WO2000018756A1 - Purification de lactide et lactide utilise comme additif alimentaire - Google Patents

Purification de lactide et lactide utilise comme additif alimentaire Download PDF

Info

Publication number
WO2000018756A1
WO2000018756A1 PCT/JP1998/004287 JP9804287W WO0018756A1 WO 2000018756 A1 WO2000018756 A1 WO 2000018756A1 JP 9804287 W JP9804287 W JP 9804287W WO 0018756 A1 WO0018756 A1 WO 0018756A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactide
ethanol
purified
crude
purifying
Prior art date
Application number
PCT/JP1998/004287
Other languages
English (en)
French (fr)
Inventor
Hitomi Ohara
Hisashi Okuyama
Makoto Ogaito
Yasuhiro Fujii
Tatsushi Kawamoto
Takashi Kawabe
Yasumasa Horibe
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to PCT/JP1998/004287 priority Critical patent/WO2000018756A1/ja
Priority to EP99969720A priority patent/EP1048665A4/en
Priority to PCT/JP1999/003505 priority patent/WO2000018757A1/ja
Publication of WO2000018756A1 publication Critical patent/WO2000018756A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/101,4-Dioxanes; Hydrogenated 1,4-dioxanes
    • C07D319/121,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C20/00Cheese substitutes
    • A23C20/02Cheese substitutes containing neither milk components, nor caseinate, nor lactose, as sources of fats, proteins or carbohydrates
    • A23C20/025Cheese substitutes containing neither milk components, nor caseinate, nor lactose, as sources of fats, proteins or carbohydrates mainly containing proteins from pulses or oilseeds
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D2/00Treatment of flour or dough by adding materials thereto before or during baking
    • A21D2/08Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
    • A21D2/14Organic oxygen compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C11/00Milk substitutes, e.g. coffee whitener compositions
    • A23C11/02Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins
    • A23C11/06Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins containing non-milk proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C20/00Cheese substitutes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/04Animal proteins
    • A23J3/08Dairy proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • A23L11/40Pulse curds
    • A23L11/45Soy bean curds, e.g. tofu
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/03Organic compounds
    • A23L29/035Organic compounds containing oxygen as heteroatom
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/3481Organic compounds containing oxygen
    • A23L3/3499Organic compounds containing oxygen with doubly-bound oxygen
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/3481Organic compounds containing oxygen
    • A23L3/3508Organic compounds containing oxygen containing carboxyl groups
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/3544Organic compounds containing hetero rings
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/196Products in which the original granular shape is maintained, e.g. parboiled rice
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L9/00Puddings; Cream substitutes; Preparation or treatment thereof
    • A23L9/10Puddings; Dry powder puddings
    • A23L9/12Ready-to-eat liquid or semi-liquid desserts, e.g. puddings, not to be mixed with liquids, e.g. water, milk
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P30/00Shaping or working of foodstuffs characterised by the process or apparatus
    • A23P30/40Foaming or whipping
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to a method for purifying lactide, which is a dimeric cyclic ester of lactic acid, and more particularly to a method for obtaining a purified lactide having a high content of L-lactide and Z or D-lactide. About.
  • the present invention relates to a method for purifying lactide for obtaining high-purity lactide for food additives.
  • the present invention also relates to a food additive using lactide.
  • Lactide has conventionally been useful as a raw material for producing polylactic acid, a biodegradable polymer. That is, polylactic acid is obtained by ring-opening polymerization of lactide. In addition to the use of polylactic acid as a raw material for production, lactide will be used as a food storage stabilizer, pH adjuster, coagulant, acidulant, swelling aid, and other food additives in the future. Expected.
  • Lactide is a dimeric cyclic ester of lactic acid, and is composed of three types of optical isomers: L-lactide consisting of two L-lactic acid molecules, D-lactide consisting of two D-lactic acid molecules, and L-lactic acid. There is a meso-lactide composed of D-lactic acid.
  • lactide is obtained by dehydrating and condensing lactic acid to obtain a relatively low molecular weight polylactic acid as an intermediate, and then depolymerizing and cyclizing the polylactic acid to produce the lactide, which is then converted into steam. It is manufactured by the so-called reactive distillation method, which is taken out of the reaction system.
  • lactide vapor includes L-lactide and In addition to D-lactide and meso-lactide, low molecular weight lactic acid polycondensates such as lactic acid monomer, linear lactic acid dimer, trimer, etc., and water are contained as impurities. Furthermore, impurities such as saccharides, amino acids, and fatty acids other than lactic acid derived from the raw material lactic acid may be included.
  • lactide is converted into lactic acid and linear low molecular weight lactic acid polycondensate by hydrolysis, but meso lactide has significantly higher water absorption and hydrolyzability than L-lactide and D-lactide. Therefore, lactide having a high content of meso-lactide is rapidly hydrolyzed as a whole, and has a high content of lactic acid as an acidic component and a linear low molecular weight lactic acid polycondensate.
  • lactide when used as a food additive, it is more useful to use lactide, which has a low acidity at the initial stage of addition and increases the acidity over time (as the food ages). If lactide contains a large amount of meso-lactide, lactic acid, or a linear low-molecular-weight lactic acid polycondensate, the acidity in the initial stage of the addition increases. Therefore, it is preferable that the content of meso-lactide, lactic acid, linear low molecular weight lactic acid polycondensate and water in lactide is as small as possible.
  • the melting points of L-lactide and D-lactide are about 98 ° C, whereas those of meso-lactide are about 40 ° C.
  • Lactic acid has a melting point of 16 to 25, and linear low-molecular-weight lactic acid polycondensate is liquid at room temperature. Therefore, when lactide is used in the form of powder or particles, the melting point of meso lactide, lactic acid, linear low-molecular-weight lactate polycondensate, and water content at or below room temperature If the lactide is too high, there is a problem that the flowability of lactide deteriorates and the workability is impaired. Therefore, it is preferable that their content in lactide is as low as possible.
  • lactide when used as a food additive, it is contained in lactide. Impurities such as saccharides, amino acids, and fatty acids other than lactic acid, which are produced, make the taste of the food additive worse or change, and cause a problem of coloring the food additive. Therefore, it is preferable that the content of these impurities in lactide is as low as possible.
  • Various conventional lactide refining methods are known, such as a method by recrystallization, a method by melt crystallization, a method by rectification, and a method by extraction with water.
  • JP-B-5 1 - The 6 6 7 3 JP, c is a method of recrystallizing the lactide de by the ⁇ mil alcohol or blanking chill alcohol solvent is disclosed, however, in this case, the human body Harmful organic solvents will remain in the purified lactide, which is problematic when used as a food additive.
  • Japanese Patent Application Laid-Open No. 63-101378 discloses that lactide is recrystallized from an alcohol having 1 to 6 carbon atoms, preferably isopropyl alcohol, or is dissolved and then dissolved in a non-solvent. It is disclosed to precipitate using.
  • Japanese Patent Application Laid-Open No. 7-118589 discloses a method in which lactide is recrystallized from a lower alcohol and then recrystallized with benzene or the like.
  • the process of heating and dissolving the crude lactide in a solvent or the process of cooling and precipitating lactide from a solution requires a great deal of time and utility, and thus requires a large amount of solvent. This is disadvantageous in terms of cost because the yield is low.
  • organic solvents that are harmful to the human body remain in the purified lactide, which is problematic when used as a food additive. ,
  • Japanese Patent Application Laid-Open No. 6-256430 discloses a method for purifying crude lactide by a melt crystallization method.
  • expensive large-scale equipment is required for melt crystallization. Is required, and the lactide is cooled and precipitated, or is purified by heating.
  • Japanese Patent Application Laid-Open No. Hei 7-167575 discloses a method of purifying crude lactide by bringing it into contact with water.
  • lactide is brought into contact with water to remove meso-lactide.
  • L-lactide and / or D-lactide are removed.
  • the hydride is also partially hydrolyzed and removed, resulting in low yield.
  • the removed L-lactide and Z- or D-lactide react with water and can be recovered only in the form of lactic acid or a linear low-molecular-weight lactic acid polycondensate. It is very disadvantageous in terms of cost that lactide obtained from lactic acid using a large amount of utility can be recovered only in the form of lactic acid or a linear low molecular weight lactic acid polycondensate. Disclosure of the invention
  • an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for purifying a lactide that can obtain a highly purified lactide with a high yield in a high yield through a simple process using simple equipment. Is to do.
  • Another object of the present invention is to provide a method for purifying lactide which is suitable for use in food additives without leaving an organic solvent harmful to the human body and which provides purified lactide having particles having good fluidity.
  • An object of the present invention is to provide a purified lactide suitable for use as an inexpensive high-purity food additive.
  • Another object of the present invention is to provide a food additive containing lactide as a main component.
  • the inventors of the present invention have studied keto and crude lactide which has been thoroughly studied and brought into contact with ethanol, and then separated the solid to obtain a purified lactide having a high L-lactide and / or D-lactide content. Was obtained in high yield, and the present invention was completed.
  • the present invention provides a method for producing a slurry-like mixture by contacting a crude solid state or at least a partially molten state with ethanol to obtain a slurry-like mixture, and thereafter separating a solid content from the mixture.
  • a method for purifying lactide including obtaining a purified lactide having a high content of L-lactide and Z. or D-lactide.
  • the separated solid content is dried under reduced pressure.
  • the separated solid content can be washed with water in order to remove ethanol.
  • the solid content is preferably dried under reduced pressure.
  • both undenatured ethanol and denatured ethanol can be used as ethanol.
  • the present invention is a purified lactide obtained by the above-mentioned ethanol contact method.
  • lactide for food additives can be obtained by recrystallizing crude lactide using unmodified ethanol or modified ethanol as a solvent.
  • the present invention has been completed. That is, the present invention is a method for purifying lactide, comprising recrystallizing crude lactide from undenatured ethanol to obtain lactide for food additives.
  • the present invention is also a method for purifying lactide, comprising recrystallizing crude lactide from modified ethanol to obtain lactide for food additives.
  • the denaturing agent contained in the denatured ethanol is preferably selected from fragrances that can be used as food additives. If the denaturing agent contained in the denatured ethanol is a synthetic chemical substance, ethyl ethyl acetate, butyl para-hydroxybenzoate, white rack, refined ceramic, white rubber solution, purified ceramic dissolution Preferably, at least one of the liquids is used.
  • the present invention is a lactide for a food additive recrystallized from native ethanol. Further, the present invention is a lactide for food additives recrystallized from modified ethanol.
  • the present invention also provides an animal protein coagulant, a food foaming agent, a food preservative,
  • lactide as a food additive such as a pH adjuster and sour agent.
  • purified lactide having a high content of L-lactide and Z or D-lactide can be obtained in a short time and with high yield by a simple apparatus and operation. According to the present invention, an organic solvent harmful to the human body is eliminated. Purified lactide with good workability can be obtained without remaining.
  • the purified lactide obtained by the present invention is inexpensive and is suitable for use as a food additive. Detailed description of the invention
  • the purification method of the present invention can be applied to crude lactide obtained by a conventionally known method.
  • a method of obtaining low molecular weight polylactic acid and depolymerizing this polylactic acid in the presence of a catalyst to obtain lactide 7-500 091 thin film depolymerization method of lactic acid oligomer as described in JP-A No. 6-504 762 and US Pat. No. 5,74,127. No. 5,332,839, 5,319,107 and 5,420,304, lactide is directly converted from lactic acid without passing through a lactic acid oligomer. Any method such as a manufacturing method may be used. Of course, it is not limited to lactide by these methods.
  • lactic acid for producing lactide for example, those having a lactic acid monomer equivalent weight concentration of 50 to 95% obtained by a synthesis method or a fermentation method can be used.
  • Lactic acid obtained by the synthesis method contains an equal amount of L-lactic acid component and D-lactic acid component.
  • C Lactic acid obtained by the fermentation method is a mixture of L-lactic acid component and D-lactic acid component. Some contain mono-lactic acid components and others contain D-lactic acid components mainly.
  • lactic acid obtained by a fermentation method should be used instead of lactic acid obtained by a synthesis method using toxic substances such as hydrocyanic acid or acetoaldehyde in the manufacturing process.
  • the raw material lactic acid is usually dehydrated under heating and reduced pressure in the absence or presence of a catalyst to obtain a weight average molecular weight of 500 to 30%. , 000 polylactic acid.
  • the heating temperature in this case is 100 to 250 ° C, preferably 100 to 200 ° C. If the temperature is lower than 100 ° C, polycondensation takes too much time. If the temperature is higher than 250 ° C, lactic acid and linear low molecular weight lactic acid polycondensate are distilled off at the same time as water, resulting in poor yield. Not preferred.
  • the catalyst used in this case is not particularly limited, but is usually a simple element of a metal belonging to Group IA, IIA, ⁇ ⁇ , ⁇ ⁇ ⁇ , IVA, IVB, or VB of the periodic table. Oxides, hydroxides, chlorides, other inorganic compounds, organic compounds and the like, and acids are used alone or in combination.
  • the amount of the catalyst is usually 5% by weight or less based on the raw lactic acid.
  • Group IA catalysts include sodium hydroxide, sodium hydroxide, lithium hydroxide, sodium oxide, potassium oxide, lithium oxide, sodium methoxide, and sodium methoxide. Rum ethoxide and the like can be mentioned.
  • Examples of the IIA group catalyst include magnesium hydroxide, calcium hydroxide, barium hydroxide, magnesium oxide, calcium oxide, barium oxide, magnesium chloride, and barium chloride.
  • Examples of the group IIB catalyst include zinc hydroxide, zinc oxide, zinc chloride and the like.
  • Examples of the IIB group catalyst include aluminum oxide, aluminum chloride, aluminum triethoxide, and aluminum octylate.
  • group IVA catalysts include titanium oxide, tetramethyl titanate, tetrabutyl titanate, zirconium, zirconium oxide, zirconium tetramethoxide, zirconium tetrabutoxide, and the like.
  • Group IVB catalysts include germanium, germanium oxide, tin, tin oxide, tin chloride, tin oxalate, tin octoate, dibutyltin dilaurate, dibutyltin oxide, butyltin chloroxide, lead oxide, Silicon oxide and the like.
  • Examples of the VB group catalyst include antimony trioxide, antimony triacetate, and triphenylantimony.
  • the acid catalyst examples include sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, toluenesulfonic acid, and a positive ion exchange resin.
  • the use of these catalysts also promotes the racemization reaction of lactic acid.Therefore, when using lactic acid obtained by fermentation to obtain lactide with high optical purity, no catalyst is used. Alternatively, it is preferable to reduce the amount of catalyst used.
