WO2000015680A1 - Copolymere bloc hydrogene - Google Patents

Copolymere bloc hydrogene Download PDF

Info

Publication number
WO2000015680A1
WO2000015680A1 PCT/JP1999/004987 JP9904987W WO0015680A1 WO 2000015680 A1 WO2000015680 A1 WO 2000015680A1 JP 9904987 W JP9904987 W JP 9904987W WO 0015680 A1 WO0015680 A1 WO 0015680A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
block copolymer
hydrogenated block
less
hydrogenated
Prior art date
Application number
PCT/JP1999/004987
Other languages
English (en)
French (fr)
Inventor
Jun Yonezawa
Eiji Sasaya
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Priority to EP99943310A priority Critical patent/EP1029876B1/en
Priority to DE69943261T priority patent/DE69943261D1/de
Priority to US09/554,314 priority patent/US6458891B1/en
Priority to JP2000570217A priority patent/JP4776074B2/ja
Publication of WO2000015680A1 publication Critical patent/WO2000015680A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • C08L71/123Polyphenylene oxides not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides

Definitions

  • the present invention provides a molded article of polypropylene-based resin / polyphenylene ether-based resin or polystyrene-based resin alloy by adding a hydrogenated block copolymer having a specific structure and a hydrogenated block copolymer having a specific structure.
  • the present invention relates to a resin composition having an improved balance between elongation at break and formability, and having the characteristics of a polypropylene resin and a polyphenylene ether resin or a polystyrene resin.
  • Polypropylene resins have excellent resistance to organic solvents and chemicals, and are used in various applications as various molded products, but have the drawback of low rigidity and heat resistance.
  • Ether resins have the problem that they are inferior in organic solvent resistance although they are excellent in rigidity and heat resistance.
  • polystyrene resins are inexpensive and have problems in that they have excellent processability and rigidity, but are inferior in organic solvent resistance.
  • Blended products have been proposed as resin compositions that combine the advantages of each of these resins.However, polypropylene resins and polyphenylene ether resins or polystyrene resins are poorly compatible with each other.
  • JP-A-53-71158, JP-A-5-88960, JP-A-59-1010) No. 0 159.
  • they are said to be unsuitable for practical use due to the change of molding morphology or the formation of flow marks depending on the molding conditions or the part of the molded product during heat retention or when the solidification rate is different in the mold.
  • Had problems In mechanical properties such as stiffness and impact resistance, the demand for tensile elongation at break has been increasing in recent years, especially since molded products exposed to stress do not break.
  • a diploc copolymer having a segment that is compatible with each of a resin to be blended has
  • a diblock copolymer reduces the strength of the resin interface and cannot exhibit high tensile elongation at break.
  • the appearance of the molded product and the tensile elongation at break due to morphological stability were contradictory.
  • the higher the molecular weight of the segment of the block copolymer to be added as a compatibilizer, which is compatible with the resin the better.
  • the molecular weight of each segment was increased to provide a sufficient molecular weight, there were problems that the fluidity was reduced and the moldability was deteriorated, and the desired physical properties were not exhibited due to poor dispersion.
  • a resin composition comprising a polypropylene resin, a polyphenylene ether resin, and a hydrogenated block copolymer is disclosed.
  • a hydrogenated block copolymer a styrene-hydrogenated butadiene diblock copolymer
  • An example using a styrene-hydrogenated butadiene-styrene triblock copolymer has been practiced.
  • diblock, triblock and tetrablock are mentioned as preferred structures of the hydrogenated block copolymer, and the tetrablock is a description relating to the amount of the terminal hydrogenated hydrogen block specified specifically in the present invention.
  • Japanese Patent Application Laid-Open No. 9-128404 discloses a resin composition comprising a polypropylene resin, a polyphenylene ether resin, and a hydrogenated block copolymer.
  • Styrene-hydrogen is used as the hydrogenated block copolymer. Examples using an added butadiene-styrene-hydrogen-added butene block copolymer and a hydrogenated butane-styrene-styrene-hydrogenated butadiene-styrene-hydrogenated block block copolymer have been carried out.
  • this composition is excellent in heat resistance, rigidity and toughness (especially elongation), it is not yet satisfactory in moldability and appearance of molded products.
  • Japanese Patent Application Laid-Open No. 9-145,388 discloses a resin composition comprising a polypropylene resin, a polystyrene resin, and a hydrogenated block copolymer as an inner wall material for a refrigerator.
  • a resin composition comprising a polypropylene resin, a polystyrene resin, and a hydrogenated block copolymer as an inner wall material for a refrigerator.
  • the amount of terminal hydrogenated block genoblock in the hydrogenated block copolymer nor suggestion of its effect, nor is there any example implemented.
  • An object of the present invention is to provide a resin composition having excellent rigidity, heat resistance, and resistance to organic solvents, and excellent balance between the appearance of a molded product, tensile elongation at break, and moldability, and a hydrogenated block for obtaining the same. It is to provide a copolymer. Disclosure of the invention
  • the present inventors have conducted intensive studies and found that the resin composition of a hydrogenated block copolymer having a specific structure and a polypropylene resin, and a polyphenylene ether resin or a polystyrene resin.
  • the present inventor has found that an object effectively solves the above problems, and has completed the present invention.
  • Rock copolymer
  • a resin composition comprising the following components (1), (2a), and (3):
  • a resin composition comprising the following components (1), (2b), and (3):
  • FIG. 1 shows the Tdd of SEBS1 and SEBS3. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention relates to a composition
  • a composition comprising a polypropylene resin and a polyphenylene ether resin or a polystyrene resin, and a hydrogenated block copolymer, wherein the hydrogenated block copolymer has a vinyl aromatic compound monomer unit content and a hydrogenated block copolymer before hydrogenation.
  • the amount of one or two bonds in the polymer block mainly composed of monomer units is within a certain range, and the block structure satisfies a specific structure, heat resistance, rigidity, and organic solvent resistance are reduced.
