WO1999059921A1 - Procede de production de fines particules spheriques de carbonate ou d'hydroxyde de nickel, cobalt ou cuivre - Google Patents

Procede de production de fines particules spheriques de carbonate ou d'hydroxyde de nickel, cobalt ou cuivre Download PDF

Info

Publication number
WO1999059921A1
WO1999059921A1 PCT/JP1999/002634 JP9902634W WO9959921A1 WO 1999059921 A1 WO1999059921 A1 WO 1999059921A1 JP 9902634 W JP9902634 W JP 9902634W WO 9959921 A1 WO9959921 A1 WO 9959921A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
nickel
ammonia
cobalt
hydroxide
Prior art date
Application number
PCT/JP1999/002634
Other languages
English (en)
French (fr)
Inventor
Kazuhiko Nagano
Kazunobu Abe
Shigefumi Kamisaka
Kiyoshi Fukai
Tsutoma Hatanaka
Shinji Ohgama
Hiroshi Nakao
Minoru Yoneda
Hideto Mizutani
Original Assignee
Sakai Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industries, Ltd. filed Critical Sakai Chemical Industries, Ltd.
Priority to EP99921191A priority Critical patent/EP1013610B1/en
Priority to DE69911559T priority patent/DE69911559T2/de
Priority to US09/463,021 priority patent/US6197273B1/en
Priority to KR1020007000618A priority patent/KR100618071B1/ko
Publication of WO1999059921A1 publication Critical patent/WO1999059921A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/06Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/026Spray drying of solutions or suspensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
    • C01B13/328Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process by processes making use of emulsions, e.g. the kerosine process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/06Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/90Stabilisation; Use of additives

