WO1999050464A1 - Four de traitement thermique en continu, et procede de regulation du gaz atmospherique et procede de refroidissement dans un four de traitement thermique en continu - Google Patents

Four de traitement thermique en continu, et procede de regulation du gaz atmospherique et procede de refroidissement dans un four de traitement thermique en continu Download PDF

Info

Publication number
WO1999050464A1
WO1999050464A1 PCT/JP1999/001498 JP9901498W WO9950464A1 WO 1999050464 A1 WO1999050464 A1 WO 1999050464A1 JP 9901498 W JP9901498 W JP 9901498W WO 9950464 A1 WO9950464 A1 WO 9950464A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
zone
continuous heat
heat treatment
gas
Prior art date
Application number
PCT/JP1999/001498
Other languages
English (en)
French (fr)
Inventor
Naoto Ueno
Sachihiro Iida
Ichiro Samejima
Original Assignee
Kawasaki Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corporation filed Critical Kawasaki Steel Corporation
Priority to CA002290949A priority Critical patent/CA2290949C/en
Priority to EP99910690A priority patent/EP1069193B1/en
Priority to BR9904910-4A priority patent/BR9904910A/pt
Priority to KR1019997010847A priority patent/KR100541003B1/ko
Priority to DE69918821T priority patent/DE69918821T2/de
Priority to US09/424,546 priority patent/US6190164B1/en
Publication of WO1999050464A1 publication Critical patent/WO1999050464A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • C21D9/565Sealing arrangements
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • C21D9/563Rolls; Drums; Roll arrangements
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material

