WO2000026325A1 - Huile combustible pour turbine a gaz, son procede de production et procede de production d'energie - Google Patents

Huile combustible pour turbine a gaz, son procede de production et procede de production d'energie Download PDF

Info

Publication number
WO2000026325A1
WO2000026325A1 PCT/JP1999/004927 JP9904927W WO0026325A1 WO 2000026325 A1 WO2000026325 A1 WO 2000026325A1 JP 9904927 W JP9904927 W JP 9904927W WO 0026325 A1 WO0026325 A1 WO 0026325A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
gas turbine
turbine fuel
fuel oil
heavy
Prior art date
Application number
PCT/JP1999/004927
Other languages
English (en)
French (fr)
Inventor
Tsuyoshi Okada
Yoshinori Mashiko
Shinichi Tokuda
Tomoyoshi Sasaki
Kozo Imura
Makoto Inomata
Toshio Tanuma
Original Assignee
Jgc Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jgc Corporation filed Critical Jgc Corporation
Priority to EP99943259A priority Critical patent/EP1130080A4/en
Priority to US09/807,696 priority patent/US7276151B1/en
Priority to BR9914885-4A priority patent/BR9914885A/pt
Publication of WO2000026325A1 publication Critical patent/WO2000026325A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/14Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only
    • C10G65/16Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only including only refining steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1033Oil well production fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/302Viscosity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4025Yield