Definitions

  • the present invention relates to a method for producing fine spherical particles of hydrate.
  • the present invention relates to a method for producing fine spherical particles of carbonate or hydroxide of an element selected from nickel, steel and cobalt, and more particularly, to a uniform fine spherical particle of a metal selected from nickel, copper and cobalt.
  • Nickel, cobalt, or copper carbonate which is particularly useful as a precursor for the production of fine powders of aluminum, and also useful as an organic synthesis catalyst, carrier, pigment, filler, glaze, etc.
  • the present invention relates to a method for producing fine spherical particles of hydroxide. Description of conventional technology
  • nickel carbonate particles are usually known only as amorphous or non-spherical fine powders, and are slightly described in Japanese Patent Application Laid-Open No. 2-59432, a WZO type emulsion.
  • a method for producing fine and spherical nickel carbonate particles by a method of using as a reaction field is described. That is, according to this method, for example, an aqueous solution of a water-soluble nickel salt such as nickel chloride is added to a non-aqueous medium together with a surfactant, and the mixture is stirred to prepare a WZO type emulsion.
  • An aqueous solution of a metal carbonate or bicarbonate is added as a neutralizing agent, and the aqueous solution of a nickel salt forming minute droplets in the emulsion is reacted with the neutralizing agent to form fine particles. This is to produce spherical nickel carbonate particles.
  • the emulsion is easily dissolved by the effect of the neutralizing agent used and salts produced as a by-product together with the water-insoluble nickel salt. Throughout the whole, it is difficult to secure a stable reaction field, and thus a spherical nickel with a fine particle size is obtained. It is difficult to obtain Kel salt particles.
  • the present invention has been made in order to solve the above-mentioned problems in the production of spherical particles having a fine particle diameter of carbonate or hydroxide of cobalt or copper, in addition to nickel. It is an object of the present invention to provide a method for producing fine spherical particles of an elemental carbonate, basic carbonate or hydroxide. Summary of the Invention
  • a carbonate or hydroxide of nickel, cobalt or copper represented by the following formula is dissolved in an aqueous ammonia solution, and the obtained aqueous solution is converted into a W / 0 emulsion in which the droplets of the aqueous solution are suspended in a non-aqueous medium. It is characterized in that a basic carbonate or hydroxide of nickel, cobalt or copper is precipitated in the droplets except for a vaporizable component containing ammonia from the droplets.
  • FIG. 1 is an X-ray diffraction diagram of the basic nickel carbonate particles obtained in Example 1.
  • FIG. 2 is a scanning electron micrograph of the basic nickel carbonate particles obtained in Example 1.
  • FIG. 3 is a particle size distribution diagram of the basic nickel carbonate particles obtained in Example 1.
  • FIG. 4 is an X-ray diffraction diagram of fine metal nickel powder obtained by oxidizing the basic nickel carbonate particles obtained in Example 1 and then reducing by heating in a hydrogen stream.
  • FIG. 5 is a scanning electron micrograph of the metallic nickel fine powder of FIG.
  • FIG. 6 is a particle size distribution diagram of the metal nickel fine powder of FIG.
  • FIG. 7 is an X-ray diffraction diagram of the basic nickel carbonate particles obtained in Example 4.
  • FIG. 8 is a scanning electron micrograph of the basic nickel carbonate particles obtained in Example 4.
  • FIG. 9 is an X-ray diffraction diagram of the basic nickel carbonate particles obtained in Example 11.
  • FIG. 10 is a scanning electron micrograph of the basic nickel carbonate particles obtained in Example 11.
  • FIG. 11 is an X-ray diffraction diagram of the basic nickel carbonate particles obtained in Example 14.
  • FIG. 12 is a scanning electron micrograph of the basic nickel carbonate particles obtained in Example 14.
  • FIG. 13 is an X-ray diffraction diagram of the basic nickel carbonate particles obtained in Example 19.
  • FIG. 14 is a scanning electron micrograph of the basic nickel carbonate particles obtained in Example 19.
  • FIG. 15 is an X-ray diffraction diagram of the nickel hydroxide particles obtained in Example 20.
  • FIG. 16 is a scanning electron micrograph of the nickel hydroxide particles obtained in Example 20.
  • FIG. 17 is an X-ray drawing of the basic nickel carbonate particles obtained in Example 22.
  • FIG. 18 is a scanning electron micrograph of the basic nickel carbonate particles obtained in Example 22.
  • FIG. 19 is an X-ray diffraction diagram of the basic nickel carbonate particles obtained in Example 33.
  • FIG. 20 is a scanning electron micrograph of the basic nickel carbonate particles obtained in Example 33.
  • FIG. 21 is an X-ray diffraction diagram of the nickel hydroxide particles obtained in Example 34.
  • FIG. 22 is a scanning electron micrograph of the nickel hydroxide particles obtained in Example 34.
  • FIG. 23 is an X-ray diffraction diagram of the basic copper carbonate particles obtained in Example 35.
  • FIG. 24 is a scanning electron micrograph of the basic copper carbonate particles obtained in Example 35.
  • FIG. 25 is an X-ray diffraction diagram of the basic cobalt carbonate particles obtained in Example 36.
  • FIG. 26 is a scanning electron micrograph of the basic cobalt carbonate particles obtained in Example 36.
  • FIG. 27 is a scanning electron micrograph of the basic nickel carbonate particles obtained in Example 37. DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION
  • Nickel, cobalt or copper carbonate or hydroxide represented by the following formula is dissolved in an aqueous ammonia solution, and the obtained aqueous solution is converted into a WZO type emulsion in which the droplets of the aqueous solution are suspended in a non-aqueous medium.
  • Nickel, cobalt or copper carbonate or hydroxide can be obtained as fine spherical particles.
  • M represents Ni, C0 or Cu, and accordingly, as a starting material, a carbonate or hydroxide of nickel, cobalt or copper is used.
  • X and y are numbers satisfying 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 2.
  • x + y 2.
  • indicates nickel, cobalt, or copper as described above.
  • the starting material is not limited to a carbonate or hydroxide of a single element, but may be a carbonate or hydroxide of two or more of nickel, cobalt and copper. There may be. If necessary, the starting material may contain an element other than nickel, cobalt and copper. In addition, the above-mentioned starting material may contain a trivalent nickel ion or an ion such as calcium, cerium, yttrium, or iron as long as the formation of the below-described emulsion is not inhibited.
  • a carbonate / hydroxide of nickel, cobalt or copper is dissolved in an aqueous ammonia solution, and the obtained aqueous solution is subjected to droplets of the aqueous solution in a non-aqueous medium.
  • the nickel, cobalt or copper carbonate or hydroxide is extracted from the emulsion droplets by evaporating a vaporizable component containing ammonia from the emulsion droplets. Let Neutralize the droplets by adding force to the emulsion or acid to the emulsion.
  • the same carbonate as the starting material is obtained as a product.
  • an aqueous ammonia solution is used as an aqueous solution for dissolving the carbonate, or an aqueous solution containing other basic compounds other than ammonia together with ammonia is used. Also, the same carbonate as the starting material is obtained as the product.
  • the product obtained depends on the reaction conditions. That is, the aqueous solution for dissolving the hydroxide is ammonium carbonate, ammonium hydrogencarbonate, alkali metal carbonate or hydrogencarbonate together with the ammonia (these are sometimes referred to as carbonate (hydrogen) salts for the sake of simplicity).
  • carbonate can be obtained as a product, but the aqueous solution that dissolves the hydroxide contains ammonia as a basic compound, but the above-mentioned ammonia (carbon) does not contain carbonate.
  • the same hydroxide as the starting material can be obtained as a product.
  • a carbonate is used as a starting material, and is obtained by dissolving it in an aqueous ammonia solution or an aqueous solution containing ammonia and another basic compound other than ammonia. After converting the aqueous solution into a W / 0 type marsion containing droplets of the above aqueous solution in a non-aqueous medium, nickel, cobalt, or nickel or cobalt is removed in the droplets except for the vaporizable components that contain ammonia from the droplets. By precipitating the copper carbonate, fine spherical particles of nickel, cobalt or copper carbonate can be obtained, this embodiment being the most preferred according to the present invention.
  • nickel carbonate is dissolved in ammonia bicarbonate or an aqueous solution of ammonium carbonate together with ammonia in a pH range of 8.0 to 11.5, and the resulting aqueous solution of nickel salt is dissolved in non-aqueous solution.
  • the resulting emulsion is mixed with an aqueous medium to form emulsion, and then the emulsion is suctioned under reduced pressure to evaporate a vaporizable component (eg, carbon dioxide or water) containing ammonia from the aqueous solution of the nickel salt.
  • a vaporizable component eg, carbon dioxide or water
  • Nickel carbonate is precipitated in the droplets of the emulsion and collected, thereby obtaining fine spherical nickel carbonate particles.
  • the starting material nickel or cobalt or copper carbonate or hydroxide may be produced by any means or method.
  • carbonates can be obtained by neutralizing inorganic or organic acid salts such as chlorides, sulfates, nitrates, and acetates with alkali carbonates containing carbonate ions such as sodium carbonate and ammonium carbonate. it can.
  • an inorganic acid such as chloride, sulfate, nitrate or acetate of the above element is used.
  • a salt or an organic acid salt may be dissolved in an aqueous ammonia solution and, if necessary, reacted.
  • the aqueous ammonia solution when dissolving the starting material nickel, cobalt or copper carbonate or hydroxide in the aqueous ammonia solution, preferably contains other basic compounds other than ammonia.
  • the second basic compound is selected from the above-mentioned carbonate (hydrogen) salts (that is, ammonium carbonate, ammonium hydrogen carbonate, alkali metal carbonate, alkali metal bicarbonate), alkali metal hydroxides and amines. There is at least one species.
  • alkali metal for example, lithium, potassium or sodium is preferable.
  • alkali metal carbonate, alkali metal bicarbonate or alkali metal hydroxide include lithium carbonate, lithium bicarbonate, carbon dioxide lime, hydrogen bicarbonate, sodium carbonate, sodium bicarbonate, and the like.
  • examples thereof include lithium hydroxide, potassium hydroxide, and sodium hydroxide.
  • the amines are not particularly limited, but, for example, mono-, di- or trialkylamines, mono-, di- or trialkanolamines are preferably used. In the present invention, among such second basic compounds, ammonium bicarbonate is particularly preferably used.
  • nickel carbonate is dissolved in an aqueous ammonia solution containing the second basic compound, and the obtained aqueous solution of the nickel salt is dissolved in a non-aqueous medium.
  • the vaporizable components mainly ammonia and carbon dioxide gas
  • the carbon dioxide is contained in the droplets of the emulsion.
  • the nigel is precipitated, and if necessary, the vaporizable components mainly consisting of water are further evaporated from the emulsion droplets, and the nickel carbonate in the droplets is dried in oil, and the carbon dioxide thus obtained is dried. If the nickel is centrifuged, washed, and dried, for example, the desired fine spherical particles of nickel carbonate can be obtained.
  • nickel hydroxide is dissolved in an aqueous ammonia solution containing a carbonate (hydrogen) salt as the second basic compound, and the resulting aqueous solution of the nickel salt is dissolved in a non-aqueous medium.
  • a vaporizable component including ammonia mainly, ammonia and carbon dioxide is evaporated from the droplet to form a droplet in the emulsion.
  • Nickel carbonate is precipitated from the emulsion and, if necessary, the vaporizable component mainly consisting of water is further evaporated from the emulsion droplets, and the nickel carbonate in the droplets is dried in oil, and the pressure is reduced. If the obtained nickel carbonate is centrifuged, washed, and dried, for example, the desired fine spherical particles of nickel carbonate can be obtained.
  • nickel hydroxide is dissolved in an aqueous ammonia solution, and the obtained aqueous solution is converted into a W / 0 emulsion containing droplets of the aqueous solution in a non-aqueous medium.
  • the nickel hydroxide precipitates in the emulsion droplets by evaporating the ammonia from the water, and, if necessary, further evaporates the water from the emulsion droplets to obtain nickel hydroxide in the droplets.
  • the resulting nickel hydroxide is dried in oil, and the thus obtained nickel hydroxide is centrifuged, washed, and dried, for example, to obtain the desired spherical particles of nickel hydroxide.
  • the pH of the aqueous solution when nickel carbonate is dissolved in the aqueous ammonia solution is not particularly limited, but the pH is preferably in the range of 8.0 to 11.5.
  • the pH of the aqueous solution in which nickel carbonate is dissolved can be easily adjusted by using the above-mentioned various second basic compounds together with ammonia, preferably, the above-mentioned (hydrogen) carbonate. Nickel carbonate can be easily dissolved.
  • the concentration of the aqueous nickel salt solution obtained by dissolving nickel carbonate in an aqueous ammonia solution is not particularly limited, but is usually from 0.1 mol / L to a saturated concentration as Nigel metal. And particularly preferably in the range of 0.3 to 1.2 mol ZL.
  • the nickel salt aqueous solution thus obtained is mixed and stirred with a non-aqueous medium in the presence of a surfactant to prepare a emulsion according to a conventional method.
  • a non-ionic surfactant having a higher hydrophilicity is added to the nickel salt aqueous solution, and if necessary, the mixture is heated to a temperature of 5O'C or lower so as to prevent ammonia from evaporating and dissolved.
  • a more lipophilic strong nonionic surfactant is added to the non-aqueous medium, and if necessary, heated to dissolve.
  • the above-mentioned nickel salt aqueous solution is gradually added to the non-aqueous medium, and the nickel salt aqueous solution is finely dispersed to form a W / 0 type emulsion.
  • the average particle size and particle size distribution of the spherical nickel carbonate particles finally obtained are based on the size (average particle size) of the aqueous phase (droplets) in the emulsion, the particle size distribution, and the concentration of the aqueous solution of the salt solution.
  • the size (average particle size) and particle size distribution of the droplets in the emulsion are determined by the combination and amount of each surfactant used, the type of disperser, and the stirring speed by the disperser. Etc. can be adjusted.
  • the obtained carbonated nickel The average particle size of the gel particles can be arbitrarily adjusted in the range of 0.1 to 100 m, preferably in the range of 0.1 to 50 m.
  • a uniform fine particle made of nickel, cobalt or copper carbonate or hydroxide can be obtained.
  • Spherical particles can be obtained.
  • the non-aqueous medium for preparing the emulsion is preferably a water-insoluble, water-insoluble, and stable solvent which does not easily evaporate during the treatment under reduced pressure or normal pressure, as described below. Those having a higher boiling point are preferably used.
  • non-aqueous media examples include aliphatic hydrocarbons such as n-octene, isooctene, squalane, kerosene, etc., alicyclic hydrocarbons such as cyclooctane, cyclononane and cyclodecane, toluene, ethylbenzene, and the like.
  • Aromatic hydrocarbons such as isopropylbenzene, cumene, mesitylene and tetralin; ethers such as butyl ether and isobutyl ether; halogenated hydrocarbons such as dichloropentane; n-propyl acetate And fatty acid esters such as n-butyl acetate, isoptyl acetate, n-amyl acetate, isoamyl acetate, isoptyl propionate, ethyl acetate, and butyl butyrate, and mixtures thereof.
  • synthetic oils such as mineral oil, animal and vegetable oils and other natural oils, hydrocarbon oils, ester oils, ether oils, fluorinated lubricating oils, lubricating lubricating oils, lubricating lubricating oils, etc. It can be exemplified as a specific example of the medium.
  • a hydrocarbon organic solvent which is insoluble in water and has a low vapor pressure is preferable.
  • an aliphatic hydrocarbon solvent having a boiling point of 100 or more at normal pressure is preferably used.
  • the non-aqueous medium does not need to have a low vapor pressure, and a low-boiling non-aqueous medium can be used.
  • the surfactant used for preparing the emulsion is appropriately selected according to the non-aqueous medium used.
  • a highly hydrophilic surfactant having an HLB value of 10 or more is dissolved in the aqueous solution (aqueous phase) of the nickel salt in advance.
  • the amount of the surfactant to be used may be appropriately selected depending on the WZO ratio in the emulsion, the required particle size, and the like, and is not particularly limited, but is usually 20% by weight or less based on the emulsion. Preferably, it is in the range of 0.5 to 15% by weight. As described below, when the surfactant is dissolved in both the aqueous phase and the oil phase, the amount of the surfactant used is usually 20% by weight with respect to the aqueous or non-aqueous medium, respectively. %, Preferably in the range of 0.5 to 10% by weight.
  • the W / 0 ratio in the emulsion is determined by the amount and properties of the non-aqueous medium used, in particular, the viscosity and the surfactant used. In order to obtain a stable emulsion depending on the properties, especially the HLB value, it is usually in the range of 3Z2 to 1Z10, preferably 1 to 1/5, particularly preferably 13 to 1 / 5 range. However, it is not limited to this.
  • Nonionic surfactants having an HLB value of 10 or more such as polyoxyethylene sorbitan monolaurate, polyoxyxylene sorbitan monopalmitate, polyisoxylene sorbitan monostea
  • Polyoxyethylene sorbitan fatty acid esters such as polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan trioleate, polyethylene glycol monolaurate, polyethylene glycol Polyoxyethylene fatty acid esters such as rumonostearate, polyethylene glycol distearate, polyethylene glycol monooleate, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene Polyoxyethylene higher alkyl ethers such as polyether ethylene; polyoxyethylene higher alkyl aryl ethers such as polyoxyethylene octylphenyl ether; polyoxyethylene nonylphenyl ether; and the like. it can.
  • nickel carbonate or nickel hydroxide is dissolved in an aqueous ammonia solution containing a carbonate (hydrogen) salt, and the droplets of the aqueous solution of the nickel salt thus obtained are finely dispersed in a nonaqueous solvent.
  • the nickel salts precipitate in the droplets of the aqueous nickel salt solution in the emulsion, and if necessary, the vaporizable components mainly composed of water are further evaporated from the droplets in the emulsion. Then, the nickel salt in the droplets is dried in oil, and the nickel salt thus obtained is centrifuged, washed, and dried to obtain the desired fine particles of Nigel carbonate. Jo particles can be obtained.
  • Cobalt carbonate, cobalt hydroxide, as c another embodiment is also the same for copper carbonate or copper hydroxide, in particular, the nickel carbonate or nickel hydroxide is dissolved carbonate (hydrogen) salts Complex No Anmonia solution, thus Nickel salt obtained by A water / water emulsion is finely dispersed in a non-aqueous solvent to form a W / 0 emulsion, and then, if necessary, agitate or aerate under normal pressure while heating, or aspirate under reduced pressure
  • the nickel salt is precipitated in the droplets of the aqueous nickel salt solution in the emulsion by evaporating the vaporizable components mainly consisting of ammonia, carbon dioxide, and water, and then the spherical precipitate is removed as appropriate.
  • fine spherical particles of nickel carbonate can be obtained.
  • a nickel hydroxide was dissolved in aqueous ammonia containing no carbonate (hydrogen) salt, and the aqueous solution droplets thus obtained were dispersed finely in a non-aqueous solvent. After that, if necessary, while heating, agitation or aeration under normal pressure, or suction under reduced pressure to evaporate the vaporizable components mainly consisting of ammonia, Precipitate nickel hydroxide in the droplets of the aqueous solution, and if necessary, further evaporate the vaporizable components mainly consisting of water from the droplets in the emulsion, and dry the hydroxide in the droplets in oil The nickel hydroxide thus obtained is centrifuged, washed, and dried, for example, to obtain the desired fine nickel hydroxide particles. The same applies to cobalt hydroxide or copper hydroxide.
  • the emulsion containing such droplets is used as it is or is necessary.
