WO2000006896A2 - Embrayage a friction portant le rotor d'une machine electrique, notamment pour vehicule automobile - Google Patents

Embrayage a friction portant le rotor d'une machine electrique, notamment pour vehicule automobile Download PDF

Info

Publication number
WO2000006896A2
WO2000006896A2 PCT/FR1999/001863 FR9901863W WO0006896A2 WO 2000006896 A2 WO2000006896 A2 WO 2000006896A2 FR 9901863 W FR9901863 W FR 9901863W WO 0006896 A2 WO0006896 A2 WO 0006896A2
Authority
WO
WIPO (PCT)
Prior art keywords
reaction plate
spacer
stator
rotor
friction
Prior art date
Application number
PCT/FR1999/001863
Other languages
English (en)
Other versions
WO2000006896A3 (fr
Inventor
David Huart
Michel Graton
Fabrice Tauvron
Cédric Plasse
Roger Abadia
Pierre Faverolle
Dokou Antoine Akemakou
Gilles Lebas
Original Assignee
Valeo Equipements Electriques Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9809639A external-priority patent/FR2782353B1/fr
Priority claimed from FR9811174A external-priority patent/FR2782761B1/fr
Application filed by Valeo Equipements Electriques Moteur filed Critical Valeo Equipements Electriques Moteur
Priority to US09/744,733 priority Critical patent/US7318403B1/en
Priority to DE19983452.0T priority patent/DE19983452B3/de
Priority to AU50452/99A priority patent/AU5045299A/en
Publication of WO2000006896A2 publication Critical patent/WO2000006896A2/fr
Publication of WO2000006896A3 publication Critical patent/WO2000006896A3/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/04Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for rectification
    • H02K11/049Rectifiers associated with stationary parts, e.g. stator cores
    • H02K11/05Rectifiers associated with casings, enclosures or brackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/424Friction clutches
    • B60Y2400/4242Friction clutches of dry type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1812Number of cylinders three
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/022Gearing between starting-engines and started engines; Engagement or disengagement thereof the starter comprising an intermediate clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N5/00Starting apparatus having mechanical power storage
    • F02N5/04Starting apparatus having mechanical power storage of inertia type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D2013/581Securing means for transportation or shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/70Pressure members, e.g. pressure plates, for clutch-plates or lamellae; Guiding arrangements for pressure members
    • F16D2013/706Pressure members, e.g. pressure plates, for clutch-plates or lamellae; Guiding arrangements for pressure members the axially movable pressure plate is supported by leaf springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/18Sensors; Details or arrangements thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • Friction clutch carrying the rotor of an electric machine, especially for a motor vehicle.
  • the invention relates to a friction clutch device provided with a rotary drive wheel.
  • the invention more particularly aims, in a motor vehicle, to allow the automatic stopping and restarting of the internal combustion engine, when the vehicle is stopped for a short time - vehicle waiting at a fire red for example - to save fuel.
  • the clutch device essentially consists of a conventional friction clutch and an auxiliary clutch with electromagnetic coupling, arranged between an element integral in rotation with the reaction plate of the friction clutch and a flywheel mounted to rotate coaxially with the driving shaft, by means of a ball bearing mounted on an axial spacer interposed between the crankshaft of the vehicle engine and reaction plate.
  • this clutch device is bulky axially due in particular to the belt driven by an electric motor radially distant from the friction clutch so that the device is also bulky radially .
  • the electromagnetic clutch uses a plate integral in rotation with the reaction plate while being axially movable relative thereto.
  • the object of the present invention is therefore to reduce the axial and radial dimensions of the clutch device while eliminating the presence of an electromagnetic plate clutch.
  • a clutch device comprising on the one hand, a drive wheel having at one front end for its attachment to a driving shaft and, a rear end in the form of a reaction plate hollow with a central recess delimited externally by a friction face, and on the other hand, a friction disc comprising at least one friction lining for contact with the friction face of the reaction plate, said lining being integral with a support resiliently coupled, by by means of a torsion damper, to a central hub intended to be secured in rotation to a driven shaft and characterized in that the torsion damper penetrates into the central recess of the reaction plate and in that the flywheel drive carries between its front and rear ends the rotor of a rotating electric machine comprising a fixed stator coaxial with the rotor.
  • the radial size of the electrical machine - friction clutch assembly is reduced since the electrical machine is adjacent to the reaction plate and is carried in part by the drive wheel.
  • the electric machine is adjacent to the engine block while the reaction plate and the rest of the clutch are housed in the usual manner inside the clutch housing.
  • This arrangement makes it possible to modify the engine block and the clutch housing of a conventional motor vehicle as little as possible while having a reduced radial size because the electric machine is offset axially with respect to the friction disc.
  • the rest of the clutch, including the clutch mechanism, remains unchanged.
  • the input shaft of the gearbox can be unchanged from that of a conventional vehicle.
  • this shaft can be lengthened in order to center it via the crankshaft.
  • the drive wheel carries the rotor of an electric machine which eliminates the presence of an electromagnetic plate clutch and reduces the axial and radial size, due in particular to the 'absence of a transmission belt.
  • the electric machine is shaped to form a starter for the internal combustion engine as well as an alternator.
  • the flywheel known as the flywheel, has very high inertia. You can shut down the internal combustion engine, or heat engine, of the vehicle at a red light, for example. The steering wheel, and therefore the heat engine can be restarted easily and quickly by the electric machine then playing the role of a starter. This can save fuel. The electric machine therefore forms an alterna- starter. It also makes it possible to filter vibrations and avoid stalling of the heat engine by operating as an electric motor.
  • the support of the friction lining is coupled resiliently to the hub by means of a torsion damper which comprises a first guide washer integral with the support and a second guide washer.
  • a web linked in rotation, possibly after taking up a clearance is interposed between the two guide washers.
  • the second guide washer is located in the central recess of the reaction plate.
  • the support can be distinct from the first guide washer by being integral with the latter for example by columns connecting together the two guide washers so that the support is attached to the first guide washer. Alternatively, the support is in one piece with the first guide washer.
  • the clutch release device is of the concentric type to reduce the axial space between the clutch and the bottom of a bell surrounding the friction clutch.
  • additional bearing means are interposed between the flywheel and a load-bearing part secured to the spacer carrying the stator in a fixed manner. This results in the possibility of guaranteeing a precise and small air gap between the stator and the rotor.
  • bearing means can consist of a plain bearing or a ball bearing with at least one row of balls.
  • This ball bearing can be instrumented to measure in particular the speed of rotation of the drive flywheel and therefore of the crankshaft.
  • This load-bearing part partially envelops the stator and the rotor and therefore advantageously forms a shield preventing any pollution in the electric machine.
  • This part is in one piece or is attached in one piece on the spacer.
  • the flywheel can be integral with the reaction plate for cost reasons.
  • the drive wheel is made of several parts or parts and comprises, in addition to the reaction plate, a tube or a base or a shaft for its attachment to the driving shaft.
  • the two parts of the steering wheel can be of two different materials to adjust the inertia of the steering wheel.
  • the flywheel can easily be dynamically balanced, for example by removing material from the outer periphery of the reaction plate.
  • the dust generated by the friction of at least one of the friction linings that comprises the friction clutch device does not risk polluting the electric machine since it is located at the front of the reaction plate .
  • reaction plate has a skirt at its outer periphery on which the cover of a friction clutch is fixed.
  • This part constitutes a heat shield thus sparing the electric machine.
  • the location of the second guide washer, generally of the friction damper, in the recess of the reaction plate displaces the center of gravity of the assembly constituted by the electric machine and the clutch. friction towards the driving shaft and therefore towards the electric machine.
  • bearing means can be mounted on the drive wheel and carry the stator of the machine by means of a load-bearing part.
  • these bearing means will be close to the center severity of the whole and therefore spared. Balancing of the assembly can be achieved easily by adding or removing material on the reaction plate very close to the center of gravity.
  • the torsion damper can have the desired configuration to dampen vibrations. It can be thicker and include, in addition to the web and the two guide washers, auxiliary webs to increase the angular clearance between the hub and the friction lining (s).
  • the friction clutch can reach high temperatures in service so that there is a need to provide cooling means to provide the friction clutch device as a whole and thus increase its service life.
  • the flywheel carries means for cooling the electric machine such as fins carried by the reaction plate.
  • cooling means are provided for cooling the stator of the electric machine in order to improve the service life and the performance thereof. It is thus possible to directly cool the stator by means of holes made in it.
  • the holes are made in a monobloc spacer-stator assembly, which allows the mechanical strength of the stator to be preserved.
  • the spacer is in one piece with the stator and the assembly constituted by two series of sheet metal packages, one of which forms a spacer.
  • stator can be cooled by means of an external spacer.
  • cooling means can be combined with one another, for example, a cooling fluid in one embodiment, passes through holes made in the sheets of the stator to enter a cooling chamber arranged in the thickness of the spacer in combination with fins carried by the flywheel.
  • Means for emptying the cooling chamber of the spacer are located at the low point thereof.
  • said draining means are located at the lowest point of said chamber, thus making it possible to drain the complete cooling circuit of the internal combustion engine of the vehicle.
  • the carrier part of the stator has recesses into which protrusions of the engine block penetrate to reduce the bulk.
  • the spacer in particular when it is constituted by two series of metal sheets, makes it possible to cool the electric machine by carrying an inlet and outlet duct allowing air circulation inside the electric machine and this , between the inlet and outlet duct.
  • One of the conduits can be fitted with an electric motor - turbine wheel assembly allowing forced air circulation.
  • the spacer does not need to be centered relative to the engine block when this spacer is integral with a load-bearing part serving to support the abovementioned bearing means.
  • the clutch housing is centered by the spacer, for example, by means of a centering ring passing through the spacer and carried by the engine block.
  • the drive wheel also makes it possible to easily add material and therefore to balance the unbalance of the crankshaft, especially when the heat engine is three-cylinder.
  • the spacer therefore makes it possible to perform a large number of additional functions.
  • the axial size can also be reduced by providing the friction clutch with a wear take-up mechanism.
  • Figure 1 is an axial section view of an electrical machine-friction clutch assembly according to the invention.
  • FIG. 2 and 3 are views similar to Figure 1 for 2 other embodiments.
  • FIGs 4 to 6 are views similar to Figure 1 without the central part of the friction disc respectively for a fourth, a fifth and a sixth embodiment.
  • - Figure ⁇ is a partial view of a stator cooling device.
  • Figure S is a view similar to Figure 7 in another embodiment.
  • FIG. 9 is an axial sectional view of a flywheel similar to that of Figure 1 equipped with a removable mounting plate.
  • FIG. 12 is a half schematic view of the concentric type clutch device equipped with a force sensor.
  • FIG. 11 is a view of the characteristic curve of the diaphragm brought back to the level of the clutch release bearing.
  • Figure 12 is a view similar to Figure 6 in another embodiment.
  • FIG. 13 is a sectional view similar to Figure 1, along the line C-C of Figure 14 for yet another embodiment.
  • FIG. 14 is a sectional view along line A-A of Figure 13.
  • FIG. 15 is a sectional view along line B-B of Figure 14.
  • - Figures 16 and 17 are views similar to Figure 1 for two other embodiments.
  • FIG. 18 is a perspective view of the electrical machine - clutch assembly without the rotor and the stator of the electrical machine.
  • FIG. 19 is a perspective view of the steering wheel alone in FIG. 18.
  • FIG. 20 is a perspective view, with local cutaway, showing the clutch mechanism of FIG. 17.
  • FIG. 21 is a perspective view of a one-piece spacer with the stator sheets for yet another embodiment.
  • FIG. 22 is a view along arrow 22 of Figure 23 of the support flange alone.
  • - Figure 23 is a view similar to Figure 1 for yet another embodiment.
  • FIG. 24 is a perspective view of a single flywheel of the electrical machine - friction clutch assembly and equipped with a coding wheel forming a target for detection means.
  • FIG. 25 is a perspective view of the steering wheel of Figure 24 equipped with its spacer.
  • Figure 26 is a view similar to Figure 1 with fixing screws between leather and flesh for fixing the stator and the rotor.
  • Figure 27 is a view similar to Figure 1 with air inlets and outlets for ventilation.
  • FIG. 28 is a view similar to Figure 27 in another embodiment.
  • - Figure 29 is a view similar to Figure 27 in yet another embodiment.
  • Figures 29, 30, 31, 32 and 33 are perspective views of the air inlet and outlet ducts.
  • FIG. 34 is a sectional view along line A-A of Figure 13 in another embodiment.
  • Figure 35 is a view similar to Figure 27 in yet another embodiment.
  • - Figure 36 is a view similar to Figure 34 in yet another embodiment.
  • - Figure 37 is a view similar to Figure 23 in yet another embodiment.
  • FIG. 38 is a sectional view of a method of fixing the spacer.
  • an assembly 1 for switching off and starting an internal combustion engine there is shown an assembly 1 for switching off and starting an internal combustion engine.
  • This assembly 1 comprises a rotary electrical machine 2 and a friction clutch 3 comprising a reaction plate 4 of moldable material, here cast iron.
  • the reaction plate is made of moldable material based on aluminum and has a coating for cooperating with a friction lining 16 described below.
  • the electric machine 2 comprises a stator 5 and a rotor 6 mounted coaxially, and radially one above the other with the formation of a gap 7 between the stator 5 and the rotor 6.
  • the stator 5 surrounds the rotor 6, but of course, as a variant, the rotor 6 can surround the stator 5 provided with windings of electric wires, the ends of which are seen in chignon at 8.
  • the rotor 6 and the stator 5 each have a pack of sheets 9 and 10 respectively, here in soft iron.
  • the rotor 6 is provided with a squirrel cage 60 in copper or aluminum so that the electric machine is of the asynchronous type.
  • the sheets are annular in shape and are, for example, isolated by oxidation in contact with each other. Alternatively, insulators separate the sheets from each other.
  • the sheet packs 9 and 10 form an axial orientation ring.
  • the sheets of the stator 5 have notches for the passage of the aforementioned windings or windings.
  • windings are connected via a connector 63 to a block or electronic control and power unit controlled by a computer receiving information from sensors measuring in particular the rotational speeds of a driving shaft 11, constituted by the output shaft, said crankshaft, an internal combustion engine and a driven shaft 12 forming the input shaft of a movement transmission box, as well as a displacement sensor, measuring for example the displacement of the stop clutch described below.
  • the assembly 1 is interposed between the trees 11 and 12.
  • the clutch 3 constitutes a cut-off and starting member.
  • the clutch When the clutch is engaged (engaged), the engine torque is transmitted from the driving shaft 11 to the driven shaft 12.
  • the clutch is disengaged (disengaged)
  • a cut occurs so that the driven shaft 12 is no longer driven by the driving shaft 11.
  • the reaction plate 4 constitutes the rear end of a drive wheel 13 in the form annular, having at the front, a front face fixed on the end of the driving shaft 11.
  • the flywheel 13 usually called flywheel, carries the rotor 6 of the electric machine 2 between its front and rear ends.
  • the flywheel assembly 13 - rotor 6 - clutch 3 constitutes a friction clutch device; the flywheel 13 constituting the clutch input element 3 and the rotor support 6 of the electric machine 2.
  • the electric machine 2 here makes it possible to start the internal combustion engine. For this, a controlled electric current is passed through the stator winding with a frequency and intensity determined by an electronic control by the computer receiving information on the starting condition of the vehicle. In this case, the electric machine 2 rotates faster than a conventional starter.
  • the electric machine 2 also constitutes an alternator when the internal combustion engine is running.
  • This machine here of the asynchronous type forming an electric motor. It can be of any type, namely for example, with radial or axial flux, asynchronous, synchronous with magnets in the air gap or buried, with flux switching with single or hybrid magnets - de-energization by stator winding - with brushless claws , variable reluctance, single and double excitation, cross flow with Vernier effect.
  • the machine filters the vibrations generated by said internal combustion engine. It accelerates the engine and prevents it from stalling. It can brake the engine and deliver more power than conventional alternators.
  • the electric machine 2 also makes it possible to facilitate the speed change by synchronization of the shafts 11 and 12, the machine braking or accelerating the shaft 11.
  • the machine 2 makes it possible to stop the internal combustion engine at red light and then restart it while saving fuel because of the great inertia of the flywheel 13 equipped with the rotor 6.
  • the neutral point being engaged and ignition key in vehicle position rolling, the engine is stopped after two seconds and restarted as soon as the gear changes.
  • a toothed ring arranged at the outer periphery of the reaction plate 4 and associated with a radial sensor, not visible in all the figures, in particular for picking up the speed of rotation of the electric machine 2.
  • the rr.enant shaft 11 is the crankshaft of the internal combustion engine of the vehicle
  • the driven shaft 12 is the input shaft of the gearbox speed integral with a clutch housing 14, also called the clutch housing, forming a fixed housing.
  • the input shaft 12 crosses the bottom of the bell 14 surrounding most of the clutch 3 rotatably mounted around an axis XX aligned with that of the shafts 11 and 12.
  • the rotor 6 is thicker than the reaction plate 4 forming with the flywheel 13 the input element of the friction clutch, and therefore of the friction clutch device.
  • the output element of this clutch is constituted by at least one central hub 15 internally fluted for its rotational connection with the driven shaft 12 externally fluted to be made at its end.
  • the hub 15 is rigidly or resiliently coupled with at least one friction lining 16 intended to be clamped between the reaction plate 4 and a pressure plate 17 under the action of clutch means 18 with axial action acting on the plate. pressure 17 and bearing on a cover 19 secured to the reaction plate 4, here by screwing.
  • the friction lining 16 and the hub 15 belong respectively to the external periphery and to the internal periphery of a friction disc 20 comprising at least one support 21 carrying the friction lining 16 and coupled to the hub 15.
  • the support 21 can be embedded in the lining 16.
  • two friction linings 16 are provided by being fixed on either side of the support 21 axially elastic at the linings 16 for progressive tightening linings 16 between the plates 4, 17 and create assistance when disengaging the clutch.
  • Such a support is described for example in the document FR-A-2 693 778.
  • the fixing of the linings 16 can therefore be carried out by riveting; as a variant, the linings are fixed by gluing to the central bearing area of a tripod blade, which makes it possible to reduce the thickness of the friction linings and therefore the axial size.
  • declutching means 22 are controlled by a declutching stop 23 acting in thrust or by traction on the internal end of the declutching means 22.
  • the stop belongs to a declutching device 24.
  • the friction clutch 3 therefore comprises a reaction plate 4, possibly in 2 parts for the formation of a damper flywheel or a flexible flywheel, which is locked in rotation on the crankshaft 11 and which supports at its external periphery, here by screws, a cover 19 to which is attached, with axial mobility, at least one pressure plate 17; several plates 17 and several friction discs 20 which can be provided as visible for example in FIG. 4 of document FR A 1 280 746.
  • the pressure plate 17 is integral in rotation with the cover 19 and therefore with the reaction plate 4, while able to move relative to the latter by means of axially elastic tongues 25, here tangential, better visible in document FR A 1 280 746 and in FIG. 18.
  • Clutch means 18 act between the bottom of the cover 19, here of hollow form, and the pressure plate 17. These engagement means are supported on the bottom of the cover 19 and on an unreferenced boss of the pressure plate to tighten the friction linings 16 between the plates 4 and 17.
  • the declutching means 22 can consist of declutching levers associated with helical springs as described in document FR A 1 280 746. As a variant, it may be two Belleville washers mounted in series and subjected to the action of levers. clutch forming the declutching means.
  • the engaging means 18 and declutching means 22 belong to the same annular part called diaphragm, having an annular peripheral part 18 forming a Belleville washer extended by a central part fragmented into radial fingers 22 by blind slots, not visible in the figures, the bottoms of which form enlarged orifices at the internal periphery of the Belleville washer 18 of the diaphragm.
  • the diaphragm 18, 22 is pivotally mounted on the internal periphery of its Belleville washer 18 by means of a primary support 26 carried by the bottom of the cover 19 and a secondary support 27 carried by assembly means 28 passing through the enlarged orifices of the diaphragm.
  • the primary support 26 is formed by stamping the bottom of the cover while the secondary support 27 belongs to a ring ring carried by lugs 28 passing through the enlarged orifices of the diaphragm 18, 22 and forming the aforementioned assembly means, as described in document FR A 2 585 424 to which reference will be made for more details.
  • the assembly means may include tabs or columns as described in FIGS. 7 to 15 of document FR A 2 456 877.
  • the diaphragm bears on the primary support 26 and on the boss, which the pressure plate 17 has on the back.
  • action is taken using the clutch stop 23, in the figures shown, by pushing, on the inner ends of the diaphragm fingers, to rotate the latter, which then rests on the secondary support 27 formed at the outer periphery of the ring crown.
  • the load exerted by the diaphragm is taken using the clutch stop 23, in the figures shown, by pushing, on the inner ends of the diaphragm fingers, to rotate the latter, which then rests on the secondary support 27 formed at the outer periphery of the ring crown.
  • the external periphery of the Belleville washer 18 is supported on the boss of the pressure plate.
  • the structures are reversed so that the external periphery of the Belleville washer 18 is supported on the cover 19, while the internal periphery of the Belleville washer 18 is supported on the boss of the pressure plate 17, as visible for example in document FR-A 2 606 477, the clutch then being of the pulled type, the stop 23 then acting by pulling on the clutch to disengage the latter.
  • the clutch 3 can be equipped with a wear take-up device to compensate for the wear of the friction linings 16.
  • This sub-assembly is called the clutch mechanism and is intended to be fixed here by screwing on the reaction plate 4 as visible in the figures; the cover 19 having the overall shape of a hollow dish with an external radial rim for fixing to the plate 4 and a centrally perforated bottom.
  • the friction disc 20 is in the figures of the elastic type, that is to say that the support 21 is coupled elastically to the hub 15 by means of a torsion damper 20a here with elastic members 35, 36 with circumferential action in the form of coil springs.
  • the support 21 is attached to a first guide washer 29 integral with a second guide washer 30 by small posts 31.
  • These small posts 31 are also used here for fixing the support 21 in the form of a disc, for example of the type of that described in document FR-A 2 693 778.
  • the balusters 31 pass axially through openings 32 formed in a web 34.
  • the first 29 and the second guide washer 30 are arranged on either side of the web 34 integral in rotation of the hub 15, here after taking up an angular play. This game angular is determined by means of gear with play intervening between the periphery of the internal wall 34 and the external periphery of the hub 15, teeth of the wall 34 penetrating play in notches of the hub 15 and vice versa.
  • the springs 35 with circumferential action are mounted in unreferenced windows made opposite in the web 34 and the two guide washers 29, 30.
  • Springs 36 of lower stiffness than the springs 35, elastically couple the web 34 to the hub 15 as described in document FR-A 2 726 618 to which reference will be made for more details.
  • This document also describes the elastic means with axial action and the friction means acting between the first guide washer 29 and the web 34.
  • the disc 20 can have another shape, for example that described in FIGS. 1 to 4 of document FR-A-2693778.
  • the veil 34 may be integral with the hub 15.
  • the reaction plate 4 dorsally has a friction face 37 for contact with the lining 16 adjacent to the friction disc 20.
  • the friction linings 16 are intended to be clamped between this friction face 37 and that which faces the pressure plate 17
  • This friction face 37 internally delimits a central recess 39 so that the flywheel 13 is centrally hollow.
  • the second guide washer 30 penetrates inside this recess 39, radially below the face 37, to reduce the axial size.
  • the second guide washer 30 is further from the pressure plate 17 and the cover 19 than is the first guide washer 29.
  • This washer 30 is located in the central recess 39 axially offset from the face friction 37 towards the front of the flywheel 13.
  • the friction disc 20 therefore has at its outer periphery at least one friction lining 16 integral with a support 21 elastically coupled by a torsion damper 20a to a central hub 15.
  • the damper 20a penetrates into the recess 39 delimited externally by the friction face 37. ⁇
  • the friction face 37 is offset axially with respect to to rotor 6
  • the declutching device 24 comprises a declutching fork 50 pivotally mounted on the bottom of the bell 14 using a
  • the upper end of the fork is shaped to receive the end of a cable connected to the clutch pedal.
  • the control of the clutch release bearing 23 is thus of the manual type, this clutch release bearing 23 comprising, in known manner, a ball bearing, one of the rings of which is rotating and is shaped for local contact with the internal ends of the fingers. 22 of the diaphragm 18, 22.
  • the other ring of the bearing is fixed and bears against the flange which has a sleeve 53 subjected to the action of the internal fingers of the declutching fork 50.
  • the stop can thus move radially with respect to the flange and is of the self-centering type, a radial clearance existing between the flange
  • the stop 23 can come as close as possible to the first guide washer 29 which makes it possible to reduce the axial size.
  • the recess 39 in FIG. 1 is internally in the form of a staircase.
  • this recess is delimited externally by a first annular portion of axial orientation 38 connecting at the rear to the friction face 37 and at the front to an annular shoulder of radial orientation 41.
  • a second annular portion of axial orientation 42 is connected at the rear to said shoulder 41 and at the front to the transverse rear face of a fixing sleeve 43 whose internal periphery is in intimate contact with the external periphery of the crankshaft 11.
  • the second portion 42 therefore has a diameter smaller than that of the first portion 38.
  • the flywheel 13 is in one piece and therefore has at the front at its internal periphery the sleeve 43 provided with holes 44 for the passage of fixing screws 45 of the flywheel 13 to the crankshaft 11
  • the front face of the sleeve 43 is in contact with the crankshaft 11.
  • the front end of the flywheel. 13 is therefore intended to be fixed to the shaft 11.
  • the screws 45 are housed inside the second portion 42. Radially above the fixing sleeve 43, the flywheel 13 is thickened to form a sleeve 46 of axial orientation. This sleeve is delimited internally by the portion 42 and the sleeve 43 and externally by a cylindrical surface 47 used for mounting the packet of sheets 9 of the rotor 6.
  • reaction plate 4 extends in radial projection relative to the internal periphery of the rotor 6 and is offset axially relative to the rotor 6.
  • the socket 43 - sleeve 46 assembly has a square shape in section, the socket 43 extending radially towards the axis X-X and constituting the centrally perforated bottom delimiting one obviously 39.
  • the mounting surface 47 is delimited at the rear by a shoulder 48. Radially, beyond the sleeve 46, the drive wheel 13 is extended by the reaction plate 4 provided at its periphery with the ring gear 40.
  • This plate of reaction 4 is of decreasing thickness from its internal periphery to its external periphery so that an axial clearance exists between the squirrel cage 60 and the reaction plate 4 as well as between the buns 8 and the plate reaction 4.
  • the thickness decreasing of the reaction plate 4 is determined to avoid any interference with the rotor 5 and the stator 6.
  • the plate 4 is therefore provided with a clearance notch for the buns 8.
  • the sheet metal package 9 of the rotor 6 is mounted by shrinking on the mounting surface 47 of axial orientation until it comes into abutment against the shoulder 48. Thus the pack of sheets 9 is heated, which are subsequently cooled for fixing on the scope 47.
  • the sheet pack 9 is fixed by a grooving and keying device on the bearing 47.
  • the plate pack 9 is fixed by splines intervening between the sheet pack 9 and the surface 47.
  • the plate package is welded to the surface 47.
  • the sheet pack 9 is fixed by means of screws passing through the sheet pack 9 and the shoulder 48 to be screwed into the reaction plate 4, the screw heads bearing on a fixing ring in contact with the front end of the front sheet pack.
  • the sleeve 46 has at its outer periphery a frustoconical bearing while the sheet pack 9 has at its inner periphery a complementary bearing.
  • the sheet metal package 9 is therefore fixed by conical fitting.
  • the package of sheets 9 is mounted on the bearing surface 47 and is in contact at one of its ends with the shoulder 48. At its other end, this package is fixed by screws mounted between leather and flesh (FIG. 26 ) between the bearing surface 47 and the internal periphery of the sheet metal package 9.