Definitions

  • the present invention relates to a gas turbine fuel oil, a method for producing the same, and a power generation method.
  • the present invention relates to, for example, a gas turbine fuel oil used as a fuel for gas turbine power generation, a method for producing the same, and a power generation method using the gas turbine fuel oil.
  • the technology of the latter publication uses a waste heat of a gas turbine to heat a low-sulfur crude oil, and then causes hydrogen to act on the low-sulfur crude oil to reduce the content of sulfur and heavy metals in the crude oil to thereby refine the refined crude oil.
  • This is a method for recovering oil and using it as fuel oil for gas turbines.
  • the present invention has been made under such circumstances, and a technology for producing a gas turbine fuel oil capable of obtaining a gas turbine fuel oil at a high yield with respect to a feedstock oil, and the use of the fuel oil.
  • the purpose of the present invention is to provide a power generation method.
  • the method for producing gas turbine fuel oil of the present invention is obtained by an atmospheric distillation step in which crude oil as a feed oil is subjected to atmospheric distillation to separate it into a light oil and an atmospheric residual oil; A first hydrotreating step in which the light oil is collectively brought into contact with pressurized hydrogen in the presence of a catalyst to remove impurities and obtain a refined oil; A first oil separation step selected from a vacuum distillation step, a solvent removal step, a thermal cracking step and a steam distillation step, and the light oil obtained in the first separation step in the presence of a catalyst. A second hydrogenation step of performing a de-impurity treatment by contacting with hydrogen under pressure in the presence to obtain a refined oil, wherein the first and second hydrogenation steps are performed.
  • Gas turbine fuel oil has a viscosity of 4 cSt or less at 100 ° C, an alkali metal of 1 ppm or less, and a lead of 1 ppm or less.
  • V is 0. 5 p p m or less, C a following 2 p p m, sulfur is not more than 5 0 0 p p m, and wherein the yield with respect to the feed oil is 6 more than 5%.
  • the present invention further comprises a second separation step selected from a solvent removal step and a pyrolysis step, wherein the heavy oil obtained in the first separation step is further separated into light oil and heavy oil,
  • the light oil obtained in the second separation step may be subjected to a third hydrotreating step.
  • at least two of the first hydrotreating step, the second hydrotreating step, and the third hydrotreating step can be a common step. According to the present invention, since the first hydrotreating step is performed after the normal pressure distillation step, it is possible to boil up the light pressure oil without worrying about the amount of sulfur or metal that enters the light oil.
  • the processing conditions are determined so that even in the first separation step, a large amount of light oil can be obtained without regard to the amount of sulfur and metal. Can be For this reason, gas turbine fuel oil can be obtained with a high yield based on the feedstock oil.
  • the first hydrotreating step since the target substance is gas turbine fuel oil, the first hydrotreating step only needs to hydrotreat a plurality of types of light oil obtained from the atmospheric distillation column at once, and by doing so, Equipment costs can be kept low.
  • the viscosity of the gas turbine fuel oil is 4 cSt or less at 100 ° C, the combustibility is good, and if the metal and sulfur contents are extremely small as described above, the combustion temperature For example, high-temperature combustion of about 130 ° C. can be performed.
  • the present invention also provides a heavy oil obtained in the first separation step, which is brought into contact with pressurized hydrogen in the presence of a catalyst to remove impurities and to partially decompose the heavy oil to obtain a purified oil And a fourth hydrotreating step for obtaining heavy oil.
  • the refined oil obtained in the fourth hydrotreating step may be used as a gas turbine fuel oil.
  • the above-mentioned first separation step may be replaced with a hydrotreating step (fifth hydrotreating step), in which case the heavy oil obtained in the fifth hydrotreating step is further lightened.
  • a hydrotreating step (fifth hydrotreating step), in which case the heavy oil obtained in the fifth hydrotreating step is further lightened.
  • It includes a third separation step selected from a distillation step, a solvent removal step, and a pyrolysis step in which oil and heavy oil are separated, and the light oil obtained in this third separation step is used as gas turbine fuel oil. May be used.
  • the gas turbine fuel oil obtained as described above is further distilled at normal pressure to obtain a light gas turbine fuel oil and a gas turbine fuel oil heavier than the gas turbine fuel oil. Is also good.
  • the heavy oil obtained in the final separation step or the heavy oil obtained in the fourth hydrotreating step among the above separation steps can be used as fuel oil for a boiler.
  • the raw material of hydrogen is not particularly limited, but the heavy oil obtained based on the raw oil, for example, the heavy oil obtained in the first separation step is partially oxidized by oxygen. Hydrogen is generated, and this hydrogen can be used as a raw material used in the hydrotreating process.
  • the present invention may also use a heavy crude oil composed of an atmospheric residual oil obtained by atmospheric distillation of crude oil and / or heavy oil as a starting material.
  • a first separation step selected from vacuum distillation, solvent removal, thermal cracking, and steam distillation steps for separating light oil and heavy oil, and a first separation step.
  • the method includes a second separation step selected from solvent desorption and thermal cracking steps for further separating the heavy oil obtained in the first separation step into light oil and heavy oil.
  • the light oil obtained in the second separation step may be subjected to a third hydrotreating step to obtain a refined oil, which may be used as a gas turbine fuel oil.
  • the heavy oil obtained in the first separation step is brought into contact with pressurized hydrogen in the presence of a catalyst to perform a de-impurity treatment, and a part of the heavy oil is decomposed to obtain a purified oil and heavy oil.
  • It may include a fourth hydrotreating step for obtaining oil and the refined oil obtained in the fourth hydrotreating step may be used as a gas turbine fuel oil.
  • a heavy crude oil consisting of atmospheric residual oil obtained by distilling crude oil under normal pressure and Z or heavy oil is brought into contact with pressurized hydrogen in the presence of a catalyst to carry out a de-impurity treatment and a heavy impurity treatment.
  • Gas turbine fuel oil which is a refined oil obtained in the fifth hydrotreating step, includes a fifth hydrotreating step of decomposing a part of the heavy oil to obtain a refined oil and a heavy oil.
  • the heavy oil obtained in the fifth hydrotreating step is further separated into light oil and heavy oil, and the third separation is selected from vacuum distillation, solvent removal, and pyrolysis.
  • the light oil obtained in the third separation step may be used as gas turbine fuel oil!
  • crude oil is subjected to normal pressure distillation, the light oil is subjected to hydrogenation treatment, and the normal pressure residue is subjected to separation treatment or hydrogenation treatment. Hydrogen treatment is performed, and the refined oil is used as gas turbine fuel oil. Therefore, high quality gas turbine fuel oil can be obtained with high yield.
  • the present invention includes a gas turbine fuel oil produced by the above-described production method, which is also included in the scope of rights, further comprising a step of driving a gas turbine using the gas turbine fuel oil as a fuel to generate electric power;
  • FIG. 1 is an explanatory diagram showing an example of a system for carrying out the method of the present invention.
  • FIG. 2 is an explanatory diagram showing another example of a method for removing light oil from an atmospheric distillation column in the above system.
  • Fig. 4 is an explanatory diagram showing an example of a main part of a hydrogen plant
  • Fig. 5 is an explanatory diagram showing another example of a system for implementing the method of the present invention.
  • FIG. 6 is an explanatory view showing still another example of the system for implementing the method of the present invention
  • FIG. 7 is an explanatory view showing still another example of the system for implementing the method of the present invention, FIG. FIG.
  • FIG. 9 is an explanatory diagram showing another example of the system for implementing the method of the present invention other than the above example.
  • FIG. 9 is a diagram showing the system for implementing the method of the present invention.
  • FIG. 10 is an explanatory diagram showing another example, and
  • FIG. 10 is an explanatory diagram showing another example other than the above example of the system for implementing the method of the present invention.
  • FIG. 11 is a diagram showing the method of the present invention.
  • FIG. 12 is an explanatory view showing another example of the system for carrying out the present invention other than the above example.
  • FIG. 12 is an explanatory view showing an outline of an example of the partial oxidation equipment shown in FIG. 10, and
  • FIG. 13 is the present invention.
  • FIG. 3 is an explanatory diagram showing an example of a method of using gas turbine fuel oil obtained in Step (a).
  • FIG. 1 is an explanatory view showing a system for carrying out the method for producing gas turbine fuel oil of the present invention.
  • the first to fifth hydrotreating steps are described according to the stage of performing the force treatment in which the hydrotreating step is performed.
  • the gas turbine fuel oil obtained in these hydrotreating steps is generally used as a mixture, and in each of the embodiments, the power will be described by taking the case of mixing as an example. It may be used as a gas turbine fuel oil.
  • Crude oil is used as the feedstock oil 1.
  • the feedstock oil is first desalinated in the desalination unit 11 under the conditions used in conventional oil refining facilities. This process mixes the feedstock oil with water, transfers salt and mud to the aqueous phase, and removes alkali metals that can adversely affect the gas turbine.
  • the desalted feedstock is sent to the atmospheric distillation column 2, for example, a light oil 21 with a boiling point lower than 34 ° C to 37 ° C and a residual oil with a boiling point higher than that (atmospheric pressure). (Residual oil).
  • the separated light oil 21 is sent to the first hydrotreating unit 3.
  • distillates in each boiling point region are taken out from a plurality of outlets as in a general atmospheric distillation column 2 (in the example of Fig. 2, they are taken out from four outlets), and these are combined to form hydrogen.
  • processing apparatus sends to 3, it may be subjected to hydrotreating in a lump here c
  • the hydrotreating technology applied in the system of the present invention is different from the hydrotreating process in a refinery that produces automobile fuel.For example, in automobile fuel oil, coloring of oil during hydrogenation becomes a problem, and it is suppressed. Therefore, it can be operated at low temperature and high pressure, but the gas turbine fuel oil has no problem with the hue, so it can be operated at high temperature, and thus the cost of the reactor can be reduced by the low pressure of 313 ⁇ 4. be able to.
  • Light metals such as vanadium, nickel, lead, and other heavy metals contained in light oil 21 that contain hydrocarbon molecules (metals are extremely small because they are mainly contained in heavy oil )
  • sulfur and nitrogen Means that when light oil 21 and hydrogen gas pass through the catalyst layer 32, they react with hydrogen and are desorbed from hydrocarbon molecules, metals are adsorbed on the catalyst surface, and sulfur and nitrogen react with hydrogen.
  • the alkali metal is dissolved in some of the water contained in the oil, or exists in the form of a salt, but is adsorbed on the catalyst surface.
  • a mixed fluid of high-pressure gas and oil for example, 30 to 80 kg / cm 2 is discharged from the bottom of the reaction tower 31, and hydrogen gas is separated in the high-pressure tank 34.
  • the hydrogen gas is pressurized by the compressor CP and circulated into the reaction tower 31.
  • the liquid separated in the high-pressure tank 34 is sent to the low-pressure tank 35 via the pressure regulating valve PV, and the pressure is reduced, for example, by about 10% to 30%.
  • Liquid gases such as hydrogen sulfide and ammonia dissolved therein evaporate.
  • 3 5a is a pump.
  • the gas separated in the low-pressure tank 35 contains hydrogenated compounds such as hydrogen sulfide and ammonia in addition to unreacted hydrogen gas.
  • Light oil from generated methane and liquefied petroleum gas fraction to light naphtha (Light oil here includes J, which is a lighter component than light oil 21.
  • Tank 3 The gas separated in 5 is subjected to an impurity removing section 36 to remove hydrogen sulfide and ammonia contained in the gas.
  • the impurity removing section 36 is provided with a layer of an absorbing solution for absorbing, for example, hydrogen sulfide and ammonia, and the impurities are removed by passing gas through the layer.
  • the gas from which the impurities have been removed is unreacted hydrogen gas.
  • a mixed gas of light oil having a small number of carbon atoms, such as methane is sent to the hydrogen plant 4, and the light oil in the mixed gas 42 is used as a raw material for producing hydrogen gas.
  • the hydrogen gas supplied to the reaction tower 31 is circulated and used.
  • the amount of hydrogen gas in the gas in the circuit 37 gradually decreases, while light oil such as methane gradually increases.
  • hydrogen gas 41 is replenished from the hydrogen plant 4 to the circulation path 37 to ensure that the hydrogenation treatment is performed.
  • FIG. 4 is a diagram showing a main part of the hydrogen plant 4.
  • This hydrogen plant 4 is provided with a reaction tube 44 in a combustion furnace 43 for burning fuel gas, and passes light oil such as methane and steam through the reaction tube 44 to convert the light oil into steam. And produce hydrogen together with carbon monoxide. Then, carbon monoxide and unreacted light oil are converted or removed from this gas to obtain hydrogen gas.
  • PSA pressure fluctuation adsorption separation method
  • TSA temperature fluctuation adsorption separation method
  • cryogenic separation method or membrane separation method can be used for the removal treatment (purification) performed here.
  • the first to fifth hydrotreating steps of the present invention are carried out by bringing into contact with pressurized hydrogen in the presence of a catalyst, 1) hydrodesulfurization for the purpose of removing impurities such as sulfur compounds, 2)
  • the first hydrotreating step may include any of the following reactions: hydrorefining for the purpose of improving properties by the saturation of unsaturated hydrocarbons, etc., and 3) hydrocracking for the purpose of light-weight oil.
  • the main purpose of the above is 1), the second and third hydrotreating steps are 1) and 2) as the main purpose, and the fourth and fifth hydrotreating steps are any of 1) to 3). Is also its main purpose.
  • the naphtha, kerosene and oil etc. in the light oil fraction are separately treated to hydrotreat a fraction with a narrow boiling point range.
  • all of the fractions distilled by atmospheric distillation are subjected to hydrotreating at once. Therefore, the amount of hydrotreating is greatly increased, which is significantly different from the conventional method.
  • a conventionally known hydrotreating catalyst can be arbitrarily selected.
  • a catalyst in which Ni, Mo, and Co sulfides are supported on alumina is preferable: Arabian.
  • the pressure of hydrogen gas is, for example, 30 to 50 kg / cm.
  • the sulfur concentration of the gas turbine fuel oil by setting 2 4 5 0 ppm or less, although the nitrogen concentration can be 3 0 ppm or less, which increases the pressure of the hydrogen gas to 4 0 ⁇ 7 ⁇ kg / cm 2 If the collision energy of hydrogen to the oil component molecules increases, the sulfur concentration and the nitrogen concentration can be suppressed to 200 ppm or less and 20 ppm or less, respectively.
  • the residual oil (atmospheric pressure residual oil) 22 separated in the atmospheric pressure distillation column 2 is sent to the low pressure distillation column 5 where it is a light component of the atmospheric pressure residual oil, for example, having a boiling point of 5 6 at atmospheric pressure.
  • Light oil lower than 5 C C (vacuum light oil) 51 and heavy oil (heavy oil whose atmospheric boiling point exceeds that) (vacuum residue) 52 are separated.
  • the light oil 51 is sent to the second hydrotreating unit 6, where it is hydrotreated.
  • the hydrogen gas used in the second hydrotreating device 6 is supplied from the hydrogen plant 4, and the gas having a low carbon number such as methane obtained in the second hydrotreating device 6 is supplied to the hydrogen plant 4. To be sent as production raw materials. Assuming that the pressure of hydrogen gas in the second hydrotreating unit 6 is 30 to 60 kg Z cm 2 , when the aforementioned Arabian light oil is used as a raw material, the sulfur concentration and the nitrogen concentration are respectively reduced. 2 0 0 0 pressure ppm hereinafter and 2 0 0 ppm force hydrogen gas can be below 5 0 to 1 0 0 kg / cm 2 Tosureba sulfur concentration and nitrogen concentration respectively 1 0 0 0 ppm or less And 100 ppm or lessc