  • the above-mentioned nickel hydroxide is collected by appropriate means, for example, centrifugation or filtration, washed and dried to obtain uniform fine particles of the desired Nigel hydroxide. I can do it.
  • cobalt hydroxide or copper hydroxide is the same applies to cobalt hydroxide or copper hydroxide.
  • the temperature and pressure conditions are not particularly limited, but are usually lower than atmospheric pressure, preferably 400 mm. if H g or less reduced pressure (vacuum) lower - well, the other, the upper limit of the reduced pressure (vacuum) is primarily the force due to economics ⁇ , and is usually 5 mm H g. Also, the temperature may range from 0 to 9 O'C, but preferably 1
  • the emulsion is heated to a temperature in the range of 20-70.C, Good results can be obtained by evaporating ammonia and other vaporizable components from the emulsion under reduced pressure using an aspirator, and thus under reduced pressure of about 10 to 50 mmHg.
  • the emulsion in order to evaporate the vaporizable component containing ammonia from the emulsion containing droplets of the aqueous solution of nickel salt, as another method, the emulsion is simply stirred under normal pressure. Is also good. Alternatively, air may be blown into the emulsion under normal pressure and, if necessary, while heating, that is, aeration may be performed.
  • a carbonate or hydroxide of nickel, cobalt or copper is dissolved in an aqueous solution of ammonia (and the second basic compound), and the aqueous solution is converted into fine droplets to form a non-aqueous medium.
  • an acid is added to the emulsion to neutralize the ammonia in the droplets, preferably the droplets, thereby causing nickel, cobalt or copper carbonate or water in the droplets.
  • the oxides are precipitated, precipitated and dried in oil as described above, and the carbonate or hydroxide thus obtained is subjected to, for example, centrifugation, washing and drying.
  • Fine spherical particles of the carbonate or hydroxide described above can be obtained.
  • any of an inorganic acid and an organic acid can be used.
  • the inorganic acid include, for example, nitric acid, hydrochloric acid, and sulfuric acid.
  • Specific examples of the organic acid include, for example, formic acid, oxalic acid, and vinegar. Acids, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-tonolenesulfonic acid and the like can be mentioned. Of these, inorganic acids are preferably used, and nitric acid is particularly preferably used. Industrial applicability
  • a carbonate or hydroxide of nickel, cobalt or copper is dissolved in an aqueous ammonia solution, and the obtained aqueous solution is dispersed in a non-aqueous medium to form droplets of the aqueous solution.
  • nickel, cobalt or copper carbonate or hydroxide is precipitated in the droplet by removing vaporizable components including ammonia from the droplet, thereby forming nickel, Fine spherical particles of cobalt or copper carbonate or hydroxide can be obtained.
  • Such particles of nickel carbonate, cobalt carbonate, copper carbonate, nickel hydroxide, cobalt hydroxide or copper hydroxide obtained by the method of the present invention are, for example, those in which conventional nickel carbonate is amorphous or non-spherical. Since they are fine spherical particles, they themselves are useful as organic synthesis catalysts, carriers, pigments, fillers, glazes, etc., and of course, such carbonates and hydroxides obtained by the present invention.
  • the particles, preferably uniformly fine spherical particles are oxidized as necessary, and then reduced to obtain uniformly fine spherical metallic nickel, cobalt or copper fine powder.
  • metal nickel fine powder can be particularly suitably used, for example, as a material for an internal electrode of a multilayer ceramic capacitor.
  • a nonionic surfactant polyoxyethylene sorbitan monooleate having an HLB value of 15 (Reodol TW—0120 manufactured by Kao Corporation) was added. 30 g was added, and the mixture was stirred at 50 and dissolved.
  • a nonionic surfactant sorbitan monoester (KAO) with an HL value of 4.3 was added to 800 g of super squalane with a boiling point of about 280 ⁇ (Squalane, manufactured by SQUATEC Co., Ltd.) 50 g of Reodol SR-0110) manufactured by Co., Ltd. was added, and the mixture was stirred at 80'C to dissolve.
  • the emulsion is sucked under a reduced pressure of 20 to 3 OmmHg to evaporate a vaporizable component mainly composed of ammonia and carbon dioxide, thereby precipitating basic nickel carbonate in droplets of the emulsion. I let it. Thereafter, the emulsion was further sucked under the reduced pressure to evaporate a vaporizable component containing water as a main component, and the basic nickel carbonate spherical particles generated in the emulsion droplets were dried in oil.
  • the particles of the basic nickel carbonate are centrifuged, washed in the order of hexane, methanol and water, and then dried at a temperature of 100 ° C. for 2 hours to obtain a particle diameter of 0.1 to 6 ⁇
  • a powder of spherical particles of basic nickel carbonate having a diameter of 1.5 tm was obtained. It was confirmed from the X-ray diffraction diagram shown in FIG. 1 that the particles thus obtained were basic nickel carbonate.
  • FIG. 2 shows a scanning electron micrograph of the basic nickel carbonate particles
  • FIG. 3 shows the particle size distribution.
  • Example 2 The powder of the basic nickel carbonate spherical particles obtained in Example 1 was heated at 50 / h, and calcined in an air atmosphere at 600 ° C. for 2 hours to obtain nickel oxide particles. Was. It was confirmed by X-ray diffraction that the product was nickel oxide. Then, the temperature of the nickel oxide particles was raised to 100 ° C. in a hydrogen stream of 3 L / min, and the temperature was raised to 600 ° C. The mixture was reduced with C for 1 hour to obtain spherical nickel powder having a particle size of 0.1 to 5 m and an average particle size of 1.3. The nickel fine powder thus obtained was confirmed from the X-ray diffraction diagram shown in FIG. Fig. 5 shows a scanning electron micrograph of the nickel metal fine powder, and Fig. 6 shows the particle size distribution.
  • Example 2 The powder of the basic nickel carbonate spherical particles obtained in Example 1 was heated at 50 / h, and calcined in an air atmosphere at 600 ° C. for 2
  • Example 3 spherical particles of basic nickel carbonate having a particle size of 1 to 5 m and an average particle size of 1.3 / m were obtained.
  • Example 3 spherical particles of basic nickel carbonate having a particle size of 1 to 5 m and an average particle size of 1.3 / m were obtained.
  • Example 4 spherical particles of basic nickel carbonate having a particle size of 0.1 to 6 m and an average particle size of 1.5 m were obtained.
  • Example 4 spherical particles of basic nickel carbonate having a particle size of 0.1 to 6 m and an average particle size of 1.5 m were obtained.
  • FIG. 7 shows a scanning electron micrograph of the basic nickel carbonate particles.
  • Example 6 Add 14 1 g of commercially available basic nickel carbonate and 33 1 g of potassium bicarbonate to 15% aqueous ammonia, stir well, and remix ammonia with a pH of 9.5. An aqueous solution (1.1 mol / L concentration as Ni) was prepared. Thereafter, in the same manner as in Example 1, powder of spherical particles of basic nickel carbonate having a particle size of 0.1 to 6 m and an average particle size of 1.5 ⁇ m was obtained.
  • Example 7 spherical nickel carbonate powder having a particle size of 0.1 to 10 / m and an average particle size of 1.6 m was obtained.
  • Example 8 a powder of spherical particles of basic nickel carbonate having a particle diameter of 0.1 to 7 ⁇ ⁇ and an average particle diameter of 1.6 im was obtained.
  • Example 8
  • Example 9 Add 14 1 g of commercially available basic nickel carbonate and 33 1 g of lithium hydrogen carbonate to 15% aqueous ammonia, stir well, and mix well with a basic nickel carbonate aqueous solution of lithium hydrogen carbonate mono-ammonia having a pH of 9.5. (1.1 mol ZL concentration as Ni). Thereafter, in the same manner as in Example 1, powder of spherical particles of basic nickel carbonate having a particle size of 0.1 to 10 m and an average particle size of 1.8 m was obtained.
  • Example 9 Example 9
  • Example 10 Add 141 g of commercially available basic nickel carbonate and 331 g of lithium carbonate to 15% aqueous ammonia and stir well to obtain a solution of basic nickel carbonate having a pH of 9.5 in lithium carbonate-ammonia ( 1.1 molno L concentration) was prepared as Ni. Thereafter, in the same manner as in Example 1, powder of spherical particles of basic nickel carbonate having a particle size of 0.1 to 6 m and an average particle size of 1.5 / m was obtained.
  • Example 10 Example 10
  • Example 1 1 1 g of commercially available basic nickel carbonate and 150 g of lithium hydroxide to 15% aqueous ammonia, stir well, and mix well with basic nickel carbonate water with a pH of 9.5. (A concentration of 1.1 mol / L as Ni) was prepared. Thereafter, in the same manner as in Example 1, powder of spherical particles of basic nickel carbonate having a particle size of 0.1 to 6 m and an average particle size of 1.3 / m was obtained.
  • Example 1 2 Add 14 g of commercially available basic nickel carbonate to 15% aqueous ammonia, stir well, and add an aqueous ammonia solution of basic nickel carbonate with a pH of 9.5 (1.1 mol / L as Ni). Concentration) was prepared. Thereafter, in the same manner as in Example 1, powder of spherical particles of basic nickel carbonate having a particle size of 0.1 to 15; m and an average particle size of 4.3 m was obtained; the particles thus obtained. Is basic nickel carbonate. It was confirmed by the X-ray diffraction diagram shown. FIG. 10 shows a scanning electron micrograph of the basic nickel carbonate particles.
  • Example 1 2 shows a scanning electron micrograph of the basic nickel carbonate particles.
  • Example 14 Add 141 g of commercially available basic nickel carbonate and 662 g of a 50% aqueous ethyl acetate solution to 15% aqueous ammonia, stir well, and mix well with ethyl nickel carbonate of pH 9.5. —Aqueous ammonia solution (1.1 mol / L concentration as Ni) was prepared. Thereafter, in the same manner as in Example 1, a powder of spherical particles of basic nickel carbonate having a particle size of 0.1 to 12 m and an average particle size of 2.5 m was obtained.
  • Example 14 Example 14
  • FIG. 11 shows a scanning electron micrograph of the basic nickel carbonate particles.
  • Example 1 Add 14 g of commercially available basic nickel carbonate and 331 g of ethanolamine to a 15% aqueous ammonia solution, and stir well to obtain an aqueous solution of basic nickel carbonate having a pH of 9.5 in ethanolamine-ammonia ( 1.1 mol / L) was prepared as Ni. Then, in the same manner as in Example 1, powder of spherical particles of basic nickel carbonate having a particle size of 0.1 to 20 m and an average particle size of 2.1 m was obtained.
  • Example 1 Example 1
  • Example 18 spherical nickel carbonate powder having a particle size of 0.1 to 13 / m and an average particle size of 3.2 m was obtained.
  • Example 18 spherical nickel carbonate powder having a particle size of 0.1 to 13 / m and an average particle size of 3.2 m was obtained.
  • Example 19 spherical nickel carbonate powder having a particle size of 0.1 to 20 / m and an average particle size of 3.5 m was obtained.
  • Example 19 spherical nickel carbonate powder having a particle size of 0.1 to 20 / m and an average particle size of 3.5 m was obtained.
  • FIG. 14 shows a scanning electron micrograph of the basic nickel carbonate particles.
  • Nigel Hydroxide with pH of 10.8 (0.2 mol / L as Ni) was prepared. Thereafter, in the same manner as in Example 1, nickel hydroxide spherical particles having a particle diameter of 0.1 to 39 / m and an average particle diameter of 6.3 m were obtained.
  • FIG. 15 shows a scanning electron micrograph of the nickel hydroxide particles.
  • the W / 0 type emulsion prepared in the same manner as in Example 1 was stirred at a temperature of 70 ° C. under normal pressure to evaporate a vaporizable component mainly composed of ammonia and carbon dioxide gas.
  • the basic nickel carbonate was precipitated. Thereafter, the mixture was further stirred to evaporate the vaporizable component mainly composed of water, and the particles of basic nickel carbonate formed in the droplets of the emulsion were dried in oil.
  • This basic nickel carbonate is centrifuged, washed with hexane, methanol and water in this order. After that, the powder was dried at 100 ° C. for 2 hours to obtain a powder of spherical basic nickel carbonate particles having a particle size of 0.1 to 25 m and an average particle size of 4.3 m.
  • the W / 0 type emulsion prepared in the same manner as in Example 2 was stirred at a temperature of 70 ° C. under normal pressure to evaporate a vaporizable component mainly composed of ammonia and carbon dioxide gas.
  • the basic nickel carbonate was precipitated. Thereafter, stirring was further continued to evaporate a vaporizable component mainly composed of water, and the basic nickel carbonate particles formed in the emulsion droplets were dried in oil. After centrifuging this basic carbonate nigel, washing it in the order of hexane, methanol and water, it is dried at a temperature of 100 ° C for 2 hours to obtain a particle size of 0.1 to 13 // m.
  • a powder of basic nickel carbonate spherical particles having an average particle diameter of 3.0 / was obtained.
  • FIG. 17 shows a scanning electron micrograph of the basic nickel carbonate particles.
  • the WZO type emulsion prepared in the same manner as in Example 5 was stirred at a temperature of 70 ° C. under normal pressure to evaporate a vaporizable component mainly composed of ammonia and carbon dioxide gas, thereby forming a base in the emulsion droplets.
  • Nickel carbonate was precipitated. Thereafter, the mixture was further stirred to evaporate a vaporizable component mainly composed of water, and the basic nickel carbonate particles formed in the emulsion droplets were dried in oil. This basic nickel carbonate is centrifuged, washed with hexane, methanol and water in this order, dried at a temperature of 100 ° C.
  • a W / 0 type emulsion prepared in the same manner as in Example 20 was stirred at a temperature of 70 ° C. under normal pressure to evaporate a vaporizable component mainly composed of ammonia, and nickel hydroxide was added to the droplets of the emulsion. Was precipitated. Thereafter, stirring was further continued to evaporate a vaporizable component mainly composed of water, and the nickel hydroxide particles generated in the emulsion droplets were dried in oil. The nickel hydroxide is centrifuged, washed in the order of hexane, methanol and water, and dried at a temperature of 100 ° C. for 2 hours to obtain a particle size of 0.1 to 15 m and an average particle size of 2 m.
  • Example 26-W type 0 emulsion prepared in the same manner as in Example 1 was sucked under a reduced pressure of 100 mmHg at a temperature of 5O'C, and vaporized mainly with ammonia and carbon dioxide gas. evaporated ingredients, then t precipitated basic nickel carbonate in the droplets of Emarujon, further continued ⁇ , water evaporated volatile components mainly composed of, in the droplets of the E Marujiyon The resulting basic nickel carbonate particles were dried in oil.
  • the basic nickel carbonate is centrifuged, washed in the order of hexane, methanol and water, dried at a temperature of 100 for 2 hours, and a particle size of 0.1 to 13 // m, average Spherical particles of basic nickel carbonate having a particle size of 2.2 m were obtained.
  • the WZO type emulsion prepared in the same manner as in Example 1 was vacuumed under a reduced pressure of 15 O mm Hg at a temperature of 5 (suctioned with TC to evaporate a vaporizable component mainly composed of ammonia and carbon dioxide gas.
  • the basic nickel carbonate was precipitated in the emulsion droplets by further evaporating the vaporizable component containing water as a main component while continuing stirring.
  • the basic nickel carbonate was centrifuged, washed with hexane, methanol and water in this order, and then dried at a temperature of 100 ° C. for 2 hours to obtain a particle size of 0.1 to 2
  • Example 2 8 Spherical particles of basic nickel carbonate having a particle size of 0 m and an average particle size of 3.0 / m were obtained.
  • Example 2 9 The W / 0 emulsion prepared in the same manner as in Example 1 was sucked at a temperature of 5 O'C under a reduced pressure of 20 OmmHg to evaporate a volatile component mainly composed of ammonia and carbon dioxide gas. Emarujon then c precipitated basic nickel carbonate in the droplets of the further continued stirring, water is evaporated volatile components mainly composed of basic nickel carbonate produced in the droplets of the E Marujon The particles were dried in oil. This basic nickel carbonate is centrifuged, washed with hexane, methanol and water in this order, and dried at a temperature of 100 ° C. for 2 hours to obtain a particle size of 0.1 to 20 / m and an average particle size of 0.1 to 20 / m. Spherical particles of basic nickel carbonate having a diameter of 2.8 m were obtained.
  • the WZO type emulsion prepared in the same manner as in Example 1 was stirred at a normal pressure and at a temperature of 50 ° C. while aerating the air to evaporate a vaporizable component mainly composed of ammonia and carbon dioxide gas.
  • Basic nickel carbonate precipitated in the drops.
  • stirring is further continued to evaporate a vaporizable component mainly composed of water
  • the basic nickel carbonate particles formed in the emulsion droplets were dried in oil.
  • the basic nickel carbonate is centrifuged, washed with hexane, methanol and water in that order, dried at a temperature of 10 ° C. for 2 hours, and a particle size of 0.1 to 18 / m, average Spherical particles of basic nickel carbonate having a particle size of 2.5 m were obtained.
  • Example 30
  • Example 3 1 2 mol 1 L of nitric acid was added dropwise to the W0 type emulsion prepared in the same manner as in Example 1 over about 3 hours to gradually neutralize the emulsion and precipitate basic nickel carbonate.
  • This is filtered, washed in the order of hexane, methanol and water, and then dried at a temperature of 100 ° C. for 2 hours to form a base having a particle size of 0.1 to 15 m and an average particle size of 1.5 m.
  • spherical nickel carbonate particles were obtained.
  • Example 3 2-2 mol 1 ZL of nitric acid was added dropwise to a WZO-type emulsion prepared in the same manner as in Example 5 over about 3 hours, and the droplets were gradually neutralized to obtain a basic nickel carbonate. I started it. This is filtered, washed in the order of hexane, methanol and water, and dried at a temperature of 100 ° C. for 2 hours to obtain a basic carbonate having a particle size of 0.1 to 20 m and an average particle size of 1.8 m. Nickel particles were obtained.
  • Example 3 3 To the W / 0 type emulsion prepared in the same manner as in Example 14 was dropped 2 mo 1 / L nitric acid over about 3 hours, and the droplets were gradually neutralized to precipitate basic nickel carbonate. . This is filtered, washed in the order of hexane, methanol and water, and dried at a temperature of 100 for 2 hours to obtain a basic nickel carbonate having a particle size of 0.1 to 7 m and an average particle size of 2.3 // m. Was obtained.
  • FIG. 19 shows a scanning electron micrograph of the basic nickel carbonate particles.
  • Nitric acid of 2 mol / L was dropped into the W / 0 emulsion prepared in the same manner as in Example 20 over about 3 hours, and the droplets were gradually neutralized to precipitate nickel hydroxide. .
  • This is filtered, washed in the order of hexane, methanol and water, and dried at a temperature of 100 for 2 hours to obtain water having a particle size of 0.1 to 40 / m and an average particle size of 7.5 / m. Spherical particles of nickel oxide were obtained.
  • FIG. 21 shows a scanning electron micrograph of the nickel hydroxide particles.
  • FIG. 25 shows a scanning electron micrograph of the basic copper carbonate particles.
  • N i C0 3. N i (OH) z. 4 H 2 0, below the same 1 4 1 g and bicarbonate Anmoniumu (NH 4 HC 0 3) and 24 2 g 1 5% ammonia water was added, and the mixture was stirred well to prepare an aqueous ammonia monocarbonate ammonium hydrogen carbonate solution (pH: 9.5, concentration: 1.1 mol / L as N L).
  • a 200 g aqueous solution of the nickel salt thus obtained was added to a nonionic surfactant polyoxyethylene sorbitan monooleate having an HLB value of 15 (Reodol TW-0120, manufactured by Kao Corporation). g was added and stirred at 50 ° C. to dissolve.
  • a nonionic surfactant sorbitan monooleate with an HLB value of 4.3 was added to 800 g of super scalane with a boiling point of about 28 O'C (Squalane manufactured by SQUATEC Co., Ltd.) (manufactured by Kao Corporation) 50 g of Reodor (SR_010) was added and stirred at 80 to dissolve.
  • the emulsion was further suctioned under the above-mentioned reduced pressure to evaporate the vaporizable component mainly composed of water, and the spherical nickel carbonate formed in the emulsion droplets was further evaporated. Particles were dried in oil.
  • the particles of the basic nickel carbonate are centrifuged, washed in the order of hexane, methanol and water, and dried at a temperature of 100 ° C. for 2 hours to obtain a particle diameter of 0.2 to 1 m and an average particle diameter of 0.2 to 1 m.
  • a powder of uniformly fine basic nickel carbonate spherical particles having a diameter of 0.5 was obtained.
  • FIG. 27 shows a scanning electron micrograph of the basic nickel carbonate particles thus obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

