja) NOx吸収触媒
US7375054B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP4075292B2 (ja) パティキュレート浄化触媒
JP3758601B2 (ja) 吸蔵還元型NOx浄化用触媒
US7832203B2 (en) Exhaust system for a lean burn internal combustion engine
WO2000035564A1 (fr) Systeme de regulation de gaz d&#39;echappement pour moteurs a combustion interne, procede de regulation de gaz d&#39;echappement et catalyseur de regulation de gaz d&#39;echappement
JP2006231204A (ja) 排ガス浄化触媒
WO2003037507A1 (en) Exhaust line for an internal combustion engine
JP2007239616A (ja) 排ガスの浄化装置及び排ガスの浄化方法,浄化触媒
JP3965793B2 (ja) 内燃機関の排ガス浄化装置,排ガス浄化方法及び排ガス浄化触媒
JP2003144926A (ja) 内燃機関の排ガス浄化触媒、浄化方法及び浄化装置
JP4352586B2 (ja) 排ガス浄化触媒を有する内燃機関
JP3925015B2 (ja) 内燃機関の排ガスの浄化装置,浄化方法及び浄化触媒
JP4254208B2 (ja) 内燃機関の排ガス浄化装置,浄化方法及び触媒
JP4039128B2 (ja) 内燃機関の排ガス浄化触媒と排ガス浄化方法及び排ガス浄化装置
JPH11169708A (ja) 内燃機関の排ガス浄化装置
JP4073168B2 (ja) 内燃機関の排ガス浄化方法、排ガス浄化装置、及び排ガス浄化触媒
JP3825264B2 (ja) 内燃機関排ガス浄化触媒とそれを用いた内燃機関及びその排ガス浄化方法
JP4333612B2 (ja) 排ガスの浄化装置および排ガス浄化触媒
JP2003200061A (ja) 排ガス浄化触媒及び排ガス浄化装置
JP2005169357A (ja) 排ガス浄化システム
JP3661555B2 (ja) 排気ガス浄化システム
JP2006104966A (ja) 内燃機関の排ガス浄化装置及び排ガス浄化方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2000 16839

Country of ref document: AU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1999959758

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 16839/00

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2000 2000704002

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2306627

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 09529636

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWG Wipo information: grant in national office

Ref document number: 16839/00

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1999959758

Country of ref document: EP