  • the light oil thus obtained in the second hydrotreating step is mixed with the light oil (gas turbine fuel oil) obtained in the first hydrotreating unit 3 (mixing step) and used as gas turbine fuel oil. I do.
  • the heavy oil (vacuum residue) 52 separated in the vacuum distillation tower 5 is a solvent degreasing unit (solvent extraction unit) 7 1
  • the degreasing oil 7 which is light oil in 7 1 and the degreasing oil which is heavy oil 7 This separation is carried out, for example, from the upper and lower parts of the column, respectively. And the solvent are supplied in countercurrent contact with each other, and light oil and heavy oil in the vacuum residual oil 52 are separated by a difference in solubility in the solvent.
  • the separated deoiled oil 72 is mixed with the light oil 51 from the low-pressure distillation column 5 and supplied to the second hydrotreating unit 6.
  • the residual residue oil 7 3 is used as a heavy oil feedstock or boiler fuel oil after its viscosity is adjusted as necessary.
  • the processing performed in the first hydrogenation apparatus 3 and the processing performed in the second hydrogenation apparatus are
  • the first and second hydrotreating steps correspond to the first and second hydrotreating steps, respectively.
  • gas turbine fuel oil that satisfies the component rules described in the section of “Disclosure of the Invention” can be obtained. Since the hydrogenation process is performed after each of the atmospheric distillation process and the reduced pressure distillation process, each distillation process can be fired without worrying about the amount of sulfur and heavy metals.
  • gas turbine fuel oil can be obtained in a high yield of at least 65%, preferably 70 to 90% (weight ratio) based on crude oil. it can.
  • a heavy feedstock consisting of atmospheric distillation residue and Z or heavy oil is used as the starting feedstock, 40% or more, preferably 40 to 75% (weight Ratio) to obtain gas turbine fuel oil.
  • distillation can be carried out at a ratio of light oil (60) and atmospheric residue (40).
  • the pressure residue (40) can be distilled in the vacuum distillation tower 5 at a ratio of light oil (20) and vacuum residue (20).
  • the reduced pressure residue (20) can be treated in the solvent degreasing device 71 at a ratio of deoiled oil (10) and desorbed residue (10).
  • the gas turbine fuel oil will yield a total of 90% of light oil (60), reduced pressure light oil (20) and deoiled oil (10). If you do not perform the removal process Even at a yield of 80%.
  • the gas turbine fuel oil has a yield of 65 ° / 0 or more, preferably 70 to 90%. You can get c
  • the starting material is an atmospheric residual oil and a heavy feed oil (100) composed of Z or heavy oil
  • the light oil (50) and the vacuum residue (50) The residue (50) can be further deoiled (25) and the residual oil (25) can be obtained in the solvent dewatering treatment device 71.
  • the starting material for heavy feedstock is gas turbine fuel oil with a yield of 75% in total of decompressed light oil (50) and solvent degreasing oil (25). Gas turbine fuel oil can be obtained with a yield of 50%.
  • FIG. 1 the case where heavy oil is desalted in the desalting section 12 and supplied to the vacuum distillation column 5 is indicated by a dotted line.
  • heavy oil may be supplied to the vacuum distillation column 5 as shown by the dotted line in FIG. 1 or heavy oil may be supplied to the solvent dewatering device 71 (not shown).
  • Such a supply does not affect a series of steps performed by supplying the crude oil to the atmospheric distillation column 2 of the present invention.
  • the amount of gas turbine fuel oil obtained based on crude oil has an effect on the yield for the feedstock oil.
  • the amount of gas turbine fuel oil only increases in response to the additional feedstock (heavy oil), and this does not depart from the scope of the present invention.
  • the light oil obtained in the second separation step that is, the deoiled oil 72 obtained in the solvent dewatering device 71 is limited to the treatment in the second hydrotreating device 6.
  • the treatment may be performed by a separately provided third hydrotreating apparatus 60 (third hydrotreating step). If the second hydrotreating step and the third hydrotreating step are made common as in the embodiment of FIG. 1, the reaction conditions must be adjusted to the heavy oil side, so 5 0 ⁇ 1 5 0 kg Z cm 2, and the separate hydrogen pressure intends row becomes respectively for example 5 0 ⁇ 8 0 kg Z cm 2, 8 0 ⁇ 2 0 0 kg Z cm 2. If it is performed separately, the throughput in the third hydrotreating step, where the reaction conditions are severe, is small.Therefore, the advantage that the reaction vessel that can withstand high pressure can be miniaturized has the advantage If you adopt an advantageous configuration.
  • the first and third hydrogenation steps may be a common step
  • the first to third hydrotreating steps may be a common step.
  • the method of performing the first separation step of separating the residual oil 22 of the atmospheric distillation apparatus 2 is not limited to vacuum distillation, but may be a steam distillation method, a solvent stripping method, or a method using a residual oil 22 for example.
  • a thermal cracking method of heating to 30 to 49 ° C. to cut hydrocarbon molecules by thermal energy to obtain light oil and heavy oil may be used.
  • FIG. 6 is a view showing an embodiment in which the first separation step is carried out by a solvent stripping method. Atmospheric pressure residual oil 22 is supplied to a solvent stripping device 81, and is described in the previous embodiment.
  • the light oil (solvent-removed oil) 82 and the light heavy oil (solvent-removed oil) 83 are the lightest oils among the atmospheric residual oils 22 and the light oil 82 is It is supplied to the hydrotreating unit 6 of 2.
  • FIG. 7 is a diagram showing such an embodiment, in which the heavy oil (residual residue oil) 83 separated by the solvent degreasing device 81 is transferred to the fourth hydrotreating device 91. It is supplied and separated into light oil 92 and heavy oil 93.
  • the fourth hydrotreating device 91 is provided at the subsequent stage of the device shown in FIG.
  • the gas turbine fuel oil is obtained also from the heavy oil separated in the first separation step (in this example, the solvent removal step) including the vacuum distillation apparatus. Therefore, there is an advantage that the recovery rate of gas turbine fuel oil from the feedstock oil is higher.In addition, a part of the feedstock oil is mixed with the heavy oil 83 It may be supplied to the hydrotreating device 91 of 4.
  • the residual oil 22 separated in the atmospheric distillation step is supplied to a fifth hydrotreating apparatus 101, where the fifth oil is treated. Is separated into light oil 102 and heavy oil 103 by mixing the light oil 102 with the gas turbine fuel oil obtained in the first hydrotreating unit 3. You can use it.
  • the fifth hydrotreating device 101 also includes a distillation device as in the fourth hydrotreating device 91.
  • the heavy oil 103 is supplied to the solvent degreasing device 111, where it is separated into light oil (degreasing oil) 112 and heavy oil (drag residue) 113.
  • the separated light oil 1 1 2 is used as a gas turbine fuel oil, for example, by mixing with the light oil 1 0 2 obtained in the fifth hydrotreating unit 101, and the heavy oil 1 13 Used as boiler fuel.
  • the third separation step is not limited to the solvent removal step, and may be the above-described thermal decomposition step or reduced-pressure distillation step. Even in such an embodiment, the recovery rate of the gas turbine fuel oil from the feed oil can be 65 ° / 0 or more, preferably 70 to 90%.
  • the fourth or fifth hydrotreating unit 91 (101) described in Figs. 7 and 8 light oil (gas) such as methane produced here is also treated with hydrogen plan. Sent to 4 and used as a raw material for producing hydrogen gas.
  • the reaction conditions for hydrotreating are set according to the heavy oil in the feedstock.
  • the heavy oil corresponds to light oil (vacuum light oil) 51.
  • vacuum distillation is taken as an example of the first separation step, but the invention is not limited to this, and the light oil obtained in the first separation step by another process and the light oil 21 may be used.
  • the hydroprocessing unit 61 may perform batch processing.
  • sulfur pressure of hydrogen gas for example 3 0 ⁇ 6 0 kg / cm 2 by Ri gas turbine fuel oil to be set concentration 5 0 0 ppm or less, although the nitrogen concentration can be under 5 0 ppm or less, 0 5 0-1 0 the pressure of the hydrogen gas kg Z cm 2 to raise that if the sulfur concentration and nitrogen concentration respectively 3 It can be suppressed to below 0 ppm and below 30 ppm.
  • the refined oil obtained by batch processing in the hydrotreating unit 61 as described above can be used as a + partition gas turbine fuel oil, but as shown in FIG. Is distilled in an atmospheric distillation column 62 at, for example, 350 ° C., and the obtained light oil is purified to a high quality.
  • High quality (light) gas turbine fuel oil and residual oil may be used as heavier gas turbine fuel oil than its higher quality c
  • the heavy oil obtained in the above-described first separation step, second separation step and Z or the third separation step is partially oxidized with oxygen gas to generate hydrogen, and the hydrogen is converted to hydrogen. It may be used in a chemical treatment device.
  • This hydrotreating apparatus may be a hydrotreating apparatus used in the first to fourth hydrotreating steps.
  • FIG. 11 shows an example of such a method, in which the residual oil from the solvent dewatering device 81 is partially oxidized, and the hydrogen obtained here is converted into the first hydrotreating device 3 and the second hydrogen. The case where it supplies to the chemical treatment apparatus 6 is shown.
  • 63 is an oxygen plant that extracts oxygen from air
  • 64 is a partial oxidation unit.
  • the heavy oil to be partially oxidized is not limited to the solvent desorption device 81, but may be the residual oil obtained in the first separation step in another process such as the distillation column 5, or the second oil.
  • the heavy oil obtained in the third separation step may be used.
  • FIG. 12 is a diagram schematically showing an example of the partially oxidized rice paddy 64.
  • heavy oil and high-pressure steam are pre-heated and injected together with oxygen into a reaction furnace 65, for example, at a temperature of 1200 to 150 ° C. and 2 to 85 kg Z cm 2 .
  • a gas consisting mainly of CO and H2 is generated by a partial oxidation reaction under process conditions.
  • This gas is then quenched with water, for example, to 200-26 (TC) in a quench chamber at the bottom of the reactor 65, where most of the unreacted carbon is removed and
  • the required steam is supplied to the gas, which is sent to a washing tower 66 to completely remove the small amount of unreacted carbon, and further sent to a CO converter 67 to, for example, cobalt by reaction with steam residual CO by Ribuden based catalyst converted into C_ ⁇ 2.
  • the gas turbine fuel oil obtained by the present invention can be used, for example, for power generation, and an example is shown in FIG.
  • Gas turbine fuel oil is burned by a combustion nozzle and The gas turbine 201 is driven by the combustion gas, and electric power is extracted from the generator 202.
  • the high-temperature exhaust gas discharged from the gas turbine 201 is supplied to an exhaust heat recovery boiler 203 to generate steam by the heat of the exhaust gas.
  • the steam drives the steam turbine 204 by this steam, and power is extracted from the generator 205. If power is generated in this way, the exhaust heat of gas turbine fuel oil can be effectively used, and power generation can be performed with high efficiency.
  • Gas turbine fuel oil was manufactured using the system shown in Fig. 1 using Arabian light crude oil (S content: 1.77 weight./.), Which is the easiest to procure in the market.
  • S content 1.77 weight./.
  • the atmospheric distillation step light oil 21 having a boiling point lower than 350 ° C and heavy oil 22 having a higher boiling point are separated into two, and the pressure of hydrogen gas in the first hydrotreating step is raised to 45 5
  • the gas turbine fuel oil was obtained at a setting of kg Z cm 2 .
  • a gas turbine fuel oil was produced by using Arabian light oil as a crude oil according to the description in Japanese Patent Application Laid-Open No. 6-207179-a low-sulfur crude oil in which the salt concentration was adjusted to 0.5 ppm or less. Is used to produce gas turbine fuel oil of 0.05 wt ° / 0 or less.
  • Arabian's light oil has a high sulfur content to be defined as a low-sulfur crude oil, but is currently the most stable crude oil available on the market. Based on the above, a petroleum fraction having a sulfur concentration of 0.05 wt% or less was separated by a distillation method.
  • Gas turbine fuel oil from this gazette technology is limited to light naphtha to kerosene fractions in the boiling range up to 245 ° C. Alkali metals, alkaline earth metals, V and lead are not detected, and sulfur concentration was about 470 ppm and the viscosity was 0.3 cSt at 100 ° C, but the recovery rate of gas turbine fuel oil to feedstock was 24%, which was extremely low recovery.
  • Alkali metals, alkaline earth metals, V and lead are not detected, and sulfur concentration was about 470 ppm and the viscosity was 0.3 cSt at 100 ° C, but the recovery rate of gas turbine fuel oil to feedstock was 24%, which was extremely low recovery.
  • Example 2 The simulation was performed under the same conditions as in Example 1 except that the in-house consumption rate of the refined blunt was 3%.
  • the supply of crude oil to the refinery plant was 100 units in terms of calories, and the final amount of power recovery was calculated, only 39.5 units of power energy could be recovered in terms of calories. It turned out to be significantly inferior in terms of use.
  • Oman crude oil which is a relatively low-sulfur crude oil in the Middle East, was used to produce gas turbine fuel oil.
  • Oman crude oil has a sulfur concentration of 0.94 wt% and corresponds to the low sulfur crude oil described in Japanese Patent Application Laid-Open No. 6-207179.
  • light oil 21 with a boiling point lower than 350 ° C and heavy oil 22 with a higher boiling point are separated into two, and the pressure of hydrogen gas in the first hydrotreating step is reduced to 4
  • a gas turbine fuel oil was obtained at a setting of 0 kg / cm 2 .
  • the boiling point is 51, which is light oil whose boiling point (boiling point at normal pressure) is lower than 565 ° C.
  • the pressure of the hydrogen gas in the second hydrotreating is set to 5 0 kg Z cm 2 to obtain a gas turbine fuel oil
  • the first hydrotreating It was mixed with the obtained gas turbine fuel oil.
  • gas turbine fuel oil, no alkali metal, alkaline earth metal, V and lead were detected, the sulfur concentration was approximately 410 ppm, and the viscosity was 1.0 at 100 ° C. 1 c St.
  • the yield of gas turbine fuel oil based on the feed oil was 85%. This gas turbine fuel oil could be used in a gas turbine with a gas turbine inlet temperature of 130 ° C.
  • the simulation was performed on the assumption that all energy from crude oil would be converted to electric power (gas turbine and boiler power generation).
  • the on-site consumption rate at the refining plant was set at 4%, and the combined cycle gas turbine power generation efficiency was set at 49% and the boiler power generation efficiency at 38%.
  • the supply of crude oil to the refinery plant was set at 100 units in terms of calories, and the final amount of power recovery was calculated. As a result, 45.8 units of power energy could be recovered in terms of calories.
  • a gas turbine fuel oil was produced using Oman crude oil as an example in the same manner as in Example 2 according to the technique disclosed in JP-A-6-207179.
  • the production method was the same as in Comparative Example 1, and a petroleum fraction having a sulfur concentration of 0.05 wt% or less was separated from the crude oil by a distillation method based on JP-A-6-207179.
  • Gas turbine fuel oil from this publication is limited to light naphtha to kerosene fractions in the boiling point range up to 250 ° C. Alkaline metals, alkaline earth metals, V and lead are not detected, and sulfur concentration Was approximately 49 ppm and the viscosity was 0.45 cSt at 100 ° C.
  • the yield of distillate separated gas turbine fuel oil was as high as 35%. Low recovery.
  • Example 2 The simulation was performed under the same conditions as in Example 2 except that the in-house consumption rate in the refined blunt was 3%.
  • the crude oil supply to the refining plant was calculated as 100 units in terms of calories, and the final amount of power recovery was calculated.As a result, only 40.7 units of power energy could be recovered in terms of calories, and it was a low-sulfur crude oil. Even compared to the present invention It turned out to be significantly inferior in terms of effective energy use c
  • crude oil is subjected to normal pressure distillation, the light oil is subjected to hydrogenation treatment, and the normal pressure residue is subjected to separation treatment or hydrogenation treatment. Since the oil is hydrotreated and the refined oil is used as gas turbine fuel oil, high quality gas turbine fuel oil can be obtained in high yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