明 細 書 ニッケル、 コバルト又は銅の炭酸塩又は
水酴化物の微細な球状の粒子の製造方法 発明の分野
本発明は、 ニッケル、 鋼及びコバルトから選ばれる元素の炭酸塩又は水酸 化物の微細な球状の粒子の製造方法に関し、 詳しくは、 ニッケル、 銅及びコ バルトから選ばれる金属の均一で微細な球状の微粉末の製造のための前駆体 として特に有用であるほか、 有機合成触媒、 担体、 顔料、 充塡剤、 釉薬等と して、 それ自体にても有用なニッケル、 コバルト又は銅の炭酸塩又は水酸化 物の微細な球状の粒子の製造方法に関する。 従来の技術の説明
従来、 例えば、 炭酸ニッケル粒子は、 通常、 不定形又は非球状の微粉末と してのみ、 知られており、 僅かに、 特開平 2 - 5 9 4 3 2号公報に、 WZ O 型のェマルジョンを反応場とする方法によって、 微細で球状の炭酸ニッケル 粒子を製造する方法が記載されている。 即ち、 この方法によれば、 例えば、 塩化ニッケルのような水溶性二ッケル塩の水溶液を界面活性剤と共に非水媒 体に加え、 攪拌して、 WZ O型のェマルジヨンを調製し、 これにアルカリ金 属の炭酸塩や炭酸水素塩の水溶液を中和剤として加えて、 上記ェマルジョン 中の微小な液滴を形成しているニッケル塩の水溶液と上記中和剤とを反応さ せて、 微細で球状の炭酸ニッケル粒子を生成させるものである。
しかし、 このように、 ェマルジヨンを反応場として用いる方法によれば、 用いる中和剤のほか、 水不溶性ニッケル塩と共に副生される塩等の影響によ つて、 ェマルジヨンが解消されやすいので、 反応の全体をとおして、 安定な 反応の場を確保することが困難であり、 かく して、 微細な粒径の球状のニッ ケル塩の粒子を得ることが困難である。
また、 従来、 微細な粒径の球状のニッケル塩の粒子を得ることができたと しても、 例えば、 これを酸化し、 還元する過程において、 球状の形態を維持 することができず、 微細な球状のニッケル金属の微粉末を得ることができな い。
本発明は、 ニッケルのほか、 コバルト又は銅の炭酸塩又は水酸化物の微細 な粒径を有する球状の粒子の製造における上述したような問題を解決するた めになされたものであって、 上記元素の炭酸塩、 塩基性炭酸塩又は水酸化物 の微細な球状の粒子の製造方法を提供することを目的とする。 発明の要約
本発明によるニッケル、 コバルト又は銅の炭酸塩若しくは水酸化物の微細 な球状の粒子の製造方法は、 一般式 ( I )
Μ ( C 0 3) χ/2 * ( 0 H ) y
(式中、 Mは N i、 じ 0又はじ 11を示し、 X及び yは、 0≤ x 2、 0≤ y ≤ 2 . x十 y = 2を満たす数である。 )
で表わされるニッケル、 コバルト又は銅の炭酸塩若しくは水酸化物をアンモ ニァ水溶液に溶解させ、 得られた水溶液を非水媒体中にて上記水溶液の液滴 を舍む W/ 0型ェマルジョンとした後、 この液滴中からアンモニアを含む気 化性成分を除いて、 液滴中でニッケル、 コバルト又は銅の塩基性炭酸塩若し くは水酸化物を沈殿させることを特徴とする。 図面の簡単な説明
第 1図は、 実施例 1において得られた塩基性炭酸ニッケル粒子の X線回折 図である。
第 2図は、 実施例 1において得られた塩基性炭酸ニッケル粒子の走查型電 子顕微鏡写真である。 第 3図は、 実施例 1において得られた塩基性炭酸ニッケル粒子の粒度分布 図である。
第 4図は、 実施例 1において得られた塩基性炭酸ニッケル粒子を酸化した 後、 水素気流中で加熱して還元して得られた金属ニッケル微粉末の X線回折 図である。
第 5図は、 図 4の金属ニッケル微粉末の走査型電子顕微鏡写真である。 第 6図は、 図 4の金属二ッケル微粉末の粒度分布図である。
第 7図は、 実施例 4において得られた塩基性炭酸ニッケル粒子の X線回折 図である。
第 8図は、 実施例 4において得られた塩基性炭酸ニッケル粒子の走査型電 子顕微鏡写真である。
第 9図は、 実施例 1 1において得られた塩基性炭酸ニッケル粒子の X線回 折図である。
第 1 0図は、 実施例 1 1において得られた塩基性炭酸ニッケル粒子の走査 型電子顕微鏡写真である。
第 1 1図は、 実施例 1 4において得られた塩基性炭酸ニッケル粒子の X線 回折図である。
第 1 2図は、 実施例 1 4において得られた塩基性炭酸ニッケル粒子の走査 型電子顕微鏡写真である。
第 1 3図は、 実施例 1 9において得られた塩基性炭酸ニッケル粒子の X線 回折図である。
第 1 4図は、 実施例 1 9において得られた塩基性炭酸ニッケル粒子の走査 型電子顕微鏡写真である。
第 1 5図は、 実施例 2 0において得られた水酸化ニッケル粒子の X線画折 図である。
第 1 6図は、 実施例 2 0において得られた水酸化ニッケル粒子の走査型電 子顕微鏡写真である。 第 1 7図は、 実施例 2 2において得られた塩基性炭酸ニッケル粒子の X線 画折図である。
第 1 8図は、 実施例 2 2において得られた塩基性炭酸ニッケル粒子の走査 型電子顕微鏡写真である。 - 第 1 9図は、 実施例 3 3において得られた塩基性炭酸ニッケル粒子の X線 回折図である。
第 2 0図は、 実施例 3 3において得られた塩基性炭酸ニッケル粒子の走査 型電子顕微鏡写真である。
第 2 1図は、 実施例 3 4において得られた水酸化ニッケル粒子の X線回折 図である。
第 2 2図は、 実施例 3 4において得られた水酸化ニッケル粒子の走査型電 子顕微鏡写真である。
第 2 3図は、 実施例 3 5において得られた塩基性炭酸銅粒子の X線回折図 である。
第 2 4図は、 実施例 3 5において得られた塩基性炭酸銅粒子の走査型電子 顕微鏡写真である。
第 2 5図は、 実施例 3 6において得られた塩基性炭酸コバルト粒子の X線 回折図である。
第 2 6図は、 実施例 3 6において得られた塩基性炭酸コバルト粒子の走査 型電子顕微鏡写真である。
第 2 7図は、 実施例 3 7において得られた塩基性炭酸ニッケル粒子の走査 型電子顕微鏡写真である。 発明の好ましい態様の説明
本発明の方法によれば、 一般式 ( I )
M ( C 0 3) Xノ 2 * ( O H ) y
(式中、 Mは N i、 C 0又は C uを示し、 X及び yは、 0≤ x≤ 2、 0≤ y ≤ 2. x + y = 2を満たす数である。 )
で表わされる二ッケル、 コバルト又は銅の炭酸塩若しくは水酸化物をァンモ ニァ水溶液に溶解させ、 得られた水溶液を非水媒体中にて上記水溶液の液滴 を舍む WZO型ェマルジョンとした後、 この液滴中からアンモニアを舍む気 化性成分を除いて、 液滴中でニッケル、 コバルト又は銅の炭酸塩若しくは水 酸化物を沈殿させ、 これを適宜の手段にて回収することによって、 上記ニッ ケル、 コバルト又は銅の炭酸塩若しくは水酸化物を微細な球状の粒子として 得ることができる。
本発明によれば、 上記一般式 ( I ) において、 Mは、 N i、 C 0又は C u を示し、 従って、 出発物質として、 ニッケル、 コバルト又は銅の炭酸塩若し くは水酸化物が用いられ、 ここに、 X及び yは、 0≤ x≤ 2、 0≤ y≤ 2. x + y = 2を満たす数である。 本発明において、 上記炭酸塩とは、 正炭酸塩 (MC03 ) と塩基性炭酸塩 (xMO ' y C02 · ζ Η2 0) をいうものと し、 これら炭酸塩は、 水酸化物を舍んでいてもよい。 但し、 Μは、 上述した ように、 ニッケル、 コバルト又は銅を示す。
更に、 本発明によれば、 上記出発物質は、 単一の元素の炭酸塩若しくは水 酸化物に限られず、 ニッケル、 コバルト及び銅のうちの 2種以上の元素の炭 酸塩若しくは水酸化物であってもよい。 また、 必要に応じて、 上記出発物質 は、 ニッケル、 コバルト及び銅以外の元素を舍んでいてもよい。 そのほか、 上記出発物質は、 後述するヱマルジョンの形成を阻害しない範囲において、 3価のニッケルイオンや、 カルシウム、 セリ ウム、 イ ッ ト リ ウム、 鉄等のィ ォンを舍んでいてもよい。
本発明の方法によれば、 ニッケル、 コバルト又は銅の炭酸塩若しくは水酸 化物をアンモニア水溶液に溶解させ、 得られた水溶液を非水媒体中にて上記 水溶液の液滴を舍む W/0型ェマルジヨ ンとした後、 上記ェマルジヨ ンの液 滴中でニッケル、 コバルト又は銅の炭酸塩若しくは水酸化物を折出させるに は、 上記エマルジョ ンの液滴中からアンモニアを舍む気化性成分を蒸発させ る力、、 又はエマルジョ ンに酸を加えて、 液滴を中和する。
本発明によれば、 出発物質として、 炭酸塩を用いるとき、 生成物として、 出発物質と同じ炭酸塩が得られる。 出発物質として、 炭酸塩を用いるとき、 これを溶解させる水溶液として、 アンモニア水溶液を用いて-も、 また、 アン モニァと共にアンモニア以外の他の塩基性化合物を舍む水溶液を用いても、 いずれの場合にも、 生成物として、 出発物質と同じ炭酸塩が得られる。
しかしながら、 出発物質として、 水酸化物を用いるときは、 得られる生成 物は、 反応条件に依存する。 即ち、 水酸化物を溶解させる水溶液がアンモニ ァと共に炭酸アンモニゥム、 炭酸水素アンモニゥム、 アルカリ金属の炭酸塩 若しくは炭酸水素塩 (以下、 簡単のために、 これらを炭酸 (水素) 塩という ことがある。 ) を舍む水溶液であるときは、 生成物として炭酸塩を得ること ができるが、 水酸化物を溶解させる水溶液が塩基性化合物としてアンモニア を舍むが、 上記炭酸 (水素) 塩を舍まないアンモニア水溶液であるときは、 生成物として、 出発物質と同じ水酸化物を得ることができる。
このような種々の態様なかでも、 本発明によれば、 出発物質として炭酸塩 を用い、 これをアンモニア水溶液か、 又はアンモニアとアンモニア以外の他 の塩基性化合物を含む水溶液に溶解させ、 得られた水溶液を非水媒体中にて 上記水溶液の液滴を含む W/ 0型ヱマルジョ ンとした後、 この液滴中からァ ンモニァを舍む気化性成分を除いて、 液滴中でニッケル、 コバルト又は銅の 炭酸塩を沈殿させることによって、 ニッケル、 コバルト又は銅の炭酸塩の微 細な球状の粒子を得ることができ、 この態様が本発明による最も好ましいも のである。
特に、 本発明によれば、 炭酸ニッケルをアンモニアと共に p Hが 8. 0〜 1 1. 5の範囲内で炭酸水素ァンモニゥム又は炭酸ァンモニゥムの水溶液に溶 解させ、 得られたニッケル塩の水溶液を非水媒体と混合してヱマルジョ ンと し、 次いで、 このェマルジヨ ンを減圧下に吸引して、 上記ニッケル塩の水溶 液からアンモニアを含む気化性成分 (例えば、 炭酸ガスや水) を蒸発させて、 1 634
ェマルジョ ンの液滴中で炭酸ニッケルを沈殿させて、 これを回収することに よって、 微細な球状の炭酸ニッケル粒子を得るものである。
本発明において、 出発物質であるニッケル、 コバルト又は銅の炭酸塩若し くは水酸化物は、 どのような手段や方法で製造されてもよい。 例えば、 炭酸 塩は、 例えば、 塩化物、 硫酸塩、 硝酸塩、 酢酸塩等の無機酸塩や有機酸塩を 炭酸ナ トリウム、 炭酸アンモニゥム等の炭酸イオンを含む炭酸アルカリで中 和して得ることができる。
また、 本発明によれば、 ニッケル、 コバルト又は銅の炭酸塩若しくは水酸 化物をアンモニア水溶液に溶解させてなる水溶液を得るに際して、 上記元素 の塩化物、 硫酸塩、 硝酸塩、 酢酸塩等の無機酸塩や有機酸塩をアンモニア水 溶液に溶解させ、 場合によっては、 反応させてもよい。
本発明によれば、 出発物質であるニッケル、 コバルト又は銅の炭酸塩若し くは水酸化物をァンモニァ水溶液に溶解させる際に、 このアンモニア水溶液 は、 好ましくは、 アンモニア以外の他の塩基性化合物 (以下、 これを第 2の 塩基性化合物という。 ) を舍む。 この第 2の塩基性化合物は、 上記炭酸 (水 素) 塩 (即ち、 炭酸アンモニゥム、 炭酸水素アンモニゥム、 アルカリ金属炭 酸塩、 アルカリ金属炭酸水素塩) 、 アルカリ金属水酸化物及びアミン類から 選ばれる少なく とも 1種である。
上記アルカリ金属としては、 例えば、 リチウム、 カリウム又はナ ト リ ウム が好ましい。 従って、 アルカリ金属炭酸塩、 アルカリ金属炭酸水素塩又はァ ルカリ金属水酸化物としては、 例えば、 炭酸リチウム、 炭酸水素リチウム、 炭酸力リゥム、 炭酸水素力リウム、 炭酸ナ トリ ウム、 炭酸水素ナ トリウム、 水酸化リチウム、 水酸化カリ ウム、 水酸化ナ トリウム等を挙げることができ る。 また、 アミン類としては、 特に、 限定されるものではないが、 例えば、 モノ、 ジ又はトリアルキルアミ ンゃ、 モノ、 ジ又はト リアルカノ一ルァミ ン が好ましく用いられる。 本発明においては、 このような第 2の塩基性化合物 のなかでは、 特に、 炭酸水素アンモニゥムが好ましく用いられる。 本発明によれば、 このように、 好ましくは、 第 2の塩基性化合物を舍むァ ンモユア水溶液に炭酸ニッケルを溶解させ、 得られたニッケル塩の水溶液を 非水媒体中にて上記ニッケル塩の水溶液の液滴を舍む WZ O型ェマルジョ ン とした後、 この液滴からアンモニアを舍む気化性成分 (主と てアンモニア と炭酸ガス) を蒸発させることによって、 ェマルジヨ ンの液滴中に炭酸ニッ ゲルを沈殿させ、 必要に応じて、 ェマルジヨ ンの液滴から主として水からな る気化性成分を更に蒸発させて、 液滴中の炭酸ニッケルを油中乾燥し、 かく して得られた炭酸ニッケルを、 例えば、 遠心分離し、 洗浄し、 乾燥すれば、 目的とする炭酸ニッケルの微細な球状の粒子を得ることができる。
同様に、 本発明によれば、 好ましくは、 第 2の塩基性化合物として炭酸 (水素) 塩を舍むアンモニア水溶液に水酸化ニッケルを溶解させ、 生成した ニッケル塩の水溶液を非水媒体中にて上記ニッケル塩の水溶液の液滴を舍む W/ 0型ェマルジョ ンとした後、 この液滴からアンモニアを含む気化性成分 (主としてアンモニアと炭酸ガス) を蒸発させることによって、 ェマルジョ ンの液滴中に炭酸ニッケルを沈殿させ、 必要に応じて、 ェマルジョ ンの液滴 から主として水からなる気化性成分を更に蒸発させて、 液滴中の炭酸ニッケ ルを油中乾燥し、 力、く して得られた炭酸ニッケルを、 例えば、 遠心分離し、 洗浄し、 乾燥すれば、 目的とする炭酸ニッケルの微細な球状の粒子を得るこ とができる。
他方、 本発明によれば、 水酸化ニッケルをアンモニア水溶液に溶解させ、 得られた水溶液を非水媒体中にて上記水溶液の液滴を含む W/ 0型ェマルジ ヨ ンとした後、 この液滴からアンモニアをを蒸発させることによって、 エマ ルジョ ンの液滴中に水酸化ニッケルを沈殿させ、 必要に応じて、 ェマルジョ ンの液滴から更に水を蒸発させて、 液滴中の水酸化二ッケルを油中乾燥し、 かく して得られた水酸化ニッケルを、 例えば、 遠心分離し、 洗浄し、 乾燥す れば、 目的とする水酸化二ッケルの微細な球状の粒子を得ることができる。 以下に出発物質として炭酸二ッケルを用いた場合を例にとって、 本発明に ついて詳細に説明する。 特に、 記載がないときは、 炭酸コバルト、 炭酸銅、 水酸化ニッケル、 水酸化コバルト及び水酸化銅についても、 同じである。 本発明において、 炭酸二ッケルをァンモニァ水溶液に溶解させる際の水溶 液の p Hは、 特に限定されるものではないが、 p Hが 8. 0〜 1 1. 5の範囲に あることが好ましい。 ここに、 アンモニアと共に前述した種々の第 2の塩基 性化合物、 好ましくは、 前記炭酸 (水素) 塩を用いることによって、 炭酸二 ッケルを溶解させる水溶液の P Hを容易に調節することができ、 また、 炭酸 二ッケルを容易に溶解させることができる。
本発明において、 炭酸二ッケルをアンモニア水溶液に溶解させて得られる ニッケル塩水溶液の濃度は、 特に、 限定されるものではないが、 通常、 ニッ ゲル金属として、 0. 1モル/ Lから飽和濃度の範囲であり、 特に、 0. 3〜 1. 2モル Z Lの範囲が好ましい。
次いで、 本発明によれば、 このようにして得られたニッケル塩水溶液を界 面活性剤の存在下に非水媒体と共に混合攪拌して、 常法に従って、 ヱマルジ ヨンを調製する。 好ましくは、 ニッケル塩水溶液により親水性の強いノニォ ン系界面活性剤を加え、 必要に応じて、 アンモニアが蒸発揮散しないように、 5 O 'C以下の温度に加熱して、 溶解させる。 非水媒体には、 より親油性の強 ぃノニオン系界面活性剤を加え、 必要に応じて、 加熱して、 溶解させる。 通 常、 分散機を用いて、 非水媒体を攪拌しながら、 これに上記ニッケル塩水溶 液を徐々に加え、 ニッケル塩水溶液の液滴を微細に分散させることによって、 W/ 0型ェマルジョ ンを調製することができる。
最終的に得られる球状の炭酸ニッケル粒子の平均粒径や粒度分布は、 エマ ルジョンにおける水相 (液滴) の大きさ (平均粒径) 、 粒度分布、 更には、 二 'ンケル塩水溶液の濃度等によって適宜に調節することができ、 ェマルジョ ンにおける液滴の大きさ (平均粒径) や粒度分布は、 用いる界面活性剤の組 合わせとそれぞれの量、 分散機の種類、 分散機による攪拌速度等によって調 節することができる。 このようにして、 本発明によれば、 得られる炭酸ニッ ゲルの粒子の平均粒径を 0. 1〜 1 0 0 ^ m、 好ましくは、 0. 1〜 5 0 mの 範囲で任意に調節することができる。
特に、 本発明の好ましい態様によれば、 ェマルジヨ ンにおける液滴の大き さ (平均粒径) や粒度分布を調節することによって、 ニッケル、 コバルト又 は銅の炭酸塩又は水酸化物からなる均一微細な球状の粒子を得ることができ る。
ェマルジヨ ンを調製するための非水媒体は、 水不溶性で、 後述する減圧下 や常圧下での処理において蒸発し難く、 安定であるものが好ましく、 従って、 水に対する溶解度が 5 %以下で、 水よりも沸点の高いものが好ましく用いら れる。
このような非水媒体として、 例えば、 n—ォクテン、 イソォクテン、 スク ヮラン、 灯油等の脂肪族炭化水素類、 シク口オクタン、 シクロノナン、 シク 口デカン等の脂環式炭化水素類、 トルエン、 ェチルベンゼン、 イソプロピル ベンゼン、 クメ ン、 メ シチレン、 テトラリ ン等の芳香族炭化水素類、 ブチル ェ一テル、 イ ソブチルエーテル等のェ一テル類、 ジクロルペンタン等のハロ ゲン化炭化水素類、 酢酸 n—プロピル、 酢酸 n—ブチル、 酢酸イ ソプチル、 酢酸 n—ァミル、 酢酸イソァミル、 プロピオン酸イソプチル、 酷酸ェチル、 酪酸ブチル等の脂肪酸ヱステル類、 これらの混合物等を挙げることができる。 上記以外にも、 鉱油、 動植物油等の天然油、 炭化水素油、 エステル油、 ェ 一テル油、 舍フッ素潤滑油、 舍リ ン潤滑油、 舍ケィ素潤滑油等の合成油も、 非水媒体の具体例として例示することができる。
