WO2000017932A1 - Bipolartransistor und verfahren zu seiner herstellung - Google Patents

Bipolartransistor und verfahren zu seiner herstellung Download PDF

Info

Publication number
WO2000017932A1
WO2000017932A1 PCT/DE1999/003070 DE9903070W WO0017932A1 WO 2000017932 A1 WO2000017932 A1 WO 2000017932A1 DE 9903070 W DE9903070 W DE 9903070W WO 0017932 A1 WO0017932 A1 WO 0017932A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
germination
bipolar transistor
region
silicon
Prior art date
Application number
PCT/DE1999/003070
Other languages
English (en)
French (fr)
Inventor
Karl-Ernst Ehwald
Bernd Heinemann
Dirk Wolansky
Bernd Tillack
Dieter Knoll
Original Assignee
Institut für Halbleiterphysik Frankfurt (Oder) GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut für Halbleiterphysik Frankfurt (Oder) GmbH filed Critical Institut für Halbleiterphysik Frankfurt (Oder) GmbH
Publication of WO2000017932A1 publication Critical patent/WO2000017932A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66272Silicon vertical transistors
    • H01L29/66287Silicon vertical transistors with a single crystalline emitter, collector or base including extrinsic, link or graft base formed on the silicon substrate, e.g. by epitaxy, recrystallisation, after insulating device isolation

