WO1999048843A1 - Gasgeneratortreibstoffe - Google Patents

Gasgeneratortreibstoffe Download PDF

Info

Publication number
WO1999048843A1
WO1999048843A1 PCT/DE1999/000782 DE9900782W WO9948843A1 WO 1999048843 A1 WO1999048843 A1 WO 1999048843A1 DE 9900782 W DE9900782 W DE 9900782W WO 9948843 A1 WO9948843 A1 WO 9948843A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas generator
component
weight
fuel according
generator fuel
Prior art date
Application number
PCT/DE1999/000782
Other languages
English (en)
French (fr)
Inventor
Eduard Gast
Bernhard Schmid
Peter Semmler
Original Assignee
Nigu Chemie Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nigu Chemie Gmbh filed Critical Nigu Chemie Gmbh
Priority to KR1020007010226A priority Critical patent/KR20010041919A/ko
Priority to DE59913910T priority patent/DE59913910D1/de
Priority to JP2000537831A priority patent/JP2002507542A/ja
Priority to EP99919100A priority patent/EP1064242B1/de
Priority to AU36999/99A priority patent/AU3699999A/en
Publication of WO1999048843A1 publication Critical patent/WO1999048843A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B31/00Compositions containing an inorganic nitrogen-oxygen salt

Definitions

  • the invention relates to solid gas generator fuels (gas-generating mixtures), mainly for gas generator propellants for airbags and belt tensioners based on nitrogen-rich and low-carbon fuels, the solid gas generator fuels additionally containing a high-melting, essentially chemically inert slag trap in highly dispersed form, which acts as an internal filter acts and largely prevents the formation and escape of dust-like particles from the gas generator housing.
  • solid gas generator fuels gas-generating mixtures
  • the solid gas generator fuels additionally containing a high-melting, essentially chemically inert slag trap in highly dispersed form, which acts as an internal filter acts and largely prevents the formation and escape of dust-like particles from the gas generator housing.
  • the invention thus relates to a method for trapping the liquid or solid combustion products or dust-like slag parts within the gas generator propellant immediately as they arise, so that one can manage with a simply structured filter package in the gas generator housing.
  • the invention further relates to the use of catalysts based on platinum metals (Ru, Os, Rh, Ir, Pd, Pt) or metal alloys of platinum metals or copper on the slag catchers as carriers in solid gas generator fuels, in particular the use in solid gas generator propellants for airbags.
  • platinum metals Ru, Os, Rh, Ir, Pd, Pt
  • metal alloys of platinum metals or copper on the slag catchers as carriers in solid gas generator fuels, in particular the use in solid gas generator propellants for airbags.
  • An airbag essentially consists of a gas generator housing, which is filled with the gas generator drive unit, usually in tablet form, and an initial igniter (squib) for igniting the gas generator drive unit, and a gas bag.
  • squib initial igniter
  • Suitable igniters are described, for example, in US Pat. No. 4,931,111.
  • the initially small-folded gas bag is filled after the initial ignition with the gases generated when the gas generator propellant burns up and reaches its full volume in a period of about 10-50 ms.
  • Escaping hot sparks, melts or solids from the gas generator into the gas bag must be largely prevented, since it could lead to the gas bag being destroyed or injuring vehicle occupants. This is achieved by binding and filtering the slag that is produced when the gas generator propellant is burned.
  • DE-A-44 35 790 discloses gas generator fuels based on guanidine compounds on suitable carriers, which essentially have improved combustion behavior and improved slag formation.
  • DE-A-44 35 790 gives no information on the use of high-melting, essentially inert slag catchers in highly dispersed form or of catalysts in gas generator propellants.