特に、 本発明においては、 このように、 ェマルジヨ ン中の液滴中からアン モニァを舍む気化性成分を蒸発させて、 液滴中に炭酸ニッケル又は水酸化二 ッケルを沈殿させる場合には、 上記非水媒体として、 水不溶性で蒸気圧が小 さい炭化水素系有機溶媒が好ましく、 具体的には、 常圧で沸点が 1 0 0て以 上の脂肪族炭化水素系溶媒が好ましく用いられる。 しかし、 後述するように、 ェマルジョ ンに酸を加えて、 液滴中のァンモユアを中和することによって、 液滴中に炭酸ニッケル又は水酸化二ッケルを沈殿させる場合には、 上記非水 媒体は、 蒸気圧が小さいものである必要はなく、 低沸点の非水媒体を用いる ことができる。
ェマルジョ ンを調製するために用いる界面活性剤は、 用いる非水媒体に応 じて、 適宜に選ばれる。 限定されるものではないが、 特に、 安定なェマルジ ョ ンを得るには、 前記ニッケル塩の水溶液 (水相) に予め H L B値が 1 0以 上の親水性の強い界面活性剤を溶解させ、 他方、 非水媒体相 (油相) には予 め H L B値が 1 0以下の親油性の強い界面活性剤を溶解させて、 このような 水相と油相を混合するのがよい。
これら界面活性剤の使用量は、 ェマルジヨ ンにおける WZO比や所要の粒 径等によって適宜に選べばよく、 特に、 限定されるものではないが、 通常、 ェマルジョ ンに対して 20重量%以下であり、 好ましくは、 0.5〜 1 5重量 %の範囲である。 後述するように、 水相と油相の両方に界面活性剤を溶解さ せる場合には、 界面活性剤の使用量は、 通常、 水又は非水媒体に対して、 そ れぞれ 2 0重量%以下であり、 好ましくは、 0.5〜1 0重量%の範囲である c 更に、 ェマルジヨ ンにおける W/0比は、 用いる非水媒体の量や性質、 特 に、 粘度や、 用いる界面活性剤の性質、 特に、 H L B値にもよる力 安定な ェマルジョ ンを得るには、 通常、 3Z2〜 1Z1 0の範囲であり、 好ましく は、 1ノ1〜 1/5、 特に、 好ましくは、 1 3〜 1/5の範囲である。 し かし、 これに限定されるものではない。
上記エマルジョ ンの調製に用いるノニオン系界面活性剤として、 H L B値 が 1 0以上のものとして、 例えば、 ポリオキシエチレンソルビタンモノラウ レート、 ポリ才キシエチレンソルビタンモノパルミテート、 ポリ才キシェチ レンソルビタンモノステアレート、 ポリォキシエチレンソルビタントリステ ァレート、 ポリオキシエチレンソルビタンモノォレエート、 ポリオキシェチ レンソルビタントリオレエ一ト等のポリオキシエチレンソルビタン脂肪酸ェ ステル類、 ポリエチレングリコールモノラウレート、 ポリエチレングリコー ルモノステアレート、 ポリエチレングリコールジステアレート、 ポリエチレ ングリコールモノォレエ一ト等のポリオキシエチレン脂肪酸エステル類、 ポ リオキシエチレンラウリルエーテル、 ポリォキシエチレンセチルエーテル、 ポリオキシエチレンステアリルエーテル、 ポリオキシエチレンォレイルエー テル等のポリオキシエチレン高級アルキルェ一テル類、 ポリオキシエチレン ォクチルフヱ二ルォレイルエーテル、 ポリオキシエチレンノニルフエニルェ —テル等のポリオキシエチレン高級アルキルァリ一ルェ一テル類等を挙げる ことができる。
また、 H L B値が 1 0以下のものとして、 例えば、 ソルビタンモノラウレ —ト、 ソルビタンモノノ、'ルミテート、 ソルビタンモノステアレート、 ソルビ タンジステアレート、 ソルビタントリステアレート、 ソルビタンモノォレエ ート、 ソルビタントリオレエート等のソルビタン脂肪酸エステル類、 グリセ リ ンモノステアレート、 グリセリ ンモノォレエ一ト等のグリセリ ン脂肪酸ェ ステル類等 "^挙げることができる。
このようにして、 特に、 炭酸ニッケル又は水酸化ニッケルを炭酸 (水素) 塩を舍むアンモニア水溶液に溶解させ、 このようにして得られたニッケル塩 の水溶液の液滴を非水溶媒中に微細に分散させた W/ 0型ェマルジョ ンとし た後、 必要に応じて、 加熱しながら、 常圧下に攪拌又は曝気するか、 又は減 圧下に吸引するかして、 主としてアンモニアと炭酸ガスからなる気化性成分 を蒸発させることによって、 ェマルジヨ ン中のニッケル塩水溶液の液滴中で ニッケル塩を沈殿させ、 必要に応じて、 ェマルジヨン中の液滴から更に主と して水からなる気化性成分を蒸発させて、 その液滴中のニッケル塩を油中乾 燥し、 かく して得られたニッケル塩を、 例えば、 遠心分離し、 洗浄し、 乾燥 すれば、 目的とする炭酸二ッゲルの微細な球状の粒子を得ることができる。 炭酸コバルト、 水酸化コバルト、 炭酸銅又は水酸化銅についても同じである c 別の態様として、 特に、 炭酸ニッケル又は水酸化ニッケルを炭酸 (水素) 塩を舍むァンモニァ水溶液に溶解させ、 このようにして得られたニッケル塩 の水溶液の液滴を非水溶媒中に微細に分散させた W/ 0型ェマルジョ ンとし た後、 必要に応じて、 加熱しながら、 常圧下に攪拌又は曝気する力、、 又は減 圧下に吸引するかして、 主としてアンモニアと炭酸ガスと水とからなる気化 性成分を蒸発させることによって、 ェマルジョ ン中のニッケル塩水溶液の液 滴中でニッケル塩を沈殿させ、 次いで、 球状の沈殿を適宜の手段、 例えば、 遠心分離や濾過等によって回収し、 洗浄し、 乾燥することによって、 目的と する炭酸二ッケルの微細な球状の粒子を得ることができる。 炭酸コバルト、 水酸化コバルト、 炭酸銅又は水酸化銅についても同じである。
他方、 水酸化ニッケルを炭酸 (水素) 塩を含まないアンモニア水に溶解さ せ、 このようにして得られた水溶液の液滴を非水溶媒中に微細に分散させた Wノ 0型ェマルジョ ンとした後、 必要に応じて、 加熱しながら、 常圧下に攪 拌又は曝気する力、、 又は減圧下に吸引するかして、 主としてアンモニアから なる気化性成分を蒸発させることによって、 ェマルジョ ン中の水溶液の液滴 中で水酸化ニッケルを沈殿させ、 必要に応じて、 ェマルジヨ ン中の液滴から 更に主として水からなる気化性成分を蒸発させて、 その液滴中の水酸化物を 油中乾燥し、 かく して得られた水酸化ニッケルを、 例えば、 遠心分離し、 洗 浄し、 乾燥すれば、 目的とする水酸化ニッケルの微細な球状の粒子を得るこ とができる。 水酸化コバルト又は水酸化銅についても同じである。
別の態様として、 上述したように、 ェマルジヨ ン中の水酸化ニッケルの水 溶液の液滴中で水酸化ニッケルを沈殿させた後、 このような液滴を舍むエマ ルジョ ンをそのまま、 又は必要に応じて解消した後、 上記水酸化ニッケルを 適宜の手段、 例えば、 遠心分離や濾過等によって回収し、 洗浄し、 乾燥する ことによって、 目的とする水酸化二ッゲルの均一微細な粒子を得ることがで きる。 水酸化コバルト又は水酸化銅についても同じである。
本発明によれば、 上記ェマルジョ ンからアンモニアを舍む気化性成分を蒸 発させるためには、 通常、 1 0 0 'C以下の温度で常圧下に曝気するか、 又は 減圧下に吸引すればよいが、 特に、 ェマルジヨ ンを加熱しながら、 減圧下に 34
14 吸引することが好ましい。
本発明によれば、 このように、 ェマルジヨ ンを減圧下に吸引する場合、 温 度及び圧力条件は、 特に、 限定されるものではないが、 通常、 大気圧以下、 好ましくは、 4 0 0 m m H g以下の減圧 (真空) 下であれば-よく、 他方、 減 圧 (真空) の上限は、 主として、 経済性による力 <、 通常、 5 m m H g程度で ある。 また、 温度は、 0〜9 O 'Cの範囲にわたってよいが、 好ましくは、 1
0〜 8 (TCの範囲であり、 最も好ましくは、 2 0〜7 0。Cの範囲である。 本発明においては、 ェマルジョンを 2 0〜7 0。Cの範囲の温度に加熱しつ つ、 ァスピレーターを用いる減圧下、 従って、 1 0〜5 0 m m H g程度の減 圧下にェマルジヨンからアンモニアや、 その他の気化性成分を蒸発させるこ とによって、 よい結果を得ることができる。
しかし、 本発明によれば、 ニッケル塩の水溶液の液滴を舍む上記ェマルジ ョンからアンモニアを含む気化性成分を蒸発させるために、 別の方法として、 常圧下、 ェマルジヨ ンを単に攪拌してもよい。 また、 別の方法として、 常圧 下、 必要に応じて、 加熱しつつ、 ェマルジョン中に空気を吹き込む、 即ち、 曝気してもよい。
更に、 本発明によれば、 ニッケル、 コバルト又は銅の炭酸塩若しくは水酸 化物をアンモニア (と第 2の塩基性化合物の) 水溶液に溶解させ、 この水溶 液を微細な液滴として、 非水媒体中にェマルジヨ ン化した後、 このェマルジ ョンに酸を加えて、 液滴、 好ましくは、 液滴中のアンモニアを中和すること によって、 液滴中でニッケル、 コバルト又は銅の炭酸塩若しくは水酸化物を 折出、 沈殿させ、 これを前述したようにして、 油中乾燥し、 かく して得られ た炭酸塩若しくは水酸化物を、 例えば、 遠心分離し、 洗浄し、 乾燥すれば、 目的とする炭酸塩若しくは水酸化物の微細な球状の粒子を得ることができる。 この方法において用いる上記酸としては、 無機酸及び有機酸のいずれでも 用いることができる。 無機酸の具体例として、 例えば、 硝酸、 塩酸、 硫酸等 を挙げることができ、 有機酸の具体例として、 例えば、 ギ酸、 シユウ酸、 酢 酸、 メタンスルホン酸、 エタンスルホン酸、 ベンゼンスルホン酸、 p — トノレ エンスルホン酸等を挙げることができる。 し力、し、 これらのなかでは、 無機 酸が好ましく用いられ、 特に、 硝酸が好ましく用いられる。 産業上の利用可能性
以上のように、 本発明の方法によれば、 ニッケル、 コバルト又は銅の炭酸 塩若しくは水酸化物をアンモニア水溶液に溶解させ、 得られた水溶液を非水 媒体中にて上記水溶液の液滴を舍む W/ 0型ェマルジョンとした後、 この液 滴中からアンモニアを含む気化性成分を除いて、 液滴中でニッケル、 コバル ト又は銅の炭酸塩若しくは水酸化物を沈殿させることによって、 ニッケル、 コバルト又は銅の炭酸塩若しくは水酸化物の微細な球状の粒子を得ることが できる。
このような本発明の方法によって得られる炭酸ニッケル、 炭酸コバルト、 炭酸銅、 水酸化ニッケル、 水酸化コバルト又は水酸化銅の粒子は、 例えば、 従来の炭酸ニッケルが不定形乃至非球状であるところ、 微細な球状の粒子で あるから、 それ自体で、 有機合成触媒、 担体、 顔料、 充塡剤、 釉薬等として、 有用であることは勿論、 本発明によって得られるこのような炭酸塩や水酸化 物の粒子、 好ましくは、 均一微細な球状の粒子は、 これを必要に応じて酸化 した後、 還元することによって、 それぞれ均一微細な球状の金属ニッケル、 コバルト又は銅の微粉末を得ることができる。 このような金属微粉末のうち, 例えば、 金属ニッケル微粉末は、 例えば、 積層セラミ ックコンデンサ内部電 極の材料として特に好適に用いることができる。 実施例
以下に実施例を挙げて本発明を説明するが、 本発明はこれら実施例により 何ら限定されるものではない。
実施例 1 5 21 P /02634
16 市販の塩基性炭酸ニッケル (N i C 03 ' N i (OH) 2 ' 4 H2 0、 以 下、 同じ) 1 4 1 gと炭酸水素アンモニゥム (NH4 H C 03 ) 2 4 2 gと を 1 5%アンモニア水に加え、 よく攪拌して、 P Hが 9. 5の塩基性炭酸ニッ ゲルのァンモユア一炭酸水素ァンモニゥム水溶液 (N i とし-て 1. 1モル ZL 濃度) を調製した。
このようにして得られたニッケル塩の水溶液 2 0 0 gに H L B値 1 5のノ ニォン系界面活性剤ポリオキシエチレンソルビタンモノォレエ一ト (花王 (株) 製レオドール TW— 0 1 2 0 ) 3 0 gを加え、 5 0てにて攪拌して、 溶解させた。 別に、 非水媒体として、 沸点約 2 8 0 ΐのスーパースクヮラン (スクァテック (株) 製スクヮラン) 8 0 0 gに H L Β値 4.3のノニオン系 界面活性剤ソルビタンモノォレヱ一ト (花王 (株) 製レオドール S R— 01 0 ) 5 0 gを加え、 8 0 'Cにて攪拌して、 溶解させた。
次に、 上記界面活性剤を溶解させたニッケル塩水溶液と非水媒体とを混合 し、 ホモミ-キサー (特殊機化工業 (株) 製) を用いて 1 5 0 0 r p mで 3分 間攪拌して、 Wノ 0型のェマルジョンを調製した。
温度 5 0。Cにおいて、 このェマルジョンを 2 0〜3 O mmH gの減圧下に 吸引して、 アンモニアと炭酸ガスを主成分とする気化性成分を蒸発させて、 ェマルジヨンの液滴中に塩基性炭酸ニッケルを沈殿させた。 その後、 更に、 上記減圧下にェマルジョンを吸引し、 水を主成分とする気化性成分を蒸発さ せて、 ェマルジヨンの液滴中に生じた塩基性炭酸ニッケルの球状の粒子を油 中乾燥した。
この塩基性炭酸ニッケルの粒子を遠心分離し、 へキサン、 メタノール及び 水の順序にて洗浄した後、 温度 1 0 O 'Cで 2時間乾燥させて、 粒径 0. 1〜6 μπι、 平均粒径 1.5 ;t mの塩基性炭酸ニッケルの球状粒子の粉末を得た。 このようにして得られた粒子が塩基性炭酸ニッケルであることは、 図 1に 示す X線回折図にて確認した。 また、 この塩基性炭酸ニッケル粒子の走査型 電子顕微鏡写真を図 2に示し、 粒度分布を図 3に示す。 参考例 1
実施例 1にて得られた塩基性炭酸二ッケルの球状粒子の粉末を 5 0て/時 で昇温し、 空気雰囲気中、 6 0 0 °Cで 2時間焼成して、 酸化ニッケル粒子を 得た。 生成物が酸化ニッケルであることは、 X線回折にて確認した。 次いで、 その酸化ニッケル粒子を 3 L /分の水素気流中、 1 0 0てノ時で昇温し、 6 0 0。Cで 1時間、 還元して、 粒径 0. 1〜5 m、 平均粒径 1. 3 の球状の 二ッケル微粉末を得た。 このようにして得られたニッケル金属微粉末は図 4 に示す X線回折図から確認された。 また、 この金属ニッケル微粉末の走査型 電子顕微鏡写真を図 5に示し、 粒度分布を図 6に示す。 実施例 2
市販の塩基性炭酸ニッケル 1 4 1 gと炭酸水素ナトリウム 3 3 1 gとを 1 5 %アンモニア水に加え、 よく攪拌して、 p Hが 9. 5の塩基性炭酸ニッケル の炭酸水素ナ トリゥムーアンモニア水溶液 (N i として 1. 1モル/ L濃度) を調製した。 以下、 実施例 1 と同様にして、 粒径 1〜 5 m、 平均粒径 1. 3 / mの塩基性炭酸ニッケルの球状粒子を得た。 実施例 3
市販の塩基性炭酸ニッケル 1 4 1 gと炭酸ナ トリウム 3 3 1 gとを 1 5 % アンモニア水に加え、 よく攪拌して、 P Hが 9. 5の塩基性炭酸ニッケルの炭 酸ナ トリゥムーアンモニア水溶液 (N i として 1. 1モル/ L濃度) を調製し た。 以下、 実施例 1 と同様にして、 粒径 0. 1〜6 m、 平均粒径 1. 5 mの 塩基性炭酸ニッケルの球状粒子を得た。 実施例 4
市販の塩基性炭酸二ッケル 1 4 1 gと水酸化ナ トリウム 1 5 0 gとを 1 5 %アンモニア水に加え、 よく攪拌して、 P Hが 1 0. 0の塩基性炭酸ニッケル の水酸化ナトリゥムーアンモニア水溶液 (N i として 1. 1モル/ L濃度) を 調製した。 以下、 実施例 1と同様にして、 粒径 0. l〜 1 0 / m、 平均粒径 1. 4 // mの塩基性炭酸ニッケルの球状粒子の粉末を得た。
このようにして得られた粒子が塩基性炭酸二ッケルであることは、 図 7に 示す X線回折図にて確認した。 また、 この塩基性炭酸ニッケル粒子の走査型 電子顕微鏡写真を図 8に示す。 実施例 5
市販の塩基性炭酸ニッケル 1 4 1 gと炭酸水素カリウム 3 3 1 gとを 1 5 %アンモニア水に加え、 よく攪拌して、 P Hが 9. 5の塩基性炭酸ニッケルの 炭酸水素力リゥムーアンモニア水溶液 (N i として 1. 1モル/ L濃度) を調 製した。 以下、 実施例 1と同様にして、 粒径 0. 1〜6 m、 平均粒径 1. 5 u mの塩基性炭酸ニッケルの球状粒子の粉末を得た。 実施例 6
市販の塩基性炭酸ニッケル 1 4 1 gと炭酸カリウム 3 3 1 gとを 1 5 %ァ ンモユア水に加え、 よく攪拌して、 P Hが 9. 5の塩基性炭酸ニッケルの炭酸 力リゥムーアンモニア水溶液 (N i として 1. 1モル/ L濃度) を調製した。 以下、 実施例 1と同様にして、 粒径 0. 1〜 1 0 / m、 平均粒径 1. 6 mの塩 基性炭酸ニッケルの球状粒子の粉末を得た。 実施例 7
市販の塩基性炭酸ニッケル 1 4 1 gと水酸化カリウム 1 5 0 gとを 1 5 % アンモニア水に加え、 よく攪拌して、 p Hが 9. 5の塩基性炭酸ニッケルの水 酸化カリウム一アンモニア水溶液 (N i として 1. 1モル Z L濃度) を調製し た。 以下、 実施例 1と同様にして、 粒径 0. 1〜7 ^ πκ 平均粒径 1. 6 i mの 塩基性炭酸ニッケルの球状粒子の粉末を得た。 実施例 8
市販の塩基性炭酸ニッケル 1 4 1 gと炭酸水素リチウム 3 3 1 gとを 1 5 %アンモニア水に加え、 よく攪拌して、 P Hが 9. 5の塩基性炭酸ニッケルの 炭酸水素リチウム一アンモニア水溶液 (N i として 1. 1モル Z L濃度) を調 製した。 以下、 実施例 1 と同様にして、 粒径 0. 1〜 1 0 m、 平均粒径 1. 8 mの塩基性炭酸ニッケルの球状粒子の粉末を得た。 実施例 9
市販の塩基性炭酸ニッケル 1 4 1 gと炭酸リチウム 3 3 1 gとを 1 5 %ァ ンモユア水に加え、 よく攪拌して、 P Hが 9. 5の塩基性炭酸ニッケルの炭酸 リチウム一アンモニア水溶液 (N i として 1. 1モルノ L濃度) を調製した。 以下、 実施例 1と同様にして、 粒径 0. 1〜6 m、 平均粒径 1. 5 / mの塩基 性炭酸ニッケルの球状粒子の粉末を得た。 実施例 1 0