  • a resin composition with excellent balance of molded product appearance, tensile elongation at break, and moldability can be obtained. by.
  • the polypropylene resin used in the present invention includes propylene alone, propylene and ethylene, and monoolefins having 4 to 12 carbon atoms, such as 1-butene, isopbutylene, 4-methyl-1-pentene and the like. Polymerizes monomers selected from more than one species! Any resin may be used as long as it is obtained by the method described above, and among them, propylene homopolymer, propylene block copolymer, propylene random copolymer, or a mixture thereof is preferable, and these have different molecular weights and compositions. You can mix things. As propylene block or comonomer of the random copolymer, other than propylene, non-propylene and ethylene are used.
  • ethylene is preferable, and the propylene content in the copolymer is preferably 55 mol% or more.
  • ethylene / polyolefin block forms a dispersed phase with a homopropylene block as a continuous phase.
  • This dispersed phase may contain polyethylene.
  • the polymerization method of the polypropylene-based resin may be any of conventionally known methods, and examples thereof include transition polymerization, radical polymerization, and ionic polymerization.
  • Examples of the (2a) polyphenylene ether resin used in the present invention include poly (2,6-dimethyl-1,4-phenylene) ether, poly (2,6-ethyl-11, 4- (phenylene) ether, poly (2-methyl-6-ethyl-11,4-phenylene) ether, poly (2-methyl-6-propyl-11,4-phenylene) ether, poly (2,6-dipropyl-1,4-phenylene) ether, poly (2-ethyl-1-propyl-1,4-phenylene) ether, poly (2,6-dibutyl-1,4-phenylene) ) Ether, poly (2,6-diprovenyl 4,4, -phenylene) ether, poly (2,6-dilauryl-1,1,4-phenylene) ether, poly (2, 6—diphenyl-1,4-phenylene ether, poly (2,
  • 6-Dimethoxy-1,4-phenylene ether Poly (2,6-ethoxy-1,4-phenylene) ether, Poly (2-methoxy-6-ethoxy-1,4-phenylene) Ether, poly (2-ethyl-1-6-stearyloxy-1,4, phenylene) ether, poly (2,6-dichloro-1--1,4-phenylene) ether, Poly (2-methyl-6-phenyl-1,4-phenylene) ether, poly (2,6-dibenzyl-1,4-phenylene) ether, poly (2-ethoxy1,4-one) 4.
  • phenylene ether poly (2-chloro-1,4-phenylene) ether, poly (2,5-dibutene 1,4-phenylene) ether and the like.
  • the polyphenylene ether used in the present invention may be a modified polyphenylene ether such as a product obtained by grafting a styrene monomer such as styrene, ⁇ _methyl styrene, and polymethyl styrene to the polyphenylene ether. Also contained.
  • Known methods can be used for the method for producing the polyphenylene ether described above. For example, U.S. Patent Nos. 3,308,684, 3,306,875, 3,257,357, and 3,257,358, and Japanese Patent Publication No. No. 52-17880 and JP-A-50-51197.
  • Preferred polyphenylene ethers include those having an alkyl substituent at the two ortho positions to the ether oxygen atom, and copolymers of 2,6-dialkylphenol and 2,3,6-trialkylphenol. Of these, a polymer of 2,6-dimethylphenol is preferred.
  • the preferred molecular weight range of the polyphenylene ether is 0.2 dl / g to 0.7 dl / g as the value of the reduced viscosity in a 30 ° C. chromate form solution. If it is less than 0.2 d 1 / g, the mechanical strength of the composition will deteriorate, and if it exceeds 0.7 d 1 / g, the moldability will decrease. In addition, less than 50% by weight of the polyphenylene ether resin can be replaced with a polystyrene resin.
  • Polystyrene resins are polymers containing 50% by weight or more of styrene, such as polystyrene, high-impact polystyrene, acrylonitrile-styrene copolymer, ABS resin, and styrene-methyl methacrylate copolymer. Or a mixture of these. Less than 5% by weight of polystyrene resin can be replaced by polyphenylene ether resin.
  • the hydrogenated block copolymer used in the present invention is a vinyl aromatic hydrocarbon
  • the polymer block is composed of at least two polymer blocks mainly composed of monomer units, and at least two polymer blocks B mainly composed of hydrogenated butadiene monomer units.
  • the monomer unit of the vinyl aromatic compound include styrene, methyl styrene, p-methyl styrene, p-butyl styrene, and the like: ⁇ alkyl styrene, para-methoxy styrene, vinyl naphthylene, and the like. Species or two or more species are selected, and among them, styrene is preferable.
  • the vinyl aromatic compound monomer unit content in the block copolymer is 25% by weight or more and less than 80% by weight, preferably 25% by weight or more and less than 70% by weight, and 45% by weight or less. % And more preferably less than 60% by weight, particularly preferably more than 45% by weight and less than 50% by weight. If it is less than 25% by weight, the balance of heat resistance and tensile elongation at break deteriorates, and if it is more than 80% by weight, the balance of appearance of the molded product, moldability, and impact resistance deteriorates.
  • the vinyl aromatic compound monomer unit content can be measured by a nuclear magnetic resonance apparatus (NMR), an ultraviolet spectrophotometer (UV), or the like.
  • the word “mainly” means, for example, “mainly a vinyl aromatic compound monomer unit”, one or more vinyl aromatic monomers, or living with these.
  • the case where another monomer which undergoes anionic polymerization is copolymerized is also included.
  • the other copolymerizable monomers include conjugated diene compound monomers, methyl methacrylates such as methyl methacrylate and butyl methacrylate, cyclohexadiene, and force prolactone. it can.
  • the form of copolymerization may be any form such as random, alternating, or tapered.
  • the plurality of polymer blocks A may have different compositions, molecular weights, and the like.
  • the average of the amount of 1, 2 bonds in the polymer block mainly composed of butadiene monomer units is 60 mol% or more and less than 99 mol%, and 62 mol% or more and less than 99 mol%. Preferably, it is at least 0 mol% and less than 99 mol%. If the amount is less than 60 mol%, the balance between the tensile elongation at break, the appearance of the molded product, and the moldability deteriorates.
  • the microstructure can be measured by a nuclear magnetic resonance apparatus (NMR).
  • NMR nuclear magnetic resonance apparatus
  • the phrase "mainly composed of butadiene monomer units" includes the case where butadiene and another monomer that undergoes living anion polymerization are copolymerized.
  • copolymerizable monomers include conjugated gens such as isoprene and vinyl aromatic compounds. And methacrylates such as methyl methacrylate and butyl methyl acrylate, cyclohexadiene, and force prolactone.
  • the form of copolymerization may be any form such as random, alternating, or tapered, and the plurality of polymer blocks B may have different compositions, molecular weights, and the like.