  • the gas-generating mixture described in EP-B-0 482 852 contains a) a fuel selected from aminotetrazole, tetrazole, bitetrazole and metal salts of these compounds and triazole compounds and metal salts of triazole compounds; b) an oxygen-containing oxidation compound selected from alkali metal, alkaline earth metal, lanthanide and ammonium nitrates and perchlorates and alkali metal and alkaline earth metal chlorates and peroxides; and either c) a high temperature slag formation material selected from alkaline earth metal oxides, hydroxides, carbonates, oxalates, peroxides, nitrates, chlorates and perchlorates and alkaline earth metal salts of tetrazoles, bitetrazoles and triazoles, and d) a low temperature
  • nitrates, perchlorates and chlorates and alkali metal salts of tetrazoles, bitetrazoles and triazoles or e) a high temperature slag formation material selected from transition metal oxides, hydroxides, carbonates, oxalates, peroxides, nitrates, chlorates and perchlorates; and f) a low temperature slag forming material which is silicon dioxide; wherein the amount of d) or f) is sufficient to result in the formation of a coherent mass or slag, but is not so high that a liquid with low viscosity is formed, it being understood that a single material for more than one of the Categories can serve.
  • the main advantage of such a gas generator propellant lies in the favorable formation of a slag which can easily be filtered off from the gaseous combustion products formed. Another advantage is the high gas yield.
  • Airbags described in which a primary gas mixture is initially created by the ignition of a gas generator propellant, which contains at least one tetrazole or triazole compound as fuel, and this primary mixture is diluted by mixing with ambient air in such a way that the content of toxic gaseous combustion products from the primary gas mixture is reduced to a toxicologically acceptable level.
  • DE-C-44 01 213 describes gas-generating mixtures of a fuel, an oxidizer, a "catalyst” and a coolant, characterized in that the oxidizer Cu (NO 3 ) 2 -3Cu (OH) 2 and the catalyst a metal oxide or a metal oxide mixture or a metal mixed oxide is known.
  • DE-C-44 01 214 also discloses gas-generating mixtures of similar compositions in which the catalyst consists of a metal or a metal alloy, preferably a pyrophoric metal or a pyrophoric metal alloy on a support.
  • the carrier is a silicate, preferably a layered or framework silicate. Ag has proven particularly useful as a metal.
  • the known fuels used include triaminoguanidine nitrate (TAGN), nitroguanidine (NIGU or NQ), 3-nitro-l, 2,3-triazol-5-one and especially diguanidinium-5,5'-azotetrazolate (GZT).
  • the main advantage of the gas-generating mixtures described in the two above-mentioned German patents is said to be the lowering of the combustion temperature and the increase in the rate of combustion.
  • the gas-generating mixtures described in DE-C-44 01 213 and DE-C-44 01 214 do not contain any low- or high-melting slag formers or slag scavengers according to the invention; rather, it claims that there is no need for slag formers. Contrary to this claim, the inventors of the present invention have found that the use of low-melting and high-melting slag formers, in particular the slag trap according to the invention, brings about a significant reduction in toxic gaseous combustion products.
  • Part of the high-melting slag catcher according to the invention can act as a carrier for a platinum metal or for a metal alloy made of platinum metals and thus as a catalyst component.
  • catalyst is used in a broader sense and represents an active component of the reaction which can itself be implemented and has a reaction-directing and / or reaction-accelerating effect.
  • the definition of the catalyst also means that it is added to the reaction mixture in only a very low concentration.
  • the proportion of "catalyst" in the gas-generating mixture is up to 30% by mass and is therefore an essential, also proportionate, component of the gas-generating mixture.
  • the present invention is based on the object of providing improved gas generator fuels, in particular for airbags, the combustion behavior of which can be set in a targeted manner and which in particular the formation of 6
  • the gas generator propellants made from the gas generator fuels should be thermally stable, easy to ignite, quick - even at low temperature - to be flammable and storable and ensure a high gas yield.
  • these gas generator propellants should make it possible to downsize, reduce the number of components or simplify the gas generator housing and thus reduce their weight in comparison to known generators.