市販の塩基性炭酸ニッケル 1 4 1 gと水酸化リチウム 1 5 0 gとを 1 5 % アンモニア水に加え、 よく攪拌して、 P Hが 9. 5の塩基性炭酸ニッケルの水 酸化リチウム—アンモニア水溶液 (N i として 1. 1モル/ L濃度) を調製し た。 以下、 実施例 1 と同様にして、 粒径 0. 1〜6 m、 平均粒径 1. 3 / mの 塩基性炭酸ニッケルの球状粒子の粉末を得た。 実施例 1 1
市販の塩基性炭酸ニッケル 1 4 1 gを 1 5 %アンモニア水に加え、 よく攪 拌して、 p Hが 9. 5の塩基性炭酸二ッケルのァンモニァ水溶液 (N i として 1. 1モル/ L濃度) を調製した。 以下、 実施例 1と同様にして、 粒径 0. 1〜 1 5; m、 平均粒径 4. 3 mの塩基性炭酸ニッケルの球状粒子の粉末を得た; このようにして得られた粒子が塩基性炭酸二ッケルであることは、 図 9に 示す X線回折図にて確認した。 また、 この塩基性炭酸ニッケル粒子の走査型 電子顕微鏡写真を図 1 0に示す。 実施例 1 2
市販の塩基性炭酸ニッケル 1 4 1 gと炭酸アンモニゥム 3 3 1 gとを 1 5 %アンモニア水に加え、 よく攪拌して、 P Hが 9. 5の塩基性炭酸ニッケルの 炭酸アンモニゥムーアンモニア水溶液 (N i として 1. 1モル/ L濃度) を調 製した。 以下、 実施例 1と同様にして、 粒径 0. 1〜 1 0 m、 平均粒径 2. 6 mの塩基性炭酸二ッケルの球状粒子の粉末を得た。 実施例 1 3
市販の塩基性炭酸ニッケル 1 4 1 gと 5 0 %ェチルァミ ン水溶液 6 6 2 g とを 1 5 %アンモニア水に加え、 よく攪拌して、 P Hが 9. 5の塩基性炭酸二 ッケルのェチルァミ ン—アンモニア水溶液 (N i として 1. 1 モル/ L濃度) を調製した。 以下、 実施例 1と同様にして、 粒径 0. 1〜 1 2 m、 平均粒径 2. 5 mの塩基性炭酸ニッケルの球状粒子の粉末を得た。 実施例 1 4
市販の塩基性炭酸二ッケル 1 4 1 gと 5 0 %ジェチルァミ ン 6 6 2 gとを 1 5 %アンモニア水に加え、 よく攪拌して、 P Hが 9. 5の塩基性炭酸ニッケ ルのジェチルァミ ンーアンモニア水溶液 (N i として 1 モル/ L濃度) を 調製した。 以下、 実施例 1と同様にして、 粒径 0. 1〜2 6 m、 平均粒径 2. 0 mの塩基性炭酸ニッケルの球状粒子の粉末を得た。
このようにして得られた粒子が塩基性炭酸ニッケルであることは、 図 1 1 に示す X線回折図にて確認した。 また、 この塩基性炭酸ニッケル粒子の走査 型電子顕微鏡写真を図 1 2に示す。 実施例 1 5
市販の塩基性炭酸ニッケル 1 4 1 gと 5 0 % ト リェチルァミ ン 6 6 2 gと を 1 5 %アンモニア水に加え、 よく攪拌して、 p Hが 9. 5の塩基性炭酸ニッ ゲルのトリェチルァミ ンーアンモニア水溶液 (N i として 1. 1モル/ L濃度) を調製した。 以下、 実施例 1 と同様にして、 粒径 0. 1〜 1 5 平均粒径
2. 2 mの塩基性炭酸ニッケルの球状粒子の粉末を得た。 実施例 1 6
市販の塩基性炭酸ニッケル 1 4 1 gとエタノールァミ ン 3 3 1 gとを 1 5 %アンモニア水に加え、 よく攪拌して、 P Hが 9. 5の塩基性炭酸ニッケルの エタノールァミンーアンモニア水溶液 (N i として 1. 1モル/ L ) を調製し た。 以下、 実施例 1 と同様にして、 粒径 0, 1〜2 0 m、 平均粒径 2. 1 m の塩基性炭酸ニッケルの球状粒子の粉末を得た。 実施例 1 Ί
市販の塩基性炭酸ニッケル 1 4 1 gとジエタノールアミン 3 3 1 gとを 1 5 %アンモニア水に加え、 よく攪拌して、 P Hが 9. 5の塩基性炭酸ニッケル のジエタノールァミ ン一アンモニア水溶液 (N i として 1. 1モル Z L濃度) を調製した。 以下、 実施例 1 と同様にして、 粒径 0. 1〜 1 3 / m、 平均粒径 3. 2 mの塩基性炭酸ニッケルの球状粒子の粉末を得た。 実施例 1 8
市販の塩基性炭酸二ッケル 1 4 1 gと トリエタノールァミ ン 3 3 1 gとを 1 5 %アンモニア水に加え、 よく攪拌して、 P Hが 9. 5の塩基性炭酸ニッケ ルの トリエタノールァミ ン—アンモニア水溶液 (N i として 1. 1モル/ L濃 度) を調製した。 以下、 実施例 1と同様にして、 粒径 0. 1〜2 0 / m、 平均 粒径 3. 5 mの塩基性炭酸ニッケルの球状粒子の粉末を得た。 実施例 1 9
市販の水酸化ニッケル (N i ( O H ) 2 、 以下、 同じ) 1 0 4 gと炭酸水 素アンモニゥム 3 3 1 gとを 1 5 %アンモニア水に加え、 よく攪拌して、 P Hが 9. 5の塩基性炭酸ニッケルの炭酸水素アンモニゥム—アンモニア水溶液 ( N i として 1. 1モル Z L濃度) を調製した。 以下、 実施例 1と同様にして、 粒径 0. 1〜 1 5 m、 平均粒径 4. 0 mの塩基性炭酸ニッケルの球状粒子の 粉末を得た。
このようにして得られた粒子が塩基性炭酸ニッケルであることは、 図 1 3 に示す X線回折図にて確認した。 また、 この塩基性炭酸ニッケル粒子の走査 型電子顕微鏡写真を図 1 4に示す。 実施例 2 0
市販の水酸化ニッケル 1 0 4 gを 1 5 %アンモニア水に加え、 よく攪拌し て、 P Hが 1 0. 8の水酸化二ッゲルのアンモニア水溶液 (N i として 0. 2モ ル / L濃度) を調製した。 以下、 実施例 1と同様にして、 粒径 0. 1〜3 9 / m、 平均粒径 6. 3 mの水酸化ニッケルの球状粒子の粉末を得た。
このようにして得られた粒子が水酸化ニッケルであることは、 図 1 5に示 す X線回折図にて確認した。 また、 この水酸化ニッケル粒子の走査型電子顕 微鏡写真を図 1 6に示す。
- 実施例 2 1
実施例 1 と同様にして調製した W/ 0型ェマルジヨンを常圧下、 温度 7 0 'Cで攪拌して、 アンモニアと炭酸ガスを主成分とする気化性成分を蒸発させ て、 ヱマルジヨンの液滴中に塩基性炭酸ニッケルを沈殿させた。 その後、 更 に、 攬拌を続け、 水を主成分とする気化性成分を蒸発させて、 ェマルジョ ン の液滴中に生成した塩基性炭酸二ッケルの粒子を油中乾燥した。 この塩基性 炭酸ニッケルを遠心分離し、 へキサン、 メタノール及び水の順序にて洗浄し た後、 温度 1 0 0 'Cで 2時間乾燥させて、 粒径 0. 1〜2 5 m、 平均粒径 4. 3 mの塩基性炭酸ニッケルの球状粒子の粉末を得た。 実施例 2 2
実施例 2と同様にして調製した W/ 0型ェマルジヨ ンを常圧下、 温度 7 0 °Cで攪拌し、 アンモニアと炭酸ガスを主成分とする気化性成分を蒸発させて、 ェマルジヨンの液滴中に塩基性炭酸ニッケルを沈殿させた。 その後、 更に、 攪拌を続けて、 水を主成分とする気化性成分を蒸発させ、 ェマルジヨ ン液滴 中に生成した塩基性炭酸ニッケル粒子を油中乾燥した。 この塩基性炭酸ニッ ゲルを遠心分離し、 へキサン、 メタノール及び水の順序にて洗浄した後、 温 度 1 0 O 'Cで 2時間乾燥させて、 粒径 0. 1〜 1 3 // m、 平均粒径 3. 0 / の 塩基性炭酸ニッケルの球状粒子の粉末を得た。
このようにして得られた粒子が塩基性炭酸ニッケルであることは、 図 1 7 に示す X線回折図にて確認した。 また、 この塩基性炭酸ニッケル粒子の走査 型電子顕微鏡写真を図 1 8に示す。 実施例 2 3
実施例 5と同様にして調製した WZ O型ェマルジョンを常圧下、 温度 7 0 'Cで攪拌し、 アンモニアと炭酸ガスを主成分とする気化性成分を蒸発させて、 ェマルジヨンの液滴中に塩基性炭酸ニッケルを沈殿させた。 その後、 更に、 攬拌を続け、 水を主成分とする気化性成分を蒸発させ、 ェマルジヨ ンの液滴 中に生成した塩基性炭酸ニッケル粒子を油中乾燥した。 この塩基性炭酸ニッ ケルを遠心分離し、 へキサン、 メタノール及び水の順序にて洗浄した後、 温 度 1 0 O 'Cで 2時間乾燥させて、 粒径 0. 1〜 1 5 / m、 平均粒径 2. 5 mの 塩基性炭酸ニッケルの球状粒子を得た。 実施例 1 4と同様にして調製した W/ 0型ェマルジョンを常圧下、 温度 7 O 'Cで攪拌し、 アンモニアを主成分とする気化性成分を蒸発させて、 ェマル ジョ ンの液滴中に塩基性炭酸ニッケルを沈殿させた。 その後、 更に、 攪拌を 続け、 水を主成分とする気化性成分を蒸発させ、 ェマルジヨ ンの液滴中に生 成した塩基性炭酸ニッケル粒子を油中乾燥した。 この塩基性炭酸ニッケルを 遠心分離し、 へキサン、 メタノール及び水の順序にて洗浄した後、 温度 1 0 O 'Cで 2時間乾燥させて、 粒径 0. 1〜 1 0 / m、 平均粒径 2. 3 mの塩基性 炭酸ニッケルの球状粒子を得た。
実施例 2 5
実施例 2 0と同様にして調製した W/ 0型ヱマルジョンを常圧下、 温度 7 O 'Cで攪拌し、 主としてアンモニアからなる気化性成分を蒸発させ、 ヱマル ジョ ンの液滴中に水酸化ニッケルを沈殿させた。 その後、 更に、 攪拌を続け て、 水を主成分とする気化性成分を蒸発させて、 ェマルジヨ ンの液滴中に生 成した水酸化ニッケル粒子を油中乾燥した。 この水酸化ニッケルを遠心分離 し、 へキサン、 メタノール及び水の順序にて洗浄した後、 温度 1 0 O 'Cで 2 時間乾燥させて、 粒径 0. 1〜 1 5 m、 平均粒径 2. 8 mの水酸化ニッケル の球状粒子を得た。 実施例 2 6 - 実施例 1と同様にして調製した Wノ 0型ェマルジョンを 1 0 0 m m H gの 減圧下、 温度 5 O 'Cで吸引し、 アンモニアと炭酸ガスを主成分とする気化性 成分を蒸発させ、 ェマルジョンの液滴中に塩基性炭酸ニッケルを沈殿させた t その後、 更に、 攬拌を続けて、 水を主成分とする気化性成分を蒸発させ、 ェ マルジヨンの液滴中に生じた塩基性炭酸ニッケル粒子を油中乾燥した。 この 塩基性炭酸ニッケルを遠心分離し、 へキサン、 メタノール及び水の順序にて 洗浄した後、 温度 1 0 0てで 2時間乾燥させて、 粒径 0. 1〜 1 3 // m、 平均 粒径 2. 2 mの塩基性炭酸ニッケルの球状粒子を得た。 実施例 2 7
実施例 1と同様にして調製した WZ O型ェマルジョンを 1 5 O m m H gの 減圧下、 温度 5 (TCで吸引し、 アンモニアと炭酸ガスを主成分とする気化性 成分を蒸発させ、 ヱマルジョ ンの液滴中に塩基性炭酸ニッケルを沈殿させた。 その後、 更に、 攪拌を続けて、 水を主成分とする気化性成分を蒸発させ、 ェ マルジョンの液滴中に生じた塩基性炭酸ニッケル粒子を油中乾燥した。 この 塩基性炭酸ニッケルを遠心分離し、 へキサン、 メタノール及び水の順序にて 洗浄した後、 温度 1 0 O 'Cで 2時間乾燥させて、 粒径 0. 1〜2 0 m、 平均 粒径 3. 0 / mの塩基性炭酸ニッケルの球状粒子を得た。 実施例 2 8
実施例 1と同様にして調製した W/ 0型ェマルジョンを 2 0 O m m H gの 減圧下、 温度 5 O 'Cで吸引し、 アンモニアと炭酸ガスを主成分とする気化性 成分を蒸発させ、 ェマルジョンの液滴中に塩基性炭酸ニッケルを沈殿させた c その後、 更に、 攪拌を続けて、 水を主成分とする気化性成分を蒸発させ、 ェ マルジョンの液滴中に生じた塩基性炭酸ニッケル粒子を油中乾燥した。 この 塩基性炭酸ニッケルを遠心分離し、 へキサン、 メタノール及び水の順序にて 洗浄した後、 温度 1 0 O 'Cで 2時間乾燥させて、 粒径 0. 1〜2 0 / m、 平均 粒径 2. 8 mの塩基性炭酸ニッケルの球状粒子を得た。 実施例 2 9
実施例 1と同様にして調製した WZ O型ェマルジョンを常圧下、 温度 5 0 'Cで空気曝気しながら攪拌して、 アンモニアと炭酸ガスを主成分とする気化 性成分を蒸発させ、 ェマルジョンの液滴中に塩基性炭酸ニッケルを沈殿させ た。 その後、 更に、 攪拌を続けて、 水を主成分とする気化性成分を蒸発させ、 ェマルジョンの液滴中に生じた塩基性炭酸ニッケル粒子を油中乾燥した。 こ の塩基性炭酸ニッケルを遠心分離し、 へキサン、 メタノール及び水の順序に て洗浄した後、 温度 1 0 Ο ΐで 2時間乾燥させて、 粒径 0. 1〜 1 8 / m、 平 均粒径 2.5 mの塩基性炭酸ニッケルの球状粒子を得た。 実施例 3 0
実施例 1と同様にして調製した W 0型ェマルジョ ンに 2 m o 1ノ Lの硝 酸を約 3時間かけて滴下し、 ェマルジヨ ンを徐々に中和して、 塩基性炭酸二 ッケルを沈殿させた。 これを濾過し、 へキサン、 メタノール及び水の順序に て洗浄した後、 温度 1 0 O 'Cで 2時間乾燥させて、 粒径 0. 1〜 1 5 m、 平 均粒径 1.5 mの塩基性炭酸ニッケルの球状粒子を得た。 実施例 3 1
実施例 2と同様にして調製した Wノ 0型ェマルジョ ンに 2 m 0 1 ZLの硝 酸を約 3時間かけて滴下し、 ェマルジヨンを徐々に中和して、 塩基性炭酸二 ッケルを沈殿させた。 これを濾過し、 へキサン、 メタノール及び水の順序に て洗浄した後、 温度 1 0 O 'Cで 2時間乾燥させて、 粒径 0. 1〜 1 3 m、 平 均粒径 1.3 //mの塩基性炭酸ニッケルの球状粒子を得た。 実施例 3 2 - 実施例 5と同様にして調製した WZO型ェマルジョ ンに 2 m o 1 ZLの硝 酸を約 3時間かけて滴下し、 液滴を徐々に中和して、 塩基性炭酸ニッケルを 折出させた。 これを濾過し、 へキサン、 メタノール及び水の順序にて洗浄し た後、 温度 1 0 O 'Cで 2時間乾燥させて、 粒径 0.1〜2 0 m、 平均粒径 1.8 mの塩基性炭酸ニッケル粒子を得た。 実施例 3 3 実施例 1 4と同様にして調製した W/0型ヱマルジョンに 2 m o 1 /Lの 硝酸を約 3時間かけて滴下し、 液滴を徐々に中和して、 塩基性炭酸ニッケル を沈殿させた。 これを濾過し、 へキサン、 メタノール及び水の順序にて洗浄 した後、 温度 1 0 0てで 2時間乾燥させて、 粒径 0.1〜7 m、 平均粒径 2.3 //mの塩基性炭酸ニッケルの球状粒子を得た。
このようにして得られた粒子が塩基性炭酸ニッケルであることは、 図 1 9 に示す X線回折図にて確認した。 また、 この塩基性炭酸ニッケル粒子の走査 型電子顕微鏡写真を図 2 0に示す。 実施例 3 4
実施例 2 0と同様にして調製した W/0型ェマルジョンに 2 m o 1 /Lの 硝酸を約 3時間かけて滴下し、 液滴を徐々に中和して、 水酸化ニッケルを沈 殿させた。 これを濾過し、 へキサン、 メタノール及び水の順序にて洗浄した 後、 温度 1 0 0てで 2時間乾燥させて、 粒径 0. 1〜4 0 / m、 平均粒径 7.5 / mの水酸化ニッケルの球状の粒子を得た。
このようにして得られた粒子が水酸化ニッケルであることは、 図 2 1に示 す X線回折図にて確認した。 また、 この水酸化ニッケル粒子の走査型電子顕 微鏡写真を図 2 2に示す。 実施例 3 5
市販の塩基性炭酸銅 (C u C03 · C u (OH) 2 * H2 O) 1 0 6 gを 1 5%アンモニア水に加え、 よく攪拌して、 p Hが 10.2の塩基性炭酸銅の アンモニア水溶液 (C uとして 0.8モル/ L濃度) を調製した。 以下、 実施 例 1と同様にして、 粒径 0. 1〜3 0 m、 平均粒径 7.2 mの塩基性炭酸銅 の球状粒子の粉末を得た。
このようにして得られた粒子が塩基性炭酸銅であることは、 図 2 3に示す X線回折図にて確認した。 また、 この塩基性炭酸銅粒子の走査型電子顕微鏡 写真を図 2 4に示す。 実施例 36
市販の塩基性炭酸コバルト (C o C03 - 3/2 C o (OH) 2 ) 30 2 gを 1 5%アンモニア水に加え、 よく攪拌して、 P Hが 9.8の塩基性炭酸コ ノ ルトのアンモニア水溶液 ( C 0として 0.8モル/ L濃度) を調製した。 以 下、 実施例 1と同様にして、 粒径 0.1〜1 8 ^m、 平均粒径 4.2 i/mの塩基 性炭酸コバルトの球状粒子の粉末を得た。
このようにして得られた粒子が塩基性炭酸コバル トであることは、 図 25 に示す X線回折図にて確認した。 また、 この塩基性炭酸銅粒子の走査型電子 顕微鏡写真を図 2 6に示す。 実施例 37
市販の塩基性炭酸ニッケル (N i C03 . N i (OH) z . 4 H2 0、 以 下、 同じ) 1 4 1 gと炭酸水素ァンモニゥム (NH4 H C 03 ) 24 2 gと を 1 5%アンモニア水に加え、 よく攪拌して、 p Hが 9.5の塩基性炭酸ニッ ゲルのアンモニア一炭酸水素アンモニゥム水溶液 (N ί として 1.1モル/ L 濃度) を調製した。
このようにして得られたニッケル塩の水溶液 200 gに H LB値 1 5のノ 二オン系界面活性剤ポリオキシエチレンソルビタンモノォレエ一 ト (花王 (株) 製レオ ドール TW— 01 20 ) 30 gを加え、 5 0てにて攪拌して、 溶解させた。 別に、 非水媒体として、 沸点約 2 8 O 'Cのスーパ一スクヮラン (スクァテック (株) 製スクヮラン) 800 gに H L B値 4.3のノニオン系 界面活性剤ソルビタンモノォレエ一 ト (花王 (株) 製レオ ドール SR_01 0 ) 50 gを加え、 8 0てにて攪拌して、 溶解させた。
次に、 上記界面活性剤を溶解させたニッケル塩水溶液と非水媒体とを混合 し、 ホモミキサー (特殊機化工業 (株) 製) を用いて 5 000 r p mで 5分 間攪拌し、 これを 2回繰り返して、 Wノ 0型のェマルジヨ ンを調製した。 温度 5 (TCにおいて、 このエマルジョ ンを 2 0〜3 0 m m H gの減圧下に 吸引して、 ァンモニァと炭酸ガスを主成分とする気化性成分を蒸発させて、 ェマルジヨンの液滴中に塩基性炭酸ニッケルを沈殿させた。 その後、 更に、 上記減圧下にヱマルジョンを吸引し、 水を主成分とする気化性成分を蒸発さ せて、 ェマルジョンの液滴中に生じた塩基性炭酸ニッケルの球状の粒子を油 中乾燥した。
この塩基性炭酸ニッケルの粒子を遠心分離し、 へキサン、 メタノール及び 水の順序にて洗浄した後、 温度 1 0 0 'Cで 2時間乾燥させて、 粒径 0. 2〜 1 m、 平均粒径 0. 5 の均一微細な塩基性炭酸ニッケルの球状粒子の粉末 を得た。
このようにして得られた塩基性炭酸二ッケル粒子の走査型電子顕微鏡写真 を図 2 7に示す。