  • the term “mainly used” as used herein means that the corresponding monomer unit accounts for at least 50 mol%, preferably 70 mol% or more, of the polymer block.
  • the hydrogenated block copolymer of the present invention is obtained by hydrogenating 90% or more of the olefinic unsaturated double bonds in polymer block B before hydrogenation. If it is less than 90%, it is deteriorated by heat, light, etc., and the thermoplasticity is reduced.
  • the unsaturated double bond of the benzene ring of the vinyl aromatic compound in the block A may be hydrogenated up to 20% in the whole vinyl aromatic compound.
  • the hydrogenation rate can be measured by nuclear magnetic resonance (NMR).
  • melt flow rate (MFR) obtained at a temperature of 230 ° C and a load of 5 kg according to JISK 7210 of the hydrogenated block copolymer is in the range of 0.02 g / 10 min or more and less than 300 g / 10 min. Is preferred. A more preferred range is from 0.03 g / 10 min to 200 g / 10 min, and a particularly preferred range is from 0.2 g / 10 min to 160 g / 10 min. If it is less than 0.02 g / 10 min, the moldability deteriorates, which is not preferable. If it is more than 30 Og / 10 min, the tensile elongation at break deteriorates, which is not preferable.
  • the structure of the hydrogenated block copolymer may take any form such as, for example, linear, branched, radiation, or comb shape. It must be composed of at least two polymer blocks mainly composed of at least two polymer blocks B mainly composed of hydrogenated benzene monomer units. Also, at least one of the terminal blocks must be a polymer block B.
  • Preferred structures include A—B—A—B, B—A—B—A—B, and (BAB) n—X (where n is an integer of 2 or more, and X represents a coupling agent residue) ).
  • the boundary between the blocks is a random copolymer, it is a random copolymer and its composition gradually changes. The par structure is also included.
  • the molecular weight of the polymer block A mainly composed of a monomer unit of a vinyl aromatic hydrocarbon compound is preferably 130000 or more and 600,000 or less. A more preferred range is from 150,000 to 550,000, and a particularly preferred range is from 17,000 to 51,000. If it is less than 30,000, the balance between the appearance of the molded product and the tensile elongation at break deteriorates, and if it exceeds 60,000, the moldability deteriorates. It is preferable that at least one of the polymer blocks mainly composed of hydrogenated hydrogen monomer units between the two polymer blocks A has a molecular weight of 30,000 to 80,000.
  • a more preferred range is from 350,000 to 70,000, and a particularly preferred range is from 40,000 to 64,000. If it is less than 30,000, the balance between the appearance of the molded product and the tensile elongation at break is deteriorated, and if it exceeds 80,000, the formability is deteriorated.
  • the proportion of the polymer block B at the terminal in the hydrogenated block copolymer is 0.1% by weight or more and less than 9.1% by weight, and is preferably 0.1% from the viewpoint of the appearance of the molded product and the tensile elongation at break. It is not less than 3% by weight and not more than 7.5% by weight, and more preferably more than 0.5% by weight and less than 5.0% by weight. If the content is less than 0.1% by weight, the balance of the appearance, molding processability, and heat resistance of the molded product is deteriorated. If the content is more than 9.1% by weight, the balance of the appearance, molding processability, and tensile elongation at break is deteriorated. I do.
  • the ratio of the terminal polymer block B to the whole is in the range of 0.1% by weight or more and less than 9.1% by weight.
  • B2 When the structure of AB3 (B1, B2, B3: a polymer block mainly composed of hydrogenated butadiene monomer units) is adopted, the polymer block B1 at the end is entirely Should be in the range of 0.1% by weight or more and less than 9.1% by weight, and the proportion of the terminal polymer block B3 should be 0.1% by weight or more and 9.1% by weight. %.
  • the hydrogenated block copolymers of the present invention have excellent fluidity due to the effect of a specific amount of terminal polymer block B. This means that the moldability is excellent.
  • One way to improve mechanical properties such as tensile elongation at break and heat resistance is to increase the overall molecular weight as one of the means. In this case, the fluidity is reduced and the moldability is deteriorated.
  • the hydrogenated block copolymer of the present invention is an epoch-making invention that improves mechanical properties and does not deteriorate molding processability.
  • the hydrogenation block copolymer of the present invention preferably has a domain collapse temperature (Tdd) of 150 ⁇ or more.
  • the temperature is more preferably 160 ° C, particularly preferably 170 ° C or more. If the temperature is lower than 150 ° C., the heat resistance of the composition deteriorates, which is not preferable.
  • the hydrogenated block copolymer of the present invention is composed of a polymer block A mainly composed of vinyl aromatic hydrocarbon compound monomer units and a polymer block B mainly composed of hydrogenated butadiene monomer units. Below the glass transition temperature of polymer block A, each block forms a domain and undergoes microphase separation.
  • the domain of polymer block A has a glass transition temperature (T g) at which melting begins, and at higher temperatures, the polymer chains of polymer block A that have been melted and released from constraint can move out of that domain.
  • T g glass transition temperature
  • Tdd domain decay temperatures
  • the hydrogenated block copolymer having a specific amount of the polymer block B at the end of the present invention is an epoch-making invention which simultaneously improves the contradictory properties as described above.
  • the hydrogenated block copolymer is disclosed, for example, in Japanese Patent Publication No. 36-192286, It can be manufactured so as to be within the scope of the present invention by a method described in, for example, JP-A-3-149797, JP-B-49-36957.
  • organolithium compound or the like as anion polymerization initiator in a hydrocarbon solvent
  • ether compounds such as ethyl ether or tetrahydrofuran as a vinylating agent, triethylamine, ⁇ , ⁇ , ⁇ ,, ⁇ , -tetramethyl.
  • Use tertiary amines such as ethylenediamine, etc., and use polyfunctional compounds such as epoxidized soybean oil, silicon tetrachloride, dimethyldichlorosilane, ethyl benzoate, and phenyl benzoate as coupling agents, if necessary.
  • This is a method of block copolymerizing an aromatic monomer and a butadiene monomer, and is obtained as a block copolymer having a linear, branched, or radial structure.
  • the hydrogenated block copolymer of the present invention can be obtained by hydrogenating the above block copolymer by a known method, for example, the method described in JP-B-42-87045.