Definitions

  • the invention relates to a bipolar transistor and a method for its production.
  • double polysilicon technologies are used in modern processes for producing vertical bipolar transistors.
  • these design advantages over “simple poly-silicon technologies” are associated with such disadvantages as additional process complexity and increased contact resistance.
  • These disadvantages are related to the required etching of the polysilicon in the active transistor region and the diffusion of dopants from the highly doped polysilicon layer into the single-crystalline base connection region.
  • etch stop layers are used to protect the emitter region to solve dry etching problems. Additional effort is required to ensure self-adjustment of the emitter region and the etch stop layer.
  • the use of epitaxial processes has recently further improved the high-speed properties.
  • the in-situ doping during deposition is used to achieve smaller base widths, ie lower base layer thicknesses and lower base layer resistances.
  • An additional degree of freedom in the setting of base layer resistance and current gain and thus to optimize the high-speed properties is gained by the deposition of heterolayers.
  • the thickness of the epitaxial layer in the active transistor region cannot be set independently of the thickness of the silicon layer in the base connection region or in the insulator regions. Due to the poor germination of the SiO 2 layer usually used as an insulator layer, the polycrystalline layer is generally thinner than the epitaxially grown layer. With regard to the epitaxial layer thickness, there are two different requirements. Within the emitter area there should be a sufficiently small layer thickness between the highly doped emitter and the base. A greater thickness is advantageous in the outer base region in order to enable low resistances of the base connection.
  • the object of the invention is to propose a bipolar transistor and a method for its production, in which the disadvantages of conventional arrangements described are overcome for a simple poly-silicon technology with differential epitaxy for basic production, in order in particular to achieve the high-speed properties of a bipolar transistor. further improve conductive connections between the metal contacts and the active (inner) transistor region as well as a minimized passive transistor area, at the same time avoiding additional process complexity and increased contact resistances, without accepting restrictions for the temperatures used for differential epitaxy to have to.
  • the homogeneity of the deposition is improved, the grain size distribution in polycrystalline layers is more uniform and thus the surface roughness is reduced in order to achieve uniform electrical properties.
  • this object is achieved in that by applying a suitable layer with good seeding properties for the Si deposition and insulating properties on the actual insulator layer, the seeding in the differential epitaxy is improved and the poly-silicon layer is thus deposited on the insulator region with a greater thickness .
  • the greater thickness of the poly-silicon layer is achieved by better confinement, which causes a shortening of the induction period (dead time) for the deposition on the insulator layer.
  • the better and more uniform germination of the germ layer leads to a homogeneous separation. Layers with a uniform grain structure and low surface roughness are created. This ensures uniform electrical properties.
  • a simple poly-silicon bipolar transistor with an epitaxially produced base according to the invention allows a reduction in the external base resistances without having to accept a deterioration in the emitter properties. Due to the uninterrupted deposition of the inner and outer base connection, there are no interface problems with the base connection.
  • Fig. 1 Schematic representation of a bipolar transistor
  • FIG. 2 Schematic representation of a bipolar transistor according to Fig. 1 during manufacture.
  • FIG. 1 schematically shows a bipolar transistor 10 according to the invention.
  • a conductivity type II collector region has been created on the semiconductor type I substrate region 11.
  • B. n-type is the base of the p-type or vice versa.
  • Several methods are known which provide suitable collector doping. These include, for example, the structure shown in FIG. 1 with a highly doped, buried layer 12 and a less heavily doped epitaxial layer 13, but also implanted retrographic wells.
  • field isolation region 14 separates the bipolar transistor from other components (not shown in the figure) and also the collector connection region from the active transistor region.
  • Other suitable insulation techniques are also known, such as. B. spaced mesa arrangements.
  • a shaft implant 20 can optionally be used in order to reduce the resistance between the contact layer 21 consisting of highly doped polysilicon and the buried layer 12.
  • An epitaxial layer sequence consisting of buffer layer 15, in-situ doped base layer 16 of conductivity type I and of cover layer 17, covers the emitter region in the active transistor region and at least part of the insulation region is provided with the germination layer 28.
  • the epitaxial layer structured outside the active transistor region is also included covered with a dielectric 18.
  • the use of a thick polycrystalline layer on the insulator region is to be regarded as essential in the sense of the invention.
  • the special values for the thickness, the dopant content and the material composition of the base are in accordance with the requirements adjust the function of the bipolar transistor and are not subject to any special requirements with regard to the essence of the invention.
  • the base layer consists of silicon, is p-doped with 2 10 18 cm “3 and is 40 nm thick.
  • other material compositions and doping profiles can also be used.
  • the use of a thin cover layer 17 over the base layer is possible, however The doping of the emitter in monocrystalline silicon is ensured by outdiffusion of dopant 22 from the highly doped poly-silicon contact layer 21.
  • the deposited thickness of the cover layer 17 can typically be 50 nm. and the cover layer grow monocrystalline over the silicon substrate, polycrystalline layers 19 are formed over the insulation region 14 provided with the germination layer 28.
  • the thickness of the deposited polycrystalline layer is increased by the use of the germination layer 28. Outside the poly-silicon contact layer overlapping the active transistor region 21 the doping in the base connection area has been additionally increased by implantation 23.
  • the insulation layer 24 separates the emitter, base and collector contacts.
  • the transistor structure is completed by metal contacts for emitter 25, base 26 and collector 27.
  • an amorphous layer can also be used as a modification.
  • the manufacture of a bipolar transistor according to the invention is set out below.
  • the starting point for the method according to the invention is the structure shown in FIG. 2.
  • a highly doped n-layer 12 is introduced into p-doped silicon substrate 11 by implantation and cured.
  • a weakly doped n-layer 13 is then deposited epitaxially.
  • Usual process steps define the active area and create isolation areas 14 (eg LOCOS) in the remaining areas.
  • a germination layer 28 is then deposited over the entire surface and opened above the active transistor region. Silicon nitride is preferably used for the germination layer 28.
  • the buffer layer 15, the base layer 16 and the cover layer 17 are deposited.
  • the use of the germination layer 28 improves the germination in the isolator area. This reduces the dead time for the deposition in the isolator area.
  • the polycrystalline layer 19 on the insulator is considerably thicker than when it is deposited without using the germination layer 28.
  • the deposited ones are removed with the aid of a plasma etching step outside the later transistor and base connection region Silicon or polysilicon layers with an etch stop on the insulation region 14 are removed.
  • a dielectric 18, preferably oxide, is then applied.
  • the collector connection area is now exposed by photolithographic structuring of a resist mask and the shaft implant 20 is introduced.
  • the oxide layer 18 in the collector connection region and also in the emitter region is preferably etched using wet chemistry.
  • the process continues with the deposition of an amorphous silicon layer. This can already be doped in situ during or after the deposition by implantation.
  • the emitter and collector contact areas are masked with a lithography step. In the remaining areas, the amorphous silicon is removed in a plasma etching step with a stop on the SiO 2 layer.
  • the emitter and collector contact areas are protected by the existing masking.
  • the masking After the masking has been removed and the resulting surface has been covered with oxide, it is tempered to heal the implant damage and to form the poly-emitter.
  • the process is completed by opening the contact holes for the emitter, base and collector and a standard metallization for the transistor contacts.

Abstract

Die Erfindung bezieht sich auf einen Bipolartransistor sowie ein Verfahren zu seiner Herstellung. Aufgabe der Erfindung ist es, einen Bipolartransistor und ein Verfahren zu seiner Herstellung vorzuschlagen, bei dem für eine Einfach-Poly-Silizium-Technologie mit differentieller Epitaxie zur Basisherstellung die Nachteile konventioneller Anordnungen überwunden werden, um insbesondere die Hochgeschwindigkeitseigenschaften eines Bipolartransistors weiter zu verbessern. Erfindungsgemäss wird diese Aufgabe dadurch gelöst, dass durch Aufbringen einer geeigneten Schicht mit guten Bekeimungseigenschaften für die Si-Abscheidung und isolierenden Eigenschaften auf die eigentliche Isolatorschicht, die Bekeimung bei der differentiellen Epitaxie verbessert und damit die Poly-Siliziumschicht auf dem Isolargebiet mit grösserer Dicke abgeschieden wird. Die grössere Dicke der Poly-Siliziumschicht wird durch eine bessere Bekeimung erreicht, die eine Verkürzung der Induktionsperiode (Totzeit) für die Abscheidung auf der Isolatorschicht bewirkt. Die bessere und gleichmässigere Bekeimung der Ankeimschicht führt zu einer homogenen Abscheidung. Es entstehen Schichten mit gleichmässiger Kornstruktur und geringer Oberflächenrauhigkeit. Dadurch werden gleichmässige elektrische Eigenschaften erreicht.