7
明細書 ガスタ一ビン燃料油及びその製造方法並びに発電方法 技術分野
本発明は、 例えばガスタービン発電の燃料として用いられるガスタービン燃料 油、 その製造方法及びガスタービン燃料油を用いた発電方法に関する。 背景技術
一般に石油火力発電においては、 原油及び Zまたは重油をボイラーの燃料とし て高圧スチームを発生させ、これにより蒸気タ一ビンを回して発電を行っている。 しかしながらこのシステムは発電効率が低く、 現在では高効率大型油焚きボイラ 一も開発されているが、 発電効率としては 4 0 %前後にとどまつているのが現状 で、 大部分のエネルギーは回収されずに温室ガスとして放出されている。 また同 システムからの排ガス中には一定量の S O x が存在し、排煙脱硫処理はされてい るものの、 一部分は大気へ放出され環境への影響が深刻化している。
一方、 天然ガスを熱源としてガスタービンを回して発電し、 ガスタービンの高 温排ガスから排熱を回収してスチームを発生し、 スチームタービンを回して発電 を行うガスタービンコンバインドサイクル発電システムがある。 このシステムは 発電効率が高くかつ発電単位当たりの C〇2発生量が少なく、 排煙中の S O x 、 N O x の排出量も極めて少ないため、 注目されつつある。 ところで天然ガスを原 料とすると、 ガス田からパイプラインで発電設備まで輸送する力 または L N G を貯蔵、 気化後、 ガスタ一ビンで燃焼しなければならず設備コストが高いという 問題がある。
このようなことから原油を原料としてガスタ一ビンの燃料油を製造する方法が 特開平 6— 2 0 7 1 7 9号公報及び特開平 6 _ 2 0 9 6 0 0号公報に記載されて レ、る。 前者の公報の技術は、 塩分含有量を 0 . 5 p p m以下に調整した低硫黄原 油を常圧蒸留または減圧蒸留で分離し、 硫黄含有量 0 . 0 5重量%以下の低沸点 留分からなるガスタービン燃料油を製造する方法である。 また後者の公報の技術 は、 ガスタービンの排熱を利用して低硫黄原油を加熱し、 次いでこの低硫黄原油 に水素を作用させ、 原油中の硫黄及び重金属の含有量を低減させて精製原油を回 収し、 これをガスタービンの燃料油とする方法である。
ところで、 環境問題への配慮から、 排煙中の硫黄化合物の量を極力抑えること が必要となってきている。これは排煙脱硫装置を設けることにより解決できる力 ガスタ一ビン燃料油を用いて発電を行う場合、 排煙脱硫装置を設けると圧力損失 により発電効率が低くなつてしまうので、 ガスタービン燃料油中の硫黄含有量を 極力少なくする必要がある。 このため上述の前者の公報の技術では、 常圧蒸留ま たは減圧蒸留を行うにあたり、 焚き上げる量がかなり制限されてしまうので、 軽 質油つまりガスタービン燃料油を多くとることができず、 低硫黄原油である中東 原油を用いた場合でも原油に対し 4 0 °/0台の収率しか得られない。 これ以上の収 率を得ようとして焚き上げる量を増やすと、 硫黄分が多くなつてしまう。
また一般に入手が容易で安価な硫黄含有量が多い原油に適用した場合には、 同 じ量の軽質油を回収すると軽質油中の硫黄含有量が規定 を越え、 ガスタービン 燃料油としては不適確となり回収率はさらに低下せざるを得ず、 技術的、 経済的 に採用することはできない。
—方、 後者の公報には、 メタノールを原料として水素を発生し、 その水素を利 用して原油を水素化精製する技術が開示されているが、 これも低硫黄原油を想定 しているため、 硫黄含有量が多い原油に適用するには限界がある。 更に水素化精 製の対象が蒸留した軽質油でなく原油を直接に水素化処理するため、 プロセス条 件を原油中の重質油に合わせなくてはならないが、 そうすると反応' &¾、 圧力を 高くし、 反応時間 (触媒との接触時間) も長くしなくてはならない。 し力 しな力 S らこの場合原油中の軽質油の分解が進み過ぎてガスタービン燃料油中に L P G等 P T/JP99/04927
が多量に含まれ、 このためガスタービン燃料油を貯留するときに一部がガス化し てしまうので、ある程度の加圧状態に耐えるタンクが必要になる。また反応温度、 圧力が高いことから、 水素化処理を行う反応容器の構造、 材料のコストが高くな る上、 反応時間が長いことから触媒担体部が大きくなって反応容器が大型ィ匕し、 触媒の消費量も多くなる。 発明の開示
本発明は、 このような事情の下になされたものであり、 原料油に対して高い収 率でガスタ一ビン燃料油を得ることのできるガスタービン燃料油を製造する技術 及びその燃料油を用いた発電方法を提供することを目的とする。
本発明のガスタ一ビン燃料油の製造方法は、 原料油である原油を常圧蒸留して 軽質油と常圧残渣油とに分離する常圧蒸留工程と、 この常圧蒸留工程で得られた 軽質油を一括して触媒の存在下で加圧された水素と接触させて脱不純物処理を行 レ、精製油を得る第 1の水素化処理工程と、 前記常圧残渣油を軽質油と重質油とに 分離する、 減圧蒸留工程、 溶剤脱れき工程、 熱分解工程及び水蒸気蒸留工程から 選ばれる第 1の分離工程と、 この第 1の分離工程にて得られた軽質油を触媒の存 在下で加圧された水素と接触させて脱不純物処理を行レ、精製油を得る第 2の水素 化処理工程と、 を含み、 前記第 1及ぴ第 2の水素化処理工程で得られたガスター ビン燃料油は、粘度が 1 0 0 °Cで 4 c S t以下、アルカリ金属が 1 p p m 以下、 鉛が 1 p p m 以下、 Vが 0 . 5 p p m以下、 C aが 2 p p m以下、 硫黄が 5 0 0 p p m 以下であり、原料油に対する収率が 6 5 %以上であることを特徴とする。
この発明では、第 1の分離工程にて得られた重質油を更に軽質油と重質油とに 分離する、 溶剤脱れき工程及ぴ熱分解工程から選ばれる第 2の分離工程を含み、 この第 2の分離工程にて得られた軽質油に対して第 3の水素化処理工程を行うよ うにしてもよい。 また第 1の水素化処理工程、 第 2の水素化処理工程及び第 3の 水素化処理工程の少なくとも 2つは共通の工程とすることができる。 本発明によれば、常圧蒸留工程の後に第 1の水素化処理工程を行っているので、 常圧蒸留工程では軽質油に入り込む硫黄や金属分の量を気にせず焚き上げること ができる。 また第 1の分離工程の後に第 2の水素化処理工程を行うので、 第 1の 分離工程においても硫黄や金属分の量を気にせず軽質油を多く得ることができる ように処理条件を決められる。 このため原料油に対して高い収率でガスタービン 燃料油を得ることができる。 また目的物がガスタービン燃料油であるため、 第 1 の水素化処理工程は、 常圧蒸留塔から得られる複数種の軽質油を一括して水素化 処理すれば足り、 このようにすることによって設備コストを低く抑えることがで さる。
そしてガスタ一ビン燃料油の粘度が 1 0 0 °Cで 4 c S t以下であれば燃焼性が 良好であるし、 金属及び硫黄の含有量が上述のように極微量であれば、 燃焼温度 も例えば 1 3 0 0 °C程度と高温燃焼を行うことができる。
また本発明は、第 1の分離工程にて得られた重質油を触媒の存在下で加圧された 水素と接触させて脱不純物処理を行うと共に重質油の一部を分解し精製油と重質 油とを得る第 4の水素化処理工程を含み、 この第 4の水素化処理工程で得られた 精製油をガスタ一ビン燃料油として用いてもよい。
更に上述の第 1の分離工程を水素化処理工程 (第 5の水素化処理工程)で置き換 えてもよく、 この場合、 第 5の水素化処理工程にて得られた重質油を更に軽質油 と重質油とに分離する 蒸留工程、 溶剤脱れき工程及び熱分解工程から選ばれ る第 3の分離工程を含み、 この第 3の分離工程で得られた軽質油をガスタービン 燃料油として用いてもよい。
また上述のようにして得られたガスタービン燃料油を更に常圧蒸留して軽質の ガスタ一ビン燃料油と、 このガスタービン燃料油よりは重質のガスタ一ビン燃料 油とを得るようにしてもよい。 なお上記の分離工程のうち最終の分離工程にて得 られた重質油あるいは第 4の水素化処理工程で得られた重質油は、 ボイラーの燃 料油として用いることができる。 そして本発明では、 水素の原料は特に限定するものではないが、 原料油に基づ いて得られた重質油、 例えば第 1の分離工程で得られた重質油を酸素により部分 酸化して水素を生成し、 この水素を水素化処理工程で用いる原料とすることがで きる。
また本発明は、 原油を常圧蒸留した常圧残渣油及び/または重油からなる重質 原料油を出発物質としてもよレ、。 このような発明の一つとして軽質油と重質油と に分離する、 減圧蒸留、 溶剤脱れき、 熱分解および水蒸気蒸留の各工程から選ば れる第 1の分離工程と、 第 1の分離工程で得られた軽質油を触媒の存在下で加圧 された水素と接触させて脱不純物処理を行ない精製油を得る第 2の水素化処理工 程と、 を含み、 得られた精製油であるガスタービン燃料油は、 粘度が 1 0 0 °Cで 4 c S t以下、 アル力リ金属が 1 p p m以下、 鉛が 1 p p m以下、 Vが 0 . 5 p p m以下、 C aが 2 p p m以下、 硫黄が 5 0 0 p p m以下であり、 重質原料油に 対する収率が 4 0 °/0以上であることを特徴とする方法が挙げられる。
この場合、 第 1の分離工程で得られた重質油をさらに軽質油と重質油とに分離 する、 溶剤脱れき及び熱分解の各工程から選ばれる第 2の分離工程を含み、 この 第 2の分離工程で得られた軽質油に対して第 3の水素化処理工程を行ない精製油 を得、 この精製油をガスタービン燃料油としてもよい。 更には第 1の分離工程で 得られた重質油を触媒の存在下で加圧された水素と接触させて脱不純物処理を行 うとともに重質油の一部を分解し精製油と重質油とを得る第 4の水素化処理工程 を含み、 この第 4の水素化処理工程で得られた精製油をガスタービン燃料油とし てもよい。
また他の発明としては、 原油を常圧蒸留した常圧残渣油及び Zまたは重油から なる重質原料油を、 触媒の存在下で加圧された水素と接触させて脱不純物処理を 行うとともに重質油の一部を分解し精製油と重質油とを得る第 5の水素化処理工 程を含み、 この第 5の水素化処理工程で得られた精製油であるガスタービン燃料 油は、 粘度が 1 0 0 °Cで 4 c S t以下、 アルカリ金属が 1 p p m以下、 鉛が 1 p p m以下、 Vが 0 . 5 p p m以下、 C aが 2 p p m以下、 硫黄が 5 0 0 p p m以 下であり、 重質原料油に対する収率が 4 0 %以上であることを特徴とする方法が 挙げられる。 この場合、 第 5の水素化処理工程で得られた重質油をさらに軽質油 と重質油とに分 ^ る、 減圧蒸留、 溶剤脱れき及び熱分解の各工程から選ばれる 第 3の分離工程を含み、 第 3の分離工程で得られた軽質油をガスタービン燃料油 としてもよ!/、。
本発明によれば、 原油を常圧蒸留し、 その軽質油に対して水素化処理を行うと 共に、 常圧残渣に対して分離処理あるいは水素化処理を行って、 得られた軽質油 に対して水素化処理を行い、 その精製油をガスタービン燃料油としているため、 品質の高いガスタービン燃料油を高い収率で得ることができる。
以上において本発明は、 上述の製造方法により製造されたガスタービン燃料油 も権利範囲に含まれ、 更にこのガスタービン燃料油を燃料としてガスタービンを 駆動させて発電を行う工程と、 前記ガスタ―ビンから排出される高温排ガスを排 熱回収ボイラ一の熱源とし、 この排熱回収ボイラ一にて発生した蒸気により蒸気 タービンを駆動して発電を行う工程と、 を含む発電方法も権利範囲とするもので ある。 図面の簡単な説明
第 1図は本発明方法を実施するためのシステムの一例を示す説明図、 第 2図は 上記システムにおいて常圧蒸留塔からの軽質油の取り出し方法の他の例を示す説 明図、 第 3図は水素化処理装置の一例を示す説明図、 第 4図は水素プラントの要 部の一例を示す説明図、 第 5図は本発明方法を実施するためのシステムの他の例 を示す説明図、 第 6図は本発明方法を実施するためのシステムの更に他の一例を 示す説明図、 第 7図は本発明方法を実施するためのシステムの更にまた他の例を 示す説明図、 第 8図は本発明方法を実施するためのシステムの上記の例以外の他 の例を示す説明図、 第 9図は本発明方法を実施するためのシステムの上記の例以 外の他の例を示す説明図、 第 1 0図は本発明方法を実施するためのシステムの上 記の例以^^の他の例を示す説明図、 第 1 1図は本発明方法を実施するためのシス テムの上記の例以外の他の例を示す説明図、 第 1 2図は第 1 0図に示す部分酸化 設備の一例の概略を示す説明図、 第 1 3図は本発明で得られるガスタービン燃料 油の使用方法の一例を示す説明図である。 発明を実施するための最良の形態
第 1図は本発明のガスタービン燃料油の製造方法を実施するためのシステムを 示す説明図である。 以下に説明する各実施の形態では、 水素化処理工程が行われ る力 処理を行う段階に応じて第 1〜第 5の水素化処理工程として記載してある。 これら水素化処理工程で得られたガスタービン燃料油は一般に混合して用いられ、 各実施の形態では混合した場合を例にとつて説明していく力 本発明は、 混合せ ずに夫々別個のガスタ一ビン燃料油として用いてもよい。
原料油 1としては原油が用いられ、 原料油は先ず脱塩処理部 1 1にて従来の石 油精製施設で行われている条件で脱塩処理される。 この処理は、 原料油を水と混 合し、 水相に塩分、 泥分を移行させ、 結果としてガスタービンに悪影響を及ぼす アルカリ金属を除去する。 脱塩処理された原料油は常圧蒸留塔 2に送られ、 例え ば 3 4 0 °C〜3 7 0 °Cよりも沸点の低い軽質油 2 1と沸点がそれを越える残渣油 (常圧残渣油) 2 2とに分離される。 分離された軽質油 2 1は第 1の水素化処理 装置 3に送られる。
ここで一般の石油精製施設の常圧蒸留塔 2におレ、ては、 軽質油の中で沸点の高 いものから低いものまであるため、 灯油、 ガソリンなどといった具合に、 いくつ かの沸点領域毎に留分を取り出し、 塔の上部から下方に亘つて順に留分の取り出 し口を設け、 夫々の取り出し口から目的とする軽質油を取り出しているが、 この 実施の形態では例えば塔頂部から軽質油を一括して取り出し、 つまり各留分が混 合している状態で取り出し、 水素化処理装置に送っている ただし第 2図に示す 如く、 一般の常圧蒸留塔 2のように複数の取り出し口から各沸点領域の留分を取 り出し(第 2図の例では 4つの取り出し口から取り出している)、 これらを合流し て水素化処理装置 3に送り、 ここで一括して水素化処理を行ってもよい c