  • the obtained low-molecular-weight polylactic acid is heated and decompressed in the presence of a catalyst and depolymerized to generate lactide, which is taken out of the reaction system as steam to produce crude lactide.
  • the heating temperature in this case is 130 to 300 ° C, preferably 160 to
  • the temperature is higher than 300 ° C., the amount of by-products such as acrylic acid and acrylic acid polymer increases, which is not preferable.
  • lactic acid obtained by fermentation is used to obtain crude lactide with high optical purity, the racemization reaction is suppressed,
  • the pressure is not more than 100 Torr, preferably not more than 50 Torr, and more preferably not more than 20 Torr.
  • the depolymerization catalyst is not limited, but is usually a group IA of the Periodic Table, ⁇ ⁇ , ⁇ ⁇ , 1 I 1B, 1 VA, IVB, and VB metals alone, oxides, hydroxides, chlorides, other inorganic compounds, organic compounds, and acids alone Or a plurality is used. Specific examples of each of these catalysts are the same as those described above.
  • the catalyst is preferably used in an amount of 20% by weight or less based on polylactic acid.
  • a catalyst is used in the polycondensation step of low molecular weight polylactic acid and a sufficient depolymerization rate can be obtained by the catalyst remaining in the polylactic acid, a new catalyst is added. No need.
  • the crude lactide thus obtained usually contains low molecular weight lactic acid polycondensates such as lactic acid monomers, linear lactic acid dimers and trimers, impurities such as water, and raw materials of raw materials. It contains impurities such as saccharides derived from lactic acid, amino acids, and fatty acids other than lactic acid. Lactide also contains L-lactide and Z or D-lactide, as well as meso-lactide.
  • a crude lactide to be purified is brought into contact with ethanol to obtain a slurry-like mixture, and then a solid is separated from the mixture.
  • the crude lactide to be purified may be in a solid state or a molten state. Alternatively, a part thereof may be in a molten state. That is, the crude lactide that has been solidified can be purified, or the crude lactide obtained by depolymerizing low-molecular-weight polylactic acid can be purified without being solidified and maintained in a molten state. You can also do it.
  • contact between the crude lactide and ethanol results in a slurry-like mixture.
  • the contact between the crude lactide and the ethanol can be carried out either batchwise or continuously. Solids are separated and recovered from the resulting slurry mixture. This operation can be performed in a batch system or a continuous system.
  • the operation of contacting the crude lactide with ethanol and the operation of separating and collecting the solid can be repeated several times. That is, a repeated operation of bringing a crude lactide into contact with ethanol, separating a solid content, bringing the obtained solid content into contact with new ethanol again, and then separating and collecting the solid content. Can also be performed.
  • the ethanol used in the ethanol contact method of the present invention is a liquid mainly containing ethanol, and includes both unmodified ethanol and denatured ethanol.
  • the content of ethanol is at least 50% by weight, preferably at least 90% by weight, and more preferably at least 95% by weight. '
  • Denatured ethanol is a mixture of ethanol and a denaturant. Modifiers that can be incorporated include synthetic chemicals and natural substances. These denaturants can be used usually in an amount of 1 g to 200 g per liter of ethanol.
  • Synthetic chemicals include methanol, benzol, toluene, methylethyl ketone, denatonium benzoate, ethylene glycol monoethyl ether, black mouth form, getyl carbonate, ethyl acetate, ethyl ethyl propionate, ethyl ethyl butyrate.
  • Xane industrial ethyl ether, geraniol, octaacetylated sucrose, phenylethyl alcohol, getyl phthalate, alkylbenzene sulfonate aqueous solution, vinyl acetate monomer, heptane, isopropyl alcohol, butanol, ethyl acrylate, Brusin, linalool, linalyl acetate, benzyl acetate, seed vinegar, brewed vinegar, formalin, rhodamine B, white lacquer, purified lacquer, white lacquer lysate, refined ceramic lysate Liquid, para-hydroxybenzoic acid Chill etc. can be used.
  • ethyl acetate, butyl para-hydroxybenzoate, white rack, purified shellac, white rack solution, and purified ceramic solution are preferred as denaturants.
  • Natural substances include daisy dovinegar, orange recovery fragrance, drape recovery fragrance, wine recovery fragrance, natural butter flavor, fermented lactic acid, cereal fermented extract, orange oil, lemon oil, lime oil, Food oranges, vanilla extract tract, coffee recovery aroma, miso recovery aroma, ⁇ oil oil essence, malt essence, chicory essence, etc. that can be used as food additives . These may be used alone, but are usually used as a mixture.
  • flavors derived from natural substances that can be used as a food additive are particularly preferred. More specifically, flavors of Hasegawa Koryo Co., Ltd. H-1, H-2, H-3, H-4, H-6, H-9, H10, H-11, H-1 2, H—13, H—14, flavors manufactured by Takasago International Corporation ⁇ _ 100, 11101, ⁇ -1 102, 11 103, ⁇ 1 1 0 4, 1 1 5,
  • the type of modifier to be used is variously selected depending on the use of the food additive.
  • water mixed with water can also be used as the ethanol, but the amount of water mixed is 0 to 10 parts by weight, preferably 0 to 10 parts by weight with respect to 100 parts by weight of ethanol. 5 parts by weight, more preferably 0 to 0.1 part by weight. Exceeding 10 parts by weight is not preferred because the yield of purified lactide decreases. In order to obtain purified lactide for use in food additives, it is of course preferable to use unmodified ethanol. Undenatured ethanol is a denaturant Is unethanolated ethanol. Upon contact with crude lactide, ethanol is usually 100 to 600 parts by weight, preferably 20 to 400 parts by weight, and more preferably 3 to 100 parts by weight of crude lactide.
  • 0 to 200 parts by weight can be used. If the amount of ethanol is less than 10 parts by weight, separation of mesolactide and various impurities tends to be insufficient. On the other hand, if the amount exceeds 600 parts by weight, the separation of impurities is sufficient, but the yield of purified lactide decreases, and the amount of ethanol used is large, which is disadvantageous in cost.
  • the coarse lactide particles are those that have passed through 4 mesh, preferably through 6 mesh, and more preferably through 10 mesh. It is preferable that there is. 4 In the case of coarse lactide particles that do not pass through the mesh, a sufficient contact area between the coarse lactide and ethanol cannot be obtained, so that the separation of impurities tends to be insufficient.
  • Coarse lactide that has been previously pulverized into particles that have passed through 4 meshes may be used, or the coarse lactide may be pulverized to 4 meshes or less using a stirrer or the like while contacting the crude lactide with ethanol.
  • the method for previously grinding the crude lactide includes, but is not limited to, a force such as a joss crusher mill, a hammer crusher mill, a roll crusher mill, and a cage mill. Can be crushed using a coarse crusher, medium crusher, etc. If necessary, a particle classifier or the like can be used after the pulverization to remove particles that do not pass through the 4 mesh.
  • the method for bringing the crude lactide into contact with the ethanol in the solid state is not particularly limited.However, a method in which the crude lactide and the ethanol are put into a container and left to contact the container, A method of contacting in a mounted container, a method of contacting in a solid-liquid extraction device, and the like are used. Also, these devices It is also possible to contact crude lactide and ethanol in multiple stages using a plurality of.
  • the method of bringing the crude lactide in liquid state into contact with ethanol is not particularly limited, but the lactide is brought into contact with ethanol under stirring to homogenize the particles of the precipitated lactide. It is effective to discharge the crude lactide in the form of a liquid in the form of a spray or a spray into the ethanol through a nozzle or the like.
  • the slurry obtained by contacting in a vessel equipped with a stirrer to precipitate lactide can be further contacted with new ethanol in a solid-liquid extraction device.
  • the stirring device examples include a double-ribbon blade stirring device, a full-zone blade stirring device, a disk turbine blade stirring device, a rotary blade stirring device such as a homomixer, a jet and circulating flow stirring device, and a static stirrer.
  • a stirrer using a mixer is used.
  • the solid-liquid extraction device As the solid-liquid extraction device, a rotocell extractor, a Kennedy extractor, a Bonoto extractor, and the like are used. In these solid-liquid extraction devices, the crude lactide can be brought into contact with ethanol, and the solid content can be separated in the same device. However, since the content of ethanol in the separated solid content is large, it is preferable to further perform an operation of re-separating the solid content using another device.
  • the temperature at which the crude lactide is brought into contact with ethanol is preferably a low temperature in order to suppress the decomposition of L-lactide and / or D-lactide by reaction with ethanol or water. ⁇ 70 ° C, preferably 10-50 ° C, more preferably about 20-40 ° C.
  • a low temperature in order to suppress the decomposition of L-lactide and / or D-lactide by reaction with ethanol or water.
  • ⁇ 70 ° C preferably 10-50 ° C, more preferably about 20-40 ° C.
  • a solid content is separated from a slurry-like mixture obtained by contacting crude lactide with ethanol.
  • lactide can be recovered from the ethanol solution from which solids have been separated by crystallization, concentration, or the like. This cannot be realized by the purification method based on contact with water described in Japanese Patent Application Laid-Open No. 7-165573, and is one of the great advantages of the present invention.
  • the method for separating solids is not particularly limited, but a method of separating using a centrifugal sedimentation machine, a centrifugal filtration machine, a pressure filtration device, or the like is used.
  • a device that has the function of rinsing solids among these devices the operation of contacting the solids with ethanol and the operation of separating the solids in the same device are performed in parallel. This is effective in that
  • centrifuge a vertical basket-type centrifuge, a screw decanter-type centrifuge, and the like are used.
  • centrifugal filter a vertical basket type centrifugal filter, a screw decanter type centrifugal filter, a conical screen type centrifugal filter, or the like is used.
  • pressure filtration device a gravity filter, a pressure filter, a vacuum filter, or the like is used.
  • This water washing is preferably performed by bringing the solid content into contact with water.
  • the water washing operation can be performed in a batch system or a continuous system. Also, the water washing operation can be repeated several times. That is, it is also possible to repeat the operation of contacting the solid with water to separate the solid, contacting the obtained solid with fresh water again, and then separating and collecting the solid.
  • water is usually used in an amount of 100 to 200 parts by weight, preferably 20 to 100 parts by weight, and more preferably 100 to 100 parts by weight based on 100 parts by weight of the solid separated after contact with ethanol. Preferably, 30 to 60 parts by weight can be used. If the amount of washing water is less than 10 parts by weight, the action of removing ethanol is somewhat weak. If the amount exceeds 200 parts by weight, the yield of purified lactide will be low.
  • the temperature of the water contact washing is preferably a low temperature to suppress the decomposition reaction of L-lactide and Z or D-lactide, usually from 0 to 40 T :, preferably from 10 to 40 T. It is 30 ° C, more preferably 10 to 20 ° C.
  • the washing time in contact with water is preferably short in order to suppress the decomposition reaction of L-lactide and / or D-lactide, and it is sufficient for the ethanol to dissolve in water. It is usually between 10 seconds and 20 minutes, preferably between 10 seconds and 5 minutes, and more preferably between 10 seconds and 1 minute.
  • an apparatus similar to the above-described apparatus for bringing crude lactide into contact with ethanol can be used. Separation of solids from the slurry after contact with water can be performed using the same apparatus as the solids separation apparatus described above.
  • centrifugal filtration devices and pressure filtration devices with the function of rinsing solids are capable of shortening the contact time with water and enabling uniform contact with water. Is particularly preferred.
  • the solid separated after contact with ethanol as described above or the solid obtained after washing with water is dried under reduced pressure.
  • Purified lactide obtained as a solid typically contains the used ethanol, water, and, in some cases, substances contained in ethanol (e.g., water, methanol, isopropyl alcohol, methylethyl ketone). , Ethyl acetate etc.) are attached. These deposits may impair the fluidity of the resulting purified lactide particles or cause odor problems. Therefore, in order to reduce the attached substance, the solid content is preferably dried under reduced pressure.
  • This drying under reduced pressure is preferably carried out at a low temperature in order to suppress the decomposition of lactide by reaction with ethanol or water due to heating, usually at 10 to 95 ° C, preferably at 10 to 95 ° C. It can be performed at a temperature of about 60 ° C. and a pressure of about 0.01 to 100 Torr. Also, freeze-drying can be performed at a pressure of about 0.001 to 10 Torr and a temperature of 0 ° C. or less.
  • the drying time should be determined by the capacity of the drying equipment, the amount of lactide to be dried, or the content of ethanol and water in the purified lactide to be obtained. is there.
  • a tray dryer When performing drying under heating under reduced pressure, a tray dryer, a cylindrical stirring dryer, a conical rotary dryer, or the like can be used without limitation. In addition, when freeze-drying is performed, a tray dryer can be used without limitation.
  • ethanol recrystallization method of the present invention first, crude lactide is dissolved in ethanol. Next, lactide crystals are preferentially precipitated from the solution of lactide and tide to obtain a slurry-like mixture, and then solids are separated from this mixture. Usually, the separated solid is dried to obtain a purified lactide. Also, a series of operations from dissolving the crude lactide in ethanol to separating the precipitated solid can be repeated a plurality of times. Usually, the separated solid is dried to obtain a purified lactide.
  • Ethanol used in the ethanol recrystallization method of the present invention is a liquid mainly containing ethanol as in the case of the above-mentioned ethanol contact method, and both unmodified ethanol and denatured ethanol are used. Including.
  • the content of ethanol is 50% by weight or more, preferably 90% by weight or more, and more preferably 95% by weight or more.
  • Denatured ethanol is a mixture of ethanol and a denaturant. Modifiers that can be incorporated include synthetic chemicals and natural substances. These denaturants can usually be used in an amount of 1 g to 200 g per liter of ethanol.
  • the synthetic chemicals those described above can be used. Among them, ethyl acetate, butyl para-hydroxybenzoate, white rubber, purified ceramic, white rubber solution, and purified ceramic solution are preferred as denaturants.
  • Examples of the natural substance include those described above. They may be used alone, but are usually used as a mixture.
  • flavors derived from natural substances that can be used as a food additive are particularly preferred. More specifically, flavors of Hasegawa Koryo Co., Ltd., H-1, H-2, H-3, H-4, H-6, H-9, H-10, H-11, H- 12, H—13, H-14, flavor made by Takasago International Corporation ⁇ -1 100, T-1 101, T-1 102, T-1 103, T-1 0 4, T-105, T-106, T-107, EDA-171, S-201, Soda Perfume Co., Ltd. Laver DA-40 can be used. The type of modifier used depends on the type of food additive used. Are selected individually.
  • ethanol water mixed with water in addition to the denaturing agent can be used, but the amount of water mixed is 0 to 10 parts by weight, preferably 0 to 5 parts by weight with respect to 100 parts by weight of ethanol. Weight, more preferably 0-0.1 parts by weight. Exceeding 10 parts by weight is not preferred because the yield of purified lactide decreases. In order to obtain purified lactide for use in food additives, it is of course preferable to use unmodified ethanol. Unmodified ethanol is ethanol in which a denaturing agent is not mixed.