Description

Bipolartransistor und Verfahren zu seiner Herstellung
Die Erfindung bezieht sich auf einen Bipolartransistor sowie ein Verfahren zu seiner Herstellung.
Ein wichtiges Einsatzgebiet vertikaler Bipolartransistoren sind Hochgeschwindigkeitsanwendungen. Um die Leistungsfähigkeit der Transistoren im Bereich höchster Geschwindigkeiten zu verbessern, ist der Einfluß parasitärer Komponenten, d. h. Widerständen oder Kapazitäten, zu reduzieren. Daher sind sowohl möglichst leitfähige Verbindungen zwischen den Metallkontakten und der aktiven (inneren) Transistorregion als auch eine minimierte passive Transistorfläche erforderlich.
Um diese Forderungen zu erfüllen, werden lateral skalierte, sogenannte „Doppel-PolySilizium-Technologien" in modernen Verfahren zur Herstellung von vertikalen Bipolartransistoren eingesetzt. In solchen Technologien ist es möglich, den Basiskontakt und Teile der hochleitfähigen Poly-Silizium- Verbindung zwischen Kontakt und innerer Basis über isolierten Gebieten anzuordnen. Allerdings sind diese konstruktiven Vorteile gegenüber „Einfach-Poly- Silizium-Technologien" mit solchen Nachteilen wie zusätzlicher Prozeßkomplexität und erhöhten Kontaktwiderständen verbunden. Diese Nachteile stehen im Zusammenhang mit der erforderlichen Ätzung des Poly-Siliziums im aktiven Transistorbereich sowie der Diffusion von Dotanden aus der hochdotierten Poly-Silizium-Schicht in das einkristalline Basisan- schlußgebiet. Da das Poly-Silizium für den Basisanschluß über dem aktiven Transistorgebiet mit Hilfe von Trockenätztechniken entfernt wird und keine Selektivität zum darunterliegenden einkristallinen Silizium besteht, kommt es zu Schädigungen der freigelegten Silizium- Oberfläche. Oberflächenrauhigkeit, Störungen der Gitterstruktur und Eindringen von Fremdstoffen sind die Folge. Es sind verschiedene Ansätze vorgestellt worden, um diese Probleme zu überwinden.
Zum Beispiel werden Ätzstoppschichten zum Schutz der Emitterregion eingesetzt, um Probleme beim Trockenätzen zu lösen. Zusätzlicher Aufwand ist nötig, um eine Selbstjustage von Emittergebiet und Ätzstoppschicht zu gewährleisten. Durch den Einsatz epitaktischer Prozesse konnten neuerdings die Hochgeschwindigkeitseigenschaften weiter verbessert werden. Dabei wird die in-situ Dotierung während der Abscheidung genutzt, um geringere Basisweiten, d. h. geringere Dicken der Basisschichten und geringere Basisschichtwiderstände, zu erreichen. Einen zusätzlichen Freiheitsgrad bei der Einstellung von Basisschichtwiderstand und Stromverstärkung und damit zur Optimierung der Hochgeschwindigkeitseigenschaften gewinnt man durch die Abscheidung von Heteroschichten.
Das Konzept einer Doppel-Poly-Silizium-Technologie mit Ätzstoppschicht ist auch im Falle epitaktisch eingebrachter Basisschichten mit Hilfe der sogenannten selektiven Epitaxie verwirklicht worden. Bei der selektiven Epitaxie wird durch die Abscheidebedingungen sichergestellt, daß nur auf unbedeckten Halbleiteroberflächen epitaktisches Wachstum eintritt. Verwendet man differentielle Epitaxie, bei der Siliziummaterial sowohl auf Halbleiter- als auch auf Isolationsgebieten abgeschieden wird, können gleichzeitig die innere Basis und die Ver- bindung zu einem auf Isolatorgebiet befindlichen Basiskontakt (Basisanschlußgebiet) erzeugt werden. Damit entfällt im allgemeinen die Notwendigkeit für eine zusätzliche Poly-Silizium- Schicht. Die resultierende quasi Doppel-Poly-Silizium-Anordnung erlaubt, den Prozeß zu vereinfachen. Gegenüber einem vollständigen Doppel-Poly-Prozeß ist man jedoch mit dem Nachteil kon- frontiert, daß man die Dicke der Epitaxieschicht im aktiven Transistorbereich nicht unabhängig von der Dicke der Siliziumschicht im Basisanschlußgebiet bzw. auf den Isolatorgebieten einstellen kann. Bedingt durch die schlechte Bekeimung der üblicherweise verwendeten SiO2- Schicht als Isolatorschicht, ist die polykristalline Schicht in der Regel dünner als die epitaktisch gewachsene Schicht. Bezüglich der Epitaxieschichtdicke ergeben sich zwei unterschied- liehe Forderungen. Innerhalb des Emitterbereiches sollte eine hinreichend geringe Schichtdik- ke zwischen dem hochdotierten Emitter und der Basis vorhanden sein. Im äußeren Basisgebiet ist eine größere Dicke von Vorteil, um geringe Widerstände des Basisanschlusses zu ermöglichen.