  • a gas generator fuel comprising
  • GDCA Guanidinium dicyanamide
  • AGB aminoguanidinium bicarbonate
  • a inoguanidinium nitrate AGN
  • triaminoguanidinium nitrate TAGN
  • NIGU nitroguanidine
  • DCD dicyandiamide
  • ADCA azodicarbonamide
  • HTZ tetrazole
  • ATZ 5-aminotetrazole
  • NTO NTO
  • At least one slag former selected from alkali and alkaline earth metal carbonates and oxides, silicates, aluminates and aluminum silicates, iron (III) oxide and silicon nitride (Si 3 N 4 ), which burns nitrogen (N 2 ) and silicon dioxide (SiO 2 ) for further reaction and 7
  • Preferred fuels are nitroguanidine (NIGU), 5-aminotetrazole (ATZ), dicyandiamide (DCD), dicyanamide, their salts, in particular sodium and calcium dicyanamide and guanidinium nitrate, and mixtures thereof.
  • NIGU nitroguanidine
  • ATZ 5-aminotetrazole
  • DCD dicyandiamide
  • dicyanamide their salts, in particular sodium and calcium dicyanamide and guanidinium nitrate, and mixtures thereof.
  • These are practically non-toxic, not hygroscopic, not very soluble in water, thermally stable, they burn at low temperatures and are not sensitive to impact and friction.
  • the gas yield during combustion is high, with a large proportion of nitrogen gas being generated.
  • Alkali Li, Na, K
  • alkaline earth salts Mg, Ca, Sr, Ba
  • alkali metal or alkaline earth metal nitrates such as lithium nitrate, sodium nitrate, potassium nitrate, magnesium nitrate, calcium nitrate, strontium nitrate or barium nitrate
  • ammonium nitrate alkali metal or alkaline earth metal chlorates or perchlorates (such as lithium, sodium or potassium , Magnesium, calcium, strontium or barium chlorate and lithium, sodium, potassium, magnesium, calcium, strontium or barium perchlorate) and ammonium perchlorate and mixtures thereof.
  • Potassium nitrate and strontium nitrate are preferably used.
  • Strontium nitrate is non-hygroscopic, non-toxic and enables a high gas yield when burned. Potassium nitrate also has a low burning temperature.
  • Al, O 3 , TiO 2 and ZrO, in highly dispersed form or mixtures thereof, can be used as high-melting, essentially chemically inert slag catchers, component (C).
  • TiO 2 with a BET surface area of 50+ are particularly preferred / - 15 m 2 / g (melting point approx. 1850 ° C)
  • These highly disperse oxides are commercially available, for example, under the trade names aluminum oxide C, titanium oxide P25 and VP zirconium oxide (Degussa AG).
  • pyrogenic oxides are produced by reacting the metal chlorides with H 2 and O 2 in the appropriate molar ratio by means of a gas phase reaction (flame hydrolysis).
  • Slag scavenger (component (C)) for the purposes of the present invention is understood to mean high-melting, essentially chemically inert metal oxides in highly disperse form, i.e. these oxides have a much larger surface area than the oxides in their conventional form.
  • conventional Al 2 O 3 as the ⁇ -oxide has a BET surface area of only 5-10 m 2 / g
  • conventional pigment TiO 2 has a BET surface area of only 5-10 m 2 / g and conventional ZrO
  • a BET Surface area of only 3-8 m 2 / g for refractory products
  • the metal oxides BET surfaces used in the gas generator propellant sets of the present invention range from about 40 to about 100 m 2 / g, particularly preferably about 50 to about 100 have m 2 / g and in particular about 100 m 2 / g.
  • the slag catchers of the present invention are distinguished by their high melting point of approximately 1850 to approximately 2700 ° C. These high melting points mean that the slag catchers do not melt during the reaction and thus act as solids.
  • the slag scavengers of the present invention are essentially chemically inert compounds, ie the slag scavengers of the present invention do not participate in the combustion reaction of the gas generator propellants in chemical reactions or only to a small extent on the surface of the metal oxides serving as slag scavengers.
  • the high-resolution room grids ie the large inner surface of Al 2 O 3 , TiO 2 or ZrO 2 , on the one hand, cause the combustion products to cool down due to their inactivity and, on the other hand, specifically store liquid and / or solid slag parts or particles that arise during combustion .