  • the hydrogenated block copolymer used in the present invention may be modified by an addition reaction with an unsaturated carboxylic acid or a derivative thereof, and one part or all of the one containing a functional group may be used. Further, it may be used in combination with another hydrogenated block copolymer having a different composition or an olefin elastomer such as ethylene propylene rubber.
  • the resin composition of the present invention can be adjusted by a device commonly used for mixing of high molecular substances according to the composition ratio of each component.
  • mixing devices include kneading devices such as Banbury mixers, Labo Plastomill, single-screw extruders, and twin-screw extruders.
  • kneading devices such as Banbury mixers, Labo Plastomill, single-screw extruders, and twin-screw extruders.
  • a melt-mixing method using an extruder is preferable from the viewpoints of productivity and good kneading. .
  • the resin composition 1 of the present invention comprises (1) a polypropylene resin of 20 to 80 parts by weight, (2a) a polyphenylene ether resin of 20 to 80 parts by weight,
  • a resin composition comprising 1 to 40 parts by weight of a hydrogenated block copolymer. If the amount of the polypropylene-based resin is less than 20 parts by weight, the organic solvent resistance is poor, and the amount exceeds 80 parts by weight. And poor heat resistance. If the amount of the polyphenylene ether resin is less than 20 parts by weight, rigidity and heat resistance are poor, and if it exceeds 80 parts by weight, organic solvent resistance is poor. If the amount of the hydrogenated block copolymer is less than 1 part by weight, the impact resistance is poor, and if it exceeds 40 parts by weight, the rigidity is poor.
  • the resin composition 2 of the present invention comprises: (1) 20 to 80 parts by weight of a polypropylene resin, (2b) 20-80 parts by weight of polystyrene resin,
  • a resin composition comprising 1 to 40 parts by weight of a hydrogenated block copolymer. If the amount of the polypropylene-based resin is less than 20 parts by weight, the organic solvent resistance is poor, and if it exceeds 80 parts by weight, the heat resistance is increased. Inferior. If the amount of the polystyrene resin is less than 20 parts by weight, the rigidity is poor, and if it exceeds 80 parts by weight, the organic solvent resistance is poor. If the amount of the hydrogenated block copolymer is less than 1 part by weight, the impact resistance is poor, and if it exceeds 40 parts by weight, the rigidity is poor.
  • the composition of the present invention can contain an inorganic filler, a stabilizer, a lubricant, a coloring agent, a silicone oil, a flame retardant, and the like.
  • the inorganic filler include calcium carbonate, talc, magnesium hydroxide, myriki, barium sulfate, silica (white carbon), titanium oxide, and carbon black.
  • the stabilizer include a hindered phenol-based antioxidant, a phosphorus-based heat stabilizer, a hindered amine-based light stabilizer, and a benzotriazole-based UV absorber.
  • the lubricant include stearic acid, stearic acid ester, and metal salts of stearic acid.
  • SSA5 10B (MFR 0.5 g / 10 minutes) manufactured by Japan Polyolefin Co., Ltd., which is a propylene homopolymer, was used.
  • Hydrogenation was performed at 5 kg / cm 2 and a temperature of 50 ° C.
  • the polymer structure was controlled by changing the amount of monomer charged, the order, the molecular weight, the amount of catalyst, the amount of 1,2 bond, the amount of regulator for 1,2 bond, the polymerization temperature, and the hydrogenation rate by changing the hydrogenation time.
  • the styrene content was measured using an ultraviolet spectrophotometer (UV), the amount of 1,2 bonds, and the hydrogenation rate were measured using a nuclear magnetic resonance apparatus (NMR).
  • UV ultraviolet spectrophotometer
  • NMR nuclear magnetic resonance apparatus
  • the domain decay temperature (Tdd) was 250 ° C using a RMS 800 mechanical spectrum analyzer manufactured by Rheometrics, with a parallel plate, a frequency of 6.28 rad / sec, and a cooling rate of 3 ° C / min. From C, t an (5 was taken as the first peak temperature obtained.
  • Table 1 shows the structure and analysis values of each sample.
  • FIG. 1 shows the measurement results of Tdd of SEBS 1 and SEBS 3.
  • the components (1), (2a) or (2b) and (3) were dry blended in the proportions shown in Table 2 and set to 270 ° C (210 ° C for 2b) Pellets were obtained by melt-kneading with a twin-screw extruder. Next, the obtained pellets were put into an injection molding machine set at 280 ° C (210 ° C for 2b component) and molded to prepare test specimens for measurement. Table 2 shows the measurement results of the physical properties.
  • composition using SEB S4 in Table 1 was melt-kneaded and injection-molded, but unmelted material was observed in the molded product when both (2a) and (2b) were used together. It was not in a state where physical properties could be evaluated.
  • MFR Estimated formability
  • Flexural modulus (standard for rigidity): Based on ASTM D790.
  • Heat distortion temperature (a measure of heat resistance): Based on ASTM D648.
  • Vicat softening point Based on ASTM D1525.
  • Izod impact strength (Estimated impact resistance): Conforms to ASTM D256.
  • Molded product appearance A flat plate with a width of 8.9 cm, a length of 14.9 cm and a thickness of 2 mm was injection-molded, and the occurrence of flow marks was visually judged. Those with no noticeable flow mark, or those with a slight occurrence that did not pose a practical problem were marked as ⁇ , and those with a practical problem were marked X.
  • the resin composition of the present invention has excellent rigidity, heat resistance, and resistance to organic solvents, and also has a good balance of appearance of molded products, tensile elongation at break, and moldability, and is suitable for electronic, electric, automotive, and battery container materials. It is useful as a resin composition that can be used in food heat-resistant container materials, refrigerator inner wall materials, and other industrial materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明 細 書 水素添加ブロック共重合体 技術分野
本発明は特定構造の水素添加プロック共重合体、 及び特定構造の水素添加プロ ヅク共重合体を添加することによりポリプロピレン系樹脂/ポリフエ二レンエー テル系樹脂またはポリスチレン系樹脂ァロイの成型品外観、 引っ張り破断伸び、 成形加工性のバランスが改良され、 しかもポリプロピレン系樹脂とポリフエニレ ンエーテル系樹脂またはポリスチレン系樹脂の特徴を併せ持つ樹脂組成物に関す るものである。 背景技術