Aufgabe der Erfindung ist es, einen Bipolartransistor und ein Verfahren zu seiner Herstellung vorzuschlagen, bei dem für eine Einfach-Poly-Silizium-Technologie mit differentieller Epitaxie zur Basisherstellung die beschriebenen Nachteile konventioneller Anordnungen überwunden werden, um insbesondere die Hochgeschwindigkeitseigenschaften eines Bipolartransi- stors weiter zu verbessern, leitfähige Verbindungen zwischen den Metallkontakten und der aktiven (inneren) Transistorregion als auch eine minimierte passive Transistorfläche herzustellen, gleichzeitig zusätzliche Prozeßkomplexität und erhöhte Kontaktwiderstände zu vermeiden, ohne Einschränkungen für die üblicherweise verwendeten Temperaturen für die diffe- rentielle Epitaxie in Kauf nehmen zu müssen.
Weiterhin ist es Aufgabe der Erfindung, daß die Homogenität der Abscheidung verbessert, die Korngrößenverteilung bei polykristallinen Schichten gleichmäßiger und damit die Oberflächenrauhigkeit reduziert wird, um gleichmäßige elektrische Eigenschaften zu erreichen.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß durch Aufbringen einer geeigneten Schicht mit guten Bekeimungseigenschaften für die Si-Abscheidung und isolierenden Eigenschaften auf die eigentliche Isolatorschicht, die Bekeimung bei der differentiellen Epitaxie verbessert und damit die Poly-Siliziumschicht auf dem Isolatorgebiet mit größerer Dicke abgeschieden wird. Die größere Dicke der Poly-Siliziumschicht wird durch eine bessere Bekei- mung erreicht, die eine Verkürzung der Induktionsperiode (Totzeit) für die Abscheidung auf der Isolatorschicht bewirkt. Die bessere und gleichmäßigere Bekeimung der Ankeimschicht führt zu einer homogenen Abscheidung. Es entstehen Schichten mit gleichmäßiger Kornstruktur und geringer Oberflächenrauhigkeit. Dadurch werden gleichmäßige elektrische Eigenschaften erreicht. Anstatt einer Poly-Siliziumschicht liegt auch die Verwendung einer amorphen Siliziumschicht im Bereich der Erfindung. Ein Einfach-Poly-Silizium-Bipolartransistor mit epitaktisch hergestellter Basis gemäß der Erfindung erlaubt eine Reduktion der externen Basiswiderstände, ohne eine Verschlechterung der Emittereigenschaften in Kauf nehmen zu müssen. Bedingt durch die unterbrechungsfreie Abscheidung von innerem und äußerem Basisanschluß treten keine Grenzflächenprobleme beim Basisanschluß auf.
Die Merkmale der Erfindung gehen außer aus den Ansprüchen auch aus der Beschreibung und den Zeichnungen hervor, wobei die einzelnen Merkmale jeweils für sich allein oder zu mehreren in Form von Unterkombinationen schutzfähige Ausführungen darstellen, für die hier Schutz beansprucht wird. Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird im folgenden näher erläutert. Die Zeichnungen zeigen:
Fig. 1 Schematische Darstellung eines Bipolartransistors und
Fig. 2 Schematische Darstellung eines Bipolartransistors nach Fig. 1 während der Herstel- hing.
Die Erfindung wird nun im Zusammenhang mit einem Einfach-Poly-Silizium-Prozeß mit epitaktisch erzeugter Basis beschrieben. Modifikationen dieses Prozesses, wie z. B. HeteroEpitaxie, oder die Einbindung in eine Bipolar-CMOS-(BiCMOS)-Technologie sind ebenfalls möglich.