Definitions

  • the present invention relates to a continuous heat treatment furnace, an atmosphere control method and a cooling method in the continuous heat treatment furnace.
  • the present invention relates to a continuous heat treatment furnace, and more particularly, to a continuous heat treatment furnace used for continuously heat treating a band-shaped material, such as a metal band such as steel or aluminum, and a method of operating the same.
  • a band-shaped material such as a metal band such as steel or aluminum
  • % of the hydrogen concentration means% by volume.
  • a continuous heat treatment furnace is basically a facility that performs heat treatment in a predetermined heat pattern while continuously passing a strip-shaped material such as a steel strip, in the order of heating, soaking, cooling (gradual cooling, rapid cooling, etc.).
  • the furnace zones having respective processing functions are sequentially arranged.
  • a steel strip S is heated to a predetermined temperature or further uniformly or gradually cooled.
  • a quenching zone 11 for rapid cooling with a cooling zone, and a cooling zone 12 for cooling to a predetermined processing end temperature or overaging before that are arranged and configured.
  • the atmosphere inside the continuous heat treatment furnace is usually adjusted to a non-oxidizing atmosphere.
  • a mixed gas of hydrogen gas and nitrogen gas referred HN gas
  • the composition of this atmosphere gas is not the same in every furnace zone, and as described below, there are cases where a different atmosphere gas composition is used in one furnace zone according to the characteristics to be imparted to the steel strip. is there.
  • the gas jet cooling method has better appearance and shape of the steel strip after cooling than the other methods, and the equipment is inexpensive.
  • the gas jet cooling method has a disadvantage that the cooling rate is low.
  • it is necessary to use HN gas with a higher cooling capacity by increasing the hydrogen concentration in the quenching zone as disclosed in JP-B-55-1969, JP-A-6-346156, and JP-A-9-235626. It is disclosed in reports. This makes it possible to perform rapid cooling in the quenching zone with a cooling rate exceeding 50 ° C nos.
  • sealing means is provided at the boundary with other furnace zones.
  • the structure or device of the sealing means include, for example, (A) a partition structure which is provided at a boundary portion between different composition atmosphere gases and serves as a plurality of processing chambers capable of supplying and discharging different composition atmosphere gases (Japanese Patent Laid-Open No. No. 5-125451), (B) a device for slidingly contacting a seal tongue piece with a steel strip (Japanese Utility Model Publication No. 63-19316), (C) a seal roll, a blow nozzle, and a seal damper. (D) For example, as shown in Fig. 4, a material is rotated from the front and back sides of the material at the same speed as the material passing speed. A roll seal device 4 disposed so as to be sandwiched is known. In addition, in the quenching zone 11 in FIG. 4, a roll seal device 4 is provided at an inlet and an outlet thereof, and also at an outlet in a preceding stage of the quenching zone where the gas jet chamber 13 is arranged.
  • HN gas with a higher hydrogen concentration than other furnace zones is used, circulated, cooled, and blown to the steel strip.
  • the gas jet cooling method is advantageous from the viewpoint of product surface properties and equipment costs. From the same viewpoint, it is advantageous to employ a roll sealing device as the sealing means.
  • Fig. 5 shows the static pressure at the quenching zone and the points P1 to P9 before and after passing a material having a thickness of 0.8mm and a width of 1250mm through the continuous heat treatment furnace shown in Fig.
  • the present invention prevents the mixture of a high hydrogen concentration atmosphere gas in a quenching zone of a gas jet cooling system and an atmosphere gas in a furnace zone adjacent to the quenching zone (heating zone, cooling zone, etc.)
  • An object is to provide a continuous heat treatment furnace having a quenching zone. Disclosure of the invention
  • the present invention relates to an atmosphere control method for a continuous heat treatment furnace in which a strip-shaped material is heat-treated in an atmosphere gas, the strip-shaped material is heated on the way, and then rapidly cooled by blowing a hydrogen-containing gas. Hydrogen concentration in atmosphere gas of furnace zone to be heated and furnace zone to be held after heating An atmosphere control method in a continuous heat treatment furnace characterized by controlling P 9 degrees to 10% or less (first invention).
  • the present invention provides a cooling method in a continuous heat treatment furnace in which a band-shaped material is heat-treated in an atmosphere gas, the band-shaped material is heated on the way, and then rapidly cooled by spraying a hydrogen-containing gas.
  • the tension per unit sectional area of the material Tu (kgf / mm 2 ) According to the thickness t (mm) and width W (mm) of the material, satisfying the following conditions (equations corresponding to any of formulas (1) to (3)).
  • a cooling method in a continuous heat treatment furnace characterized by spraying a hydrogen-containing gas of 10% or more (second invention).
  • the present invention is directed to a continuous heat treatment furnace having a plurality of furnace zones which are sequentially arranged for heat-treating a band-shaped material in an atmosphere gas. It is a quenching zone for cooling, and has a first roll sealing device at the inlet and a second roll sealing device at the outlet as atmospheric gas sealing means. Connection with the outlet side of the mouth seal device.
  • This is a continuous heat treatment furnace (third invention).
  • the present invention is directed to a continuous heat treatment furnace having a plurality of furnace zones which are sequentially arranged for heat-treating a band-shaped material in an atmosphere gas. It is a quenching zone for cooling, and has an atmosphere gas sealing means at the inlet with a first seal seal chamber separated from the upstream by the first and second seal seals, and at the outlet with a third seal seal.
  • a continuous heat treatment furnace (a fourth invention), characterized in that the mouth seal chamber and the upstream portion in the quenching zone are connected.
  • the present invention is directed to a continuous heat treatment furnace having a plurality of furnace zones which are sequentially arranged for heat-treating a band-shaped material in an atmosphere gas. It is a quenching zone for cooling, and has a roll seal chamber separated from the upstream by the first and second roll seal devices at the inlet as atmosphere gas sealing means, and a third portal seal device at the outlet.
  • a continuous heat treatment furnace characterized in that the inlet side of the first mouth seal device and the outlet side of the third mouth seal device are connected, and the mouth seal chamber and the upstream portion in the quenching zone are connected.
  • the present invention is any of the third to fifth inventions (sixth invention) characterized by having a bridle roll before and after the quenching zone.
  • FIG. 1 is a schematic view showing an example of a continuous heat treatment furnace according to the fifth invention.
  • FIG. 2 is a schematic view showing an example of the continuous heat treatment furnace according to the third invention.
  • FIG. 3 is a schematic view showing an example of the continuous heat treatment furnace according to the fourth invention.
  • FIG. 4 is a schematic diagram showing an example of a conventional continuous heat treatment furnace.
  • FIG. 5 (a) and 5 (b) are graphs showing the pressure distribution and the hydrogen concentration distribution of the ambient gas before and after the quenching zone in the conventional furnace and Example 3, respectively.
  • FIG. 6 is an explanatory diagram showing the influence of the heat treatment temperature and the hydrogen concentration in the atmosphere gas on the nitridation occurrence of the steel strip surface layer.
  • FIG. 7 is a graph showing the relationship between the air flow density Q, the hydrogen concentration and the heat transfer coefficient ⁇ of the cooling gas in the quenching zone.
  • FIG. 8 is a graph showing changes over time in furnace pressure (a) and hydrogen concentration (b) for Example 1.
  • FIG. 9 is a graph showing changes over time in furnace pressure (a) and hydrogen concentration (b) for the comparative example.
  • Fig. 6 is an explanatory diagram showing the effect of the heat treatment temperature and the hydrogen concentration in the atmospheric gas on the nitridation generation of the steel strip surface layer. The heat treatment was performed under the condition that the hydrogen concentration exceeded 10% in the recrystallization temperature range. It can be seen that nitriding occurs in the surface layer portion of the steel strip in this case.
  • the presence or absence of nitriding depends on the increase in the hardness of the steel sheet surface and the increase in the amount of nitrogen on the steel sheet surface.
  • the hydrogen concentration in the slow cooling zone adjacent to the quenching zone and the soaking zone and heating zone located upstream must be 10% or less.
  • the first invention stipulates that the hydrogen concentration in the atmosphere gas of the furnace zone for heating the strip-shaped material and the furnace zone for holding after heating be controlled to 10% or less.
  • a quenching zone for rapidly cooling the steel strip by gas jet cooling is arranged in a part of the cooling zone.
  • the tension T u (kg ⁇ mm 2 ) per unit cross-sectional area of the material in the quenching zone is set to the material thickness t (mm) and the width W (mm ), A range that satisfies any of the above equations (1) to (3) is maintained, and a hydrogen-containing gas having a hydrogen concentration of 10% or more is sprayed on the material. The reason will be described with reference to FIG.
  • Fig. 7 is a graph showing the relationship between the air flow density Q of the cooling gas, the hydrogen concentration and the heat transfer coefficient ⁇ in the quenching zone, where ⁇ increases almost in proportion to the Q and the hydrogen concentration.
  • the air volume density Q is obtained by dividing the air volume blown to both sides of the steel strip by the area of one side of the steel strip in the quenching zone.
  • the value of ⁇ required in the quenching zone varies depending on the type (steel type) and thickness of the material (steel plate in this example).
  • a cooling rate of 30 ° C / s or more is required in the quenching zone, which is ⁇ : 200kcal / (m 2 ⁇ h The above is equivalent to 350 kcal / (m 2 -h- ° C) or more at a plate thickness of 1.6 mm.
  • Tu 1.88-0.18 X t-0.00080
  • Tu 1.10-0.00033 XW (W ⁇ 1350 mm)
  • Tu 1.78- 0.18 X t-0.00080
  • XW (W 1 1350mm) and Tu 1.00-0.00033 XW (W ⁇ 1350mm)
  • B the maximum occurrence of scratches in Q at 1.0mm and 1.6mm thicknesses is shown.
  • Q of the limit of frequent occurrence of scratches is 150 m 3 / (m 2 min) for a plate thickness of 1.0 mm and 400 m 3 / (m 2 'min) for a plate thickness of 1.6 mm.
  • the target can be achieved if the hydrogen concentration of the cooling gas is 10% or more.
  • Tu is lower (B)
  • the target ⁇ cannot be achieved without flapping unless the hydrogen concentration is significantly increased. If Tu is larger than the right-hand side value of any of the above equations (1) to (3), buckling ⁇ plastic deformation is likely to occur when the steel strip is wound around the hearth roll in the quenching zone. There is a quality problem.