  • the tablet form in which the gas generator propellants are used is preserved during and after the burn-up, or fragments that may have formed can be easily filtered. This means that there is hardly any dust that could escape from the gas generator propulsion unit and thus from the gas generator housing during combustion.
  • the slag catchers work 9
  • Respirable dust-like particles have a diameter of about 6 ⁇ m or smaller.
  • component (D) alkali metal and alkaline earth metal carbonates (such as sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate, strontium carbonate or barium carbonate), alkali metal or alkaline earth metal oxides (such as sodium, potassium, magnesium, calcium, strontium or barium oxide), silicates (such as hectorite), aluminates (such as sodium beta-aluminate (NajOnALjOj) or tricalcium aluminate (Ca 3 Al 2 O 6 )) or aluminum silicates (such as bentonites or zeolites) or iron (III) oxide or mixtures thereof become.
  • alkali metal and alkaline earth metal carbonates such as sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate, strontium carbonate or barium carbonate
  • alkali metal or alkaline earth metal oxides such as sodium, potassium, magnesium, calcium, strontium or barium oxide
  • silicates such as hectorite
  • aluminates such
  • Component (D) is used to form an easily filterable slag when the gas generator fuel burns.
  • the slag formers, component (D) can also act as a coolant.
  • the silicates, aluminates and aluminum silicates react with the alkali metal and alkaline earth metal oxides that are formed during the combustion.
  • the invention further relates to the use of catalysts based on platinum metals (Ru, Os, Rh, Ir, Pd, Pt) or metal alloys made of platinum metals or copper on the highly disperse slag traps as carriers, in the solid gas generator fuels of the present invention, in particular the use in fixed gas generator propellants for airbags. 10
  • platinum metals Ru, Os, Rh, Ir, Pd, Pt
  • metal alloys made of platinum metals or copper on the highly disperse slag traps as carriers
  • a part of the slag catcher (component (C)) can serve as a support on which a platinum metal or a metal alloy made of platinum metals or copper is applied in a catalytically effective layer thickness.
  • Platinum metals are ruthenium (Ru), osmium (Os), rhodium (Rh), iridium (Ir), palladium (Pd) and platinum (Pt).
  • the catalysts used in the present invention are preferably based on Rh, Pd or Pt and in particular Pt.
  • metal alloys made of platinum metals are all catalytically active metal alloys of the platinum metals mentioned above, preferably Pt / Pd and Pt / Rh alloys.
  • the metals or metal alloys made of platinum metals are applied to the support in a catalytically effective layer thickness, preferably in a one-atom layer (“monolayer”).
  • the catalytic converters are only contained in catalytic quantities in the gas generator propulsion unit.
  • Their weight fraction in component (C) is 0.1-5% by weight, preferably 0.2-1.2% by weight of component (C).
  • Preferred catalysts are those in which the highly disperse support A1 2 0 3 and the metal is Pt, Pd or Cu, in particular Pt.
  • Suitable catalysts are available from Degussa AG, for example 1% Pt on gamma-Al 2 0 3 or 1% Pd + Pt on gamma-Al 2 O 3 .
  • the catalysts serve to control the reaction so that hardly toxic gaseous combustion products such as carbon monoxide (CO), nitrogen oxides (NO x ) and ammonia (NH 3 ) are formed.
  • CO carbon monoxide
  • NO x nitrogen oxides
  • NH 3 ammonia
  • the catalysts mentioned above are particularly well suited for use in gas generator propellants in airbags. 11
  • the catalysts can be triggered, i.e. used airbags, as well as from non-deployed, i.e. can be recycled from airbags from old motor vehicles according to already known methods. This leads to less pollution of the environment and enables the catalyst metals to be reused.
  • the catalyst metal or the metal alloy is not oxidized during the combustion.
  • the catalyst does not have to be added to the gas generator propulsion unit as an additional component, but the catalyst is part of a component (component C) which is already present in the gas generator propulsion unit.