Fig. 1 zeigt schematisch einen Bipolartransistor 10 gemäß der Erfindung. Auf dem halbleitenden Substratgebiet 11 vom Leitfähigkeitstyp I ist ein Kollektorgebiet vom Leitfähigkeitstyp II erzeugt worden. Sind Emitter und Kollektor z. B. n-leitend, ist die Basis vom p-Typ bzw. umgekehrt. Es sind mehrere Verfahren bekannt, die eine geeignete Kollektordotierung liefern. Dazu zählen zum Beispiel der in Fig. 1 gezeigte Aufbau mit einer hochdotierten, vergrabenen Schicht 12 und einer schwächer dotierten Epitaxieschicht 13, aber auch implantierte retrogra- de Wannen. Feldisolationsgebiet 14 trennt im hier dargestellten Beispiel den Bipolartransistor von anderen, in der Fig. nicht dargestellten Bauelementen und auch den Kollektoranschlußbereich vom aktiven Transistorgebiet. Es sind auch andere geeignete Isolationstechniken be- kannt, wie z. B. verspacerte Mesa-Anordnungen. Wahlweise kann ein Schachtimplant 20 eingesetzt werden, um den Widerstand zwischen der aus hochdotiertem Poly-Silizium bestehenden Kontaktschicht 21 und der vergrabenen Schicht 12 zu verringern. Auf dem Isolationsgebiet befindet sich eine Schicht mit sehr gutem Bekeimungsvermögen und isolierenden Eigenschaften (Ankeimschicht) 28. Vorzugsweise wird dafür Siliziumnitrid verwendet. Es sind aber auch andere Schichten möglich.
Eine Epitaxieschichtfolge, bestehend aus Pufferschicht 15, in-situ dotierter Basisschicht 16 vom Leitfähigkeitstyp I sowie aus der Deckelschicht 17, bedeckt die Emitterregion im aktiven Transistorbereich und mindestens einen Teil des Isolationsgebietes versehen mit der Ankeimschicht 28. Die außerhalb des aktiven Transistorgebietes strukturierte Epitaxieschicht ist mit einem Dielektrikum 18 bedeckt.
Als wesentlich im Sinne der Erfindung ist die Verwendung einer dicken polykristallinen Schicht auf dem Isolatorgebiet anzusehen. Die speziellen Werte für die Dicke, den Dotanden- gehalt sowie die Materialzusammensetzung der Basis sind entsprechend den Erfordernissen der Funktion des Bipolartransistors einzustellen und unterliegen bezüglich dem Wesen der Erfindung keinen besonderen Anforderungen. Im dargestellten Beispiel besteht die Basisschicht aus Silizium, ist mit 2 1018 cm"3 p-dotiert und sei 40 nm dick. Es können aber auch andere Materialkompositionen und Dotierungsprofile verwendet werden. Der Einsatz einer dünnen Deckelschicht 17 über der Basisschicht ist möglich, aber nicht wesentlich für die vorliegende Erfindung. Die Dotierung des Emitters im einkristallinen Silizium wird durch Ausdiffusion von Dotierstoff 22 aus der hochdotierten Poly-Silizium-Kontaktschicht 21 sichergestellt. Die abgeschiedene Dicke der Deckelschicht 17 kann typischerweise 50 nm betragen. Während die Puffer-, Basis- und Deckelschicht einkristallin über dem Silizium-Substrat wachsen, entstehen polykristalline Schichten 19 über dem mit der Ankeimschicht 28 versehenen Isolationsgebiet 14. Durch die Verwendung der Ankeimschicht 28 wird die Dicke der abgeschiedenen polykristallinen Schicht vergrößert. Außerhalb der den aktiven Transistorbereich überlappenden Poly-Silizium-Kontaktschicht 21 ist die Dotierung im Basisanschlußgebiet zusätzlich durch Implantation 23 vergrößert worden. Die Isolationsschicht 24 trennt Emitter-, Basis- und Kollektorkontakt. Vervollständigt wird der Transistoraufbau durch Metallkontakte für Emitter 25, Basis 26 und Kollektor 27.
Anstatt einer polykristallinen Schicht 19 ist in Abwandlung dazu auch eine amorphe Schicht verwendbar. Im folgenden wird die Herstellung eines Bipolartransistors gemäß der Erfindung dargelegt. Ausgangspunkt für das erfindungsgemäße Verfahren ist der in Fig. 2 dargestellte Aufbau. In p-dotiertes Silizium-Substrat 11 wird nach photolithographischer Strukturierung eine hochdotierte n-Schicht 12 per Implantation eingebracht und ausgeheilt. Anschließend wird epitaktisch eine schwach dotierte n-Schicht 13 abgeschieden. Übliche Prozeßschritte definieren das aktive Gebiet und erzeugen in den verbleibenden Gebieten Isolationsgebiete 14 (z. B. LO- COS). Danach wird ganzflächig eine Ankeimschicht 28 abgeschieden und über dem aktiven Transistorgebiet geöffnet. Vorzugsweise wird für die Ankeimschicht 28 Siliziumnitrid verwendet. Mit Hilfe der differentiellen Epitaxie wird die Pufferschicht 15, die Basisschicht 16 und die Deckelschicht 17 abgeschieden. Durch die Verwendung der Ankeimschicht 28 wird die Bekeimung im Isolatorgebiet verbessert. Dadurch wird die Totzeit für die Abscheidung auf dem Isolatorgebiet reduziert. Als Resultat ist die polykristalline Schicht 19 auf dem Isolator