  • the amount of denatured ethanol or undenatured ethanol used for dissolution of crude lactide depends on the purity of crude lactide to be purified, the method of recrystallization, and the quality of purified lactide to be obtained. Although it can be set arbitrarily according to the above, it is usually about 50 to 500 parts by weight, preferably about 100 to 200 parts by weight, based on 100 parts by weight of the crude lactide. If the amount of ethanol is less than 50 parts by weight, it may take a long time to dissolve the crude lactide, the dissolution may be incomplete, or the purity of the purified lactide may deteriorate. On the other hand, if the amount of ethanol is more than 500 parts by weight, the yield of purified lactide will deteriorate, and it is uneconomical to use a large amount of ethanol.
  • the dissolution of crude lactide in ethanol is usually carried out with heating to increase the solubility.
  • the heating temperature is generally from 40 to 75 ° C, preferably from 50 to 70 ° C, and more preferably from 55 to 65 ° C. When the heating temperature exceeds 75 ° C, lactide reacts with water contained in ethanol or ethanol, and the lactide yield tends to decrease.
  • the operation of dissolving the crude lactide in ethanol can be performed either batchwise or continuously.
  • the crude lactide dissolution is not particularly limited, but can be performed using a vessel equipped with a stirrer.
  • the stirring device include a double-ribbon blade stirring device, a full zone blade stirring device, a disk turbine blade stirring device, a rotary blade stirring device such as a homomixer, a jet flow, a stirring device using a circulating flow, and a static device.
  • a stirrer with a quick mixer is used.
  • lactide crystals are precipitated.
  • Crystal precipitation is usually performed by cooling and distilling off Z or the solvent. That is, a method of lowering the saturation concentration by cooling, a method of distilling a part of the solvent by heating, depressurizing, etc. to reduce the amount of dissolution by reducing the amount of the solvent, or a method of distilling a part of the solvent by depressurizing, etc.
  • a method is used in which the temperature of the solution is lowered by the latent heat of vaporization of the solvent that is removed and distilled off, so that the amount of the solvent is reduced and the saturation concentration is reduced.
  • this lactide crystal precipitation operation can be performed in a batch system or a continuous system.
  • lactide crystals When lactide crystals are precipitated by cooling, the cooling is usually performed at a temperature of 30 to 110 ° C, preferably 25 to 0 ° C, and more preferably 20 to 5 ° C. .
  • the apparatus for preferentially precipitating lactide crystals is not particularly limited, but a vessel equipped with a stirrer and used for dissolving crude lactide in ethanol can be used. Further, a DT B type crystallizer, a DP type crystallizer, a crystal oslo type crystallizer, a conical type crystallizer, a turbulence type crystallizer and the like can be used.
  • Solids are separated from the slurry mixture obtained by crystallization. Lactide can also be recovered from the ethanol from which the solids have been separated by crystallization, concentration, or the like.
  • the separation device is not particularly limited, but may be a centrifugal settler, a centrifugal filter, or a pressure filter.
  • a device that has the function of rinsing solids among these devices the operation of separating the solids precipitated by the same device and the operation of rinsing the separated solids with ethanol It is effective because both can be done.
  • centrifuge a vertical basket-type centrifuge, a screw decanter-type centrifuge, and the like are used.
  • centrifugal filter a vertical basket-type centrifugal filter, a screw decanter type centrifugal filter, a conical screen type centrifugal filter, or the like is used.
  • pressure filtration device a gravity filter, a pressure filter, a vacuum filter, or the like is used.
  • the separated solids are washed with fresh ethanol if necessary.
  • a higher purity lactide can be obtained by the washing operation.
  • the obtained solid after washing is dried to obtain a purified lactide.
  • the amount of ethanol used in this washing operation can be arbitrarily set, but is usually from 100 to 300 parts by weight, preferably from 20 to 150 parts by weight, based on 100 parts by weight of solids. More preferably, it is about 30 to 70 parts by weight. If the amount of the ethanol is less than 10 parts by weight, it may not be possible to perform uniform cleaning or the effect of removing impurities may be small. On the other hand, when the amount of ethanol is more than 300 parts by weight, the yield of purified lactide becomes poor, and the use of a large amount of ethanol is uneconomical.
  • the separated solid is dried under reduced pressure.
  • the lactide obtained as a solid content usually contains the substances contained in the used ethanol, water and, in some cases, modified ethanol. These deposits may impair the fluidity of the resulting purified lactide particles or cause odor problems. Therefore, in order to reduce the attached substance, the solid content may be dried under reduced pressure.
  • the drying under reduced pressure is preferably performed at a very low temperature in order to suppress the decomposition of lactide by reaction with ethanol or water due to heating, and is usually performed at a temperature of from 10 to 95 ° C, preferably from 1 to 95 ° C. It can be performed at a temperature of about 0 to 60 ° C and a pressure of about 0.01 to 100 T 0 rr. Also, 0.001 to 10 Freeze-drying can also be performed at a pressure of about Torr and a temperature of 0 ° C or less.
  • the drying time should be determined according to the capacity of the drying equipment, the amount of lactide to be dried, or the content of ethanol and water in the purified lactide to be obtained, but it is usually 5 minutes to 10 hours. .
  • a tray dryer When drying by heating under reduced pressure, a tray dryer, a cylindrical stirring dryer, a conical rotary dryer, or the like can be used without limitation. When freeze-drying is performed, a tray dryer can be used without limitation.
  • Darcono delta 'lactone has been conventionally used as a coagulant, a swelling aid, and a food preservative.
  • lactic acid fermentation is performed or lactic acid is added.
  • proteins are conventionally coagulated by lactic acid produced by lactic acid fermentation.
  • lactic acid and Darcono delta lactone have come to be used.
  • the present invention relates to a novel lactide as a food additive such as an animal protein coagulant, a food foaming agent, a food preservative, a pH adjuster, and an acidulant.
  • a novel lactide as a food additive such as an animal protein coagulant, a food foaming agent, a food preservative, a pH adjuster, and an acidulant.
  • Lactic acid (Purac HS-88: lactate lactate) in a 2-liter SUS separable flask equipped with a thermometer, stirrer, condenser, distillate receiver, pressure reducing device, heating temperature controller, etc. Concentration in terms of body: 88.1% by weight: optical purity: 99.2% ee) 100. First, at normal pressure, 130 ° C for 2 hours, then under reduced pressure, the temperature was gradually raised from 130 ° C to 160 ° C in 4 hours, and the weight average molecular weight by GPC measurement was 2150 About 703 g of polylactic acid was obtained.
  • Lactic acid 3.40%.
  • the crude lactide obtained in Synthesis Example 1 was crushed in a mortar and passed through a 10-mesh sieve. 50 g of the crude lactide passed through the sieve and 15 g of a 99% first-grade native ethanol (fermentation alcohol) at 25 ° C in a beaker were mixed to obtain a slurry-like mixed solution. The mixture was stirred for 15 minutes with a stirrer. The slurry was transferred to a glass filter (Buchner type, maximum pore size: 20 to 30 m) mounted on the filter bottle, and the filter bottle was evacuated for about 1 minute with an aspirator. The liquid in the slurry was suction filtered.
  • a glass filter Buchner type, maximum pore size: 20 to 30 m
  • the ethanol content of the purified lactide was measured by gas chromatography (GC) and found to be 54 Oppm, indicating a slight ethanol odor.
  • the water content of the purified lactide was 35 ppm when measured by a force-flusher-moisture analyzer.
  • the purified lactide was in the form of particles having good flowability, and the flowability was not lost even after sealed and stored in a tube at 20 for 1 month.
  • the separated solid was dried at 40 ° C. and 4 T 0 rr for 2 hours using a single evaporator to obtain 43.5 g of purified lactide (purification yield: 87. 0%).
  • the ethanol content of this purified lactide measured by GC was 34 ppm, and almost no ethanol odor was felt.
  • the water content of this purified lactide was measured by a force-flusher-moisture analyzer to be 89 ppm.
  • the purified lactide was in the form of particles having good flowability. Even after being sealed and stored in a tube at 20 for 1 month, the flowability was hardly lost.
  • Lactic acid (Purac HS-188: lactic acid monomer) in a 1.3 kL reaction tank equipped with a thermometer, stirrer, condenser, distillate receiver, pressure reducing device, temperature controller, etc. Converted concentration: 88.1% by weight: optical purity: 99.2% ee) 100 O kg was added. First, the temperature was increased from normal temperature at 130 ° C for 3 hours, then from 130 ° C under reduced pressure to 160 ° C gradually in 6 hours, and the weight average molecular weight was measured by GPC. About 70 kg of polylactic acid of 0 was obtained.
  • the entire amount of crude lactide obtained in the above synthesis should be discharged in a shower shape while maintaining the molten state (103 ° C). It was supplied from a four-hole nozzle (each hole diameter 2 mm) capable of discharging at a discharge rate of about 10 L per minute in about 60 minutes.
  • stirring and temperature control (set temperature: 20 ° C) were continued.
  • the internal temperature was 20 ° C.
  • the rotation speed of the basket was increased to 800 rpm and the liquid was drained for 10 minutes in order to further improve the solid content separation.
  • the rotation speed of the basket was reduced to 500 rpm, and a spray nozzle for supplying the rinse solution, sprayed with 99% primary grade unmodified ethanol (fermented alcohol) at 20 ° C. And supply 71 L (56.OkG) in about 120 seconds, and contact fresh ethanol with the solid content in the basket. At the same time, the solid content was separated.
  • the rotation speed of the basket was increased to 800 rpm and the liquid was drained for 10 minutes in order to further improve the solid content separation.
  • the conical rotary dryer was rotated at 10 rpm, and the solid content was dried at 50 ° C and 2 Torr for 6 hours to obtain 61 kg of purified lactide (purification yield). : 87.0.
  • the ethanol content of the purified lactide measured by GC was 360 ppm, indicating a slight ethanol odor.
  • the water content of this purified lactide was measured with a Karl Fischer-Moisture Analyzer and found to be 21 ppm.
  • the purified lactide was in the form of particles having good fluidity, and the fluidity was not lost even after sealing and storing in a tube at 20 ° C for one month.
  • the slurry was transferred to a glass filter (Buchner type, maximum pore size: 20 to 30 mm) mounted on the filter bottle, and the filter bottle was depressurized with an aspirator for about 2 minutes. The liquid was suction filtered.
  • a glass filter Buchner type, maximum pore size: 20 to 30 mm
  • the separated solid was dried at 60 ° C. and 10 Torr for 2 hours using a tally evaporator to obtain 144.9 g of purified lactide.
  • the water content of the purified lactide measured by a Karl Fischer-Moisture Analyzer was 27 ppm.
  • the purified lactide had good flowability, and its fluidity was not lost even after sealed and stored in a tube at 20 ° C for 1 month.
  • Example 4 30 g of the purified lactide obtained in Example 4 was dispersed in 50 ml of water. This dispersion was added to 10 kg of soymilk at 83 ° C. adjusted to a solid content of 10%, and allowed to cool for 15 minutes to coagulate. According to a conventional method, the product was pressed, taken out of a box, and subjected to water removal to obtain cotton tofu.
  • the obtained tofu had a uniform and fine cut surface, and had a good taste and flavor.
  • a denaturing ethanol obtained by mixing 5.0 g of 1-liter fermented ethanol having a flavor of H-111 manufactured by Hasegawa Koyo Co., Ltd. at 9.9 degrees was used.
  • the slurry was transferred to a glass filter (Buchner type, maximum pore size: 20 to 30 mm) mounted on the filter bottle, and the filter bottle was evacuated for about 2 minutes with an aspirator to remove the slurry. Was suction filtered.
  • a glass filter Buchner type, maximum pore size: 20 to 30 mm
  • the separated solid was dried at 40 ° C. and 4 Torr for 2 hours using a single-port evaporator to obtain 161.2 g of purified lactide.
  • the water content of this purified lactide was 22 ppm when measured with a force-luffer-moisture analyzer.
  • the purified lactide was in the form of particles having good fluidity, and the fluidity was not lost even after sealing and storing in a tube at 20 ° C for one month.
  • the purified lactide obtained in Example 6 was pulverized in a mortar, and 0.60 g of the purified lactide was added to 200 g of soymilk (solid content concentration: 10% by weight) in 25 and stirred. The resulting mixture was heated at 85 ° C. for 30 minutes to coagulate soymilk. Next, the coagulated soymilk was cooled in cold water at 5 ° C to obtain tofu.
  • the obtained tofu has a uniform and fine cut surface, and has good taste and flavor. It was a bad thing.
  • the purified lactide obtained in Example 1 was used.
  • Example 8 (Utilization of lactide as animal protein coagulant)
  • WPI Whey protein isolate
  • GDL Darcono delta 'lactone
  • This solution was filled in a container, and then heated to 70 ° C. After reaching 70 ° C, the mixture was allowed to cool and left at room temperature (20 to 25 ° C) for 1 hour.
  • the gel strength (gZ cm 3 ) at that time was measured using a force meter (manufactured by Iyo Electric Co., Ltd.). From Table 1, it can be seen that GDL thermally denatures WF I before reacting with WPI to form a strong gel due to the low pH of gluconic acid generated by GDL degradation, resulting in a gel-forming ability. Has been hindered. Therefore, the gel strength was lower than the lower limit strength that can be measured by a card meter.
  • lactide did not decompose so much before heating, and did not thermally denature WPI, so a strong gel was formed.
  • WP 1 (mild halo%) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 lactide (mild halo%) 0.2 0 0.3 0 0.4 0 0.5 0.6
  • a liquid obtained by dissolving 12.75 kg of sodium casein and 1.49 kg of powdered water in 65.32 kg of water is used as the aqueous phase. (7 parts and 3 parts of coconut oil mixed) 4 8.28 kg is heated and melted, and sorbitan fatty acid ester 280 g, / 3 carotene 1 g and flavor are dissolved in oil.
  • the phases both the aqueous phase and the oil phase were mixed at 70 ° C.
  • Example 11 (Utilization of lactide as animal protein coagulant)] A glut-like food was produced.
  • skim milk powder solution solid content: 12%) and 20% by weight of separated soy protein are dissolved in water, heated, boiled and cooled to obtain a mixed solution having a solid content of 12%.
  • Corn starch 90 g The material mixed in the above composition is divided into four equal parts, and lactide is added to each by 0% by weight (no addition), 0.25% by weight, 0.5% by weight, and 1% by weight. Processing was performed in the usual manner to prepare a test castor dough.
  • lactide was added to a salmon flake having a salt content of 15%, and the mixture was stirred.
  • the lactide was vacuum-packaged and sterilized by boiling for 30 minutes to obtain a salt flake having a pH of 4.2.
  • the salted salmon flakes were put into cooked rice and molded into rice balls. After the rice balls were wrapped in a synthetic resin film, the rice was heated to 70-90 ° C for 10 minutes using a microwave oven. Thereafter, the rice was vacuum cooled until the temperature of the cooked rice reached 25.
  • the rice balls thus obtained were placed in a thermostat at 30 ° C, and after 3 days and 5 days, the number of viable bacteria in 1 g was examined, and the taste and odor were observed. Also, for comparison, rice vinegar was added after cooking to adjust the pH value of the cooked rice to 4.7, and the rest was the same as above to obtain rice balls. The same inspection was performed on this rice ball. Table 3 shows the above results.
  • purified lactide having a high content of L-lactide and Z or D-lactide can be obtained in a short time and in a high yield by a simple apparatus and operation. Further, according to the present invention, a purified lactide having good workability can be obtained without leaving an organic solvent harmful to the human body.
  • the purified lactide obtained by the present invention is inexpensive and is suitable for use as a food additive.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Botany (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)