Claims

請 求 の 範 囲
1. 一般式 ( I )
M (C03) X/2 . (0H)y
(式中、 Mは N i、 〇。又は〇 11を示し、 X及び yは、 0≤ x≤ 2、 0 ≤ y ≤ 2. x + y = 2を満たす数である。 )
で表わされるニッケル、 コバルト又は銅の炭酸塩若しくは水酸化物をアンモ ニァ水溶液に溶解させ、 得られた水溶液を非水媒体中にて上記水溶液の液滴 を舍む W/0型ェマルジョンとした後、 この液滴中からアンモニアを舍む気 化性成分を除いて、 液滴中でニッケル、 コバルト又は銅の塩基性炭酸塩若し くは水酸化物を沈殿させることを特徴とするニッケル、 コバルト又は銅の炭 酸塩若しくは水酸化物の微細な球状の粒子の製造方法。
2. ェマルジョン中の液滴からアンモニアを含む気化性成分を蒸発させて、 液滴中でニッケル、 コバルト又は銅の炭酸塩若しくは水酸化物を沈殿させる 請求項 1に記載の方法。
3. ェマルジヨ ン中の液滴を酸で中和して、 液滴中でニッケル、 コバルト又 は銅の炭酸塩若しくは水酸化物を沈殿させる請求項 1に記載の方法。
-
4. アンモニア水溶液がアンモニア以外の他の塩基性化合物を舍む請求項 1 に記載の方法。
5. アンモニア以外の他の塩基性化合物が炭酸アンモニゥム又は炭酸水素ァ ンモニゥムである請求項 4に記載の方法。
6. アンモニア以外の他の塩基性化合物がアルカリ金属の炭酸塩、 炭酸水素 塩又は水酸化物である請求項 1に記載の方法。
7 . アルカリ金属がリチウム、 カリウム又はナ トリウムである請求項 6に記 載の方法。
8 . アンモニア以外の他の塩基性化合物がァミン類である請求項 4に記載の 方法。
9 . ァミン類がモノ、 ジ又はトリアルキルァミンである請求項 8に記載の方 法。
1 0 . ァミ ン類がモノ、 ジ又はトリアルカノ一ルァミ ンである請求項 8に記 載の方法。
1 1 . 炭酸ニッケル、 コバルト若しくは銅をアンモニア水溶液若しくはアン モニァとアンモニア以外の他の塩基性化合物を舍む水溶液に溶解させ、 得ら れた水溶液を非水媒体中にて上記水溶液の液滴を舍む W/ 0型ェマルジョ ン とした後、 この液滴中からアンモニアを含む気化性成分を除いて、 液滴中で ニッケル、 コバルト又は銅の炭酸塩を沈殿させることを特徴とする請求項 1 から 1 0のいずれかに記載のニッケル、 コバルト又は銅の炭酸塩の微細な球 状の粒子の製造方法。
1 2 . 水酸化ニッケル、 コバルト若しくは銅をアンモニアと共に炭酸アンモ 二ゥム、 炭酸水素アンモニゥム、 アルカリ金属の炭酸塩若しくは炭酸水素塩 を含む水溶液に溶解させ、 得られた水溶液を非水媒体中にて上記水溶液の液 滴を舍む W/ O型ェマルジョ ンとした後、 この液滴中からアンモニアを舍む 気化性成分を除いて、 液滴中でニッケル、 コバルト又は銅の炭酸塩を沈殿さ せることを特徴とする請求項 1から 1 0のいずれかに記載のニッケル、 コバ ルト又は銅の炭酸塩の微細な球状の粒子の製造方法。
1 3 . 水酸化ニッケル、 コバルト若しくは銅をアンモニア水溶液に溶解させ、 得られた水溶液を非水媒体 Φにて上記水溶液の液滴を含む W/ 0型ェマルジ ヨ ンとした後、 この液滴中からアンモニアを含む気化性成分を除いて、 液滴 中で水酸化二ッゲル、 コバルト又は銅を沈殿させることを特徴とする請求項 1から 1 0のいずれかに記載の水酸化ニッケル、 コバルト又は銅の微細な球 状の粒子の製造方法。
1 4 . 炭酸ニッケルをアンモニアと共に P Hが 8. 0〜 1 1. 5の範囲内で炭酸 水素アンモニゥム又は炭酸アンモニゥムの水溶液に溶解させ、 得られた二ッ ゲル塩の水溶液を非水媒体と混合してェマルジヨ ンとし、 次いで、 このエマ ルジョンを減圧下に吸引して、 上記二ッケル塩の水溶液からアンモニアを舍 む気化性成分を蒸発させて、 ェマルジョ ンの液滴中で炭酸ニッケルを沈殿さ せることを特徴とする炭酸ニッケルの微細な球状の粒子の製造方法。
PCT/JP1999/002634 1998-05-21 1999-05-19 Procede de production de fines particules spheriques de carbonate ou d'hydroxyde de nickel, cobalt ou cuivre WO1999059921A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP99921191A EP1013610B1 (en) 1998-05-21 1999-05-19 Method for producing fine spherical particles of carbonate or hydroxide of nickel, cobalt or copper
DE69911559T DE69911559T2 (de) 1998-05-21 1999-05-19 Verfahren zur herstellung von feinen sferischen teilchen von nikkel, kobalt oder kupfer karbonaten oder hydroxiden
US09/463,021 US6197273B1 (en) 1998-05-21 1999-05-19 Method for producing fine spherical particles of carbonate or hydroxide of nickel, cobalt or copper
KR1020007000618A KR100618071B1 (ko) 1998-05-21 1999-05-19 니켈, 코발트 또는 구리의 탄산염 또는 수산화물의 미세구상 입자의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP13968398 1998-05-21
JP10/139683 1998-05-21
JP10/354188 1998-12-14
JP35418898A JP4174887B2 (ja) 1998-05-21 1998-12-14 ニッケル、コバルト又は銅の炭酸塩又は水酸化物の微細な球状の粒子の製造方法