wesentlich dicker als bei der Abscheidung ohne Verwendung der Ankeimschicht 28. Nach photolithographischer Strukturierung einer Maske werden mit Hilfe eines Plasmaätzschrittes außerhalb des späteren Transistor- und Basisanschlußgebietes die abgeschiedenen Silizium- bzw. Poly-Silizium-Schichten mit Ätzstopp auf dem Isolationsgebiet 14 entfernt. Anschließend wird ein Dielektrikum 18, vorzugsweise Oxid, aufgebracht. Durch photolithographische Strukturierung einer Lackmaske wird nun das Kollektoranschlußgebiet freigelegt und der Schachtimplant 20 eingebracht. Nach dem Entfernen dieser Lackmaske und der Strukturierung einer weiteren Lackmaske wird im Kollektoranschlußgebiet wie auch im Emitterbereich die Oxidschicht 18 vorzugsweise naßchemisch geätzt. Der Prozeß wird fortgesetzt mit der Abscheidung einer amorphen Siliziumschicht. Diese kann bereits in-situ während oder im Anschluß an die Abscheidung durch Implantation dotiert werden. Mit einem Lithographieschritt werden Emitter- und Kollektorkontaktgebiet maskiert. In den übrigen Gebieten wird das amorphe Silizium bei einem Plasmaätzschritt mit Stopp auf der SiO2-Schicht entfernt. Bei der anschließenden Implantation der Basisanschlußgebiete werden Emitter- und Kollektorkontaktbereich durch die vorhandene Maskierung geschützt. Nach Entfernen der Maskierung und Abdeckung der entstandenen Oberfläche mit Oxid folgt eine Temperung zur Ausheilung der Implantationsschäden sowie zur Formierung des Poly- Emitters. Der Prozeß wird vervollständigt durch das Öffnen der Kontaktlöcher für Emitter, Basis und Kollektor und eine Standardmetallisierung für die Transistorkontakte.
In der vorliegenden Erfindung wurde anhand eines konkreten Ausführungsbeispiels ein Bipolartransistor und ein Verfahren zu seiner Herstellung erläutert. Es sei aber vermerkt, daß die vorliegende Erfindung nicht auf die Einzelheiten der Beschreibung im Ausführungsbeispiel eingeschränkt ist, da im Rahmen der Patentansprüche Änderungen und Abwandlungen beansprucht werden.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines Bipolartransistors, bei dem auf einer einkristallinen Substratschicht strukturierte Gebiete, bestehend aus einem Kollek- torbereich, sowie diesen umgebende Isolationsgebiete erzeugt werden und über dem Kollektorbereich eine einkristalline Schichtfolge abgeschieden wird, dadurch gekennzeichnet, daß für die Verbesserung der Bekeimung auf dem Isolatorgebiet eine Ankeimschicht (28) mit sehr gutem Bekeimungsvermögen für Si und isolierenden Eigenschaften erzeugt wird, durch die bei der differen- tiellen Epitaxie zur Abscheidung der einkristallinen Schichtfolge im Emitterbereich eine amorphe oder polykristalline Schicht (19) im Isolatorbereich mit größerer Schichtdicke erzeugt wird als bei Weglassen der Ankeimschicht (28).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Ankeimschicht (28) Siliziumnitrid verwendet wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in eine Basisschicht (16) Kohlenstoff oder Sauerstoff als ein diffusionshemmendes Mittel für die Basisdotierung eingebaut ist.
4. Bipolartransistor mit auf einer einkristallinen Substratschicht angeordneten strukturierten Gebieten, bestehend aus einem Kollektorbereich, sowie diesen umgebende Isolationsgebiete und über dem Kollektorbereich angeordneter einkristalliner Schichtfolge, dadurch gekennzeichnet, daß eine Ankeim- Schicht (28) mit gutem Bekeimungsvermögen und isolierenden Eigenschaften auf dem Isolatorgebiet (14) für die Verbesserung der Bekeimung bei der Abscheidung einer amorphen oder polykristallinen Schicht (19) auf dem Isolatorgebiet (14) angeordnet ist und die Dicke der polykristallinen Schicht (19) wesentlich größer ist als bei Weglassen der Ankeimschicht (28).
PCT/DE1999/003070 1998-09-21 1999-09-20 Bipolartransistor und verfahren zu seiner herstellung WO2000017932A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1998145787 DE19845787A1 (de) 1998-09-21 1998-09-21 Bipolartransistor und Verfahren zu seiner Herstellung
DE19845787.1 1998-09-21