ポリプロピレン系樹脂は耐有機溶剤性、 耐薬品性などに優れ、 各種成型品とし て様々な用途に用いられているが、剛性、耐熱性が低いという欠点を有しており、 また、 ポリフヱニレンエーテル系樹脂は剛性、 耐熱性に優れるものの耐有機溶剤 性に劣るという問題点を有している。 また、 ポリスチレン系樹脂は安価であり、 加工性、 剛性に優れるものの耐有機溶剤性に劣るという問題点を有している。 こ れら樹脂のそれぞれの長所を併せ持つ樹脂組成物としてそれらのプレンド物が提 案されているが、 ポリプロピレン系樹脂とポリフエ二レンエーテル系樹脂または ポリスチレン系樹脂は相容性に乏しいために、 さらに相容化剤を添加した系が提 案されている (特開昭 5 3 - 7 1 1 5 8号公報、 特開昭 5— 8 8 9 6 0号公報、 特開昭 5 9— 1 0 0 1 5 9号公報) 。 しかし、 これらは熱滞留時、 あるいは金型 内で固化速度が異なる場合にモルフォ口ジ一が変化しゃすく、 成形条件の変化ま たは成型品の部位によってフローマークが発生し実用に適さないという問題点を 有していた。 また、 剛性、 耐衝撃性といった機械的性質において、 中でも近年、 応力下にさらされる成形品が破壊しないために引っ張り破断伸びの要求度が高く なっている。 一般にモルフォロジ一安定性を発現する相容化剤としては、 プレン ドする樹脂とそれぞれに相溶するセグメントを持つジプロック共重合体がもつと も効果が高いことが知られているが、 ジブロック共重合体を用いた場合には樹脂 界面の強度が低くなり高い引っ張り破断伸びを発現できないことがわかっている このように、 熱滞留時のモルフォロジ一安定性に起因する成型品外観と引っ張り 破断伸びは相反する物性であった。 また、 熱滞留時のモルフォロジ一安定性 良 くするためには、 相容化剤として添加するブロック共重合体の、 樹脂とそれぞれ に相容するセグメントは分子量が高いほど好ましい。 しかし、 十分な分子量を持 たせるためにそれぞれのセグメントを高分子量化すると流動性が低下し成形加工 性が悪化するという問題点や、 分散不良のため所望の物性が発現しない場合があ つた。
水素添加プロック共重合体を相容化剤として添加する提案としては例えば特開 昭 6 3— 2 2 5 6 4 2がある。 ここにはポリプロピレン系樹脂、 ポリフエ二レン エーテル系樹脂、 水素添加プロック共重合体よりなる樹脂組成物が開示されてお り、 水素添加プロック共重合体としてスチレン—水素添加ブタジエンジブロック 共重合体、 スチレン一水素添加ブタジエン一スチレントリブロック共重合体を用 いた例が実施されている。 また、 水素添加ブロック共重合体の好ましい構造とし てジプロック、 トリブロック、 テトラブロックをあげているが、 テトラブロック については本願発明で特に規定している末端水素添加ブ夕ジェンブロックの量に 関する記載もその効果に関する示唆もないばかりか、 実施された例もない。 この 従来技術では本発明における課題である熱滞留時のモルフォロジ一安定性に起因 する成型品外観、 引っ張り破断伸びはいまだ満足できるものではなかった。
特開平 9— 1 2 8 0 4号公報にはポリプロピレン系樹脂、 ポリフエニレンェ一 テル系樹脂、 水素添加プロック共重合体よりなる樹脂組成物が開示されており、 水素添加プロック共重合体としてスチレン—水素添加ブタジエン一スチレン—水 素添加ブ夕ジェンブロック共重合体、 水素添加ブ夕ジェン—スチレン一水素添加 ブタジエン一スチレン—水素添加プ夕ジェンブロック共重合体を用いた例が実施 されている。 ここにはこの組成物が耐熱性、 剛性、 靭性 (特に伸び) に優れると の記載はあるものの、 成形加工性、 成型品外観にまだ満足のいくものではなく、 末端水素添加ブ夕ジェンブロックの量に関する記載もその効果に関する示唆もな い。 また、 特開平 9一 1 4 5 2 3 8号公報には冷蔵庫用内壁材としてポリプロビレ ン系樹脂、 ポリスチレン系樹脂、 水素添加ブロック共重合体よりなる樹脂組成物 が開示されている。 しかしここには水素添加プロック共重合体の末端水素添加ブ 夕ジェンプロックの量に関する記載もその効果に関する示唆もないばかりか、―実 施された例もない。 この技術では本発明における課題である熱滞留時のモルフォ ロジ一安定性に起因する成型品外観、 引っ張り破断伸びはいまだ満足できるもの ではなかった。
本発明の課題は剛性、 耐熱性、 耐有機溶剤性に優れ、 しかも成型品外観、 引つ 張り破断伸び、 成形加工性のバランスに優れる樹脂組成物及び同組成物を得るた めの水素添加プロック共重合体を提供することにある。 発明の開示
上記課題を解決するため、 本発明者らは鋭意検討を重ねた結果、 ある特定構造 の水素添加ブロック共重合体とポリプロピレン系樹脂、 およびポリフエ二レンェ 一テル系樹脂またはポリスチレン系樹脂との樹脂組成物が上記課題を効果的に解 決することを見いだし本発明を完成するに至った。
即ち、 本発明の上記目的は、 以下の水素添加プロック共重合体および樹脂組成 物により達成された。
1 . ビニル芳香族炭化水素化合物単量体単位を主体とする少なくとも 2個の重 合体ブロック Aと、 水素添加されたブタジエン単量体単位を主体とする少なくと も 2個の重合体プロック Bから構成され、 水素添加される前のブタジエン単量体 単位を主体とする重合体プロック中のォレフィン性不飽和二重結合のうち、 9 0 %以上が水素添加された水素添加プロック共重合体において、 末端にあるプロ ックのうち、 少なくとも 1個が重合体ブロック Bであり、 かつ末端にある重合体 プロック Bはそれぞれ水素添加プロック共重合体中で占める割合が、 0 . 1重量% 以上 9 . 1重量%未満であり、 水素添加プロック共重合体においてビニル芳香族 炭化水素化合物の水素添加プロック共重合体中で占める割合が 2 5重量%以上 8 0重量%未満であり、 水素添加前のブタジエン単量体単位を主体とする重合体ブ ロックの 1、 2結合量の平均が 6 0モル%以上 9 9モル%未満である水素添加ブ ロック共重合体。
2. ビニル芳香族炭化水素化合物の水素添加プロック共重合体中で占める割合 が 25重量%以上 70重量%未満である上記態様 1に記載の水素添加ブロック共 重合体。 ― 3. ドメイン崩壊温度 (Tdd) が 150°C以上である上記態様 1に記載の水素 添加プロック共重合体。
4. 末端にある重合体プロック Bの水素添加ブロック共重合体中で占める割合 が、 0. 5重量%を越え 5. 0重量%未満である上記態様 1に記載の水素添加ブ ロック共重合体。
5. 下記成分 ( 1) 、 (2 a) 、 及び (3) よりなる樹脂組成物:
( 1 ) ポリプロピレン系樹脂 20〜 80重量部、
(2 a) ポリフエ二レンェ一テル系樹脂 20〜80重量部、
( 3 ) 上記態様 1〜 4に記載の水素添加プロック共重合体 1〜 40重量部。 6. 下記成分 ( 1) 、 (2 b) 、 及び (3) よりなる樹脂組成物:
( 1) ポリプロピレン系樹脂 20〜80重量部、
(2b) ポリスチレン系樹脂 20〜80重量部、
(3) 上記態様 1〜4に記載の水素添加ブロック共重合体 1〜40重量部。 図面の簡単な説明
図 1は、 S EB S 1と S EB S 3の Tddを示したものである。 発明を実施するための最良の形態
以下本発明を詳細に説明する。 本発明はポリプロピレン系樹脂とポリフエニレ ンエーテル系樹脂またはポリスチレン系樹脂、 水素添加ブロック共重合よりなる 組成物において、 水素添加プロック共重合体のビニル芳香族化合物単量体単位含 量、水素添加前のブ夕ジェン単量体単位を主体とする重合体ブロックにおける 1、 2結合量がある範囲にあり、 さらにそのブロック構造がある特定の構造を満たし た場合に、 耐熱性、 剛性、 耐有機溶剤性に優れ、 しかも成型品外観、 引っ張り破 断伸び、 成形加工性のバランスに優れる樹脂組成物が得られることを発見した事 による。
本発明に使用される ( 1 ) ポリプロピレン系樹脂とはプロピレン単独、 プロビ レンとエチレン、 炭素数 4〜 1 2のひ一ォレフィン、 例えば、 1ーブテン、 ィソ プチレン、 4ーメチルー 1—ペンテン等から 1種以上選ばれる単量体を重合!^て 得られる樹脂であればいずれでもよいが、 なかでも、 プロピレンの単独重合体、 プロピレンブロック共重合体、 プロピレンランダム共重合体、 またはこれらの混 合物が好ましく、 これらは分子量、 組成の異なる物を混ぜることもできる。 プロ ピレンのプロック、 ランダム共重合体のコモノマーとしてはプロピレン以外のひ —ォレフイン類、 エチレンが用いられるが、 なかでもエチレンが望ましく、 これ ら共重合体中のプロピレン含量は 5 5モル%以上が望ましい。 エチレンもしくは ひ一ォレフィンをコモノマ一に用いたプロピレンプロック共重合体にあっては、 ホモプロピレンブロックを連続相としてエチレン/ひーォレフィンプロックが分 散相を形成しているが、 この分散相成分の含量はプロピレンプロック共重合体の
5 - 3 0重量%が望ましい。 この分散相中にはポリエチレンが含まれていても良 い。 ポリプロピレン系樹脂の重合方法は従来公知の方法いずれでもよく、 遷移重 合、 ラジカル重合、 イオン重合等があげられる。
本発明に使用される (2 a ) ポリフエ二レンエーテル系樹脂の例としては、 ポ リ (2 , 6—ジメチルー 1 , 4一フエ二レン) エーテル、 ポリ (2 , 6—ジェチ ル一 1 , 4一フエ二レン) エーテル、 ポリ ( 2—メチルー 6—ェチル一 1 , 4— フエ二レン) エーテル、 ポリ ( 2—メチル一 6—プロピル一 1 , 4一フエ二レン) ェ一テル、 ポリ (2 , 6—ジプロピル一 1 , 4—フエ二レン)エーテル、 ポリ (2 ーェチルー 6—プロピル一 1 , 4—フエ二レン) エーテル、 ポリ (2 , 6 _ジブ チルー 1, 4 _フエ二レン) ェ一テル、 ポリ (2, 6—ジプロべ二ルー 4 , 4一 フエ二レン) ェ一テル、 ポリ (2, 6—ジラウリル一 1, 4一フエ二レン) エー テル、 ポリ (2 , 6—ジフエニル一 1 , 4一フエ二レン) ェ一テル、 ポリ (2 ,
6—ジメ トキシ一 1, 4一フエ二レン) エーテル、 ポリ (2 , 6—ジェトキシー 1 , 4—フエ二レン) エーテル、 ポリ (2—メ トキシー 6—エトキシ一 1, 4一 フエ二レン) エーテル、 ポリ ( 2—ェチル一 6—ステアリルォキシ一 1 , 4—フ ェニレン) ェ一テル、 ポリ ( 2 , 6—ジクロ口一 1 , 4一フエ二レン) エーテル、 ポリ ( 2—メチル _ 6—フエ二ルー 1 , 4—フエ二レン) エーテル、 ポリ (2, 6—ジベンジル一 1, 4_フエ二レン) ェ一テル、 ポリ (2—エトキシー 1, 4 一フエ二レン) エーテル、 ポリ (2—クロ口一 1 , 4—フエ二レン) エーテル、 ポリ (2, 5—ジブ口モー 1, 4—フエ二レン) エーテルおよび同等物があ 4。 また 2, 6—ジメチルフエノールと 2 , 3, 6 _トリメチルフエノールの共重合 体、 2, 6—ジメチルフエノ一ルと 2 , 3, 5, 6—テトラメチルフエノ一ルの 共重合体、 2, 6—ジェチルフエノールと 2, 3, 6—トリメチルフエノールの 共重合体などの共重合体もあげることができる。 更に、 本発明で使用されるポリ フエ二レンェ一テルは、 ポリフエ二レンエーテルに例えばスチレン、 ρ_メチル スチレン、 ひーメチルスチレンなどのスチレン系モノマ一をグラフトしたもの等 変性されたポリフエ二レンエーテルをも含有する。 以上のポリフエ二レンェ一テ ルの製造方法は公知のものを用いることができ、 例えば米国特許第 330687 4号、 第 3306875号、 第 3257357号、 及び第 3257358号各明 細書、 及び日本特許特公昭 52— 17880号、 及び特開昭 50— 51 197号 明細書に記載されている。 好ましいポリフエ二レンェ一テルとしては、 エーテル 酸素原子に対する 2つのオルソ位にアルキル置換基を有するもの、 及び 2, 6— ジアルキルフエノールと 2 , 3, 6—トリアルキルフエノールの共重合体があげ られ、 なかでも 2, 6—ジメチルフエノールの重合体が好ましい。 また、 ポリフ ェニレンエーテルの好ましい分子量の範囲は 30°Cクロ口ホルム溶液中還元粘度 の値で 0. 2 d l/g~0. 7 d l/gである。 0. 2 d 1/g未満では組成物 の機械的強度が悪化し、 0. 7 d 1/gを越えると成形加工性が低下する。 また、 ポリフエ二レンエーテル系樹脂はその 50重量%未満をポリスチレン系樹脂で置 き換えることができる。
(2 b) ポリスチレン系樹脂とは、 ポリスチレン、 ハイインパク トポリスチレ ン、 アクリロニトリル一スチレン共重合体、 AB S樹脂、 スチレン一メ夕クリル 酸メチル共重合体等のスチレンを 50重量%以上ふくむ重合体、 またはこれらの 混合物である。 ポリスチレン系樹脂はその 5◦重量%未満をポリフエ二レンエー テル系樹脂で置き換えることができる。
本発明に使用される (3) 水素添加ブロック共重合体は、 ビニル芳香族炭化水 素化合物単量体単位を主体とする少なくとも 2個の重合体ブロックと、 水素添加 されたブタジエン単量体単位を主体とする少なくとも 2個の重合体プロック Bか ら構成される。 ビニル芳香族化合物単量体単位としては、 例えばスチレン、 ひ一 メチルスチレン、 p—メチルスチレン、 p—夕一シャルブチルスチレン等の:^ル キルスチレン、 パラメ トキシスチレン、 ビニルナフ夕レン等のうちから 1種、 ま たは 2種以上が選ばれ、 中でもスチレンが好ましい。 上記ブロック共重合体にお けるビニル芳香族化合物単量体単位含量は 2 5重量%以上 8 0重量%未満であり、 2 5重量%以上 7 0重量%未満であることが好ましく、 4 5重量%を越え 6 0重 量%未満であることがさらに好ましく、 4 5重量%を越え 5 0重量%未満である ことがとりわけ好ましい。 2 5重量%未満であると耐熱性、 引っ張り破断伸びの バランスが悪化し、 8 0重量%以上であると成型品外観、 成型加工性、 耐衝撃性 のバランスが悪化する。ビニル芳香族化合物単量体単位含量は核磁気共鳴装置(N M R ) 、 紫外分光光度計 (U V ) などにより測定できる。 本発明における 「主体 とする」 という言葉は例えば 「ビニル芳香族化合物単量体単位を主体とする」 の 場合、 ビニル芳香族単量体の 1種または 2種以上からなる場合、 もしくはこれら とリビングァニオン重合する他の単量体が共重合されている場合も含まれる。 こ れら共重合可能な他の単量体としては、 共役ジェン化合物単量体、 メチルメ夕ク リレート、 ブチルメタクリレート等のメ夕クリル酸エステル、 シクロへキサジェ ン、 力プロラク トン等をあげることができる。共重合の形態としては、 ランダム、 交互、 テーパー等いかなる形態でも良く、 複数個ある重合体ブロック Aはそれぞ れその組成、 分子量などが異なっても構わない。
水素添加前のブタジエン単量体単位を主体とする重合体ブロックの 1、 2結合 量の平均は 6 0モル%以上 9 9モル%未満であり、 6 2モル%以上 9 9モル%未 満であることが好ましく、 Ί 0モル%以上 9 9モル%未満であることがさらに好 ましい。 6 0モル%未満の場合、 引っ張り破断伸び、 成型品外観、 成型加工性の バランスが悪化する。 ミクロ構造は核磁気共鳴装置(N M R )により測定できる。 「ブタジエン単量体単位を主体とする」 という言葉には、 ブタジエンとリビング ァニオン重合する他の単量体が共重合されている場合も含まれる。 これら共重合 可能な他の単量体としては、 イソプレン等の共役ジェン、 ビニル芳香族化合物単 量体、メチルメタクリレート、 プチルメ夕クリレート等のメ夕クリル酸エステル、 シクロへキサジェン、 力プロラクトン等をあげることができる。 共重合の形態と しては、 ランダム、 交互、 テーパー等いかなる形態でも良く、 複数個ある重合体 ブロック Bはそれぞれその組成、 分子量などが異なっても構わない。 ― また、 本明細書中で使用される 「主体とする」 という言葉は該当単量体単位が 重合体ブロックにおいて、 少なくとも 50モル%を越え、 好ましくは 70モル% 以上を占めることを意味する。
本発明の水素添加プロック共重合体は、 水素添加される前の重合体プロック B 中のォレフィン性不飽和二重結合のうち 90%以上が水素添加されたものである。 90 %未満であると、 熱、 光などにより劣化をおこし熱可塑性が低下する。 また、 プロック A中のビニル芳香族化合物のベンゼン環の不飽和二重結合は、 ビニル芳 香族化合物全体において 20%までは水素添加されていても良い。 水素添加率は 核磁気共鳴装置 (NMR) によって測定できる。