  • Component (A) is present in an amount of approximately 20 to 60% by weight, preferably approximately 28 to 52% by weight and in particular approximately 45 to 51% by weight, component (B) in an amount of approximately 38 to about 63% by weight, preferably from about 38 to about 55% by weight and in particular from about 39 to 45% by weight, component (C) in an amount of from about 5 to 22% by weight, preferably from about 8 to 20% by weight and in particular from about 9 to 11% by weight and component (D), if present, in an amount of from about 2 to 12% by weight, preferably from about 4 to 10% by weight .-% before, each based on the total composition of the gas generator propellant.
  • the gas generator fuel may also contain, as component (E), a binder which is soluble in water at room temperature.
  • binders are cellulose compounds or polymers made from one or more polymerizable olefinically unsaturated monomers.
  • cellulose compounds are cellulose ethers, such as carboxymethyl cellulose, methyl cellulose ethers, in particular methyl hydroxyethyl cellulose.
  • a usable methylhydroxyethyl cellulose is CULMINAL® MHEC 30000 PR from Aqualon.
  • Suitable polymers with binding action are polyvinylpyrrolidone, polyvinyllace- 12
  • a metal salt of stearic acid such as aluminum stearate, magnesium stearate, calcium stearate or zinc stearate, which is insoluble in water at room temperature, can also be used as the binder, component (E).
  • Graphite is also suitable as a binder.
  • Component (E) is present in an amount of 0 to 2% by weight and preferably 0.3-0.8% by weight.
  • the binder, component (E) serves as a desensitizing agent and as a processing aid in the production of granules or tablets (pellets) from the gas generator fuel. It also serves to reduce the hydrophilicity and to stabilize the gas generator propellants.
  • gas generator fuels Examples 1 to 57 of Table I below
  • gas generator propellants were produced according to the following procedure:
  • the roughly premixed raw materials (components (A), (B), (C) and optionally (D) and
  • the tablets or pellets from the gas generator fuel used in the gas generators can be produced by known processes, for example by extrusion, extrusion, in rotary presses or tableting machines.
  • the size of the pellets or tablets depends on the desired burning time in the respective application.
  • the gas generator fuel according to the invention consists of non-toxic, easily manufactured and inexpensive components, the processing of which is unproblematic.
  • the component that is less cost-effective, namely the catalyst metal, can be recycled using known methods.
  • the thermal stability of the components results in a good shelf life.
  • the mixtures are easy to ignite. They burn quickly and deliver large gas yields with very low CO, NO x and NH 3 contents, which are below the permissible maximum limit.
  • the mixtures according to the invention are therefore particularly suitable for use as gas generants in the various airbag systems, as extinguishing agents or propellants.
  • Examples 1 to 57 below illustrate the invention but do not limit it.
  • Examples 15, 18 and 21 are comparative examples in which conventional ZrO 2 , TiO 2 and Al 2 O 3 were used.
  • A ATZ [%] 30.2 32.8 29.75 29J 29.75 29.7
  • Nitrogen oxides [ppm] 150 300 200 350 200 250
  • Coarse dust in the can [g] 1, 2 0.6 1, 2 1, 0 1, 1 1, 2
  • Fine dust in the jug [g] 0.2 0.1 0.3 0.3 0.3 0.3 15
  • Nitrogen oxides [ppm] 200 250 200 250 400 250
  • A ATZ [%] - - - - - - - -
  • A ATZ [%] - - - - - - - -
  • A ATZ [%] - - - - - - - -
  • Nitrogen oxides [ppm] 250 250 400 450 150 900
  • A ATZ [%] - - - - - - - -
  • Nitrogen oxides [ppm] 700 1000 800 500 800 100
  • A ATZ [%] - - - - - - - -
  • Nitrogen oxides [ppm] 300 800 500 1000 150 350
  • A ATZ [%] 17.7 - - - - - -
  • Nitrogen oxides [ppm] 150 400 150 800 100 500
  • Coarse dust in the can [g] 1, 0 2.0 1, 8 1, 5 1, 0 0.5
  • A ATZ [%] 29.75 30.2 30.2 26.5 26.8 33.7
  • Nitrogen oxides [ppm] 300 200 300 800 500 250
  • Coarse dust in the can [g] 1.0 1, 1 1, 2 0.8 1, 0 0.8
  • A ATZ [%] 30.35 31, 66 29.75
  • the burns were carried out in a practical gas generator housing for the 60 liter driver airbag, with original dimensions, lighter and filter package made of stainless steel.
  • the gas generator propellant weight used was 50 to 55 g, depending on the gas yield of the respective gas generator propellant formulation.
  • the pellets had a diameter of 4 to 6 mm, with a pellet height of 1.5 or 2.1 mm.
  • the gas yield and the temperature are in the range favorable for gas generator fuels for airbags.
  • the "coarse dust” and "fine dust” information in the table relates to the dirt in the jug after combustion.
  • the measured values for CO, NO x and NH 3 given in the table above refer to a 60 liter jug. These are good values for a non-optimized test gas generator.
  • compositions are those of Examples 14, 17 and 20.
  • thermodynamic data of the individual gas formulations were calculated based on the excess oxygen balance, which promised as little toxic gas development as possible on combustion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Air Bags (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Glass Compositions (AREA)

Abstract

Die Erfindung betrifft feste Gasgeneratortreibstoffe (gaserzeugende Mischungen), hauptsächlich für Gasgeneratortreibsätze für Airbags und Gurtstraffer auf Basis von stickstoffreichen und möglichst kohlenstoffarmen Brennstoffen, wobei die festen Gasgeneratortreibstoffe zusätzlich einen hochschmelzenden, im wesentlichen chemisch inerten Schlackenfänger in hochdisperser Form enthalten, der als internes Filter wirkt und die Entstehung und den Austritt von staubförmigen Teilchen aus dem Gasgeneratorgehäuse weitgehend verhindert. Ein Teil des hochdispersen Schlackenfängers kann als Trägersubstanz für Katalysatormetalle dienen.

Description

GASGENERATORTREIBSTOFFE
Die Erfindung betrifft feste Gasgeneratortreibstoffe (gaserzeugende Mischungen), hauptsächlich für Gasgeneratortreibsätze für Airbags und Gurtstraffer auf Basis von stickstoffreichen und möglichst kohlenstoffarmen Brennstoffen, wobei die festen Gasgenera- tortreibstoffe zusätzlich einen hochschmelzenden, im wesentlichen chemisch inerten Schlackenfänger in hochdisperser Form enthalten, der als internes Filter wirkt und die Entstehung und den Austritt von staubförmigen Teilchen aus dem Gasgeneratorgehäuse weitgehend verhindert.
Die Erfindung betrifft somit ein Verfahren zum Abfangen der flüssigen bzw. festen Verbrennungsprodukte bzw. staubförmigen Schlackenteile innerhalb des Gasgeneratortreibsatzes unmitttelbar bei der Entstehung, so daß man mit einem einfach strukturierten Filterpaket im Gasgeneratorgehäuse auskommt.
Die Erfindung betrifft ferner die Verwendung von Katalysatoren auf der Basis von Platinmetallen (Ru, Os, Rh, Ir, Pd, Pt) oder Metallegierungen aus Platinmetallen oder Kupfer auf den Schlackenfängern als Träger in festen Gasgeneratortreibstoffen, insbesondere die Verwendung in festen Gasgeneratortreibsätzen für Airbags.
Ein Airbag besteht im wesentlichen aus einem Gasgeneratorgehäuse, das mit dem Gasgeneratortreibsatz, in der Regel in Tablettenform, gefüllt ist, und einem Initialzünder (squib) zur Zündung des Gasgeneratortreibsatzes, sowie einem Gassack. Geeignete Zünder sind beispielsweise in der US-PS 4,931,111 beschrieben. Der zunächst kleingefaltete Gassack wird nach der Initialzündung von den beim Abbrand des Gasgeneratortreibsatzes entstehenden Gasen gefüllt und erreicht in einem Zeitraum von etwa 10-50 ms sein volles Volumen. Der 2
Austritt von heißen Funken, Schmelzen oder Festkörpern aus dem Gasgenerator in den Gassack muß weitgehend verhindert werden, da er zu einer Zerstörung des Gassacks oder zur Verletzung von Fahrzeuginsassen führen könnte. Dies wird durch Binden und Filtrieren der Schlacke erreicht, die bei der Verbrennung des Gasgeneratortreibsatzes entsteht.