この点について更に述べると、 一括脱硫自動車燃料油製造の場合、 ガソリン、 灯油、 軽油の各々で脱硫のレベルが異なり、 温度、 圧力、 触媒などの運転操作条 件が異なる。 一方沸点が例えば 3 5 0 °Cよりも低い軽質油を一括して脱硫しガス タービン燃料油を製造する場合には、 全体としてガスタービン燃料油の仕様に合 致すればよく、 各運転条件などは製油所での条件とはかなり異なるものである。 従って既述のように常圧蒸留塔 2からの軽質油を一括してつまり共通の装置で水 素化処理を行うことができる。
即ち常圧蒸留プロセスでは沸点の異なる複数種の軽質油が得られるが、 目的物 がガスタービン燃料油であるから、 これらの軽質油を一括して水素化処理装匱で 処理することができ、 このように一括処理を行うことにより設備のコストを低く 抑えることができる。 また本発明システムで適用する水素化処理技術は自動車燃 料を生産する製油所での水素化処理工程とは異なり、 例えば自動車燃料油では水 素化時の油の着色が問題となり、 それを抑えるため低温、 高圧で運転するが、 ガ スタービン燃料油では色相でも問題がないため、 高温運転が可能となり、 従って 低圧 31¾による反応器のコストの削減が可能となり、 この点からも設備コストを 低く抑えることができる。
続いて水素化処理装置 3及びその工程について第 3図を参照しながら述べると、 軽質油 2 1は、 力 Π圧された水素ガスと混合され、 反応塔 3 1の上部から反応塔 3 1内に供給される。 反応塔 3 1内には担体に触媒を担持した触媒層 3 2が設けら れ、 軽質油 2 1及び水素ガスはこの触媒層 3 2を通過して反応塔 3 1の底部から 送液管 3 3を介して高圧タンク 3 4内に流入する。 軽質油 2 1に含まれる、 つま り炭化水素分子の中に入り込んでいる微量のバナジウム、 ニッケル、 鉛等の重金 属類 (金属分は主に重質油に含まれているため極微量である) と、 硫黄及び窒素 とは、 軽質油 2 1及び水素ガスが触媒層 3 2を通過するときに水素と反応して、 炭化水素分子から脱離し、 金属分は触媒表面に吸着され、 硫黄や窒素は水素と反 応して夫々硫化水素、 アンモニアとなる。 またアルカリ金属は油分中に含まれる 若干の水分中に溶けてレ、るかまたは塩の形で存在するが、触媒表面で吸着される。 そして反応塔 3 1の底部からは例えば 3 0〜8 0 k g / c m2もの高圧ガスと 油との混合流体が排出され、 高圧タンク 3 4にて水素ガスが分離される。 水素ガ スはコンプレッサ C Pにより昇圧されて反応塔 3 1内に循環供給される。 一方高 圧タンク 3 4にて分離された液体分は圧力調整弁 P Vを介して低圧タンク 3 5内 に送られ、 圧力が例えば 1 0 %〜3 0 %程度低下し、 このため液体 (油) 中に溶 けている硫化水素やアンモニアなどの液ィヒガスが気化する。 こうして分離された 液体つまり精製油はガスタービン燃料油となる。 3 5 aはポンプである。 また低 圧タンク 3 5で分離されたガス中には、 未反応の水素ガスの他に、 硫化水素、 了 ンモニァ等の水素化された化合物が含まれ、 更に炭化水素分子の一部が切れて生 成されたメタン、 液化石油ガス留分から軽質ナフサまでの軽質油 (ここでいう軽 質油は前記軽質油 2 1に対して更なる軽質な成分である J も含まれている。前記 タンク 3 5にて分離されたガスは、 不純物除去部 3 6にて、 そのガスに含まれて いる硫化水素、 アンモニアが除去される。
不純物除去部 3 6は例えば硫化水素やアンモニアを吸収するための吸収液の層 を設け、 この中にガスを通すことによって不純物が除去される こうして不純物 が除去されたガスは、 未反応の水素ガス及びメタンなどの炭素数の少ない軽質油 の混合ガスであり、 この混合ガス 4 2を水素プラント 4に送り、 混合ガス 4 2中 の軽質油を水素ガスの製造原料とし用いる。 なお常圧蒸留 2で分離された軽質油 2 1の一部も水素プラントに送り、 水素ガスの製造原料として用いる e また水素 ガスの製造原料を重油に限定する場合には、 始動時のみ外部からナフサを導入し て運転する場合もある。
一方既述のように反応塔 3 1に供給される水素ガスは循環して使用されるが 、 この循環路 3 7のガス中の水素ガスは次第に減少し、 一方メタンなどの軽質油 は次第に増加する。 このため水素ガスの割合が少なくなるのを防ぐため水素ブラ ント 4から循環路 3 7に水素ガス 4 1を補充し、 水素化処理が確実に行われるよ うにしている。
第 4図は水素プラント 4の要部を示す図である。 この水素プラント 4は燃料ガ スを燃焼する燃焼炉 4 3の中に反応管 4 4を設けてなり、 メタンなどの軽質油と 水蒸気とを反応管 4 4の中に通し、 軽質油を水蒸気改質して水素を生成すると共 に一酸化炭素を副生成する。 そしてこのガスから一酸化炭素及び未反応の軽質油 を変成または除去し、 水素ガスを得る。 ここで行われる除去処理 (精製) につい ては、 例えば P S A (圧力変動吸着分離法)、 T S A (温度変動吸着分離法)、 深 冷分離法または膜分離法などを用いることができる。
ここで本発明の第 1〜第 5の水素化処理工程は、 触媒の存在下で加圧された水 素と接触させ、 1 ) 硫黄化合物など不純物の除去を目的とする水素化脱硫、 2 ) 不飽和炭化水素の飽和などによる性状の改良を目的とする水素化精製、 3 ) 油分 の軽質ィヒを目的とする水素化分解、 のいずれの反応を含んでもよく、 第 1の水素 化処理工程は上記 1 )を主な目的とし、第 2及び第 3の水素化処理工程は 1 )、 2 ) を主な目的とし、 第 4および第 5の水素化処理工程は 1 ) 〜3 ) いずれをも主な 目的としている。
第 1の水素化処理装置 3で行われるプロセスについて述べると、 従来の石油精 製では、 軽質油留分中のナフサ、 灯軽油等を別々に対象にして狭い沸点範囲の留 分を水素化処理しているのに対し、 本発明では常圧蒸留で蒸留された留分のすべ てを一括して水素化処理する e 従って水素化処理量が大幅に増加し、 従来とは大 きく異なる。 水素化処理の水素ガスの圧力、 反応温度等の条件については油種、 目的精製度等に応じて温度 3 3 0から 3 8 0 °C、水素ガスの圧力 2 0 k g / c m2 〜8 0 k g Z c m2で選択でき、 特に水素ガスの圧力を 3 0〜 7 0 k g Z c m2の 範囲とすることが好ましい c また、 触媒は従来公知の水素化処理触媒を任意に選 択できるが、 N i、 M o、 C oの硫ィ匕物をアルミナに担持した触媒が好ましい: アラビアン .ライ ト油を用いた場合、 水素ガスの圧力を例えば 3 0〜5 0 k g / c m2 に設定することによりガスタービン燃料油の硫黄濃度を 4 5 0 p p m以下、 窒素濃度を 3 0 p p m以下にすることができるが、 水素ガスの圧力を 4 0〜7◦ k g / c m2 まで高めればオイル成分の分子への水素の衝突エネルギーが大きく なるため硫黄濃度及び窒素濃度を夫々 2 0 0 p p m以下及び 2 0 p p m以下にま で抑えることができる。
一方前記常圧蒸留塔 2で分離された残渣油 (常圧残渣油) 2 2は减圧蒸留塔 5 に送られここで常圧残渣油の中でも軽い成分である、 例えば常圧沸点で 5 6 5 CC よりも低い軽質油 (減圧軽質油) 5 1と、 重い成分である、 常圧沸点がそれを越 える重質油 (減圧残渣油) 5 2とに分離される。 軽質油 5 1は第 2の水素化処理 装置 6に送られ、 水素化処理される。
この第 2の水素化処理装置 6にて用いられる水素ガスは前記水素プラント 4か ら供給され、 また第 2の水素化処理装置 6で得られたメタンなどの炭素数の低い ガスは水素プラント 4に製造原料として送られる。 なお第 2の水素化処理装置 6 における水素ガスの圧力を 3 0〜6 0 k g Z c m2 とすれば、 既述のアラビア ン ·ライ ト油を原料とした場合、 硫黄濃度及び窒素濃度を夫々 2 0 0 0 p p m以 下及び 2 0 0 p p m以下にすることができる力 水素ガスの圧力を 5 0〜1 0 0 k g / c m2 とすれば硫黄濃度及び窒素濃度を夫々 1 0 0 0 p p m以下及び 1 0 0 p p m以下にまで抑えることができる c
こうして第 2の水素化処理工程で得られた軽質油は第 1の水素化処理装置 3で 得られた軽質油 (ガスタービン燃料油) と混合して (混合工程) ガスタービン燃 料油として利用する。
減圧蒸留塔 5で分離された重質油 (減圧残渣油) 5 2は、 溶剤脱れき装置 (溶 剤抽出装置) 7 1で軽質油である脱れき油 7 2と重質油である脱れき残渣油 7 3 とに分離される この分離は、 例えば塔の上部及び下部から夫々減圧残渣油 5 2 及び溶剤を供給してこれらを向流接触させ、 減圧残渣油 5 2中の軽質油と重質油 とを溶剤に対する溶解度の違いにより分離することによって行われる。
分離された脱れき油 7 2は前記减圧蒸留塔 5からの軽質油 5 1と混合されて第 2の水素化処理装置 6に供給される。 脱れき残渣油 7 3は必要に応じて粘度調整 された後、 重油原料あるいはボイラー燃料油として利用する c
以上においてこの実施の形態で行われる処理と特許請求の範囲における工程と を対応させておくと、 第 1の水素化処理装置 3で行われる処理及び第 2の水素化 処理装置で行われる処理は夫々第 1の水素化処理工程及び第 2の水素化処理工程 に相当し、 減圧蒸留 5で行われる減圧蒸留及び溶剤脱れき装置 Ί 1で行われる処 理は夫々第 1の分離工程及び第 2の分離工程に相当する。
上述の実施の形態により、 「発明の開示」の項で述べた成分規定を満足するガス タ一ビン燃料油が得られる。 そして常圧蒸留工程及び減圧蒸留工程の後に各々水 素化処理工程を行っているので、 各蒸留工程では硫黄や重金属分の量を気にせず に焚き上げることができるので軽質油を多くとることができ、 結果として原油を 原料油とした場合には、 原油に対して 6 5 %以上、 好ましくは 7 0〜 9 0 % (重 量比) と高い収率でガスタービン燃料油を得ることができる。 また、 常圧蒸留残 渣および Zまたは重油からなる重質原料油を出発原料油とした場合には、 重質原 料油に対して 4 0 %以上、 好ましくは 4 0〜 7 5 % (重量比) でガスタ一ビン燃 料油を得ることができる。
具体的には、 原料油として原油 (1 0 0 ) を常圧蒸留塔 2に供給したとすると 軽質油 (6 0 )、 常圧残渣 (4 0 ) の割合で蒸留を行うことができ、 常圧残渣 (4 0 ) に対して減圧蒸留塔 5にて軽質油 (2 0 )、 減圧残渣 (2 0 ) の割合で蒸留で きる。 さらに、 減圧残渣 (2 0 ) に対して溶剤脱れき装置 7 1にて脱れき油 (1 0 )、脱れき残渣 (1 0 ) の割合で処理することができる。 原油を出発原料油とし た場合には、 ガスタービン燃料油を軽質油 (6 0 )、 減圧軽質油 (2 0 ) および脱 れき油 (1 0 ) の合計で 9 0 %の収率となる。 脱れき処理を実施しない場合にお いても 8 0 %の収率である。 本発明においては、 原料油の種類の相違による幅を 考慮して、 原油を出発物資とした場合には 6 5 °/0以上、 好ましくは 7 0〜 9 0 % の収率でガスタービン燃料油を得ることができる c
また、 常圧残渣油および Zまたは重油からなる重質原料油 (1 0 0 ) を出発物 資とした場合には、 減圧蒸留塔 5にて軽質油 (5 0 )、 減圧残渣 (5 0 ) で蒸留で き、 さらに ¾ϊ残渣 (5 0 ) を溶剤脱れき処理装置 7 1にて脱れき油 (2 5 )、脱 れき残渣油 (2 5 ) を得ることができる。 したがって重質原料油の出発物資では、 ガスタービン燃料油を減圧軽質油 (5 0 )、溶剤脱れき油 (2 5 ) の合計として 7 5 %の収率であり、 脱れき処理をしない場合でも 5 0 %の収率でガスタービン燃 料油を得ることができる。 なお第 1図においては、 重油を脱塩処理部 1 2で脱塩 処理して減圧蒸留塔 5に供給する場合を点線で示してある。 本発明においては、 原料油の種類の相違による幅を考慮して、 上記重質原料油を出発物資とした場合 には 4 0。/ο以上、 好ましくは 4 0〜 7 5 %の収率でガスタービン燃料油を得るこ とができる。
また原油をそのまま水素化処理するのではなく、 蒸留工程の後に軽質油に対し て水素化処理を行うので、反応条件は軽質油に合わせればよく、従って反応圧力、 温度はそれ程高くしなくて済むし、 反応時間も短くて済み、 設備がその分、 簡素 化できる。 更にガスタービン燃料油を目的としているので既述したように蒸留ェ 程で得られた各留分に対して水素化処理を行うことなく、 これらを一括して水素 化処理でき、 こうしたことから水素化処理を行っているとはいっても、 全体とし ては簡単なプロセスで行うことができる。
以上にぉレ、て第 1図に点線で示したように減圧蒸留塔 5に重油を供給してもよ いし、 図には示していないが溶剤脱れき装置 7 1に重油を供給してもよレ、。 この ような供給は、 本発明である常圧蒸留塔 2に原油を供給して行われる一連の工程 に影響を与えるものではない。 つまりこの場合も原油に基づいて得られたガスタ —ビン燃料油の量についてみれば当該原料油に対する収率に影響を与えるもので はなく、 追加原料(重油) に対応してガスタービン燃料油の量が増えるにすぎず、 本発明の権利範囲から外れるものではなレ、c
また本発明では第 2の分離工程で得られた軽質油、 つまり溶剤脱れき装置 7 1 で得られた脱れき油 7 2を第 2の水素化処理装置 6で処理することに限られるも のではなく、 別個に設けた第 3の水素化処理装置 6 0で処理する (第 3の水素化 処理工程) ようにしてもよレ、。 第 1図の実施の形態のように第 2の水素化処理工 程及び第 3の水素化処理工程を共通化すると、 反応条件は重質油側に合わせなけ ればならないので、水素圧力は例えば 5 0〜1 5 0 k g Z c m2となり、別個に行 うと水素圧力は夫々例えば 5 0〜8 0 k g Z c m2、 8 0〜2 0 0 k g Z c m2 と なる。 別個に行えば反応条件の厳しい第 3の水素化処理工程での処理量は少ない ので、 高圧に耐え得る反応容器等を小型にできるという利点はある力 設備の規 模等に応じて総合的に有利な構成を採用すればよレ、。
なお本発明では、 例えば第 5図に示すように第 1〜第 3の水素化処理工程を行 う場合、 第 1の水素化工程及び第 3の水素化工程を共通の工程としてもよいし、 第 1〜第 3の水素化処理工程を共通の工程としてもよい。