  • the hydrogen concentration in the quenching zone is limited and the tension of the material is kept within the range of any one of the above equations (1) to (3).
  • the difference in the sign of the coefficient in the above formulas (1) to (3) with respect to the contribution of the plate thickness is due to the empirical formula that emphasizes backing prevention for thin materials, and the prevention of plastic deformation of the plate due to excessive tension for thick materials. This is because it is preferable to perform analysis using empirical formulas that emphasize the reduction of the tension step with the connecting material.
  • a hydrogen-containing gas in the second invention, a high hydrogen concentration gas having a hydrogen concentration of 10% or more
  • a sealing device that can seal hydrogen-containing gas in the quenching zone within a range of less than 10% hydrogen concentration in the solitary and heated zones located upstream of the cold zone is required.
  • the sealing device is realized by the third to fifth inventions.
  • FIG. 2 is a schematic view showing an example of the continuous heat treatment furnace according to the third invention.
  • one of the plurality of furnace zones except the first and last is a quenching zone 11 for rapidly cooling the material by spraying the atmosphere gas, and a mouth seal is used as the atmosphere gas sealing means.
  • a first mouth seal device 4A is provided at the inlet of the chamber, and a second mouth seal device 4B is provided at the outlet, and the first roll seal device 4A inlet side and the second roll seal device are provided.
  • 4 The B outlet side is connected by the communication pipe 1.
  • Such connecting means is not limited to the communicating pipe of the present example, and may be configured by connecting furnace shells of connected parts, for example.
  • the same or corresponding parts as those in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted.
  • furnace pressure adjustment only requires a balance between the quench zone and the other furnaces.
  • a small amount of gas can enter the quenching zone on the inlet side and a small amount of gas leak from the quenching zone can be allowed on the outlet side.
  • the amount of which is much smaller than the gas flow that can be generated by.
  • the upstream of the quenching zone where there is a concern about nitriding, has a gas flow in the direction of flowing into the quenching zone, which is effective in preventing nitriding.
  • a furnace pressure gauge (not shown) is installed here to manage the furnace pressure between the quench zone. It is still more preferable. With this configuration, the furnace pressure difference between the heating zone 10 and the cooling zone 12 disappears, and the atmosphere gas mixture between the quenching zone 11 and the adjacent furnace zones 10 and 12 caused by the furnace pressure difference is suppressed. You. Fourth invention
  • FIG. 3 is a schematic view showing an example of the continuous heat treatment furnace according to the fourth invention.
  • one of the plurality of furnace zones except the first and last furnaces is a quenching zone 11 for rapidly cooling the material by spraying the atmosphere gas, and an inlet portion as an atmosphere gas sealing means.
  • the upstream end 6 is connected by the communication pipe 2.
  • Such connecting means is not limited to the communicating pipe of the present embodiment, and may be configured by connecting furnace shells of connected parts, for example.
  • the same or corresponding parts as those in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted.
  • FIG. 1 is a schematic view showing an example of a continuous heat treatment furnace according to the fifth invention.
  • one of the plurality of furnace zones except the first and last furnaces is a quenching zone 11 for rapidly cooling the material by spraying the atmosphere gas, and an inlet portion as an atmosphere gas sealing means.
  • the A inlet side and the third mouth seal device 4C outlet side are connected by a communication pipe 1, and the mouth seal chamber 3 and the most upstream part 6 in the quenching zone are connected by a communication pipe 2.
  • Such connecting means is not limited to the communicating pipe of the present embodiment, and may be constituted by connecting furnace shells of connected parts, for example. In FIG. 1, the same or corresponding parts as in FIG. Omitted.
  • This configuration eliminates the furnace pressure difference between the heating zone 10 and the cooling zone 12; the atmosphere gas mixture between the quenching zone 11 and the adjacent quenching zones 10 and 12 caused by this furnace pressure difference is suppressed. You. At the same time, the quenching zone 11 caused by the fluctuation of the gas injection pressure in the gas jet chamber 13 installation part disappears, and the furnace pressure difference between the inside and outside of the inlet disappears. During this time is suppressed.
  • the third to fifth aspects of the present invention relate to a conventional continuous heat treatment furnace in which a ventilation connection path other than a passage plate path is provided between two points in the furnace designated by the present invention. Therefore, it can be implemented only by very simple equipment modification.
  • the tension in the quenching zone is kept within any one of the formulas (1) to (3).
  • the yield stress of the steel strip decreases as the temperature of the steel zone rises. If the tension is excessively increased, the steel strip buckles when it is wound around a roll in the heating zone or the like. ) Is seen.
  • the steel strip is relatively thick, it is possible to increase the tension throughout the continuous heat treatment furnace including the heating zone, etc. When passing through the board, it is necessary to lower the tension in the heating zone to prevent heat buckle, and to increase the tension in the quenching zone to suppress fluttering.
  • any of the third to fifth inventions in any of the third to fifth inventions, a bridle roll is provided before and after the quenching zone. I decided to have it. As a result, the tension in the quenching zone can be maintained in one of the formulas (1) to (3) while keeping the tension in the heating zone low.
  • the gap between the seal roll of each roll sealing device and the steel strip is preferably 5 mm or less.
  • the seal roll suppresses deformation due to thermal expansion. For this reason, it is preferable to use a water-cooled type or a material using a material having a small coefficient of thermal expansion, for example, a ceramic, for the material of the roll.
  • the third, fourth, and fifth inventions were implemented in the form shown in Figs. 2, 3, and 1 to implement Examples 1, 2, and 3. It was set to 3.
  • the bridle rolls 8 are installed before and after the quenching zone to apply quenching zone tension in accordance with the sixth invention.
  • the equipment is configured so that it can be controlled separately from tropical tension.
  • Example 4 assuming that the fifth invention (the same equipment as in Example 3 shown in FIG. 1) does not satisfy the requirements of the sixth invention (there is no bridle roll), the quenching zone tension is reduced.
  • the heating zone tension is equal to or lower than the range of any of the expressions (1) to (3) (not satisfying the requirements of the second invention) will be described.
  • Example 1 the amount of high-hydrogen-concentrated atmospheric gas (about 30% hydrogen) used in the quenching zone and the frequency of nitriding in the steel strip were investigated.
  • the results of the tuning performed when the conventional continuous heat treatment furnace shown in Fig. 4 was operated while satisfying any of the above equations (1) to (3) for tension (this is a comparative example) are shown below. This was a comparative example.
  • FIG. 4 shows an example of a conventional furnace provided with bridle rolls outside the scope of the third to fifth aspects of the present invention.
  • Example 3 a material having a thickness of 0.8 mm and a width of 1250 mm was further subjected to a rapid cooling zone during passing at a line speed of 400 mpm and points P1 to P9 before and after the rapid cooling zone (see FIG. (The same position as the point) and the hydrogen concentration in the atmospheric gas were measured.
  • the furnace zone in the first stage of the rapid cooling zone is the slow cooling zone
  • the furnace zone in the second stage is the overaging zone
  • the atmosphere gas is HN gas.
  • Table 1 shows the amounts of the atmosphere gas used and the frequency of occurrence of nitriding in Examples 1 to 3 and Comparative Example.
  • Table 1 the atmospheric gas consumption and the frequency of nitridation are shown as relative indexes, with the comparative example as 100.
  • Example 1 Examples of changes over time in furnace pressure and hydrogen concentration in the quenching zone (RC), slow cooling zone (SC), and overaging zone (OA) are shown in Example 1 ( Figure 8) and Comparative Example ( Figure 9).
  • the furnace pressure fluctuates in the slow cooling zone in the present invention, the pressure balance with the quenching zone is maintained, and the hydrogen concentration does not change due to the gas flow between the quenching zone and the zones before and after the quenching zone. You can see that.
  • the quenching zone tension (control value) and the flapping amplitude of the steel strip in the quenching zone (survey value) indicate that in Examples 1, 2, and 3, Since the quenching zone tension was separated from the heating zone tension by bridle rolls before and after the quenching zone and controlled within the range of the above formula (I), the steel strip in the quenching zone was generated without generating heat buckles in the heating zone. The rattling amplitude could be suppressed.
  • Example 4 since the tension was below the range of any of the above equations (1) to (3), the flapping amplitude of the steel strip due to the blowing of the cooling gas in the quenching zone increased, and the steel strip became Contact with the tip of the cooling gas jet nozzle led to flaws. Note that a small decrease in ⁇ was also observed compared to Example 3 due to the effect of the flapping of the steel strip.
  • Flutter is Ru Osama if caused to decrease the airflow density Q in Example 4, but in that case 180kcal the value of ⁇ is / (m 2 ⁇ h ⁇ ° C) or more (thickness 0.8mm at 30 ° C / s It is difficult to secure a cooling rate of 350 kcal / (m 2 -h ⁇ ° C) or more (a value that can secure a cooling rate of 30 ° C / s at a plate thickness of 1.6 mm).
  • the flapping amplitude of the steel strip increases as the passing speed increases and the cooling gas flow rate increases.
  • a bridle roll is installed before and after the quenching zone according to the sixth invention, and the quenching zone tension is controlled in accordance with the second invention, whereby the flutter amplitude is obtained. Can be reduced. As a result, the distance between the steel strip and the tip of the cooling gas jet nozzle can be shortened, so that higher cooling efficiency can be realized with the same cooling gas flow rate.
  • the quenching zone and the furnace zone adjacent to the quenching zone A continuous heat treatment furnace that can prevent the mixing of the atmosphere gas between the heat treatment zone and the cooling zone by simple means has been realized. An excellent effect is obtained in that there is no need to worry about nitriding in the heating zone due to the influence of atmospheric gas.