Description

明 細 書 ラクチ ドの精製方法及び食品添加物用ラクチ ド 技術分野
本発明は、 乳酸の二量体環状エステルであるラクチ ドの精製方法に関 し、 より詳しく は、 Lーラクチ ド及び Z又は D —ラクチ ドの含有率の高 い精製ラクチ ドを得るための方法に関する。 特に、 本発明は、 高純度の 食品添加物用ラクチ ドを得るためのラクチ ドの精製方法に関する。
また、 本発明は、 ラクチ ドを用いた食品添加物にも関する。 背景技術
ラクチ ドは、 従来より、 生分解性ポ リ マーであるポリ乳酸の製造原料 と して有用なものである。 すなわち、 ラクチ ドの開環重合によりポリ乳 酸が得られる。 このようなポリ乳酸の製造原料用途の他に、 ラクチ ドは 今後、 食品の保存安定化剤、 p H調整剤、 凝固剤、 酸味料、 膨張補助剤 等の食品添加物と しての使用が期待されている。
ラクチ ドは乳酸の二量体環状エステルであり、 3種類の光学異性体、 すなわち、 L 一乳酸二分子からなる Lーラクチ ド、 D —乳酸二分子から なる D —ラクチ ド、 及び L 一乳酸と D —乳酸とからなるメ ソーラクチ ド が存在する。
通常、 ラクチ ドは、 乳酸を脱水縮合して比較的低分子量のポリ乳酸を 中間体と して得て、 次いでポリ乳酸を解重合 · 環化することによってラ クチ ドを生成させ、 これを蒸気と して反応系外に取り出す、 いわゆる反 応蒸留法によって製造されている。
このような製造方法において、 ラクチ ド蒸気には、 Lーラクチ ド及び /又は Dラクチ ド及びメ ソーラクチ ド以外に不純物と して、 乳酸モノマ 一、 直鎖状の乳酸ダイマー、 ト リマ一等の低分子量の乳酸縮重合物、 及 び水等が含まれている。 さ らには、 原料の乳酸に由来する糖類、 ァ ミ ノ 酸類、 乳酸以外の脂肪酸等の不純物が含まれること もある。
従って、 冷却捕集された粗ラクチ ドを使用目的に応じて精製し、 これ らの不純物及びメ ソーラクチ ドの含有率を低減する必要がある。
すなわち、 ラクチ ドは加水分解により乳酸及び直鎖の低分子量の乳酸 縮重合物になるが、 メ ソーラクチ ドは Lーラクチ ド及び D —ラクチ ドに 比べ、 著しく 吸水性及び加水分解性が大きい。 このため、 メ ソ—ラクチ ドの含有率の高いラクチ ドは、 全体と しての加水分解が速く 、 酸性成分 である乳酸、 直鎖の低分子量の乳酸縮重合物の含有率が高く なる。
例えば、 ラ クチ ドを食品添加剤と して使用する場合、 添加初期の酸性 度が低く経時的に (食品の熟成に応じて) 酸性度を高くするラクチ ドが より有用である。 メ ソーラクチ ド、 乳酸、 直鎖の低分子量の乳酸縮重合 物がラクチ ド中に多く 含有されていると、 添加初期の酸性度が高く なつ てしま う。 従って、 ラクチ ド中のメ ソ―ラクチ ド、 乳酸、 直鎖の低分子 量の乳酸縮重合物や水の含有率はできるだけ小さいことが好ま しい。 また、 L —ラクチ ド及び D—ラクチ ドの融点は約 9 8 °Cであるのに対 し、 メ ソ—ラクチ ドの融点は約 4 0 °Cである。 また、 乳酸の融点は 1 6 〜 2 5でであり、 直鎖の低分子量の乳酸縮重合物は常温で液体である。 このため、 ラクチ ドを粉体状、 粒子状の形態で用いる場合には、 融点が 常温以下或いは常温に近いメ ソーラクチ ド、 乳酸、 直鎖の低分子量の乳 酸縮重合物、 水の含有率が高いと、 ラクチ ドの流動性が悪く なり作業性 を損なう という問題がある。 従って、 ラクチ ド中のこれらの含有率はで きるだけ小さいことが好ま しい。
さ らに、 ラ クチ ドを食品添加剤と して使用する場合、 ラクチ ドに含有 される糖類、 ア ミ ノ酸類、 乳酸以外の脂肪酸等の不純物は、 食品添加剤 の食味を悪く したり或いは変えたり し、 また、 食品添加剤を着色すると いう問題がある。 従って、 ラクチ ド中のこれら不純物の含有率はできる だけ小さいことが好ま しい。 従来のラクチ ド精製方法と しては、 再結晶による方法、 溶融晶析によ る方法、 精留による方法、 水による抽出による方法等、 様々な方法が知 られている。
例えば、 特公昭 5 1 — 6 6 7 3号公報には、 ァ ミ ルアルコール又はブ チルアルコールを溶媒と してラクチ ドを再結晶する方法が開示されてる c しかし、 この場合には、 人体に対して有害な有機溶剤が精製後のラクチ ド中に残留することとなり、 食品添加物と して使用する場合に問題があ る。
特開昭 6 3 — 1 0 1 3 7 8号公報には、 炭素数 1〜 6個のアルコール、 好ま しく はイ ソプロピルアルコールからラクチ ドを再結晶すること、 あ るいは溶解しその後非溶媒を用いて沈殿させることが開示されている。 また、 特開平 7 — 1 1 8 2 5 9号公報には、 ラクチ ドを低級アルコール から再結晶し、 次いでベンゼン等で再結晶する方法が開示されている。 しかし、 これらの場合、 粗ラクチ ドを溶剤に加熱し溶解させる工程或い は溶解液からラクチ ドを冷却析出させる工程において、 多大な時間及び 用役を必要とするため、 また多量の溶剤が必要とされるため、 さ らに収 率が低いため、 コス ト的に不利である。 また、 人体に対して有害な有機 溶剤が精製後のラクチ ド中に残留することとなり、 食品添加物と して使 用する場合に問題がある。,
特開平 6 — 2 5 6 3 4 0号公報には、 溶融晶析法による粗ラクチ ドの 精製方法が開示されている。 しかし、 溶融晶析法には高価な大規模装置 が必要であり、 また、 ラクチ ドを冷却析出させる工程或いは加熱し精製
Z溶解させる工程において、 多大な時間及び用役を必要とするため、 コ ス ト的に不利である。 また、 ラクチ ドの融点以上の高温で精製ラクチ ド を分離するため、 精製工程中に新たにラクチ ドが分解し、 即ち乳酸、 直 鎖の低分子量の乳酸縮重合物等が生成してしまう という問題がある。 安 定した品質のラクチ ドを得るためには、 厳格な工程管理を必要とする。 特開平 7 - 5 0 5 1 5 0号公報には、 精留により高純度のラクチ ドを 得る方法が開示されている。 しかし、 精留に必要な装置は複雑であり高 価であり、 また、 ラクチ ドを加熱し気化させる工程或いは冷却して凝縮 させる工程において、 多大の用役を必要とするため、 コス ト的に不利で ある。 また、 ラクチ ドの融点以上の高温で精製ラクチ ドを分離するため、 精製工程中に新たにラクチ ドが分解し、 乳酸、 直鎖の低分子量の乳酸縮 重合物等が生成してしま う という問題がある。 安定した品質のラクチ ド を得るためには、 やはり厳格な工程管理を必要とする。
特開平 7 — 1 6 5 7 5 3号公報には、 粗ラクチ ドと水とを接触させる ことにより精製する方法が開示されている。 この方法では、 ラクチ ドを 水と接触させて、 メ ソ一ラクチ ドを除去しょう と しているが、 メ ソーラ クチ ドを十分に除去しょう とすると、 Lーラ クチ ド及び/又は D —ラク チ ドも一部加水分解されて除去されてしまい、 収率が低く なる。 そ して、 除去された Lーラクチ ド及び Z又は D —ラクチ ドは、 水と反応し、 乳酸 或いは直鎖の低分子量の乳酸縮重合物の形態でしか回収できない。 多大 な用役を用い乳酸から得られたラクチ ドを、 乳酸或いは直鎖の低分子量 の乳酸縮重合物の形態でしか回収できないことは、 コス ト的に非常に不 利である。 発明の開示
発明の目的
そこで、 本発明の目的は、 上記従来技術の問題点を解決し、 簡単な設 備を用い、 簡単な工程により、 高収率で高純度の精製ラクチ ドを得るラ クチ ドの精製方法を提供することにある。 また、 本発明の目的は、 人体 に対して有害な有機溶剤が残留することがなく食品添加物用途に好適で あり、 流動性の良い粒子を有する精製ラクチ ドを得るラクチ ドの精製方 法を提供することにある。 そして、 本発明の目的は、 安価な高純度の食 品添加物用途に好適な精製ラクチ ドを提供することにある。
さ らに、 本発明の目的は、 ラクチ ドを主成分とする食品添加物を提供 することにもある。 発明の概要
本発明者らは鋭意検討した結杲、 粗ラクチ ドをエタノ一ルに接触させ、 その後固形分を分離することにより、 Lーラクチ ド及び/又は D —ラク チ ドの含有率の高い精製ラクチ ドが高収率で得られることを見いだし、 本発明を完成するに至った。
すなわち、 本発明は、 固体状態又は少なく と も一部が溶融状態の粗ラ クチ ドをエタノールと接触させスラ リ 一状混合物を得て、 その後この混 合物から固形分を分離することにより、 Lーラクチ ド及び Z.又は D —ラ クチ ドの含有率の高い精製ラクチ ドを得ることを含む、 ラクチ ドの精製 方法である。
このエタノール接触法において、 固形分を分離した後、 分離された固 形分を減圧乾燥することが好ま しい。
また、 この方法において、 固形分を分離した後、 エタノールを取り除 く ために、 分離された固形分を水で洗浄すること もできる。 この場合に. 水での洗浄後、 固形分を減圧乾燥することが好ま しい。
このエタノール接触法において、 エタノールと しては、 未変性エタノ —ル及び変性エタノ一ルの両者を使用することができる。
さ らに、 本発明は、 上記エタノール接触法により得られた精製ラクチ ドである。
また、 本発明者らは鋭意検討した結果、 粗ラクチ ドを未変性エタノ一 ル又は変性エタノ一ルを溶媒と して再結晶することにより、 食品添加物 用ラクチ ドが得られることを見いだし、 本発明を完成するに至った。 すなわち、 本発明は、 粗ラクチ ドを未変性エタノールから再結晶して 食品添加物用ラクチ ドを得ることを含む、 ラクチ ドの精製方法である。 また、 本発明は、 粗ラクチ ドを変性エタ ノールから再結晶して食品添 加物用ラクチ ドを得ることを含む、 ラクチ ドの精製方法である。
変性エタノールに含まれる変性剤は、 食品添加物と して使用可能な香 料類から選ばれることが好ま しい。 また、 変性エタノールに含まれる変 性剤が合成化学物質である場合には、 酢酸ェチル、 パラォキシ安息香酸 プチル、 白ラ ック、 精製セラ ッ ク、 白ラ ッ ク溶解液、 精製セラ ッ ク溶解 液のうちの少なく と も 1種であることが好ま しい。
さ らに、 本発明は、 未変性エタノールから再結晶された食品添加物用 ラクチ ドである。 また、 本発明は、 変性エタノ一ルから再結晶された食 品添加物用ラクチ ドである。
また、 本発明は、 動物性蛋白質凝固剤、 食品用発泡剤、 食品用保存剤、
P H調整剤、 及び酸味料等の食品添加物と してのラクチ ドの新規な用途 にも関する。
本発明によれば、 Lーラクチ ド及び Z又は D —ラクチ ドの含有率の高 い精製ラクチ ドを、 簡単な装置及び操作により、 短時間で高収率で得る ことができる。 また、 本発明によれば、 人体に対して有害な有機溶剤が 残留することがなく 、 作業性の良い精製ラクチ ド得ることができる。 本発明により得られた精製ラクチ ドは、 安価であり、 かつ食品添加物 用途に好適である。 発明の詳細な説明
本発明の精製方法は、 従来公知の方法で得られた粗ラクチ ドに適用す ることができる。 例えば、 特開平 7 — 1 3 8 2 5 3号公報記載のように、 低分子量のポリ乳酸を得て、 このポリ乳酸を触媒の存在下、 解重合して ラクチ ドを得る方法、 特表平 7 — 5 0 0 0 9 1号公報記載のような乳酸 ォ リ ゴマーの薄膜解重合法、 あるいは、 特表平 6 - 5 0 4 7 6 2号公報 や米国特許第 5, 74, 127 号明細書、 5, 332, 839号明細書、 5, 319, 107号 明細書、 5, 420, 304号明細書に記載のような、 乳酸から乳酸オリ ゴマー を経由することなく 直接的にラクチ ドを製造する方法等のいずれの方法 によるものであっても良い。 もちろん、 これらの方法によるラクチ ドに 限定されるものではない。
ラクチ ド製造のための原料の乳酸と しては、 例えば、 合成法又は発酵 法で得られる乳酸単量体換算重量濃度が 5 0〜 9 5 %のものが使用でき る。 合成法で得られる乳酸は、 L 一乳酸成分と D -乳酸成分を等量含む c 発酵法で得られる乳酸は、 L 一乳酸成分と D —乳酸成分の混合物である が、 主と して L 一乳酸成分を含有するもの及び主と して D —乳酸成分を 含有するものがある。 食品添加剤用途の精製ラクチ ドを得る場合は、 製 造工程で青酸或いはァセ トアルデヒ ド等の有害物質を使用する合成法で 得られた乳酸より、 発酵法で得られた乳酸を用いることがより好ま しい ( 乳酸を縮重合し低分子量のポリ乳酸を得るには、 通常、 触媒の非存在 下或いは存在下で、 加熱減圧下、 原料乳酸を脱水し、 重量平均分子量 5 0 0〜 3 0, 0 0 0のポリ乳酸とする。 この場合の加熱温度は、 1 0 0〜 2 5 0 °C、 好ま しく は 1 0 0〜 2 0 0 °Cである。 1 0 0 °Cより低いと縮重合に時間がかかり過ぎ、 2 5 0 °C より高いと乳酸及び直鎖の低分子量の乳酸縮重合物等が水と同時に留出 し、 収率が悪く なり好ま しく ない。 また、 発酵法により得られた乳酸を 用い光学純度の高い粗ラクチ ドを得る場合は、 反応温度が高いほど得ら れる粗ラクチ ドの光学純度は低く なるので、 ラセ ミ化反応を抑制するた め、 1 0 0〜 2 0 0 °C、 好ま しく は 1 0 0〜 1 8 0 °Cの温度で行う。 ま た圧力は、 1 0 0 T o r r以下、 好ま しく は 5 0 T o r r以下である。 この場合に使用される触媒と しては、 特に限定されないが、 通常周期 律表 I A族、 I I A族、 Π Β族、 Ι Π Β族、 I V A族、 I V B族、 V B族の金 属の単体、 酸化物、 水酸化物、 塩化物、 その他の無機化合物、 有機化合 物等や酸類が、 単独で又は複数で用いられる。 触媒量は通常、. 原料乳酸 に対し 5重量%以下である。
I A族の触媒と しては、 水酸化ナ ト リ ウム、 水酸化力 リ ゥム、 水酸化 リチウム、 酸化ナ ト リ ウム、 酸化カ リ ウム、 酸化リチウム、 ナ ト リ ウム メ トキシ ド、 カ リ ゥムエ トキシ ド等が挙げられる。
I I A族の触媒と しては、 水酸化マグネシウム、 水酸化カルシウム、 水 酸化バリ ウム、 酸化マグネシウム、 酸化カルシウム、 酸化バリ ウム、 塩 化マグネシゥム、 塩化バリ ウム等が挙げられる。
I I B族の触媒と しては、 水酸化亜鉛、 酸化亜鉛、 塩化亜鉛等が挙げら れる。
I I I B族の触媒と しては、 酸化アルミニウム、 塩化アルミ ニウム、 了 ルミ ニゥム ト リ エ トキシ ド、 ォクチル酸アルミ ニウム等が挙げられる。
I V A族の触媒と しては、 酸化チタ ン、 テ トラメチルチタネ一 卜、 テ ト ラブチルチタネー ト、 ジルコニウム、 酸化ジルコニウム、 ジルコニウム テ トラメ トキシ ド、 ジルコニウムテ トラブ トキシ ド等が挙げられる。 I V B族の触媒と しては、 ゲルマニウム、 酸化ゲルマニウム、 錫、 酸化 錫、 塩化錫、 シユウ酸錫、 ォクチル酸錫、 ジブチル錫ジラウ レー ト、 ジ ブチル錫ォキシ ド、 ブチル錫クロォォキシ ド、 酸化鉛、 酸化珪素等が挙 げられる。
V B族の触媒と しては、 三酸化ァンチモン、 アンチモン ト リ アセテ一 ト、 ト リ フヱニルアンチモン等が挙げられる。
酸類の触媒と しては、 硫酸、 塩酸、 硝酸、 燐酸、 トルエンスルホン酸、 陽ィォン交換樹脂等が挙げられる。
以上の触媒の使用により、 縮重合反応の速度を促進し反応に必要な時 間を短縮することが可能となる。 但し、 これらの触媒を使用することに より、 乳酸のラセミ化反応も促進されるため、 発酵法により得られた乳 酸を用い光学純度の高いラクチ ドを得る場合は、 触媒を使用しないか、 或いは触媒の使用量を少なくすることが好ま しい。
得られた低分子量のポリ乳酸を、 通常触媒の存在下で加熱減圧し解重 合することによってラクチ ドを生成させ、 これを蒸気と して反応系外に 取り出し、 粗ラクチ ドを製造する。
この場合の加熱温度は、 1 3 0〜 3 0 0 °C、 好ま しく は 1 6 0〜
2 5 0 °Cである。 1 3 0 °Cより低いと解重合に時間がかかり過ぎ、
3 0 0 °Cより高いとァク リル酸、 ァク リ ル酸重合物等の副生成物の生成 量が多く なり、 好ま しく ない。 また、 発酵法により得られた乳酸を用い 光学純度の高い粗ラクチ ドを得る場合は、 ラセミ化反応を抑制するため、