本発明は、 常圧蒸留装置 2の残渣油 2 2を分離する第 1の分離工程を行う手法 としては、 減圧蒸留に限らず水蒸気蒸留法、 溶剤脱れき法、 あるいは残渣油 2 2 を例えば 4 3 0〜4 9 0 °Cまで加熱して熱エネルギーにより炭化水素分子を切断 して軽質油と重質油とを得る熱分解法などであってもよい。 第 6図は第 1の分離 工程を溶剤脱れき法により行う実施の形態を示した図であり、 常圧残渣油 2 2を 溶剤脱れき装置 8 1に供給し、 先の実施の形態で述べたように常圧残渣油 2 2の 中でも軽質な軽質油 (溶剤脱れき油) 8 2と重質な重質油 (溶剤脱れき残渣油) 8 3とに分離し、 軽質油 8 2を第 2の水素化処理装置 6に供給している。
第 6図の実施の形態では第 2の分離工程を行っていないが、 溶剤脱れき残渣油 8 3に対して第 1図の実施の形態のように第 2の分離工程を行つてもよレ、 c 第 2 の分離工程は既述の熱分解工程であってもよい。 また第 1の分離工程で分離された重質油に対し、 水素化処理を行ってもよい。 第 7図はこのような実施の形態を示す図であり、 溶剤脱れき装置 8 1にて分離さ れた重質油 (脱れき残渣油) 8 3を第 4の水素化処理装置 9 1に供給し、 軽質油 9 2と重質油 9 3とに分離する。 この第 4の水素化処理装置 9 1は、 第 3図に示 す装置の後段に設けられ、軽質油 9 2と重質油 9 3とに分離するための蒸留装置、 例えば常圧蒸留装置や減圧蒸留装置を含んでレ、る - このような実施の形態によれば第 1の分離工程 (この例では溶剤脱れき工程) で分離された重質油からもガスタービン燃料油を得ているので原料油力 らのガス タ一ビン燃料油の回収率がより高いという利点がある- なお原料油の一部を溶剤 脱れき装置 8 1で分離された重質油 8 3と混合して第 4の水素化処理装置 9 1に 供給してもよい。
そしてまた本発明では第 8図に示すように、 常圧蒸留工程にて分離された残渣 油 2 2を第 5の水素化処理装置 1 0 1に供給し、 ここで第 5の水素化処理工程で ある水素化処理を行って軽質油 1 0 2と重質油 1 0 3とに分離し、 軽質油 1 0 2 を第 1の水素化処理装置 3で得たガスタービン燃料油と混合して利用するように してもよレ、。 この第 5の水素化処理装置 1 0 1についても第 4の水素化処理装置 9 1と同様に蒸留装置が含まれている。
また重質油 1 0 3は溶剤脱れき装置 1 1 1に供給され、 軽質油 (脱れき油) 1 1 2と重質油 (脱れき残渣油) 1 1 3とに分離される。 分離された軽質油 1 1 2 は例えば第 5の水素化処理装置 1 0 1で得られた軽質油 1 0 2と混合してガスタ —ビン燃料油として利用し、 重質油 1 1 3は例えばボイラー燃料として利用され る。 なお第 3の分離工程は溶剤脱れき工程に限られず既述の熱分解工程や減圧蒸 留工程などであってもよい。 このような実施の形態にぉレ、ても原料油からのガス タービン燃料油の回収率を 6 5 °/0以上好ましくは 7 0〜9 0 %とすることができ る。 なお第 7図及び第 8図で述べた第 4あるいは第 5の水素化処理装置 9 1 ( 1 0 1 ) においても、 ここで生成されたメタンなどの軽質油 (気体) は水素プラン ト 4へ送られて水素ガスの製造原料として用いられる。
また本発明は、 常圧蒸留塔 2で得られた軽質油 2 1と減圧蒸留塔 5で得られた 軽質油 (減圧軽質油) 5 1とを別々の水素化処理装置で処理する代わりに、 第 9 図に示すようにこれらを混合して同じ水素化処理装置 6 1で水素化処理を行って もよい。 つまりこの場合第 1図の実施の形態において第 1の水素化処理装置 3及 び第 2の水素化処理装置 6を共通化したことになる。 一般に水素化処理の反応条 件は原料中の重質油に併せて設定し、 この例では重質油は軽質油 (減圧軽質油) 5 1に相当する。 従って原料中の軽質油 2 1と减圧軽質油 5 1との重量比 (容量 比) において、 軽質油 2 1の割合を低くしてこれらを一括して処理することによ り軽質油水素化処理装置を省くことができ、 コストを削減できる。 なお軽質油 2 1の割合が高レ、と (つまり減圧軽質油 5 1の割合が低レ、と)、反応条件を少量の重 質油 (減圧軽質油 5 1に相当する) に合わせて設定するため反応器設計値が厳し くなり、 経済効果がでにくい。 これに対して減圧軽質油 5 1に反応条件を合わせ て精製すれば軽質油の精製度は大幅に向上する。
第 9図の例では第 1の分離工程として減圧蒸留を例に挙げているが、 これに限 らず他のプロセスによる第 1の分離工程で得られた軽質油と前記軽質油 2 1とを 水素化処理装置 6 1にて一括処理するようにしてもよし、。
水素化処理装置 6 1で行われるプロセスにおいて、 アラビアン ·ライ ト油を用 いた場合、 水素ガスの圧力を例えば 3 0〜6 0 k g / c m2 に設定することによ りガスタービン燃料油の硫黄濃度を 5 0 0 p p m以下、 窒素濃度を 5 0 p p m以 下にすることができるが、 水素ガスの圧力を 5 0〜1 0 0 k g Z c m2 まで高め れば硫黄濃度及び窒素濃度を夫々 3 0 0 p p m以下及び3 0 p p m以下にまで抑 えることができる。
上述のようにして水素化処理装置 6 1にて一括処理して得られた精製油は、 + 分ガスタービン燃料油として使用できるものであるが、 第 1 0図に示すようにこ の精製油を常圧蒸留塔 6 2で例えば 3 5 0 °Cで蒸留して、 得られた軽質油を高品 質 (軽質な) ガスタービン燃料油とし、 残渣油をその高品質のものよりは重質な ガスタ一ビン燃料油として使用してもよい c
本発明では、 既述の第 1の分離工程、 第 2の分離工程及び Zまたは第 3の分離 工程で得られた重質油を酸素ガスにより部分酸化して水素を生成し、 その水素を 水素化処理装置で使用するようにしてもよい。 この水素化処理装置は、 第 1〜第 4の水素化処理工程のレ、ずれで用いられる水素化処理装置であってもよい。 第 1 1図はこのような方法の一例として、 溶剤脱れき装置 8 1からの残渣油を部分酸 ィ匕し、 ここで得られた水素を第 1の水素化処理装置 3及び第 2の水素化処理装置 6に供給する場合を示している。 6 3は空気から酸素を取り出す酸素プラント、 6 4は部分酸化装置である。 部分酸化するための重質油としては、 溶剤脱れき装 置 8 1に限らず 蒸留塔 5など他のプロセスにおける第 1の分離工程で得られ た残渣油であってもよいし、 あるいは第 2、 第 3の分離工程で得られた重質油で あってもよレヽ。
第 1 2図は部分酸化装匱 6 4の一例を簡略化して示す図である。この装置では、 重質油と高圧スチームとを予め加熱し酸素と共に反応炉 6 5内に噴射し、 例えば 1 2 0 0 °C〜1 5 0 0 °C、 2〜8 5 k g Z c m2 のプロセス条件で部分酸化反応 により C Oと H2 とを主成分とするガスを生成する。 次いでこのガスを反応炉 6 5の下部側の急冷室にて水により例えば 2 0 0〜 2 6 (TCまで急冷する。 この際 未反応炭素の大部分が除去されると共に後続の C O転化プロセスに必要なスチー ムがガス中に供給される。 このガスは、 洗浄塔 6 6に送られて僅かに残っている 未反応炭素を完全に除去し、 更に C O転化器 6 7に送られて例えばコバルトーモ リブデン系の触媒により残存 C Oをスチームとの反応により C〇2 に変える。 そ の後酸性ガス吸収塔 6 8にて C〇2 などの酸化性ガスが吸収され、 純度の高い水 素ガスが取り出される。
本発明で得られたガスタ一ビン燃料油は例えば発電に利用することができ、 そ の例を第 1 3図に示す。 ガスタービン燃料油は、 燃焼ノズルで燃焼されてその燃 焼ガスによりガスタービン 2 0 1が駆動され、 発電機 2 0 2から電力が取り出さ れる。 一方このガスタ一ビン 2 0 1から排出された高温排ガスは排熱回収ボイラ 2 0 3に供給され、 排ガスの熱によりスチームを発生させる。 このスチームによ りスチームタービン 2 0 4が駆動され、 発電機 2 0 5から電力が取り出される。 このようにして発電を行えば、 ガスタービン燃料油の排熱が有効利用でき、 効率 の高い発電を行うことができる。
次に本発明の実施例を説明する。
(実施例 1 )
原油として市場において最も容易に調達可能なアラビアン ·ライ ト原油 (S含 量 1 . 7 7重量。/。) を用い、 第 1図に示すシステムによりガスタービン燃料油を 製造した。 常圧蒸留工程では沸点が 3 5 0 °Cよりも低い軽質油 2 1と沸点がそれ より高い重質油 2 2とに分離し、 第 1の水素化処理工程における水素ガスの圧力 を 4 5 k g Z c m2に設定してガスタービン燃料油を得た。また減圧蒸留工程では 沸点 (常圧時の沸点) が 5 6 5 °Cよりも低い軽質油 5 1と沸点がそれよりも高い 重質油 5 2とに分離し、 第 2の水素化処理における水素ガスの圧力を 5 5 k g / c m2に設定してガスタービン燃料油を得、第 1の水素化処理で得られたガスター ビン燃料油と混合した。 この混合油であるガスタービン燃料油においては、 アル カリ金属、 アルカリ土類金属、 V及び鉛は検出されず、 硫黄濃度はおよそ 4 3 0 p p m、 粘度は 1 0 0 °Cで 1 . 3 c S tであった。 原料油に対するガスタービン 燃料油の収率は 8 4 %であった。 またこのガスタービン燃料油はガスタービン入 り口温度 1 3 0 0 °Cのガスタービンでの使用が可能であった。
原油からのエネルギーは全て電力 (ガスタービン及びボイラー発電) に転換す るとしてシミュレ一シヨンを実施した。 尚、 精製プラントでの所内消費率は 4 % とし、 コンバインドサイクルガスタ一ビン発電効率 4 9 %、 ボイラ一発電効率 3 8 %に設定した。 以上の条件下において精製プラントへの原油供給を熱量換算で 1 0 0単位とし、最終的な電力回収量を算定したところ、熱量換算において 4 5 . 7単位の電力エネルギー回収が可能となった。
(比較例 1 )
原油としてアラビアンライ ト油を用い、 特開平 6— 2 0 7 1 7 9号公報の記载 によりガスタービン燃料油を製造した- 同公報では塩分濃度を 0 . 5 p p m以下 に調整した低硫黄原油を原料とし、 0 . 0 5 w t °/0以下のガスタ一ビン燃料油を 製造するとしている。 アラビアン 'ライト油は低硫黄原油と定義するには硫黄が 多いが、 現在市場においても最も安定的に供給可能な原油であるところから、 本 原油より特開平 6— 2 0 7 1 7 9号技術に基づき硫黄濃度 0 . 0 5 w t %以下の 石油留分を蒸留法により分離した。 この公報技術からのガスタービン燃料油は、 沸点領域 2 4 5 °Cまでの軽質ナフサから灯油留分に限られ、 アルカリ金属、 アル 力リ土類金属、 V及び鉛は検出されず、 硫黄濃度はおよそ 4 7 0 p p m、 粘度は 1 0 0 °Cで 0 . 3 c S tと高品質であつたが、 原料油に対するガスタービン燃料 油の収率は 2 4 %と極めて低い回収率であった。
精製ブラントでの所内消費率を 3 %とする以外、 実施例 1と同じ条件下におレ、 てシミュレーションを実施した。 精製プラントへの原油供給を熱量換算で 1 0 0 単位とし、 最終的な電力回収量を算定したところ、 熱量換算において 3 9 . 5単 位の電力エネルギー回収ができるのみで本発明に比べエネルギー有効利用の観点 から著しく劣後していることが判明した。
(実施例 2 )
中東原油の中において比較的低硫黄原油であるォマーン原油を例にとり、 第 1 図に示すシステムによりガスタービン燃料油を製造した。 ォマーン原油は硫黄濃 度が 0 . 9 4 w t %で、 特開平 6— 2 0 7 1 7 9号公報の記載で述べられている 低硫黄原油に相当する。 常圧蒸留工程では沸点が 3 5 0 °Cよりも低い軽質油 2 1 と沸点がそれより高い重質油 2 2とに分離し、 第 1の水素化処理工程における水 素ガスの圧力を 4 0 k g / c m2に設定してガスタービン燃料油を得た。また減圧 蒸留工程では沸点 (常圧時の沸点) が 5 6 5 °Cよりも低い軽質油 5 1と沸点がそ れよりも高い重質油 5 2とに分離し、 第 2の水素化処理における水素ガスの圧力 を 5 0 k g Z c m2に設定してガスタービン燃料油を得、第 1の水素化処理で得ら れたガスタ一ビン燃料油と混合した。 この混合油であるガスタ一ビン燃料油にお いては、 アルカリ金属、 アルカリ土類金属、 V及び鉛は検出されず、 硫黄濃度は およそ 4 1 0 p p m、 粘度は 1 0 0 °Cで 1 . 1 c S tであった。 原料油に対する ガスタ一ビン燃料油の収率は 8 5 %であった。 またこのガスタービン燃料油はガ スタービン入り口温度 1 3 0 0 °Cのガスタービンでの使用が可能であった。
原油からエネルギーは全て電力 (ガスタービン及びボイラー発電) に転換する としてシミュレーションを実施した。 尚、 精製ブラントでの所内消費率は 4 %と し、コンバインドサイクルガスタ―ビン発電効率 4 9 %、ボイラ一発電効率 3 8 % に設定した。 以上の条件下において精製プラントへの原油供給を熱量換算で 1 0 0単位とし、 最終的な電力回収量を算定したところ、 熱量換算において 4 5 . 8 単位の電力エネルギー回収が可能となった。
(比較例 2 )
実施例 2と同様にォマーン原油を例にとり特開平 6— 2 0 7 1 7 9号技術によ りガスタービン燃料油を製造した。 製造法は比較例 1と同様で、 本原油より特開 平 6— 2 0 7 1 7 9号に基づき硫黄濃度 0 . 0 5 w t %以下の石油留分を蒸留法 により分離した。 本公報技術からのガスタービン燃料油は、 沸点領域 2 5 0 °Cま での軽質ナフサから灯油留分に限られ、 アルカリ金属、 アルカリ土類金属、 V及 び鉛は検出されず、 硫黄濃度はおよそ 4 9 0 p p m、 粘度は 1 0 0 °Cで 0 . 4 5 c S tであったが、 低硫黄原油であっても、 蒸留分離ガスタービン燃料油の収率 は 3 5 %と極めて低い回収率であった。
精製ブラントでの所内消費率を 3 %とする以外、 実施例 2と同じ条件下にお V、 てシミュレーションを実施した。 精製プラントへの原油供給を熱量換算で 1 0 0 単位とし、 最終的な電力回収量を算定したところ、 熱量換算において 4 0 . 7単 位の電力エネルギー回収ができるのみで、 低硫黄原油であっても、 本発明に比べ エネルギー有効利用の観点から著しく劣後していることが判明した c
以上のように本発明によれば、 原油を常圧蒸留し、 その軽質油に対して水素化 処理を行うと共に、 常圧残渣に対して分離処理あるいは水素化処理を行って、 得 られた軽質油に対して水素化処理を行い、 その精製油をガスタ一ビン燃料油とし ているため、 品質の高いガスタービン燃料油を高い収率で得ることができる。 産業上の利用可能性
本発明によれば、 原料油に対して高い収率でガスタービン燃料油を得ることが 可能となる。