Publications (1)

Publication Number Publication Date
WO1999059921A1 true WO1999059921A1 (fr) 1999-11-25

Family

ID=26472406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002634 WO1999059921A1 (fr) 1998-05-21 1999-05-19 Procede de production de fines particules spheriques de carbonate ou d'hydroxyde de nickel, cobalt ou cuivre

Country Status (7)

Country Link
US (1) US6197273B1 (ja)
EP (1) EP1013610B1 (ja)
JP (1) JP4174887B2 (ja)
KR (1) KR100618071B1 (ja)
CN (1) CN1115301C (ja)
DE (1) DE69911559T2 (ja)
WO (1) WO1999059921A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973591A (zh) * 2010-09-30 2011-02-16 安徽亚兰德新能源材料有限公司 连续法生产球形碳酸钴的方法

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306787B1 (en) * 1998-06-10 2001-10-23 Sakai Chemical Industry Co., Ltd. Nickel hydroxide particles and production and use thereof
JP4385457B2 (ja) * 1999-11-19 2009-12-16 堺化学工業株式会社 微細球状金属ニッケル微粉末の製造方法
JP4929674B2 (ja) * 2004-10-27 2012-05-09 住友化学株式会社 球状ニッケル酸リチウム粒子の製造方法および球状の複合酸化物粒子の製造方法
TW200624385A (en) * 2004-10-27 2006-07-16 Sumitomo Chemical Co Nickel hydroxide powder and method for making same
WO2007000075A1 (fr) * 2005-06-27 2007-01-04 Shenzhen Bak Battery Co., Ltd Procédé de préparation d’hydroxyde nickeleux sphérique qui est dopé et d’oxydes métalliques multiples, et pile secondaire au lithium
JP5557981B2 (ja) * 2007-11-13 2014-07-23 赤穂化成株式会社 微粒子水溶性無機塩の製造方法とその製品
CN101544904B (zh) * 2008-03-28 2012-11-14 中国科学院大连化学物理研究所 一种复合金属氧化物催化剂及制备和应用
CN101830522A (zh) * 2009-03-13 2010-09-15 中国科学院福建物质结构研究所 一种具有铁磁性和优异电化学性能的氧化镍微米球及其合成方法
CN102560656B (zh) * 2010-12-22 2015-10-28 中国科学院大连化学物理研究所 微米级花状复合金属碱式碳酸盐的制备方法
KR101350348B1 (ko) 2012-03-16 2014-01-14 주식회사 비츠로셀 세라믹 분말의 합성방법 및 이로부터 합성되는 세라믹 분말, 소결체 및 세라믹 분말의 합성장치
JP6582283B2 (ja) * 2015-01-26 2019-10-02 宮崎県 油中ナノ粒子分散体の製造方法
CN104810160B (zh) * 2015-03-30 2018-05-25 安徽师范大学 一种镍铜碱式碳酸盐纳米线阵列、其制备方法及用途
CN106145179B (zh) * 2015-04-08 2018-02-27 天津大学 一种负载四氧化三钴的氧化铜纳米棒及其合成方法
US10233398B2 (en) 2015-12-15 2019-03-19 Uop Llc Crystalline transition metal oxy-hydroxide molybdotungstate
US10046315B2 (en) 2015-12-15 2018-08-14 Uop Llc Crystalline transition metal molybdotungstate
US10053637B2 (en) 2015-12-15 2018-08-21 Uop Llc Transition metal tungsten oxy-hydroxide
US10052616B2 (en) 2015-12-15 2018-08-21 Uop Llc Crystalline ammonia transition metal molybdotungstate
US10400181B2 (en) 2015-12-15 2019-09-03 Uop Llc Crystalline bis-ammonia metal molybdate
US10322404B2 (en) 2015-12-15 2019-06-18 Uop Llc Crystalline transition metal oxy-hydroxide molybdate
US10399063B2 (en) 2015-12-15 2019-09-03 Uop Llc Mixed metal oxides
US10005812B2 (en) 2015-12-15 2018-06-26 Uop Llc Transition metal molybdotungsten oxy-hydroxide
US10052614B2 (en) 2015-12-15 2018-08-21 Uop Llc Mixed metal oxides
US10399065B2 (en) 2015-12-15 2019-09-03 Uop Llc Crystalline transition metal tungstate
US10449523B2 (en) 2015-12-15 2019-10-22 Uop Llc Crystalline bis-ammonia transition metal molybdotungstate
US10232357B2 (en) 2015-12-15 2019-03-19 Uop Llc Crystalline ammonia transition metal molybdate
CN105609739B (zh) * 2016-02-26 2019-02-26 浙江大学 四氧化三钴/氧化铜复合材料、制备方法和用途
CN106430332A (zh) * 2016-10-08 2017-02-22 南京寒锐钴业股份有限公司 一种减少沉淀过程中母液排放量和沉淀剂单耗的方法
US20200024153A1 (en) * 2017-03-08 2020-01-23 Umicore Precursors of cathode materials for a rechargeable lithium ion battery
US10882030B2 (en) 2017-08-25 2021-01-05 Uop Llc Crystalline transition metal tungstate
US10773245B2 (en) 2017-08-25 2020-09-15 Uop Llc Crystalline transition metal molybdotungstate
US10843176B2 (en) 2017-12-20 2020-11-24 Uop Llc Highly active quaternary metallic materials using short-chain alkyl quaternary ammonium compounds
US10995013B2 (en) 2017-12-20 2021-05-04 Uop Llc Mixed transition metal tungstate
US11034591B2 (en) 2017-12-20 2021-06-15 Uop Llc Highly active quaternary metallic materials using short-chain alkyl quaternary ammonium compounds
US11007515B2 (en) 2017-12-20 2021-05-18 Uop Llc Highly active trimetallic materials using short-chain alkyl quaternary ammonium compounds
US11117811B2 (en) 2017-12-20 2021-09-14 Uop Llc Highly active quaternary metallic materials using short-chain alkyl quaternary ammonium compounds
US11078088B2 (en) 2017-12-20 2021-08-03 Uop Llc Highly active multimetallic materials using short-chain alkyl quaternary ammonium compounds
US10822247B2 (en) 2017-12-20 2020-11-03 Uop Llc Highly active trimetallic materials using short-chain alkyl quaternary ammonium compounds
US10875013B2 (en) 2017-12-20 2020-12-29 Uop Llc Crystalline oxy-hydroxide transition metal molybdotungstate
US10688479B2 (en) 2018-06-26 2020-06-23 Uop Llc Crystalline transition metal tungstate
US10737249B2 (en) 2018-06-26 2020-08-11 Uop Llc Crystalline transition metal molybdotungstate
US10737248B2 (en) 2018-06-26 2020-08-11 Uop Llc Crystalline transition metal tungstate
US10682632B2 (en) 2018-06-26 2020-06-16 Uop Llc Transition metal tungstate material
US11033883B2 (en) 2018-06-26 2021-06-15 Uop Llc Transition metal molybdotungstate material
US10981151B2 (en) 2018-06-29 2021-04-20 Uop Llc Poorly crystalline transition metal molybdotungstate
US10737246B2 (en) 2018-06-29 2020-08-11 Uop Llc Poorly crystalline transition metal tungstate
US11213803B2 (en) 2018-12-13 2022-01-04 Uop Llc Ammonia-free synthesis for Al or Si based multimetallic materials
US10933407B2 (en) 2018-12-13 2021-03-02 Uop Llc Ammonia-free synthesis for Al or Si based multimetallic materials
US11426711B2 (en) 2019-05-22 2022-08-30 Uop Llc Method of making highly active metal oxide and metal sulfide materials
CN112010357B (zh) * 2019-05-30 2023-11-07 荆门市格林美新材料有限公司 一种小粒径、高密度碳酸钴的制备方法
CN113044888B (zh) * 2019-12-26 2024-06-18 荆门市格林美新材料有限公司 一种无定型碳酸钴的制备方法
CN115888718B (zh) * 2022-10-26 2024-06-18 福州大学 一种板栗状空心NiCu复合材料的制备和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317787A (en) * 1976-08-03 1978-02-18 Agency Of Ind Science & Technol Filler for high speed liquid chromatography
JPH01301502A (ja) * 1988-02-18 1989-12-05 Mitsubishi Mining & Cement Co Ltd セラミックマイクロ球の製造方法
JPH0259432A (ja) * 1987-10-16 1990-02-28 Agency Of Ind Science & Technol 微小球状多孔性塩基性炭酸ニッケル(2)粒子の製造法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE399719B (sv) * 1976-06-15 1978-02-27 Mx Processer Reinhardt Forfarande for utvinning av metaller ur en blandning av metallhydroxider
JPS5321099A (en) * 1976-08-10 1978-02-27 Agency Of Ind Science & Technol Fine spherical porovs cobalt ( ) carbonate particles and production thereof
CA1273647A (en) * 1987-08-19 1990-09-04 Jean V. Sang Production of ceramic powders by emulsion precipitation processes and the products thereof
BE1002001A4 (fr) * 1988-02-18 1990-05-15 Mitsubishi Mining & Cement Co Procede de preparation de microspheres ceramiques.
DE3834774C2 (de) * 1988-10-12 1995-01-05 Fraunhofer Ges Forschung Verfahren zur Herstellung einer kugelförmige Oxidteilchen enthaltenden Suspension
JP2555475B2 (ja) * 1990-10-16 1996-11-20 工業技術院長 無機質微小球体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317787A (en) * 1976-08-03 1978-02-18 Agency Of Ind Science & Technol Filler for high speed liquid chromatography
JPH0259432A (ja) * 1987-10-16 1990-02-28 Agency Of Ind Science & Technol 微小球状多孔性塩基性炭酸ニッケル(2)粒子の製造法
JPH01301502A (ja) * 1988-02-18 1989-12-05 Mitsubishi Mining & Cement Co Ltd セラミックマイクロ球の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1013610A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973591A (zh) * 2010-09-30 2011-02-16 安徽亚兰德新能源材料有限公司 连续法生产球形碳酸钴的方法

Also Published As

Publication number Publication date
KR100618071B1 (ko) 2006-08-30
JP2000044252A (ja) 2000-02-15
KR20010022049A (ko) 2001-03-15
CN1115301C (zh) 2003-07-23
CN1274335A (zh) 2000-11-22
JP4174887B2 (ja) 2008-11-05
EP1013610A4 (en) 2001-08-16
US6197273B1 (en) 2001-03-06
EP1013610A1 (en) 2000-06-28
EP1013610B1 (en) 2003-09-24
DE69911559T2 (de) 2004-08-05
DE69911559D1 (de) 2003-10-30

Similar Documents

Publication Publication Date Title
WO1999059921A1 (fr) Procede de production de fines particules spheriques de carbonate ou d&#39;hydroxyde de nickel, cobalt ou cuivre
JP4385457B2 (ja) 微細球状金属ニッケル微粉末の製造方法
JP7401627B2 (ja) 中空シリカ粒子の製造方法
JP2002523618A (ja) ナノサイズ金属酸化物粉末の製造方法
JP2009508795A (ja) 炭酸セリウム粉末及び製法、これから製造された酸化セリウム粉末及び製法、これを含むcmpスラリー
JP4839854B2 (ja) ニッケル微粒子の製造方法
CN113891924B (zh) 具有表面凸块的球状无机颗粒以及其制备方法
CN112584929B (zh) 氨氧化用催化剂的制造方法和丙烯腈的制造方法
CN115364788B (zh) 基于微流控技术制备稀土氧化物纳米颗粒的方法
KR20180005589A (ko) 니켈 미립자의 개질 방법 및 니켈 미립자의 제조 방법
JP4687217B2 (ja) 排ガス浄化用触媒およびその製造方法
JP2008247696A (ja) 微小シリカゲル球状粒子の製造方法
Baqiya et al. Precipitation process of CaCO3 from natural limestone for functional materials
JP3951449B2 (ja) 微細球状金属ニッケル微粉末の製造方法
JP2008247714A (ja) 金属酸化物粉末の製造法
JP2023095008A (ja) 金属酸化物の製造方法
Munir et al. Template assisted synthesis of CaO-SnO 2 nanocomposites
KR101720205B1 (ko) 다공성 금속산화물 분말의 제조 방법
WO2024180777A1 (ja) 酸化セリウム粒子の製造方法
JPH11349324A (ja) 希土類酸化物および希土類含有複合酸化物中空粒子の製造
Shi et al. Preparation of ultrafine γ-Al 2 O 3 particles in non-ionic water in oil microemulsions
CN115702117A (zh) 球状二氧化硅粒子及其制造方法
CN113148995A (zh) 一种石墨烯量子点及其制备方法
CN115321616A (zh) 一种低成本、粒度可控的高比表面积纳米氧化钌制备方法
JP2003137541A (ja) 高比表面積アルミナの製造方法と得られる高比表面積アルミナ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99801187.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020007000618

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1999921191

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09463021

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999921191

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007000618

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999921191

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007000618

Country of ref document: KR