1 3 0 - 2 6 0 °C、 好ま しく は 1 3 0〜 2 2 0 °C、 更に好ま しく は
1 3 0〜 1 8 0 °Cの温度で行う ことが好ま しい。 また圧力は、 1 0 0 T o r r以下、 好ま しくは 5 0 T o r r以下、 更に好ま しく は 2 0 T o r r以下である。
解重合触媒と しては、 限定されないが、 通常、 周期律表 I A族、 Π Α 族、 Π Β族、 1 I 1 B族、 1 VA族、 I V B族、 V B族の金属の単体、 酸化物、 水酸化物、 塩化物、 その他の無機化合物、 有機化合物等や酸類が、 単独 で又は複数で用いられる。 これら各触媒の具体例と しては、 前述と同じ ものが挙げられる。
触媒は通常、 ポリ乳酸に対し 2 0重量%以下の存在量で用いるとよい。 ただし、 低分子量のポリ乳酸の重縮合工程で触媒を使用した場合で、 こ のポリ乳酸中に残留する触媒により、 十分な解重合反応の速度が得られ る場合は、 触媒を新たに添加する必要はない。
このようにして得られた粗ラクチ ドには、 通常、 乳酸モノマ一、 直鎖 状乳酸ダイマ—、 ト リマ—等の低分子量の乳酸縮重合物、 及び水等の不 純物や、 原料の乳酸に由来する糖類、 ア ミ ノ酸類、 乳酸以外の脂肪酸等 の不純物が含まれている。 また、 ラクチ ドにも、 Lーラクチ ド及び Z又 は D—ラクチ ド、 並びにメ ソ一ラクチ ドが含まれている。
(エタノ一ル接触法によるラクチ ド精製)
本発明のエタノ一ル接触法においては、 精製すべき粗ラクチ ドをエタ ノ ールと接触させスラ リ 一状混合物を得て、 その後この混合物から固形 分を分離する。
精製すべき粗ラクチ ドは、 固体状態であってもよいし、 溶融状態であ つてもよい。 あるいは、 一部が溶融状態であってもよい。 すなわち、 一 且固化させた粗ラクチ ドを精製すること もできる し、 低分子量ポリ乳酸 を解重合することによって得られた溶融状態の粗ラクチ ドを固化させる ことなく溶融状態を保ったまま、 精製すること もできる。
粗ラクチ ドがいずれの状態であっても、 粗ラクチ ドとェタノ一ルを接 触させるとスラ リ 一状混合物となる。 この粗ラクチ ドとェタノ一ルの接 触は、 回分式でも連続式でも行う ことができる。 得られたスラ リ ー状混合物から、 固形分を分離回収する。 この操作も、 回分式でも連続式でも行う ことができる。
また、 粗ラクチ ドのエタノールとの接触操作及び固形分の分離回収操 作を、 複数回繰り返すこと もできる。 すなわち、 粗ラクチ ドをェタ ノ一 ルに接触させた後、 固形分を分離し、 得られた固形分を再度新たなエタ ノールに接触させ、 次に固形分を分離回収する、 という繰り返し操作を 行う こと もできる。 本発明のエタノ一ル接触法で用いられるエタ ノールは、 主と してエタ ノールを含有する液体であり、 未変性エタノ一ル及び変性エタノールの 両者を含む。 ェタノールの含有量は、 5 0重量%以上、 好ま しく は 9 0 重量%以上、 さ らに好ま しく は 9 5重量%以上である。 '
変性エタノールとは、 ェタノ一ルに変性剤が混和されたものである。 混和される変性剤と しては、 合成化学物質及び天然物質が挙げられる。 これら変性剤は、 通常、 エタノール 1 L当たり 1 g〜 2 0 0 g使用する ことができる。
合成化学物質と しては、 メ タノール、 ベンゾール、 トルオール、 メチ ルェチルケ ト ン、 安息香酸デナ トニゥム、 エチレングリ コールモノェチ ルェ一テル、 クロ口ホルム、 炭酸ジェチル、 酢酸ェチル、 プロピオン酸 ェチル、 酪酸ェチル、 へキサン、 工業用ェチルエーテル、 ゲラニオール、 八ァセチル化蔗糖、 フヱニールエチルアルコール、 ジェチルフタ レー ト、 アルキルベンゼンスルホン酸塩水溶液、 酢酸ビニル単量体、 ヘプタ ン、 イソプロピルアルコール、 ブ夕ノール、 アク リル酸ェチル、 ブルシン、 リ ナロール、 リナリ ールアセテー ト、 ベンジルアセテー ト、 種酢、 醸造 酢、 ホルマリ ン、 ローダミ ン B、 白ラ ッ ク、 精製セラ ッ ク、 白ラ ッ ク溶 解液、 精製セラ ッ ク溶解液、 パラォキシ安息香酸ブチル等が使用できる。 これらのうち、 酢酸ェチル、 パラォキシ安息香酸プチル、 白ラ ッ ク、 精製セラック、 白ラ ッ ク溶解液、 精製セラ ッ ク溶解液が変性剤と して好 ま しい。
天然物質と しては、 デイ スティ ル ドビネガー、 オレンジ回収香、 ダレ —プ回収香、 ワイ ン回収香、 天然バタ一フ レーバー、 発酵乳酸、 穀物発 酵エキス、 オレンジオイル、 レモンオイル、 ライムオイル、 タ一メ リ ツ クオレンジ、 バニラエキス トラク ト、 コーヒー回収香、 味噌回収香、 醬 油オイルエッセンス、 モル トエッセンス、 チコ リエッセンス等の食品-添 加物と して使用可能なものが挙げられる。 これらは、 単独で用いてもよ いが、 通常は混合物と して用いられる。
食品添加剤用途の精製ラクチ ドを得る場合は、 これらの変性剤の内、 食品添加剤と して使用可能な天然物質に由来する香料類が特に好ま しい。 より具体的には、 長谷川香料株式会社製のフ レーバー H— 1、 H— 2、 H - 3、 H - 4、 H - 6、 H - 9、 H 1 0、 H - 1 1、 H - 1 2、 H— 1 3、 H— 1 4、 高砂香料工業株式会社製のフ レ一バ一 τ _ 1 0 0、 Τ一 1 0 1、 Τ - 1 0 2 Τ一 1 0 3、 Τ一 1 0 4、 Τ一 1 0 5、
T— 1 0 6、 T— 1 0 7、 E D A— 1 7 1 、 曽田香料株式会社製フ レ一 バ— S - 2 0 1 、 理研香料工業株式会社製フ レーバー D A— 4 0等が使 用できる。 どのような変性剤を用いるかは、 食品添加剤用途に応じて種 々選択される。
また、 ェタノールと しては変性剤以外に水が混和されたものも使用で きるが、 水の混和量はエタ ノール 1 0 0重量部に対し、 0〜 1 0重量部、 好ま しく は 0〜 5重量、 さ らに好ま しく は 0〜 0. 1重量部である。 1 0重量部を越えると、 精製ラクチ ド収量が低下するため好ま しく ない。 また、 食品添加剤用途の精製ラクチ ドを得る場合は、 未変性エタノー ルを使用すること ももちろん好ま しい。 未変性エタノールとは、 変性剤 が混和されていないエタノ一ルである。 粗ラクチ ドとの接触に際して、 エタノールは粗ラクチ ド 1 0 0重量部 に対し、 通常 1 0〜 6 0 0重量部、 好ま しく は 2 0〜 4 0 0重量部、 さ らに好ま しく は 3 0〜 2 0 0重量部使用することができる。 エタノール 量が 1 0重量部より少ないと、 メ ソーラクチ ドゃ各種不純物の分離が不 十分となりやすい。 一方、 6 0 0重量部を越えると、 不純物の分離は十 分であるが、 精製ラクチ ドの収率が小さ く なり、 またエタノ一ル使用量 が多いためコス ト的に不利になる。
固体状態の粗ラクチ ドをエタノ一ルと接触させる場合は、 粗ラクチ ド 粒子は、 4 メ ッ シュ通過、 好ま しく は 6 メ ッ シュ通過、 更に好ま しく は 1 0 メ ッ シュ通過の粒子であることが好ま しい。 4 メ ッ シュを通過しな ぃ粗ラクチ ド粒子の場合、 粗ラクチ ドとェタノールの十分な接触面積が 得られないため、 不純物の分離が不十分となりやすい。
予め 4 メ ッ シュ通過の粒子に粉砕された粗ラクチ ドを用いてもよいし、 粗ラクチ ドをエタノ一ルに接触させながら攪拌装置等により 4 メ ッ シュ 以下に粉砕することもできる。
予め粗ラクチ ドを粉砕する方法と しては、 特に限定されるものではな い力 、 例えば、 ジ ョ ーク ラ ッ シャー ミ ル、 ハンマ一クラ ッ シャー ミ ル、 ロールクラ ッ シャーミ ル、 ケージ ミ ル、 ハンマ一 ミ ル等の粗.砕器、 中砕 器等を用いて粉砕することができる。 また、 必要に応じて、 粉砕後に分 級機等を行い 4 メ ッ シュを通過しない粒子を除く こと もできる。
固体状態の粗ラクチ ドをェタノ一ルに接触させる方法と しては、 特に 限定されるものではないが、 容器中に粗ラクチ ドとェタノ一ルを投入し 放置し接触させる方法、 攪拌装置の装着された容器中で接触させる方法、 固液抽出装置中で接触させる方法等が用いられる。 また、 これらの装置 を複数個用い、 多段階で粗ラクチ ドとェタノールを接触させること もで きる。
一方、 液体状態の粗ラクチ ドをェタノールと接触させる方法と しては、 特に限定されるものではないが、 エタノールとの接触により析出するラ クチ ドの粒子を均一にするため攪拌下で接触させる方法、 ノズル等を通 してシャヮ一状或いはスプレー状に液体状態の粗ラクチ ドをエタノ一ル 中に吐出する方法等が有効である。 また、 攪拌装置の装着された容器中 で接触させてラクチ ドを析出させ得られたスラ リ 一を、 さ らに固液抽出 装置中で新たなエタノ一ルと接触させること もできる。
上記攪拌装置と しては、 2重リ ボン翼攪拌装置、 フルゾーン翼攪拌装 置、 ディ スクタービン翼攪拌装置、 ホモミ クサ一等の回転翼式攪拌装置、 噴流、 循環流による攪拌装置、 スタティ ッ ク ミ キサ一による攪拌装置等 が用いられる。 粗ラクチ ドとェタノ一ルを混合した後或いは混合と同時 に攪拌装置により粗ラクチ ドを粉砕する場合は、 これらの攪拌装置の内、 せん断効果の大きいディ スクタ一ビン翼攪拌装置、 ホモミ クサ一等が有 効である。
固液抽出装置と しては、 ロ トセル抽出器、 ケネディ 一抽出機、 ボノ ト —抽出器等が用いられる。 これらの固液抽出装置では、 粗ラクチ ドにェ 夕ノールを接触させると共に、 固形分の分離も同一装置中で行う ことが できる。 但し、 分離された固形分中のエタノール含有率が大きいため、 更に、 別の装置で固形分を再分離する操作を行う ことが好ま しい。
本発明において、 粗ラクチ ドをェタノールと接触させる温度について は、 Lーラクチ ド及び/又は D —ラクチ ドのェタノ一ル又は水との反応 による分解を抑制するために低い温度が好ま しく 、 通常 0〜 7 0 °C、 好 ま し く は 1 0〜 5 0 °C、 さ らに好ま しく は 2 0〜 4 0 C程度である。 溶融状態の粗ラクチ ドをエタ ノ一ルと接触させる場合、 或いは攪拌等 による液摩擦による温度上昇が起こる場合等は、 接触温度の上昇を防ぐ ため冷却しながら粗ラクチ ドとエタノールを接触させることが好ま しい。 粗ラクチ ドをェタノ一ルと接触させる時間については、 装置の能力、 得よう とする精製ラクチ ドの純度により決められるべき ものであるが、 通常 1分〜 1 0時間である。
本発明においては、 粗ラクチ ドとェタノールとの接触により得られた スラ リ ー状混合物から固形分を分離する。 また、 固形分を分離した後の ェタノール液から、 晶析、 濃縮等の方法によりラクチ ドを回収すること もできる。 これは、 特開平 7 — 1 6 5 7 5 3号公報記載の水との接触に よる精製方法では実現できないことであり、 本発明の大きな利点の一つ である。
固形分の分離方法と しては、 特に限定されるものではないが、 遠心沈 降機、 遠心濾過機、 圧濾装置を用いて分離する方法等が用いられる。 こ れらの装置の内、 固形分をリ ンスする機能を有する装置を使用する場合 は、 同一装置で固形分をエタノ一ルに接触させる操作と固形分を分離す る操作とを、 並行して行う ことができる点で有効である。
遠心沈降機と しては、 縦型バスケッ ト型遠心沈降機、 スク リ ユーデカ ンタ一型遠心沈降機等が用いられる。 遠心濾過機と しては、 縦型バスケ ッ ト型遠心濾過機、 スク リ ユーデカ ンター型遠心濾過機、 円錐スク リ ー ン型遠心濾過機等が用いられる。 圧濾装置と しては、 重力濾過器、 加圧 濾過器、 真空濾過器等が用いられる。
上記の操作により、 メ ソーラクチ ドゃその他の不純物が除去された精 製ラクチ ド固形分が得られる。
本発明においては、 上 I己のようにして固形分を分離した後、 固形分か らエタノ一ルを取り除く ために、 分離された固形分を水で洗浄すること が好ま しい。 水洗浄によって、 精製ラクチ ド中のエタノール含有率を大 幅に低減することができ、 精製ラクチ ドの残留エタノール臭等の問題が 解消される。
この水洗浄は、 固形分を水に接触させて行う とよい。 水洗浄操作は、 回分式でも連続式でも行う ことができる。 また、 水洗浄操作を複数回繰 り返すこと もできる。 すなわち、 固形分を水と接触させて分離し、 得ら · れた固形分を再度新たな水に接触させ、 次に固形分を分離回収する、 と いう繰り返し操作を行う こと もできる。
この洗浄操作において水は、 エタノールとの接触後分離された固形分 1 0 0重量部に対し、 通常 1 0〜 2 0 0重量部、 好ま しく は 2 0〜 1 0 0重量部、 さ らに好ま しく は 3 0〜 6 0重量部使用することができ る。 洗浄水の量が 1 0重量部より少ないと、 エタノールの除去作用がや や弱い。 2 0 0重量部を越えると、 精製ラクチ ドの収率が低く なつてし ま う。
この水接触洗浄の温度は、 Lーラ クチ ド及び Z又は D —ラクチ ドの分 解反応を抑制するために低い温度が好ま しく 、 通常 0〜 4 0 T:、 好ま し く は 1 0〜 3 0 °C、 さ らに好ま しく は 1 0〜 2 0 °Cである。
また、 水接触洗浄の時間は、 Lーラクチ ド及び/又は D —ラクチ ドの 分解反応を抑制するために短い時間が好ま しく 、 またエタノ一ルが水に 溶解するのに必要な時間で十分であるので、 通常 1 0秒〜 2 0分、 好ま しく は 1 0秒〜 5分、 さ らに好ま しく は 1 0秒〜 1分である.。
また、 水接触洗浄には、 前述の粗ラクチ ドをエタノールと接触させる 装置と同様の装置等を用いることができる。 そして、 水接触後のスラ リ 一から固形分を分離は、 前述の固形分の分離装置と同様の装置等を用い て行う ことができる。 こ らの装置の内、 水との接触時間を短く でき、 且つ、 水との均一な接触が可能であるという点から、 固形分をリ ンスす る機能を備えた遠心濾過機、 圧濾装置が特に好適である。 本発明においては、 上記のようにしてエタノールとの接触後分離され た固形分、 あるいは水との洗浄後得られた固形分を減圧乾燥することが 好ま しい。 固形分と して得られた精製ラクチ ドには、 通常、 使用された エタノール、 水、 及び場合によってはエタノール中に含まれていた物質 (例えば、 水、 メ タノール、 イ ソプロピルアルコール、 メチルェチルケ ト ン、 酢酸ェチル等) が付着している。 これらの付着は、 得られた精製 ラクチ ド粒子の流動性を悪く したり、 その臭いが問題となる場合がある。 従って、 この付着した物質を低減するために、 固形分を減圧乾燥すると よい。
この減圧乾燥は、 加熱によるラクチ ドのエタノール或いは水等との反 応による分解を抑制するために低い温度で行う ことが好ま しく、 通常、 1 0〜 9 5 °C、 好ま しく は 1 0〜 6 0 °C程度の温度、 0 . 0 1〜 1 0 0 T o r r程度の圧力で、 行う ことができる。 また、 0 . 0 0 1 〜 1 0 T o r r程度の圧力で、 0 °C以下の温度で凍結乾燥を行う こと もできる。 乾燥時間については、 乾燥装置の能力、 乾燥するラクチ ドの量或いは得 よう とする精製ラクチ ドのエタノール、 水の含有率により決められるべ き ものである力 <、 通常 5分〜 1 0時間である。
加熱減圧乾燥を行う場合、 限定されるものではないが、 棚段乾燥機、 円筒攪 拌乾燥機、 円錐回転型乾燥機等を使用できる。 また、 凍結乾燥 を行う場合、 限定されるものではないが、 棚段乾燥機を使用できる。
(ェタノ 一ル再結晶法によるラクチ ド精製)
本発明のエタノール再結晶法において、 まず、 粗ラクチ ドをェタノ一 ル中に溶解する。 次にラク,チ ド溶解液から、 ラクチ ド結晶を優先的に析 出させスラ リ 一状混合物を得て、 その後この混合物から固形分を分離す る。 通常、 さ らに分離された固形分を乾燥し、 精製ラクチ ドを得る。 また、 粗ラクチ ドのエタノ一ルへの溶解から、 析出した固形分の分離 までの一連の操作を、 複数回繰り返すこと もできる。 通常、 さ らに分離 された固形分を乾燥し精製ラクチ ドを得る。
本発明のエタノ一ル再結晶法で用いられるエタノールは、 前記エタノ —ル接触法の場合と同様に、 主と してェタノールを含有する液体であり、 未変性エタノ一ル及び変性エタノールの両者を含む。 ェタノ一ルの含有 量は、 5 0重量%以上、 好ま しく は 9 0重量%以上、 さ らに好ま しく は 9 5重量%以上である。
変性エタノールとは、 ェタノールに変性剤が混和されたものである。 混和される変性剤と しては、 合成化学物質及び天然物質が挙げられる。 これら変性剤は、 通常、 エタノール 1 L当たり l g〜 2 0 0 g使用する ことができる。
合成化学物質と しては、 前述したものが使用できる。 それらのうち、 酢酸ェチル、 パラォキシ安息香酸プチル、 白ラ ッ ク、 精製セラ ッ ク、 白 ラ ッ ク溶解液、 精製セラ ッ ク溶解液が変性剤と して好ま しい。
天然物質と しては、 前述したものが挙げられる。 それらは、 単独で用 いてもよいが、 通常は混合物と して用いられる。
食品添加剤用途の精製ラクチ ドを得る場合は、 これらの変性剤の内、 食品添加剤と して使用可能な天然物質に由来する香料類が特に好ま しい。 より具体的には、 長谷川香料株式会社製のフ レーバー H— 1、 H— 2、 H - 3、 H - 4、 H - 6、 H - 9、 H - 1 0、 H - 1 1、 H - 1 2、 H— 1 3、 H - 1 4、 高砂香料工業株式会社製のフ レーバー τ一 1 0 0、 T一 1 0 1、 T一 1 0 2、 T一 1 0 3、 T一 1 0 4、 T一 1 0 5、 T— 1 0 6、 T一 1 0 7、,E D A— 1 7 1、 曾田香料株式会社製フ レ一 バ一 S - 2 0 1、 理研香料工業株式会社製フ レーバー D A - 4 0等が使 用できる。 どのような変性剤を用いるかは、 食品添加剤用途に応じて種 々選択される。
また、 エタノールと しては変性剤以外に水が混和されたものも使用で きるが、 水の混和量はエタノール 1 0 0重量部に対し、 0〜 1 0重量部、 好ま しく は 0〜 5重量、 さ らに好ま しく は 0〜 0 . 1重量部である。 1 0重量部を越えると、 精製ラクチ ド収量が低下するため好ま し く ない。 また、 食品添加剤用途の精製ラクチ ドを得る場合は、 未変性エタノー ルを使用すること ももちろん好ま しい。 未変性エタノ一ルとは、 変性剤 が混和されていないエタノ一ルである。 ェタノール再結晶法において、 粗ラクチ ド溶解の際に使用される変性 エタノール又は未変性エタノールの量は、 精製すべき粗ラクチ ドの純度、 再結晶の操作方法、 得よう とする精製ラクチ ドの品質に応じて任意に設 定できるが、 通常、 粗ラクチ ド 1 0 0重量部に対し 5 0〜 5 0 0重量部、 好ま しく は 1 0 0〜 2 0 0重量部程度である。 ェタノ一ル量が 5 0重量 部より少ないと、 粗ラクチ ドの溶解に長い時間が必要となったり、 溶解 が不完全になったり、 精製ラクチ ドの純度が悪く なる場合がある。 一方、 ェタノ一ル量が 5 0 0重量部より多いと、 精製ラクチ ドの収率が悪く な るし、 多量のエタノールを使用すること自体不経済である。
エタノールへの粗ラクチ ド溶解は、 通常、 加熱下で溶解度を向上させ て行う。 加熱温度は、 一般に 4 0 ~ 7 5 °C、 好ま しく は 5 0〜 7 0 °C、 さ らに好ま しく は 5 5〜 6 5 °Cである。 加熱温度が 7 5 °Cを超えると、 ラクチ ドがェタノール或いはエタノ一ルに含まれる水と反応し、 ラクチ ド収率が低下しやすい。 また、 この粗ラクチ ドのエタノール中への溶解 操作は、 回分式でも連続 でも行う ことができる。
粗ラクチ ド溶解は、 特に限定されるものではないが、 攪拌装置の装着 された容器を用いて行う ことができる。 攪拌装置と しては、 例えば、 2重リ ボン翼攪拌装置、 フルゾーン翼攪 拌装置、 ディ スクタービン翼攪拌装置、 ホモミ クサ一等の回転翼式攪拌 装置、 噴流、 循環流による攪拌装置、 スタティ ッ ク ミ キサ一による攪拌 装置等が用いられる。
粗ラクチ ドをエタノ一ルに溶解させた後、 ラクチ ド結晶を析出させる。 結晶の析出は、 通常、 冷却及び Z又は溶媒の留去により行われる。 即ち、 冷却により飽和濃度を低下させる方法、 加熱、 減圧等により溶媒の一部 を留去し溶媒量を低減するこ とにより溶解量を低下させる方法、 或いは、 減圧等により溶媒の一部を留去すると共に留去される溶媒の気化潜熱に より溶解液の温度を下げ、 溶媒量を低減し且つ飽和濃度を低下させる方 法が用いられる。 また、 このラクチ ド結晶の析出操作は、 回分式でも連 続式でも行う ことができる。
ラクチ ド結晶の析出を冷却により行う場合、 通常 3 0〜一 1 0 °C、 好 ま しく は 2 5 ~ 0 °C、 さ らに好ま しく は 2 0〜 5 °Cの温度に冷却を行う。 ラクチ ド結晶を優先的に析出させる装置と しては、 特に限定されない が、 粗ラクチ ドのエタノールへの溶解操作に用いられた、 攪拌装置の装 着された容器を用いることができる。 また、 D . T . B型晶析装置、 D . P . 型晶析装置、 ク リ スタルーオスロ型晶析装置、 円錐型晶析装置、 タ ービユレンス型晶析装置等を用いることができる。
結晶析出で得られたスラ リ ー混合物から固形分を分離する。 また、 固 形分を分離したェタノ一ルから晶析、 濃縮等の方法によりラクチ ドを回 収すること もできる。
分離装置と しては、 特に限定されるものではないが、 遠心沈降機、 遠 心濾過機、 圧濾装置を用い,ることができる。 これらの装置の内、 固形分 をリ ンスする機能を有する装置を使用する場合は、 同一装置で析出した 固形分を分離する操作と分離された固形分をェタノ一ルでリ ンスする操 作との両方を行う ことができるので、 有効である。
遠心沈降機と しては、 縦型バスケッ ト型遠心沈降機、 スク リ ユーデカ ンタ一型遠心沈降機等が用いられる。 遠心濾過機と しては, 縦型バスケ ッ ト型遠心濾過機、 スク リ ユ ーデカ ンタ一型遠心濾過機、 円錐スク リ一 ン型遠心濾過機等が用いられる。 圧濾装置と しては、 重力濾過器、 加圧 濾過器、 真空濾過器等が用いられる。
また、 分離された固形分を必要に応じて新たなエタノールで洗浄する。 洗浄操作により、 より高純度のラクチ ドが得られる。 通常、 さ らに得ら れた洗浄後の固形分を乾燥し精製ラクチ ドを得る。
この洗浄操作で使用されるエタノ一ル量は任意に設定できるが、 通常、 固形分 1 0 0重量部に対し 1 0 〜 3 0 0重量部、 好ま しく は 2 0 〜 1 5 0重量部、 さ らに好ま しく は 3 0 〜 7 0重量部程度である。 このェ タノ一ル量が 1 0重量部より少ないと、 均一に洗浄することができず、 あるいは不純物の除去効果が少ない場合がある。 一方、 エタノール量が 3 0 0重量部より多いと、 精製ラクチ ド収率が悪く なる し、 多量のエタ ノ一ル使用は不経済である。
本発明においては、 分離された固形分を減圧乾燥することが好ま しい。 固形分と して得られたラクチ ドには、 通常、 使用されたェタノ一ル、 水、 及び場合によっては変性エタノ一ル中に含まれていた物質が付着してい る。 これらの付着は、 得られた精製ラクチ ド粒子の流動性を悪く したり、 その臭いが問題となる場合がある。 従って、 この付着した物質を低減す るために、 固形分を減圧乾燥するとよい。
この減圧乾燥は、 加熱によるラクチ ドのエタノール或いは水等との反 応による分解を抑制するた,めに低い温度で行う ことが好ま しく 、 通常、 1 0 〜 9 5 °C、 好ま しく は 1 0 ~ 6 0 °C程度の温度、 0 . 0 1 ~ 1 0 0 T 0 r r程度の圧力で、 行う ことができる。 また、 0 . 0 0 1 〜 1 0 T o r r程度の圧力で、 0 °C以下の温度で凍結乾燥を行う こと もできる。 乾燥時間については、 乾燥装置の能力、 乾燥するラクチ ドの量或いは得 よう とする精製ラクチ ドのエタノール、 水の含有率により決められるべ き ものであるが、 通常 5分〜 1 0時間である。
加熱減圧乾燥を行う場合、 限定されるものではないが、 棚段乾燥機、 円筒攪拌乾燥機、 円錐回転型乾燥機等を使用できる。 また、 凍結乾燥を 行う場合、 限定されるものではないが、 棚段乾燥機を使用できる。
(ラクチ ドの食品添加物と しての利用)
食品分野において、 従来、 凝固剤、 膨張補助剤、 食品保存剤と しては、 ダルコノ · デルタ ' ラク ト ンが用いられてきた。 日本酒、 焼酎、 その他 の乳酸を含有する酒類及び清涼飲料の製造では、 乳酸発酵を行うか、 乳 酸を添加している。
また、 ヨーグルト、 チーズ等の製造では、 従来、 乳酸発酵させ生成し た乳酸により蛋白質を凝固させている。 ところが、 生産性及び品質安定 性の観点から、 乳酸やダルコノ · デルタ · ラク ト ンが使用されるように なってきた。
しかしながら、 (1)乳酸発酵するのは、 製造時間がかかりすぎる、 (2) 乳酸を添加すると、 p Hがいきなり下がる、 (3)ダルコノ ' デルタ ' ラク ト ンは、 分解がやや早い、 等の問題点がある。
そこで、 ダルコノ ' デルタ ' ラク ト ンより ももう少し分解の遅い添加 剤が要望されている。 ラクチ ドはダルコノ ' デルタ · ラク ト ンより も分 解が遅く 、 その上、 分解によって生成する酸も、 グルコ ン酸より も乳酸 の方が天然の乳酸発酵食品の酸味と同じであり好ま しい。
すなわち、 本発明は、 動物性蛋白質凝固剤、 食品用発泡剤、 食品用保 存剤、 p H調整剤、 及び酸味料等の食品添加物と してのラクチ ドの新規 な用途にも関する。 発明を実施するための形態
以下、 実施例により本発明をさ らに具体的に説明するが、 本発明はこ れら実施例に限定されるものではない。
[ラクチ ドの合成例 1 ]
温度計、 攪拌機、 コンデンサー、 留出物受器、 減圧装置、 加熱温調装 置等の装着された容量 2 Lの S U S製セパラブルフラスコに乳酸 ( P u r a c社製 H S - 8 8 : 乳酸単量体換算濃度 8 8 . 1重量% : 光学純度 9 9 . 2 % e. e. ) 1 0 0 0 を投入した。 まず、 常圧、 1 3 0でで 2時 間、 次に減圧下、 1 3 0 °Cから徐々に 4時間で 1 6 0 °Cまで昇温し、 G P C測定による重量平均分子量 2 1 5 0のポリ乳酸約 7 0 3 gを得た。 この低分子量のポリ乳酸に 1 0 . 0 gのォクチル酸錫を加え、 減圧下、 徐々に温度を 1 6 0 °Cから 2 0 0 °Cに昇温し、 約 1 時間 4 5分で粗ラク チ ド 6 9 0 gを留去し捕集した。
得られた粗ラクチ ドの組成を高速液体ク口マ トグラフィ 一 (H P L C ) で分析すると、 L —ラクチ ド及び D —ラクチ ド : 9 2 . 5 4 %、 メ ソ―ラクチ ド : 3 . 2 9 %、 乳酸の直鎖二量体 : 0 . 7 7 %、
乳酸 : 3 . 4 0 %であつた。
[実施例 1 (ェタノ一ル接触法) ]
合成例 1で得られた粗ラクチ ドを乳鉢で粉砕し、 1 0 メ ッ シュのふる いを通過させた。 このふるいを通過した粗ラクチ ド 5 0 gと、 2 5での 9 9度 1級の未変性エタノール (発酵アルコール) 1 5 gとをビーカ一 中で混合しスラ リ ー状の混合液を得て、 攪拌機で 1 5分攪拌した。 濾過 瓶上に装着されたガラス濾過器 (ブフナー型、 最大細孔経 2 0〜 3 0 m ) にこのスラ リ ーを移し、 濾過瓶をァスピレ一ターで約 1分間減圧し、 スラ リ一中の液体を吸引濾過した。
吸引濾過後、 ガラス濾過器に新たに 2 5 °Cの 9 9度 1級の未変性エタ ノ一ル (発酵アルコール) 1 5 gを加え、 濾過瓶をァスピレーターで約 1分間減圧し吸引濾過した。
分離された固形分をロータ リ ーエバポレー夕一を用い、 4 0 °C、 4 T◦ r rで 1時間乾燥し、 精製ラクチ ド 4 3. 9 gを得た (精製収率 :
8 7. 8 % ) o
得られた精製ラクチ ドの組成を H P L Cで分析すると、 L—ラクチ ド 及び D—ラクチ ド : 9 8. 2 1 %、 メ ソーラクチ ド : 1. 1 8 %、 乳酸 の直鎖二量体 : 0. 2 4 %、 乳酸 : 0. 3 7 %であつた。
また、 この精製ラクチ ドのエタノール含有率をガスクロマ 卜グラフィ 一 (G C) で測定すると 5 4 O p p mであり、 若干のエタノ一ル臭が感 じられた。 この精製ラクチ ドの水分含有率を力一ルフィ ッ シャ一水分測 定装置で測定すると 3 5 p p mであった。
また、 この精製ラクチ ドは流動性の良好な粒子状であり、 密封し、 2 0でで 1 ヶ月管保存した後も、 この流動性は失われなかった。
[実施例 2 (ェタノ一ル接触法) ]
合成例 1で得られた粗ラクチ ドを乳鉢で粉砕し、 1 0 メ ッ シュのふる いを通過させた。 このふるいを通過した粗ラクチ ド 5 O gと、 2 5 の
9 9度 1級の未変性エタノール (発酵アルコール) 1 5 gとをビーカ一 中で混合しスラ リ ー状の混合液を得て、 攪拌機で 1 5分攪拌した。 濾過 瓶上に装着されたガラス濾過器 (ブフナー型、 最大細孔経 2 0〜 3 0 m) にこのスラ リーを移し、 濾過瓶をァスピレーターで 1分間減圧しス ラ リ 一中の液体を吸引濾竭した。
吸引濾過後、 ガラス濾過器に新たに 2 5 °Cの 9 9度 1級の未変性エタ ノール (発酵アルコール) 1 5 gを加え、 濾過瓶をァスピレーターで 1 分間減圧し吸引濾過した。
吸引濾過後、 ガラス濾過器に新たに 2 5 °Cの水 2 5 gを加え、 直ぐに、 濾過瓶をァスピレーターで減圧し吸引濾過した。
分離された固形分を口一タ リ 一エバポレータ一を用い、 4 0 °C、 4 T 0 r rで 2時間乾燥し、 精製ラクチ ド 4 3. 5 gを得た (精製収率 : 8 7. 0 %) 。
得られた精製ラクチ ドの組成を H P L Cで分析すると、 Lーラクチ ド 及び D—ラクチ ド : 9 8. 2 3 %、 メ ソーラクチ ド : 1. 1 1 %、 乳酸 の直鎖二量体 : 0. 2 7 %、 乳酸 : 0. 3 9 %であった。
また、 この精製ラクチ ドのェタノ一ル含有率を G Cで測定すると 3 4 p p mであり、 ほとんとエタノール臭は感じられなかった。 この精製ラ クチ ドの水分含有率を力一ルフィ ッ シャ一水分測定装置で測定すると 8 9 p p mであった。
また、 この精製ラクチ ドは流動性の良好な粒子状であり、 密封し、 2 0でで 1 ヶ月管保存した後も、 この流動性はほとんど失われなかった。
[実施例 3 (エタノール接触法) ]
(ラクチ ドの合成)
温度計、 攪拌装置、 コンデンサー、 留出物受器、 減圧装置、 温調装置 等の装着された容量 1. 3 k Lの反応槽に乳酸 (P u r a c社製 H S一 8 8 : 乳酸単量体換算濃度 8 8. 1重量% : 光学純度 9 9. 2 %e. e. ) 1 0 0 O k gを投入した。 まず、 常圧、 1 3 0 °Cで 3時間、 次に減圧下、 1 3 0 °Cから徐々に 6時間で 1 6 0 °Cまで昇温し、 G P C測定による重 量平均分子量 2 4 9 0のポリ乳酸約 7 0 2 k gを得た。
この低分子量のポリ乳酸,に 1 0. 0 k gのォクチル酸錫を加え、 減圧 下、 徐々に温度を 1 6 0 °Cから 2 0 0 °Cに昇温し、 約 3時間で粗ラクチ ド 6 9 7 k gを留去し捕集した。 得られた粗ラクチ ドの組成を H P L Cで分析すると、 Lーラクチ ド及 び D—ラクチ ド : 9 1. 9 3 %、 メ ソーラクチ ド : 4. 1 8 %、 乳酸の 直鎖二量体 : 0. 6 4 %、 乳酸 : 3. 2 5 %であった。
(ラ クチ ドの精製)
ディ スクタービン翼攪拌装置、 温度計、 温調装置等の装着された容量 1 . 8 しの混合槽に、 5 3 0 し ( 4 1 8. 2 k g) の 9 9度 1級の未 変性エタノール (発酵アルコール) を投入し、 1 0 °Cに冷却した。
混合槽をディ スクタービン翼で 6 0 r p mで攪拌しながら、 上記合成 で得られた粗ラクチ ドの全量を溶融状態を保ったまま ( 1 0 3 °C) で、 シャ ワー状に吐出することが可能な 4穴のノズル (各穴径 2 mm) より、 毎分約 1 0 Lの吐出量で約 6 0分で供給した。
溶融状態の粗ラクチ ドを供給している間、 混合槽内温の上昇を防ぐた め温調装置により冷却を行ったが、 冷却能力不足のため、 供給終了時の 内温は 3 2 °Cとなった。
供給終了後、 攪拌及び温調 (設定温度 2 0 °C) を継続した。 供給終了 1 時間後の内温は 2 0 °Cであった。
供給終了 1 時間後、 混合槽中のスラ リ 一の約 1ノ 5を、 バスケッ ト径 1 0 0 0 mm、 バスケッ ト深さ 4 0 0 mmの縦型バスケッ ト型遠心濾過 機に約 9 0秒で供給し、 スラ リ ー中の固形分を分離した。 スラ リ ー供給 中のバスケッ トの回転は 3 0 0 r p mと した。
スラ リ ーの供給終了後、 固形分の分離をさ らに良くするため、 バスケ ッ 卜の回転数を 8 0 0 r p mに上げ 1 0分間、 脱液を行った。
脱液終了後、 バスケッ 卜の回転数を 5 0 0 r p mに下げ、 リ ンス液供 給用のスプレーノズルょり,、 2 0での 9 9度 1 級の未変性エタノール (発酵アルコール) をスプレー状に吐出し、 7 1 L ( 5 6. O k G) を 約 1 2 0秒で供給し、 バスケッ ト内の固形分に新たなエタノールを接触 させると同時に固形分の分離を行った。
エタノールの供給終了後、 固形分の分離をさ らに良くするため、 バス ケッ 卜の回転数を 8 0 0 r p mに上げ 1 0分間、 脱液を行った。
脱液終了後、 バスケッ ト内の固形分を搔き取り、 槽容積 1. I kしの 円錐回転型乾燥機 (ダブルコーン ドライヤー) に投入した。
以降、 遠心濾過機へのスラ リ 一の供給から円錐回転型乾燥機への固形 分の投入に至る操作を 4回繰り返し、 混合槽内のスラ リ 一の全量を処理 した。
円錐回転型乾燥機を 1 0 r p mで回転させ、 投入した固形分を 5 0 °C の温度、 2 T o r rの圧力で 6時間乾燥し、 精製ラクチ ド 6 1 1 k gを 得た (精製収率 : 8 7. 0 。
得られた精製ラクチ ドの組成を H P L Cで分析すると、 Lーラクチ ド 及び D—ラクチ ド : 9 8. 7 6 %、 メ ソーラクチ ド : 0. 8 2 %、 乳酸 の直鎖二量体 : 0. 1 9 %、 乳酸 : 0. 2 3 %であった。
また、 この精製ラクチ ドのェタノ一ル含有率を G Cで測定すると 3 6 0 p p mであり、 若干のエタノ一ル臭が感じられた。 この精製ラク チ ドの水分含有率をカールフィ ッ シャ一水分測定装置で測定すると 2 1 p pmであった。
また、 この精製ラクチ ドは流動性の良好な粒子状であり、 密封し、 2 0 °Cで 1 ヶ月管保存した後も、 この流動性は失われなかった。
[実施例 4 (未変性エタノ一ル再結晶法) ]
上記合成例 1で得られた粗ラクチ ド 2 0 0. 0 gと未変性エタ ノール 2 0 0. 0 gを混合し、 得られた混合液を攪拌しながら 7 0 °Cに加熱し、 粗ラクチ ドを完全に溶解させた。
得られた溶解液を攪拌しながら 1 5 °Cに冷却し、 ラクチ ドを析出させ スラ リ一を得た。
濾過瓶上に装着されたガラス濾過器 (ブフナー型、 最大細孔経 2 0〜 3 0 〃 m) にこのスラ リーを移し、 濾過瓶をァスピレ一ターで約 2分間 減圧しスラ リ 一中の液体を吸引濾過した。
分離された固形分を口一タ リーエバポレータ一を用い、 6 0 °C、 1 0 T o r rで 2時間乾燥し、 精製ラクチ ド 1 4 4. 9 gを得た。
得られた精製ラクチ ドの組成を H P L Cで分析すると、 Lーラクチ ド 及び D—ラクチ ド : 9 9. 6 5 %、 メ ソーラクチ ド : 0. 2 4 %、 乳酸 の直鎖二量体 : 0. 0 3 %、 乳酸 : 0. 0 0 %であった。
また、 この精製ラクチ ドの水分含有率をカールフィ ッ シャ一水分測定 装置で測定すると 2 7 p p mであった。
また、 この精製ラクチ ドは流動性の良好な粒子伏であり、 密封し、 2 0 °Cで 1 ヶ月管保存した後も、 この流動性は失われなかった。
[実施例 5 (ラクチ ドの豆腐凝固剤と しての利用) ]
実施例 4で得られた精製ラクチ ド 3 0 gを水 5 0 m 1 中に分散させた。 この分散液を、 1 0 %固形分含量に調整された 8 3 °Cの豆乳 1 0 k gの 中に加え、 1 5分間放冷して凝固させた。 常法に従って押し、 箱出し、 および水さ らしを行って、 木綿豆腐を得た。
得られた豆腐は、 均一できめが細かい切断面を有し、 食味、 風味の良 いものであった。
[実施例 6 (変性エタノール再結晶法) ]
変性剤と して長谷川香料株式会社製フ レ一バ一 H— 1 1 が 9 9度 1級 の発酵エタノール 1 Lに.対し 5. 0 g混和された変性エタノールを用 いた。
この変性エタノール 3 0 0. 0 gに、 上記合成例 1で得られた粗ラク チ ド 2 0 0 . 0 gを混合した。 得られた混合液を攪拌しながら 6 0 °Cに 加熱し、 粗ラクチ ドを完全に溶解させた。
得られた溶解液を攪拌しながら 1 5 。Cに冷却し、 ラクチ ドを析出させ スラ リ ーを得た。
濾過瓶上に装着されたガラス濾過器 (ブフナー型、 最大細孔経 2 0〜 3 0 〃 m ) にこのスラ リ ーを移し、 濾過瓶をァスピレ一ターで約 2分間 減圧しスラ リ 一中の液体を吸引濾過した。
吸引濾過後、 ガラス濾過器に新たに 1 5 の 9 9度 1級の変性エタノ —ル (発酵アルコール) 1 0 0 gを加え、 濾過瓶をァスピレ一ターで約 2分間減圧し吸引濾過した。
分離された固形分を口一タ リ一エバポレーターを用い、 4 0 °C、 4 T o r rで 2時間乾燥し、 精製ラクチ ド 1 6 1 . 2 gを得た。'
得られた精製ラクチ ドの組成を H P L Cで分析すると、 Lーラクチ ド 及び D —ラクチ ド : 9 9 . 7 2 %、 メ ソーラクチ ド : 0 . 1 8 %、 乳酸 の直鎖二量体 : 0 . 0 2 %、 乳酸 : 0 . 0 0 %であった。
また、 この精製ラクチ ドの水分含有率を力一ルフィ ッ シャ一水分測定 装置で測定すると 2 2 p p mであつた。
また、 この精製ラクチ ドは流動性の良好な粒子状であり、 密封し、 2 0 °Cで 1 ヶ月管保存した後も、 この流動性は失われなかった。
[実施例 7 (ラクチ ドの豆腐凝固剤と しての利用) ]
実施例 6で得られた精製ラクチ ドを乳鉢で粉砕し、 その 0 . 6 0 gを 2 5での豆乳 (固形分濃度 1 0重量%) 2 0 0 gに加え攪拌した。 得られた混合液を 8 5 °Cで 3 0分加熱し豆乳を凝固させた。 次に、 凝 固した豆乳を 5 °Cの冷水中で冷却し、 豆腐を得た。
得られた豆腐は、 均一できめが細かい切断面を有し、 食味、 風味の良 いものであった。 以下の実施例 8〜 1 4では、 実施例 1で得られた精製ラクチ ドを使用 した。
[実施例 8 (ラクチ ドの動物性蛋白質凝固剤と しての利用) ] 加熱により熱変性を受けゲル化する蛋白質のゲル強度変化を調べた。 蛋白質と して、 ホェ一蛋白質単離物 (Whey Prptein Isolate, 以下 「W P I」 という) を用いた。 表 1に示す種々の重量組成で、 WP I とラク チ ド又はダルコノ · デルタ ' ラク ト ン (以下 「 G D L」 という) とを混 合し、 さ らに水を加え、 攪拌機で攪拌混合した。
この溶液を容器に充塡し、 その後 7 0 °Cまで加熱した。 7 0 °Cになつ た後放冷して、 室温 ( 2 0〜 2 5 °C) で 1時間放置した。 その時のゲル 強度 (gZ c m3 ) を力一 ドメ 一タ一 (イイォ電機製) を用いて測定し た。 表 1 より、 G D Lは WP I と反応して強固なゲルを形成する前に、 G D L分解によつて生じたグルコ ン酸の低 p Hのために、 WF Iを熱変性 させて、 ゲル形成能を阻害してしまった。 そのため、 ゲル強度は、 カー ドメ一ターで測定できる下限の強度未満であつた。
一方、 ラクチ ドは、 加熱前にはそれ程分解することはなく.、 WP I を 熱変性させてしま う ことがないので、 強固なゲルが形成された。
表 1 配合霞誠とゲル強度
WP 1 (軍暈%) 5 5 5 5 5 5 5 5 5 5 ラクチド (軍暈%) 0. 2 0. 3 0. 4 0. 5 0. 6
GDL ぐ軍暈%) 0. 2 0. 3 0. 4 0. 5 0. 6 太 m %) 94. 8 94. 了 94. 6 94. 5 94. 4 94. 8 94. 了 94. 6 94. 5 94. 4 ゲル強度 280 2了 5 2了了 281 2了 6
(g/cm3 )
[実施例 9 (ラクチ ドの動物性蛋白質凝固剤と しての利用) ]
ク リ 一ムチーズ様食品の製造を行った。
水 6 5. 3 2 k gにナ ト リ ウムカゼイ ン 1 2. 7 5 k g及び粉末水ァ メ 1 . 4 9 k gを水和溶解した液を水相と し、 植物油脂 (なたね微水添 油脂 7部とヤシ油 3部を混合したもの) 4 8. 2 8 k gを加熱融解した ものにソルビタ ン脂肪酸エステル 2 8 0 g、 /3カロチン 1 g及びフ レー バ一を溶かし込んだものを油相と して、 水相及び油相の両者を 7 0 °Cで 混合した。
この混合液に、 水酸化カルシウム粉末 8 5. 2 g及び塩化カルシウム 二水塩 3 3 3. 7 gを水 2 k gに予め溶解したものと、 リ ン酸水素ニナ 卜 リ ウム十二水塩 5 3. 4 gと リ ン酸水素力 リ ウム 3 2 gを水 8 0 0 g に予め溶解したものとをこの順で添加した。 その後に、 殺菌均質化し、 3 0 °Cに冷却して乳化液を得た。
この乳化液に、 ラクチ ド 6 0 0 gと レンネッ ト液 (粉末と して 1 4 0 m g ) を加えて、 3 0 °Cで 5時間保持したところ、 p H 5. 6の液状酸 性乳化物約 1 3 ·2 k gを得た。
これに食塩 1 0 0 0 g、 ラクチ ド 8 4 0 g、 グァーガム 4 9 0 g、 及 び粉末水ァメ 2. 1 k gを混合して、 融解釜を用いて 8 7 °Cで殺菌した。 その後容器に充塡、 冷却して、 ク リームチーズに非常に風味の似た食品 が得られた。 この風味は、 ラクチ ドの代わりに G D Lを用いて得られた 食品より も、 天然のものに近いものであった。
[実施例 1 0 (ラクチ ドの動物性蛋白質凝固剤と しての利用) ]
夕マゴ豆腐様食品の製造を行った。
粉末卵 1 0 0 k gに、 食塩 0. 1 g及び水 1 2 0 0 gを加えて溶解さ せ、 攪拌しながらに加熱した。 沸騰した後、 ラクチ ド 4 gを加えて、 軽 く攪拌して混合し、 直ちに型容器に流し込み冷却した。 ゼリ ー状のタマ ゴ豆腐様食品が得られた。 この食品は、 ラクチ ドの代わりに G D Lを用 いて得られた食品より も、 良好な風味であった。
[実施例 1 1 (ラクチ ドの動物性蛋白質凝固剤と しての利用) ] ョ一グル ト様食品の製造を行った。
脱脂粉乳溶液 (固形分重量 1 2 % ) 8 0重量%と、 分離大豆蛋白質 2 0重量%とを水に溶解して、 加熱、 沸騰後冷却し、 固形分重量 1 2 % の混合溶液を得た。
この混合溶液 1 リ ッ トルに、 ラクチ ド 1 5 g及びプロメ ライ ン (半井 化学社製試薬) 6 0 0ュニッ トを添加し、 7 0 °Cで 4 0分間加熱して、 冷却した。 ヨーグル ト様食品が得られた。 この食品は、 ラクチ ドの代わ りに G D Lを用いて得られた食品より も、 良好な風味であつた。
[実施例 1 2 (ラクチ ドの食品発泡剤と しての利用) ]
ケーキミ ッ クスパウダ一の製造を行った。
ショー トニング 1 0 g、 グリセリ ン モノ ステアレー ト 4 g及びプ ロピレンダリ コール モノステアレー ト 4 gを約 6 0 °Cで混和した。 ケ一キミ キサ一に小麦粉 1 0 0 g及びラクチ ド 3 . O gを入れ、 攪拌し ながら、 前記混和油脂を加えて均一に混和した。 これを冷却した後、 蔗 糖 1 0 0 g、 粉末油脂 (油脂量 7 0重量%) 3 0 g、 食塩 1 . 5 g、 脱 脂粉乳 4 g、 カラギナン 0 . 5 g、 粉末状レシチン (レシチン含量 5 0 重量%) 0 . 4 g及び炭酸水素ナ ト リ ウム 1 . 5 gを加えて混合し、 ケ —キミ ッ クスパウダーを得た。
得られたケーキミ ッ クスパウダ一 2 0 0 gに鶏卵 2ケ、 牛乳 1 0 0 m 1 を加えてよ く混合し、 これを電子レンジで弱火で焼成したところ、 5分後にはスポンジ状のケーキが得られた。 このケーキは、 ラクチ ドの 代わりに G D Lを用いたケーキミ ッ クスパウダーから得られたケーキよ り も、 まろやかな良好な風味であった。
[実施例 1 3 (ラクチ ドの食品保存剤と しての利用) ]
試験用カスター ドク リ一ムを用いて、 ラクチ ド添加による食品保存の 効果を調べた。
(配合)
牛乳 1 2 0 0 m l
卵 7 5 0 g
砂糖 5 0 0 g
小麦粉 8 0 g
コーンスターチ 9 0 g 上記配合で混和された材料を 4等分し、 それぞれに対してラクチ ドを 0重量% (無添加) 、 0 . 2 5重量%、 0 . 5重量%、 1重量%添加し. 常法通り加工して、 試験用カスター ドク リ ームを作製した。
各試験用カスター ドク リ ームを 3 5 °Cの恒温器内に入れ、 一定時間毎 にサンプリ ングして、 1 g中の一般生菌数を検査した。 その結果を表 2 に示す。 表 2 より、 ラクチ ドの添加により、 菌の増殖が抑えられたことが分力、 る。 表 2 ラクチド添加による食品保存の効果
一 般 生 菌 数 (1 g中)
ラクチド添加量
(Mm%) 0時間 4時間 8時間 1 2時間 24時間¾¾ 48時間 Sil 60時間 ®ϋ
0 8. 0 X 1 0 ' 3. 0 X 1 0 4. 0 X 1 0 6. 0 1 04 1. 2 X 1 08 無数に多い 無数に多い
0. 25 3. 0x1 0' 3. 0 1 0 4. 0x 1 0 了. 0 X 1 02 5. 6 X 1 04 3. 5 X 1 0 2. 8 X 1 06 0. 5 2. 0 X 1 0 ' 2. 0 1 0 2. 0 1 0 1. 2 Χ 1 02 7. 3 X 1 02 8. 2 X 1 0 5. 2 X 1 04 1. 0 1. οχ ΐ ο' 1. 0 1 0 1. 0 X 1 0 5. 0 X 1 0' 1. 2 X 1 02 2. 4 X 1 0 1. 0 1 03
[実施例 1 4 (ラクチ ドの p H調整剤と しての利用) ]
米飯食品の製造を行った。
原料米 1 0 k gに対してラクチ ド 6 0 gを添加し、 炊飯した。
別途、 塩分 1 5 %の鮭フ レークにラクチ ドを添加攪拌し、 これを真空 包装後、 3 0分間煮沸殺菌し、 p H 4 . 2の塩鲑フ レークを得た。
この塩鮭フ レークを米飯の中に入れて成型しおにぎりと した。 このお にぎりを合成樹脂フィ ルムで包装した後、 電子レンジを用いて米飯の温 度を 7 0 - 9 0 °Cに 1 0分間加熱した。 その後、 米飯の温度が 2 5 に なるまで真空冷却した。
このようにして得られたおにぎりを、 3 0 °Cの恒温器内に入れ、 3 日 後、 5 日後に、 1 g中の一般生菌数を検査し、 また味や臭いを観察した。 また、 比較のため、 炊飯後に食酢を添加して米飯の p H価を 4 . 7 と し、 その他は上記と同様にして、 おにぎりを得た。 このおにぎりについ ても、 同様の検査を行った。 以上の結果を表 3 に示す。
表 3
3日 gi§ 5日
1 g中の生菌数 官能検査 1 g中の生菌数 官能検査 ラクチド添加 2 · O X 1 0 4以下 正常 3 . 0 X 1 0 4以下 米飯が やや老化 食酢添加 了. 0 X 1 0 4以下 米飯が
(膽 やや老化 本発明は、 その精神または主要な特徴から逸脱することなく、 他のい ろいろな形態で実施することができる。 そのため、 前述の実施例はあら ゆる点で単なる例示にすぎず、 限定的に解釈してはならない。 さ らに、 特許請求の範囲の均等範囲に属する変更は、 すべて本発明の範囲内のも のである。 産業上の利用可能性
以上のように、 本発明によれば、 Lーラクチ ド及び Z又は D —ラクチ ドの含有率の高い精製ラクチ ドを、 簡単な装置及び操作により、 短時間 で高収率で得ることができる。 また、 本発明によれば、 人体に対して有 害な有機溶剤が残留することがなく、 作業性の良い精製ラクチ ド得るこ とができる。
本発明により得られた精製ラクチ ドは、 安価であり、 かつ食品添加物 用途に好適である。

Claims

請 求 の 範 囲
1 . 固体状態又は少なく と も一部が溶融状態の粗ラクチ ドをエタ ノールと接触させスラ リ 一状混合物を得て、 その後この混合物から固形 分を分離することにより、 L —ラクチ ド及び Z又は D —ラクチ ドの含有 率の高い精製ラクチ ドを得ることを含む、 ラクチ ドの精製方法。
2 . 固形分を分離した後、 分離された固形分を減圧乾燥すること を含む、 請求の範囲第 1項に記載のラクチ ドの精製方法。
3 . 固形分を分離した後、 エタノールを取り除く ために、 分離さ れた固形分を水で洗浄することを含む、 請求の範囲第 1項に記載のラク チ ドの精製方法。
4 . 水での洗浄後、 固形分を減圧乾燥することを含む、 請求の範 囲第 3項に記載のラクチ ドの精製方法。
5 . 精製すべき粗ラクチ ドが、 低分子量のポリ乳酸を解重合する ことによつて得られた溶融状態の粗ラクチ ドである、 請求の範囲第 1 ~ 4項のうちのいずれか 1項に記載のラクチ ドの精製方法。
6 . 請求の範囲第 1項に記載の方法により得られた精製ラクチ K c
7 . 粗ラクチ ドを未変性エタノ一ルから再結晶して食品添加物用 ラクチ ドを得ることを含む、 ラクチ ドの精製方法。
8 . 粗ラクチ ドを変性エタノールから再結晶して食品添加物用ラ クチ ドを得ることを含む、 ラクチ ドの精製方法。
9 . 変性エタノールに含まれる変性剤が、 食品添加物と して使用 可能な香料類から選ばれ 、 請求の範囲第 8項に記載のラクチ ドの精製 方法。
1 0 . 変性エタノールに含まれる変性剤が、 酢酸ェチル、 パラオ キシ安息香酸プチル、 白ラッ ク、 精製セラ ッ ク、 白ラ ッ ク溶解液、 精製 セラ ッ ク溶解液のうちの少なく と も 1種である、 請求の範囲第 8項に記 載のラクチ ドの精製方法。
1 1 . 未変性エタノール又は変性エタノールから再結晶された食 品添加物用ラクチ ド。
1 2 . 請求の範囲第 1 1項に記載の食品添加物用ラクチ ドを主成 分とする植物性蛋白質凝固剤。
1 3 . 請求の範囲第 6項又は第 1 1項に記載のラクチ ドを主成分 とする食品添加物。
1 4 . 食品添加物が、 動物性蛋白質凝固剤、 食品用発泡剤、 食品 用保存剤、 p H調整剤又は酸味料である、 請求の範囲第 1 3項に記載の 食品添加物。
PCT/JP1998/004287 1998-09-25 1998-09-25 Purification de lactide et lactide utilise comme additif alimentaire WO2000018756A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP1998/004287 WO2000018756A1 (fr) 1998-09-25 1998-09-25 Purification de lactide et lactide utilise comme additif alimentaire
EP99969720A EP1048665A4 (en) 1998-09-25 1999-06-29 METHOD FOR PURIFYING LACTID AND LACTID FOR FOOD ADDITIVES
PCT/JP1999/003505 WO2000018757A1 (fr) 1998-09-25 1999-06-29 Procede de purification de lactide et lactide destine a des additifs alimentaires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/004287 WO2000018756A1 (fr) 1998-09-25 1998-09-25 Purification de lactide et lactide utilise comme additif alimentaire

Publications (1)

Publication Number Publication Date
WO2000018756A1 true WO2000018756A1 (fr) 2000-04-06

Family

ID=14209055

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP1998/004287 WO2000018756A1 (fr) 1998-09-25 1998-09-25 Purification de lactide et lactide utilise comme additif alimentaire
PCT/JP1999/003505 WO2000018757A1 (fr) 1998-09-25 1999-06-29 Procede de purification de lactide et lactide destine a des additifs alimentaires

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003505 WO2000018757A1 (fr) 1998-09-25 1999-06-29 Procede de purification de lactide et lactide destine a des additifs alimentaires

Country Status (2)

Country Link
EP (1) EP1048665A4 (ja)
WO (2) WO2000018756A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511070A (ja) * 2006-11-28 2010-04-08 ピュラック バイオケム ビー.ブイ. 安定なラクチド粒子
CN106857873A (zh) * 2017-01-06 2017-06-20 李宾 一种豆腐浆的电动过滤装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003231482A1 (en) * 2002-04-25 2003-11-10 Yujiang Fan Process for producing lactide
US8486480B2 (en) 2002-12-20 2013-07-16 Purac Biochem B.V. Controlled acidification of food products using lactic- or glycolic acid oligomers/derivatives
DE60325271D1 (de) * 2002-12-20 2009-01-22 Purac Biochem Bv Ilchsäure- oder glykolsäureoligomeren oder deren derivate
BE1019857A3 (fr) * 2011-03-03 2013-01-08 Galactic Sa Procede de separation des deux isomeres de l'acide lactique et utilisation des isomeres ainsi recuperes.
CN105646440B (zh) * 2014-12-05 2018-06-15 中国石油化工股份有限公司 一种丙交酯的精制纯化方法
JP6961339B2 (ja) * 2015-12-18 2021-11-05 アサヒ飲料株式会社 微生物菌体含有飲料
JP6331182B1 (ja) * 2017-10-24 2018-05-30 有限会社スクラム 環状重合l−乳酸。

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148777A (ja) * 1983-02-15 1984-08-25 Mitsui Toatsu Chem Inc 粗グリコライドの精製方法
JPH07118259A (ja) * 1993-10-26 1995-05-09 Shimadzu Corp ラクチドの精製法および重合法
JPH07132056A (ja) * 1993-07-15 1995-05-23 Mitsubishi Chem Corp 吸湿性及び固結性の改善されたラクチド及び食品添加物
JPH07165753A (ja) * 1993-12-08 1995-06-27 Musashino Kagaku Kenkyusho:Kk ラクチドの精製方法
JPH10279577A (ja) * 1997-04-04 1998-10-20 Shimadzu Corp 食品添加物用ラクチド及びラクチドの精製方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152956A (ja) * 1986-12-16 1988-06-25 Musashino Kagaku Kenkyusho:Kk 豆腐の凝固方法
JP3988195B2 (ja) * 1996-07-12 2007-10-10 トヨタ自動車株式会社 ラクチドの精製法および重合法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148777A (ja) * 1983-02-15 1984-08-25 Mitsui Toatsu Chem Inc 粗グリコライドの精製方法
JPH07132056A (ja) * 1993-07-15 1995-05-23 Mitsubishi Chem Corp 吸湿性及び固結性の改善されたラクチド及び食品添加物
JPH07118259A (ja) * 1993-10-26 1995-05-09 Shimadzu Corp ラクチドの精製法および重合法
JPH07165753A (ja) * 1993-12-08 1995-06-27 Musashino Kagaku Kenkyusho:Kk ラクチドの精製方法
JPH10279577A (ja) * 1997-04-04 1998-10-20 Shimadzu Corp 食品添加物用ラクチド及びラクチドの精製方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511070A (ja) * 2006-11-28 2010-04-08 ピュラック バイオケム ビー.ブイ. 安定なラクチド粒子
CN106857873A (zh) * 2017-01-06 2017-06-20 李宾 一种豆腐浆的电动过滤装置

Also Published As

Publication number Publication date
EP1048665A1 (en) 2000-11-02
EP1048665A4 (en) 2002-11-20
WO2000018757A1 (fr) 2000-04-06

Similar Documents

Publication Publication Date Title
US6313319B1 (en) Method for purifying lactide and lactide for food additives
CN101080378B (zh) 纯化羟基羧酸的方法、制备环酯的方法以及制备聚羟基羧酸的方法
CN1117523C (zh) 液体咖啡产品
WO2000018756A1 (fr) Purification de lactide et lactide utilise comme additif alimentaire
JP2019532085A (ja) アルロース結晶の製造方法
EP4234543A1 (en) Method for refining glycolide and glycolide obtained using same
JP2001061409A (ja) 酸性蛋白食品及びその製造法並びに安定化剤
CN109400574A (zh) 一种粗交酯的提纯方法及应用
US2515794A (en) Method of preparing cocoa extracts
JP2008061520A (ja) 食品保存剤および食品の保存方法
JP2005304324A (ja) グレープフルーツ果汁含有飲食品の保存中に生じる異臭の発生を防止する方法
JPS60160859A (ja) チ−ズフレ−バ付与生成物およびその製造方法
JP2001157552A (ja) 食品添加物用ラクチド
JP2019112508A (ja) バニラエキストラクトの製造方法及びバニラエキストラクト
JP2001157568A (ja) 食品添加物用ラクチド
JP2001157553A (ja) 食品添加物用ラクチド
JP2001157554A (ja) 食品添加物用ラクチド
WO2001060182A1 (en) Enzymatic processing of biomass to produce edible products
CN111139278A (zh) 一种从海参中提取小分子肽的方法及其应用
US3898347A (en) Fixed volatile flavors and method
JPH0128800B2 (ja)
JPH10191922A (ja) モロヘイヤエキスの製造方法及びモロヘイヤ含有飲料の製造方法
JP2005341923A (ja) 好ましい食感を持つ冷凍食品
KR102679582B1 (ko) 알룰로오스 결정의 제조방법
US1663233A (en) Preparation of levulose from purified dahlia juice

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 2000572216

Format of ref document f/p: F