Publications (1)

Publication Number Publication Date
WO2000017932A1 true WO2000017932A1 (de) 2000-03-30

Family

ID=7883440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/003070 WO2000017932A1 (de) 1998-09-21 1999-09-20 Bipolartransistor und verfahren zu seiner herstellung

Country Status (2)

Country Link
DE (1) DE19845787A1 (de)
WO (1) WO2000017932A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10160511A1 (de) * 2001-11-30 2003-06-12 Ihp Gmbh Bipolarer Transistor
US7947552B2 (en) 2008-04-21 2011-05-24 Infineon Technologies Ag Process for the simultaneous deposition of crystalline and amorphous layers with doping

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2141938A1 (de) * 1971-06-18 1973-01-26 Ibm
JPS6236865A (ja) * 1985-08-10 1987-02-17 Fujitsu Ltd 半導体装置の製造方法
JPS6448457A (en) * 1987-08-19 1989-02-22 Fujitsu Ltd Manufacture of semiconductor device
EP0455981A1 (de) * 1990-04-06 1991-11-13 Canon Kabushiki Kaisha Verfahren zur Herstellung von Kristallen
US5110757A (en) * 1990-12-19 1992-05-05 North American Philips Corp. Formation of composite monosilicon/polysilicon layer using reduced-temperature two-step silicon deposition

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3545239C2 (de) * 1985-12-20 1998-04-09 Kasper Erich Prof Dr Rer Nat Verfahren zur Herstellung eines Kontaktierungsbereichs auf einem strukturierten Halbleiterkörper
CA1330191C (en) * 1986-03-31 1994-06-14 Jinsho Matsuyama Method for forming crystal and crystal article obtained by said method
KR900007686B1 (ko) * 1986-10-08 1990-10-18 후지쓰 가부시끼가이샤 선택적으로 산화된 실리콘 기판상에 에피택셜 실리콘층과 다결정 실리콘층을 동시에 성장시키는 기상 증착방법
CA1296816C (en) * 1987-02-28 1992-03-03 Kenji Yamagata Process for producing a semiconductor article
CA1321121C (en) * 1987-03-27 1993-08-10 Hiroyuki Tokunaga Process for producing compound semiconductor and semiconductor device using compound semiconductor obtained by same
DE3716470C2 (de) * 1987-04-07 1995-08-10 Licentia Gmbh Verfahren zur Herstellung eines strukturierten Halbleiterkörpers
EP0307109A1 (de) * 1987-08-24 1989-03-15 Canon Kabushiki Kaisha Verfahren zur Herstellung eines Halbleiterkristalls und dabei hergestellter Halbleiterkristall
DE3743776C2 (de) * 1987-12-23 1995-08-10 Licentia Gmbh Verfahren zur Herstellung vergrabener Halbleiterbauelemente
FR2629636B1 (fr) * 1988-04-05 1990-11-16 Thomson Csf Procede de realisation d'une alternance de couches de materiau semiconducteur monocristallin et de couches de materiau isolant
US5164338A (en) * 1988-04-28 1992-11-17 U.S. Philips Corporation Method of manufacturing a polycrystalline semiconductor resistance layer of silicon on a silicon body and silicon pressure sensor having such a resistance layer
DE3828809A1 (de) * 1988-08-25 1990-03-01 Licentia Gmbh Verfahren zur herstellung von halbleiterbauelementen
DE3835700A1 (de) * 1988-10-20 1990-04-26 Licentia Gmbh Anordnung und verfahren zur herstellung eines bildsensors
DE3903121A1 (de) * 1989-02-02 1990-08-09 Licentia Gmbh Amorphisierungsverfahren zur strukturierung eines halbleiterkoerpers
US5024957A (en) * 1989-02-13 1991-06-18 International Business Machines Corporation Method of fabricating a bipolar transistor with ultra-thin epitaxial base
US5633179A (en) * 1989-12-01 1997-05-27 Kamins; Theodore I. Method of forming silicon/silicon-germanium heterojunction bipolar transistor
US5202284A (en) * 1989-12-01 1993-04-13 Hewlett-Packard Company Selective and non-selective deposition of Si1-x Gex on a Si subsrate that is partially masked with SiO2
DE4115022A1 (de) * 1990-06-02 1991-12-05 Daimler Benz Ag Optoelektronische halbleiteranordnung, optoelektronisches array mit einer mehrzahl solcher halbleiteranordnungen sowie herstellungsverfahren dazu
JPH04162431A (ja) * 1990-10-24 1992-06-05 Fujitsu Ltd 半導体装置の製造方法
JPH04314350A (ja) * 1991-04-12 1992-11-05 Hitachi Ltd 半導体集積回路装置の製造方法
US5488003A (en) * 1993-03-31 1996-01-30 Intel Corporation Method of making emitter trench BiCMOS using integrated dual layer emitter mask
US5436180A (en) * 1994-02-28 1995-07-25 Motorola, Inc. Method for reducing base resistance in epitaxial-based bipolar transistor
JP3172031B2 (ja) * 1994-03-15 2001-06-04 株式会社東芝 半導体装置の製造方法
DE4417916A1 (de) * 1994-05-24 1995-11-30 Telefunken Microelectron Verfahren zur Herstellung eines Bipolartransistors
JP2970425B2 (ja) * 1994-09-26 1999-11-02 日本電気株式会社 バイポーラトランジスタの製造方法
US5620907A (en) * 1995-04-10 1997-04-15 Lucent Technologies Inc. Method for making a heterojunction bipolar transistor
EP0779652A2 (de) * 1995-12-12 1997-06-18 Lucent Technologies Inc. Verfahren zur Herstellung eines Heteroübergang-Bipolartransistors
DE19609933A1 (de) * 1996-03-14 1997-09-18 Daimler Benz Ag Verfahren zur Herstellung eines Heterobipolartransistors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2141938A1 (de) * 1971-06-18 1973-01-26 Ibm
JPS6236865A (ja) * 1985-08-10 1987-02-17 Fujitsu Ltd 半導体装置の製造方法
JPS6448457A (en) * 1987-08-19 1989-02-22 Fujitsu Ltd Manufacture of semiconductor device
EP0455981A1 (de) * 1990-04-06 1991-11-13 Canon Kabushiki Kaisha Verfahren zur Herstellung von Kristallen
US5110757A (en) * 1990-12-19 1992-05-05 North American Philips Corp. Formation of composite monosilicon/polysilicon layer using reduced-temperature two-step silicon deposition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 11, no. 217 (E - 523) 14 July 1987 (1987-07-14) *
PATENT ABSTRACTS OF JAPAN vol. 13, no. 248 (E - 770) 9 June 1989 (1989-06-09) *