また、水素添加プロック共重合体の J I S K 7210に準拠し温度 230°C、 荷重 5Kgの条件で求めたメルトフローレート値 (MFR) は 0. 02 g/10 分以上 300 g/10分未満の範囲にあることが好ましい。 さらに好ましい範囲 としては 0. 03 g/10分以上 200 g/10分以下であり、 とりわけ好まし い範囲としては 0. 2 g/10分以上 1 60 g/10分以下である。 0. 02 g /10分未満であると成型加工性が悪化し好ましくなく、 30 O g/10分以上 であると引っ張り破断伸びが悪化し好ましくない。
本発明において水素添加ブロック共重合体の構造は、 例えば線状、 分岐状、 放 射状、 櫛形状などいかなる形態をとつても構わないが、 ビニル芳香族炭化水素化 合物単量体単位を主体とする少なくとも 2個の重合体ブロックと、 水素添加され たブ夕ジェン単量体単位を主体とする少なくとも 2個の重合体プロック Bから構 成されなければならない。 また、 末端にあるブロックの少なくとも 1個が重合体 プロック Bでなければならない。 好ましい構造としては A— B— A— B、 B— A — B— A— B、 (B-A-B) n— Xがあげられる (ここで nは 2以上の整数、 Xはカップリング剤残基を示す) 。 また、 各ブロックの境界がランダム共重合体 である場合、 ランダム共重合体でありしかもその組成が徐々に変わっていくテ一 パー構造も含まれる。
本発明の水素添加ブロック共重合体においてビニル芳香族炭化水素化合物単量 体単位を主体とする重合体ブロック Aの分子量は 1. 3万以上 6. 0万以下であ ることが好ましい。 さらに好ましい範囲としては 1. 5万以上 5. 5万以下 あ り、 とりわけ好ましい範囲としては 1. 7万以上 5. 1万である。 1. 3万未満 であると成型品外観、 引っ張り破断伸びのバランスが悪化し、 6. 0万を越える と成形加工性が悪化する。 また、 2つの重合体ブロック Aの間にある水素添加さ れたブ夕ジェン単量体単位を主体とする重合体ブロックのうち少なくとも 1つは 分子量 3万以上 8万以下であることが好ましい。 さらに好ましい範囲は 3. 5万 以上 7. 0万であり、 とりわけ好ましい範囲は 4. ◦万以上 6. 4万以下である。 3万未満であると成型品外観、 引っ張り破断伸びのバランスが悪化し、 8万を越 えると成形加工性が悪化する。
末端にある重合体プロック Bはそれぞれ水素添加ブロック共重合体中で占める 割合が、 0. 1重量%以上 9. 1重量%未満であり、 成型品外観、 引っ張り破断 伸びの点から好ましくは 0. 3重量%以上 7. 5重量%以下であり、 更に好まし くは 0. 5重量%を越え 5. 0重量%未満である。 0. 1重量%未満であると、 成型品外観、 成型加工性、 耐熱性のバランスが悪化し、 9. 1重量%以上である と成型品外観、 成形加工性、 引っ張り破断伸びのバランスが悪化する。 例えば A 一 B— A— Bの構造をとる場合、 末端にある重合体プロック Bが全体に占める割 合は 0. 1重量%以上 9. 1重量%未満の範囲にあり、 例えば B 1— A— B 2— A-B 3 (B l、 B 2、 B 3 :水素添加されたブタジエン単量体単位を主体とす る重合体ブロック) の構造をとる場合、 末端にある重合体ブロック B 1が全体に 占める割合は 0. 1重量%以上 9. 1重量%未満の範囲になければならず、 また 末端にある重合体ブロック B 3も全体に占める割合は 0. 1重量%以上 9. 1重 量%未満の範囲になければならない。
我々は本発明の水素添加プロック共重合体は、 特定量の末端にある重合体プロ ック Bの効果により流動性に優れることを発見した。 これは成型加工性に優れる ことを意味する。 引っ張り破断伸び、 耐熱性等の機械的物性を向上させるために は、 全体の分子量を高分子量化することが手段の一つとしてあげられるが、 この 場合、 流動性が低下し成型加工性が悪化する。 本発明の水素添加プロック共重合 体は機械的物性を向上させ、 しかも成型加工性を悪化させない画期的な発明であ る。
本発明の水素添加ブロック共重合体のドメイン崩壊温度 (Tdd) は 1 5 0 ^以 上であることが好ましい。 さらに好ましくは 1 6 0 °Cであり、 とりわけ好ましく は 1 7 0 °C以上である。 1 5 0 °C未満であると組成物の耐熱性が悪化するため好 ましくない。 本発明の水素添加プロック共重合体はビニル芳香族炭化水素化合物 単量体単位を主体とする重合体プロック Aと、 水素添加されたブタジエン単量体 単位を主体とする重合体プロック Bから構成され、 重合体プロック Aのガラス転 移温度以下では、 それぞれのプロックがドメインを形成しミクロ相分離をしてい る。 重合体プロック Aのドメインは溶融が開始するガラス転移温度 (T g ) を持 ち、 さらに高温側では、 溶融し拘束から解放された重合体ブロック Aのポリマー 鎖がそのドメインから動き出すことが可能になるドメイン崩壊温度 (Tdd) が存 在する。 そして、 T g、 T ddにおいては水素添加ブロック共重合体は軟化する。 一般には熱的に軟化する温度は高ければ高いほど耐熱性がいいと判断される。 例 えば、 重合体ブロック Aがポリスチレンである場合、 T gは約 1 0 0 °Cであり、 分子量が約 1 . 3万以上では分子量に依存せず変化しない。 また、 ブロック構造 の影響も受けない。しかし、 T d dは分子量が大きくなるにつれて上昇する。我々 は、 この現象を発見し、 T ddを高温化することにより耐熱性を要求される組成物 の性能を大幅に改良できるとの推測にたち検討を行った。 その結果驚くべきこと に、 本発明の水素添加プロック共重合体の必須要件である末端に水素添加された 重合体ブロック Bを持つことにより、 重合体ブロック Aの分子量が同じであって も持たない場合と比較して Tddが大幅に上昇することを発見し、 組成物に用いた 場合の耐熱性が大幅に改良されることを発見した。 一般に水素添加プロック共重 合体の流動性 (成型加工性の目安) と軟化温度は相反する性質であり、 例えば、 流動性を向上するため分子量を低下すると軟化温度は低下してしまう。 しかし、 本発明の末端に特定量の重合体プロック Bをつけた水素添加プロック共重合体は、 以上述べてきたように、 相反する性質を同時に改良する画期的な発明である。 水素添加プロック共重合体は例えば特公昭 3 6 - 1 9 2 8 6号公報、 特公昭 4 3 - 1 4 9 7 9号公報、 特公昭 4 9一 3 6 9 5 7号公報などに記載された方法で 本発明の範囲になるように製造することができる。 これらは炭化水素溶剤中でァ 二オン重合開始剤として有機リチウム化合物等を用い、 ビニル化剤としてジェチ ルエーテル、 テトラヒドロフラン等のェ一テル化合物、 トリェチルァミン、 ϋ, Ν , Ν, , Ν, ーテトラメチルエチレンジァミン等の第 3級ァミン、 必要に応じ カップリング剤としてエポキシ化ダイズ油、 四塩化ケィ素、 ジメチルジクロルシ ラン、 安息香酸ェチル、 安息香酸フエニル等の多官能性化合物を用い、 ビニル芳 香族単量体とブタジエン単量体をブロック共重合する方法であり、 直鎖状、 分岐 状、 あるいは放射状の構造を有するブロック共重合体として得られる。
上記のプロック共重合体を、 公知の方法、 例えば、 特公昭 4 2— 8 7 0 4 5号 公報に記載の方法で水素添加することにより、 本発明の水素添加プロック共重合 体は得られる。 本発明で用いる水素添加ブロック共重合体は、 不飽和カルボン酸 またはその誘導体との付加反応により変性させ、 官能基を含有したものを 1部、 または全部用いてもかまわない。 また、 組成が異なる他の水素添加ブロック共重 合体、 またはエチレンプロピレンゴムなどのォレフィン系エラストマ一と併用し てもかまわない。
本発明の樹脂組成物は、 その各成分の組成比に応じて通常の高分子物質の混合 に供される装置によって調整できる。 それら混合装置としては、 例えばバンバリ —ミキサー、 ラボプラストミル、 単軸押出機、 2軸押出機、 等の混練装置があげ られ、 押出機による溶融混合法が生産性、 良混練性の点から好ましい。
本発明の樹脂組成物 1は、 ( 1 ) ポリプロピレン系樹脂 2 0〜 8 0重量部、 ( 2 a ) ポリフエ二レンェ一テル系樹脂 2 0 ~ 8 0重量部、
( 3 ) 水素添加プロック共重合体 1〜 4 0重量部よりなる樹脂組成物であり、 ポリプロピレン系樹脂の量が 2 0重量部未満であると耐有機溶剤性に劣り 8 0重 量部を越えると耐熱性に劣る。 ポリフエ二レンエーテル系樹脂の量が 2 0重量部 未満であると剛性、 耐熱性に劣り、 8 0重量部を越えると耐有機溶剤性に劣る。 また水素添加プロック共重合体の量が 1重量部未満であると耐衝撃性に劣り、 4 0重量部を越えると剛性に劣る。
本発明の樹脂組成物 2は、 ( 1 ) ポリプロピレン系樹脂 2 0〜 8 0重量部、 (2b) ポリスチレン系樹脂 20~80重量部、
( 3 ) 水素添加ブロック共重合体 1〜 40重量部よりなる樹脂組成物であり、 ポリプロピレン系樹脂の量が 20重量部未満であると耐有機溶剤性に劣り 80重 量部を越えると耐熱性に劣る。 ポリスチレン系樹脂の量が 20重量部未満で ¾る と剛性に劣り、 80重量部を越えると耐有機溶剤性に劣る。 また水素添加ブロッ ク共重合体の量が 1重量部未満であると耐衝撃性に劣り、 40重量部を越えると 剛性に劣る。
本発明の組成物は無機充填剤、 安定剤、 滑剤、 着色剤、 シリコンオイル、 難燃 剤等を添加する事が出来る。 無機充填剤としては、 例えば炭酸カルシウム、 タル ク、 水酸化マグネシウム、 マイ力、 硫酸バリウム、 けい酸 (ホワイ トカ一ボン) 、 酸化チタン、 カーボンブラック等が挙げられる。 安定剤としてはヒンダードフエ ノール系酸化防止剤、 りん系熱安定剤、 ヒンダードアミン系光安定剤、 ベンゾト リアゾール系 UV吸収剤等が挙げられる。 滑剤としてはステアリン酸、 ステアリ ン酸エステル、 ステアリン酸の金属塩等が挙げられる。
以下実施例により本発明を具体的に説明するが、 本発明はこれらの例のみによ つて何ら制限されるものではない。 実施例
( I ) 各成分
( 1) ポリプロピレン系樹脂
プロピレン単独重合体である日本ポリオレフィン株式会社製 SSA5 10 B (M FR 0. 5g/10分) を用いた。
(2 a) ポリフエ二レンエーテル系樹脂
30°Cクロ口ホルム溶液中還元粘度が 0. 42 d l/gであるポリ (2, 6—ジ メチル一 1 , 4一フエ二レン) エーテルを用いた。
(2 b) ポリスチレン系樹脂
旭化成工業 (株) 社製であるス夕ィロン 685 (ポリスチレン) 、 ス夕ィロン H 8 1 17 (ハイインパクトポリスチレン) を用いた。
( 3 ) 水素添加プロック共重合体 n—ブチルリチウムを開始剤とし、 シクロへキサン溶媒中で、 テトラヒドロフラ ンを 1, 2結合量調節剤として、 スチレンとブタジエンをァニオンブロック共重 合することにより、スチレン一ブタジエン系プロック共重合体を重合した。また、 力ップリングポリマーはジメチジクロルシランを用いて作成した。 次に得ら た スチレン一ブタジエン系プロック共重合体を、 ビス (7? 5—シクロペン夕ジェニ ル) チタニウムジクロリ ドと n—プチルリチウムを水素添加触媒として、 水素圧
5 kg/cm2, 温度 50°Cで水素添加を行った。 ポリマ一構造は、 モノマーの 仕込量、 順序、 分子量は触媒量、 1 , 2結合量は 1 , 2結合量調節剤量及び重合 温度、 水素添加率は水素添加時間を変化させることによりコントロールした。 ス チレン含有量は、 紫外分光光度計 (UV) を、 1 , 2結合量、 水素添加率は核磁 気共鳴装置 (NMR) を用いて測定した。 また、 ドメイン崩壊温度 (Tdd) は、 レオメ トリックス社製 RMS 800メカニカルスぺクトルメ一夕を用い、 パラレ ルプレート、 周波数 6. 28 r a d/s e c, 降温速度 3 °C/m i nの条件で 2 50°Cから t an (5を測定し得られる最初のピーク温度とした。
各サンプルの構造及び分析値を表 1に示した。 また、 SEBS 1と SEBS 3 の Tddの測定結果を図 1に示す。
表 1
構造 1個の末 ¾而 スチレン!: MFR 1, 2
各ブロック分子!; 31合休プロ 230°C*5kgf 結合!: 丁 dd ック Β1の!:
f in/ヽ
(wt°/oヽ) ~\ノ ヽ
(g 10分) (モル%) ( c)
SEBS 1 B1-A-B2-A
4700-23000-45000-23000 4.9 99.8 48.1 2.8 74.1 180
SEBS 2 B1-A-B2-A
フ 000 - 34000- 66000- 34000 5.0 99.7 48.2 0.04 75.6 222
SEBS 3 A-B2-A
23000-50000-23000 0.0 99.8 47.9 0.8 71.1 148
SEBS 4 A-B2-A
34000-73000-34000 0.0 99.8 ■ 48.2 流れず 71.4 168
^"
SEBS 5 B1-A-B2-A
12700-23000-47000-23000 12.0 99.8 45.4 2.0 ' 71.3 177
SEBS 6 B1-A-B2-A
4400-21000-41000-21000 5.0 99.7 48.1 0.5 36.1 158
(II) 樹脂組成物の調整と物性測定
各 ( 1) 成分、 (2 a) または (2 b) 成分、 (3) 成分を表 2に示した割合で ドライブレンドし、 270°C (2 b成分の場合 210°C) に設定された 2軸押出 機により溶融混練しペレツ トを得た。 次に得られたペレツトを 280°C (2b成 分の場合 2 10°C) に設定された射出成型器に投入し成形を行い、 測定用の試験 片を作成した。 物性測定結果を表 2に示した。
表 1中の SEB S 4を用いた組成物については、溶融混練、射出成形を行ったが (2 a) 成分、 (2b) 成分のどちらを併用した場合においても未溶融物が成型 品に観測され物性を評価できる状態ではなかった。
以下に物性測定の方法を示す。
MFR (成形加工性の目安) : 230°C、 5Kg荷重でメルトフ口一レートを測 定した。
曲げ弾性率 (剛性の目安) : ASTM D 790に準拠した。
熱変形温度 (耐熱性の目安) : A S T M D 648に準拠した。
(荷重 18. 5 kgf /cm2)
ビカット軟化点 (耐熱性の目安) : ASTM D 1525に準拠した。
アイゾット衝撃強度 (耐衝撃性の目安) : ASTM D 256に準拠した。
引っ張り破断伸び: AS TM D 648に準拠した。
成型品外観:幅 8. 9 c m、 長さ 14. 9 c m、 厚さ 2 mmの平板を射出成形し、 フロ一マークの発生の状態を目視で判断した。 フローマークの発生がみとめられ ないもの、 または若干発生していても実用上問題ないレベルのものを〇、 実用上 問題のあるレベルのものを Xとした。
本発明の樹脂組成物が優れていることは表 2により明らかである。 表 2
Figure imgf000018_0001
産業上の利用可能性
本発明の樹脂組成物は、 剛性、 耐熱性、 耐有機溶剤性に優れ、 しかも成型品外 観、 引っ張り破断伸び、 成形加工性のバランスに優れ、 電子、 電気分野、 自動車 分野、 バッテリー容器用材料、 食品耐熱容器用材料、 冷蔵庫用内壁材その他 ェ 業用材料分野で利用できる樹脂組成物として有用である。

Claims

請 求 の 範 囲
1 . ビニル芳香族炭化水素化合物単量体単位を主体とする少なくとも 2個の重 合体プロック Aと、 水素添加されたブタジエン単量体単位を主体とする少な と も 2個の重合体ブロック Bから構成され、 水素添加される前のブタジエン単量体 単位を主体とする重合体プロック中のォレフィン性不飽和二重結合のうち、 9 0 %以上が水素添加された水素添加プロック共重合体において、 末端にあるプロ ックのうち、 少なくとも 1個が重合体ブロック Bであり、 かつ末端にある重合体 プロック Bはそれぞれ水素添加プロック共重合体中で占める割合が、 0 . 1重量% 以上 9 . 1重量%未満であり、 水素添加ブロック共重合体においてビニル芳香族 炭化水素化合物の水素添加ブロック共重合体中で占める割合が 2 5重量%以上 8 0重量%未満であり、 水素添加前のブタジエン単量体単位を主体とする重合体ブ ロックの 1、 2結合量の平均が 6 0モル%以上 9 9モル%未満である水素添加ブ ロック共重合体。
2 . ビニル芳香族炭化水素化合物の水素添加ブロック共重合体中で占める割合 が 2 5重量%以上 7 0重量%未満である請求の範囲第 1項に記載の水素添加プロ ック共重合体。
3 . ドメイン崩壊温度 (T dd) が 1 5 0 °C以上である請求の範囲第 1項に記載 の水素添加プロック共重合体。
4 . 末端にある重合体ブロック Bの水素添加ブロック共重合体中で占める割合 が、 0 . 5重量%を越え 5 . 0重量%未満である請求の範囲第 1項に記載の水素 添加ブロック共重合体。
5 . 下記成分 ( 1 ) 、 ( 2 a ) 、 及び ( 3 ) よりなる樹脂組成物:
( 1 ) ポリプロピレン系樹脂 2 0〜 8 0重量部、
( 2 a ) ポリフエ二レンェ一テル系樹脂 2 0 ~ 8 0重量部、
( 3 ) 請求の範囲第 1項に記載の水素添加ブロック共重合体 1〜4 0重量部。
6 . 成分 (3 ) においてビニル芳香族炭化水素化合物の水素添加ブロック共重 合体中で占める割合が 2 5重量%以上 7 0重量%未満である請求の範囲第 5項に 記載の樹脂組成物。
7. 成分 (3) のドメイン崩壊温度 (Tdd) が 150°C以上である請求の範囲 第 5項に記載の樹脂組成物。
8. 成分 (3) において末端にある重合体ブロック Bの水素添加ブロック共重 合体中で占める割合が、 0. 5重量%を越え 5. 0重量%未満である請求の乾囲 第 5項に記載の樹脂組成物。
9. 下記成分 ( 1 ) 、 ( 2 b) 、 及び ( 3 ) よりなる樹脂組成物:
( 1) ポリプロピレン系樹脂 20 ~ 80重量部、
(2 b) ポリスチレン系樹脂 20〜 80重量部、
(3) 請求項 1に記載の水素添加ブロック共重合体 1〜40重量部。
10. 成分 (3) においてビニル芳香族炭化水素化合物の水素添加ブロック共重 合体中で占める割合が 25重量%以上 70重量%未満である請求の範囲第 9項に 記載の樹脂組成物。
1 1. 成分 (3) のドメイン崩壊温度 (Tdd) が 150°C以上である請求の範囲 第 9項に記載の樹脂組成物。
12. 成分 (3) において末端にある重合体ブロック Bの水素添加ブロック共重 合体中で占める割合が、 0. 5重量%を越え 5. 0重量%未満である請求の範囲 第 9項に記載の樹脂組成物。
PCT/JP1999/004987 1998-09-14 1999-09-13 Copolymere bloc hydrogene WO2000015680A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP99943310A EP1029876B1 (en) 1998-09-14 1999-09-13 Hydrogenated block copolymer
DE69943261T DE69943261D1 (en) 1998-09-14 1999-09-13 Hydriertes blockcopolymer
US09/554,314 US6458891B1 (en) 1998-09-14 1999-09-13 Hydrogenated block copolymer
JP2000570217A JP4776074B2 (ja) 1998-09-14 1999-09-13 水素添加ブロック共重合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/259666 1998-09-14
JP25966698 1998-09-14

Publications (1)

Publication Number Publication Date
WO2000015680A1 true WO2000015680A1 (fr) 2000-03-23

Family

ID=17337222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004987 WO2000015680A1 (fr) 1998-09-14 1999-09-13 Copolymere bloc hydrogene

Country Status (7)

Country Link
US (1) US6458891B1 (ja)
EP (1) EP1029876B1 (ja)
JP (1) JP4776074B2 (ja)
KR (1) KR100377601B1 (ja)
DE (1) DE69943261D1 (ja)
TW (1) TW512151B (ja)
WO (1) WO2000015680A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1148097A1 (en) * 2000-04-21 2001-10-24 JSR Corporation Thermoplastic resin composition
JP2002003712A (ja) * 2000-04-21 2002-01-09 Jsr Corp 熱可塑性樹脂組成物
EP1225190A4 (en) * 2000-05-09 2002-11-27 Asahi Chemical Ind BLOCK COPOLYMER AND COMPOSITION CONTAINING THIS COPOLYMER
US7217885B2 (en) 2004-12-17 2007-05-15 General Electric Company Covering for conductors
US7220917B2 (en) 2004-12-17 2007-05-22 General Electric Company Electrical wire and method of making an electrical wire
US7332677B2 (en) 2004-12-17 2008-02-19 General Electric Company Multiconductor cable assemblies and methods of making multiconductor cable assemblies
US7741564B2 (en) 2004-12-17 2010-06-22 Sabic Innovative Plastics Ip B.V. Electrical wire and method of making an electrical wire
JP2015091939A (ja) * 2013-10-01 2015-05-14 旭化成ケミカルズ株式会社 樹脂組成物及びその成形体
JP2015091938A (ja) * 2013-10-01 2015-05-14 旭化成ケミカルズ株式会社 樹脂組成物及びその成形体
US9783675B2 (en) 2013-10-01 2017-10-10 Asahi Kasei Kabushiki Kaisha Resin composition and molded article thereof
WO2019103048A1 (ja) 2017-11-22 2019-05-31 株式会社クラレ ブロック共重合体又はその水素添加物