  • the rotor 6 is integral, both axially and in rotation, with the flywheel 13 in one piece in FIG. 1; said flywheel 13 being obtained by molding here of cast iron so that this flywheel 13 with its rotor 6 has a great inertia.
  • an angular indexing of the rotor 6 relative to the flywheel 13 can be carried out.
  • the rear end of the flywheel 13 is formed by the reaction plate 4 delimited by the friction face 37.
  • the stator 5 is fixed in a similar manner to the rotor 6 on a spacer 61.
  • the external periphery of the rotor 5 is fixed on the internal periphery of the spacer 61 by hooping as a variant by means of grooves, as a variant by welding, as a variant by screws mounted between leather and flesh in the same way as the sheet metal package 9, etc ... and this in an angular indexed manner.
  • the spacer 61 has an annular shape and is notched for passage of the connector 63 connected to the ends of the windings. Another connection device coming from the aforementioned control device, also forming a power device, is connected to the connector 63, better visible in FIG. 25, to supply the windings of the rotor 5.
  • the spacer 61 is interposed between the free end of the bell 14 and the engine block 62.
  • the bell 14 has at its free end a radial flange for bearing the heads of the fixing screws 64 passing through the spacer 61 to be fixed on the engine block 62.
  • the spacer 61 is provided with cooling fins better visible at 183 in FIGS. 21 and 22.
  • the second guide washer 30 is housed in the space delimited by the section 38 and the shoulder 41, only the internal end of the second guide washer 30 penetrates a little more deeply into the inside the recess on floor 39.
  • the drive wheel 13 is in several parts or parts, namely, a reaction plate 4 of hollow shape and an annular spacer 130, 131, 46 generally in shaped section of U.
  • This spacer is interposed between the plate 4 and the crankshaft 11 while being centered by said crankshaft.
  • the spacer 130, 131, 46 centers at its rear end the reaction plate 4. To do this, the spacer is hollowed out at the rear.
  • the first branch of the U namely the inner or lower branch closest to the axis XX, is generally a form of internal tube 131 provided with holes for the passage of a first series of fixing screws 145, the heads of which bear on the reaction plate and the body of which passes through the reaction plate 4 and the internal tube 131 to be screwed into the crankshaft.
  • the internal tube 131 has a second series of holes with a smaller diameter than that of the first series of holes for screwing a second series of screws 245 fixing the reaction plate 4 to the spacer 130.
  • the outer branch 46 or upper of the spacer 130, 131, 46 is constituted by the sleeve 46 used for mounting the rotor 6 in the same manner as in FIG. 1.
  • the sleeve is therefore delimited by a shoulder 248 which here faces the reaction plate 4.
  • the bottom 130 of the U of the spacer 130, 131, 46 extends generally transversely and connects the two branches 46, 131 of annular shape and axial orientation.
  • the spacer 130, 131, 46 comprises an upper branch of the rotor support and a lower fixing branch constituting the spacer itself.
  • the inner tube 131 carries at its outer periphery bearing means 132. These bearing means consist for example of a ball bearing in a row of balls as an alternative to two rows of balls.
  • the bearing means 132 comprise two ball bearings.
  • the internal ring of the ball bearing (s) is therefore fitted onto the internal periphery of the internal tube 131 while the external ring of the ball bearing (s) 132 is fitted inside an annular skirt 133 belonging to the periphery of a supporting part 134 carrying at its outer periphery the spacer 61 on which the stator 5 of the electric machine 2 is fixed in the same manner as in FIG. 1.
  • the support piece 134 generally follows the shape of the reaction plate 4 by being at a distance from it adjacent to it. This piece has a tortuous shape because of the presence of the buns 8.
  • the skirt 133 enters the cavity delimited by the branches 46, 131 of the spacer 130, 131, 46.
  • the support piece 134 is in one piece with the skirt 133 and the spacer 131 having come from molding therewith.
  • This part 134 is for example based on aluminum. It is the same for the spacer 130, 131, 46.
  • the carrier part 134 partially envelops the stator 6 and the rotor 5 and therefore forms a mask in the form of a shield avoiding any pollution of the electrical machine 2.
  • the part 134 is here in one piece with the spacer 61.
  • the reaction plate 4 is made of cast iron as in FIG. 1.
  • the spacer 130, 131, 46 is lighter than a cast iron part.
  • this spacer can be made of cast iron.
  • the reaction plate has a friction face 37 delimited internally by a first annular portion of axial orientation 38.
  • the reaction plate 4 has at its internal periphery a ring 140 generally of axial orientation connected by an internally inclined portion of frustoconical shape 142 to the reaction plate 4 proper.
  • the series of screws 145, 245 have heads bearing on the ring 140. Thanks to the frustoconical portion 142, the second guide washer 30 of the torsion damper 20a can be housed inside the central recess of the reaction plate 4 delimited by the ring 140 and the portions 142, 38. Thanks to the inclined portion 142, any interference between the friction disc 20 and the heads of the screws 145, 245 is avoided.
  • the spacer is centered by the crankshaft 11 so that the presence of centering pins between the engine block of the vehicle and the spacer is not essential; centering means existing between the bell 14 and the spacer 61.
  • the declutching device 24 is of the concentric type because it is traversed centrally by the driven shaft 12
  • the declutching device 24 can be of the cable control type as described in US-5, 141, 091.
  • the declutching stop 23 is carried by a driven part fixed in rotation and movable in translation for example by means elastic tabs connecting a flange of the driven part to a housing integral with the bell 14.
  • the driven part is in relation to a screw-nut with a driving part fixed in translation and movable in rotation for example by means of a bearing ball intervening between the fixed housing and the driving part which carries at its periphery a pulley for the winding of the control cable maneuvered by the clutch pedal.
  • the declutching device 24 is of the hydraulic type as described in document FR-A-2, 730, 532.
  • the declutching stop 23 is carried by a piston 241 movable axially relative to the guide tube 52 secured for example by crimping an external body 242 fixed on the clutch bell 14 for example using ears as described in document FR-A-2, 730, 532.
  • the external body 242 surrounds the guide tube and defines therewith a blind annular cavity 243 of axial orientation, the bottom of which is constituted by a radial rim which the guide tube has at its rear end.
  • This radial rim is for example fixed by crimping on the external body 242 provided a control fluid supply inlet, such as oil, connected to a non-visible bore opening into the cavity 243 at its bottom.
  • the feed inlet is better visible in Figures 16 and 17 and has a through channel.
  • the piston 241 penetrates into the cavity 243 and delimits therewith a chamber with variable volume.
  • a preload spring 244 acts between the body 242 and the front end of the piston 241 to maintain the stop 23 in constant support against the ends of the fingers 22 of the diaphragm 18,22.
  • the declutching device 24 thus forms the hydraulic receiver of a hydraulic control, the transmitter of which is actuated either manually by the declutching pedal or semi-automatically by an actuator with an electric motor controlled according to predetermined programs for changing the gear ratio. speed by an electronic computer receiving information in particular from sensors measuring the speed of rotation of the shafts 11 and 12, as well as the displacement of the clutch release bearing 23 of the plate 17.
  • the reaction plate 4 has a ring 40 as in FIG. 1 allowing a sensor to measure the speed of rotation of the driving shaft 11.
  • the sensor can be of the optical type so as not to be disturbed by magnetic phenomena.
  • the sensors can be placed in any suitable location and are therefore used both for controlling the electric machine 2 and for controlling the actuator with the above-mentioned electric motor, the electronic computer being common to the electric machine 2 and to the electric motor actuator. It is obvious that the electric machine thus makes it possible to synchronize the speeds of rotation of the shafts 11 and 12 by accelerating or braking the shaft 11, so that it is possible to use gearboxes without a device for synchronization with a dog clutch device that can be moved with little effort. As a result, the gearbox can be controlled by low-effort actuators for shifting and / or selecting gears.
  • the change of speed ratio is thus easier and faster because the speed of the two shafts is synchronized.
  • the sleeve 46 can be in one piece with the reaction plate 4 and extend axially in the direction of the crankshaft 11.
  • the bearing means 132 intervene between the internal periphery of the sleeve 46 and the outer periphery of the skirt 133 of the support piece 134 carrying the stator 5 while the hub 46 carries the rotor 6 at its outer periphery. It can be seen that with respect to FIG. 3, the structures have been inverted, the carrier part 134 being turned over to extend in the vicinity of the casing 62 of the heat engine.
  • the bearing means 132 extend above the fixing screws 145.
  • the spacer 230 consists of a shaft passing through the central opening of the ring 140 by a centering nose, at the front, the shaft 230 is hollowed out at 231 for its centering by the crankshaft 11.
  • the second guide washer enters the central recess of the pressure plate delimited by the ring 140 and the portions 142, 38. It will be noted that the portion 38 is shorter than in Figures 2 and 3 while the portion 142 is more inclined. In FIGS.
  • the supporting part 134 forms a dust cover and a thermal screen because it extends in the immediate vicinity of the reaction plate 4 and envelops the rotor and the stator.
  • particularly metallic particles originating friction linings 16 of the friction disc 20 do not risk polluting the electric machine 2, thus guaranteeing good performance.
  • the central recess 39 of the flywheel 13 therefore consists of the central recess of the reaction plate 4 delimited externally by the friction face 37 of contact with the lining 16.
  • the reaction plate has at its external periphery an annular skirt of axial orientation 144 surrounding the friction linings 16 so that the dust from the linings 16 will not pollute the electric machine 2.
  • a groove 148 is provided at the internal periphery of the skirt 144 to collect the dust.
  • This groove is connected to the friction face 37 of the reaction plate by a vertical flank and has in section a bottom in an arc of a circle extended by an inclined flank.
  • the groove 148 can have any other shape.
  • the inclined flank directs the impurities towards the pressure plate 17. The impurities are centrifuged in the groove 148 constituting an anti-pollution groove.
  • the plate 4 can be provided with such a skirt 144 with groove 148.
  • the load-bearing part 131 is fixed directly to the engine block 62 using fixing screws 164 passing through radial holes in the holes 165 made in ears 166 which the load-bearing part has beyond its external periphery, due to the presence bearing means 132.
  • the spacer 61 is separate from the support piece which carries at its outer periphery an annular skirt 261 for mounting the stator 5, for example by shrinking as described above.
  • the spacer 61 is hollowed out for the passage of the ears 166 distributed for example regularly at 120 degrees. The number of ears depends on the application.
  • the bearing means 132 can be located on the same circumference as the fixing screws 245 as visible in FIG. 5.
  • the sleeve 46 always belongs to the reaction plate whose internal ring 140 • is widened at its base to present grooves and mesh with a shaft 330 having ears 331 for its fixing with screws 245 the crankshaft 11.
  • the rear end of the shaft is grooved to cooperate with the grooves of the ring 140.
  • the reaction plate 4 is linked in rotation to the shaft 330.
  • the ring 140 is fixed axially by a washer 333 fixed by screws 334 at the end of the shaft 330.
  • the ring 140 is axially wedged by the internal ring of the ball bearing constituting the bearing means 132.
  • This bearing is interposed axially between the ring 140 and the heads of the screws 245.
  • the bearing part 134 of the stator 5 carries spacers 61 and has a much better shape s right than in FIG. 4. It will be noted in FIGS. 4 and 5 that the load-bearing parts 134 can be ribbed to stiffen them which is not easy in FIGS. 2 and 3. In FIG. 5, the ribs are of greater amplitudes than in FIG.
  • the fastening members 64 are resiliently mounted in the through holes 461 of the spacer 61, to avoid hyperstatism during the crankshaft deflections, more specifically, the fastening members 64 are surrounded by a split pin 462 itself surrounded by two shouldered pads 463, for example made of an elastomer such as rubber, placed at the ends of the through holes 461.
  • a certain degree of freedom therefore exists between the fixing members 64, here in the form of a stud and the sole 61 so that the load-bearing part is not clamped and is centered on the shaft 330 by the ball bearing 132 with the creation of a small and precise air gap .
  • this type of elastic mounting is applicable in Figures 1 to 3.
  • the central recess of the reaction plate 4 in which the second guide washer 30 of the friction disc 20 is housed is here delimited by the ring 140 and the annular portion of axial orientation 38.
  • the torsional damper 20a can be thicker. It is even possible to mount two torsional dampers in parallel as described for example in document US-A-3 101 600. It is thus possible to obtain large angular deflections.
  • FIG. 6 in which the structure has been inverted with respect to the structure in FIG.
  • the ring 140 extends radially a little more radially inwards in the direction of the axis XX to present a shaft 430 centrally, the front end of which is grooved so as to engage with grooves which internally has a fixing base 431 fixed by screws 345 to crankshaft 11 of the engine.
  • the support piece 134 is integral with the spacers 61 as in FIG. 5 with an elastic mounting between the spacers and the fixing members 64.
  • the bearing means 132 are located axially between the ring 140 and the base 431 and consist of two bearings ball.
  • the supporting part 134 has a sleeve 432 at its internal periphery by which it is mounted on the outer rings of the bearings 132 with an intermediate flange 433 to separate the two ball bearings 132.
  • the sleeve 432 is provided with holes 545 radially above the bearing 132 for access using tools to the heads of the fixing screws 345.
  • the tools for fixing the screws pass through the support piece 134 and the ring 140.
  • the fixing tools can also pass through the friction disc. To do this, simply provide the friction disc with a raised pre-damper. It will be noted that in FIGS.
  • the torsion pre-damper is of the type described in document FR A 2 718 208.
  • This pre-damper therefore comprises a web fixed to the hub 15 and two guide washers arranged on either side of the veil and assembled together by clipping with the aid of tabs used for driving the pre-damper in rotation with the veil 34.
  • the second guide washer must be mounted in the recess of the reaction plate, that is to say making a reversal of the friction disc 20.
  • the screws or other fasteners can be mounted captively in the machine.
  • the fixing screw heads may have a diameter greater than that of the aforementioned passage holes in the diaphragm, in the friction disc.
  • a module can be formed comprising the reaction plate 4, the friction disc 20 and the clutch mechanism unitarily comprising the plate 17, the diaphragm 18, 22 and the cover 19.
  • This unitary module can be easily balanced, this is the reason why we see in 1000 in FIG. 6 a balancing chamfer produced at the external periphery of the reaction plate 4.
  • a balancing chamfer produced at the external periphery of the reaction plate 4.
  • the screw fixing tool (s) 345 may not pass through the friction and the clutch mechanism.
  • the base 431 is wedged axially, on the one hand, at the rear on the shaft 430 by the ball bearing 132 furthest from the ring 140 and, on the other hand, at the front, on the shaft 430, by a washer 434 held in place by a circlip 435 engaged in the free end of the shaft 430.
  • This alternative sub-assembly may include the aforementioned friction clutch 3.
  • Balancing is therefore done by adding or removing mass on the flywheel 13 or on the clutch mechanism 17, 18, 22, 19 and it is possible to correct the imbalance of the heat engine, in particular for the three cylinders by removing or adding of the material .
  • Balancing can therefore lead to the presence of an unbalance on the electrical machine 2 - friction clutch 3 assembly to correct the unbalance of the heat engine.
  • the combustion engine - friction clutch device 2, 3 assembly equipped with the electric machine is therefore balanced.
  • the bearing means 132 of FIGS. 2 to 6 are arranged to be brought closer to the center of gravity of the rotating parts, that is to say of the assembly 1.
  • the bearing means constituted by the two ball bearings are located radially below of the rotor 6 and of the stator 5, and this is generally symmetrical with respect to the axis of radial symmetry of the rotor and the stator.
  • these bearing means are located radially below the friction face 37 of the reaction plate 4.
  • the rotor 6 is fixed at its internal periphery radially below the friction linings.
  • the rotor 6 can be fixed radially at the level of the linings 16, between the internal and external periphery thereof. It suffices in FIG. 2 for example to increase the radial size of the bottom 130.
  • the bearing means 132 are located radially below the rotor 5 and the stator 6 while being offset axially towards the reaction plate with respect to the axis of radial symmetry of the rotor 6 and the stator 5.
  • the bearing means 132 are always located radially below the rotor 6 and the stator 5 while being offset axially in the direction opposite to the reaction plate 4 relative to the axis of radial symmetry of the rotor 6 and the stator 5.
  • the hollow shape of the reaction plate 4 is beneficial because the internal periphery of the reaction plate 4 is closer to the rotor 6 than is the friction face 37 of said plate so that one displaces the center of gravity of the together towards the electric machine. Of course, material can be removed from the front face of the reaction plate 4 facing the buns 8.
  • the buns penetrate into a notch or obviously the flywheel.
  • recesses can be provided in the casing 62 of the heat engine.
  • the flywheel 13 can be shaped to identify the speed and or the position of the rotor 6 using one or more sensors.
  • the ring gear 40 can be associated with two sensors, one radial, the other, of axial orientation to identify the speed and or the position of the rotor.
  • These sensors can be carried by the bell 14. As a variant, at least one of these sensors is carried by the stator 5 or the carrying part 134.
  • One of these sensors for example of radial orientation, is used for controlling injection of the internal combustion engine and the other, for example of axial orientation, is used to control the electric machine which can be of any type.
  • the information sensor belongs to the bearing means 132.
  • These bearing means then advantageously consist of one or more ball bearings which are instrumented to form a sensor for the speed of rotation of the drive wheel.
  • the wires of these instrumented ball bearing sensors are then advantageously supported by the carrier part 134 to join the connector 63 of the electric machine 2.
  • the ball bearing can be of the type described in document FR-A 2,599,794 and include a magnetic field sensor carried by the fixed ring of the bearing and at least one multi-pole magnetic ring carried by the rotating ring with the presence of an air gap.
  • the sensors can also be used for measuring the speed or the position of the rotor.
  • provision can be made for cooling the electric machine 2.
  • fins 1200 are provided on the front face of the reaction plate 4 and this, opposite the rotor 6. These fins are located above the buns 8, being advantageously inclined in the manner of fan blades.
  • the fins come from the portion 38.
  • holes are made in the load-bearing part and in the ring
  • the shaft carries fins referenced at 1203.
  • the fins can be produced at the external periphery 431 of the base 430 as shown in FIG. 6.
  • the fins could come from the bottom 130 of the spacer 130, 131,46.
  • the fins can be formed at the ends of the sheet metal package 9.
  • the fins can be on the casing of the machine. Cooling, if done by air, can be forced (air backflow from the outside into the machine or vice versa) or by internal ventilation, or by natural convection.
  • stator 8 can be cooled using a heat transfer fluid.
  • the package of pierced sheets 10 is then advantageously delimited by two flanges 10a, 10b having a shape allowing the heat transfer fluid to be conveyed from one face to the other of the stator passing through the holes made in the stator.
  • the end flanges are eliminated and replaced, for example, by bent overmolded pipes 10c, of aluminum for example.
  • the spacer is of the type of that of FIG. 21, the same pack of sheets forming a spacer. In this case, two series of sheets identical to their internal periphery, the holes being made in the most external series of sheets.
  • the buns are also overmolded while protecting their varnishes by brushing a resin loaded with heat-transfer elements.
  • FIG. 9 the flywheel 13 of FIG. 1 is shown which forms a sub-assembly with the machine 2. This sub-assembly is delivered as shown in FIG. 9.
  • a removable plate 3000 carrying at least one rod 3001, projecting axially and penetrating for centering in a hole 3002 produced in the sheet metal package 10 of the stator 6 beyond the buns 8.
  • the plate is fixed on the reaction plate 4 using screws 3003 each screwing into a thread 3004 of the reaction plate 4 and bearing by their head on the rear face of the plate 3000.
  • the stator 6 is indexed in rotation relative to the rotor 5, knowing that the plate 3000 is screwed using screws 3005 into tapped holes 3006 presented by the spacer 61 carrying the package of aforementioned sheets
  • the plate 3000 carries wedges 3007 fixed on the rear face of the plate 3000 using screws 3008.
  • the wedges 3007 pass through a passage 3009 of the plate and a passage 3010 of the reaction plate 4 to come interpose between the internal periphery of the stator 5 and the external periphery of the rotor 6.
  • the air gap 7 is rigidly maintained while having an indexing of the rotor 6 relative to the stator 5.
  • the air gap thus obtained is constant and depends on the thickness of the shims 3007.
  • the sub-assembly is mounted on the casing 62 of the engine block using the screws 45 and the studs 64 replacing the screws 64 of FIG. 1.
  • the screws 3003 and 3005 are unscrewed to remove the plate fitted with the rod 3001 and shims 3007.
  • the friction disc 20 is housed in the central recess of the reaction plate and finally, the clutch mechanism is fixed on the reaction plate 4.
  • the hub 15 extends mainly in the central recess 39 of the flywheel 13.
  • the plate 3000 with pins 3001 and shims 3007 is recovered by the manufacturer of the machine.
  • This solution has many advantages, because in addition to the guarantee of constant air gap, it also facilitates the transport of the rotor / stator assembly, thus allowing delivery of the machine in one piece.
  • the use of the plate 3000 is dispensed with by providing a constant air gap by optical setting carried out by means of cylinders acting radially, for example on the portion 42 of the reaction plate 4.
  • the reaction plate 4 has an inclined portion 142 connecting the portions 42 and 38 to each other.
  • the central recess of the flywheel 13 can have any appropriate shape resulting from the different figures.
  • a force sensor 2000 integrated into the declutching device 24 of concentric type, as represented in FIG. 3, or any other elastic element varying continuously in the control. displacement, regardless of the clutch or braking force.
  • the position of the clutch stop 23 is taken outside of the hydraulic fluid by the transformation of the force information of the preload spring 244 into relative or absolute position information as required.
  • the digital or analog signal delivered by the force sensor 2000 is processed by a computer, external or internal to said sensor, to determine the relative or absolute position of the clutch stop 23.
  • this force sensor 2000 associated with the preload spring independent of the clutch or braking force, makes it possible to distinguish, as shown in FIG. 11, the two positions B and C that the stop can take. clutch 23. It can be seen in FIG. 11 that this force sensor 2000 makes it easy to distinguish the two points B and C which represent the same clutch or braking force represented by point A in FIG. 11 in which there is represented on the ordinate the clutch or braking forces and on the abscissa the displacements.
  • This characteristic curve is due here to the well-known characteristic curve of the diaphragm.
  • the position sensor 2000 is placed directly under the preload spring 244, that is to say between the rear end of the preload spring 244 and the external body 242.
  • an intermediate shim not shown in FIG. 10, will be placed between the force sensor 2000 and the preload spring 244.
  • This shim can be formed by the protective bellows 246 which is thus immobilized.
  • the present invention is not limited to the embodiments described, in particular, the support 21 can be in one piece with the first guide washer 29.
  • a single guide washer can be provided as disclosed in document FR-A2390617.
  • the hub 14 largely penetrates into the recess 39 and extends asymmetrically relative to the support 21 of the linings 16.
  • the torsion damper 20a thus extends mainly inside of the recess 39.
  • the support 21 is coupled resiliently to the hub 15 by a torsion damper 20a penetrating into the central recess 39 of the flywheel 13 and therefore of the reaction plate 4 for reduction of the axial size of the sub- together 1.
  • the elastic members 4 can consist of spiral springs acting between the support and the hub.
  • the elastic organs may consist of blades or blocks of elastomeric material interposed in this case, between the hub and a ferrule secured to the support 21.
  • the base 431 can be replaced by a flange 431a having at its external periphery the sleeve 46 and the shoulder 48. This flange is crossed by the screws 345 as in FIG. 6.
  • the part 134 is in this case close to the reaction plate 4. The direction of the load-bearing part 134 has therefore been reversed.
  • the shaft 430a is frustoconical and the flange 431a has a central hub 431b with an internal bore of frustoconical shape for mounting in a complementary manner on the frustoconical outer periphery of the shaft 430a.
  • a nut 431c mounted on the end of the shaft 430a, makes it possible to lock the complementary cones.
  • the flange 431a is thus linked in rotation to the shaft 430a.
  • part 134 of Figure 12 can be replaced by a veil from the sleeve 431b, for example, by molding.
  • the sleeve 46 can be separate from the flange 431a and be secured to the motor housing 62, the bearing means 132 being of course eliminated, as well as the spacer 61.
  • the veil would carry the rotor while the sleeve 48 would carry the stator so that the rotor would surround the stator.
  • the rotor can extend radially beyond the friction linings 16 without increasing the radial size.
  • This veil is then installed axially between the reaction plate 4 and the load-bearing part. It advantageously has a sinuous shape and has at its outer periphery a shouldered sleeve 46.
  • the veil is rib. We can do the same in Figures 2 and 3, the carrier part being replaced by a veil while the sleeve 46 would be fixed to the motor housing 62, the spacer 61 being removed. The rotor can thus be carried by a veil secured to the flywheel to surround the stator. Said veil being generally C-shaped like that of FIGS. 2 and 3.
  • the support piece 134 is locally deformed by stamping to create a clearance for the buns 8.
  • release means are provided for the buns and consist either of a reduction in thickness of the reaction plate 4 or of deformations of the support piece 134.
  • a groove can be created in the reaction plate to make a clearance for the buns 8.
  • cooling means are provided to cool the machine.
  • the cooling means can be carried by the stator 5 in FIGS. 7 and 8, or by the flywheel by means of fins 1200, 1201 in FIG. 5 or fins integral with the rotor as described below.
  • the support piece or the veil acts as a heat shield. It will be noted that the arrangements in FIGS. 2, 3 and 12 are advantageous, since the flow of heat by conduction from the reaction plate 4 to the sleeve 46 follows a long path, which is advantageous for the electric machine 2.
  • the through holes 545 further improve cooling.
  • a heat transfer fluid can advantageously pass through the spacers 61 of FIGS. 1 to 6, 9 and 12 to cool the stator 5 surrounding the rotor 6.
  • the spacer 61 has an annular shape and is made of moldable material here. based on aluminum.
  • This spacer 61 has a cylindrical internal periphery 6000 on which is shrunk, as in FIG. 1, the packet of sheets 10.
  • FIG. 14 one sees one of the annular sheets of this packet 10 having recesses at its external periphery for the passage of weld beads 6001 making it possible to complete the joining of the packet sheets to the spacer 61 surrounding the drive wheel 13 with the exception of the reaction plate 4 thereof.
  • FIG. 13 differs from FIG. 1 only only by the spacer 61 so that the same reference signs will be used.
  • Each annular plate of the stator 5 has at its internal periphery notches dedicated to the winding of the stator.
  • the spacer 61 has in its thickness two facing faces defining a cooling chamber 6002 receiving a heat transfer fluid, here a cooling liquid.
  • a heat transfer fluid here a cooling liquid.
  • This liquid quickly dissipates the heat produced by the operation of the electric machine.
  • the stator transfers its heat to the internal peripheral 6000 of the spacer 61 by contact. Then, this heat is transmitted by forced convection from the internal device 6000 to the moving coolant, here in the cooling water circuit of the vehicle's combustion engine.
  • the cooling chamber 6002 is axially oblong, to cool the spacer and the stator as much as possible and, circumferentially the shape of a tortuous channel allowing heat to be dissipated well and bypassing the passage of the holes 6003 intended for the organs of fixing 64 (here screws) of the spacer 61 to the engine block 62 and to the clutch bell 14 between which the spacer 61 is interposed.
  • the clutch bell surrounds the clutch 3.
  • the chamber 6002 has circumferentially the shape of a cylindrical channel.
  • the external periphery 6004 of the spacer has a generally wavy shape with protuberances or protuberances 6005, 6006, 6007 and 6010 coming from molding.
  • the protrusions 6005 are each provided with a through hole 6003 of the fixing members 64. It will be noted that the holes 6003 can be arranged on either side of the chamber 6002 as visible in the figure. 14.
  • the boss-shaped protrusion 6006 carries the inlet and outlet conduits 6008 of the chamber 6002 of the cooling circuit of the alternator-starter.
  • conduits 6008 are connected to the cooling circuit of the internal combustion engine of the vehicle.
  • connection means can use hoses and / or waterproof quick couplings as described for example in document FR 2756608 so that the chamber 6002 can be pre-filled.
  • Each conduit 6008 is associated with an enlarged orifice 6009, respectively of inlet and outlet formed in the protrusion 6006.
  • angular indexing means are provided between the spacer and at least the engine block 62.
  • a protrusion with on either side of the chamber 6002 a hole 6003 for the passage of a fixing member 64, and a hole 6011 for the passage of an indexing pin carried for example by the block 62 and penetrating into the spacer.
  • the chamber 6002 is obtained by molding using a material which is removed after molding such as sand.
  • a material which is removed after molding such as sand.
  • 6012 means for removing the sand during the demolding operation. These means comprise at least one passage hole towards the external periphery of the spacer 12, this hole being closed in the end by a tight plug.
  • a connecting channel 6013 exists between the 2 orifices 6009 to allow the molding operation.
  • the protrusion 6007 is provided in the low position and internally has a bore 6014, here threaded opening into the chamber 6012.
  • This hole 6014 allows the screwing of a screw 6015 with the interposition of a seal 6016, here toric, between the head of the screw 6015 and the top of the protrusion 6007.
  • the bore 6014 is located in the lowest part of the chamber 6002.
  • the positioning of the bore 6014 in the lower position of the chamber 6002 also makes it possible to drain the cooling circuit of the internal combustion engine of the vehicle as well as the cooling circuit of the main radiator of the vehicle.
  • the hole 6014 must be placed at least lower than the lowest position of the cooling circuit of the internal combustion engine including the main cooling radiator.
  • the screw 6015 can be replaced by any other removable closure member such as a threaded plug, for example of the type of those generally provided for draining the vehicle oil circuit.
  • the hole 6014 can therefore be partially threaded.
  • the spacer 61 is therefore provided with means for emptying its chamber.
  • the spacer 61 fitted with its cooling chamber 6002 and internally carrying the stator 5 may be in one piece with the engine block 62 or with the clutch housing 14.
  • an axial offset exists between the external 121 and internal periphery 122 of the support 21.
  • the internal periphery 122 of the support 21 is axially offset relative to the external periphery 121 of the support 21 in direction opposite to the friction face 37, that is to say in the direction of the fixing screws 45.
  • a fold 123 connects the peripheries 121, 122.
  • the internal periphery 122 is fixed using the balusters 31 on the first guide washer 29, which thus enters the central recess 39 to reduce the axial size between the friction face 37 and the bottom of the casing 14.
  • the guide washers 29, 30 therefore penetrate inside of the first axial orientation portion 38 while a shoulder 141 connects the transverse shoulder 41 to the second annular axial orientation portion 42 of the recess 39.
  • the chamfer 141 is a deg chamfer agreeably which avoids interference between the balusters 31 and the shoulder 41, which makes it possible to reduce the axial dimensions without profoundly modifying the flywheel 13.
  • the torsion damper 20a is identical to that of FIG. 1 and is of the type from that described in document WO-96/14521 (FIG. 8). It thus has a bearing 124 having notches for the housing of springs 36 of low stiffness also mounted in notches made in the hub 15 internally grooved for connection in rotation with the driven shaft 12.
  • the springs 36 belong to a pre-damper located between the second guide washer 30 and the web 34 having at its internal periphery a female toothing to mesh with circumferential play with a male toothing which has the hub 15 at its external periphery.
  • Friction washers and washers with axial elasticity intervene between the first guide washer 29 and the web 34.
  • the parts 30, 34, 29 are provided with windows for mounting elastic members 35 of greater stiffness than the springs 36.
  • the elastic members 35 thus belong to the main damper.
  • the fingers 22 of the diaphragm 18,22 have at their internal periphery a portion 125 offset axially relative to the Belleville washer 18 of the diaphragm 18,24 so that one can reduce the axial size, the declutching stop 23 penetrating under the main part of the fingers of the diaphragm knowing that the portion 125 is connected to the main part of the fingers 22 by a section 126 in the form of an S.
  • the stop 23 therefore extends under the portion 126 knowing that the main part of the fingers 22 extends in the same plane as the Belleville washer 18.
  • the creation of the portion 125 is carried out thanks to the fact that the damper 20a penetrates more deeply into the recess central, the portion 125 being offset more axially in the direction of the damper 20a without interfering with the latter when the clutch is disengaged as visible in the upper part of FIG. 16.
  • This thus reduces again the axial size of the assembly 1 here having a declutching device 24 of the hydraulic type as in FIG. 3.
  • a rigid supply duct for connection of the inlet of supply 128 of the cavity 243 to a transmitter controlling the declutching device 24 of the concentric type because crossed by the driven shaft 12.
  • the duct has an L shape and is in two parts extending on either side of a passage 129 produced in the clutch housing 14.
  • the conduit 127 comprises an internal part extending transversely inside the housing 14 to engage the head of the supply inlet 128 to internal channel for connection with the cavity 243 and an external part extending outside the bell 14 perpendicular to the internal part.
  • the external axial orientation part has a connector for its connection to a pipe coming from the invisible transmitter. Thanks to the rigid conduit 127, it is also possible to reduce the axial space requirement because it is easier to mount the rigid conduit 127 in advance on the supply inlet 128 while subsequently having no risk of interference between the rigid conduit 127 and the cover 19 which can thus be very close to one another. This arrangement also facilitates a quick connection of the transmitter to the declutching device 24 because the connection of the pipe coming from the transmitter is made outside the bell 14.
  • the conduit 127 can equip the device clutch 24 of Figure 3.
  • the bottom of the bell 14 can be shaped to locally create a clearance 150 for the passage of the internal part of the rigid tube 127 so that the axial space between the bottom of the cover 19 and the bottom of the bell 14 is further reduced, which also makes it possible to reduce the axial size of the assembly 1.
  • the supply inlet 128 of the cavity 243 has a channel less inclined than that of FIG. 16.
  • the rest of the declutching device is identical to that of FIG. 16 and the same is true of the diaphragm 18, 22. It will nevertheless be noted that the section in S 126 is less accentuated. In this FIG.
  • the clutch 3 is equipped with a so-called wear take-up device 151 to compensate for the wear of the friction linings 16 and, to a lesser extent, the wear of the friction face 37 and the wear of the friction facing the pressure plate 17.
  • This wear take-up device keeps the diaphragm 18,22 in the same position when the clutch 3 is engaged, throughout the life of the clutch.
  • the travel of the declutching device 24 is therefore constant throughout the life of the clutch, which makes it possible to reduce the axial dimensions of the clutch 3, and therefore, the axial dimensions between the face of friction 37 and the bottom of the clutch housing 14.
  • the load exerted by the diaphragm 18,22 on the friction linings 16 is therefore substantially constant during the life of the clutch.
  • the support 21 can be planar.
  • the wear take-up device is of the type described in the document FR 2,753,503 to which reference will be made for more details.
  • This wear take-up device therefore comprises a cassette carried by the cover 19 having a set 152 of worm and ratchet wheel.
  • This assembly 152 is implanted by means of a local deformation 153 generally in the form of a U which the cover 19 has at its outer periphery.
  • the endless screw irreversibly meshes with a toothing carried by an intermediate piece 154 linked in rotation by tongues 155, of the type of tongues 25, to a ring of ramps 156, said ring of ramps being centered by the pressure plate 17 and having a fragmented bead (not referenced) for contact with the external periphery of the Belleville washer of the diaphragm 18, 24 pivotally mounted on the cover 19 using lugs 28 as in FIG. 1.
  • the pressure plate 17 has studs forming counter-ramps to cooperate with the ramps of the ramp ring 156.
  • the intermediate piece 154 is fixed axially in one direction by non-visible projections integral with the cover.
  • the intermediate piece 154 is wedged axially by virtue of the tongues 155.
  • the cassette has a control tongue 157 suitable for being operated by an actuator 158 consisting of a radial appendage presented by the Belleville washer 18 at its outer periphery.
  • the Cassette also has a recovery spring of the coil spring type acting on the assembly 152. In the event of wear of the friction linings 16, the recovery spring is banded, which after a certain number of declutching operations and d 'clutch is caused, by relaxing, to move the worm and rotate the intermediate piece assembly 154, ramp ring 156 to compensate for wear of the friction linings.
  • the arming of the wear take-up spring is carried out using the control tongue 157 operated by the appendix 158.
  • the ramp ring 156 may alternatively be in one piece with the intermediate piece 154 so that the presence of the tongues 155 is not compulsory.
  • the notches 171 can be made on both sides of the reaction plate as best seen in Figure 19.
  • the notches 171 are preferably made at the outer periphery of the reaction plate to be as efficient as possible.
  • the supply of material 172 is produced projecting from the face of the reaction plate 4, said face facing the cover 19.
  • the horizontal x, vertical Y and longitudinal Z axes have been identified to better show the orientation of the figure.
  • material 172 is preferably carried out at the tangential tabs 25 connecting the tabs 173 of the pressure plate 17 to the cover 19.
  • These tabs 25, distributed in several sets of tabs here superposed, have one of their ends fixed, here by riveting, to a tab 173 of the pressure plate and have their other end, fixed by riveting, to a range 174 belonging to the radial rim 175 which has on its external periphery the cover 19 here generally in the form of a hollow plate.
  • the areas 174 are offset axially with respect to fixing areas 176 which the flange 175 presents for fixing the cover 19 to the reaction plate 4 here, in known manner, using non-visible screws.
  • the supply of material 172 has an inclined face generally parallel to the tongues 25 and extends circumferentially between a tab 173 and a pad 174 as best seen in FIGS. 17 and 19.
  • the supply of material 172 can be maximum without increasing the axial size of the assembly 1.
  • the supply of material 172 is masked by the pads 174 and produced at the external periphery of the reaction plate 4 which is very effective. We can thus make all possible combinations so that the machine and the engine run in good conditions.
  • the unbalance at the level of the flywheel 13 makes it possible to balance the rotation of the heat engine. Thanks to the holes 170, the notches 171 and the material inputs 172, the imbalance of the crankshaft of the heat engine is counteracted.
  • the spacer 61 of Figure 1 can be in one piece with the stator 5 which avoids hooping of the sheets 10 of the stator 5 in the spacer 61 conventionally made of aluminum for weight reduction. It is therefore not necessary to provide means for anti-rotation of the sheets 10 relative to the spacer 61, in particular when the sheets 10 are fixed by shrinking onto the spacer 61.
  • the process of machining of holes for fixing screws 64 and centering holes is simplified by the fact that the spacer is in one piece with the sheet metal package 10.
  • the stator 5 is constituted by a packet of magnetic sheets constituted respectively by a first series of standard sheets 180 and by a second series of spacer sheets 181 of different external diameter.
  • These magnetic sheets here have the same configuration at their internal periphery and therefore have notches 182 dedicated to receiving the stator winding.
  • the notches 182 of each of the sheets are aligned so as to form axial grooves for receiving the stator winding.
  • the first series of sheets is cylindrical in shape at its outer periphery.
  • the second series of sheets 181, acting as a spacer extends radially projecting above the external periphery of the first series of sheets to form cooling fins 183, some of which are perforated at 184 for passage of the fixing screws.
  • FIG. 1 For fixing the clutch housing 14 on the engine block 62.
  • Two diametrically opposite holes 185 are made in some of the fins for passage of the centering pins carried by the engine block 62. These centering holes 185 also allow mounting, to index the spacer sheets of the second series 181 relative to each other.
  • 186 holes allowing the mounting of the connector or terminal block referenced 63 in Figure 1.
  • Such a connector 63 is better visible in Figure 25.
  • the fins 183 are divided into several annular sectors separated from each other by grooves 187, the bottom of which will receive the weld beads 188.
  • 189 we see an isolated tab with an opening 184. Said tab 189 is due to the configuration of the engine block and makes it possible to reach a distant fixing point.
  • the shape of the second series of sheets 181 depends on the applications, and in particular on the shape of the engine block and the clutch housing.
  • the second series of sheets 181 does not necessarily include fins, in particular when the drilling of fluid circulation of Figures 6 and 7 are produced therein.
  • the first series of sheets 180 extends axially on either side of the second series of sheets 181 in a symmetrical or non-symmetrical manner depending on the applications.
  • the first series of sheets 180 extends on one side of the second series of sheets 181 depending on the applications.
  • the sheets of the first series 181 have a standard shape and communicate with the grooves 187.
  • weld beads 188 the first and second series of sheets can be connected together.
  • the weld bead 188 extending over the entire axial total length of the series of sheets.
  • the weld seams 188 are replaced by a form of cooperative connection such as buttoning.
  • the standard sheets may have a different diameter on either side of the second series of sheets 181 so that two series of standard sheets are provided.
  • the welding operation is easy to perform thanks to the notches 182. It suffices for mounting to stack the sheets on a centralizer provided with at least one longitudinal axial bar on which a notch is threaded of each of the sheets.
  • welding using the beads 188 is easy to perform since the sheets have identical notches 182 and are angularly indexed with respect to each other.
  • the number of cords 188 depends on the applications, this number being less than or equal to the number of grooves 187. Thanks to the second series of sheets 181 forming fins 183, better heat dissipation is obtained compared to a spacer fitted with fins. and distinct from the sheets of the stator 5, because the thermal conduction is better due to the absence of a stator-spacer separation which separation creates a thermal resistance. In addition, as the spacer consists of sheets 181, here ferromagnetic, there is an increase in the average value of the thickness of the magnetic stator yoke.
  • stator-spacer monobloc assembly is less than that of a stator separate from the spacer because the fins can come as close as possible to the stator sheets due to the fact that the shrinking range of the stator sheets is eliminated.
  • cooling the stator and its chignons and of lowering the temperature inside the electric machine by fresh blown air and / or absorbed hot air is also possible.
  • the depth of the notches 182 can also be varied without degrading the performance of the electric machine. This has the advantage of facilitating automatic winding while reducing the height of the buns.
  • the thickness of the spacer is adjustable.
  • recesses 191 with contour 192 make it possible to follow the contours 192 of the ribs of the cylinder block as well as of the oil tank of the engine block referenced at 62 in FIGS. 1, 12 and 13 and in the lower part of FIG. 22.
  • the projections 194 of the engine block 62 penetrate into the recesses, the shape of which depends on the applications.
  • This geometry makes it possible to limit the axial size of the electric machine 2 and, at the very least, to remain in the same axial size as an electric machine mounted in cantilever as shown for example in FIG. 1 or in the Figure 16 so that we can increase the size of the electric machine and / or the clutch.
  • These recesses 191 are produced in a radial support flange 193 which replaces the support piece 134 in FIG. 6.
  • This flange 193 has for this purpose a skirt 190 for the bearing means and is in one piece with the spacer 61 which internally carries the stator 5.
  • This spacer 61 may be water cooled (as shown for example in Figure 13) or air cooled.
  • the spacer has fins 183 with holes 184 to 186 as in Figure 21, but the fins are here in one piece with the flange 193 of tortuous shape with a semi-toric portion 195 to create a housing for the rotor 6, the stator 5 and the sleeve 46.
  • the fins 183 are connected to the external periphery of this portion 195 whose internal periphery is connected to a rib veil 196 carrying the sleeve 432 and having the holes 545.
  • This radial flange 193 carries in its center, the bearing means 132 centered axially on the axis XX of the electric machine 2 and of the type of that of FIG. 6.
  • These bearing means 132 comprise at least one ball bearing 132 and can be mounted on the flange in two different ways. According to a first embodiment, the outer ring of this bearing 132 is simply adjusted loosely in the sleeve 432 to resume the tolerance intervals, while the inner ring is mounted tight, for example by shrinking, on the shaft 430 to grooved front end for engaging internal grooves in the mounting base 431 fixed by screws 345 to the engine crankshaft.
  • the two rings, external and internal of the bearings 132 are mounted tight, for example by shrinking, respectively on the sleeve 432 and on the shaft 430.
  • the centering of the electric machine 2 is carried out at bearings 132 which then act as a centering device and consequently, the spacer 61 no longer performs this centering function.
  • the fixing members 64 in this second tight fixing mode of the bearings, it is necessary, in order to avoid hyperstatism, that the fixing members 64, as shown in FIG. 1, can pass freely through the fixing holes 184 of the spacer 61 allowing positioning of the gearbox relative to the engine block. This configuration allows better control of the air gap.
  • the evacuation of the calories from the bearing means 132 will be carried out very advantageously by conduction by the flange 193 which forms a block with said bearings as well as by the holes 545 acting as ventilation holes.
  • the bearings 132 can be replaced by a plain bearing such as a self-lubricated bearing or by a double bearing rows of balls or by a single row ball bearing or by a needle bearing.
  • this spacer carrying the bearing means 132 makes it possible, compared to the machines mounted in cantilever, as shown for example in FIG. 1, to remarkably reduce the dynamic flutter coming from the crankshaft, thus improving the air gap control 7.
  • the radial flange 193 forming a single piece with the spacer 61 makes it possible to stiffen the latter.
  • this spacer made up of the flange 193 carrying the bearing means 132 makes it possible to obstruct the hole left free by the absence of the conventional starter.
  • the rotor 6 and the stator 5 can be axially longer compared to the embodiment of FIG. 6.
  • the bottom of the portion 195 serves as a support for a detection means 610 such as a speed or position sensor.
  • This detection means 610 is opposite a target 601 also called the encoder wheel.
  • This target is in the form of a ring having at its periphery a multiplicity of radial lugs 602 intended to pass in front of the detection means 610.
  • the target is here carried by the non-magnetic overmolded ring forming a squirrel cage, made of copper, of the rotor 6
  • the squirrel cage has an inclined face 603 carrying the tabs 602 of the coding wheel 601. The inclination of the face 603 can vary from 0 to 45 ° relative to a transverse plane of the machine.
  • the senor 610 and the encoder wheel are not parallel to the axis XX of the electric machine 2, which makes it possible to reduce the axial length of the latter.
  • a detection means in the form of a speed sensor.
  • the encoder wheel is carried by a non-magnetic support.
  • the support of the coding wheel is the flange of a fan of the rotor 6.
  • the coding wheel can be replaced by a film of ferro-magnetic paint between 5/100 mm and 1 mm deposited by printing or sprayed through a mask.
  • the coding wheel can be made from a magnetic adhesive film with indentations.
  • the support of the encoder wheel is non-magnetic.
  • this coding wheel can be carried by the fixing sleeve 43 of FIG. 1 as visible in FIGS. 24 and 25.
  • the sensor is then carried by a flange 611 fixed on the housing 604 of the connector 63.
  • This housing 604 carries in its upper part a support 605 of three electrical connection terminals 606, 607 and 608 allowing the connection to the outside of the three phase wires from the stator.
  • a fourth connection terminal not shown here, can be added to exit the neutral point from the stator. These terminals allow connection to power electronics.
  • the sleeve 46 has a hole 177 described above.
  • the cooling circuit of the spacer 61 can be entirely independent and in particular, independent of the cooling circuit of the internal combustion engine. This independence makes it possible to overcome the problems of connection to the cooling circuit of the internal combustion engine and also, to have a cooling temperature not dependent on that of the heat engine, which is of interest at each starting of the vehicle.
  • the torsional damper 20a can be turned over, the second guide washer then no longer penetrating into the recess 39, in particular in the embodiments of FIGS. 16 and 17 making it possible to reduce the axial size.
  • the spacer 61 is provided with cooling fins 183.
  • the torsional damper 20a penetrates inside the recess 39 identical to that of FIG. 1.
  • the engine block 62 is shown in more detail than in FIG. 1.
  • the clutch fork has not been shown in this figure and the clutch release bearing as well as the driven shaft 12 to better show the hub 15 and the guide tube 52. The same is true in FIG. 27.
  • the reaction plate 4 has at its outer periphery, radially above the friction linings 16, a portion 49 offset axially in the direction opposite to the stator 6, relative to the transverse part of the reaction plate 4.
  • the portion 49 extends radially above the friction linings 16.
  • ventilation fins 1202 are formed in the form of fan blades. These blades 1202 extend partially radially above the buns 8. Thus, a centrifugal type ventilation is produced.
  • a clearance 65 is made in the engine block 62.
  • This clearance 65 may correspond to the old location of a separate starter of the conventional type.
  • the fins 1202 extend radially above the air gap 7 and the same applies to the portion 49.
  • At least one opening 1204 is made in the bell 14 radially above the fins. In FIG. 28, the opening 1204 is deleted to be replaced by the opening 1205 for the passage of the clutch release fork.
  • the fins or blades 1202 are of radial orientation or in the form of a helix.
  • the air inlet is at the clearance 65 on the engine block 62 side.
  • the air outlet is either through the opening 1204 in FIG. 27, or through the opening 1205 in FIG. 28. air is made via the air gap 7.
  • the fins 1202 integral with the reaction plate 4, a fan is created allowing the air to be drawn through the electric machine 2 and to reject this air radially, creating a vacuum in its center.
  • the fan 4, 1202 is either of the centrifugal and / or helicocentrifugal type. This fan is sized to have a good thermal and acoustic compromise. It is the same in FIG. 5. This ventilation makes it possible to cool the rotor and the stator thanks to the air gap 7, the chignon 8, as well as the reaction plate 4 and therefore the friction linings 16 which increases the reliability. of the clutch 3.
  • the outlet takes place at the level of the reaction plate 4 in FIG. 27 or beyond the clutch 3 (FIG.
  • fins or ventilation blades 1206 are carried by the rotor 5 at at least one of its axial ends.
  • fins 1206 are provided on each axial end of the rotor 5.
  • the fins 1206 are integral with the squirrel cage.
  • An air inlet 1208 and an air outlet 1207, of tubular shape are carried locally by the spacer 61.
  • the inlet 1208 is located in the lower part of the spacer 61 and the outlet 1207 in the upper part of the spacer, so that thanks to the fins 1206, a tangential type ventilation is created inside the electric machine 2, the air penetrating into the conduit 1208 to exit through the conduit 1207.
  • the presence fins 1206 is not essential, ventilation can take place naturally between inlet 1208 and outlet 1207. This type of ventilation is not very noisy.
  • fan unit 1209 allowing forced circulation of air between the inlet 1208 and the outlet 1207.
  • This ventilation mode makes less noise at high speed and allows stop ventilation on demand. Thanks to the 1209 fan unit, we have good flow performance and ventilation allows to withstand high pressure drops.
  • another fan unit can be placed in the outlet duct 1207, either in addition to that placed at the inlet, or in a unique manner.
  • fan unit 1209 is meant here an electric motor assembly driving a turbine wheel. This assembly is fixed inside the conduit or conduits constituting the inlet 1208 and the outlet 1207.
  • a temperature sensor is placed in the vicinity of the reaction plate or the buns 8, being carried for example by the bell 14
  • This sensor controls the starting of the electric motor, and therefore of the turbine as a function of the temperature to create forced ventilation through a channel delimited axially by the engine block 62 and by the reaction plate 4 and radially, by the spacer 61, the bell 14 and a crown 1210 of the engine block 62.
  • the spacer 61 advantageously has the shape of the fin spacer in Figure 21 and therefore comprises a pack of magnetic sheets constituted by a first series of standard sheets and by a second series of spacer sheets of external diameter different, these sheets having the same configuration at their internal periphery.
  • each conduit 1207, 1208 comprising two half envelopes.
  • the end of each envelope has a half base 1207e, each half base has two holes 1207g for fixing, for example, using screws or rivets from the fan assembly.
  • FIG. 31 shows this conduit after locking between them the two half-envelopes.
  • the conduits can have a different shape as can be seen in FIGS. 32 and 33.
  • the two half envelopes 1207a and 1207b being interconnected by a fine hinge 1112 made of synthetic material, like the envelopes 1207a, 1207b.
  • the pins 1207c are carried by the half envelope 1207a and the holes 1207d by the half envelope 1207b.
  • Each half-envelope has an upper part 1213, here bent at least 90 degrees, of rounded shape, the free end of which ends in a grid 1211. After the two half-envelopes are closed, a complete grid is formed, used in particular to avoid the penetration of outside agents.
  • the fan unit is housed for example in the cavity 1214 formed in the lower part of each envelope.
  • the inlet 1208 and the air outlet 1207 are therefore made in the thickness of the spacer 62.
  • the external diameter of the stator is obtained as high as possible while having good mechanical strength of the spacer thanks to the fact that it is constituted by two series of sheets, namely a first series of standard sheets 180 for forming the stator proper and a second series of sheets 181 of different external diameter. It suffices to locally remove the fins from the second series of sheets 181 to accommodate the inlet 1208 and the outlet 1207.
  • the fresh air will come to lick the stator and the buns.
  • the input 1208 and the output 1207 of Figures 34 and 35 are oriented perpendicular to the direction of travel of the vehicle.
  • the entry 1208 and 1207 are not necessarily diametrically opposite as in the preceding figures.
  • the input 1208 can be located near the fan unit associated with the cooling of the vehicle's heat engine. Entrance 1208 is therefore far from pollution from the road and is well ventilated.
  • the inlet and the outlet are chosen to limit the zones of vortex fields which are not cooled. You can direct the input towards the output to obtain an amplifying effect. To avoid uncooled vortex zones, it is possible to envisage a tangential ventilation on two levels, the air inlets and outlets being placed side by side by being offset axially with respect to each other. It will be appreciated that it is advantageous for the input 1208 to be placed in front of the vehicle's fan unit because in the event of the engine overheating, the fan unit starts up, which corresponds to the cooling requirement of 1 'alternator-starter. This vehicle fan unit is started by a thermostat placed in the vehicle cooling circuit.
  • This thermostat can be used to control the start-up of a turbine fan assembly placed in the air inlet and / or outlet 1207, 1208.
  • These fins can be obtained from foundry, from overmoulding or be fixed by gluing, welding, screwing, shrinking, etc.
  • the static axial forces are minimized by the use of rings 1462 on which the spacer 61 can slide.
  • the length imposed between the crankcase 62 and the clutch housing is imposed by these centering rings 1462.
  • the fixing members 64 in the form of a screw, pass through the spacer 61 (FIG. 37) and connect the engine block 62 to the clutch bell 14 shouldered at its free end for bearing the heads of the fixing screws.
  • These screws pass through the centering rings 1462 themselves passing through a passage 461 of the spacer.
  • These rings 1463 are axially longer than the spacer 61, that is to say that they extend in axial projection out of the spacer 61 and therefore form a spacer or spacer between the engine block 62 and the bell d 'clutch 14. Rings of elastic material 1463, such as one elastomer, are placed at each end of the spacer. The spacer 61 can therefore slide axially along the rings 1462 so that the static forces are minimized.
  • the fixing members 64 may consist of bolts, the engine block then being supported, as visible in the upper part of FIG. 37.
  • the ring 1462 then being extended in 1464 to form a centering pin for the bell 14.
  • the casing 14 comprises at least one stage hole 1465 to receive respectively the pin 1464 and the head of the bolt screw.
  • the number of pins 1464 depends on the applications and in practice, a reduced number of rings 1462 is equipped with such pins 1464.
  • These rings 1462, acting as a spacer, are made of rigid material, such as steel for example .
  • the spacer 61 has at each of the axial ends of a passage 461 a widening in diameter for the housing of the elastic ring 1463.
  • the rings 1463 are therefore carried by the spacer.
  • the engine block 62 and the bell 14 are hollowed out locally for receiving the elastic rings 1463. These rings can be connected together to form a crown and thus create a seal.
  • these elastic rings are mounted individually around a centering ring 1462.
  • the centering pins 1467 are distinct from the ring 1462. These pins 1467 consist of sockets engaged on the heads of the bolt screws and are individually each engaged in a stage hole 1465 of the bell 14 and in a counterbore 1466 produced in the ring 1462. This counterbore 1466 is of course opposite the hole 1465 and is formed by means of an enlargement of the internal diameter of the ring 1462 at its free end concerned. Rings 1462 are used to filter vibrations.
  • the centering on the cylinder block side is done by the bearing means 132, the centering on the gearbox side by pins 1464 or 1467, and the axial forces are compensated for by the degree of axial freedom provided by the centering rings.
  • blind holes 170 in FIG. 17 can be connected to vertical channels opening out to the external periphery of the spacer 46 to allow easy release of the holes 170.
  • air inlets and outlets 1208, 1208 can consist of holes when the spacer is very thick.
  • the central recess 39 allows access to the heads of the fixing screws of the drive flywheel 13 on the output shaft 11 (crankshaft) of the heat engine vehicle.
  • the spacer 61 is axially shorter than the flywheel 13.
  • the load-bearing part, for example, the flange 193 has a hollow shape to partially house the stator and the rotor.
  • This bearing part can carry at its internal periphery the stator, the rotor, carried by the flywheel 13, then surrounding the stator. It is thus possible to reverse the structures in Figure 12.
  • the torsional damper may not enter the central recess.
  • the rotors of Figures 1 and following can be provided with at least one series of fins 1206.
  • the flywheel 13 of these figures can be provided with fins and or holes as in Figures 5 and 27. It is possible to combine this type of cooling with that of Figures 13, 14. All combinations are possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Operated Clutches (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

Le dispositif d'embrayage à friction comporte, d'une part, un volant d'entraînement présentant une extrémité avant destinée à être fixée au vilebrequin (11) d'un véhicule et une extrémité arrière en forme de plateau de réaction (4) de forme creuse avec un évidement central (39) délimité extérieurement par une face de friction (37), et d'autre part, un disque de friction (20), comprenant à sa périphérie externe au moins une garniture de friction (16) pour contact avec la face de friction (37) du plateau de réaction (4), ladite garniture de friction (16) étant solidaire d'un support (21) accouplé de manière élastique par l'intermédiaire d'un amortisseur de torsion (20a) à un moyeu (15) central destiné à être solidarisé en rotation à un arbre mené, l'amortisseur de torsion (20a) pénètre dans l'évidement central (39) du plateau de réaction (4) et le volant d'entraînement (13) porte entre ses extrémités avant et arrière le rotor (6) d'une machine électrique tournante (2) comprenant un stator fixe (5). Application: véhicule automobile.

Description

Embrayage à friction portant le rotor d'une machine électrique, notamment pour véhicule automobile .
L'invention se rapporte à un dispositif d'embrayage à friction muni d'un volant d'entraînement en rotation.
L'invention à plus particulièrement pour but, dans un véhicule automobile, de permettre l'arrêt et la remise en route automatique du moteur à combustion interne, lorsque le véhicule est à l'arrêt pour une faible durée - véhicule en attente à un feu rouge par exemple - de façon à économiser le carburant.
Un tel dispositif d'embrayage est connu de par le document FR-A- 2 604 229. Dans celui-ci, le dispositif d'embrayage se compose essentiellement d'un embrayage à friction classique et d'un embrayage auxiliaire à couplage électromagnétique, agencé entre un élément solidaire en rotation du plateau de réaction de l'embrayage à friction et un volant d'inertie monté tournant coaxialement à l'arbre menant, au moyen d'un roulement à billes monté sur une entretoise axiale intercalé entre le vilebrequin du moteur du véhicule et le plateau de réaction. En se rapportant à la figure 1 de ce document, on voit que ce dispositif d'embrayage est encombrant axialement à cause notamment de la courroie entraînée par un moteur électrique éloigné radialement de l'embrayage à friction en sorte que le dispositif est également encombrant radialement. En outre, l'embrayage électromagnétique fait appel à une plaque solidaire en rotation du plateau de réaction tout en étant mobile axialement par rapport à celui-ci.
La présente invention a donc pour objet de réduire l'encombrement axial et radial du dispositif d'embrayage tout en s' affranchissant de la présence d'un embrayage électromagnétique à plaque.
Selon l'invention, un dispositif d'embrayage sus-indiqué, comportant d'une part, un volant d'entraînement présentant à une extrémité avant pour sa fixation à un arbre menant et, une extrémité arrière en forme de plateau de réaction de forme creuse avec un évidement central délimité extérieurement par une face de friction, et d'autre part, un disque de friction comprenant au moins une garniture de friction pour contact avec la face de friction du plateau de réaction, ladite garniture étant solidaire d'un support accouplé de manière élastique, par l'intermédiaire d'un amortisseur de torsion, à un moyeu central destiné à être solidarisé en rotation à un arbre mené et caractérisé en ce que l'amortisseur de torsion pénètre dans l'évidement central du plateau de réaction et en ce que le volant d' entraînement porte entre ses extrémités avant et arrière le rotor d'une machine électrique tournante comprenant un stator fixe coaxial au rotor.
Grâce à l'invention, on réduit l'encombrement radial de l'ensemble machine électrique - embrayage à friction car la machine électrique est adjacente au plateau de réaction et est portée en partie par le volant d'entraînement.
Grâce à l'invention, la machine électrique est adjacente au bloc moteur tandis que le plateau de réaction et le reste de l'embrayage sont logés de manière habituelle à l'intérieur de la cloche d'embrayage. Cette disposition permet de modifier le moins possible le bloc moteur et la cloche d'embrayage d'un véhicule automobile classique tout en ayant un encombrement radial réduit du fait que la machine électrique est décalée axialement par rapport au disque de friction. Le reste de l'embrayage, notamment le mécanisme d'embrayage, reste inchangé. L'arbre d'entrée de la boîte de transmission peut être inchangé par rapport à celui d'un véhicule classique.
En variante, on peut allonger cet arbre afin de le centrer par l'intermédiaire du vilebrequin. Grâce à l'invention le volant d'entraînement porte le rotor d'une machine électrique ce qui permet de s'affranchir de la présence d' un embrayage électromagnétique à plaques et on réduit l'encombrement axial et radial, du fait notamment de l'absence d'une courroie de transmission. La machine électrique est conformée pour former un démarreur pour le moteur à combustion interne ainsi qu'un alternateur.
Le volant d'entraînement, dit volant moteur, présente une très grande inertie. On peut couper le moteur à combustion interne, ou moteur thermique, du véhicule au feu rouge par exemple. Le volant, et donc le moteur thermique peut être remis en route facilement et rapidement par la machine électrique jouant alors le rôle d'un démarreur. On peut ainsi économiser du carburant. La machine électrique forme donc un alterno- démarreur. Elle permet également de filtrer les vibrations et d' éviter un calage du moteur thermique en fonctionnant en tant que moteur électrique.
Pour plus de précision sur une telle machine, on se reportera au document WO 98/05882.
Dans une forme de réalisation, le support de la garniture de friction est accouplé de manière élastique au moyeu par l'intermédiaire d'un amortisseur de torsion qui comporte une première rondelle de guidage solidaire du support et d'une deuxième rondelle de guidage.
Un voile lié en rotation, éventuellement après rattrapage d'un jeu est intercalé entre les deux rondelles de guidage. La deuxième rondelle de guidage est implantée dans l'évidement central du plateau de réaction. Le support peut être distinct de la première rondelle de guidage en étant solidaire de celle-ci par exemple par des colonnettes reliant entre elles les deux rondelles de guidage en sorte que le support est accolé à la première rondelle de guidage . En variante, le support est d'un seul tenant avec la première rondelle de guidage.
Dans une forme de réalisation, le dispositif de débrayage de l'embrayage est du type concentrique pour réduire l'encombrement axial entre l'embrayage et le fond d'une cloche entourant l'embrayage à friction.
Avantageusement, des moyens de palier supplémentaires sont interposés entre le volant moteur et une pièce porteuse solidaire de l' entretoise portant de manière fixe le stator. Il en résulte la possibilité de garantir un entrefer précis et petit entre le stator et le rotor.
Ces moyens de palier peuvent consister en un palier lisse ou en un roulement à billes à au moins une rangée de billes. Ce roulement à billes peut être instrumenté pour mesurer notamment la vitesse de rotation du volant d'entraînement et donc du vilebrequin.
Cette pièce porteuse enveloppe en partie le stator et le rotor et forme donc avantageusement un bouclier évitant toute pollution dans la machine électrique. Cette pièce est d'un seul tenant ou est rapportée d'un seul tenant sur 1 ' entretoise .
Le volant d' entraînement peut être monobloc avec le plateau de réaction pour des raisons de coût. En variante, le volant d'entraînement est en plusieurs pièces ou parties et comporte, outre le plateau de réaction, un tube ou un socle ou un arbre pour sa fixation sur l'arbre menant .
Ainsi, les deux pièces du volant peuvent être de deux matières différentes pour ajuster l'inertie du volant.
En outre, on peut facilement équilibrer dynamiquement le volant, par exemple en enlevant de la matière à la périphérie externe du plateau de réaction.
De plus, les poussières engendrées par le frottement d'au moins une des garnitures de friction que comporte le dispositif d' embrayage à friction, ne risquent pas de polluer la machine électrique puisque celle-ci est située à l'avant du plateau de réaction.
De préférence le plateau de réaction présente une jupe à sa périphérie externe sur laquelle se fixe le couvercle d'un embrayage à friction.
Grâce à cette disposition, aucune poussière venant des garnitures de friction, ne viendra souiller la machine électrique . Ce résultat peut être obtenu également avec la pièce porteuse lorsque celle-ci est adjacente au plateau de réaction et enveloppe en partie le rotor et le stator.
Cette pièce constitue un écran thermique ménageant ainsi la machine électrique. On appréciera que la localisation de la deuxième rondelle de guidage, d'une manière générale de l'amortisseur de friction, dans l'évidement du plateau de réaction déplace le centre de gravité de l'ensemble constitué par la machine électrique et l'embrayage à friction vers l'arbre menant et donc vers la machine électrique. Grâce à cette disposition, des moyens de paliers peuvent être montés sur le volant d' entraînement et porter le stator de la machine par l'intermédiaire d'une pièce porteuse. Ainsi, ces moyens de palier seront proches du centre de gravité de l'ensemble et donc ménagés. L'équilibrage de l'ensemble peut être réalisé aisément en ajoutant ou en enlevant de la matière sur le plateau de réaction très proche du centre de gravité. On appréciera que l' amortisseur de torsion peut avoir la configuration souhaitée pour amortir les vibrations. Il peut être plus épais et comporter, outre le voile et les deux rondelles de guidage, des voiles auxiliaires pour augmenter le débattement angulaire entre le moyeu et la ou les garnitures de friction.
L'embrayage à friction peut atteindre en service des températures élevées en sorte qu'il y a lieu de prévoir des moyens de refroidissement pour ménager le dispositif d'embrayage à friction dans son ensemble et augmenter ainsi sa durée de vie. Ainsi avantageusement, le volant moteur porte des moyens de refroidissement de la machine électrique tels que des ailettes portées par le plateau de réaction.
Dans une autre forme de réalisation, des moyens de refroidissement sont prévus pour refroidir le stator de la machine électrique afin d'améliorer la durée de vie et les performances de celle-ci. On peut ainsi refroidir directement le stator à l'aide de perçages réalisés dans celui-ci.
Avantageusement, les perçages sont réalisés dans un ensemble monobloc entretoise - stator ce qui permet de conserver la résistance mécanique du stator.
Ainsi, en variante l' entretoise est d'un seul tenant avec le stator et l' ensemble constitué par deux séries de paquets de tôles, dont l'une forme entretoise.
En variante, on peut refroidir le stator par l'intermédiaire de entretoise externe.
Bien entendu, on peut combiner entre eux ces divers moyens de refroidissement par exemple, un fluide de refroidissement dans une forme de réalisation, traverse des perçages réalisés dans les tôles du stator pour pénétrer dans une chambre de refroidissement aménagée dans l'épaisseur de l' entretoise en combinaison avec des ailettes portée par le volant moteur.
Des moyens de vidange de la chambre de refroidissement de 1' entretoise sont implantés au point bas de celle-ci. De préférence, lesdits moyens de vidange sont implantés au point le plus bas de ladite chambre permettant ainsi de vidanger le circuit de refroidissement complet du moteur à combustion interne du véhicule. Dans une forme de réalisation la pièce porteuse du stator présente des evidements dans lesquels pénètrent des saillies du bloc moteur pour réduire l'encombrement.
L' entretoise, notamment lorsqu'elle est constituée par deux séries de paquet de tôles, permet de refroidir la machine électrique en portant un conduit d'entrée et de sortie permettant une circulation d'air à l'intérieur de la machine électrique et ce, entre le conduit d'entrée et de sortie.
L'un des conduits peut être équipé d'un ensemble moteur électrique - roue de turbine permettant une circulation forcée d'air.
L'entretoise n'a pas besoin d'être centrée par rapport au bloc moteur lorsque cette entretoise est solidaire d'une pièce porteuse servant à supporter les moyens de palier précités. Dans ce cas, la cloche d'embrayage est centrée par l'entretoise, par exemple, au moyen d'une bague de centrage traversant l'entretoise et portée par le bloc moteur.
On voit qu'il est possible de refroidir la machine électrique sans toucher à la cloche d'embrayage ou au bloc moteur, notamment lorsque l'entretoise porte un conduit d'entrée et de sortie.
Le volant d'entraînement permet également de rajouter de la matière aisément et donc d'équilibrer le balourd du vilebrequin, notamment lorsque le moteur thermique est à trois cylindres.
L'entretoise permet donc de réaliser un grand nombre de fonctions supplémentaires. On peut réduire également l'encombrement axial en dotant l'embrayage à friction d'un mécanisme à rattrapage d'usure.
La description qui va suivre illustre l'invention en regard des dessins annexés dans lesquels: - la figure 1 est une vue en coupe axiale d'un ensemble machine électrique-embrayage à friction selon l'invention.
- les figures 2 et 3 sont des vues analogues à la figure 1 pour 2 autres exemples de réalisation. - les figures 4 à 6 sont des vues analogues à la figure 1 sans la partie centrale du disque de friction pour respectivement un quatrième, un cinquième et un sixième exemple de réalisation. - La figure ~ est une vue partielle d'un dispositif de refroidissement du stator.
- la figure S est une vue analogue à la figure 7 dans un autre exemple de réalisation.
- la figure 9 est une vue en coupe axiale d'un volant moteur analogue a celui ce la figure 1 équipée d'une platine amovible de montage .
- la figure 12 est une demie vue schématique du dispositif de débrayage de type concentrique équipé d'un capteur d'effort.
- la figure 11 est une vue de la courbe caractéristique du diaphragme ramené au niveau de la butée de débrayage.
- la figure 12 est une vue analogue à la figure 6 dans un autre exemple de réalisation.
- la figure 13 est une vue en coupe analogue à la figure 1, selon la ligne C-C de la figure 14 pour encore un autre exemple de réalisation.
- la figure 14 est une vue en coupe selon la ligne A-A de la figure 13.
- la figure 15 est une vue en coupe selon la ligne B-B de la figure 14. - les figures 16 et 17 sont des vues analogues à la figure 1 pour encore deux autres exemples de réalisation.
- la figure 18 est une vue en perspective de l'ensemble machine électrique - embrayage sans le rotor et le stator de la machine électrique. - la figure 19 est une vue en perspective du volant seul de la figure 18.
- la figure 20 est une vue en perspective, avec arrachement local, montrant le mécanisme d'embrayage de la figure 17.
- la figure 21 est une vue en perspective d'une entretoise monobloc avec les tôles du stator pour encore un autre exemple de réalisation.
- la figure 22 est une vue selon la flèche 22 de la figure 23 du flasque de support seul. - la figure 23 est une vue analogue à la figure 1 pour encore un autre exemple de réalisation.
- la figure 24 est une vue en perspective d'un volant seul de l'ensemble machine électrique - embrayage à friction et équipé d'une roue codeuse formant cible pour moyen de détection.
- la figure 25 est une vue en perspective du volant de la figure 24 équipé de son entretoise.
- la figure 26 est une vue analogue à la figure 1 avec des vis de fixation entre cuir et chair pour la fixation du stator et du rotor.
- la figure 27 est une vue analogue à la figure 1 avec des entrées et sorties d'air pour la ventilation.
- la figure 28 est une vue analogue à la figure 27 dans un autre mode de réalisation. - la figure 29 est une vue analogue à la figure 27 dans encore un autre mode de réalisation. les figures 29, 30, 31, 32 et 33 sont des vues en perspective des conduits d'entrée et de sortie d'air.
- la figure 34 est une vue en coupe selon la ligne A-A de la figure 13 dans un autre mode de réalisation.
- la figure 35 est une vue analogue à la figure 27 dans encore un autre mode de réalisation.
- la figure 36 est une vue analogue à la figure 34 dans encore un autre mode de réalisation. - la figure 37 est une vue analogue à la figure 23 dans encore un autre mode de réalisation.
- la figure 38 est une vue en coupe d'un mode de fixation de 1 ' entretoise.
Dans les figures, les éléments communs seront affectés des mêmes numéros de référence.
Dans ces figures, est représenté un ensemble 1 de coupure et de démarrage d'un moteur à combustion interne.
Cet ensemble 1 comporte une machine électrique tournante 2 et un embrayage à friction 3 comportant un plateau de réaction 4 en matière moulable, ici de la fonte.
En variante, le plateau de réaction est en matière moulable à base d'aluminium et présente un revêtement pour coopérer avec une garniture de friction 16 décrite ci-après. La machine électrique 2 comporte un stator 5 et un rotor 6 montés de manières coaxiales, et radialement l'un au dessus de l'autre avec formation d'un entrefer 7 entre le stator 5 et le rotor 6. Dans les figures, le stator 5 entoure le rotor 6, mais bien entendu, en variante, le rotor 6 peut entourer le stator 5 doté d' enroulements de fils électriques dont on voit en 8 les extrémités appelés chignons.
Le rotor 6 et le stator 5 présentent chacun un paquet de tôles respectivement 9 et 10, ici en fer doux.
En outre, le rotor 6 est doté d'une cage d'écureuil 60 en cuivre ou en aluminium en sorte que la machine électrique est du type asynchrone.
Les tôles sont de forme annulaire et sont par exemple isolées par oxydation au contact les unes avec les autres. En variante, des isolants séparent les tôles les unes des autres.
Les paquets de tôles 9 et 10 forment une couronne d'orientation axiale.
De manière connue, les tôles du stator 5 présentent des encoches pour le passage des enroulements ou bobinages précités.
Ces enroulements sont reliés via un connecteur 63 à un bloc ou boîtier électronique de commande et de puissance piloté par un calculateur recevant des informations provenant de capteurs mesurant notamment les vitesses de rotation d'un arbre menant 11, constitué par l'arbre de sortie, dit vilebrequin, d'un moteur de combustion interne et d'un arbre mené 12 formant l'arbre d'entrée d'un boite de transmission de mouvement, ainsi que d'un capteur de déplacement, mesurant par exemple le déplacement de la butée d'embrayage décrite ci-après. L'ensemble 1 est interposé entre les arbres 11 et 12.
L' embrayage 3 constitue un organe de coupure et de démarrage. Lorsque l'embrayage est engagé (embrayé), le couple moteur est transmis de l'arbre menant 11 à l'arbre mené 12. Lorsque l'embrayage est désengagé (débrayé), il se produit une coupure en sorte que l'arbre mené 12 n'est plus entraîné par l'arbre menant 11. Le plateau de réaction 4 constitue l'extrémité arrière d'un volant d'entraînement 13 de forme annulaire, présentant à l'avant, une face avant fixée sur l'extrémité de l'arbre menant 11.
Suivant une caractéristique, le volant 13, appelé usuellement volant moteur, porte le rotor 6 de la machine électrique 2 entre ses extrémités avant et arrière.
L' ensemble volant 13 - rotor 6 - embrayage 3 constitue un dispositif d' embrayage à friction; le volant 13 constituant l'élément d'entrée de l'embrayage 3 et le support du rotor 6 de la machine électrique 2. La machine électrique 2 permet ici de démarrer le moteur à combustion interne. Pour cela, on fait passer dans le bobinage du stator un courant électrique asservi de fréquence et d' intensité déterminées par un contrôle électronique par le calculateur recevant des informations sur la condition de démarrage du véhicule. Dans ce cas, la machine électrique 2 tourne plus vite qu'un démarreur classique.
La machine électrique 2 constitue également un alternateur lorsque le moteur à combustion interne tourne. Cette machine ici du type asynchrone formant moteur électrique. Elle peut être de tout type, à savoir par exemple, à flux radial ou axial, asynchrone, synchrone à aimants dans l'entrefer ou enterrés, à commutation de flux à aimants seuls ou hybrides - désexcitation par bobinage au stator - à griffes sans balais, à réluctance variable, à simple et double excitation, à flux transversal à effet Vernier. La machine permet de filtrer les vibrations engendrées par ledit moteur à combustion interne. Elle permet d' accélérer le moteur thermique et d' éviter que celui-ci ne cale. Elle permet de freiner le moteur et de délivrer une puissance plus importante que les alternateurs conventionnels. La machine électrique 2 permet également de faciliter le changement de vitesse par synchronisation des arbres 11 et 12, la machine freinant ou accélérant l'arbre 11.
Suivant une autre caractéristique, la machine 2 permet d'arrêter le moteur à combustion interne au feu rouge et de le redémarrer ensuite en économisant du carburant du fait de la grande inertie du volant 13 équipé du rotor 6. Par exemple, le point mort étant engagé et clé de contact en position véhicule roulant, on coupe le moteur après deux secondes et on le remet en route dès que l'on change de rapport.
Pour plus de précision sur une telle machine, on se reportera au document WO 98/05882. Ainsi, à la figure 1, on voit en 40, une couronne dentée aménagée à la périphérie externe du plateau de réaction 4 et associée à un capteur radial, non visible sur toutes les figures, pour notamment capter la vitesse de rotation de la machine électrique 2. Ici, s' agissant d'une application pour véhicule automobile, l'arbre rr.enant 11 est le vilebrequin du moteur à combustion interne du véhicule, tandis que l'arbre mené 12 est l'arbre d'entrée de la boite de vitesse solidaire d'une cloche d'embrayage 14, également appelée carter d'embrayage, formant carter fixe. L'arbre d'entrée 12 traverse le fond de la cloche 14 entourant en majeure partie l'embrayage 3 monté rotatif autour d'un axe X-X aligné avec celui des arbres 11 et 12. Le rotor 6 est plus épais que le plateau de réaction 4 formant avec le volant 13 l'élément d'entrée de l'embrayage à friction, et donc du dispositif d'embrayage à friction. L'élément de sortie de cet embrayage est constitué par au moins un moyeu central 15 cannelé intérieurement pour sa liaison en rotation avec l'arbre mené 12 cannelé extérieurement pour se faire à son extrémité. Le moyeu 15 est accouplé de manière rigide ou élastique avec au moins une garniture de friction 16 destinée à être serrée entre le plateau de réaction 4 et un plateau de pression 17 sous l'action de moyens embrayeurs 18 à action axiale agissant sur le plateau de pression 17 et prenant appui sur un couvercle 19 solidaire du plateau de réaction 4, ici par vissage. La garniture de friction 16 et le moyeu 15 appartiennent respectivement à la périphérie externe et à la périphérie interne d'un disque de friction 20 comportant au moins un support 21 portant la garniture de friction 16 et accouplé au moyeu 15. Le support 21 peut être noyé dans la garniture 16. De préférence, deux garnitures de friction 16 sont prévues en étant fixées de part et d'autre du support 21 axialement élastiques au niveau des garnitures 16 pour serrage progressif des garnitures 16 entre les plateaux 4, 17 et créer une assistance lors du désengagement de l'embrayage.
Un tel support est décrit par exemple dans le document FR-A- 2 693 778. La fixation des garnitures 16 peut donc être réalisée par rivetage ; en variante, les garnitures sont fixées par collage sur la zone centrale de portée d'une pale tripode ce qui permet de réduire l'épaisseur des garnitures de friction et donc l'encombrement axial.
Cela permet également de diminuer l'inertie du disque 20 et d'user plus les garnitures 16.
Les faces de friction de ou des garnitures 16 sont donc normalement serrées entre les plateaux 4, 17 en sorte que l'embrayage est normalement engagé. Pour désengager l'embrayage, il faut donc prévoir des moyens debrayeurs 22 pour contrecarrer à volonté l'action des moyens embrayeurs 18 afin de libérer la ou les garnitures de friction 16 et désengager l'embrayage. Ces moyens debrayeurs 22 sont commandés par une butée de débrayage 23 agissant en poussée ou par traction sur l'extrémité interne des moyens debrayeurs 22. La butée appartient à un dispositif de débrayage 24.
L'embrayage à friction 3 comporte donc un plateau de réaction 4, éventuellement en 2 parties pour formation d'un volant amortisseur ou d'un volant flexible, qui est calé en rotation sur le vilebrequin 11 et qui supporte à sa périphérie externe, ici par des vis, un couvercle 19 auquel est attaché, avec mobilité axiale, au moins un plateau de pression 17; plusieurs plateaux 17 et plusieurs disques de friction 20 pouvant être prévu comme visible par exemple à la figure 4 du document FR A 1 280 746. Le plateau de pression 17 est solidaire en rotation du couvercle 19 et donc du plateau de réaction 4, tout en pouvant se déplacer par rapport à celui-ci par l'intermédiaire de languettes axialement élastiques 25, ici tangentielles, mieux visibles dans le document FR A 1 280 746 et à la figure 18. Des moyens embrayeurs 18 agissent entre le fond du couvercle 19, ici de forme creuse, et le plateau de pression 17. Ces moyens embrayeurs prennent appui sur le fond du couvercle 19 et sur un bossage non référencé du plateau de pression pour serrer les garnitures de friction 16 entre les plateaux 4 et 17.
Les moyens debrayeurs 22 peuvent consister en des leviers de débrayage associés à des ressorts hélicoïdaux comme décrits dans le document FR A 1 280 746. En variante, il peut s'agir de deux rondelles Belleville montées en séries et soumises à l'action de leviers de débrayage formant les moyens debrayeurs.
Dans les figures représentées, les moyens embrayeurs 18 et debrayeurs 22 appartiennent à une même pièce de forme annulaire appelée diaphragme, présentant une partie périphérique de forme annulaire 18 formant rondelle Belleville prolongée par une partie centrale fragmentée en doigts radiaux 22 par des fentes borgnes, non visibles sur les figures, dont les fonds forment des orifices élargis à la périphérie interne de la rondelle Belleville 18 du diaphragme.
Dans les figures, le diaphragme 18, 22, est monté de manière pivotante à la périphérie interne de sa rondelle Belleville 18 à l'aide d'un appui primaire 26 porté par le fond du couvercle 19 et d'un appui secondaire 27 porté par des moyens d'assemblage 28 traversant les orifices élargis du diaphragme. Ici l'appui primaire 26 est formé par emboutissage du fond du couvercle tandis que l'appui secondaire 27 appartient à une couronne jonc porté par des pattes 28 traversant les orifices élargis du diaphragme 18, 22 et formant les moyens d'assemblages précités, comme décrits dans le document FR A 2 585 424 auquel on se reportera pour plus de précision.
En variante, les moyens d'assemblage peuvent comporter des pattes ou des colonnettes comme décrits dans les figures 7 à 15 du document FR A 2 456 877. Ainsi, en position embrayage engagé, le diaphragme prend appui sur l'appui primaire 26 et sur le bossage, que présente dorsalement le plateau de pression 17. Pour désengager l'embrayage, on agit à l'aide de la butée d'embrayage 23, dans les figures représentées en poussant, sur les extrémités internes des doigts du diaphragme pour faire pivoter celui-ci, qui prend alors appui sur l'appui secondaire 27 formé à la périphérie externe de la couronne jonc. Lors de cette opération, la charge exercée par le diaphragme
18, 22 sur le plateau de pression 17 diminue, puis s'annule, les languettes 25 exerçant une action de rappel du plateau en direction du fond du couvercle 19 de forme creuse afin de libérer les garnitures de friction 16.
Dans ces figures, la périphérie externe de la rondelle Belleville 18 prend appui sur le bossage du plateau de pression. En variante, on inverse les structures en sorte que la périphérie externe de la rondelle Belleville 18 prend appui sur le couvercle 19, tandis que la périphérie interne de la rondelle Belleville 18 prend appui sur le bossage du plateau de pression 17, comme visible par exemple dans le document FR-A 2 606 477, l'embrayage étant alors du type tiré, la butée 23 agissant alors en tirant sur l'embrayage pour désengager celui-ci. A la lumière de ce dernier document, on voit que l'embrayage 3 peut être équipé d'un dispositif de rattrapage d'usure pour compenser l'usure des garnitures de friction 16. Le plateau de pression 17, grâce aux languettes 25, forme de manière unitaire un sous-ensemble avec le couvercle 19 et le diaphragme 18, 22. Ce sous-ensemble est appelé mécanisme d'embrayage et est destiné à être fixé ici par vissage sur le plateau de réaction 4 comme visible dans les figures ; le couvercle 19 ayant globalement la forme d' une assiette creuse avec un rebord radial externe de fixation au plateau 4 et un fond troué centralement . Le disque de friction 20 est dans les figures du type élastique c'est-à-dire, que le support 21 est accouplé de manière élastique au moyeu 15 par l'intermédiaire d'un amortisseur de torsion 20a ici à organes élastiques 35, 36 à action circonférentielle sous forme de ressorts à boudins. Plus précisément, le support 21 est accolé à une première rondelle de guidage 29 solidaire d'une deuxième rondelle de guidage 30 par des colonnettes 31. Ces colonnettes 31 servent également ici à la fixation du support 21 en forme de disque par exemple du type de celui décrit dans le document FR-A 2 693 778. Les colonnettes 31 traversent axialement des ouvertures 32 formées dans un voile 34. La première 29 et la deuxième rondelle de guidage 30 sont disposées de part et d'autre du voile 34 solidaire en rotation du moyeu 15, ici après rattrapage d'un jeu angulaire. Ce jeu angulaire est déterminé par des moyens d' engrenement à jeu intervenant entre la périphérie du voile interne 34 et la périphérie externe du moyeu 15, des dents du voile 34 pénétrant à jeu dans des échancrures du moyeu 15 et vis-versa. Les ressorts 35, à action circonférentielle sont montés dans des fenêtres non référencées pratiquées en vis à vis dans le voile 34 et les deux rondelles de guidage 29, 30. Des ressorts 36, de plus faible raideur que les ressorts 35, accouplent élastiquement le voile 34 au moyeu 15 comme décrit dans le document FR-A 2 726 618 auquel on se reportera pour plus de précision. Ce document décrit également les moyens élastiques à action axiale et les moyen de frottement intervenant entre la première rondelle de guidage 29 et le voile 34.
Entre le voile 34 et la deuxième rondelle de guidage 30, il est prévu un palier intervenant entre le moyeu 15 et la deuxième rondelle de guidage 30, ledit palier étant solidaire en rotation du voile 34 et servant de logement au ressort 36. Bien entendu, le disque 20 peut avoir une autre forme, par exemple celle décrite dans les figures 1 à 4 du document FR-A-2693778. Le voile 34 peut être solidaire du moyeu 15.
Ainsi qu'il ressort à l'évidence de la description, le plateau de réaction 4 présente dorsalement une face de friction 37 pour contact avec la garniture 16 adjacente du disque de friction 20. Les garnitures de friction 16 sont destinées à être serrées entre cette face de friction 37 et celle que présente en vis à vis le plateau de pression 17 Cette face de friction 37 délimite intérieurement un évidement central 39 en sorte que le volant 13 est centralement de forme creuse. Suivant une caractéristique, la deuxième rondelle de guidage 30 pénètre à l'intérieur de cet évidemment 39 , radialement en dessous de la face 37, pour réduction de l'encombrement axial. Ainsi, la deuxième rondelle de guidage 30 est plus éloignée du plateau de pression 17 et du couvercle 19 que ne l'est la première rondelle de guidage 29. Cette rondelle 30 est implantée dans l'évidement central 39 décalé axialement par rapport à la face de friction 37 en direction de la face avant du volant 13.
Le disque de friction 20 présente donc à sa périphérie externe au moins une garniture de friction 16 solidaire d'un support 21 accouplée élastiquement par un amortisseur de torsion 20a à un moyeu central 15. L'amortisseur 20a pénètre dans l'évidement 39 délimité extérieurement par la face de friction 37. Ξ II en résulte que la face de friction 37 est décalée axialement par rapport au rotor 6
Dans le mode de réalisation de la figure 1, le dispositif de débrayage 24 comporte une fourchette de débrayage 50 montée de manière pivotante sur le fond de la cloche 14 à l'aide d'une
II rotule 51 solidaire de la cloche 14. L'extrémité supérieure de la fourchette est conformée pour réception de l'extrémité d'un câble relié à la pédale de débrayage. La commande de la butée de débrayage 23 est ainsi du type manuel, cette buté de débrayage 23 comportant, de manière connue, un roulement à le billes dont l'une des bagues est tournante et est conformée pour contact local avec les extrémités internes des doigts 22 du diaphragme 18, 22. L'autre bague du roulement est fixe et est en appui contre le flasque que présente un manchon 53 soumis à l'action des doigts internes de la fourchette de débrayage 50.
21 Le manchon 53 coulisse le long d'un tube guide 52 solidaire de la cloche 14. Le tube guide 52 est traversé par l'arbre 12 venant en prise avec le moyeu 15. Dans cette figure on voit les différentes inclinaisons de la fourchette 50 lors de l'opération de débrayage, le diaphragme visible 18, 22 étant globalement
25 plan en position embrayage engagé. Dans la partie haute de la figure 1, l'embrayage est engagé, tandis que dans la partie basse, l'embrayage est désengagé. Ici, la bague interne du roulement de la butée 23 est tournante tandis que la bague externe dudit roulement est fixe et présente un rebord radial au
30 contact avec le flasque transversal du manchon 53 sous l'action d' une rondelle élastique à action axiale sollicitant le rebord de la bague externe au contact dudit flasque. La butée peut ainsi se déplacer radialement par rapport au flasque et est du type auto-centreuse, un jeu radial existant entre le rebord
35 radial de la bague externe et le manchon 53.
Grâce à l' invention, la butée 23 peut venir au plus près de la première rondelle de guidage 29 ce qui permet de réduire l'encombrement axial. L'évidement 39 de la figure 1 est étage intérieurement en forme d'escalier. Ainsi, cet évidement est délimité extérieurement par une première portion annulaire d'orientation axiale 38 se raccordant à l'arrière à la face de friction 37 et à l'avant à un épaulement annulaire d'orientation radiale 41. Une deuxième portion annulaire d'orientation axiale 42 se raccorde à l'arrière au dit épaulement 41 et à l'avant à la face arrière transversale d'une douille de fixation 43 dont la périphérie interne est en contact intime avec la périphérie externe du vilebrequin 11. La deuxième portion 42 a donc un diamètre inférieur à celui de la première portion 38. Le volant 13 est monobloc et présente donc à l'avant à sa périphérie interne la douille 43 dotée de trous 44 pour le passage de vis de fixation 45 du volant 13 au vilebrequin 11. La face avant de la douille 43 est en contact avec le vilebrequin 11. L'extrémité avant du volant. 13 est donc destinée à être fixée à l'arbre 11.
Les vis 45 sont logées à l'intérieur de la deuxième portion 42. Radialement au dessus de la douille de fixation 43, le volant 13 est épaissi pour formation d'un manchon 46 d'orientation axiale. Ce manchon est délimité intérieurement par la portion 42 et la douille 43 et extérieurement par une portée cylindrique 47 servant au montage du paquet de tôles 9 du rotor 6.
Ainsi le plateau de réaction 4 s'étend en saillie radiale par rapport à la périphérie interne du rotor 6 et est décalée axialement par rapport au rotor 6.
L'ensemble douille 43 - manchon 46 a en section une forme d'équerre, la douille 43 s' étendant radialement vers l'axe X-X et constituant le fond troué centralement délimitant 1' évidemment 39.
La portée de montage 47 est délimitée à l'arrière par un épaulement 48. Radialement, au delà du manchon 46, le volant d'entraînement 13 est prolongé par le plateau de réaction 4 doté à sa périphérie de la couronne dentée 40. Ce plateau de réaction 4 est d' épaisseur décroissante en allant de sa périphérie interne à sa périphérie externe en sorte qu'un jeu axial existe entre la cage d' écureuil 60 et le plateau de réaction 4 ainsi qu' entre les chignons 8 et le plateau de réaction 4. L' épaisseur décroissante du plateau de réaction 4 est déterminée pour éviter toute interférence avec le rotor 5 et le stator 6. Le plateau 4 est donc doté d' une échancrure de dégagement pour les chignons 8. Le paquet de tôles 9 du rotor 6 est monté par frettage sur la portée de montage 47 d'orientation axiale jusqu'à venir en butée contre l' épaulement 48. Ainsi on chauffe le paquet de tôles 9 qui, se refroidissent ultérieurement pour fixation sur la portée 47. En variante le paquet de tôles 9 est fixé par un dispositif de rainurage et de clavettes sur la portée 47.
En variante la fixation du paquet de tôles 9 est réalisé par des cannelures intervenant entre le paquet de tôles 9 et la portée 47. En variante, le paquet de tôles est soudé sur la portée 47.
En variante, la fixation du paquet de tôles 9 est réalisé au moyen de vis traversant le paquet de tôles 9 et l' épaulement 48 pour se visser dans le plateau de réaction 4, les têtes de vis prenant appui sur une bague de fixation en contact avec l'extrémité avant du paquet de tôles avant.
En variante, le manchon 46 présente à sa périphérie externe une portée tronconique tandis que le paquet de tôles 9 présente à sa périphérie interne une portée complémentaire. La fixation du paquet de tôles 9 à donc lieu par emmanchement conique. En variante le paquet de tôles 9 est monté sur la portée 47 et est en contact à l'une de ses extrémités avec l' épaulement 48. A son autre extrémité, ce paquet est fixé par des vis montées entre cuir et chair (figure 26) entre la portée 47 et la périphérie interne du paquet de tôles 9. Dans tous les cas, le rotor 6 est solidaire, tant axialement qu'en rotation, du volant 13 d'un seul tenant à la figure 1 ; ledit volant 13 étant obtenu par moulage ici de fonte en sorte que ce volant 13 avec son rotor 6 présente une grande inertie. En outre, on peut réaliser un indexage angulaire du rotor 6 par rapport au volant 13.
L' extrémité arrière du volant 13 est constituée par le plateau de réaction 4 délimité par la face de friction 37. Le stator 5 est fixé de manière analogue au rotor 6 sur une entretoise 61. Par exemple la périphérie externe du rotor 5 est fixée sur la périphérie interne de l'entretoise 61 par frettage en variante par des cannelures, en variante par soudage, en variante par des vis montées entre cuir et chair de la même manière que le paquet de tôles 9, etc ... et ce de manière indexée angulairement . Pour plus de précisions sur le montage à vis entre cuir et chair, on se reportera à la figure 26 où on voit en 160 et 161 les vis. L'entretoise 61 a une forme annulaire et est échancrée pour passage du connecteur 63 relié aux extrémités des enroulements. Un autre dispositif de connexion venant du dispositif de commande précité, formant également dispositif de puissance, se branche sur le connecteur 63, mieux visible à la figure 25, pour alimenter les enroulements du rotor 5.
L'entretoise 61 est interposée entre l'extrémité libre de la cloche 14 et le bloc moteur 62. La cloche 14 présente à son extrémité libre un rebord radial pour appui des têtes de vis de fixation 64 traversant l'entretoise 61 pour se fixer sur le bloc moteur 62.
L'entretoise 61 est dotée d'ailettes de refroidissement mieux visibles en 183 dans les figures 21 et 22.
On notera qu' à la figure 1 la deuxième rondelle de guidage 30 est logée dans l'espace délimité par le tronçon 38 et 1' épaulement 41, seul l'extrémité interne de la seconde rondelle de guidage 30 pénètre un peu plus profondément à l'intérieur de l'évidement étage 39.
Bien entendu, en variante comme représenté dans la figure 2, le volant d'entraînement 13 est en plusieurs pièces ou parties, à savoir, un plateau de réaction 4 de forme creuse et une entretoise annulaire 130, 131, 46 globalement à section en forme de U. Cette entretoise est interposée entre le plateau 4 et le vilebrequin 11 en étant centré par ledit vilebrequin. L'entretoise 130, 131, 46 centre à son extrémité arrière le plateau de réaction 4. Pour se faire, l'entretoise est évidée à l'arrière. La première branche du U, à savoir la branche interne ou inférieure la plus proche de l'axe X-X, est globalement une forme de tube interne 131 doté de perçages pour le passage d'une première série de vis 145 de fixation, dont les têtes prennent appui sur le plateau de réaction et dont le corps traverse le plateau de réaction 4 et le tube interne 131 pour se visser dans le vilebrequin. Le tube interne 131 présente une deuxième série de perçage de diamètre plus petit que celui de la première série de perçage pour vissage d'une deuxième série de vis 245 fixant le plateau de réaction 4 à l'entretoise 130.
La branche externe 46 ou supérieure de l'entretoise 130, 131, 46 est constituée par le manchon 46 servant au montage du rotor 6 de la même manière qu'à la figure 1.
Le manchon est donc délimité par un épaulement 248 qui est ici tourné vers le plateau de réaction 4. Le fond 130 du U de l'entretoise 130, 131, 46 s'étend globalement transversalement et relie entre elles les deux branches 46, 131 de forme annulaire et d'orientation axiale.
L'entretoise 130, 131, 46 comporte une branche supérieure de support de rotor et une branche inférieure de fixation constituant l'entretoise proprement dite. Le tube interne 131 porte à sa périphérie externe des moyens de palier 132. Ces moyens de palier consistent par exemple en un roulement à billes en une rangée de billes en variante à deux rangées de billes.
En variante les moyens de paliers 132 comportent deux roulements à billes.
La bague interne du ou des roulements à billes est donc emmanchée sur la périphérie interne du tube interne 131 tandis que la bague externe du ou des roulements à billes 132 est emmanchée à l'intérieur d'une jupe annulaire 133 appartenant à la périphérie d'une pièce porteuse 134 portant à sa périphérie externe l'entretoise 61 sur laquelle se fixe le stator 5 de la machine électrique 2 de la même manière qu' à la figure 1.
La pièce porteuse 134 épouse globalement la forme du plateau de réaction 4 en étant à distance de celui-ci de manière adjacente. Cette pièce à une forme tortueuse à cause de la présence des chignons 8.
La jupe 133, d'orientation axiale pénètre dans la cavité délimitée par les branches 46, 131 de l'entretoise 130, 131, 46. La pièce porteuse 134 est d'un seul tenant avec la jupe 133 et l'entretoise 131 en étant venue de moulage avec celle-ci. Cette pièce 134 est par exemple à base d'aluminium. Il en est de même de l'entretoise 130, 131, 46. La pièce porteuse 134 enveloppe en partie le stator 6 et le rotor 5 et forme donc un masque en forme de bouclier évitant toute pollution de la machine électrique 2. La pièce 134 est ici d'un seul tenant avec l'entretoise 61.
Le plateau de réaction 4 est en fonte comme à la figure 1. Ainsi, on peut modifier l'inertie du volant d'entraînement attendu que l'entretoise 130, 131, 46 est plus légère qu'une pièce en fonte. Bien entendu, si désiré, cette entretoise peut être en fonte. Le plateau de réaction présente comme à la figure 1 une face de friction 37 délimitée intérieurement par une première portion annulaire d'orientation axiale 38.
Le plateau de réaction 4 présente à sa périphérie interne un anneau 140 globalement d'orientation axiale raccordé par une portion inclinée intérieurement de forme tronconique 142 au plateau de réaction 4 proprement dit. Les séries de vis 145, 245 présentent des têtes prenant appui sur l'anneau 140. Grâce à la portion tronconique 142 on peut loger la deuxième rondelle de guidage 30 de l'amortisseur de torsion 20a à l'intérieur de l'évidement central du plateau de réaction 4 délimité par l'anneau 140 et les portions 142, 38. Grâce à la portion inclinée 142 on évite toute interférence entre le disque de friction 20 et les têtes des vis 145, 245.
On appréciera que par rapport à la figure 1, on a un entrefer 7 précis et petit grâce aux moyens de palier 132 et à la pièce porteuse 134. Ainsi, l'entrefer entre le rotor et le stator demeure indépendant et insensible à toutes les perturbations liées au fonctionnement du moteur thermique: battement, vibrations, jeux
Si l' hyperstatisme est trop important, on privilégiera la solution exposée à la figure 5 ou dans les figures 23, 37 et 38.
Grâce aux moyens de palier 132, l'entretoise est centrée par le vilebrequin 11 en sorte que la présence de pions de centrage entre le bloc moteur du véhicule et l'entretoise n'est pas indispensable; des moyens de centrage existant entre la cloche 14 et l'entretoise 61.
Grâce aux deux séries de vis 145, 245, on peut fabriquer dans un premier lieu de fabrication la machine 2 équipée de l'entretoise 130, 131, 46. Puis, fixer le plateau de réaction à l'aide des vis 145 et fixer en final le volant 13 sur le vilebrequin à l'aide des vis 145. Ensuite, après insertion du disque 20, on fixe le mécanisme d'embrayage 17, 25, 19, 18, 24.
En variante, et afin d'augmenter l'inertie du mécanisme d'embrayage 17, 18, 19, 24, 25, on pourra utiliser un couvercle 19 en fonte.
Bien entendu, comme représenté dans la figure 3, on peut encore réduire l'encombrement axial en supprimant la fourchette de débrayage 50. Dans ce cas, le dispositif de débrayage 24 est du type concentrique car il est traversé centralement par l'arbre mené 12. Le dispositif de débrayage 24 peut être du type de commande à câble comme décrit dans US-5 , 141, 091. Dans ce cas, la butée débrayage 23 est portée par une pièce menée fixe en rotation et mobile en translation par exemple au moyens de languettes élastiques reliant un flasque de la pièce menée à un boîtier solidaire de la cloche 14. La pièce menée est en relation de vis-écrou avec une pièce menante fixe en translation et mobile en rotation par exemple par l'intermédiaire d'un roulement à billes intervenant entre le boîtier fixe et la pièce menante qui porte à sa périphérie une poulie pour l'enroulement du câble de commande manoeuvré par la pédale d'embrayage.
En variante comme représentée à la figure 3, le dispositif de débrayage 24 est du type hydraulique comme décrit dans le document FR-A-2 , 730, 532. Dans ce cas, la butée de débrayage 23 est portée par un piston 241 mobile axialement par rapport au tube guide 52 solidaire par exemple par sertissage d'un corps extérieur 242 fixé sur la cloche d'embrayage 14 par exemple à l'aide d'oreilles comme décrit dans le document FR-A-2 , 730, 532. Le corps extérieur 242 entoure le tube guide et définit avec celui-ci une cavité annulaire borgne 243 d'orientation axiale, dont le fond est constitué par un rebord radial que présente le tube guide à son extrémité arrière. Ce rebord radial est par exemple fixé par sertissage sur le corps extérieur 242 doté d'une entrée d'alimentation de fluide de commande, tel que de l'huile, reliée à un perçage non visible débouchant dans la cavité 243 au niveau de son fond. L'entrée d'alimentation est mieux visible dans les figures 16 et 17 et présente un canal débouchant. Le piston 241 pénètre dans la cavité 243 et délimite de manière étanche avec celle-ci une chambre à volume variable. Un ressort de précharge 244 agit entre le corps 242 et l'extrémité avant du piston 241 pour maintenir la butée 23 en appui constant contre les extrémités des doigts 22 du diaphragme 18,22. Il est également prévu un soufflet de protection 246 entourant le ressort 244. Par rapport à la figure 1, la bague extérieure 23 du roulement est tournante tandis que la bague intérieure du roulement est fixe. Pour plus de précision on se reportera au document FR-A-2, 730, 532. On voit que la distance entre le fond de la cloche 14 et le couvercle 19 est réduite du fait de l'absence fourchette 50. En effet, dans les figures 1 et 2 il est nécessaire de prévoir un espace supplémentaire pour les débattements angulaires de la fourchette. Le dispositif de débrayage 24 forme ainsi le récepteur hydraulique d'une commande hydraulique dont l'émetteur est actionné soit manuellement par la pédale de débrayage soit de manière semi-automatique par un actionneur à moteur électrique commandé selon des programmes prédéterminés de changement de rapport de vitesse par un calculateur électronique recevant des informations notamment de capteurs mesurant la vitesse de rotation des arbres 11 et 12, ainsi que le déplacement de la butée de débrayage 23 du plateau 17.
Ces capteurs peuvent être utilisés pour commander la machine électrique 2. Bien entendu en variante, le plateau de réaction 4 présente une couronne 40 comme à la figure 1 permettant à un capteur de mesurer la vitesse de rotation de l'arbre menant 11. Le capteur peut être du type optique pour ne pas être perturbé par les phénomènes magnétiques.
Les capteurs peuvent être placés en tout endroit approprié et servent donc à la fois à la commande de la machine électrique 2 et à la commande de l' actionneur à moteur électrique précité, le calculateur électronique étant commun à la machine électrique 2 et à l' actionneur à moteur électrique. Il ressort à l'évidence que la machine électrique permet ainsi de synchroniser les vitesses de rotations des arbres 11 et 12 en accélérant ou en freinant l'arbre 11, en sorte qu'il est possible d'utiliser des boîtes de vitesses sans dispositif de synchronisation avec un dispositif de crabotage déplaçable avec un faible effort. Il en résulte que la boîte de vitesses peut être commandée par des actionneurs à faible effort pour le passage et/ou la sélection des rapports.
Le changement de rapport de vitesse est ainsi plus aisé et plus rapide car la vitesse des deux arbres est synchronisée.
Le véhicule étant: arrêté au feu rouge, point-mort engagé, le déplacement de la butée, ainsi que le changement de rapport de vitesses fournissent, via des capteurs, des informations pour redémarrer le moteur thermique . Bien entendu, comme visible à la figure 4 le manchon 46 peut être d'un seul tenant avec le plateau de réaction 4 et s'étendre axialement en direction du vilebrequin 11. Les moyens de palier 132 interviennent entre la périphérie interne du manchon 46 et la périphérie externe de la jupe 133 de la pièce porteuse 134 portant le stator 5 tandis que le moyeu 46 porte à sa périphérie externe de manière précitée le rotor 6. On voit que par rapport à la figure 3, on a inversé les structures, la pièce porteuse 134 étant retournée pour s'étendre au voisinage du carter 62 du moteur thermique. On notera que dans les figures 2 à 4, les moyens de paliers 132 s'étendent au dessus des vis de fixation 145. Dans cette figure 4 l'entretoise 230 consiste en un arbre traversant l'ouverture centrale de l'anneau 140 par un nez de centrage, à l'avant, l'arbre 230 est évidé en 231 pour son centrage par le vilebrequin 11. Comme à la figure 3, la deuxième rondelle de guidage, non représentée, pénètre dans l'évidement central du plateau de pression délimité par l'anneau 140 et les portions 142, 38. On notera que la portion 38 est plus courte que dans les figures 2 et 3 tandis que la portion 142 est plus inclinée. Dans les figures 2 et 3, la pièce porteuse 134 fait cache- poussières et écran thermique car elle s'étend au voisinage immédiat du plateau de réaction 4 et enveloppe le rotor et le stator. Ainsi, les particules notamment métalliques provenant des garnitures de friction 16 du disque de friction 20 ne risquent pas de polluer la machine électrique 2, garantissant ainsi un bon rendement.
L'évidement central 39 du volant 13 est donc constitué par l'évidement central du plateau de réaction 4 délimité extérieurement par la face de friction 37 de contact avec la garniture 16.
A la figure 4, le plateau de réaction présente à sa périphérie externe une jupe annulaire d'orientation axiale 144 entourant les garnitures de friction 16 en sorte que les poussières des garnitures 16 ne viendront pas polluer la machine électrique 2.
En outre, il est prévu une gorge 148 à la périphérie interne de la jupe 144 pour recueillir les poussières. Cette gorge se raccorde à la face de friction 37 du plateau de réaction par un flanc vertical et présente en section un fond en arc de cercle prolongé par un flanc incliné. Bien entendu, la gorge 148 peut avoir tout autre forme. Néanmoins on appréciera que le flanc incliné dirige les impuretés vers le plateau de pression 17. Les impuretés sont centrifugées dans la gorge 148 constituant une gorge anti-pollution.
Bien entendu, à la figure 1, le plateau 4 peut être doté d'une telle jupe 144 à gorge 148.
Toutes les combinaisons sont possibles. On notera qu'à la figure 4 l'entretoise 61 est distincte de la pièce porteuse 134.
La pièce porteuse 131 est fixée directement sur le bloc moteur 62 à l'aide de vis de fixation 164 traversant à jeu radial des perçages 165 réalisés dans des oreilles 166 que présente la pièce porteuse au delà de sa périphérie externe, du fait de la présence des moyens de palier 132.
L' entretoise 61 est distincte de la pièce porteuse qui porte à sa périphérie externe une jupe annulaire 261 pour le montage du stator 5, par exemple par frettage de manière décrite ci- dessus . L'entretoise 61 est évidée pour le passage des oreilles 166 réparties par exemple de manière régulière à 120 degrés. Le nombre des oreilles dépend des applications. Bien entendu, les moyens de palier 132 peuvent être implantés sur la même circonférence que les vis de fixation 245 comme visible à la figure 5. Dans ce cas, le manchon 46 appartient toujours au plateau de réaction dont l'anneau interne 140 • est élargi à sa base pour présenter des cannelures et engrener avec un arbre 330 présentant des oreilles 331 pour sa fixation à l'aide des vis 245 le vilebrequin 11. L'extrémité arrière de l'arbre est cannelée pour coopérer avec les cannelures de l'anneau 140. Ainsi, le plateau de réaction 4 est lié en rotation à l'arbre 330. L'anneau 140 est calé axialement par une rondelle 333 fixée par des vis 334 en bout de l'arbre 330. De l'autre coté, l'anneau 140 est calé axialement par la bague interne du roulement à billes constituant les moyens de palier 132. Ce roulement est intercalé axialement entre l'anneau 140 et les têtes des vis 245. La pièce porteuse 134 du stator 5 porte des entretoises 61 et a une forme beaucoup plus droite que dans la figure 4. On notera dans les figures 4 et 5 que l'on peut nervurer les pièces porteuses 134 pour rigidifier celles-ci ce qui n'est pas aisé dans les figures 2 et 3. A la figure 5, les nervures sont d'amplitudes plus importantes qu'à la figure 4 On notera que les organes de fixation 64 sont montés de manière élastique dans les trous de passage 461 de l'entretoise 61, pour éviter l' hyperstatisme lors des débattements du vilebrequin, plus précisément, les organes de fixation 64 sont entourés par une goupille fendue 462 elle-même entourée par deux coussinets épaulés 463, par exemple en élastomère tel que du caoutchouc, placés aux extrémités des trous de passage 461. Un certain degré de liberté existe donc entre les organes de fixation 64, ici en forme de goujon et la semelle 61 en sorte que la pièce porteuse n'est pas bridée et est centrée sur l'arbre 330 par le roulement à billes 132 avec création d'un entrefer petit et précis. Bien entendu, ce type de montage élastique est applicable dans les figures 1 à 3.
Bien entendu, on notera que l'évidement central du plateau de réaction 4 dans lequel se loge la deuxième rondelle de guidage 30 du disque de friction 20 est délimitée ici par l'anneau 140 et la portion annulaire d'orientation axiale 38. Ainsi, l'amortisseur de torsion 20a peut être plus épais. On peut même monter deux amortisseurs de torsion en parallèle comme décrit par exemple dans le document US-A-3 101 600. On peut ainsi obtenir de grands débattements angulaires. Dans la figure 6 dans laquelle on a inversé les structure par rapport à la structure de la figure 5 en sorte que la liaison à cannelure est située à l'avant et non à l'arrière, plus précisément, dans cette réalisation, l'anneau 140 s'étend radialement un peu plus radialement vers l'intérieur en direction de l'axe X-X pour présenter centralement un arbre 430 dont l'extrémité avant est cannelée pour venir en prise avec des cannelures que présente intérieurement un socle de fixation 431 fixé par des vis 345 au vilebrequin 11 du moteur. La pièce porteuse 134 est solidaire des entretoises 61 comme à la figure 5 avec un montage élastique entre les entretoises et les organes de fixation 64. Les moyens de palier 132 sont implantés axialement entre l'anneau 140 et le socle 431 et consistent en deux roulements à billes. La pièce porteuse 134 présente une douille 432 à sa périphérie interne par laquelle elle est montée sur les bagues externes des roulements 132 avec une collerette intermédiaire 433 pour séparer les deux roulements à billes 132. La douille 432 est dotée de perçages 545 radialement au dessus des roulement 132 pour accès à l'aide d'outils aux têtes des vis de fixations 345. Ainsi, les outils de fixation des vis traversent la pièce porteuse 134 et l'anneau 140. Bien entendu, comme décrit dans le document FR-A 2 718 208, les outils de fixation peuvent traverser également le disque de friction. Pour ce faire, il suffit de doter le disque de friction d'un préamortisseur surélevé. On notera que dans les figures 2 et 3, le pré-amortisseur de torsion est du type de celui décrit dans le document FR A 2 718 208. Ce pré-amortisseur comporte donc un voile fixé sur le moyeu 15 et deux rondelles de guidage disposées de part et d' autre du voile et assemblées ensemble par clipsage à l'aide de pattes servant à l'entraînement en rotation du pré-amortisseur avec le voile 34.
Bien entendu, par rapport à ce document FR-A2718208, il faut monter la deuxième rondelle de guidage dans l' evidement du plateau de réaction, c' est à dire réaliser un retournement du disque de friction 20.
Dans ce cas, il faut bien entendu prévoir des trous de passage dans le diaphragme pour le passage de ou des outils de fixation des vis, sachant que les dits outils de fixation peuvent appartenir à une visseuse ou être des outils individuels .
Les vis ou d'autres organes de fixation peuvent être montés de manière imperdable dans la machine. Pour ce faire, les têtes de vis de fixation peuvent avoir un diamètre supérieur à celui des trous de passage précités dans le diaphragme, dans le disque de friction.
Dans ce cas, on peut former un module comprenant le plateau de réaction 4, le disque de friction 20 et le mécanisme d'embrayage comprenant de manière unitaire le plateau 17, le diaphragme 18, 22 et le couvercle 19.
Ce module unitaire peut être équilibré aisément, c'est la raison pour laquelle on voit en 1000 à la figure 6 un chanfrein d' équilibrage réalisé à la périphérie externe du plateau de réaction 4. Ainsi, on peut enlever plus ou moins de matière aux endroits voulus pour équilibrer dynamiquement ici l'ensemble embrayage à friction-machine électrique car, à la figure 6, on peut réaliser l'ensemble machine électrique 2 - embrayage à friction 3, socle 431 puis visser en final à l'aide des vis 345 l'ensemble sur le vilebrequin 11.
Bien entendu, le ou les outils de fixation des vis 345 peuvent ne pas traverser la friction et le mécanisme d'embrayage. Dans ce cas, on peut réaliser un sous-ensemble volant d' entraînement 13 - machine électrique 2 et socle 431 que l'on peut équilibrer dynamiquement puis monter sur le vilebrequin 11 à l'aide des vis 345. Ensuite, on met en place le disque de friction 20 puis on fixe le mécanisme d'embrayage sachant que celui-ci peut être équilibré dynamiquement de manière connue, par exemple en perçant aux endroits voulus le plateau de pression 17 et ou ajouter des rivets d'équilibrages fixés par exemple sur le rebord périphérique du couvercle.
On notera qu'à la figure 6, le socle 431 est calé axialement, d'une part, à l'arrière sur l'arbre 430 par le roulement à billes 132 le plus éloigné de l'anneau 140 et , d'autre part, à l'avant, sur l'arbre 430, par une rondelle 434 maintenue en place par un circlips 435 engagé dans l'extrémité libre de l'arbre 430. D'une manière générale, à la figure 6, on peut réaliser au moins un sous-ensemble machine électrique 2 - volant d'entraînement 13- socle 431 que l'on monte en une seule fois sur le vilebrequin. Ce sous-ensemble en variante pouvant comprendre de manière précitée l'embrayage à friction 3. Dans toutes les figures, on peut réaliser des équilibrages de l'ensemble machine électrique 2 - volant d'entraînement 13 par enlèvement de matière par exemple sur le plateau de réaction, ou sur l'entretoise 130, 131, 46 ou sur l'arbre 330 ou d'une manière générale, sur tout autre pièce tournante autour de l'axe X-X et solidaire en rotation de l'un des arbres 11 et 12, par exemple, on peut enlever de la matière sur le plateau de pression 17.
Bien entendu, on peut réaliser l'inverse, c'est à dire ajouter de la matière aux endroits désirés sur toute pièce tournante autour de l'axe X-X est solidaire en rotation de l'un des arbres 11 ou 12. On peut par exemple, rajouter des rivets d'équilibrage sur le couvercle 19, sur le plateau de réaction 4, sur l'entretoise 130, 131 et 46, sur le manchon 46.
L'équilibrage se fait donc par ajout ou enlèvement de masse sur le volant 13 ou sur le mécanisme d'embrayage 17, 18, 22, 19 et on peut corriger le balourd du moteur thermique, notamment pour les trois cylindres en enlevant ou en rajoutant de la matière .
L'équilibrage peut donc conduire à la présence d'un balourd sur l'ensemble machine électrique 2 - embrayage à friction 3 pour corriger le balourd du moteur thermique. L'ensemble moteur thermique - dispositif d'embrayage à friction 2, 3 doté de la machine électrique est donc équilibré.
D'une manière générale, on notera que les moyens de paliers 132 des figures 2 à 6 sont agencés pour être rapproché du centre de gravité des parties tournantes c'est à dire de l'ensemble 1. Ainsi, à la figure 6, les moyens de palier constitués par les deux roulements à billes, sont implantés radialement en dessous du rotor 6 et du stator 5, et ce, de manière globalement symétrique par rapport à l'axe de symétrie radiale du rotor et du stator. Dans cette figure, ces moyens de palier sont implantés radialement en dessous de la face de friction 37 du plateau de réaction 4.
On notera que dans cette figure 6, le rotor 6 est fixé à sa périphérie interne radialement en dessous des garnitures de friction.
Il en est de même dans les autres figures. Bien entendu en variante, le rotor 6 peut être fixé radialement au niveau des garnitures 16, entre la périphérie interne et externe de celle- ci. Il suffit à la figure 2 par exemple d'augmenter la taille radiale du fond 130.
Dans les figures 2 et 3, les moyens de paliers 132 sont implantés radialement en dessous du rotor 5 et du stator 6 en étant décalé axialement vers le plateau de réaction par rapport à l'axe de symétrie radial du rotor 6 et du stator 5.
A la figure 4, les moyens de palier 132 sont toujours implantés radialement en dessous du rotor 6 et du stator 5 en étant décalé axialement en direction opposée au plateau de réaction 4 par rapport à l'axe de symétrie radiale du rotor 6 et du stator 5.
Il en est de même à la figure 5 dans laquelle ce décalage est plus marqué, les moyens de paliers 132 étant globalement décalés axialement par rapport au rotor 6 et ce, en direction opposée au plateau de réaction 4.
Tout ceci dépend de la forme de l' evidement central du volant 13 et donc du plateau de réaction 4.
On appréciera que la localisation de la deuxième rondelle de guidage 30 à l'intérieur de l'évidement central du plateau de réaction 4 décale le centre de gravité de l'ensemble 1 en direction des moyens de palier 132
La forme creuse du plateau de réaction 4 est bénéfique car la périphérie interne du plateau de réaction 4 est plus proche du rotor 6 que ne l'est la face de friction 37 dudit plateau en sorte que l'un déplace le centre de gravité de l'ensemble en direction de la machine électrique. Bien entendu, on peut enlever de la matière au niveau de la face avant du plateau de réaction 4 tournée vers les chignons 8.
C est pour cette raison que le plateau de réaction 4 des figure
1 et 4 présente une épaisseur variable à sa périphérie externe et ce en regard des chignons 8.
Ainsi, les chignons pénètrent dans une échancrure ou évidemment du volant moteur. En variante, on peut prévoir des evidements dans le carter 62 du moteur thermique.
Bien entendu, le volant 13 peut être conformé pour repérer la vitesse et ou la position du rotor 6 à l'aide de un ou plusieurs capteurs. Par exemple, la couronne dentée 40 peut être associée à deux capteurs, l'un radial, l'autre, d'orientation axial pour repérer la vitesse et ou la position du rotor.
Ces capteurs peuvent être portés par la cloche 14. En variante, au moins un de ces capteurs est porté par le stator 5 ou la pièce porteuse 134. L'un de ces capteurs, par exemple d'orientation radiale, sert au contrôle d'injection du moteur à combustion interne et l'autre, par exemple d'orientation axiale, sert au contrôle de la machine électrique qui peut être de tout type.
En variante, le capteur d'informations appartient aux moyens de palier 132. Ces moyens de palier consistent alors avantageusement en un ou des roulements à billes instrumentés pour formation d'un capteur de vitesse de rotation du volant d'entraînement. Les fils de ces capteurs à roulement à billes instrumentés sont alors avantageusement supportés par la pièce porteuse 134 pour rejoindre le connecteur 63 de la machine électrique 2.
Le roulement à billes peut être du type de celui décrit dans le document FR-A 2,599,794 et comporter un capteur de champ magnétique porté par la bague fixe du roulement et au moins un anneau aimanté multi-pôles porté par la bague tournante avec présence d'un entrefer.
Il est donc avantageux que ces capteurs soient portés par la partie fixe de la machine électrique 2.
Bien entendu, suivant les machines électriques, les capteurs peuvent aussi être utilisés pour la mesure de la vitesse ou de la position du rotor. Bien entendu, on peut prévoir des dispositions pour refroidir la machine électrique 2.
Par exemple, à la figure 5, on prévoit des ailettes 1200 sur la face frontale du plateau de réaction 4 et ce, en vis à vis du rotor 6. Ces ailettes sont implantées en dessus des chignons 8 en étant avantageusement inclinés à la manière des ailettes d' un ventilateur.
Bien entendu, en variante, comme visible en 1201 à la figure
5, les ailettes sont issues de la portion 38. Avantageusement, des trous sont réalisés dans la pièce porteuse et dans l'anneau
140 et dans la portion 38 du plateau de réaction 4 pour réaliser une circulation d'air comme visible en pointillés à la figure 5.
En variante, l'arbre porte des ailettes référencées en 1203. Bien entendu, les ailettes peuvent être réalisées à la périphérie externe 431 du socle 430 comme représenté à la figure 6.
Dans les figures 2 et 3, les ailettes pourraient être issues du fond 130 de l'entretoise 130, 131,46. Les ailettes peuvent être formées aux extrémitées du paquet de tôles 9. Les ailettes peuvent être sur le carter de la machine. Le refroidissement, s'il se fait par air, peut être forcé (reflux d'air de l'extérieur dans la machine ou inversement) ou par ventilation interne, ou par convection naturelle.
En variante, comme visible dans les figures 7 et 8, on peut refroidir le stator 8 à l'aide d'un fluide caloporteur.
Ainsi, à la figure 7, les tôles 10 du stator 6 sont percées.
Le paquet de tôles 10 percées est alors délimité avantageusement par deux flasques 10a, 10b ayant une forme permettant de véhiculer le fluide caloporteur d'une face à 1' autre du stator en passant par les trous réalisés dans le stator .
En variante comme représenté à la figure 8, les flasques d'extrémité sont supprimées et remplacées, par exemple, par des tuyaux coudés 10c surmoulés, d'aluminium par exemple. Avantageusement, l'entretoise est du type de celle de la figure 21, le même paquet de tôles faisant entretoise. Dans ce cas, on prévoit deux séries de tôles identiques à leur périphérie interne, les perçages étant réalisés dans la série de tôles la plus externe.
Avantageusement, les chignons sont aussi surmoulés en protégeant leurs vernis par le badigeonnage d'une résine chargée d'éléments caloporteurs .
Bien entendu, pour commander la plupart des machines électriques, il faut indexer la position du rotor par rapport au stator ainsi que la position des capteurs par rapport au rotor.
Dans la figure 9, on a représenté le volant 13 de la figure 1 qui forme un sous-ensemble avec la machine 2. Ce sous-ensemble est livré tel que représenté à la figure 9.
Lorsque la machine électrique 2 travaille en mode moteur, notamment en mode démarreur de manière précitée, il faut connaître la position et/ou la vitesse du rotor par rapport au stator.
Ainsi, il est fait appel à une platine amovible 3000 portant au moins une pige 3001, saillante axialement et pénétrant à centrage dans un trou 3002 réalisé dans le paquet de tôle 10 du stator 6 au delà des chignons 8. La platine est fixée sur le plateau de réaction 4 à l'aide de vis 3003 se vissant chacune dans un taraudage 3004 du plateau de réaction 4 et prenant appui par leur tête sur la face arrière de la platine 3000.
Grâce à la pige 3001, on indexe en rotation le stator 6 par rapport au rotor 5 sachant que la platine 3000 se visse à l'aide de vis 3005 dans des trous taraudés 3006 que présente l'entretoise 61 portant de manière précitée le paquet de tôles
10 du stator 6.
En outre, la platine 3000 porte des cales 3007 fixées sur la face arrière de la platine 3000 à l'aide de vis 3008. Les cales 3007 traversent un passage 3009 de la platine et un passage 3010 du plateau de réaction 4 pour venir s'interposer entre la périphérie interne du stator 5 et la périphérie externe du rotor 6.
Ainsi, on maintient de manière rigide l'entrefer 7 tout en ayant un indexage du rotor 6 par rapport au stator 5. L'entrefer ainsi obtenu est constant et dépend de l'épaisseur des cales 3007. Ainsi, on monte le sous-ensemble sur le carter 62 du bloc moteur à l'aide des vis 45 et des goujons 64 remplaçant les vis 64 de la figure 1. Ensuite, on dévisse les vis 3003 et 3005 pour enlever la platine équipée de la pige 3001 et des cales 3007. Puis, on loge le disque de friction 20 dans l'évidement central du plateau de réaction et enfin, on fixe le mécanisme d' embrayage sur le plateau de réaction 4. On notera que dans toutes les figures, le moyeu 15 s'étend en majeure partie dans l'évidement central 39 du volant 13. Après montage, la platine 3000 avec les piges 3001 et les cales 3007 est récupérée par le fabricant de la machine. Cette solution présente de nombreux avantages, car en plus de la garantie de l'entrefer constant, on facilite aussi le transport de l'ensemble rotor/stator, permettant ainsi la livraison de la machine d'un seul tenant.
En variante, on s'affranchit de l'utilisation de la platine 3000 en réalisant un entrefer constant par calage optique réalisé au moyen de vérins agissant radialement, par exemple sur la portion 42 du plateau de réaction 4. On notera que dans la figure 9, le plateau de réaction 4 présente une portion inclinée 142 raccordant entre elles les portions 42 et 38. Ainsi, l'évidement central du volant 13 peut avoir toute les formes appropriées résultant des différentes figures . Bien entendu, on peut aussi prévoir, comme représenté à la figure 11, un capteur d'effort 2000, intégré au dispositif de débrayage 24 de type concentrique, comme représenté à la figure 3, ou à tout autre élément élastique variant continûment dans la commande de déplacement, indépendamment de l'effort d'embrayage ou de freinage.
Ainsi, la position de la butée d'embrayage 23 est prise à l'extérieur du fluide hydraulique par la transformation de l'information d'effort du ressort de précharge 244 en une information de position relative ou absolue selon le besoin. Ainsi, le signal numérique ou analogique délivré par le capteur d'effort 2000 est traité par un calculateur, externe ou interne au dit capteur, pour déterminer la position relative ou absolue de la butée d'embrayage 23. Ainsi, ce capteur d'effort 2000, associé au ressort de précharge indépendant de l'effort d'embrayage ou de freinage, permet de distinguer, comme représenté à la figure 11, les deux positions B et C que peuvent prendre la butée d'embrayage 23. On voit sur la figure 11 que ce capteur d'effort 2000 permet de distinguer aisément les deux points B et C qui représentent un même effort d' embrayage ou de freinage représenté par le point A de la figure 11 dans laquelle on a représenté en ordonnée les efforts d'embrayage ou de freinage et en abscisse les déplacements.
Cette courbe caractéristique est due ici à la courbe caractéristique bien connue du diaphragme.
Avantageusement le capteur de position 2000 est placé directement sous le ressort de précharge 244, c'est à dire entre l'extrémité arrière du ressort de précharge 244 et le corps extérieur 242.
Avantageusement une cale intermédiaire, non représentée sur la figure 10, sera placée entre le capteur d'effort 2000 et le ressort de précharge 244. Cette cale peut être constituée par le soufflet de protection 246 qui est ainsi immobilisé.
Bien entendu, la présente invention n'est pas limitée aux exemples de réalisation décrits, en particulier, le support 21 peut être d'un seul tenant avec la première rondelle de guidage 29.
Une seule rondelle de guidage peut être prévue comme divulguée dans le document FR-A2390617. Dans tous les cas, le moyeu 14 pénètre en majeure partie dans l'évidement 39 et s'étend de manière dissymétrique par rapport au support 21 des garnitures 16. L'amortisseur de torsion 20a s'étend ainsi en majeure partie à l'intérieur de l'évidement 39.
D'une manière générale, le support 21 est accouplé de manière élastique au moyeu 15 par un amortisseur de torsion 20a pénétrant dans l'évidement central 39 du volant 13 et donc du plateau de réaction 4 pour réduction de l'encombrement axial du sous-ensemble 1. Ainsi, les organes élastiques 4 peuvent consister en des ressorts spiraux intervenant entre le support et le moyeu. Les organes élastiques peuvent consister en des lames ou en des blocs en matière élastomère interposés dans ce cas, entre le moyeu et une virole solidaire du support 21.
Bien entendu, on peut inverser les structures. Ainsi, à la figure 12, le socle 431 peut être remplacé par un flasque 431a présentant à sa périphérie externe le manchon 46 et l' épaulement 48. Ce flasque est traversé par les vis 345 comme à la figure 6. La pièce 134 est dans ce cas proche du plateau de réaction 4. On a donc inversé le sens de la pièce porteuse 134.
Ici l'arbre 430a est tronconique et le flasque 431a présente centralement un moyeu 431b à alésage interne de forme tronconique pour montage de manière complémentaire sur la périphérie externe tronconique de l'arbre 430a. Un écrou 431c, monté sur l'extrémité de l'arbre 430a permet de verrouiller les cônes complémentaires. Le flasque 431a est ainsi lié en rotation à l'arbre 430a.
On voit à la lumière de cette description que la pièce 134 de la figure 12 peut être remplacée par un voile issu du manchon 431b, par exemple, par moulage.
Le manchon 46 peut être distinct du flasque 431a et être solidarisé au carter moteur 62, les moyens de paliers 132 étant bien sûr supprimés, ainsi que l'entretoise 61.
Ainsi le voile porterait le rotor tandis que le manchon 48 porterait le stator en sorte que le rotor entourerait le stator.
Ainsi, le rotor peut s'étendre radialement au-delà des garnitures de friction 16 sans augmentation de l'encombrement radial.
Bien entendu, on peut conserver la pièce porteuse 134 du stator et les moyens de palier 132, ladite pièce porteuse étant alors adjacente au moteur à combustion interne, le rotor étant porté en surélévation par le voile. Ce voile est alors implanté axialement entre le plateau de réaction 4 et la pièce porteuse . Il a avantageusement une forme sinueuse et présente à sa périphérie externe un manchon épaulé 46. Avantageusement, le voile est nervure. On peut procéder de même dans les figures 2 et 3, la pièce porteuse étant remplacée par un voile tandis que le manchon 46 serait fixé sur le carter moteur 62, l'entretoise 61 étant supprimée . Le rotor peut être ainsi porté par un voile solidaire du volant moteur pour entourer le stator. Ledit voile étant globalement en forme de C comme celui des figures 2 et 3.
Dans ces figures 2 et 3, la pièce porteuse 134 est déformée localement par emboutissage pour créer un dégagement pour les chignons 8.
Ainsi, des moyens de dégagement sont prévus pour les chignons et consistent soit en une réduction d'épaisseur du plateau de réaction 4 ou en des déformations de la pièce porteuse 134.
En variante, on peut créer une gorge dans le plateau de réaction pour réaliser un dégagement pour les chignons 8.
De même, des moyens de refroidissement sont prévus pour refroidir la machine. Les moyens de refroidissement peuvent être portés par le stator 5 figures 7 et 8, ou par le volant au moyen d'ailettes 1200, 1201 de la figure 5 ou d'ailettes solidaires du rotor comme décrit ci-après.
En variante, la pièce de support ou le voile font écran thermique . On notera que les dispositions des figures 2, 3 et 12 sont avantageuses, car l'écoulement de la chaleur par conduction du plateau de réaction 4 au manchon 46 suit un long trajet ce qui est avantageux pour la machine électrique 2.
De même, le trajet d'écoulement de la chaleur par conduction entre le plateau de réaction 4 et le stator 5 est très long compte tenu de la configuration de la pièce porteuse (figures 4, 5, 6 et 12) .
Les trous de passage 545 améliorent encore le refroidissement . Bien entendu, un fluide caloporteur peut traverser avantageusement les entretoises 61 des figures 1 à 6, 9 et 12 pour refroidir le stator 5 entourant le rotor 6.
Ce même fluide peut aussi traverser également le paquet de tôles 10 du stator 5 comme représenté dans les figures 7 et 8. Ainsi dans le mode de réalisation des figures 13 à 15, l'entretoise 61 a une forme annulaire et est en matière moulable ici à base d'aluminium. Cette entretoise 61 présente une périphérie interne cylindrique 6000 sur laquelle est frettée, comme à la figure 1, le paquet de tôles 10. Dans la figure 14 on voit une des tôles de forme annulaire de ce paquet 10 présentant des evidements à sa périphérie externe pour le passage de cordons de soudure 6001 permettant de parfaire la solidarisation du paquet de tôles à l'entretoise 61 entourant le volant d'entraînement 13 à l'exception du plateau de réaction 4 de celui-ci .
En pratique, la figure 13 ne se différencie de la figure 1 uniquement que par l'entretoise 61 de sorte que les mêmes signes de référence seront repris.
Chaque tôle annulaire du stator 5 présente à sa périphérie interne des encoches dédiées au bobinage du stator.
L'entretoise 61 présente dans son épaisseur deux faces en regard définissant une chambre 6002 de refroidissement recevant un fluide caloporteur, ici un liquide de refroidissement. Ce liquide permet d'évacuer rapidement la chaleur produite par le fonctionnement de la machine électrique. Dans ce procédé de refroidissement, le stator transfère sa chaleur à la périphérique interne 6000 de l'entretoise 61 par contact. Ensuite, cette chaleur est transmise par convection forcée, depuis la périphérique interne 6000 vers le liquide de refroidissement en mouvement, ici dans le circuit d'eau de refroidissement du moteur à combustion du véhicule.
La chambre 6002 de refroidissement est axialement de forme oblongue, pour refroidir au maximum l'entretoise et le stator et, a circonférentiellement la forme d'un canal tortueux permettant de bien évacuer la chaleur et de contourner le passage des trous 6003 destinés aux organes de fixation 64 (ici des vis) de l'entretoise 61 au bloc moteur 62 et à la cloche d'embrayage 14 entre lesquels l'entretoise 61 est interposée.
La cloche d'embrayage entoure l'embrayage 3.
En variante, la chambre 6002 a circonférentiellement la forme d'un canal cylindrique.
La périphérie externe 6004 de l'entretoise a une forme globalement ondulée avec des protubérances ou excroissances 6005, 6006, 6007 et 6010 venus de moulage.
Ces protubérances permettent de réduire le poids de 1 ' entretoise . Les excroissances 6005, de formes semi-circulaires, sont pourvues chacune d'un trou de passage 6003 des organes de fixation 64. On notera que les trous 6003 peuvent être disposés de part et d'autre de la chambre 6002 comme visible à la figure 14.
L'excroissance 6006 en forme de bossage porte les conduits 6008 d'entrée et de sortie de la chambre 6002 du circuit de refroidissement de 1 ' alterno-démarreur .
Ces conduits 6008 sont raccordés au circuit de refroidissement du moteur à combustion interne du véhicule.
Ces moyens précités de raccordement peuvent faire appel à des tuyaux et/ou à des raccords rapides étanches tel que décrit par exemple dans le document FR 2756608 en sorte que la chambre 6002 peut être préremplie. Chaque conduit 6008 est associé à un orifice élargi 6009, respectivement d'entrée et de sortie formé dans l'excroissance 6006.
En variante, on peut supprimer les conduits 6008 d'entrée et de sortie et brancher directement les orifices 6009 sur des seconds orifices en regard formés sur le bloc moteur 62 avec intervention de moyens d'étanchéité tel que des joints toriques entre le bloc moteur 62 et l'entretoise 61.
Ces seconds orifices communiquent avec le circuit de refroidissement du moteur. Dans tous les cas, la chambre 6002 prolonge le circuit de refroidissement du moteur du véhicule.
Bien entendu, des moyens d'indexation angulaire sont prévus entre l'entretoise et au moins le bloc moteur 62. Ainsi, on voit en 6010 une excroissance avec de part et d'autre de la chambre 6002 un trou 6003 pour le passage d'un organe de fixation 64, et un trou 6011 pour le passage d'une pige d'indexation portée par exemple par le bloc 62 et pénétrant dans l'entretoise.
La chambre 6002 est obtenue par moulage à l'aide d'une matière que l'on évacue après moulage telle que du sable. Ainsi, on voit en 6012 des moyens d'évacuation du sable lors de l'opération de démoulage. Ces moyens comportent au moins un trou de passage vers la périphérie externe de l'entretoise 12, ce trou étant obturé en final par un bouchon étanche.
Bien entendu un canal de liaison 6013 existe entre les 2 orifices 6009 pour permettre l'opération de moulage.
L'excroissance 6007 est prévue en position basse et présente intérieurement un perçage 6014, ici fileté débouchant dans la chambre 6012.
Ce perçage 6014 permet le vissage d'une vis 6015 avec interposition d'un joint d'étanchéité 6016, ici torique, entre la tête de la vis 6015 et le sommet de l'excroissance 6007.
Ainsi qu'on l'a compris, en dévissant la vis 6015, on peut vidanger la chambre 6002 de son liquide de refroidissement.
Avantageusement, le perçage 6014 est situé dans la partie la plus basse de la chambre 6002.
Bien entendu, le positionnement du perçage 6014, dans la positon basse de la chambre 6002 permet aussi de vidanger le circuit de refroidissement du moteur à combustion interne du véhicule ainsi que le circuit de refroidissement du radiateur principal du véhicule.
Cette possibilité de vidanger le circuit de refroidissement complet du véhicule est rendu possible par le fait que la chambre 6002 de refroidissement de 1 ' alterno-démarreur passe par au moins un point placé au plus bas du circuit de refroidissement du véhicule.
On peut économiser ainsi au moins le bouchon de vidange du circuit de refroidissement prévu sur le moteur à combustion interne .
Bien entendu, on peut aussi économiser le bouchon de vidange du radiateur principal de refroidissement du véhicule.
Dans tous les cas le perçage 6014 devra être placé au moins plus bas que la position la plus basse du circuit de refroidissement du moteur à combustion interne comprenant le radiateur principal de refroidissement. Bien entendu, on peut remplacer la vis 6015 par tout autre organe d'obturation amovible tel qu'un bouchon fileté par exemple du type de ceux prévus généralement pour la vidange du circuit d'huile du véhicule. Le perçage 6014 peut donc être fileté en partie. L'entretoise 61 est donc pourvue de moyens de vidanges de sa chambre .
En variante, l'entretoise 61 équipée de sa chambre de refroidissement 6002 et portant intérieurement le stator 5 peut être d'un seul tenant avec le bloc moteur 62 ou avec la cloche d'embrayage 14.
Bien entendu toutes les dispositions pour refroidir la machine électrique 2 sont indépendantes du fait que l'amortisseur de torsion 20a pénètre dans l'évidement central du plateau de réaction 4 ou non.
D'une manière générale, de nombreuses caractéristiques décrites dans la présente demande sont indépendantes du fait que l'amortisseur de torsion 20a pénètre ou pas dans l'évidement central du plateau de réaction 4. Il en est ainsi par exemple de la présence de la pièce porteuse 134, des moyens de palier 132, des différents capteurs, des moyens de dégagement pour les chignons, des moyens d'équilibrage ou du type de machine de la machine électrique.... Bien entendu, en variante, l'amortisseur de torsion 20a peut pénétrer entièrement dans l'évidement central 39 pour réduire encore l'encombrement axial de l'ensemble 1.
Ainsi dans le mode de réalisation de la figure 16 un décalage axial existe entre les périphéries externe 121 et interne 122 du support 21. Plus précisément, la périphérie interne 122 du support 21 est décalée axialement par rapport à la périphérie externe 121 du support 21 en direction opposée à la face de friction 37, c'est à dire en direction des vis de fixation 45. A cet effet, un pli 123 relie entre elles les périphéries 121, 122. La périphérie interne 122 est fixée à l'aide des colonnettes 31 sur la première rondelle de guidage 29, qui pénètre ainsi dans l'évidement central 39 pour réduire l'encombrement axial entre la face de friction 37 et le fond du carter 14. Les rondelles de guidage 29, 30 pénètrent donc à l'intérieur de la première portion d'orientation axiale 38 tandis qu'un épaulement 141 relie l'épaulement transversal 41 à la deuxième portion annulaire d'orientation axiale 42 de l'évidement 39. Le chanfrein 141 est un chanfrein de dégagement qui évite une interférence entre les colonnettes 31 et l'épaulement 41, ce qui permet de réduire l'encombrement axial sans modifier de manière profonde le volant 13. L'amortisseur de torsion 20a est identique à celui de la figure 1 et est du type de celui décrit dans le document WO-96/14521 (figure 8). Il présente ainsi un palier 124 présentant des echancrures pour le logement de ressorts 36 de faible raideur montés également dans des echancrures réalisées dans le moyeu 15 cannelé intérieurement pour liaison en rotation avec l'arbre mené 12. Les ressorts 36 appartiennent à un préamortisseur implanté entre la deuxième rondelle de guidage 30 et le voile 34 présentant à sa périphérie interne une denture femelle pour engrener avec jeu circonférentiel avec une denture mâle que présente le moyeu 15 à sa périphérie externe. Des rondelles de frottement et des rondelles à élasticité axiale interviennent entre la première rondelle de guidage 29 et le voile 34. Les pièces 30, 34, 29 sont dotées de fenêtres pour montage d'organes élastiques 35 de plus forte raideur que les ressorts 36. Les organes élastiques 35 appartiennent ainsi à l'amortisseur principal. Pour plus de précisions on se reportera au susmentionné document sachant que le palier 124, ici de forme tronconique, comme à la figure 1, pénètre plus profondément à l'intérieur de l'évidement 39 et que ce palier 24 est lié en rotation, ici à l'aide de pions, au voile 34. Ici les doigts 22 du diaphragme 18,22 présentent à leur périphérie interne une portion 125 décalée axialement par rapport à la rondelle Belleville 18 du diaphragme 18,24 en sorte que l'on peut réduire l'encombrement axial, la butée de débrayage 23 pénétrant sous la partie principale des doigts du diaphragme sachant que la portion 125 se raccorde à la partie principale des doigts 22 par un tronçon 126 en forme de S. La butée 23 s'étend donc sous la portion 126 sachant que la partie principale des doigts 22 s'étend dans le même plan que la rondelle Belleville 18. La création de la portion 125 est réalisée grâce au fait que l'amortisseur 20a pénètre plus profondément dans l'évidement central, la portion 125 étant décalée plus axialement en direction de l'amortisseur 20a sans interférer avec celui-ci lorsque l'embrayage est désengagé comme visible dans la partie haute de la figure 16. On réduit ainsi encore l'encombrement axial de l'ensemble 1 en ayant ici un dispositif de débrayage 24 du type hydraulique comme à la figure 3. Dans cette figure 16, on voit en 127 un conduit rigide d'alimentation pour raccordement de l'entrée d'alimentation 128 de la cavité 243 à un émetteur pilotant le dispositif de débrayage 24 du type concentrique car traversé par l'arbre mené 12. Le conduit a une forme de L et est en deux parties s 'étendant de part et d'autre d'un passage 129 réalisé dans la cloche d'embrayage 14. Plus précisément, le conduit 127 comprend une partie interne s 'étendant transversalement à l'intérieur de la cloche 14 pour venir en prise avec la tête de l'entrée d'alimentation 128 à canal interne de liaison avec la cavité 243 et une partie externe s 'étendant à l'extérieur de la cloche 14 perpendiculairement à la partie interne. Pour plus de précision, on se reportera au document FR 2,753,772 déposé le 26-09-1996. La partie d'orientation axiale externe présente un raccord pour son raccordement à un tuyau provenant de l'émetteur non visible. Grâce au conduit rigide 127, on peut également réduire l'encombrement axial du fait qu'il est plus aisé de monter par avance le conduit rigide 127 sur l'entrée d'alimentation 128 tout en ayant par la suite aucun risque d'interférence entre le conduit rigide 127 et le couvercle 19 qui peuvent être ainsi très proche l'un de l'autre. Cette disposition facilite également un raccord rapide de l'émetteur au dispositif de débrayage 24 du fait que le raccordement du tuyau venant de l'émetteur se fait à l'extérieur de la cloche 14. Bien entendu, le conduit 127 peut équiper le dispositif de débrayage 24 de la figure 3.
Comme visible à la figure 17, le fond de la cloche 14 peut être conformé peur créer localement un dégagement 150 pour le passage de la partie interne du tube rigide 127 en sorte que l'encombrement axial entre le fond du couvercle 19 et le fond de la cloche 14 est encore réduit, ce qui permet de diminuer également l'encombrement axial de l'ensemble 1. Dans ce cas, l'entrée d'alimentation 128 de la cavité 243 présente un canal moins incliné que celui de la figure 16. Le reste du dispositif de débrayage est identique à celui de la figure 16 et il en est de même du diaphragme 18, 22. On notera néanmoins que le tronçon en S 126 est moins accentué. Dans cette figure 17, l'embrayage 3 est équipé d'un dispositif dit de rattrapage d'usure 151 pour compenser l'usure des garnitures de friction 16 et dans une moindre proportion, l'usure de la face de friction 37 et l'usure de la friction en vis-à-vis du plateau de pression 17. Ce dispositif de rattrapage d'usure, de manière connue, permet de maintenir le diaphragme 18,22 dans la même position lorsque l'embrayage 3 est engagé et ce, tout au long de la durée de vie de l'embrayage. La course du dispositif de débrayage 24 est donc constante tout au long de la durée de vie de l'embrayage, ce qui permet de réduire l'encombrement axial de l'embrayage 3, et donc, de l'encombrement axial entre la face de friction 37 et le fond de la cloche d'embrayage 14. En position embrayage engagé, la charge exercée par le diaphragme 18,22 sur les garnitures de friction 16 est donc sensiblement constante au cours de la durée de vie de l'embrayage. Ainsi, le support 21 peut être plan. Ici le dispositif de rattrapage d'usure est du type de celui décrit dans le document FR 2,753,503 auquel on se reportera pour plus de précision. Ce dispositif de rattrapage d'usure comporte donc une cassette portée par le couvercle 19 présentant un ensemble 152 vis sans fin et roue à rochet. Cet ensemble 152 est implanté à la faveur d'une déformation locale 153 globalement en forme de U que présente le couvercle 19 à sa périphérie externe. La vis sans fin engrène de manière irréversible avec une denture portée par une pièce intermédiaire 154 liée en rotation par des languettes 155, du type des languettes 25, à un anneau à rampes 156, ledit anneau à rampes étant centré par le plateau de pression 17 et présentant un bourrelet fragmenté (non référencé) pour contact avec la périphérie externe de la rondelle Belleville du diaphragme 18, 24 monté de manière pivotante sur le couvercle 19 à l'aide de pattes 28 comme à la figure 1. Le plateau de pression 17 présente des plots formant contre-rampes pour coopérer avec les rampes de l'anneau à rampe 156. La pièce intermédiaire 154 est calée axialement dans un sens par des saillies non visibles solidaires du couvercle. Dans l'autre sens axial, la pièce intermédiaire 154 est calée axialement grâce aux languettes 155. La cassette présente une languette de commande 157 propre à être manoeuvrée par un actionneur 158 consistant en un appendice radial que présente la rondelle Belleville 18 à sa périphérie externe. La Cassette présente également un ressort de rattrapage du type ressort à boudin agissant sur l'ensemble 152. En cas d'usure des garnitures de friction 16, on bande le ressort de rattrapage, qui après un certain nombre d'opérations de débrayage et d'embrayage est amené, en se détendant, à déplacer la vis sans fin et à faire tourner l'ensemble pièce intermédiaire 154, anneau à rampe 156 pour compenser l'usure des garnitures de friction. L'armement du ressort de rattrapage d'usure est réalisé grâce à la languette de commande 157 manoeuvrée par l'appendice 158. Pour plus de précision sur le fonctionnement, on se reportera au document FR 2,753,503 précité sachant que l'anneau à rampe 156 peut être en variante d'un seul tenant avec la pièce intermédiaire 154 en sorte que la présence des languettes 155 n'est pas obligatoire.
Dans les figures 16 à 18, on voit en 170 des trous borgnes réalisés dans le manchon 46, en 171, des echancrures ouvertes radialement vers l'extérieur réalisé dans le plateau de réaction 4 et en 172 des apports de matières réalisés dans le plateau de réaction 4 pour, comme mentionné ci-dessus, corriger le balourd du moteur thermique, notamment pour un véhicule à moteur à trois cylindres. On notera que les echancrures 171 peuvent être réalisées sur les deux faces du plateau de réaction comme mieux visible à la figure 19. Les echancrures 171 sont réalisées de préférence à la périphérie externe du plateau de réaction pour être le plus efficace possible. L'apport de matière 172 est réalisé en saillie sur la face du plateau de réaction 4, ladite face tournée vers le couvercle 19. A la figure 18, on a repéré les axes horizontal x, vertical Y et longitudinal Z pour mieux montrer l'orientation de la figure. L'apport de matière 172 est réalisé de préférence au niveau des languettes tangentielles 25 reliant les pattes 173 du plateau de pression 17 au couvercle 19. Ces languettes 25, réparties en plusieurs jeux de languettes ici superposées, ont une de leurs extrémités fixées, ici par rivetage, à une patte 173 du plateau de pression et ont leur autre extrémité, fixée par rivetage, à une plage 174 appartenant au rebord radial 175 que présente à sa périphérie externe le couvercle 19 ici globalement en forme d'assiette creuse. Les plages 174 sont décalées axialement par rapport à des plages de fixation 176 que présentent le rebord 175 pour fixation du couvercle 19 au plateau de réaction 4 ici, de manière connue, à l'aide de vis non visibles. Ainsi, l'apport de matière 172 présente une face inclinée globalement parallèle aux languettes 25 et s'étend circonférentiellement entre une patte 173 et une plage 174 comme mieux visible dans les figures 17 et 19. Ainsi, l'apport de matière 172 peut être maximum sans augmenter l'encombrement axial de l'ensemble 1. L'apport de matière 172 est masqué par les plages 174 et réalisé à la périphérie externe du plateau de réaction 4 ce qui est très efficace. On peut ainsi faire toutes les combinaisons possibles afin que la machine et le moteur thermique tournent dans de bonnes conditions. Ainsi qu'on l'aura compris, le balourd au niveau du volant 13 permet d'équilibrer la rotation du moteur thermique. Grâce aux trous 170, aux echancrures 171 et aux apports de matières 172, on contrecarre le balourd du vilebrequin du moteur thermique. Bien entendu, on peut faire toutes les combinaisons possibles. On peut ainsi équilibrer le volant 13 à l'aide des trous 170, des echancrures 171, puis, on peut contrecarrer le balourd du vilebrequin du moteur à l'aide des apports de matière 172 ou en variante, comme visible dans les figures 25 et 26, en réalisant des ouvertures 177 par exemple dans le manchon 46 du volant 13. Ces ouvertures 177 peuvent avoir une forme de haricot pour enlever le maximum de matière. On peut donc réaliser à volonté des fonctions d'équilibrage de l'ensemble 13 ainsi qu'une fonction pour contrecarrer le balourd du vilebrequin du moteur. Bien entendu, on peut aussi enlever de la matière au niveau du plateau de pression. Bien entendu, l'entretoise 61 de la figure 1 peut être d'un seul tenant avec le stator 5 ce qui permet d'éviter un frettage des tôles 10 du stator 5 dans l'entretoise 61 classiquement en aluminium pour réduction du poids. Il n'est donc pas nécessaire de prévoir des moyens d ' anti-rotation des tôles 10 par rapport à l'entretoise 61, notamment lorsque les tôles 10 sont fixées par frettage sur l'entretoise 61. D'autre part, le processus d'usinage des trous de passage des vis de fixation 64 et des trous de centrage est simplifié grâce au fait que l'entretoise est d'un seul tenant avec le paquet de tôle 10.
Egalement, les perçages des figures 7 et 8 sont plus faciles à réaliser car il y a plus de matière en sorte que la tenue mécanique du stator est meilleure.
Ainsi à la figure 21, le stator 5 est constitué par un paquet de tôles magnétiques constitué respectivement par une première série de tôles standards 180 et par une deuxième série des tôles entretoises 181 de diamètre externe différent. Ces tôles ici magnétiques ont la même configuration à leur périphérie interne et présente donc des encoches 182 dédiées à la réception du bobinage statorique. Les encoches 182 de chacune des tôles sont alignées de manière à constituer des rainures axiales de réception du bobinage du stator. La première série de tôles est de forme cylindrique à sa périphérie externe. La deuxième série de tôles 181, faisant office d' entretoise, s'étend radialement en saillie au dessus de la périphérie externe de la première série de tôles pour former des ailettes de refroidissement 183 dont certaines sont trouées en 184 pour passage des vis de fixation représentées en 64 à la figure 1 permettant de fixer la cloche d'embrayage 14 sur le bloc moteur 62. Deux trous diamétralement opposés 185 sont réalisés dans certaines des ailettes pour passage des pions de centrage portés par le bloc moteur 62. Ces trous de centrage 185 permettent également au montage, d'indexer les tôles entretoises de la deuxième série 181 les unes par rapport aux autres. On voit en 186 des trous permettant le montage du connecteur ou bornier référencé en 63 à la figure 1. Un tel connecteur 63 est mieux visible à la figure 25. Les ailettes 183 sont fractionnées en plusieurs secteurs annulaires séparés les uns des autres par des rainures 187 dont le fond recevra les cordons de soudure 188. On voit en 189 une patte isolée dotée d'une ouverture 184. Ladite patte 189 est due à la configuration du bloc moteur et permet d'atteindre un point de fixation éloigné. D'une manière générale, la forme de la deuxième série de tôles 181 dépend des applications, et notamment de la forme du bloc moteur et de la cloche d'embrayage. La deuxième série de tôles 181 ne comporte pas forcément des ailettes, notamment lorsque les perçage de circulation de fluide des figures 6 et 7 sont réalisées dans celle-ci. Dans une forme de réalisation, la première série de tôles 180 s'étend axialement de part et d'autre de la deuxième série de tôles 181 de manière symétrique ou non symétrique selon les applications. En variante, la première série de tôles 180 s'étend d'un seul coté de la deuxième série de tôles 181 selon les applications. Dans tous les cas, les tôles de la première série 181 ont une forme standard et communiquent avec les rainures 187. Ainsi, à l'aide de cordons de soudure 188, on peut relier entre elles, les premières et deuxièmes séries de tôles. Le cordon de soudure 188 s ' étendant sur toute la longueur totale axiale des séries de tôles . En variante les cordons de soudures 188 sont remplacés par une liaison à coopération de formes tel qu'un boutonnage. En variante, les tôles standards peuvent être de diamètre différent de part et d'autre de la deuxième série de tôles 181 en sorte que deux séries de tôles standard sont prévues. Ainsi qu'on l'aura compris, l'opération de soudage est aisée à réaliser grâce aux encoches 182. Il suffit au montage d'empiler les tôles sur un centreur doté au moins d'une barrette axiale longitudinale sur laquelle on enfile une encoche de chacune des tôles. Ainsi grâce à cette disposition, le soudage à l'aide des cordons 188 est facile à réaliser puisque les tôles ont des encoches identiques 182 et sont indexées angulairement les unes par rapport aux autres. Le nombre de cordons 188 dépend des applications, ce nombre pouvant être inférieur ou égal au nombre de rainures 187. Grâce à la deuxième série de tôles 181 formant ailettes 183, on obtient une meilleure évacuation des calories par rapport à une entretoise équipée d'ailettes et distincte des tôles du stator 5, car la conduction thermique est meilleure du fait de l'absence de séparation stator-entretoise laquelle séparation crée une résistance thermique. En outre, comme l'entretoise est constituée de tôles 181, ici ferromagnétique, on a une augmentation de la valeur moyenne de l'épaisseur de la culasse statorique magnétique. De plus, on obtient un gain en masse car bien que les tôles magnétiques aient une densité supérieure à celle de l'aluminium, le volume de l'ensemble monobloc stator-entretoise est inférieur à celui d'un stator distinct de l'entretoise car les ailettes peuvent venir au plus près des tôles du stator du fait que l'on supprime la portée de frettage des tôles du stator. On a en outre la possibilité de refroidir le stator ainsi que ses chignons et d'abaisser la température à l'intérieur de la machine électrique par de l'air frais soufflé et/ou de l'air chaud absorbé.
Bien entendu on peut prévoir des ailettes et une circulation de fluide de refroidissement comme dans les figures 7 et 8.
Avec ce dispositif monobloc, les problèmes d'usinage sont simplifiés et réduits et les tolérances de fabrication sont réduites. On peut faire également varier la profondeur des encoches 182 sans détériorer la performance de la machine électrique. Ceci apporte l'avantage de faciliter le bobinage automatique tout en réduisant la hauteur des chignons. L'épaisseur de l'entretoise est modulable. Comme visible aux figures 22 et 23, des evidements 191 à contour 192, permettent d'épouser les contours 192 des nervurages du carter cylindre ainsi que du bac à huile du bloc moteur référencé en 62 dans les figures 1, 12 et 13 et dans la partie basse de la figure 22. Les saillies 194 du bloc moteur 62 pénètrent dans les evidements dont la forme dépend des applications. Cette géométrie permet de limiter l'encombrement axial de la machine électrique 2 et, à tout le moins, de rester dans le même encombrement axial qu'une machine électrique montée en porte à faux telle que représentée par exemple à la figure 1 ou à la figure 16 en sorte que l'on peut augmenter la taille de la machine électrique et/ou de l'embrayage.
Ces evidements 191 sont réalisés dans un flasque porteur 193 radial qui remplace la pièce porteuse 134 de la figure 6. Ce flasque 193 présente pour ce faire une jupe 190 pour les moyens de palier et est monobloc avec l'entretoise 61 qui porte intérieurement le stator 5. Cette entretoise 61 pourra être refroidie par eau (tel que représenté par exemple à la figure 13) ou refroidi par air. Ici, l'entretoise présente des ailettes 183 avec des trous 184 à 186 comme à la figure 21, mais les ailettes sont ici d'un seul tenant avec le flasque 193 de forme tortueuse avec une portion semi-torique 195 pour créer un logement pour le rotor 6, le stator 5 et le manchon 46. Les ailettes 183 se raccordent à la périphérie externe de cette portion 195 dont la périphérie interne se raccorde à un voile nervure 196 portant la douille 432 et présentant les perçages 545.
Ce flasque radial 193 porte en son centre, les moyens de palier 132 centrés axialement sur l'axe X-X de la machine électrique 2 et du type de celui de la figure 6. Ces moyens de palier 132 comportent au moins un roulement à billes 132 et peuvent être montés sur le flasque selon deux manières différentes . Selon un premier mode de réalisation, la bague externe de ce roulement 132 est simplement ajustée non serrée dans la douille 432 pour reprendre les intervalles de tolérance, tandis que la bague intérieure est montée serrée, par exemple par frettage, sur l'arbre 430 à extrémité avant cannelée pour venir en prise avec des cannelures internes du socle de fixation 431 fixé par les vis 345 au vilebrequin du moteur.
Dans un second mode de réalisation, les deux bagues, externes et internes des roulement 132, sont montées serrées, par exemple par frettage, respectivement sur la douille 432 et sur l'arbre 430. Le centrage de la machine électrique 2 est réalisé au niveau des roulements 132 qui font alors office de centreur et par voie de conséquence, l'entretoise 61 ne réalise plus cette fonction de centrage. Bien entendu, dans ce second mode de fixation serré des roulements, il faut, pour éviter 1 ' hyperstatisme, que les organes de fixation 64, tel que représenté à la figure 1, puissent traverser librement les trous de fixation 184 de l'entretoise 61 permettant ainsi le positionnement de la boîte de vitesse par rapport au bloc moteur . Cette configuration permet une meilleure maîtrise de 1 ' entrefer .
L'évacuation des calories des moyens de palier 132 sera réalisée de façon très avantageuse par conduction par le flasque 193 qui fait bloc avec lesdits roulements ainsi que par les trous 545 faisant office de trous de ventilation.
Bien entendu, dans un autre mode de réalisation, les roulements 132 peuvent être remplacés par un palier lisse tel qu'un coussinet auto-lubrifié ou par un roulement à double rangées de billes ou par un roulement à simple rangée de billes ou par un roulement à aiguilles.
Comme on le comprendra aisément, cette entretoise portant les moyens de paliers 132 permet, comparativement aux machines montées en porte à faux, telle que représentée par exemple à la figure 1, de réduire de façon remarquable le battement dynamique issu du vilebrequin, améliorant ainsi la maîtrise de l'entrefer 7.
Comme on le comprendra aisément, le flasque radial 193 faisant monobloc avec l'entretoise 61 permet de rigidifier cette dernière .
Avantageusement, cette entretoise constituée du flasque 193 portant les moyens de palier 132 permet d'obstruer le trou laissé libre par l'absence du démarreur classique. Comme on peut le voir à la figure 23, du fait de la forme tortueuse du flasque, le rotor 6 et le stator 5 peuvent être axialement plus longs par rapport au mode de réalisation de la figure 6.
Le fond de la portion 195 sert de support à un moyen de détection 610 tel qu'un capteur de vitesse ou de position.
Ce moyen de détection 610 est en regard d'une cible 601 aussi appelée roue codeuse. Cette cible est en forme d'anneau présentant à sa périphérie une multiplicité de pattes radiales 602 destinées à défiler devant le moyen de détection 610. La cible est ici portée par la bague surmoulée amagnétique formant cage d'écureuil, en cuivre, du rotor 6. Pour réduire l'encombrement axial, la cage d'écureuil présente une face inclinée 603 portant les pattes 602 de la roue codeuse 601. L'inclinaison de la face 603 peut varier de 0 à 45° par rapport à un plan transversal de la machine.
Ainsi, le capteur 610 et la roue codeuse ne sont pas parallèles à l'axe X-X de la machine électrique 2 ce qui permet de réduire la longueur axiale de cette dernière. Dans le cas d'une machine asynchrone à cage d'écureuil, il y a ainsi présence d'un moyen de détection en forme de capteur de vitesse. La roue codeuse est portée par un support amagnétique. En variante, le support de la roue codeuse est le flasque d'un ventilateur du rotor 6. Bien entendu, la roue codeuse peut être remplacée par un film de peinture ferro-magnétique compris entre 5/100 mm et 1 mm déposé par impression ou pulvérisé au travers d'un masque. En variante, la roue codeuse peut être constituée à partir d'un film adhésif magnétique avec echancrures. En variante, on peut utiliser un tampon de résine avec un brouillard de limaille de sorte que lors d'un passage dans un four il se produit une polymérisation de la résine fixant la limaille. Dans tous les cas, le support de la roue codeuse est amagnétique. Bien entendu, cette roue codeuse peut être portée par la douille de fixation 43 de la figure 1 comme visible dans les figures 24 et 25. Le capteur est alors porté par une bride 611 fixée sur le boîtier 604 du connecteur 63. Ce boîtier 604 porte dans sa partie supérieure un support 605 de trois bornes de connexion électriques 606,607 et 608 permettant la connexion vers l'extérieur des trois fils de phase issus du stator. Bien évidemment, une quatrième borne de connexion, ici non représentée, peut être ajoutée pour sortir le point neutre issu du stator. Ces bornes permettent la connexion vers une électronique de puissance. Le manchon 46 est doté d'un trou 177 décrit ci-dessus.
Bien entendu, le circuit de refroidissement de l'entretoise 61 peut être entièrement indépendant et notamment, indépendant du circuit de refroidissement du moteur à combustion interne. Cette indépendance permet de s'affranchir des problèmes de raccordement au circuit de refroidissement du moteur à combustion interne et aussi, d'avoir une température de refroidissement non tributaire de celle du moteur thermique, ce qui présente un intérêt à chaque démarrage du véhicule.
Ainsi qu'on l'aura compris, on peut retourner l'amortisseur de torsion 20a, la deuxième rondelle de guidage ne pénétrant plus alors dans l'évidement 39, notamment dans les modes de réalisation des figures 16 et 17 permettant de réduire l'encombrement axial.
A la figure 26, l'entretoise 61 est dotée d'ailettes de refroidissement 183. On voit en 160 et en 161 des vis montées entre cuir et chair pour le montage, de manière précitée, du rotor 5 sur la portée 47 et du stator 6 sur la périphérie interne de l'entretoise 61. L'amortisseur de torsion 20a pénètre à l'intérieur de l'évidement 39 identique à celui de la figure 1. Le bloc moteur 62 est représenté de manière plus détaillée qu'à la figure 1. Par simplicité, on n'a pas représenté dans cette figure la fourchette de débrayage et la butée de débrayage ainsi que l' arbre mené 12 pour mieux montrer le moyeu 15 et le tube guide 52. Il en est de même à la figure 27.
Dans cette figure 27, le plateau de réaction 4 présente à sa périphérie externe, radialement au dessus des garnitures de friction 16, une portion 49 décalée axialement en direction opposée au stator 6, par rapport à la partie transversale du plateau de réaction 4. La portion 49 s'étend radialement au dessus des garnitures de friction 16. Sur la face de cette portion 49, tournée vers le stator 6, sont réalisées des ailettes de ventilations 1202 en forme de pâles de ventilateur. Ces pâles 1202 s'étendent en partie radialement au dessus des chignons 8. Ainsi, il est réalisé une ventilation de type centrifuge .
Un dégagement 65 est réalisé dans le bloc moteur 62. Ce dégagement 65 peut correspondre à l'ancien emplacement d'un démarreur séparé de type conventionnel. Comme visible dans cette figure, les ailettes 1202 s'étendent radialement au dessus de l'entrefer 7 et il en est de même de la portion 49. Au moins une ouverture 1204 est réalisée dans la cloche 14 radialement au dessus des ailettes. A la figure 28, l'ouverture 1204 est supprimée pour être remplacée par l'ouverture 1205 de passage de la fourchette de débrayage. Les ailettes ou pâles 1202 sont d'orientation radiales ou en forme d'hélice. L'entrée d'air se fait au niveau du dégagement 65 coté bloc moteur 62. La sortie d'air se fait soit par l'ouverture 1204 de la figure 27, soit par l'ouverture 1205 de la figure 28. La circulation d'air se fait via l'entrefer 7. Grâce aux ailettes 1202, solidaires du plateau de réaction 4, il est créé un ventilateur permettant d'aspirer l'air à travers la machine électrique 2 et de rejeter cet air radialement en créant une dépression en son centre. Suivant la forme des ailettes, le ventilateur 4, 1202 est soit du type centrifuge et/ou hélicocentrifuge . Ce ventilateur est dimensionné pour avoir un bon compromis thermique et acoustique. Il en est de même à la figure 5. Cette ventilation permet de refroidir le rotor et le stator grâce à l'entrefer 7, les chignons 8, ainsi que le plateau de réaction 4 et donc les garnitures de friction 16 ce qui augmente la fiabilité de l'embrayage 3. La sortie se fait au niveau du plateau de réaction 4 à la figure 27 ou au delà de l'embrayage 3 (figure 28) de manière à expulser les poussières provenant notamment des garnitures de friction 16. Dans tous les cas, il est créé une ventilation sans modification de l'entretoise 61 qui est dans cette figure en aluminium. Le bloc moteur est modifié pour réaliser le dégagement 65. A la figure 27, la cloche 14 est modifiée pour créer au moins une ouverture 1204, avantageusement plusieurs ouvertures. Il en résulte que cette disposition est économique car elle conduit à ne pas modifier de manière profonde la cloche d'embrayage 14 et le bloc moteur 62. En outre, cela permet d'utiliser des montages par frettage du paquet de tôles du stator 6 sur l'entretoise 61.
En variante, telle que représentée à la figure 29, des ailettes ou pâles de ventilations 1206 sont portées par le rotor 5 à l'une au moins de ses extrémités axiales. Ici des ailettes 1206 sont prévues sur chaque extrémités axiales du rotor 5. Dans cette forme de réalisation, les ailettes 1206 sont solidaires de la cage d'écureuil. Une entrée d'air 1208 et une sortie d'air 1207, de forme tubulaire sont portées localement par l'entretoise 61. L'entrée 1208 est située dans la partie basse de l'entretoise 61 et la sortie 1207 dans la partie haute de l'entretoise, en sorte que grâce aux ailettes 1206, il est créé une ventilation de type tangentiel à l' intérieur de la machine électrique 2, l'air pénétrant dans le conduit 1208 pour ressortir par le conduit 1207. Bien entendu, la présence des ailettes 1206 n'est pas indispensable, la ventilation pouvant s'effectuer naturellement entre l'entrée 1208 et la sortie 1207. Ce type de ventilation est peu bruyante.
Bien entendu, on peut monter dans l'entrée d'air 1208, globalement en forme de conduit comme la sortie 1207, un groupe motoventilateur schématisé en 1209, permettant une circulation forcée d'air entre l'entrée 1208 et la sortie 1207. Ce mode de ventilation fait moins de bruit à haute vitesse et permet d'arrêter la ventilation à la demande. Grâce au groupe motoventilateur 1209, on a de bonnes performances en débit et la ventilation permet de supporter de fortes pertes de charge. Bien entendu, un autre groupe motoventilateur peut être placé dans le conduit de sortie 1207, soit en complément de celui placé en entrée, soit de manière unique. Par groupe motoventilateur 1209, on entend ici un ensemble moteur électrique entraînant une roue de turbine. Cette ensemble est fixé à l'intérieur du ou des conduits constituants l'entrée 1208 et la sortie 1207. Avantageusement, un capteur de température est placé au voisinage du plateau de réaction ou des chignons 8, en étant porté par exemple par la cloche 14. Ce capteur pilote la mise en route du moteur électrique, et donc de la turbine en fonction de la température pour créer la ventilation forcée à travers un canal délimité axialement par le bloc moteur 62 et par le plateau de réaction 4 et radialement, par l'entretoise 61, la cloche 14 et une couronne 1210 du bloc moteur 62.
Bien entendu, il ressort à l'évidence de cette figure 29, qu' il est possible de ne pas modifier le bloc moteur 62 et la cloche 14, seule l'entretoise 62 étant modifiée.
Dans cette figure 29, l'entretoise 61 à avantageusement la forme de l'entretoise à ailettes de la figure 21 et comporte donc un paquet de tôles magnétiques constitué par une première série de tôles standard et par une deuxième série de tôles entretoise de diamètre externe différent, ces tôles ayant la même configuration à leur périphérie interne.
La forme du conduit 1207 ou 1208 est visible à la figure 30. Chaque conduit 1207, 1208 comportant deux demi enveloppes. Ainsi, à la figure 30, on voit le conduit 1207 formé de deux demi enveloppes 1207a, 1207b assemblés entre elles à l'aide de pions 1207c, chaque pion 1207c étant introduit dans un trou associé correspondant 1207d réalisé dans l'autre enveloppe. L'extrémité de chaque enveloppe présente une demi embase 1207e, chaque demi embase comporte deux trous 1207g pour la fixation, par exemple, à l'aide de vis ou de rivets du groupe motoventilateur .
La figure 31 montre ce conduit après verrouillage entre elles des deux demi enveloppes. Bien entendu, les conduits peuvent avoir une forme différente comme visible dans les figures 32 et 33. Les deux demi enveloppes 1207a et 1207b étant reliées entre elles par une charnière fine 1112 en matière synthétique, comme les enveloppes 1207a, 1207b. Les pions 1207c sont portés par la demi enveloppe 1207a et les trous 1207d par la demi enveloppe 1207b. Chaque demi enveloppe présente une partie supérieure 1213, ici coudée à au moins 90 degrés, de forme arrondie dont l'extrémité libre se termine par une grille 1211. Après la fermeture des deux demi enveloppes, il est formé une grille complète servant notamment à éviter la pénétration d'agents extérieurs. Le groupe motoventilateur est logé par exemple dans la cavité 1214 formée dans la partie basse de chaque enveloppe.
On voit à la figure 34, de manière schématique l'agencement entretoise 61 - entrée 1208 - sortie 1207. Pour tenir les conduites d'entrées et de sortie d'air, on a pas besoin de vis car lesdites conduites 1208, 1207 sont maintenues encastrées dans les ailettes 183 et maintenues coincées entre le bloc moteur et la cloche d' embrayage On voit à la figure 35 le montage de l'entretoise 61 avec son entrée 1208 et sa sortie 1207 au sein de la machine électrique tournante, entre le bloc moteur 62 et la cloche d'embrayage 14.
Il est créé ainsi un agencement permettant une ventilation forcée sans toucher au bloc moteur 62 et sans toucher également à la cloche 14. L'entrée 1208 et la sortie d'air 1207 se font donc dans l'épaisseur de l'entretoise 62. Du point de vue performance, il est souhaitable d'avoir un diamètre extérieur du stator le plus élevé possible. Grâce à l'entretoise de la figure 31, on obtient un diamètre externe du stator le plus élevé possible tout en ayant une bonne tenue mécanique de l'entretoise grâce au fait que celle-ci est constituée par deux séries de tôles, à savoir une première série de tôles standard 180 pour formation du stator proprement dit et une deuxième série de tôles 181 de diamètre externe différent. Il suffit d'enlever localement des ailettes à la deuxième série de tôles 181 pour loger l'entrée 1208 et la sortie 1207.
L'air frais viendra ainsi lécher le stator et les chignons. Ainsi qu'on l'aura compris, l'entrée 1208 et la sortie 1207 des figures 34 et 35 sont orientées perpendiculairement au sens de la marche du véhicule.
Bien entendu, il est possible d'orienter les parties 1213 en sortes que les grilles 1211 soient orientées dans le sens de la marche du véhicule. Dans ce cas, un filtre est prévu au niveau de la grille 1211 pour éviter la pénétration d'impuretés, de souillures ou autre à l'intérieur de la machine électrique 2. Cette disposition améliore le refroidissement de la machine dans le cas où celle-ci ne comporte pas de motoventilateur.
Bien entendu, comme visible à la figure 36, l'entrée 1208 et 1207 ne sont pas forcément diamétralement opposées comme dans les figures précédentes. Par exemple, l'entrée 1208 peut être implantée à proximité du groupe motoventilateur associé au refroidissement du moteur thermique du véhicule. L'entrée 1208 est donc éloignée des pollutions venant de la route et est bien ventilée .
A la lumière de la figure 36, on voit qu'en orientant l'entrée 1208 et la sortie 1207 globalement à 90 degrés l'une par rapport à l'autre, qu'il est possible de créer une ventilation du type tangentielle .
L'entrée et la sortie sont choisies pour limiter les zones de champs tourbillonnaires qui ne sont pas refroidis. On peut diriger l'entrée vers la sortie pour obtenir un effet amplificateur. Pour éviter les zones tourbillonnaires non refroidies, on peut envisager une ventilation tangentielle sur deux niveaux, les entrées et sorties d'air étant placées cote à cote en étant décalées axialement l'une par rapport à l'autre. On appréciera qu'il est avantageux que l'entrée 1208 soit placée en face du groupe motoventilateur du véhicule car en cas de surchauffe du moteur thermique, il se produit la mise en route du groupe motoventilateur, ce qui correspond au besoin de refroidissement de 1 ' alterno-démarreur . Ce groupe motoventilateur du véhicule est mis en route par un thermostat placé dans le circuit de refroidissement de véhicule. On peut utiliser ce thermostat pour piloter la mise en route d'un ensemble ventilateur turbine placé dans l'entrée et/ou la sortie d'air 1207, 1208. Dans le cas d'une ventilation avec des ailettes placées sur le volant 13 ou sur le rotor 5 de manière précitée, il faut optimiser les paramètres pour un bon compromis entre le bruit et l'efficacité de la ventilation. Ainsi, il faut jouer sur la dimension des ailettes (hauteur, largeur) sur le type d'ailettes ( convexe, droit, concave) , réduire le diamètre extérieur au minimum nécessaire, jouer sur le nombre d'ailettes et éventuellement sur la répartition angulaire asymétrique des ailettes. Ces ailettes peuvent être obtenues brute de fonderie, être issue de surmoulage ou être fixée par collage, soudage, vissage, frettage etc ....
Bien entendu, avec une entretoise servant à la fixation par frettage du stator il est possible de réaliser une ventilation à la faveur d'ouvertures formées dans des excroissances ou protubérances locales de l'entretoise. Ces ouvertures ne remettent pas ainsi en cause la tenue mécanique de l'entretoise.
A la figure 23, on voit en 201, un pion engagé dans un trou de centrage 185 de l'entretoise 61, et en 202, une douille de centrage engagée également dans le même trou 185. Le pion 201 est solidaire du bloc moteur 62 tandis que la douille de centrage 202 est solidaire de la cloche d'embrayage 14 appelée également carter d'embrayage. Grâce au moyen de palier 132, on limite les battements relatifs entre le rotor 6 et le stator 5, ce qui garantit un entrefer précis. Néanmoins, du fait de la présence des pions 201 et des douilles 202, il persiste des efforts statiques radiaux du fait du désaxage du bloc moteur par rapport au nez du vilebrequin.
De plus, le fait de plaquer l'entretoise 61 contre le bloc moteur 62 entraîne des efforts statiques axiaux. II est proposé de minimiser ces efforts statiques. Pour minimiser les efforts statiques radiaux, on supprime les pions 201 de la figure 23 et on conserve les douilles 202. L ' antirotation est assurée par les vis traversantes 64.
Les efforts statiques axiaux sont minimisés par l'emploi de bagues 1462 sur lesquelles peut coulisser l'entretoise 61. La longueur imposée entre le carter moteur 62 et le carter d'embrayage est imposée par ces bagues de centrage 1462. Ainsi, les organes de fixation 64, en forme de vis, traversent l'entretoise 61 (figure 37) et relient le bloc moteur 62 à la cloche d'embrayage 14 épaulée à son extrémité libre pour appui des têtes des vis de fixation. Ces vis traversent les bagues de centrage 1462 elles mêmes traversant un passage 461 de l'entretoise. Ces bagues 1463 sont plus longues axialement que l'entretoise 61 c'est à dire qu'elles s'étendent en saillie axiale hors de l'entretoise 61 et font donc entretoise ou organe d'écartement entre le bloc moteur 62 et la cloche d'embrayage 14. Des anneaux en matière élastique 1463, tel que de 1 ' élastomère, sont placés à chaque extrémité de l'entretoise. L'entretoise 61 peut donc coulisser axialement le long des bagues 1462 en sorte que les efforts statiques sont minimisés.
Bien entendu, comme visible dans le haut de la figure 37 et à la figure 38, les organes de fixation 64 peuvent consister en des boulons, le bloc moteur étant alors épaulé, comme visible dans la partie haute de la figure 37. La bague 1462 étant alors prolongée en 1464 pour former un pion de centrage pour la cloche 14. Bien entendu, le carter 14 comporte au moins un trou étage 1465 pour recevoir respectivement le pion 1464 et la tête de la vis du boulon. Bien entendu, le nombre de pions 1464 dépend des applications et en pratique, un nombre réduit de bagues 1462 est équipé de tels pions 1464. Ces bagues 1462, faisant office d ' entretoise, sont en matière rigide, tel qu'en acier par exemple. L'entretoise 61 présente à chacune des extrémités axiales d'un passage 461 un élargissement de diamètre pour le logement de l'anneau élastique 1463. Les anneaux 1463 sont donc portés par l'entretoise. En variante, le bloc moteur 62 et la cloche 14 sont creusés localement pour réception des anneaux élastiques 1463. Ces anneaux peuvent être reliés ensemble pour former une couronne et créer ainsi une étanchéité .
En variante, ces anneaux élastiques sont montés de manière individuelle autour d'une bague de centrage 1462.
En variante (figure 38), les pions de centrage 1467 sont distincts de la bague 1462. Ces pions 1467 consistent en des douilles engagées sur les têtes des vis des boulons et sont individuellement chacun engagés dans un trou étage 1465 de la cloche 14 et dans un lamage 1466 réalisé dans la bague 1462. Ce lamage 1466 est bien entendu en vis à vis du trou 1465 et est formé à la faveur d'un élargissement du diamètre interne de la bague 1462 à son extrémité libre concernée. Les bagues 1462 permettent de filtrer les vibrations.
Ainsi, le centrage coté carter cylindre se fait par les moyens de palier 132, le centrage coté boîte de vitesse par des pions 1464 ou 1467, et les efforts axiaux sont compensés par le degré de liberté axial que procurent les bagues de centrage
1462.
Bien entendu, les trous borgnes 170 de la figure 17 peuvent être reliés à des canaux verticaux débouchant à la périphérie externe de l'entretoise 46 pour permettre un démoulage aisé des trous 170.
Bien entendu les entrée et sorties d'air 1208, 1208 peuvent consister en des trous lorsque l'entretoise est de forte épaisseur .
Ainsi qu'il ressort à l'évidence de la description et des figures, l'évidement central 39 permet un accès aux têtes des vis de fixation du volant d'entraînement 13 sur l'arbre de sortie 11 (vilebrequin) du moteur thermique du véhicule.
Dans les figures, l'entretoise 61 est plus courte axialement que le volant 13. La pièce porteuse, par exemple, le flasque 193 à une forme creuse pour loger en partie le stator et le rotor.
Cette pièce porteuse peut porter à sa périphérie interne le stator, le rotor, porté par le volant 13, entourant alors le stator. Il est ainsi possible d'inverser les structures à la figure 12.
L'amortisseur de torsion peut ne pas pénétrer dans l'évidement central.
Bien entendu, les rotors des figures 1 et suivantes peuvent être dotés d'au moins une série d'ailettes 1206. Le volant 13 de ces figures peut être doté d'ailettes et ou de trous comme dans les figures 5 et 27. On peut combiner ce type de refroidissement avec celui des figures 13, 14. Toutes les combinaisons sont possibles .

Claims

REVENDICATIONS
1. Dispositif d'embrayage à friction comportant, d'une part, un volant d'entraînement en rotation (13) présentant une extrémité avant destinée à être fixée à un arbre menant (11) et une extrémité arrière en forme de plateau de réaction (4) de forme creuse avec un évidemment central (39) délimité extérieurement par une face de friction (37), et d'autre part, un disque de friction (20), comprenant à sa périphérie externe au moins une garniture de friction (16) pour contact avec la face de friction (37) du plateau de réaction (4), ladite garniture de friction (16) étant solidaire d'un support (21) accouplé de manière élastique par l'intermédiaire d'un amortisseur de torsion (20a) à un moyeu (15) central destiné à être solidarisé en rotation à un arbre mené caractérisé en ce que l'amortisseur de torsion (20a) pénètre dans l'évidement central (39) du plateau de réaction (4) et en ce que le volant d'entraînement (13) porte entre ses extrémités avant et arrière le rotor (6) d'une machine électrique tournante (2) comprenant un stator fixe (5)
2. Dispositif selon la revendication 1 caractérisé en ce que l'amortisseur de torsion (20a) comporte, d'une part, une première rondelle de guidage (29) solidaire du support (21) et d'une deuxième rondelle de guidage (30), et, d'autre part, un voile (34) disposé entre les deux rondelles de guidage (29,30) et lié en rotation, éventuellement après rattrapage d'un jeu, avec le moyeu (15) et en ce que la deuxième rondelle de guidage
(30) est implantée dans l'évidement central (39) du plateau de réaction (4 ) .
3. Dispositif selon la revendication 2 caractérisé en ce que l'amortisseur de torsion (20a) est implanté radialement sous une première portion annulaire (38) d'orientation axiale se raccordant à la périphérie interne de la face de friction (37) .
4. Dispositif selon la revendication 3 caractérisé en ce que la première portion (38) est prolongée vers l'intérieur par une portion inclinée (142).
5. Dispositif selon la revendication 4 caractérisé en ce que la portion inclinée est prolongée par un anneau (130) d'orientation transversale.
6. Dispositif selon la revendication 3 caractérisé en ce que la première portion (38) se raccorde à un anneau d'orientation transversale (130).
7. Dispositif selon la revendication 3 caractérisé en ce que l'évidement (39) est en forme de marche d'escalier.
8. Dispositif selon la revendication 1 caractérisé en ce que le volant d' entraînement (13) est au moins en deux parties, à savoir, une première partie constituée par le plateau de réaction (4) et une seconde partie (130, 131, 46), solidaire en rotation de la première partie et destinée à être fixée sur l'arbre menant (12).
9. Dispositif selon la revendication 8 caractérisé en ce que la seconde partie (130, 131, 46, 230) consiste en une entretoise destinée à être interposée entre l'arbre menant et le plateau de réaction .
10. Dispositif selon la revendication 9 caractérisé en ce que l'entretoise (130, 131, 46) a en section globalement la forme d'un U avec une branche supérieure ( 46) d'orientation axiale, globalement en forme de manchon à épaulement d'extrémité (48) pour fixation du rotor (6) de la machine électrique (2), et une branche inférieure annulaire (131) d'orientation axiale pour fixation du plateau de réaction (4) .
11. Dispositif selon la revendication 9 caractérisé en ce que l'entretoise (230) consiste en un arbre.
12. Dispositif selon la revendication 8 caractérisé en ce que la deuxième partie consiste en un arbre cannelé à son extrémité arrière pour liaison en rotation avec le plateau de réaction (4 ) .
13. Dispositif selon la revendication 8 caractérisé en ce que la deuxième partie consiste en un socle cannelé intérieurement pour liaison en rotation avec un arbre central (430) issu du plateau de réaction (4).
14. Dispositif selon la revendication 8 caractérisé en ce que la deuxième partie consiste en un flasque (431a) lié en rotation avec un arbre central (430a) issu du plateau de réaction (4) .
15. Dispositif selon la revendication 14 caractérisé en ce le flasque (431a) présente centralement un moyeu (431b) à alésage interne de forme tronconique pour montage sur la périphérie externe de l'arbre (430a) de forme tronconique.
16. Dispositif selon la revendication 14 caractérisé en ce que le flasque (431a) porte à sa périphérie externe un manchon à épaulement d'extrémité (48) pour fixation du rotor (6) de la machine électrique (2).
17. Dispositif selon la revendication 1 caractérisé en ce que le volant d' entraînement ( 13 ) porte des moyens de palier
(132) interposés radialement entre ledit volant (13) et une pièce porteuse (134) solidaire du stator (5) pour définition d'un entrefer précis entre le stator (5) et le rotor(6).
18. Dispositif selon la revendication 17 caractérisé en ce que les moyens de palier (132) sont implantés radialement au dessus d'organes de fixations (145) du volant (13) d'entraînement à l'arbre menant (11).
19. Dispositif selon la revendication 18 caractérisé en ce que les moyens de palier (132) sont portés à leur périphérie interne par une entretoise (130, 46, 131) appartenant au volant (13) et solidaire du plateau de réaction (4) pour formation d'une entretoise entre le plateau de réaction (4) et l'arbre menant (11) .
20. Dispositif selon la revendication 18 caractérisé en ce que les moyens de palier (132) sont portés à leur périphérie externe par un manchon (46) solidaire du plateau de réaction (4) et à leur périphérie interne par une jupe (133) solidaire d'une pièce porteuse (134) portant à sa périphérie externe le stator (5) .
21. Dispositif selon la revendication 17 caractérisé en ce que les moyens de palier (132) sont .implantés sur la même circonférence que les organes de fixation (245) du volant d'entraînement (13) à l'arbre menant (11).
22. Dispositif selon la revendication 17 caractérisé en ce que les moyens de palier (132) sont implantés radialement en dessous d'organes de fixation (345) du volant d'entraînement (13) à l'arbre menant (11).
23. Dispositif selon la revendication 22 caractérisé en ce que la pièce porteuse est dotée de trous de passages (545) pour le passage d'au moins un outil de vissage des organes de fixation (345) consistant en des vis.
24. Dispositif selon la revendication 23 caractérisé en ce que le plateau de réaction (4) présente des trous de passage en coïncidence axiale avec les trous de passage (545) de la pièce porteuse .
25. Dispositif selon la revendication 17 caractérisée en ce que la pièce porteuse (134) est solidaire d'une entretoise (61) et porte intérieurement des moyens élastiques (462, 463) déformables pour passage d'organes de fixation (64) et montage souple de la pièce porteuse (134) sur le bloc moteur (62) du moteur à combustion interne.
26. Dispositif selon la revendication 1 caractérisé en ce que le volant moteur (13) porte des moyens de dégagement pour des chignons (8) que présente en saillie axiale le stator (5) de la machine électrique (2).
27. Dispositif selon la revendication 17 caractérisé en ce que la pièce porteuse (134) présente des moyens de dégagement pour des chignons (8) que présente en saillie axiale le stator (5) de la machine électrique (2).
28. Dispositif selon la revendication 1 caractérisé en ce que le volant moteur (31) porte des moyens de refroidissement pour refroidissement de la machine électrique.
29. Dispositif selon la revendication 28 caractérisé en ce que les moyens de refroidissement consistent en des ailettes (1200, 1201, 1202, 1206) portées par l'un des éléments du plateau de réaction (4) - rotor (6).
30. Dispositif selon la revendication 1 caractérisé en ce que le stator (5) de la machine électrique (2) porte des moyens de refroidissement.
31. Dispositif selon la revendication 30 caractérisé en ce que les moyens de refroidissement consistent en des perçages réalisés dans le paquet de tôles (10) que présente le stator (5) lesdits perçage permettant de véhiculer un fluide caloporteur d'une face à l'autre.
32. Dispositif selon la revendication 30 caractérisé en ce que le stator (5) est solidaire d'une entretoise (61) portant une entrée (1208) et une sortie (1207) d'air.
33. Dispositif selon la revendication 1 caractérisé en ce que le plateau de réaction présente à sa périphérie externe une jupe annulaire (144) entourant la ou les garnitures de friction (16) du disque de friction (20) et en ce que la jupe annulaire (144) présente à sa périphérie interne une gorge (148) pour recueillir les poussières.
34. Dispositif selon la revendication 20 caractérisé en ce que le plateau de réaction (4) comporte un manchon (46) portant le rotor (6) de la machine électrique (2).
35. Dispositif selon la revendication 1 caractérisé en ce que le volant d'entraînement (13) présente localement des enlèvement de matière (1000) pour équilibrage dynamique du dispositif d'embrayage à friction.
36. Dispositif selon la revendication 1 caractérisé en ce que le volant d'entraînement (13) présente localement des apports de matière pour équilibrage dynamique du dispositif d'embrayage à friction.
37. Dispositif selon la revendication 1 caractérisé en ce que le plateau de réaction (4) présente des taraudage pour le montage d'une platine amovible (3000) dotée d'au moins une pige (3001) pénétrant à centrage dans un trou (3002) réalisé dans un paquet de tôles (10) que présente le stator (5).
38. Dispositif selon la revendication 37 caractérisé en ce que la platine (3000) porte des cales (3007) destinées à être interposée entre le stator (5) et le rotor (6) pour définition d'un entrefer (7).
39. Dispositif selon la revendication 1 caractérisé en ce que le plateau de réaction (4) présente à sa périphérie externe une couronne dentée destinée à être associée à au moins un capteur.
40. Dispositif selon la revendication 1 caractérisé en ce que le plateau de réaction (4) porte un couvercle (19) sur lequel est monté de manière pivotante un diaphragme (18,22) prenant appui sur le couvercle (19) pour action sur un plateau de réaction (17) et serrage de la garniture de friction (16) entre les plateaux de pression (17) et le plateau de réaction" (4), ledit plateau de pression étant solidaire en rotation dudit couvercle (19) tout en pouvant se déplacer axialement par rapport à celui-ci.
41. Dispositif selon la revendication 40 caractérisé en ce qu'une butée de débrayage (23) est destinée à agir sur les extrémités internes des doigts (22) que présente centralement le diaphragme et en ce que la butée de débrayage appartient à un dispositif de débrayage (24) du type concentrique.
42. Dispositif selon la revendication 41 caractérisé en ce que le dispositif de débrayage (24) du type concentrique comporte un piston (241) monté mobile à l'intérieur d'une cavité annulaire borgne (243) d'orientation axiale pour formation d'une chambre à volume variable et en ce que le piston (241) porte la butée de débrayage (23) et en ce que la cavité annulaire borgne (243) est délimitée par un corps extérieur (242), en ce que un ressort de précharge (244) agit entre le corps extérieur (242) et la butée de débrayage (23) et en ce que un capteur d'effort (2000) est associé au ressort de précharge (244).
43. Dispositif selon la revendication 42 caractérisé en ce que le capteur de position est placé entre le ressort de précharge (244) et le corps extérieur (242)
44. Dispositif selon la revendication 41 caractérisé en ce que le dispositif de débrayage du type concentrique est manoeuvré par un actionneur à moteur électrique relié à un calculateur recevant des informations provenant de capteurs détectant la vitesse de rotation de l'arbre menant (11) et de l'arbre mené (12) et en ce que le capteur de la vitesse de rotation de l'arbre menant est utilisé pour détecter la vitesse de rotation du rotor (6) de la machine électrique.
45. Dispositif selon la revendication 40 caractérisé en ce qu'il comporte un dispositif de rattrapage d'usure pour compenser au moins l'usure de ladite garniture de friction
PCT/FR1999/001863 1998-07-28 1999-07-28 Embrayage a friction portant le rotor d'une machine electrique, notamment pour vehicule automobile WO2000006896A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/744,733 US7318403B1 (en) 1998-07-28 1999-07-28 Friction clutch bearing an electric machine rotor, in particular for a motor vehicle
DE19983452.0T DE19983452B3 (de) 1998-07-28 1999-07-28 Reibungskupplungsvorrichtung
AU50452/99A AU5045299A (en) 1998-07-28 1999-07-28 Friction clutch bearing an electric machine rotor, in particular for a motor vehicle

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
FR98/09639 1998-07-28
FR9809639A FR2782353B1 (fr) 1998-07-28 1998-07-28 Embrayage a friction portant le rotor d'une machine electrique, notamment pour vehicule automobile
FR9811174A FR2782761B1 (fr) 1998-07-28 1998-09-03 Embrayage a friction portant le rotor d'une machine electrique, notamment pour vehicule automobile
FR98/11174 1998-09-03
FR9905287A FR2782354B1 (fr) 1998-07-28 1999-04-16 Embrayage a friction portant le rotor d'une machine electrique, notamment pour vehicule automobile
FR99/05287 1999-04-16

Publications (2)

Publication Number Publication Date
WO2000006896A2 true WO2000006896A2 (fr) 2000-02-10
WO2000006896A3 WO2000006896A3 (fr) 2002-10-03

Family

ID=27253451

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/FR1999/001864 WO2000006897A2 (fr) 1998-07-28 1999-07-28 Embrayage a friction portant le rotor d'une machine electrique, notamment pour vehicule automobile
PCT/FR1999/001863 WO2000006896A2 (fr) 1998-07-28 1999-07-28 Embrayage a friction portant le rotor d'une machine electrique, notamment pour vehicule automobile

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/001864 WO2000006897A2 (fr) 1998-07-28 1999-07-28 Embrayage a friction portant le rotor d'une machine electrique, notamment pour vehicule automobile

Country Status (5)

Country Link
US (2) US7318403B1 (fr)
AU (2) AU5045399A (fr)
DE (2) DE19983453B3 (fr)
FR (1) FR2782354B1 (fr)
WO (2) WO2000006897A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1150007A2 (fr) * 2000-04-26 2001-10-31 Ford Motor Company Méthode et dispositif d'accouplement d'un moteur à combustion interne et transmission à un démarreur/alternateur
EP1806284A1 (fr) * 2006-01-10 2007-07-11 Nanni Industries Dispositif de génération de courant et/ou de motorisation électrique a bord d'une structure navigante
RU2497017C2 (ru) * 2009-11-26 2013-10-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Стартер-генераторная установка автотранспортного средства
DE102014217667A1 (de) * 2014-09-04 2016-03-10 Zf Friedrichshafen Ag Lageranordnung in einem Getriebegehäuse

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2802999A1 (fr) 1999-12-28 2001-06-29 Valeo Garniture de friction, disque de friction equipe d'une telle garniture, embrayage a friction, notamment pour vehicule automobile, equipe d'un tel disque de friction, et procede de realisation d'une garniture de friction
DE10135141A1 (de) * 2001-07-19 2003-01-30 Bosch Gmbh Robert Starter
DE10149710A1 (de) * 2001-10-09 2003-05-15 Zf Sachs Ag Mehrfach-Kupplungsanordnung
US6962135B2 (en) * 2002-01-31 2005-11-08 Visteon Global Technologies, Inc. Use of integrated starter alternator to prevent engine stall
US6843201B2 (en) * 2002-05-08 2005-01-18 Asm International Nv Temperature control for single substrate semiconductor processing reactor
US6838778B1 (en) * 2002-05-24 2005-01-04 Hamilton Sundstrand Corporation Integrated starter generator drive having selective torque converter and constant speed transmission for aircraft having a constant frequency electrical system
US6838779B1 (en) 2002-06-24 2005-01-04 Hamilton Sundstrand Corporation Aircraft starter generator for variable frequency (vf) electrical system
DE10246227B4 (de) * 2002-10-04 2007-06-14 Zf Sachs Ag Antriebseinheit, insbesondere für ein Kraftfahrzeug
DE10258654B4 (de) * 2002-12-13 2006-02-23 Daimlerchrysler Ag Starter-Generator
JP4492176B2 (ja) * 2004-03-26 2010-06-30 株式会社デンソー 回転式アクチュエータ
DE102004052023A1 (de) * 2004-10-26 2006-04-27 Deere & Company, Moline Vorrichtung zum Erzeugen elektrischer Energie für ein landwirtschaftliches oder industrielles Nutzfahrzeug
EP1885046B1 (fr) * 2005-05-10 2013-04-24 Komatsu Ltd. Generateur/moteur monte sur un groupe moteur
JP2007331603A (ja) * 2006-06-15 2007-12-27 Kanzaki Kokyukoki Mfg Co Ltd 船内外機のシフト装置
DE102008012903A1 (de) * 2008-03-06 2009-09-17 Robert Bosch Gmbh Antrieb für ein Hybridfahrzeug sowie Kupplung mit einer Ausrückvorrichtung
DE102008023712A1 (de) * 2008-05-15 2009-11-19 Bayerische Motoren Werke Aktiengesellschaft Antriebsstrang für Hybridfahrzeuge
US8234954B2 (en) * 2008-12-04 2012-08-07 GM Global Technology Operations LLC Transmission with integrated housing for motor and clutch
EP2322372B1 (fr) * 2009-11-13 2012-02-29 C.R.F. Società Consortile per Azioni Système de propulsion hybride pour un véhicule à moteur
CN201639415U (zh) * 2010-02-26 2010-11-17 中山大洋电机制造有限公司 一种电动机用离心开关的接线盒装置
JP5311293B2 (ja) * 2010-03-16 2013-10-09 株式会社安川電機 回転電機
CN101964556B (zh) * 2010-09-13 2013-05-01 精进电动科技(北京)有限公司 一种起动发电一体电机的转子装置和转子工作系统
JP5505275B2 (ja) * 2010-11-22 2014-05-28 アイシン・エィ・ダブリュ株式会社 ステータ冷却装置
KR101302262B1 (ko) * 2011-03-30 2013-09-02 가부시끼 가이샤 구보다 작업차
JP5867103B2 (ja) * 2012-01-16 2016-02-24 コベルコ建機株式会社 ハイブリッド建設機械の駆動装置
DE102012003385A1 (de) * 2012-02-22 2013-08-22 Man Truck & Bus Ag Anordnung bestehend aus einem Verbrennungsmotor
FR2995834B1 (fr) 2012-09-25 2014-09-05 Valeo Equip Electr Moteur Ensemble de transmission pour vehicule automobile
EP2900503B1 (fr) * 2012-09-25 2018-04-25 Valeo Equipements Electriques Moteur Dispositif pour véhicule hybride avec un flasque anti-poussière entre une machine électrique et un plateau de réaction
US9145926B2 (en) 2012-12-10 2015-09-29 Sikorsky Aircraft Corporation Friction clutch for shaft driven accessories
US9863486B2 (en) 2012-12-24 2018-01-09 Borgwarner Inc. Driven accessory
US9453571B2 (en) 2012-12-24 2016-09-27 Borgwarner Inc. Metal pulley with non-magnetically susceptible insert
DE112013005493T5 (de) 2012-12-24 2015-10-15 Borgwarner Inc. Ausfallsichere Trochenreibungskupplung für eine Kühlmittelpumpe
US9447826B2 (en) * 2012-12-24 2016-09-20 Borgwarner Inc. Friction clutch for driven accessory
US9458897B2 (en) 2012-12-24 2016-10-04 Borgwarner Inc. Accessory drive with friction clutch
DE102013204200A1 (de) * 2013-03-12 2014-09-18 Robert Bosch Gmbh Elektrische Maschine in einem Kraftfahrzeug mit Drehzahlsignaleingang
DE102014205380A1 (de) * 2013-04-19 2014-10-23 Schaeffler Technologies Gmbh & Co. Kg Kühlvorrichtung und -verfahren für eine rotorintegrierte Kupplung für Hybridmodule
DE102013221056A1 (de) * 2013-10-17 2015-04-23 Robert Bosch Gmbh Kupplungssensorsystem
US10938280B2 (en) 2013-11-01 2021-03-02 Tesla, Inc. Flux shield for electric motor
DE102015105787A1 (de) * 2015-04-15 2016-10-20 Johann Schwöller Elektroantrieb für ein Luftfahrzeug und Hybridsystem für ein Luftfahrzeug
US10436056B2 (en) 2015-06-23 2019-10-08 General Electric Company Relative position measurement
DE102015215447A1 (de) * 2015-08-13 2017-02-16 Zf Friedrichshafen Ag Antriebsmodul für einen Antriebsstrang eines Hybridfahrzeugs
JP6644499B2 (ja) * 2015-08-25 2020-02-12 Ntn株式会社 自動クラッチ装置
FR3052401B1 (fr) * 2016-06-09 2019-08-16 Valeo Embrayages Dispositif de transmission de couple, notamment pour vehicule automobile
AU2016410305B2 (en) * 2016-06-21 2022-11-24 Brian Provost Outboard-motor closed-loop cooler system
FR3053418B1 (fr) * 2016-06-30 2019-07-19 Renault S.A.S Dispositif d'accouplement en rotation entre un volant moteur et un vilebrequin
CN106160287A (zh) * 2016-07-29 2016-11-23 精进电动科技(北京)有限公司 集成式启动发电一体化电机及一种混合动力动力系统
US10527125B2 (en) 2016-08-31 2020-01-07 Brp Us Inc. Internal combustion engine assembly having a flywheel
US10451085B2 (en) * 2016-10-05 2019-10-22 Borgwarner Inc. Assembly methods for the connection of a turbine wheel to a shaft
CA3054880C (fr) * 2017-03-03 2024-02-06 Ge Renewable Technologies Machine a poles saillants
DE102017127102A1 (de) * 2017-06-16 2018-12-20 Schaeffler Technologies AG & Co. KG Hybridmodul für einen Antriebsstrang eines Kraftfahrzeugs, Hybrid-Einheit und Verfahren zur Montage eines Hybridmoduls
CN109510364B (zh) * 2017-09-15 2021-04-16 日本电产株式会社 驱动装置
CN109510390B (zh) * 2017-09-15 2021-07-09 日本电产株式会社 驱动装置
US11654766B2 (en) * 2018-05-04 2023-05-23 Schaeffler Technologies AG & Co. KG Hybrid module including stamped rotor carrier
FR3083171A1 (fr) * 2018-06-27 2020-01-03 Valeo Embrayages Dispositif de transmission pour vehicule hybride
EP3628522A3 (fr) 2018-09-26 2020-05-06 Elephant Racing LLC Rétromontage hybride électrique de véhicules à moteur à combustion non hybride
DE102018125874A1 (de) * 2018-10-18 2020-04-23 Obrist Technologies Gmbh Naben - Nabenverbindung für ein Stromaggregat
CN109372552B (zh) * 2018-11-26 2023-10-31 四川蓝海智能装备制造有限公司 带有电磁模板的模喷装置
JP6918858B2 (ja) * 2019-03-15 2021-08-11 本田技研工業株式会社 エンジンのクランク角検出装置
KR20210026598A (ko) * 2019-08-30 2021-03-10 엘지전자 주식회사 발전기
US11387705B2 (en) * 2019-12-09 2022-07-12 Dana Tm4 Inc. Torsional mass tuned damper

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309768A (ja) * 1987-06-10 1988-12-16 Mazda Motor Corp エンジンの始動充電装置
EP0311688B1 (fr) * 1987-02-12 1992-07-22 Mitsubishi Denki Kabushiki Kaisha Demarreur/chargeur pour moteurs
EP0544092A1 (fr) * 1991-11-26 1993-06-02 Mitsubishi Denki Kabushiki Kaisha Dispositif de démarrage d'un moteur à combustion interne et générateur de puissance
DE4323601A1 (de) * 1993-07-09 1995-01-12 Mannesmann Ag Antriebsanordnung für ein Hybridfahrzeug

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2925675A1 (de) * 1979-06-26 1981-02-12 Volkswagenwerk Ag Kraftfahrzeug
DE3048972C2 (de) * 1980-12-24 1995-01-26 Luk Lamellen & Kupplungsbau Antriebseinheit
DE3320950C2 (de) * 1983-06-10 1994-08-04 Volkswagen Ag Antriebsanordnung für ein Kraftfahrzeug
US4699097A (en) * 1984-08-31 1987-10-13 Mazda Motor Corporation Means for suppressing engine output torque fluctuations
FR2604229B1 (fr) * 1986-09-19 1990-11-02 Valeo Dispositif d'embrayage a commande inertielle automatique.
KR920000498B1 (ko) * 1987-02-10 1992-01-14 미쯔비시 덴끼 가부시끼가이샤 회전 전기
JPS63195382A (ja) * 1987-02-10 1988-08-12 Mitsubishi Electric Corp エンジンの始動兼充電装置
JP2539221B2 (ja) * 1987-06-10 1996-10-02 マツダ株式会社 エンジンの始動充電装置
JPH01123460U (fr) * 1988-02-12 1989-08-22
FR2722851B1 (fr) * 1994-07-25 1996-08-23 Valeo Couvercle pour mecanisme d'embrayage et mecanisme comportant un tel couvercle
FR2746472B1 (fr) * 1996-03-22 1998-04-24 Valeo Amortisseur de torsion a rondelle entretoise, notamment pour vehicule automobile
US5934430A (en) * 1997-06-19 1999-08-10 Eaton Corporation Electrically operated clutch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0311688B1 (fr) * 1987-02-12 1992-07-22 Mitsubishi Denki Kabushiki Kaisha Demarreur/chargeur pour moteurs
JPS63309768A (ja) * 1987-06-10 1988-12-16 Mazda Motor Corp エンジンの始動充電装置
EP0544092A1 (fr) * 1991-11-26 1993-06-02 Mitsubishi Denki Kabushiki Kaisha Dispositif de démarrage d'un moteur à combustion interne et générateur de puissance
DE4323601A1 (de) * 1993-07-09 1995-01-12 Mannesmann Ag Antriebsanordnung für ein Hybridfahrzeug

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 013, no. 148 (M-812), 11 avril 1989 (1989-04-11) & JP 63 309768 A (MAZDA MOTOR CORP), 16 décembre 1988 (1988-12-16) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1150007A2 (fr) * 2000-04-26 2001-10-31 Ford Motor Company Méthode et dispositif d'accouplement d'un moteur à combustion interne et transmission à un démarreur/alternateur
EP1150007A3 (fr) * 2000-04-26 2004-12-15 Ford Motor Company Méthode et dispositif d'accouplement d'un moteur à combustion interne et transmission à un démarreur/alternateur
EP1806284A1 (fr) * 2006-01-10 2007-07-11 Nanni Industries Dispositif de génération de courant et/ou de motorisation électrique a bord d'une structure navigante
RU2497017C2 (ru) * 2009-11-26 2013-10-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Стартер-генераторная установка автотранспортного средства
DE102014217667A1 (de) * 2014-09-04 2016-03-10 Zf Friedrichshafen Ag Lageranordnung in einem Getriebegehäuse

Also Published As

Publication number Publication date
FR2782354B1 (fr) 2001-03-30
WO2000006897A3 (fr) 2002-10-03
WO2000006897A2 (fr) 2000-02-10
DE19983452T1 (de) 2001-08-02
DE19983453T1 (de) 2001-06-13
FR2782354A1 (fr) 2000-02-18
AU5045299A (en) 2000-02-21
AU5045399A (en) 2000-02-21
US6561336B1 (en) 2003-05-13
DE19983453B3 (de) 2016-07-28
DE19983452B3 (de) 2016-07-07
WO2000006896A3 (fr) 2002-10-03
US7318403B1 (en) 2008-01-15

Similar Documents

Publication Publication Date Title
WO2000006896A2 (fr) Embrayage a friction portant le rotor d'une machine electrique, notamment pour vehicule automobile
EP2900507B1 (fr) Ensemble de transmission pour véhicule automobile
FR2782355A1 (fr) Embrayage a friction portant le rotor d'une machine electrique, notamment pour vehicule automobile
EP2900504A1 (fr) Module pre-monte pour un ensemble de transmission pour vehicule hybride et procede de montage d'un ensemble de transmission
WO2014049246A1 (fr) Dispositif pour véhicule hybride avec un flasque anti-poussière entre une machine électrique et un plateau de réaction
WO2014049249A1 (fr) Module hybride pour ensemble de transmission de véhicule automobile
WO2003031215A1 (fr) Ensemble de transmission comprenant deux embrayages et une machine electrique, notamment pour vehicule automobile
FR2782356A1 (fr) Embrayage a friction portant le rotor d'une machine electrique, notamment pour vehicule automobile
EP2900505B1 (fr) Ensemble de transmission ayant un moyeu de rotor a flasque antipoussiere
WO2000056565A1 (fr) Ensemble constitue d'un embrayage associe a une machine electrique, notamment pour vehicule automobile
EP0996832B1 (fr) Double volant amortisseur de torsion, notamment pour vehicule automobile
EP1436503B1 (fr) Montage d'un volant d'un embrayage, portant le rotor d'une machine electrique tournante, sur le vilebrequin du moteur d'un vehicule
EP2900506B1 (fr) Ensemble de transmission pour vehicule automobile
FR2804185A1 (fr) Embrayage a friction comportant un plateau de reaction portant un rotor d'une machine electrique tournante, notamment pour vehicule automobile
FR2802592A1 (fr) Embrayage a friction portant le rotor d'une machine electrique, notamment pour vehicule automobile
WO2000006920A1 (fr) Embrayage a friction portant le rotor d'une machine electrique, notamment pour vehicule automobile
EP1497554B1 (fr) Montage de machine electrique tournante pour vehicule automobile
FR2782353A1 (fr) Embrayage a friction portant le rotor d'une machine electrique, notamment pour vehicule automobile
FR2782761A1 (fr) Embrayage a friction portant le rotor d'une machine electrique, notamment pour vehicule automobile
FR2802593A1 (fr) Embrayage a friction a piece porteuse portant le stator d'une machine electrique, notamment pour vehicule automobile
WO2015040284A1 (fr) Ensemble de transmission pour vehicule automobile
FR2804184A1 (fr) Embrayage a friction comportant un plateau de reaction portant un rotor d'une machine electrique tournante, notamment pour vehicule automobile, l'encombrement radial dudit embrayage etant reduit
WO2015040285A1 (fr) Module hybride pour ensemble de transmission de vehicule automobile
FR2792981A1 (fr) Ensemble constitue d'un embrayage associe a une machine electrique, notamment pour vehicule automobile
FR3005902A1 (fr) Module pre-monte pour un ensemble de transmission pour vehicule hybride et procede de montage d'un ensemble de transmission

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09744733

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 19983452

Country of ref document: DE

Date of ref document: 20010802

WWE Wipo information: entry into national phase

Ref document number: 19983452

Country of ref document: DE

122 Ep: pct application non-entry in european phase
AK Designated states

Kind code of ref document: A3

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607