Also Published As

Publication number Publication date
DE19845787A1 (de) 2000-03-23

Similar Documents

Publication Publication Date Title
EP2377149B1 (de) Bipolartransistor mit selbstjustiertem emitterkontakt
DE4445345C2 (de) Verfahren zur Herstellung eines Bipolartransistors
EP1597770A1 (de) Bipolartransistor mit verbessertem basis-emitter- bergang und verfahren zur herstellung
EP1692720B1 (de) Komplement re bipolar-halbleitervorrichtung
EP1116278B1 (de) Bipolartransistor und verfahren zu seiner herstellung
DE10358046B4 (de) Bipolartransistor mit erhöhtem Basisanschlussgebiet und Verfahren zu seiner Herstellung
EP1112594B1 (de) Vertikaler bipolartransistor und verfahren zu seiner herstellung
EP1415339B1 (de) Verfahren zum parallelen herstellen eines mos-transistors und eines bipolartransistors
EP1741133A1 (de) Verfahren zur herstellung eines planaren spacers, eines zugehörigen bipolartransistors und einer zugehörigen bicmos-schaltungsanordnung
EP1611615B1 (de) Verfahren zur herstellung eines bipolaren halbleiterbauelements, insbesondere eines bipolartransistors, und entsprechendes bipolares halbleiterbauelement
WO2003049191A2 (de) Bicmos-struktur, verfahren zu ihrer herstellung und bipolartransistor für eine bicmos-struktur
DE10160511A1 (de) Bipolarer Transistor
EP1436842B1 (de) Bipolar-transistor und verfahren zum herstellen desselben
EP1118124B1 (de) Bipolartransistor und verfahren zu seiner herstellung
EP1726038A1 (de) Verfahren zur herstellung eines bipolartransistors mit verbesserterm basisanschluss
WO2000017932A1 (de) Bipolartransistor und verfahren zu seiner herstellung
EP1115921B1 (de) Verfahren zur erzeugung einer amorphen oder polykristallinen schicht auf einem isolatorgebiet
DE10249897A1 (de) Selbstjustierender Transistor und Verfahren zur Herstellung
WO2023111211A1 (de) Verfahren zur herstellung von bipolartransistoren mit nichtselektiver basisepitaxie
DE19944925B4 (de) Schichtstruktur für bipolare Transistoren und Verfahren zu deren Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase