WO2000004552A1 - Low switching field magnetic tunneling junction usable for multi-state magnetic memory cell - Google Patents
Low switching field magnetic tunneling junction usable for multi-state magnetic memory cell Download PDFInfo
- Publication number
- WO2000004552A1 WO2000004552A1 PCT/US1999/016314 US9916314W WO0004552A1 WO 2000004552 A1 WO2000004552 A1 WO 2000004552A1 US 9916314 W US9916314 W US 9916314W WO 0004552 A1 WO0004552 A1 WO 0004552A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic
- magnetoresistive
- layer
- tunneling junction
- layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/161—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1675—Writing or programming circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/56—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
- G11C11/5607—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using magnetic storage elements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2211/00—Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C2211/56—Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
- G11C2211/561—Multilevel memory cell aspects
- G11C2211/5615—Multilevel magnetic memory cell using non-magnetic non-conducting interlayer, e.g. MTJ
Definitions
- the present invention pertains to magnetic tunneling junctions for memory cells and more specifically to very small magnetic junctions for very high density arrays of memory cells.
- a magnetic random access memory is a nonvolatile memory which basically includes a giant
- GMR magnetoresistive
- MTJ magnetic tunneling junction
- the MRAM employs the magnetic vectors to store memory states. Magnetic vectors in one or all of the layers of GMR material or MTJ are switched very quickly from one
- one direction can be defined as a
- the GMR material or MTJ maintains these states even without a magnetic field being applied.
- the states stored in the GMR material or MTJ can be read by passing a sense stored, for example, one direction can be defined as a logic "0", and another direction can be defined as a logic "1".
- the GMR material or MTJ maintains these states even without a magnetic field being applied.
- the states stored in the GMR material or MTJ can be read by passing a sense current through the cell in a sense line because of the difference between the resistances of the two states.
- a dummy magnetic layer is added to a two magnetic layer stack and coupled to one of the two magnetic layers so that the other magnetic layer is a free layer.
- a drawback of the dummy magnetic layer approach is that it relies on cancellation of magnetostatic interaction between the two magnetic layers and this magnetostatic interaction strength depends on the geometry of the cell and the interlayer spacing. These parameters change as the critical dimension shrinks.
- two layer magnetic memory cells e.g. standard tunneling cells
- the aspect ratio goes below 5
- the amount of magnetic field required for switching states of the cell increases dramatically.
- the layers of the cells are made thinner to reduce the amount of magnetic field required for switching states of the cell, since the magnetic moment (determined by the material) times the thickness of the layer determines the required switching field.
- Softer magnetic material can also be used to reduce the magnetic moment but the reduction in switching field is limited for ultra small memory cells.
- the cells are made smaller they become unstable because, for example, when the size of the memory cell is 10 nm or less, the energy barrier of the magnetization, which is proportional to the cell volume, is decreased due to the decreased volume and is close to the thermal fluctuation energy, which is KT. Accordingly, it is highly desirable to provide magnetic random access memories and memory cells which are capable of being written (stored states switched) with less magnetic field and which have a volume sufficient to not be effected by the thermal fluctuation energy.
- a low switching field magnetoresistive tunneling junction memory cell including a antiferromagnetically coupled multi-layer structure having first and second magnetoresistive layers with a non-magnetic conducting layer situated in parallel juxtaposition between the pair of magnetoresistive layers.
- the pair of magnetoresistive layers in the antiferromagnetically coupled multi-layer structure are constructed to switch at different magnetic fields, by having different thicknesses or different magnetic material.
- the pair of magnetoresistive layers in the antiferromagnetically coupled multi-layer structure each have a magnetic vector which are anti- parallel with no applied magnetic field due to the antiferromagnetic coupling of the pair of layers and the aspect ratio.
- the cell further includes a magnetoresistive structure having a magnetic vector with a fixed relationship to the vector of the second magnetoresistive layer. Electrically insulating material is situated in parallel juxtaposition between the antiferromagnetic coupled multi-layer structure and the magnetoresistive structure to form a magnetic tunneling junction.
- the magnetic field required to switch states in the cell is dictated by the difference between the two magnetoresistive layers in the antiferromagnetically coupled multi-layer structure.
- each of the first and second structures have, or can be constructed to have, little net magnetic moment and, hence, the memory cell has little net magnetic moment so that it can be positioned closer to adjacent cells without affecting adjacent cells.
- FIG. 1 is a simplified side view of a low switching field magnetic tunneling junction memory cell in accordance with the present invention
- FIG. 2 is a view similar to FIG. 1 illustrating a different mode and a modification
- FIG. 3 through FIG. 9 illustrate steps in switching the low switching field magnetic tunneling junction memory cell from the mode of FIG. 1 to the mode of FIG. 2;
- FIG. 10 is a simplified view in top plan of an array of low switching field magnetic tunneling junction memory cell in accordance with the present invention.
- FIG. 1 illustrates an enlarged, simplified side view of a low switching field magnetic tunneling junction memory cell 10 in accordance with the present invention.
- Magnetic tunneling junction 10 is generally formed on a supporting substrate 11 and includes a magnetoresistive structure 12 supported on substrate 11, an electrically insulating material layer 13 positioned on structure 12, and a magnetoresistive structure 15 positioned on electrically insulating material layer 13 so as to sandwich layer 13 between magnetoresistive structures 12 and 15 and form a tunneling junction.
- Magnetoresistive structure 15 is comprised of an antiferromagnetically coupled multi-layer structure including magnetoresistive layers 17 and 18 having a nonmagnetic conducting layer 19 situated in parallel juxtaposition between magnetoresistive layers 17 and 18.
- Magnetoresistive layer 17 has a magnetic vector 20 lying along a preferred magnetic axis parallel to the planar surface of substrate 11 and magnetoresistive layer 18 has a magnetic vector 21.
- Magnetic vectors 20 and 21 are anti-parallel with no magnetic field applied to magnetic tunneling junction 10, due to the antiferromagnetic coupling between magnetoresistive layers 17 and 18 and/or an aspect ratio less than approximately 5.
- the layers of magnetic material (Layers 17 and 18 in FIG.
- antiferromagnetically coupled means that either of the antiparallel states (illustrated in FIGS. 1 and 2) is stable and that the parallel state is unstable and does require a constant magnetic field, since the magnetic vectors always tend to move to an antiparallel state (pointing in opposite directions) .
- shape and size of magnetoresistive structure 15 vectors 20 and 21 can be constrained to lie along the preferred magnetic axis by either shape or magnetic crystalline anisotropy.
- the preferred magnetization direction can be determined by uniaxial crystal field anisotropy (or magnetic crystalline anisotropy) .
- This preferred magnetization direction is set during film deposition by a bias field or by annealing the film after deposition in a high magnetic field (e.g. several kOe) at elevated temperatures (e.g. 200°C to 300°C) .
- a high magnetic field e.g. several kOe
- elevated temperatures e.g. 200°C to 300°C
- the uniaxial crystal anisotropy can be set along a diagonal direction of the square.
- the uniaxial crystal anisotropy can be set along the long axis of the cell.
- a preferred feature here is to minimize the shape effect, which contributes to the rise in required switching fields at narrow cell widths, and to utilize magneto-crystalline anisotropy to set the preferred magnetization direction needed by a memory cell.
- magnetoresistive layer 17 is constructed to switch direction of magnetic vector 20 at a different magnetic field intensity than the switching of magnetic vector 21 of magnetoresistive layer 18. This feature can be accomplished in several different ways, including by forming layer 17 thinner (with less material) than layer
- layer 17 by forming layer 17 with different magnetization (e.g. forming layer 17 of softer magnetic material than layer 18) , or some combination of the size and magnetization.
- different magnetization e.g. forming layer 17 of softer magnetic material than layer 18
- Magnetoresistive layers 17 and 18 each can be single layers of ferromagnetic materials such as a layer of nickel, iron, cobalt, or alloys thereof including alloys having palladium or platinum therein.
- layers 17 and 18 can be a composite ferromagnetic layer, such as a layer of nickel-iron-cobalt covering a layer of cobalt-iron or three layer structures including layers of cobalt-iron and nickel-iron-cobalt and cobalt-iron with cobalt-iron at the interface with adjacent layers.
- Materials that are suitable for nonmagnetic conducting layer 19 include most electrically conductive materials such as copper and the like.
- Magnetoresistive structure 12 including at least one magnetoresistive layer having a magnetic vector parallel to the preferred magnetic axis, is positioned on substrate 11 with electrically insulating material layer 13 situated in parallel juxtaposition between structures 12 and 15 to form magnetic tunneling junction 10.
- magnetoresistive structure 12 is illustrated as similar to structure 15 and includes magnetoresistive layers 25 and 26 separated by a non-magnetic conducting layer 27.
- magnetoresistive layer 26 has a magnetic vector 28 which, generally, in the operation of magnetic tunneling junction 10, is fixed in one direction along the preferred magnetic axis.
- magnetoresistive structure 12 can have substantially any configuration that includes a magnetoresistive layer with a fixed magnetic vector adjacent electrically insulating material layer 13 to produce a magnetic tunneling junction and which, preferably has a substantially zero magnetic moment to produce a minimum effect on adjacent cells.
- layer 13 is a barrier or tunneling layer, the provision of which between antiferromagnetic layers 17 and 26 produces a tunneling junction that allows a flow of current perpendicularly through layer 13, from layer 17 to layer 26 (or vice versa) .
- magnetic tunneling junction 10 appears as a relatively high impedance (referred to herein as a resistance R) , which has dependence on the square area of the cell and the dielectric structure, generally several thousand ohms, e.g. 10 to 1000 kohms .
- the resistance R of magnetic tunneling junction 10 remains very high.
- the resistance R of magnetoresistive tunneling junction 10 drops perceptibly.
- layer 17 is formed of cobalt (Co) approximately 50 A thick
- layer 13 is formed of aluminum oxide (AI 2 O 3 ) approximately 15 A thick
- layer 26 is formed of nickel iron (NiFe) approximately 50 A thick.
- Layer 18, which in this example is thicker than layer 17, is approximately 60 A thick and layer 25, if present, has a similar thickness.
- the state of magnetic tunneling junction 10 is relatively easily sensed by passing a sense current therethrough from layer 18 to layer 25 (or vice versa) .
- the change of resistance in magnetic tunneling junction 10 is easily read as a change in voltage drop across magnetic tunneling junction 10 which can conveniently be used in conjunction with memory arrays and the like.
- FIG. 2 a structure similar to that of FIG. 1 is illustrated in a different mode, and a slightly different embodiment is illustrated with similar components being designated with similar numbers having a prime added to indicate the different embodiment.
- the antiparallel coupling between layers 17' and 18' of structure 15' is reinforced by the addition of flux closure material 30' positioned to enclose exposed edges of layers 17', 18' and 19'.
- Flux closure material 30' is any soft magnetic material which encloses flux lines, or completes a magnetic circuit, between the various layers. Soft magnetic material 30' simply guides magnetic field lines from layers 17' and 18', respectively, into a closed loop to further reduce the end magnetic poles and greatly reduce stray magnetic fields. Similar flux closure material can be used in conjunction with layers 25', 26', and 27' if the layers are present.
- FIG. 3 illustrates vector 20 of magnetoresistive layer 17 and vector 21 of magnetoresistive layer 18 in the antiparallel position of FIG. 1.
- vector 20 is also antiparallel to vector 28 of magnetoresistive layer 26 so that magnetic tunneling junction memory cell 10 is in the high resistance mode.
- an initial small magnetic field is applied to magnetic tunneling junction memory cell 10 sufficient to switch vector 20 into a parallel position with vector 21, as illustrated in FIG. 4.
- a larger positive magnetic field is then applied to magnetoresistive tunneling junction memory cell 10, which causes vectors 20 and 21 to rotate in opposite directions 180°, as denoted by the transitional states illustrated in FIGS. 5, 6, and 7, respectively.
- vectors 20 and 21 are switched into the opposite direction illustrated in FIG. 8 and, when the magnetic field is removed, vector 20 again assumes an antiparallel state, illustrated in FIG. 9.
- the antiparallel state illustrated in FIG. 9 is a stable state and, represents the low resistance mode of magnetic tunneling junction memory cell 10. Because magnetic vectors 20 and 21 of magnetoresistive layers 17 and 18 rotate in opposite directions 180° , the magnetic moments tend to offset each other and a minimum amount of magnetic field is required to perform the switching operation.
- the amount of switching magnetic field required to perform the switching operation is primarily dependent upon the difference in thickness or material between magnetoresistive layers 17 and 18. That is, because the stable modes for vectors 20 and 21 are antiparallel, by forming one of layers 17 and 18 so that it switches at a different magnetic field intensity than the other of layers 17 and 18, the mode switching results in rotation of vectors 20 and 21 in opposite directions with the resulting advantageous offsetting magnetic moments.
- the antiparallel vectors 20 and 21 result in very little total magnetic moment for magnetoresistive tunneling junction memory cell 10. This low magnetic moment is further enhanced by the flux closure material 30' illustrated in FIG. 2.
- the energy barrier of the magnetization (which is proportional to the volume) is close to the thermal fluctuation energy (KT) . This causes the cell to be unstable.
- the switching field can be reduced substantially without reducing the total size to an unstable level.
- an advantage of having two layers switching in opposite directions at the same time is that the switching field is determined by the difference in thickness between the two switching layers or, more accurately, the difference between the product of thickness and magnetization.
- both layers can be sufficiently thick so that the energy barrier for the two different magnetic states is higher than the thermal fluctuation energy.
- FIG. 10 a simplified view in top plan is illustrated of an high density array 45 of low switching field magnetoresistive tunneling junction memory cells 46 in accordance with the present invention.
- Array 45 is formed on a substrate structure 47 which may include control electronics and other peripheral equipment, if practical.
- the layer may be formed as a blanket layer so as to cooperate with each cell 46.
- Cells 46 lying in a common row for example, have the top magnetic layer connected to the bottom magnetic layer of the adjacent cell to form a common sense line 48.
- word lines 49 are coupled to cells 46 lying in a common column for purposes of writing information into the cells, as described above. Because of the zero, or essentially zero, magnetic moment of cells 10, cells of this type can be positioned very close and the density of an array of these cells can be greatly increased. Thus, new and improved magnetic random access memories and memory cells which are capable of being written (stored states switched) with less magnetic field have been disclosed. Also, the new and improved multi- state, multi-layer magnetic memory cell with antiferromagnetically coupled magnetic layers is capable of being written (stored states switched) with less magnetic field and has a volume sufficient to not be effected by the thermal fluctuation energy.
- the new and improved multi-state, multi-layer magnetic memory cell with antiferromagnetically coupled magnetic layers which is disclosed produces less magnetic interaction with adjacent cells in an array and can be fabricated very small and with an aspect ratio less than 5. Further, the new and improved multi-state, multi-layer magnetic memory cell is simpler to manufacture and to use and, because of its size, results in a high density array of cells.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Hall/Mr Elements (AREA)
- Semiconductor Memories (AREA)
- Mram Or Spin Memory Techniques (AREA)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000560586A JP4815051B2 (ja) | 1998-07-20 | 1999-07-19 | 低切替磁界磁性トンネル接合 |
| EP99935700A EP1038299B1 (en) | 1998-07-20 | 1999-07-19 | Low switching field magnetic tunneling junction usable for multi-state magnetic memory cell |
| DE69932589T DE69932589T2 (de) | 1998-07-20 | 1999-07-19 | Magnetischer tunnelübergang mit geringer umschaltfeldstärke für magnetische mehrzustandsspeicherzelle |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/118,979 | 1998-07-20 | ||
| US09/118,979 US5953248A (en) | 1998-07-20 | 1998-07-20 | Low switching field magnetic tunneling junction for high density arrays |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2000004552A1 true WO2000004552A1 (en) | 2000-01-27 |
Family
ID=22381922
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US1999/016314 Ceased WO2000004552A1 (en) | 1998-07-20 | 1999-07-19 | Low switching field magnetic tunneling junction usable for multi-state magnetic memory cell |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US5953248A (enExample) |
| EP (1) | EP1038299B1 (enExample) |
| JP (1) | JP4815051B2 (enExample) |
| DE (1) | DE69932589T2 (enExample) |
| TW (1) | TW451192B (enExample) |
| WO (1) | WO2000004552A1 (enExample) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003531476A (ja) * | 2000-03-22 | 2003-10-21 | モトローラ・インコーポレイテッド | 改善された磁気抵抗比を有する磁気素子 |
| JP3515940B2 (ja) | 2000-02-17 | 2004-04-05 | シャープ株式会社 | 磁気トンネル接合素子及びそれを用いた磁気メモリ |
| JP2009239317A (ja) * | 2000-12-07 | 2009-10-15 | Commissariat A L'energie Atomique | 記憶機能を有する3層構造磁気スピン極性化装置と当該装置を使用した記憶素子 |
| US8358598B2 (en) | 2001-06-29 | 2013-01-22 | Qualcomm Incorporated | Method and system for group call service |
Families Citing this family (56)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6215695B1 (en) * | 1998-12-08 | 2001-04-10 | Canon Kabushiki Kaisha | Magnetoresistance element and magnetic memory device employing the same |
| US6611405B1 (en) * | 1999-09-16 | 2003-08-26 | Kabushiki Kaisha Toshiba | Magnetoresistive element and magnetic memory device |
| DE19946490A1 (de) * | 1999-09-28 | 2001-04-19 | Infineon Technologies Ag | Magnetoresistiver Schreib/Lese-Speicher sowie Verfahren zum Beschreiben und Auslesen eines solchen Speichers |
| US6172904B1 (en) * | 2000-01-27 | 2001-01-09 | Hewlett-Packard Company | Magnetic memory cell with symmetric switching characteristics |
| DE10106860A1 (de) * | 2000-02-17 | 2001-08-30 | Sharp Kk | MTJ-Element und Magnetspeicher unter Verwendung eines solchen |
| US6727105B1 (en) * | 2000-02-28 | 2004-04-27 | Hewlett-Packard Development Company, L.P. | Method of fabricating an MRAM device including spin dependent tunneling junction memory cells |
| US6911710B2 (en) * | 2000-03-09 | 2005-06-28 | Hewlett-Packard Development Company, L.P. | Multi-bit magnetic memory cells |
| DE10113853B4 (de) * | 2000-03-23 | 2009-08-06 | Sharp K.K. | Magnetspeicherelement und Magnetspeicher |
| US6538921B2 (en) | 2000-08-17 | 2003-03-25 | Nve Corporation | Circuit selection of magnetic memory cells and related cell structures |
| US6544801B1 (en) | 2000-08-21 | 2003-04-08 | Motorola, Inc. | Method of fabricating thermally stable MTJ cell and apparatus |
| US6767655B2 (en) * | 2000-08-21 | 2004-07-27 | Matsushita Electric Industrial Co., Ltd. | Magneto-resistive element |
| JP3576111B2 (ja) | 2001-03-12 | 2004-10-13 | 株式会社東芝 | 磁気抵抗効果素子 |
| JP4458703B2 (ja) | 2001-03-16 | 2010-04-28 | 株式会社東芝 | 磁気抵抗効果素子、その製造方法、磁気ランダムアクセスメモリ、携帯端末装置、磁気ヘッド及び磁気再生装置 |
| US6730949B2 (en) * | 2001-03-22 | 2004-05-04 | Kabushiki Kaisha Toshiba | Magnetoresistance effect device |
| JP2002334971A (ja) * | 2001-05-09 | 2002-11-22 | Nec Corp | 磁性メモリ及びその動作方法 |
| US6657888B1 (en) | 2001-05-11 | 2003-12-02 | Board Of Regents Of The University Of Nebraska | Application of high spin polarization materials in two terminal non-volatile bistable memory devices |
| US6744086B2 (en) | 2001-05-15 | 2004-06-01 | Nve Corporation | Current switched magnetoresistive memory cell |
| US6430085B1 (en) | 2001-08-27 | 2002-08-06 | Motorola, Inc. | Magnetic random access memory having digit lines and bit lines with shape and induced anisotropy ferromagnetic cladding layer and method of manufacture |
| US6545906B1 (en) * | 2001-10-16 | 2003-04-08 | Motorola, Inc. | Method of writing to scalable magnetoresistance random access memory element |
| US6633498B1 (en) * | 2002-06-18 | 2003-10-14 | Motorola, Inc. | Magnetoresistive random access memory with reduced switching field |
| US6693824B2 (en) | 2002-06-28 | 2004-02-17 | Motorola, Inc. | Circuit and method of writing a toggle memory |
| US6850433B2 (en) * | 2002-07-15 | 2005-02-01 | Hewlett-Packard Development Company, Lp. | Magnetic memory device and method |
| US7095646B2 (en) | 2002-07-17 | 2006-08-22 | Freescale Semiconductor, Inc. | Multi-state magnetoresistance random access cell with improved memory storage density |
| JP3837102B2 (ja) * | 2002-08-20 | 2006-10-25 | Tdk株式会社 | 電磁変換素子、薄膜磁気ヘッド、磁気ヘッドアセンブリおよび磁気再生装置、ならびに電磁変換素子の製造方法 |
| JP2004128237A (ja) * | 2002-10-03 | 2004-04-22 | Sony Corp | 磁気抵抗効果素子および磁気メモリ装置 |
| US6873542B2 (en) | 2002-10-03 | 2005-03-29 | International Business Machines Corporation | Antiferromagnetically coupled bi-layer sensor for magnetic random access memory |
| US6870758B2 (en) * | 2002-10-30 | 2005-03-22 | Hewlett-Packard Development Company, L.P. | Magnetic memory device and methods for making same |
| JP3863484B2 (ja) * | 2002-11-22 | 2006-12-27 | 株式会社東芝 | 磁気抵抗効果素子および磁気メモリ |
| DE10258860A1 (de) * | 2002-12-17 | 2004-07-15 | Robert Bosch Gmbh | Magnetoresistives Schichtsystem und Sensorelement mit diesem Schichtsystem |
| US6714446B1 (en) * | 2003-05-13 | 2004-03-30 | Motorola, Inc. | Magnetoelectronics information device having a compound magnetic free layer |
| US6956763B2 (en) | 2003-06-27 | 2005-10-18 | Freescale Semiconductor, Inc. | MRAM element and methods for writing the MRAM element |
| JP4253225B2 (ja) * | 2003-07-09 | 2009-04-08 | 株式会社東芝 | 磁気抵抗効果素子および磁気メモリ |
| US6956764B2 (en) * | 2003-08-25 | 2005-10-18 | Freescale Semiconductor, Inc. | Method of writing to a multi-state magnetic random access memory cell |
| US6967366B2 (en) | 2003-08-25 | 2005-11-22 | Freescale Semiconductor, Inc. | Magnetoresistive random access memory with reduced switching field variation |
| US7310265B2 (en) * | 2003-10-14 | 2007-12-18 | Agency For Science, Technology And Research | Magnetic memory device |
| US6985383B2 (en) * | 2003-10-20 | 2006-01-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Reference generator for multilevel nonlinear resistivity memory storage elements |
| JP4581394B2 (ja) * | 2003-12-22 | 2010-11-17 | ソニー株式会社 | 磁気メモリ |
| KR100528341B1 (ko) * | 2003-12-30 | 2005-11-15 | 삼성전자주식회사 | 자기 램 및 그 읽기방법 |
| US7105372B2 (en) | 2004-01-20 | 2006-09-12 | Headway Technologies, Inc. | Magnetic tunneling junction film structure with process determined in-plane magnetic anisotropy |
| DE102005004126B4 (de) * | 2004-02-06 | 2008-05-08 | Qimonda Ag | MRAM-Speicherzelle mit schwacher intrinsisch anisotroper Speicherschicht |
| US7436700B2 (en) * | 2004-02-06 | 2008-10-14 | Infineon Technologies Ag | MRAM memory cell having a weak intrinsic anisotropic storage layer and method of producing the same |
| FR2869445B1 (fr) * | 2004-04-26 | 2006-07-07 | St Microelectronics Sa | Element de memoire vive magnetique |
| US7372116B2 (en) * | 2004-06-16 | 2008-05-13 | Hitachi Global Storage Technologies Netherlands B.V. | Heat assisted switching in an MRAM cell utilizing the antiferromagnetic to ferromagnetic transition in FeRh |
| US7477490B2 (en) * | 2004-06-30 | 2009-01-13 | Seagate Technology Llc | Single sensor element that is naturally differentiated |
| US7187576B2 (en) * | 2004-07-19 | 2007-03-06 | Infineon Technologies Ag | Read out scheme for several bits in a single MRAM soft layer |
| US20060101111A1 (en) * | 2004-10-05 | 2006-05-11 | Csi Technology, Inc. | Method and apparatus transferring arbitrary binary data over a fieldbus network |
| US7355884B2 (en) * | 2004-10-08 | 2008-04-08 | Kabushiki Kaisha Toshiba | Magnetoresistive element |
| US7599156B2 (en) * | 2004-10-08 | 2009-10-06 | Kabushiki Kaisha Toshiba | Magnetoresistive element having specially shaped ferromagnetic layer |
| US7129098B2 (en) | 2004-11-24 | 2006-10-31 | Freescale Semiconductor, Inc. | Reduced power magnetoresistive random access memory elements |
| JP4388008B2 (ja) * | 2004-11-30 | 2009-12-24 | 株式会社東芝 | 半導体記憶装置 |
| JP4012196B2 (ja) * | 2004-12-22 | 2007-11-21 | 株式会社東芝 | 磁気ランダムアクセスメモリのデータ書き込み方法 |
| JP2007081280A (ja) * | 2005-09-16 | 2007-03-29 | Fujitsu Ltd | 磁気抵抗効果素子及び磁気メモリ装置 |
| TWI307507B (en) * | 2006-10-20 | 2009-03-11 | Ind Tech Res Inst | Magnetic tunnel junction devices and magnetic random access memory |
| FR2925747B1 (fr) | 2007-12-21 | 2010-04-09 | Commissariat Energie Atomique | Memoire magnetique a ecriture assistee thermiquement |
| US8242776B2 (en) * | 2008-03-26 | 2012-08-14 | Everspin Technologies, Inc. | Magnetic sensor design for suppression of barkhausen noise |
| KR102034210B1 (ko) * | 2013-03-15 | 2019-10-18 | 에스케이하이닉스 주식회사 | 반도체 장치 및 이의 제조 방법, 이 반도체 장치를 포함하는 마이크로프로세서, 프로세서, 시스템, 데이터 저장 시스템 및 메모리 시스템 |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5587943A (en) * | 1995-02-13 | 1996-12-24 | Integrated Microtransducer Electronics Corporation | Nonvolatile magnetoresistive memory with fully closed flux operation |
| EP0780912A1 (en) * | 1995-12-19 | 1997-06-25 | Matsushita Electric Industrial Co., Ltd. | Magnetoresistance element, magnetoresistive head and magnetoresistive memory |
| US5691865A (en) * | 1994-02-21 | 1997-11-25 | U.S. Philips Corporation | Magnetic device and method for locally controllably altering magnetization direction |
| JPH10106255A (ja) * | 1996-09-26 | 1998-04-24 | Toshiba Corp | 半導体記憶装置 |
| US5745408A (en) * | 1996-09-09 | 1998-04-28 | Motorola, Inc. | Multi-layer magnetic memory cell with low switching current |
| US5768181A (en) * | 1997-04-07 | 1998-06-16 | Motorola, Inc. | Magnetic device having multi-layer with insulating and conductive layers |
| US5768183A (en) * | 1996-09-25 | 1998-06-16 | Motorola, Inc. | Multi-layer magnetic memory cells with improved switching characteristics |
| US5894447A (en) * | 1996-09-26 | 1999-04-13 | Kabushiki Kaisha Toshiba | Semiconductor memory device including a particular memory cell block structure |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3691898B2 (ja) * | 1996-03-18 | 2005-09-07 | 株式会社東芝 | 磁気抵抗効果素子、磁気情報読み出し方法、及び記録素子 |
| US5640343A (en) * | 1996-03-18 | 1997-06-17 | International Business Machines Corporation | Magnetic memory array using magnetic tunnel junction devices in the memory cells |
| US5764567A (en) * | 1996-11-27 | 1998-06-09 | International Business Machines Corporation | Magnetic tunnel junction device with nonferromagnetic interface layer for improved magnetic field response |
| US5650958A (en) * | 1996-03-18 | 1997-07-22 | International Business Machines Corporation | Magnetic tunnel junctions with controlled magnetic response |
| US5734605A (en) * | 1996-09-10 | 1998-03-31 | Motorola, Inc. | Multi-layer magnetic tunneling junction memory cells |
| US5801984A (en) * | 1996-11-27 | 1998-09-01 | International Business Machines Corporation | Magnetic tunnel junction device with ferromagnetic multilayer having fixed magnetic moment |
| US5729410A (en) * | 1996-11-27 | 1998-03-17 | International Business Machines Corporation | Magnetic tunnel junction device with longitudinal biasing |
| US5828598A (en) * | 1997-05-23 | 1998-10-27 | Motorola, Inc. | MRAM with high GMR ratio |
-
1998
- 1998-07-20 US US09/118,979 patent/US5953248A/en not_active Expired - Lifetime
-
1999
- 1999-07-19 WO PCT/US1999/016314 patent/WO2000004552A1/en not_active Ceased
- 1999-07-19 JP JP2000560586A patent/JP4815051B2/ja not_active Expired - Lifetime
- 1999-07-19 EP EP99935700A patent/EP1038299B1/en not_active Expired - Lifetime
- 1999-07-19 DE DE69932589T patent/DE69932589T2/de not_active Expired - Fee Related
- 1999-11-16 TW TW088112229A patent/TW451192B/zh active
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5691865A (en) * | 1994-02-21 | 1997-11-25 | U.S. Philips Corporation | Magnetic device and method for locally controllably altering magnetization direction |
| US5587943A (en) * | 1995-02-13 | 1996-12-24 | Integrated Microtransducer Electronics Corporation | Nonvolatile magnetoresistive memory with fully closed flux operation |
| EP0780912A1 (en) * | 1995-12-19 | 1997-06-25 | Matsushita Electric Industrial Co., Ltd. | Magnetoresistance element, magnetoresistive head and magnetoresistive memory |
| US5745408A (en) * | 1996-09-09 | 1998-04-28 | Motorola, Inc. | Multi-layer magnetic memory cell with low switching current |
| US5768183A (en) * | 1996-09-25 | 1998-06-16 | Motorola, Inc. | Multi-layer magnetic memory cells with improved switching characteristics |
| JPH10106255A (ja) * | 1996-09-26 | 1998-04-24 | Toshiba Corp | 半導体記憶装置 |
| US5894447A (en) * | 1996-09-26 | 1999-04-13 | Kabushiki Kaisha Toshiba | Semiconductor memory device including a particular memory cell block structure |
| US5768181A (en) * | 1997-04-07 | 1998-06-16 | Motorola, Inc. | Magnetic device having multi-layer with insulating and conductive layers |
Non-Patent Citations (1)
| Title |
|---|
| PATENT ABSTRACTS OF JAPAN vol. 1998, no. 09 31 July 1998 (1998-07-31) * |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3515940B2 (ja) | 2000-02-17 | 2004-04-05 | シャープ株式会社 | 磁気トンネル接合素子及びそれを用いた磁気メモリ |
| JP2003531476A (ja) * | 2000-03-22 | 2003-10-21 | モトローラ・インコーポレイテッド | 改善された磁気抵抗比を有する磁気素子 |
| JP2009239317A (ja) * | 2000-12-07 | 2009-10-15 | Commissariat A L'energie Atomique | 記憶機能を有する3層構造磁気スピン極性化装置と当該装置を使用した記憶素子 |
| US8358598B2 (en) | 2001-06-29 | 2013-01-22 | Qualcomm Incorporated | Method and system for group call service |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1038299A1 (en) | 2000-09-27 |
| EP1038299B1 (en) | 2006-08-02 |
| JP4815051B2 (ja) | 2011-11-16 |
| DE69932589D1 (de) | 2006-09-14 |
| TW451192B (en) | 2001-08-21 |
| DE69932589T2 (de) | 2006-12-07 |
| US5953248A (en) | 1999-09-14 |
| JP2002520873A (ja) | 2002-07-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5953248A (en) | Low switching field magnetic tunneling junction for high density arrays | |
| US5966323A (en) | Low switching field magnetoresistive tunneling junction for high density arrays | |
| US5959880A (en) | Low aspect ratio magnetoresistive tunneling junction | |
| US5768181A (en) | Magnetic device having multi-layer with insulating and conductive layers | |
| US5936293A (en) | Hard/soft magnetic tunnel junction device with stable hard ferromagnetic layer | |
| US5774394A (en) | Magnetic memory cell with increased GMR ratio | |
| US5978257A (en) | Multi-layer magnet tunneling junction memory cells | |
| USRE42619E1 (en) | Magnetic tunnel junction magnetic device, memory and writing and reading methods using said device | |
| US7602000B2 (en) | Spin-current switched magnetic memory element suitable for circuit integration and method of fabricating the memory element | |
| KR100741303B1 (ko) | 결합된 인접 연자성 층을 갖는 자기 랜덤 액세스 메모리어레이 | |
| US6958927B1 (en) | Magnetic element utilizing spin-transfer and half-metals and an MRAM device using the magnetic element | |
| US5917749A (en) | MRAM cell requiring low switching field | |
| US7372116B2 (en) | Heat assisted switching in an MRAM cell utilizing the antiferromagnetic to ferromagnetic transition in FeRh | |
| US5898612A (en) | Magnetic memory cell with increased GMR ratio | |
| KR20010062357A (ko) | 이중 자기 상태의 자기 소자와 그 제작법 | |
| US6775183B2 (en) | Magnetic memory device employing giant magnetoresistance effect | |
| WO2004064073A2 (en) | Spin-transfer multilayer stack containing magnetic layers with resettable magnetization | |
| KR20010089201A (ko) | 메모리 셀 장치 및 그 제조방법 | |
| JP2008523589A (ja) | 高度集合組織の磁気抵抗効果素子及び磁気メモリを提供するための方法及びシステム | |
| JP2005229099A (ja) | 積層可能な構造を有する高密度磁気ランダムアクセスメモリ(mram)のための方法および装置 | |
| US5828598A (en) | MRAM with high GMR ratio | |
| US6873542B2 (en) | Antiferromagnetically coupled bi-layer sensor for magnetic random access memory | |
| US6083764A (en) | Method of fabricating an MTJ with low areal resistance | |
| JP4477829B2 (ja) | 磁気記憶デバイスを動作させる方法 | |
| JP2003188359A (ja) | 磁気的に軟らかい合成フェリ磁性体基準層を含む磁気抵抗素子 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP KP SG |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
| ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2000 560586 Kind code of ref document: A Format of ref document f/p: F |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 1999935700 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 1999935700 Country of ref document: EP |
|
| WWG | Wipo information: grant in national office |
Ref document number: 1999935700 Country of ref document: EP |