Claims

請求の範囲
1 . 原料油から高い収率でガスタービン燃料油を製造するガスタービン燃料油 の製造方法であって、
前記原料油である原油を常圧蒸留して軽質油と常圧残渣油とに分離する常圧蒸 留工程と、
この常圧蒸留工程で得られた軽質油を一括して触媒の存在下で加圧された水素 と接触させて脱不純物処理を行い精製油を得る第 1の水素化処理工程と、 前記常圧残渣油を軽質油と重質油とに分離する、 减圧蒸留工程、 溶剤脱れきェ 程、 熱分角?工程及び水蒸気蒸留工程から選ばれる第 1の分離工程と、
この第 1の分離工程にて得られた軽質油を触媒の存在下で加圧された水素と接 触させて脱不純物処理を行い精製油を得る第 2の水素化処理工程と、 を含み、 前記第 1及び第 2の水素化処理工程で得られたガスタービン燃料油は、粘度が 1 0 0 °Cで 4 c S 以下、 アル力リ金属が 1 p p m 以下、 鉛が 1 p p m 以下、 V が 0 . 5 p p m以下、 C aが 2 p p m以下、 硫黄が 5 0 0 p p m 以下であり、 前 記原料油に対する収率が 6 5 %以上である、 ことを特徴とするガスタービン燃料 油の製造方法。
2 .前記第 1の水素化処理工程及び第 2の水素化処理工程は共通の工程である、 ことを特徴とする請求の範囲第 1項記載のガスタービン燃料油の製造方法。
3 . 前記第 1の分離工程にて得られた前記重質油を更に軽質油と重質油とに分 離する、 溶剤脱れき工程及び熱分解工程から選ばれる第 2の分離工程を含み、 この第 2の分離工程にて得られた前記軽質油に対して第 3の水素化処理工程を 行い精製油を得、 この精製油をガスタービン燃料油として用いる、 ことを特徴と する請求の範囲第 1項記載のガスタ一ビン燃料油の製造方法。
4 . 前記第 1の水素化処理工程、 前記第 2の水素化処理工程及び前記第 3の水 素化処理工程の少なくとも 2つは共通の工程である、 ことを特徴とする請求の範 囲第 3項記載のガスタ一ビン燃料油の製造方法
5 . 前記第 1の分離工程にて得られた前記重質油を触媒の存在下で加圧された 水素と接触させて脱不純物処理を行うと共に、 前記重質油の一部を分解し、 精製 油と重質油とを得る第 4の水素化処理工程を含み、 この第 4の水素化処理工程で 得られた精製油をガスタービン燃料油として用いる、 ことを特徴とする請求の範 囲第 1項または第 2項記載のガスタ一ビン燃料油の製造方法。
6 . 原料油から高レ、収率でガスタ一ビン燃料油を製造するガスタ一ビン燃料油 の製造方法であって、
前記原料油である原油を常圧蒸留して軽質油と常圧残渣油とに分離する常圧蒸 留工程と、
この常圧蒸留工程で得られた軽質油を一括して触媒の存在下で加圧された水素 と接触させて脱不純物処理を行レ、精製油を得る第 1の水素化処理工程と、 前記常圧残渣油を触媒の存在下で加圧された水素と接触させて脱不純物処理を 行うと共に重質油の一部を分解し精製油と重質油とを得る第 5の水素化処理工程 と、 を含み、
前記第 1及び第 5の水素化処理工程で得られたガスタ一ビン燃料油は、 粘度が 1 0 0 °Cで 4 c S t以下、 アルカリ金属が 1 p p m 以下、 鉛が 1 p p m 以下、 Vが 0 . 5 p p m以下、 C aが 2 p p m以下、硫黄が 5 0 0 p p m 以下であり、 前記原料油に対する収率が 6 5 %以上である、 ことを特徴とするガスタービン燃 料油の製造方法。
7 . 前記第 5の水素化処理工程にて得られた前記重質油を更に軽質油と重質油 とに分離する減圧蒸留工程、 溶剤脱れき工程及び熱分解工程から選ばれる第 3の 分離工程を含み、 この第 3の分離工程で得られた前記軽質油をガスタービン燃料 油として用いる、 ことを特徴とする請求の範囲第 6項記載のガスタ一ビン燃料油 の製造方法。
8 . ガスタービン燃料油を更に常圧蒸留して軽質なガスタービン燃料油と、 こ のガスタービン燃料油よりは重質なガスタ一ビン燃料油とを得る、 ことを特徴と する請求の範囲第 1項乃至第 7項のレ、ずれか記載のガスタ一ビン燃料油の製造方 法。
9 . 最終の分離工程にて得られた重質油は、 ボイラーの燃料油として用いられ るものである、 ことを特徴とする請求の範囲第 1項、 第 2項、 第 3項、 第 4項、 または第 7項記載のガスタ一ビン燃料油の製造方法。
1 0 . 前記第 4の水素化処理工程で得られた前記重質油はボイラ一の燃料として 用いられるものである、 ことを特徴とする請求の範囲第 5項記載のガスタービン 燃料油の製造方法。
1 1 . 前記原料油は前記常圧蒸留工程の前に脱塩処理が行われる、 ことを特徴と する請求の範囲第 1項乃至第 1 0項のいずれかに記載のガスタービン燃料油の製 造方法。
1 2 . 前記原料油に基づいて得られた前記重質油を酸素により部分酸化して水素 を生成し、 この水素を前記水素化処理工程で用いる原料とする、 ことを特徴とす る請求の範囲第 1項乃至第 1 0項のいずれかに記載のガスタービン燃料油の製造 方法。
1 3 . 原料油から高い収率でガスタービン燃料油を製造するガスタービン燃料油 の製造方法であって、
原油を常圧蒸留した常圧残渣油及び/または重油からなる重質原料油を、 軽質 油と重質油とに分離する、 減圧蒸留、 溶剤脱れき、 熱分解および水蒸気蒸留の各 工程から選ばれる第 1の分離工程と、
前記第 1の分離工程で得られた前記軽質油を触媒の存在下で加圧された水素と 接触させて脱不純物処理を行ない精製油を得る第 2の水素化処理工程と、を含み、 得られた精製油であるガスタービン燃料油は、粘度が 1 0 0 °Cで 4 c S t以下、 アルカリ金属が 1 p p m以下、 鉛が 1 p p m以下、 Vが 0 . 5 p p m以下、 C a が 2 p p m以下、 硫黄が 5 0 0 p p m以下であり、 前記重質原料油に対する収率 が 4 0 %以上である、 ことを特徴とするガスタービン燃料油の製造方法。
1 4 . 前記第 1の分離工程で得られた前記重質油をさらに軽質油と重質油とに分 離する、 溶剤脱れき及び熱分解の各工程から選ばれる第 2の分離工程を含み、 こ の第 2の分離工程で得られた軽質油に対して第 3の水素化処理工程を行ない精製 油を得、 この精製油をガスタービン燃料油とする、 ことを特徴とする請求の範囲 第 1 3項記載のガスタービン燃料油の製造方法。
1 5 . 前記第 1の分離工程で得られた前記重質油を触媒の存在下で加圧された水 素と接触させて脱不純物処理を行うとともに前記重質油の一部を分解し精製油と 重質油とを得る第 4の水素化処理工程を含み、 この第 4の水素化処理工程で得ら れた前記精製油をガスタービン燃料油とする、 ことを特徴とする請求の範囲第 1 3項記載のガスタ一ビン燃料油の製造方法。
1 6 . 原料油から高い収率でガスタービン燃料油を製造するガスタービン燃料油 の製造方法であって、
原油を常圧蒸留した常圧残渣油及び Zまたは重油からなる重質原料油を、 触媒 の存在下で加圧された水素と接触させて脱不純物処理を行うとともに重質油の一 部を分解し精製油と重質油とを得る第 5の水素化処理工程を含み、
この第 5の水素化処理工程で得られた前記精製油であるガスタービン燃料油は、 粘度が 1 0 0 °Cで 4 c S t以下、 アル力リ金属が 1 p p m以下、 鉛が 1 p p m以 下、 Vが 0 . 5 p p m以下、 C aが 2 p p m以下、 硫黄が 5 0 0 p p m以下であ り、 前記重質原料油に対する収率が 4 0 %以上である、 ことを特徴とするガスタ —ビン燃料油の製造方法。
1 7 . 前記第 5の水素化処理工程で得られた前記重質油をさらに軽質油と重質油 とに分離する、 減圧蒸留、 溶剤脱れき及び熱分解の各工程から選ばれる第 3の分 離工程を含み、 この第 3の分離工程で得られた前記軽質油をガスタービン燃料油 とする、 ことを特徴とする請求の範囲第 1 6項記載のガスタービン燃料油の製造 方法。
1 8 . 請求の範囲第 1項乃至第 1 7項のいずれかに記載の製造方法により製造さ れた、 ことを特徴とするガスタービン燃料油。
1 9 . 請求の範囲第 1 8項で製造されたガスタービン燃料油を燃料としてガスタ 一ビンを駆動させて発電を行う工程と、
前記ガスタ一ビンから排出される高温排ガスを排熱回収ボイラ一の熱源とし、 このお熱回収ボイラ一にて発生した蒸気により蒸気タービンを駆動して発電を行 う工程と、 を含む、 ことを特徴とする発電方法。
PCT/JP1999/004927 1998-10-30 1999-09-10 Huile combustible pour turbine a gaz, son procede de production et procede de production d'energie WO2000026325A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP99943259A EP1130080A4 (en) 1998-10-30 1999-09-10 FUEL OIL FOR GAS TURBINES AND METHOD FOR THE PRODUCTION AND PRODUCTION OF ELECTRICITY
US09/807,696 US7276151B1 (en) 1998-10-30 1999-09-10 Gas turbine fuel oil and production method thereof and power generation method
BR9914885-4A BR9914885A (pt) 1998-10-30 1999-09-10 Processo para produção de óleo combustìvel para turbina de gás e processo para geração de energia

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP32616998 1998-10-30
JP10/326169 1998-10-30
JP11/10847 1999-01-19
JP1084799 1999-01-19
JP11/89433 1999-03-30
JP08943399A JP5057315B2 (ja) 1998-10-30 1999-03-30 ガスタービン燃料油の製造方法

Publications (1)

Publication Number Publication Date
WO2000026325A1 true WO2000026325A1 (fr) 2000-05-11

Family

ID=27279120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004927 WO2000026325A1 (fr) 1998-10-30 1999-09-10 Huile combustible pour turbine a gaz, son procede de production et procede de production d'energie

Country Status (12)

Country Link
US (1) US7276151B1 (ja)
EP (1) EP1130080A4 (ja)
JP (1) JP5057315B2 (ja)
KR (1) KR100432293B1 (ja)
AR (1) AR021040A1 (ja)
BR (1) BR9914885A (ja)
ID (1) ID29869A (ja)
RU (1) RU2203926C2 (ja)
SA (1) SA99200527B1 (ja)
TR (1) TR200101172T2 (ja)
TW (1) TW467951B (ja)
WO (1) WO2000026325A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036566A1 (en) * 1999-11-15 2001-05-25 Jgc Corporation System and method for oil fuel burning integrated combined cycle power generation
EP1350832A4 (en) * 2000-11-30 2004-12-01 Jgc Corp METHOD FOR REFINING PETROLEUM
US7846912B2 (en) 2007-09-13 2010-12-07 Protia, Llc Deuterium-enriched nelarabine
US8850787B2 (en) 2010-05-27 2014-10-07 Sumitomo Corporation Hybrid thermal power generation system and method of constructing same