Description

明細書
連続熱処理炉ならびに連続熱処理炉における雰囲気制御方法および冷却方法 技術分野
本発明は、 連続熱処理炉に関するもので、 詳しくは、 帯状材例えば鋼やアルミニゥ ム等の金属帯を連続的に熱処理するために使用される連続熱処理炉およびその操業 方法等に関する。 背景技術
以下、 本発明において、 水素濃度の%は体積%を意味する。
連続熱処理炉は、 基本的に、 鋼帯など帯状の材料を連続通板しながら所定のヒート パターンの熱処理を施す設備であり、 加熱 ·均熱 ·冷却 (徐冷, 急冷等) などの処理 順にそれぞれの処理機能を有する炉帯を順次配置して構成されている。
例えば冷間圧延鋼帯の連続熱処理炉は、 図 4に示すように、 処理順に、 鋼帯 Sを、 所定の温度に加熱あるいはさらに均熱あるいはさらに徐冷する加熱帯等 10、 所定の 温度域で急速冷却する急冷帯 1 1、 所定の処理終了温度まで冷却するあるいはその前 に過時効する冷却帯等 12が配置 ·構成されている。
熱処理中に材料表面が酸化すると製品外観を損ねることから、 通常、連続熱処理炉 内は無酸化雰囲気に調整される。 鋼帯の連続熱処理炉では、雰囲気ガスとして水素ガ スを数0 /0含有した、 水素ガスと窒素ガスの混合ガス (H Nガスという) が一般に使用 される。
このような H Nガスを用いると熱処理の進行につれて還元に与かった水素が H20 となって消費され、このままでは炉内雰囲気を無酸化の状態に保持することはできな い。 そのため各炉帯に雰囲気ガスの排出管と供給管を設け、 古いガスを排出し新しい ガスを補給して炉内の水素濃度を一定に保つことが行われている。
ところで、 この雰囲気ガスの組成はどの炉帯でも同じというわけではなく、以下に 述べるように、鋼帯に付与すべき特性に応じてある炉帯では他と異なる雰囲気ガス組 成を採用する場合がある。
例えば C 0.01〜0.02wt%の低炭素鋼では時効性改善のために、 鋼帯を加熱、 均熱後 に急速冷却して鋼中の Cを過飽和に固溶させてから 400 °C前後に保持する、 所謂過 時効処理が行わる。 この時の急速冷却技術としては、 雰囲気ガスを熱交換器にて冷 却 ·循環し、 例えば図 4に示すようなガスジェットチャンバ 13から、 高速ガスジェ ット流として鋼帯に吹きつけるガスジエツト冷却法、内部に冷媒を注入した冷却ロー ルを鋼帯に押しつけるロール冷却法、 鋼帯に水、 ミス トを吹きつける水冷却法、 ミス ト冷却法などがある。 このうちガスジエツト冷却法は、 他の方法に比べ冷却後の鋼帯 の外観およぴ形状が良好で設備も安価である。
しかしながら、 ガスジェット冷却法には冷却速度が小さいという欠点がある。 この 欠点を捕うべく急冷帯では水素濃度を高めて冷却能を高く した H Nガスを使用する ことが、 特公昭 55— 1969号公報、 特開平 6— 346156号公報、 特開平 9—235626号公 報等に開示されている。 これにより急冷帯において冷却速度が 50°Cノ sを超える + 分な急速冷却が可能である。
このように、 特定の炉帯で他の炉帯とは異なる雰囲気ガスを使用する場合、他炉帯 との雰囲気ガス混合を避ける必要がある。このため他炉帯との境界にシール手段が設 けられている。
シール手段の具体的構造または装置としては、 例えば、 (A) 異組成雰囲気ガス境 界部に配置され異組成雰囲気ガスの供給'排出が可能な複数の処理室を兼ねた隔壁構 造 (特開平 5— 125451号公報) 、 ( B ) シール舌片を鋼帯に摺動接触させる装置 (実 公昭 63— 19316 号公報) 、 (C ) シールロール、 ブローノズル、 シ一ルダンパを ,祖 み合わせた装置 (特開昭 59— 133330号公報) 、 (D ) 例えば図 4に示すような、 材 料の表裏面側から材料の通板速度と同じ速度で回転する口ールを材料を挟むように 配設したロールシール装置 4などが知られている。 なお、 図 4の急冷帯 11 において はその入口、 出口の他、 ガスジェットチャンバ 13 を配置した急冷帯前段の出口にも ロールシール装置 4が設けられている。
このようなシール手段の中で、 (B ) ではシール舌片との接触により鋼帯にスリ疵 が発生する。 特に通板速度の大きい熱処理条件下でその危険性が高い。 また (A) ,
( C )ではシールガス流量を常時確保する必要性から雰囲気ガス原単位が悪化するほ 力 シール性能確保のために高精度のガス流量を必要とするので設備が高価になる。 これらに対し (D ) では、 鋼帯にスリ疵が発生せず設備も安価となる。
上述のように、 連続熱処理炉の急冷帯では、 他の炉帯 (加熱帯等及び冷却帯等) よ りも水素濃度の高い H Nガスを使用し、 これを循環 '冷却して鋼帯に吹きつけるガス ジエツト冷却法によるのが製品表面性状および設備コストの観点から有利である。 こ れと同じ観点からすれば、シール手段としてロールシール装置を採用するのが有利で ある。
しかし、 実際に図 4に示すようにロールシール装置 4を急冷帯 11 の前後 (入口お よび出口)に設置して急冷帯内の高水素濃度雰囲気ガスを完全に遮断しようとした場 合、帯状材料に吹き付けられた急冷帯内の高水素濃度雰囲気ガスが帯状の材料に沿う ことによって形成される流れ (随伴流とも呼ばれる) に起因して動圧が発生する。 そ して、 この発生した動圧がロールシール装置に遮断される結果、 ロールシール装置付 近では静圧の上昇となって現れる。 例えば図 5は、 図 4に示した連続熱処理炉に板厚 0.8mm 、板幅 1250mmの材料をラィン速度 400mpmで通板したときの急冷帯およびそ の前後の地点 P 1 〜P 9 における静圧 (図 5 ( a ) ) と雰囲気ガス中水素濃度 (図 5 ( b ) ) の測定結果である。 図 5 ( a ) より解る様に、 大きな静圧ギャップが発生 している箇所がある。そのため急冷帯およびその前後にて炉圧のバランスが崩れて大 きなガス流れが発生する結果、急冷帯内の高水素濃度雰囲気ガスが急冷帯の外へ流出 し、 図 5 ( b ) に示すように急冷帯内の水素濃度が低下する。 この急冷帯内の水素濃 度低下を補うためには高水素濃度 H Nガスの投入量を増やす必要があり、 H Nガス原 単位の悪化を招くことになる。
結局、 ガス流防止のために徒に強固なシール装置を設けると、 結果的に炉圧 (炉内 の雰囲気圧) 分布に基づくガス流を誘発するという皮肉な結果が生じる。 従来のシー ル手段においてはこのような問題は考慮されていない。
なお、 急冷帯からの高水素濃度雰囲気ガスの流出は、 H Nガス原単位の悪化を招く だけでなく、急冷帯より上流側の再結晶過程にある帯状材料の結晶組織に影響を及ぼ すことが本発明者らの最近の研究により明らかになった。 すなわち、急冷帯入側に隣 接する炉帯内の水素濃度が 10%を超えて高くなると急冷前の高温状態にある帯状材 料の表層部で窒化が進行し、部分的な表層の硬化現象が起こって問題となるという知 見が得られた。
本発明は、 前記従来技術の問題に鑑み、 ガスジ ット冷却方式の急冷帯の高水素濃 度雰囲気ガスと急冷帯隣接炉帯 (加熱帯等および冷却帯等) の雰囲気ガスとの混合を 防止して、加熱および加熱後保持する炉帯の雰囲気ガス中の水素濃度と急冷帯内の雰 囲気ガス中の水素濃度を適切に制御することができ、かつ H Nガス原単位の優れた高 水素濃度急冷帯を有する連続熱処理炉を提供することを目的とする。 発明の開示
本発明は、 帯状の材料を雰囲気ガス中で熱処理し、 その途上で帯状の材料を加熱し た後、水素含有ガス吹き付けにより急速冷却する連続熱処理炉の雰囲気制御方法にお いて、帯状の材料を加熱する炉帯および加熱後保持する炉帯の雰囲気ガス中の水素濃 P 9 度を 10%以下に制御することを特徴とする連続熱処理炉における雰囲気制御方法(第 1の発明) である。
また、 本発明は、 帯状の材料を雰囲気ガス中で熱処理しその途上で帯状の材料を加 熱した後水素含有ガス吹き付けにより急速冷却する連続熱処理炉における冷却方法 において、帯状の材料を加熱する炉帯および加熱後保持する炉帯の雰囲気ガス中の水 素濃度を 10%以下に制御し、 前記急速冷却を行う急冷帯内では、 材料の単位断面積 当たりの張力 T u(kgf/mm2)を材料の板厚 t (mm),板幅 W(mm)に応じて下記の条件(式 (1) 〜(3) のいずれかに該当する式) を満たす範囲に保持し、 材料に水素濃度 10%以 上の水素含有ガスを吹き付けることを特徴とする連続熱処理炉における冷却方法(第 2の発明) である。
(a) W< 1350mmの場合
1.88-0.18X t -0.00080 X W≤ T u ≤2.38-0.11Χ t—0.00084 XW
••••(i)
(b) W 1350mmかつ t 0.85mmの場合
0.73 + 0.38X t -0.00030 XW≤ T u ≤1.23 + 0.35X t -0.00028 XW
••••(2)
(c) W≥ 1350mmかつ t >0.85mmの場合
1.10-0.00033 XW≤ T u ≤ 1.54-0.00029 XW ·· ·· (3)
また、 本発明は、 帯状の材料を雰囲気ガス中で熱処理する順次配列された複数の炉 帯を有する連続熱処理炉において、これら炉帯のうち最初と最後を除き 1つが雰囲気 ガス吹き付けにより材料を急速冷却する急冷帯であり、かつ雰囲気ガスシール手段と して入口部に第 1のロールシール装置、 出口部に第 2のロールシール装置を有し、 第 1の口ールシール装置入側部と第 2の口ールシール装置出側部とが接続されたこと を特徴とする連続熱処理炉 (第 3の発明) である。
また、 本発明は、 帯状の材料を雰囲気ガス中で熱処理する順次配列された複数の炉 帯を有する連続熱処理炉において、これら炉帯のうち最初と最後を除き 1つが雰囲気 ガス吹き付けにより材料を急速冷却する急冷帯であり、かつ雰囲気ガスシール手段と して入口部に上流側から第 1、第 2の口ールシール装置で仕切られた口ールシール室 と出口部に第 3の口ールシール装置を有し、口一ルシール室と急冷帯内上流部とが接 続されたことを特徴とする連続熱処理炉 (第 4の発明) である。
また、 本発明は、 帯状の材料を雰囲気ガス中で熱処理する順次配列された複数の炉 帯を有する連続熱処理炉において、これら炉帯のうち最初と最後を除き 1つが雰囲気 ガス吹き付けにより材料を急速冷却する急冷帯であり、かつ雰囲気ガスシール手段と して入口部に上流側から第 1、第 2のロールシール装置で仕切られたロールシール室 と出口部に第 3の口ールシール装置を有し、第 1の口一ルシール装置入側部と第 3の 口ールシール装置出側部とが接続され、かつ口ールシール室と急冷帯内上流部とが接 続されたことを特徴とする連続熱処理炉 (第 5の発明) である。
また、 本発明は、 急冷帯の前後にブライ ドルロールを有することを特徴とする第 3 〜第 5のいずれかの発明 (第 6の発明) である。 図面の簡単な説明
図 1は、 第 5の発明に係る連続熱処理炉の一例を示す模式図である。
図 2は、 第 3の発明に係る連続熱処理炉の一例を示す模式図である。
図 3は、 第 4の発明に係る連続熱処理炉の一例を示す模式図である。
図 4は、 従来の連続熱処理炉の一例を示す模式図である。
図 5は、 従来炉および実施例 3での急冷帯前後にわたる雰囲気ガスの (a ) は圧力 分布, (b ) は水素濃度分布を示すグラフである。 図 6は、鋼帯表層部の窒化発生に及ぼす熱処理温度と雰囲気ガス中の水素濃度の影 響を示す説明図である。
図 7は、 急冷帯内での冷却ガスの風量密度 Q、水素濃度と熱伝達係数 αとの関係を 示すグラフである。
図 8は、 実施例 1についての炉圧 (a ) ·水素濃度 (b ) の経時変化を示すグラフ である。
図 9は、 比較例についての炉圧 (a ) ·水素濃度 (b ) の経時変化を示すグラフで ある。
ここで、 各図において、 符号は、 それぞれ、 S :材料 (帯状の材料., 鋼帯) , 1お よび 2 :連通管, 3 : 口一ルシール室, 4 : ロールシール装置, 4 A:第 1のロール シール装置, 4 B :第 2のロールシール装置, 4 C :第 3のロールシール装置, 6 : 急冷帯内最上流部, 8 :ブライ ドルロール, 10:急冷帯隣接炉帯 (加熱帯等) , 11 : 急冷帯, 12 :急冷帯隣接炉帯 (冷却帯等) , 13: ガスジェットチャンバ を表わす。 発明を実施するための最良の形態
第 1の発明
前述したように、 急冷帯の雰囲気ガスを高水素濃度ガスとした場合、急冷帯からの 高水素濃度ガスの流出によって、 隣接する炉内の水素濃度の上昇がみられる。 一方、 前記したように、 最近の研究により、 高温の再結晶段階にある鋼帯熱処理中の水素濃 度が高い場合に、鋼帯表層部に窒化による硬化現象が起こるという知見が得られた。 例えば図 6は、鋼帯表層部の窒化発生に及ぼす熱処理温度と雰囲気ガス中の水素濃度 の影響を示す説明図であり、 再結晶温度域にて水素濃度が 10%を超える条件で熱処 理した場合に鋼帯表層部に窒化が起こることがわかる。
ここで、 窒化の有無は鋼板表面の硬度上昇および鋼板極表面部の窒素量の増加 (ォ ージェ分光分析による) により判定した。
以上の知見より、急冷帯内の雰囲気ガスとして高水素濃度ガスを使用する場合には、 急冷帯に隣接する徐冷帯ならびに徐冷帯の上流に位置する均熱帯および加熱帯中の 水素濃度を 10%以下とする必要がある。
よって、 第 1の発明では、 帯状の材料を加熱する炉帯および加熱後保持する炉帯の 雰囲気ガス中の水素濃度を 10%以下に制御することと規定した。
第 2の発明
帯状の材料、 例えば鋼帯の連続熱処理炉では、 冷却帯の一部にガスジエツト冷却に より鋼帯を急速冷却する急冷帯が配置される。 第 2の発明では、 第 1の発明に加うる に、 急冷帯内で材料の単位断面積当たりの張力 T u (kg^mm2) を材料の板厚 t (mm), 板幅 W(mm)に応じて前記式 (1) 〜(3) のいずれか該当する式を満たす範囲に保持し、 かつ材料に水素濃度 10%以上の水素含有ガスを吹き付ける。 この理由を図 7を用い て説明する。
図 7は、 急冷帯内での冷却ガスの風量密度 Q、 水素濃度と熱伝達係数 αとの関係を 示すグラフであり、 αは Qおよび水素濃度にほぼ比例して増大する。 なお、 風量密度 Qは、鋼帯両面に吹き付ける風量を急冷帯内の鋼帯片面の面積で除したものである。 ここで、 急冷帯にて必要とされる αの値は材料 (この例では鋼板) の種類 (鋼種) や板厚により異なるが、 たとえば Β Η鋼板 (焼付塗装硬化性を付与した、 主に自動車 用鋼板等に用いられる鋼板)の場合は急冷帯にて 30°C/s以上の冷却速度が必要とされ、 これは板厚 l.Oram では α: 200kcal/ (m2 · h · °C) 以上、板厚 1.6mm では : 350kcal/ (m2 - h - °C) 以上に相当する。
このように、 板厚に応じた所定のひを確保する必要があるため、 水素濃度には一定 の下限を設けることが好ましく、また風量密度 Qも板厚に応じて増加させるのが好ま しいが、 一方で Qは板厚に応じた所定の量以下に管理する必要がある。 すなわち、冷却効率を考えると冷却ガスジエツトノズルと帯状材の距離を短くする ことが有利であるが、 風量密度 Qを増加させると、鋼帯がばたついて冷却ガスジエツ トノズルに接触し、 スリ疵が発生しやすくなる。 このスリ疵が多発する Qの値は、 板 厚および帯状材の張力などに依存し、 板厚が小さいほど低い値となる。
また、 張力との関係においては、 張力が低いほどスリ疵が多発する Qの限界が低く なる。 図 7に、 T u = 1.88-0.18 X t—0.00080 X W (W< 1350mm) および T u = 1.10-0.00033 X W (W≥ 1350mm) の場合 (A) と、 T u = 1.78— 0.18 X t—0.00080 X W (Wく 1350mm) および T u = 1.00-0.00033 X W (W≥ 1350mm) の場合 (B ) とについて、 板厚 1.0mm と板厚 1.6mm における Qのスリ疵多発限界を示す。 (A) の場合、 スリ疵多発限界の Qは板厚が 1.0mm で 150m3/(m2 · min)、 板厚が 1.6mm で 400m3/(m2 ' min)となるが、 いずれも冷却ガスの水素濃度が 10%以上の場合に、 目標 のひを達成することができる。 他方、 T u がこれより低い場合 (B ) は、 水素濃度 をかなり増加させなければ、 ばたつきなく して目標の αを達成することができない。 なお、 T u が前記式 (1) 〜(3) のいずれか該当する式の右辺値より大きいと、 急冷 帯内のハースロールに鋼帯が巻き付く際にバックリングゃ塑性変形が発生し易くな り品質上問題がある。 また、 急冷帯の張力と徐冷帯もしくは均熱帯の張力との差が必 要以上に大きくなり、張力制御用の例えばブライ ドルロールのモータパワーが過剰に 必要となるなど、 経済的に好ましくない影響が生じる。
よって、 第 2の発明では、 急冷帯における水素濃度を限定し、 かつ材料の張力を前 記式 (1) 〜(3) のいずれか該当する式の範囲に保持するという限定を設けた。 なお、 板厚の寄与につき前記式 (1) 〜(3) において係数の符号等が異なるのは、 薄物ではバ ックリング防止を重視した実験式、厚物では張力過多による板の塑性変形の防止およ びつなぎ材との張力段差低減を重視した実験式によりそれぞれ解析を行うことが好 ましいことによる。 第 1、 第 2の発明の前記規定を満たすには、 水素含有ガス (第 2の発明においては 水素濃度 10%以上の高水素濃度ガス) 吹き付けを行う急冷帯に隣接する徐冷帯なら びに徐冷帯の上流に位置する均熱帯および加熱帯中の水素濃度が 10%を超えない範 囲で、 急冷帯内の水素含有ガスをシールし得るシール装置が必要であり、 そのような 高性能のシール装置は第 3〜第 5の発明により実現する。
第 3の発明
図 2は、 第 3の発明に係る連続熱処理炉の一例を示す模式図である。図示のように、 この連続熱処理炉では、複数の炉帯のうち最初と最後を除き 1つが雰囲気ガス吹き付 けにより材料を急速冷却する急冷帯 11 であり、 かつ雰囲気ガスシール手段として、 口ールシール室の入口部に第 1の口一ルシール装置 4 A、出口部に第 2の口ーノレシ一 ル装置 4 Bを有し、第 1のロールシール装置 4 A入側部と第 2のロールシール装置 4 B出側部とが連通管 1により接続されている。かかる接続手段は本例の連通管に限定 されず、 例えば被接続部分の炉殻同士を連結して構成してもよい。 なお、 図 2におい て、 図 4と同一または相当部分には同じ符号を付し説明を省略する。
この構成により、急冷帯を挟んだ上流および下流の炉の炉圧がほぼ等しくなるので、 例えば徐冷帯側で炉圧変動が発生してもこの変動は上流側の雰囲気のやりとりによ り緩和され、 かつ、 炉圧調整は急冷帯とそれ以外の炉との 2者のバランスを取るだけ で済む。 無論、 随伴流とのバランス上、 入側では急冷帯への微量のガス流入、 出側で は急冷帯からの微量のガス漏洩を許容することとなるが、 炉圧分布 (炉圧バランスの 悪化) により発生し得るガス流に比べればその量はずつと少なくて済む。 また窒化の 懸念のある急冷帯上流側では急冷帯へ流入する方向へのガス流を有するので、窒化防 止上も有効である。
なお連通管 1内の雰囲気圧は急冷帯入口側と出口側の炉帯の平均圧となるので、 こ こに炉圧計 (図示せず) を設けて急冷帯との間の炉圧管理を行うと、 なお好適である。 この構成により、 加熱帯等 10と冷却帯等 12の炉圧差がなくなり、 この炉圧差に起 因していた急冷帯 11と急冷帯隣接炉帯 10, 12との間の雰囲気ガス混合が抑制される。 第 4の発明
図 3は、 第 4の発明に係る連続熱処理炉の一例を示す模式図である。 図示のように、 この連続熱処理炉では、複数の炉帯のうち最初と最後を除き 1つが雰囲気ガス吹き付 けにより材料を急速冷却する急冷帯 11 であり、 かつ雰囲気ガスシール手段として入 口部に上流側から第 1、 第 2のロールシール装置 4 A、 4 Bで仕切られたロールシー ル室 3と出口部に第 3のロールシール装置 4 Cを有し、 ロールシール室 3と急冷帯内 最上流部 6とが連通管 2により接続されている。かかる接続手段は本例の連通管に限 定されず、 例えば被接続部分の炉殻同士を連結して構成してもよい。 なお、 図 3にお いて、 図 4と同一または相当部分には同じ符号を付し説明を省略する。
この構成により、 ガスジェットチャンバ 13配設部でのガス噴射圧の変動によって 生じていた急冷帯 11入口内外での炉圧差がなくなり、 かかる炉圧差に起因していた 急冷帯 11 と加熱帯等 10との間の雰囲気ガス混合が抑制される。
第 5の発明
図 1は、 第 5の発明に係る連続熱処理炉の一例を示す模式図である。 図示のように、 この連続熱処理炉では、複数の炉帯のうち最初と最後を除き 1つが雰囲気ガス吹き付 けにより材料を急速冷却する急冷帯 11 であり、 かつ雰囲気ガスシール手段として入 口部に上流側から第 1、 第 2のロールシール装置 4 A、 4 Bで仕切られたロールシー ル室 3と出口部に第 3の口一ルシール装置 4 Cを有し、第 1の口ールシール装置 4 A 入側部と第 3の口ールシール装置 4 C出側部とが連通管 1により接続され、かつ口一 ルシール室 3と急冷帯内最上流部 6とが連通管 2により接続されている。かかる接続 手段は本例の連通管に限定されず、例えば被接続部分の炉殻同士を連結して構成して もよい。 なお、 図 1において、 図 4と同一または相当部分には同じ符号を付し説明を 省略する。
この構成により、 加熱帯等 10と冷却帯等 12の炉圧差がなくなり; この炉圧差に起 因していた急冷帯 11 と急冷帯隣接炉帯 10, 12との間の雰囲気ガス混合が抑制される。 同時に、 ガスジエツトチャンバ 13配設部でのガス噴射圧の変動によって生じていた 急冷帯 11入口内外での炉圧差がなくなり、かかる炉圧差に起因していた急冷帯 11と 加熱帯等 10との間の雰囲気ガス混合が抑制される。
また、 上記説明から自明の如く、 第 3〜第 5の発明は、 従来の連続熱処理炉におい て、本発明で指定される炉内ニ地点間に通板経路以外の通気接続経路を設けたもので あるから、 ごく簡単な設備改造を行うだけで実施可能である。
第 6の発明
前記のように、 第 2の発明で急冷帯での張力を式 (1) 〜(3) のいずれかの範囲に保 持することとした。 ところが、加熱帯等では鋼帯の温度上昇とともに鋼帯の降伏応力 が低下するため、張力を過大にすると加熱帯等内のロールに鋼帯が巻き付く際に座屈 する現象 (ヒートバックノレと称す) がみられる。 実操業では、 鋼帯の板厚が比較的厚 い場合には加熱帯等も含めた連続熱処理炉全体にわたり張力を高く して通板するこ とも可能であるが、 比較的薄い板厚の鋼板を通板する際には、 加熱帯等ではヒートバ ックル防止のために張力を低め、急冷帯ではばたつき抑制のために張力を高めて通板 しなければならない。 このように加熱帯等と急冷帯とで張力を違える必要があり、 そ のための好適手段として第 6の発明では第 3〜第 5の発明のいずれかにおいて、急冷 帯の前後にブライドルロールを有することとした。 これにより、加熱帯等での張力は 低く保ちながら、 急冷帯での張力を式 (1) 〜(3) のいずれかの範囲に保持することが できる。
なお、 本発明において、 各ロールシール装置のシールロールと鋼帯とのギャップは 5 mm以下とするのが好ましい。 また、 シールロールは、 熱膨張による変形を抑制す るために水冷型のものや、 またロールの素材に熱膨張係数の小さい素材、例えばセラ ミックを用いたものが好ましい。 実施例
冷間圧延鋼帯の連続熱処理炉を対象に、 図 2、 図 3、 図 1に示した形態で第 3、 第 4、 第 5の発明を実施して実施例 1、 実施例 2、 実施例 3とした。 また、 図 2、 図 3、 図 1からわかるように、 実施例 1、 実施例 2、 実施例 3は第 6の発明に則り、 急冷帯 前後にブライ ドルロール 8を設置して急冷帯張力を加熱帯張力と分離して制御でき るような設備構成としている。
なお、 実施例 4として、 第 5の発明 (図 1に示す、 実施例 3と同じ設備) において 第 6の発明の要件を満たさない (ブライドルロールがない) 状態を想定し、 急冷帯張 力を前記式 (1) 〜(3) のいずれか該当する式の範囲を下回る (第 2の発明の要件を満 たさない) 加熱帯張力と同じとした例を示す。
上記の実施例 1、 実施例 2、 実施例 3および実施例 4について、 急冷帯の高水素濃 度雰西気ガス (水素濃度約 30%) 使用量、 鋼帯の窒化発生頻度を調査した。 また、 図 4に示した従来の連続熱処理炉で張力について前記式 (1) 〜(3) のいずれか該当す る式を満たして操業した場合の同調查実績 (これを比較例とする) を比較例とした。 なお、図 4では第 3〜第 5の発明範囲外でブライドルロールを備えた従来炉の例を示 した。 また、 実施例 3についてはさらに、 板厚 0.8mm 、 板幅 1250mmの材料をライ ン速度 400mpmで通板中に急冷帯およびその前後の地点 P 1 〜P 9 (図 1参照:図 4の測定地点と同じ位置) における静圧と雰囲気ガス中水素濃度を測定した。 ここに、 連続熱処理炉は、 急冷帯の前段の炉帯が徐冷帯、 後段の炉帯が過時効帯であり、 雰囲 気ガスが H Nガスである。
実施例 3における前記静圧測定結果および雰囲気ガス中水素濃度測定結果を前掲 /JP
の図 5 ( a ) および図 5 ( b ) にそれぞれ重ね合わせて示し、 実施例 1〜3、 比較例 の雰囲気ガス使用量と窒化発生頻度を表 1に示す。なお表 1の雰囲気ガス使用量と窒 化発生頻度は比較例を 100 とした相対指数で示した。
図 5、 表 1より、 本発明によれば急冷帯と急冷帯隣接炉帯との間での雰囲気ガス混 合が有効に抑制され、 雰囲気ガス使用量が削減でき、 窒化も防止できることが明らか である。
また、 急冷帯 (R C ) および徐冷帯 (S C ) 、 過時効帯 (O A) の炉圧 ·水素濃度 の経時変化の例を実施例 1 (図 8 ) および比較例 (図 9 ) について示すが、 徐冷帯に おいて炉圧の変動があっても、本発明においては急冷帯との圧力バランスが保たれ、 急冷帯とその前後帯との間のガス流による水素濃度変化が生じていないことが分か る。
さらに、 表 1に併記した急冷帯張力 (制御値) 、 および急冷帯内での鋼帯のばたつ き振幅 (調査値) が示すように、 実施例 1、 実施例 2、 実施例 3では、 急冷帯前後の ブライドルロールにより急冷帯張力を加熱帯張力と切り離して前記式 (I) の範囲に制 御したので、加熱帯にてヒ一トバックルを発生させることなく急冷帯内の鋼帯のばた つき振幅を抑制することができた。 一方、 実施例 4では、 張力が前記式 (1) 〜(3) の いずれか該当する式の範囲を下回ったため、急冷帯内では冷却ガス吹き付けによる鋼 帯のばたつき振幅が大きくなり、鋼帯が冷却ガスジェットノズル先端に接触してスリ 疵が発生するに至った。 なお、鋼帯のばたつきの影響で実施例 3と比較して αにも若 千の低下がみられた。実施例 4においては風量密度 Qを減少させればばたつきは収ま るが、 その場合は αの値を 180kcal/ (m2 · h · °C) 以上 (板厚 0.8mm にて 30°C/sの 冷却速度を確保できる値) もしくは 350kcal/ (m2 - h · °C) 以上 (板厚 1.6mm にて 30°C/sの冷却速度を確保できる値) に確保することが困難となる。
一般に、 鋼帯のばたつき振幅は、 通板速度が高速になるほど、 また、 冷却ガス風量 が増大するほど大きくなるのであるが、 本発明によれば、 第 6の発明に従い急冷帯前 後にブライドルロールを設置し、第 2の発明に則って急冷帯張力を制御することで、 かかるばたつき振幅を小さくすることができる。 そして、 その結果、 鋼帯と冷却ガス ジエツトノズル先端との間の距離を短縮できるので、 同一冷却ガス風量において、 よ り高い冷却効率を実現することができる。 産業上の利用可能性
かく して本発明によれば、 ガスジェット冷却方式の急冷帯において、雰囲気ガスの 水素濃度を 10%以上とした高効率ガスジエツ ト冷却を実施するにあたり、 急冷帯と 急冷帯隣接炉帯 (加熱帯等及び冷却帯等) との間の雰囲気ガス混合を簡単な手段にて 防止できる連続熱処理炉が実現し、特に鋼帯の連続熱処理では雰囲気ガス原単位を大 幅に改善でき、 さらに高水素濃度雰囲気ガスの影響による加熱帯における窒化の心配 もなくなるという優れた効果を奏する。
表 1 (その 1)
Figure imgf000018_0001
LS:通板速度, mpm : 分
(その 2)
Figure imgf000019_0001
LS:通板速度, mpm : mZ分

Claims

請求の範囲
1 . 帯状の材料を雰囲気ガス中で熱処理し、 その途上で帯状の材料を加熱した後、 水素含有ガス吹き付けにより急速冷却する連続熱処理炉の雰囲気制御方法において、 帯状の材料を加熱する炉帯および加熱後保持する炉帯の雰囲気ガス中の水素濃度を
10%以下に制御することを特徴とする連続熱処理炉における雰囲気制御方法。
2 . 帯状の材料を雰囲気ガス中で熱処理し、 その途上で帯状の材料を加熱した後、 水素含有ガス吹き付けにより急速冷却する連続熱処理炉における冷却方法において、 帯状の材料を加熱する炉帯および加熱後保持する炉帯の雰囲気ガス中の水素濃度を 10%以下に制御し、 前記急速冷却を行う急冷帯内では、材料の単位断面積当たりの張 力 T u(kgf/mm2)を材料の板厚 t (mm)、板幅 W(mm)に応じて下記の条件を満たす範囲に 保持し、 材料に水素濃度 10%以上の水素含有ガスを吹き付けることを特徴とする連 続熱処理炉における冷却方法。
(a) W< 1350mmの場合
1.88-0.18 X t -0.00080 X W≤ T u ≤2.38-0.11 X t -0.00084 X W
(b) W≥ 1350mmかつ t 0.85mmの場合
0.73 + 0.38 X t -0.00030 X W≤ T u ≤1.23 + 0.35 X t—0.00028 X W
(c) W≥ 1350mmかつ t〉0.85mmの場合
1.10-0.00033 X W≤ T u ≤ 1.54-0.00029 X W
3 . 帯状の材料を雰囲気ガス中で熱処理する順次配列された複数の炉帯を有する 連続熱処理炉において、 これら炉帯のうち最初と最後を除き 1つが雰囲気ガス吹き付 けにより材料を急速冷却する急冷帯であり、かつ雰囲気ガスシール手段として入口部 に第 1の口一ルシール装置、 出口部に第 2の口一ルシール装置を有し、 第 1の口一ル シール装置入側部と第 2の口一ルシ一ル装置出側部とが接続されたことを特徴とす る連続熱処理炉。
4 . 帯状の材料を雰囲気ガス中で熱処理する順次配列された複数の炉帯を有する 連続熱処理炉において、これら炉帯のうち最初と最後を除き 1つが雰囲気ガス吹き付 けにより材料を急速冷却する急冷帯であり、かつ雰囲気ガスシール手段として入口部 に上流側から第 1、第 2のロールシール装置で仕切られたロールシール室と出口部に 第 3の口一ルシール装置を有し、 口ールシール室と急冷帯内上流部とが接続されたこ とを特徴とする連続熱処理炉。
5 . 特許請求の範囲第 4項の連続熱処理炉において、 更に、 第 1のロールシール 装置入側部と第 3の口一ルシール装置出側部とが接続されたことを特徴とする連続 熱処理炉。
6 . 急冷帯の前後にブライ ドルロールを有することを特徴とする特許請求の範囲 第 3項から第 5項のいずれかに記載の連続熱処理炉。
PCT/JP1999/001498 1998-03-26 1999-03-25 Four de traitement thermique en continu, et procede de regulation du gaz atmospherique et procede de refroidissement dans un four de traitement thermique en continu WO1999050464A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002290949A CA2290949C (en) 1998-03-26 1999-03-25 Continuous heat treating furnace and atmosphere control method and cooling method in continuous heat treating furnace
EP99910690A EP1069193B1 (en) 1998-03-26 1999-03-25 Method for controlling the atmosphere and the tension in a furnace for continuously heat treating metal band
BR9904910-4A BR9904910A (pt) 1998-03-26 1999-03-25 Forno de tratamento térmico contìnuo e processo de controle da atmosfera e processo de resfriamento no forno
KR1019997010847A KR100541003B1 (ko) 1998-03-26 1999-03-25 연속 열처리로 및 연속 열처리로의 냉각 방법
DE69918821T DE69918821T2 (de) 1998-03-26 1999-03-25 Verfahren zum kontrollieren der atmosphäre und der zugspannung in einem ofen zur kontinuierlichen wärmebehandlung von metallband
US09/424,546 US6190164B1 (en) 1998-03-26 1999-03-25 Continuous heat treating furnace and atmosphere control method and cooling method in continuous heat treating furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/100536 1998-03-26
JP10053698 1998-03-26

Publications (1)

Publication Number Publication Date
WO1999050464A1 true WO1999050464A1 (fr) 1999-10-07

Family

ID=14276685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001498 WO1999050464A1 (fr) 1998-03-26 1999-03-25 Four de traitement thermique en continu, et procede de regulation du gaz atmospherique et procede de refroidissement dans un four de traitement thermique en continu

Country Status (8)

Country Link
US (1) US6190164B1 (ja)
EP (2) EP1408126B1 (ja)
KR (1) KR100541003B1 (ja)
CN (1) CN1094521C (ja)
BR (1) BR9904910A (ja)
CA (1) CA2290949C (ja)
DE (2) DE69918821T2 (ja)
WO (1) WO1999050464A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2809418A1 (fr) * 2000-05-25 2001-11-30 Stein Heurtey Procede de mise en securisation d'une enceinte de traitement thermique fonctionnant sous atmosphere controlee

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6533996B2 (en) * 2001-02-02 2003-03-18 The Boc Group, Inc. Method and apparatus for metal processing
BE1014418A3 (fr) * 2001-10-05 2003-10-07 Cockerill Rech & Dev Procede et dispositif de refroidissement accelere en recuit continu.
BE1014880A4 (fr) * 2002-06-14 2004-05-04 Ct Rech Metallurgiques Asbl Gestion des flux de gaz dans une section reactive.
BE1015109A3 (fr) * 2002-09-13 2004-10-05 Drever Internat S A Procede de traitemant thermique de bande metallique.
DE102005012296A1 (de) 2005-03-17 2006-09-21 Sms Demag Ag Verfahren und Vorrichtung zum Entzundern eines Metallbandes
FR2903121B1 (fr) * 2006-06-30 2008-09-19 D M S Sa Installation de traitement thermique en continu, destine au recuit brillant d'une bande d'acier inoxydable
JP5130733B2 (ja) * 2007-02-14 2013-01-30 Jfeスチール株式会社 連続焼鈍設備
KR100796767B1 (ko) * 2007-02-28 2008-01-22 최병길 분위기가스 소모 최소화 및 이산화탄소 가스 발생 최소화를위한 열처리장치
DE102007057855B3 (de) * 2007-11-29 2008-10-30 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines Formbauteils mit mindestens zwei Gefügebereichen unterschiedlicher Duktilität
US9290823B2 (en) * 2010-02-23 2016-03-22 Air Products And Chemicals, Inc. Method of metal processing using cryogenic cooling
CN103014309B (zh) * 2012-12-05 2014-08-06 中冶南方(武汉)威仕工业炉有限公司 用于冷轧带钢连续退火炉的冷却送风装置
WO2014208003A1 (ja) * 2013-06-26 2014-12-31 Jfeスチール株式会社 鋼板の溶融亜鉛めっきと連続焼鈍の兼用処理設備
EP2915887B1 (en) * 2014-03-03 2019-07-24 Acciai Speciali Terni S.p.A. Apparatus for the treatment of a metal strip in a vertical annealing plant
CA2972025A1 (en) 2015-01-09 2016-07-14 Illinois Tool Works Inc. Inline resistive heating system and method for thermal treatment of continuous conductive products
US10486332B2 (en) 2015-06-29 2019-11-26 Corning Incorporated Manufacturing system, process, article, and furnace
BR112017028526B1 (pt) 2015-06-29 2023-12-12 Corning Incorporated Linha de fabricação, processo e artigo sinterizado
KR101717961B1 (ko) * 2016-03-08 2017-03-20 (주)나우이엔씨 강판의 연속 열처리로용 급속 냉각 시스템 및 이의 압력 제어 방법
JP6756295B2 (ja) * 2017-04-13 2020-09-16 Jfeスチール株式会社 シール装置
US11236427B2 (en) 2017-12-06 2022-02-01 Polyvision Corporation Systems and methods for in-line thermal flattening and enameling of steel sheets

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551969B2 (ja) * 1972-10-25 1980-01-17
JPS59133330A (ja) * 1983-01-19 1984-07-31 Nippon Steel Corp 鋼帯連続熱処理設備におけるシ−ル方法および装置
JPH06346156A (ja) * 1993-06-07 1994-12-20 Nippon Steel Corp 鋼板のガスジェット冷却方法
JPH07278679A (ja) * 1994-04-06 1995-10-24 Nippon Steel Corp ステンレス鋼板の連続焼鈍装置
JPH09125155A (ja) * 1995-11-01 1997-05-13 Nippon Steel Corp 連続熱処理炉の通板鋼帯蛇行防止方法
JPH09235626A (ja) * 1995-12-26 1997-09-09 Nippon Steel Corp 鋼帯の連続焼鈍における一次冷却方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1428993A (en) * 1973-07-03 1976-03-24 Electricity Council Continuous heat treatment of wire or rod
US4133634A (en) * 1976-07-05 1979-01-09 Heurtey Metallurgie Steel strip preheating method
JPS551969A (en) 1978-06-21 1980-01-09 Kubota Ltd Inserting method of steel tube into roll
EP0181830B1 (en) * 1984-11-08 1991-06-12 Mitsubishi Jukogyo Kabushiki Kaisha Method and apparatus for heating a strip of metallic material in a continuous annealing furnace
FR2583064B1 (fr) * 1985-06-05 1987-08-14 Air Liquide Procede de traitement thermique, hotte pour la mise en oeuvre de ce procede et son utilisation dans les fours de traitement thermique
DE3733884A1 (de) * 1987-10-07 1989-04-27 Linde Ag Verfahren zum gluehen von metallteilen in durchlaufoefen
JP2726242B2 (ja) * 1994-06-07 1998-03-11 日新製鋼株式会社 雰囲気設備の入口または出口のシール装置
FR2746112B1 (fr) * 1996-03-13 1998-06-05 Procede de traitement thermique en continu de bandes metalliques dans des atmospheres de nature differente

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551969B2 (ja) * 1972-10-25 1980-01-17
JPS59133330A (ja) * 1983-01-19 1984-07-31 Nippon Steel Corp 鋼帯連続熱処理設備におけるシ−ル方法および装置
JPH06346156A (ja) * 1993-06-07 1994-12-20 Nippon Steel Corp 鋼板のガスジェット冷却方法
JPH07278679A (ja) * 1994-04-06 1995-10-24 Nippon Steel Corp ステンレス鋼板の連続焼鈍装置
JPH09125155A (ja) * 1995-11-01 1997-05-13 Nippon Steel Corp 連続熱処理炉の通板鋼帯蛇行防止方法
JPH09235626A (ja) * 1995-12-26 1997-09-09 Nippon Steel Corp 鋼帯の連続焼鈍における一次冷却方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1069193A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2809418A1 (fr) * 2000-05-25 2001-11-30 Stein Heurtey Procede de mise en securisation d'une enceinte de traitement thermique fonctionnant sous atmosphere controlee
EP1160342A1 (fr) * 2000-05-25 2001-12-05 Stein Heurtey Procédé de mise en sécurisation d'une enceinte de traitement thermique fonctionnant sous atmosphère contrôlée

Also Published As

Publication number Publication date
CN1094521C (zh) 2002-11-20
EP1069193A1 (en) 2001-01-17
CA2290949A1 (en) 1999-10-07
EP1408126B1 (en) 2006-03-15
EP1069193B1 (en) 2004-07-21
KR20010012881A (ko) 2001-02-26
KR100541003B1 (ko) 2006-01-10
DE69918821D1 (de) 2004-08-26
DE69930330D1 (de) 2006-05-11
CA2290949C (en) 2009-01-06
DE69930330T2 (de) 2006-08-24
EP1408126A3 (en) 2004-07-21
CN1286729A (zh) 2001-03-07
DE69918821T2 (de) 2005-10-13
EP1069193A4 (en) 2003-01-02
EP1408126A2 (en) 2004-04-14
US6190164B1 (en) 2001-02-20
BR9904910A (pt) 2000-06-20

Similar Documents

Publication Publication Date Title
WO1999050464A1 (fr) Four de traitement thermique en continu, et procede de regulation du gaz atmospherique et procede de refroidissement dans un four de traitement thermique en continu
US5885382A (en) Primary cooling method in continuously annealing steel strip
WO1996032507A1 (fr) Equipement pour fabriquer des bandes en acier inoxydable
JP2008196015A (ja) 連続焼鈍設備
CA2287048C (en) Sealing apparatus in continuous heat-treatment furnace and sealing method
EP2495343A1 (en) Gas jet cooling device for continuous annealing furnace
CA2438122C (en) Rapid cooling apparatus for steel strip in continuous annealing facility
JP3572983B2 (ja) 連続熱処理炉ならびに連続熱処理炉における冷却方法
KR20020001618A (ko) 연속 풀림로의 입구측 또는 출구측에 배치되는 롤과, 이롤을 포함하는 급랭 구역 유닛
JP4286544B2 (ja) 連続式熱処理設備における鋼帯の強制対流式冷却方法及び装置
JP2006144104A (ja) 溶融亜鉛メッキ用鋼板の連続焼鈍装置及び連続焼鈍方法
EP0803583B1 (en) Primary cooling method in continuously annealing steel strips
JP4490789B2 (ja) 鋼板の連続焼鈍方法
JP2807134B2 (ja) ガスジェットチャンバのシール装置
JP2820359B2 (ja) 連続焼鈍炉の炉内雰囲気調整方法
JP2000192151A (ja) 連続熱処理炉のシ―ルロ―ル装置及びシ―ル方法
JPH04202650A (ja) 連続焼鈍炉
CA2607124A1 (en) Continuous heat treating furnace and atmosphere control method and cooling method in continuous heat treating furnace
JPH1036920A (ja) 鋼帯の連続焼鈍における一次冷却方法
JPH10265856A (ja) 金属帯の連続冷却方法
JP2009052112A (ja) 連続焼鈍ラインにおける金属帯の搬送速度制御方法およびそれを用いた金属帯の製造方法
JPS58120740A (ja) 浮揚装置を備えた横型連続焼鈍炉
JP2002285244A (ja) 極低炭素冷延鋼板の連続焼鈍方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99800398.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2290949

Country of ref document: CA

Ref document number: 2290949

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019997010847

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09424546

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999910690

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999910690

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997010847

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999910690

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019997010847

Country of ref document: KR