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT397323B (de) * 1989-10-23 1994-03-25 Alcatel Austria Ag Hochfrequenzfilter mit speziellem wickeldraht
US6835778B2 (en) 1995-08-29 2004-12-28 Chevron Phillips Chemical Company Lp Conjugated diene/monovinylarene block copolymers blends
KR100440642B1 (ko) 1999-12-21 2004-07-21 아사히 가세이 가부시키가이샤 열가소성 수지 조성물
JP3938270B2 (ja) * 2000-06-29 2007-06-27 三菱電機株式会社 光中継増幅装置
US6509412B1 (en) 2000-09-29 2003-01-21 Bridgestone Corporation Soft gel compatibilized polymer compound for high temperature use
US6855767B2 (en) 2000-12-28 2005-02-15 General Electric Poly(arylene ether)-polyolefin composition and articles derived therefrom
WO2002057364A2 (en) * 2000-12-28 2002-07-25 General Electric Company Poly(arylene ether)-polyolefin composition and articles derived therefrom
US6545080B2 (en) 2000-12-28 2003-04-08 General Electric Company Glass-filled poly(arylene ether)-polyolefin composition and articles derived therefrom
US6815491B2 (en) 2000-12-28 2004-11-09 General Electric Reinforced thermoplastic composition and articles derived therefrom
US6861472B2 (en) 2000-12-28 2005-03-01 General Electric Company Poly(arylene ether)-polyolefin compositions and articles derived therefrom
US6627701B2 (en) 2000-12-28 2003-09-30 General Electric Company Method for the preparation of a poly(arylene ether)-polyolefin composition, and composition prepared thereby
US6660794B2 (en) 2000-12-28 2003-12-09 General Electric Company Glass-filled poly(arylene ether)-polyolefin composition and articles derived therefrom
US6872777B2 (en) 2001-06-25 2005-03-29 General Electric Poly(arylene ether)-polyolefin composition, method for the preparation thereof, and articles derived therefrom
JP4421145B2 (ja) 2001-07-02 2010-02-24 Sabicイノベーティブプラスチックスジャパン合同会社 配管部材
US6810333B2 (en) 2002-02-12 2004-10-26 General Electric Company Method, system, storage medium, and data signal for supplying a multi-component composition
US7001950B2 (en) * 2002-03-28 2006-02-21 Kraton Polymers U.S. Llc Tetrablock copolymer and compositions containing same
US7163471B2 (en) 2003-01-10 2007-01-16 Taylor Made Golf Company, Inc. Golf balls having sound-altered layers and methods for making them
JP4733108B2 (ja) 2004-03-03 2011-07-27 クレイトン・ポリマーズ・リサーチ・ベー・ベー 高い流動を有するブロック共重合体を含むエラストマー複合繊維
US7776441B2 (en) 2004-12-17 2010-08-17 Sabic Innovative Plastics Ip B.V. Flexible poly(arylene ether) composition and articles thereof
US20080113138A1 (en) * 2006-11-13 2008-05-15 William Eugene Pecak Poly(arylene ether)/polyolefin composition, method, and article
US7718721B2 (en) * 2006-11-13 2010-05-18 Sabic Innovative Plastics Ip B.V. Poly(arylene ether)/polyolefin composition, method, and article
US10913850B2 (en) 2016-05-27 2021-02-09 Shpp Global Technologies B.V. Poly(phenylene ether) composition and article
JP7010666B2 (ja) * 2016-11-22 2022-02-10 旭化成株式会社 樹脂組成物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0173380A1 (en) * 1984-08-31 1986-03-05 Shell Internationale Researchmaatschappij B.V. Modified block copolymers and processes for the preparation therefore.
JPH0912804A (ja) * 1995-06-29 1997-01-14 Asahi Chem Ind Co Ltd 樹脂組成物

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3619286B1 (ja) * 1959-05-28 1961-10-13
NL294833A (ja) * 1962-08-09
EP0058952B1 (en) * 1981-02-20 1984-08-22 Asahi Kasei Kogyo Kabushiki Kaisha A film, sheet or tube of a block copolymer or a composition containing the same
DE3133266C2 (de) 1981-08-22 1988-12-22 Theodor Groz & Söhne & Ernst Beckert Nadelfabrik KG, 7470 Albstadt Gestanztes Strickwerkzeug für Strick- oder Wirkmaschinen
JPH0637587B2 (ja) * 1984-04-21 1994-05-18 旭化成工業株式会社 ブロック共重合体組成物
JPH0615649B2 (ja) * 1984-07-26 1994-03-02 旭化成工業株式会社 水素添加したブロツク共重合体組成物
JPS6176518A (ja) * 1984-08-31 1986-04-19 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 変性されたブロツクコポリマーおよびその製造方法
JPS6220551A (ja) * 1985-07-19 1987-01-29 Asahi Chem Ind Co Ltd エラストマ−状組成物
EP0263678B1 (en) 1986-10-07 1992-01-15 Mitsubishi Petrochemical Co., Ltd. Polyphenylene ether composition
US5189110A (en) 1988-12-23 1993-02-23 Asahi Kasei Kogyo Kabushiki Kaisha Shape memory polymer resin, composition and the shape memorizing molded product thereof
JP2925201B2 (ja) * 1988-12-27 1999-07-28 旭化成工業株式会社 メルトブロー伸縮性不織布
CA2056206C (en) 1990-11-29 1996-02-06 Norio Onofusa Cover for accomodating air bag in air bag system
DE4139827A1 (de) 1991-12-03 1993-06-09 Basf Ag, 6700 Ludwigshafen, De Thermoplastische formmasse
JP3418209B2 (ja) * 1992-08-10 2003-06-16 旭化成株式会社 ポリマー組成物
AU700074B2 (en) * 1994-09-02 1998-12-17 Dow Chemical Company, The Thermoset elastomers
JPH08104785A (ja) * 1994-10-05 1996-04-23 Idemitsu Kosan Co Ltd 耐衝撃性ポリスチレン系樹脂組成物
JP3523732B2 (ja) * 1995-11-24 2004-04-26 旭化成ケミカルズ株式会社 冷蔵庫内壁材
DE69613405T2 (de) * 1996-02-27 2002-05-02 Asahi Chemical Ind Überzug für airbagvorrichtung mit einer thermoplastischen elastomerzusammensetzung
DE19815895C2 (de) * 1997-04-09 2000-04-13 Asahi Chemical Ind Hydrierte Blockcopolymere, diese enthaltende Zusammensetzungen und Formkörper

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0173380A1 (en) * 1984-08-31 1986-03-05 Shell Internationale Researchmaatschappij B.V. Modified block copolymers and processes for the preparation therefore.
JPH0912804A (ja) * 1995-06-29 1997-01-14 Asahi Chem Ind Co Ltd 樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1029876A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1148097A1 (en) * 2000-04-21 2001-10-24 JSR Corporation Thermoplastic resin composition
JP2002003712A (ja) * 2000-04-21 2002-01-09 Jsr Corp 熱可塑性樹脂組成物
US6548598B2 (en) 2000-04-21 2003-04-15 Jsr Corporation Thermoplastic resin composition
EP1225190A4 (en) * 2000-05-09 2002-11-27 Asahi Chemical Ind BLOCK COPOLYMER AND COMPOSITION CONTAINING THIS COPOLYMER
US7741564B2 (en) 2004-12-17 2010-06-22 Sabic Innovative Plastics Ip B.V. Electrical wire and method of making an electrical wire
US7220917B2 (en) 2004-12-17 2007-05-22 General Electric Company Electrical wire and method of making an electrical wire
US7332677B2 (en) 2004-12-17 2008-02-19 General Electric Company Multiconductor cable assemblies and methods of making multiconductor cable assemblies
US7453044B2 (en) 2004-12-17 2008-11-18 Sabic Innovative Plastics Ip B.V. Electrical wire and method of making an electrical wire
US7217885B2 (en) 2004-12-17 2007-05-15 General Electric Company Covering for conductors
US7828920B2 (en) 2004-12-17 2010-11-09 Sabic Innovative Plastics Ip B.V. Method of making multiconductor cable assemblies
JP2015091939A (ja) * 2013-10-01 2015-05-14 旭化成ケミカルズ株式会社 樹脂組成物及びその成形体
JP2015091938A (ja) * 2013-10-01 2015-05-14 旭化成ケミカルズ株式会社 樹脂組成物及びその成形体
US9783675B2 (en) 2013-10-01 2017-10-10 Asahi Kasei Kabushiki Kaisha Resin composition and molded article thereof
WO2019103048A1 (ja) 2017-11-22 2019-05-31 株式会社クラレ ブロック共重合体又はその水素添加物
KR20200081406A (ko) 2017-11-22 2020-07-07 주식회사 쿠라레 블록 공중합체 또는 그 수소 첨가물
US11655362B2 (en) 2017-11-22 2023-05-23 Kuraray Co., Ltd. Block copolymer or hydrogenated product of same

Also Published As

Publication number Publication date
TW512151B (en) 2002-12-01
KR20010032075A (ko) 2001-04-16
DE69943261D1 (en) 2011-04-21
KR100377601B1 (ko) 2003-03-26
EP1029876B1 (en) 2011-03-09
US6458891B1 (en) 2002-10-01
EP1029876A4 (en) 2001-10-31
EP1029876A1 (en) 2000-08-23
JP4776074B2 (ja) 2011-09-21

Similar Documents

Publication Publication Date Title
WO2000015680A1 (fr) Copolymere bloc hydrogene
EP1437384B1 (en) Block copolymer compositions
US6239218B1 (en) Hydrogenated block copolymer and composition of the same
US6806312B2 (en) Thermoplastic resin composition
JPH07316416A (ja) ポリフェニレンエーテル系樹脂組成物
JP2683829B2 (ja) 樹脂組成物
JP6579711B2 (ja) 樹脂組成物、成形体、及び樹脂の改質方法
EP1343843B1 (en) Syndiotactic polystyrene compositions having improved impact strength
JP2000017120A (ja) 熱可塑性樹脂組成物
JPH03259941A (ja) ポリプロピレン系樹脂組成物
JPH0198647A (ja) 樹脂組成物
JPH0428740A (ja) 熱可塑性樹脂組成物の製造方法
JP4841074B2 (ja) 樹脂組成物、及び樹脂改質用ブロック共重合体
JPH07166026A (ja) 熱可塑性樹脂組成物の製造方法
JPH07165998A (ja) 熱可塑性樹脂組成物
JPH07304908A (ja) 熱可塑性樹脂組成物
WO2001046316A1 (fr) Composition de resine thermoplastique
JPH0428739A (ja) 熱可塑性樹脂組成物の製造方法
JPH107899A (ja) 耐衝撃性ポリフェニレンエーテル/スチレン樹脂/エラストマー組成物
JP7157257B2 (ja) 熱可塑性エラストマー組成物
US9522992B1 (en) Polypropylene-based resin composition and molded article thereof
WO2004058879A1 (ja) 熱可塑性エラストマー組成物
JP4641590B2 (ja) 樹脂組成物
JP3335477B2 (ja) 熱可塑性樹脂組成物
JP2002080667A (ja) 樹脂組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999943310

Country of ref document: EP

Ref document number: 09554314

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020007005198

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999943310

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007005198

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007005198

Country of ref document: KR