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302680A (ja) * 2001-04-05 2002-10-18 Jgc Corp 重質油の精製方法
WO2003078549A1 (fr) * 2002-03-15 2003-09-25 Jgc Corporation Procédé et appareil de raffinage du pétrole
JP2005060182A (ja) * 2003-08-18 2005-03-10 Shikoku Electric Power Co Inc 水素の製造方法及びそれに用いる水素製造装置
JP4581563B2 (ja) * 2004-08-31 2010-11-17 株式会社日立製作所 コンバインドサイクル発電設備,蒸気火力発電設備
MX2007008431A (es) * 2005-01-21 2007-09-07 Exxonmobil Res & Eng Co Proceso de hidrotratamiento con manejo mejorado de hidrogeno.
SG158909A1 (en) * 2005-01-21 2010-02-26 Exxonmobil Res & Eng Co Management of hydrogen in hydrogen-containing streams from hydrogen sources with rapid cycle pressure swing adsorption
CN101163536B (zh) * 2005-01-21 2011-12-07 埃克森美孚研究工程公司 采用精炼工艺单元如加氢处理、加氢裂化的快速循环压力摆动吸附的改进的集成
JP4627468B2 (ja) 2005-09-26 2011-02-09 株式会社日立製作所 ガスタービン燃料の製造方法、ガスタービン発電方法及び発電装置
ITMI20071302A1 (it) * 2007-06-29 2008-12-30 Eni Spa Procedimento per la conversione a distillati di cariche idrocarburiche pesanti con autoproduzione di idrogeno
ITMI20071303A1 (it) * 2007-06-29 2008-12-30 Eni Spa Procedimento per la conversione di cariche idrocarburiche pesanti a distillati con autoproduzione di idrogeno
JP2009228475A (ja) * 2008-03-19 2009-10-08 Mitsubishi Heavy Ind Ltd ガスタービン発電システム
WO2012039890A1 (en) * 2010-09-20 2012-03-29 Exxonmobil Chemical Patents Inc. Process and apparatus for co-production of olefins and electric power
US9109176B2 (en) * 2011-03-28 2015-08-18 Exxonmobil Research And Engineering Company Method for making marine bunker fuels
EP2766457A2 (en) * 2011-10-14 2014-08-20 Saudi Arabian Oil Company A non-catalytic hydrogen generation process for delivery to a hydrodesulfurization unit and solid oxide fuel cell system combination for auxiliary power unit application
CN103100447B (zh) * 2011-11-10 2014-10-15 中国石油化工股份有限公司 加氢装置的开工硫化方法
US9777637B2 (en) 2012-03-08 2017-10-03 General Electric Company Gas turbine fuel flow measurement using inert gas
EP2855639A1 (en) * 2012-06-05 2015-04-08 Saudi Arabian Oil Company Integrated process for deasphalting and desulfurizing whole crude oil
ITBA20120048A1 (it) * 2012-07-24 2014-01-25 Itea Spa Processo di combustione
RU2490307C1 (ru) * 2012-10-01 2013-08-20 Андрей Владиславович Курочкин Способ переработки нефти
CN103789027B (zh) * 2012-10-26 2015-04-29 中国石油化工股份有限公司 一种重油加氢改质方法
CN103789036B (zh) * 2012-10-26 2015-09-23 中国石油化工股份有限公司 一种劣质重油组合加工方法
GB2526855A (en) * 2014-06-05 2015-12-09 Hydrodec Group Plc Purification of oils
RU2578150C1 (ru) * 2014-09-18 2016-03-20 Сергей Владиславович Дезорцев Способ получения экологически чистого жидкого ракетного топлива
CN104711019B (zh) * 2015-03-05 2016-09-14 武汉凯迪工程技术研究总院有限公司 利用费托合成油生产柴油和喷气燃料的系统及方法
KR101718965B1 (ko) 2015-10-19 2017-03-23 한국에너지기술연구원 액상 탄화수소 유분을 이용한 중질유의 처리 방법 및 중질유 처리 장치
CN107699281B (zh) * 2016-08-08 2020-03-17 北京华石联合能源科技发展有限公司 一种利用悬浮床加氢工艺中产生的沥青的方法及装置
SG11201807110RA (en) * 2016-10-18 2018-09-27 Mawetal Llc Polished turbine fuel
CN117050777A (zh) 2016-10-18 2023-11-14 马威特尔有限责任公司 抵消或减少燃料成本的方法
CN114437810B (zh) 2016-10-18 2024-02-13 马威特尔有限责任公司 配制的燃料
US20190233741A1 (en) * 2017-02-12 2019-08-01 Magēmā Technology, LLC Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil
CN108559545B (zh) * 2018-04-09 2020-04-28 华南理工大学 一种停开分馏塔系统和改变冷低分油去向的渣油加氢精制流程
US10577540B2 (en) 2018-06-06 2020-03-03 Rj Lee Group, Inc. Method and apparatus for steam separation of pyrolysis oils
CN109609186A (zh) * 2018-12-29 2019-04-12 洛阳瑞华新能源技术发展有限公司 上流加氢热裂化过程和宽馏分烃油分馏过程的组合方法
JP7330612B2 (ja) * 2019-04-05 2023-08-22 川崎重工業株式会社 ボイラシステム
RU2734309C1 (ru) * 2019-10-07 2020-10-15 Маветал Ллс Экологичное судовое топливо
RU2758361C2 (ru) * 2019-10-08 2021-10-28 Маветал Ллс Способ уменьшения выбросов в атмосферу серы в порту
US11680521B2 (en) * 2019-12-03 2023-06-20 Saudi Arabian Oil Company Integrated production of hydrogen, petrochemicals, and power
JP7002590B2 (ja) * 2020-04-01 2022-01-20 マウェタール エルエルシー 燃料
US11787759B2 (en) 2021-08-12 2023-10-17 Saudi Arabian Oil Company Dimethyl ether production via dry reforming and dimethyl ether synthesis in a vessel
US11718575B2 (en) 2021-08-12 2023-08-08 Saudi Arabian Oil Company Methanol production via dry reforming and methanol synthesis in a vessel
US11578016B1 (en) 2021-08-12 2023-02-14 Saudi Arabian Oil Company Olefin production via dry reforming and olefin synthesis in a vessel
US11617981B1 (en) 2022-01-03 2023-04-04 Saudi Arabian Oil Company Method for capturing CO2 with assisted vapor compression

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386793A (ja) * 1989-08-31 1991-04-11 Tonen Corp 石油蒸留物の低イオウ化方法
JPH06209600A (ja) * 1992-10-26 1994-07-26 Mitsubishi Heavy Ind Ltd コンバインド・サイクル発電方法
JPH06207179A (ja) * 1992-10-02 1994-07-26 Mitsubishi Heavy Ind Ltd 発電燃料の製造方法と発電方法
JPH07197040A (ja) * 1993-12-30 1995-08-01 Tonen Corp 石油蒸留物の高品質化方法
JPH0848981A (ja) * 1994-06-03 1996-02-20 Japan Energy Corp 軽油留分の水素化精製処理方法
JPH08183964A (ja) * 1994-12-30 1996-07-16 Tonen Corp 流動接触分解用原料の水素化処理方法
JPH08183961A (ja) * 1994-12-28 1996-07-16 Cosmo Sogo Kenkyusho:Kk 軽油の水素化処理方法
JPH09194852A (ja) * 1996-01-22 1997-07-29 Mitsubishi Heavy Ind Ltd コンバインド・サイクル発電用燃料の製造方法
JPH102234A (ja) * 1996-06-18 1998-01-06 Mitsubishi Heavy Ind Ltd コンバインド・サイクル発電設備

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2775544A (en) * 1955-02-28 1956-12-25 Exxon Research Engineering Co Production of catalytic cracking feed stocks
US2914457A (en) * 1957-06-28 1959-11-24 Texaco Inc Petroleum refining process
US2945803A (en) * 1958-04-14 1960-07-19 Gulf Research Development Co Process for hydrogen treatment and catalytic cracking of petroleum hydrocarbons
US2925374A (en) * 1958-05-19 1960-02-16 Exxon Research Engineering Co Hydrocarbon treating process
US3287254A (en) 1964-06-03 1966-11-22 Chevron Res Residual oil conversion process
US3306845A (en) 1964-08-04 1967-02-28 Union Oil Co Multistage hydrofining process
US3383300A (en) * 1965-09-24 1968-05-14 Exxon Research Engineering Co Process for the preparation of low sulfur fuel oil
US3464915A (en) * 1967-03-10 1969-09-02 Chevron Res Desulfurization and blending of heavy fuel oil
US3893909A (en) * 1971-12-27 1975-07-08 Universal Oil Prod Co Fuel oil production by blending hydrodesulfurized vacuum gas oil and hydrodesulfurized deasphalted residuum
US3830731A (en) * 1972-03-20 1974-08-20 Chevron Res Vacuum residuum and vacuum gas oil desulfurization
US3801495A (en) 1972-05-19 1974-04-02 Chevron Res Integrated process combining catalytic cracking with hydrotreating
US3855113A (en) * 1972-12-21 1974-12-17 Chevron Res Integrated process combining hydrofining and steam cracking
US4006076A (en) * 1973-04-27 1977-02-01 Chevron Research Company Process for the production of low-sulfur-content hydrocarbon mixtures
NL7510465A (nl) * 1975-09-05 1977-03-08 Shell Int Research Werkwijze voor het omzetten van koolwaterstoffen.
NL7610511A (nl) * 1976-09-22 1978-03-28 Shell Int Research Werkwijze voor het omzetten van koolwater- stoffen.
NL7610510A (nl) * 1976-09-22 1978-03-28 Shell Int Research Werkwijze voor het omzetten van koolwater- stoffen.
GB2032948B (en) * 1978-09-27 1982-09-15 Hitachi Ltd Desalting fuel oil
NL8201119A (nl) * 1982-03-18 1983-10-17 Shell Int Research Werkwijze voor de bereiding van koolwaterstofoliedestillaten.
US4713221A (en) * 1984-05-25 1987-12-15 Phillips Petroleum Company Crude oil refining apparatus
US4990242A (en) * 1989-06-14 1991-02-05 Exxon Research And Engineering Company Enhanced sulfur removal from fuels
US5851381A (en) * 1990-12-07 1998-12-22 Idemitsu Kosan Co., Ltd. Method of refining crude oil
WO1995023836A1 (en) * 1994-03-02 1995-09-08 Orr William C Unleaded mmt fuel compositions
FR2753983B1 (fr) * 1996-10-02 1999-06-04 Inst Francais Du Petrole Procede en plusieurs etapes de conversion d'un residu petrolier
US5958365A (en) * 1998-06-25 1999-09-28 Atlantic Richfield Company Method of producing hydrogen from heavy crude oil using solvent deasphalting and partial oxidation methods

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386793A (ja) * 1989-08-31 1991-04-11 Tonen Corp 石油蒸留物の低イオウ化方法
JPH06207179A (ja) * 1992-10-02 1994-07-26 Mitsubishi Heavy Ind Ltd 発電燃料の製造方法と発電方法
JPH06209600A (ja) * 1992-10-26 1994-07-26 Mitsubishi Heavy Ind Ltd コンバインド・サイクル発電方法
JPH07197040A (ja) * 1993-12-30 1995-08-01 Tonen Corp 石油蒸留物の高品質化方法
JPH0848981A (ja) * 1994-06-03 1996-02-20 Japan Energy Corp 軽油留分の水素化精製処理方法
JPH08183961A (ja) * 1994-12-28 1996-07-16 Cosmo Sogo Kenkyusho:Kk 軽油の水素化処理方法
JPH08183964A (ja) * 1994-12-30 1996-07-16 Tonen Corp 流動接触分解用原料の水素化処理方法
JPH09194852A (ja) * 1996-01-22 1997-07-29 Mitsubishi Heavy Ind Ltd コンバインド・サイクル発電用燃料の製造方法
JPH102234A (ja) * 1996-06-18 1998-01-06 Mitsubishi Heavy Ind Ltd コンバインド・サイクル発電設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1130080A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036566A1 (en) * 1999-11-15 2001-05-25 Jgc Corporation System and method for oil fuel burning integrated combined cycle power generation
EP1350832A4 (en) * 2000-11-30 2004-12-01 Jgc Corp METHOD FOR REFINING PETROLEUM
US7846912B2 (en) 2007-09-13 2010-12-07 Protia, Llc Deuterium-enriched nelarabine
US8850787B2 (en) 2010-05-27 2014-10-07 Sumitomo Corporation Hybrid thermal power generation system and method of constructing same

Also Published As

Publication number Publication date
KR20010089377A (ko) 2001-10-06
US7276151B1 (en) 2007-10-02
SA99200527B1 (ar) 2006-08-12
JP5057315B2 (ja) 2012-10-24
RU2203926C2 (ru) 2003-05-10
KR100432293B1 (ko) 2004-05-22
EP1130080A1 (en) 2001-09-05
BR9914885A (pt) 2002-01-15
EP1130080A4 (en) 2004-11-24
TW467951B (en) 2001-12-11
JP2000273467A (ja) 2000-10-03
ID29869A (id) 2001-10-18
AR021040A1 (es) 2002-06-12
TR200101172T2 (tr) 2001-09-21

Similar Documents

Publication Publication Date Title
WO2000026325A1 (fr) Huile combustible pour turbine a gaz, son procede de production et procede de production d'energie
US10125322B2 (en) Method for revamping a conventional mineral oils refinery to a biorefinery
US11802247B2 (en) Process and plant for producing hydrocarbons with reduced CO2-footprint and improved hydrogen integration
US10202552B2 (en) Method to remove metals from petroleum
RU2395562C2 (ru) Последовательность процессов гидроконверсии и конверсии с водяным паром с целью оптимизации получения водорода на разрабатываемых месторождениях
CN103429335A (zh) 包括对重质烃原料的超临界水处理和硫吸附的方法
JP4495791B2 (ja) コンバインドサイクル発電システム
JP2001140656A (ja) 石油燃料燃焼複合発電設備及びその方法
CN109666509A (zh) 一种生产航空生物燃料的加氢方法
KR20220112268A (ko) 수소, 석유화학제품 및 전력의 통합 제조
JP5296477B2 (ja) ナフサ留分水素化処理反応器のスタートアップ方法
JP2000282060A (ja) ガスタ−ビン燃料油及びその製造方法並びに発電方法
CN115151625B (zh) 将原油直接提质为氢和化学品的系统和工艺
SK16162001A3 (sk) Spôsob hydrokonverzie uhľovodíkov na výrobu vodíka, vodíkom spracovaných uhľovodíkov a elektriny
JP2023536101A (ja) 熱酸化システムによる再生可能輸送燃料プロセス
CN117677686A (zh) 在不排放二氧化碳的情况下生产合成燃料的设备和方法
JP2001089769A (ja) ガスタ−ビン燃料油の製造方法
MXPA01004130A (en) Gas turbine fuel oil and production method thereof and power generation method
CN117730134A (zh) 通过加氢处理由可再生有机材料获得化学品的整合方法和整合系统
JP2000282069A (ja) ガスタービン燃料油の製造方法及びガスタービン燃料油
US20110003901A1 (en) Ft water treating and recovery
RU2129584C1 (ru) Способ получения моторного топлива
CN117663158A (zh) 可再生燃料生产工艺中的酸气和酸水的集成处理方法和系统
JPS581160B2 (ja) 原油の処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR ID IN KR MX RU SG TR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09807696

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999943259

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2001/004130

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2001/01172

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 1020017005384

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999943259

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017005384

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020017005384

Country of ref document: KR