Herkömmliche Gasgeneratortreibsätze für die Verwendung in Airbags auf der Basis von Natriumazid sind seit längerem bekannt. Die Verwendung des hochtoxischen Natriumazids erfordert jedoch ein aufwendiges und kostspieliges Herstellungsverfahren der Gasgeneratortreibsätze. Zudem führt die weltweit ständig zunehmende Zahl von nicht abgebrannten Gas- generatortreibsätzen in Alt-Kraftfahrzeugen zu einem Entsorgungs- und Sicherheitsproblem.
In den vergangenen Jahren wurden daher Anstrengungen unternommen, geeignete Ersatzstoffe für Natriumazid zu finden.
Aus der DE-A-44 35 790 sind Gasgeneratortreibstoffe auf der Basis von Guanidinverbindun- gen auf geeigneten Trägern bekannt, die im wesentlichen ein verbessertes Abbrandverhalten und eine verbesserte Schlackenbildung aufweisen. Die DE-A-44 35 790 gibt keine Hinweise auf die Verwendung von hochschmelzenden, im wesentlichen inerten Schlackenfängern in hochdisperser Form oder von Katalysatoren in Gasgeneratortreibsätzen.
Aus der EP-B-0 482 852 und dem dort zitierten Stand der Technik sind azidfreie Gasgeneratortreibsätze, insbesondere für Airbags, bekannt. Die in der EP-B-0 482 852 beschriebene, gaserzeugende Mischung enthält a) einen Treibstoff, ausgewählt aus Aminotetrazol, Tetrazol, Bitetrazol und Metallsalzen dieser Verbindungen und Triazolverbindungen und Metallsalzen von Triazolverbindungen; b) eine sauerstoffhaltige Oxidationsverbindung, ausgewählt aus Alkalimetall-, Erdalkalimetall-, Lanthanid- und Ammoniumnitraten und -perchloraten und Alkalimetall- und Erdalkalimetallchloraten und -peroxiden; und entweder c) ein Hochtemperatur-Schlackenbildungsmaterial, ausgewählt aus Erdalkalimetalloxiden, -hydroxiden, -carbonaten, -oxalaten, -peroxiden, -nitraten, -chloraten und -perchloraten und Erdalkalime- tallsalzen von Tetrazolen, Bitetrazolen und Triazolen, und d) ein Niedertemperatur- Schlackenbildungsmaterial, ausgewählt aus Siliciumdioxid, Boroxid, Vanadiumpentoxid, natürlich vorkommenden Tonen und Talken, Alkalimetallsilikaten, -boraten, -carbonaten, 3
-nitraten, -perchloraten und -chloraten und Alkalimetallsalzen von Tetrazolen, Bitetrazolen und Triazolen; oder e) ein Hochtemperatur-Schlackenbildungsmaterial, ausgewählt aus Übergangsmetalloxiden, -hydroxiden, -carbonaten, -oxalaten, -peroxiden, -nitraten, -chloraten- und perchloraten; und f) ein Niedertemperatur-Schlackenbildungsmaterial, welches Silici- umdioxid ist; wobei die Menge von d) oder f) ausreicht, um zur Bildung einer kohärenten Masse oder Schlacke zu führen, aber nicht so hoch ist, daß eine Flüssigkeit mit niederer Viskosität entsteht, wobei es sich versteht, daß ein einzelnes Material für mehr als eine der Kategorien dienen kann.
Der wesentliche Vorteil eines derartigen Gasgeneratortreibsatzes liegt in der günstigen Bildung einer Schlacke, die leicht von den gebildeten gasförmigen Abbrandprodukten abfiltriert werden kann. Ein weiterer Vorteil besteht in der hohen Gasausbeute.
Nachteile derartiger Gasgeneratortreibsätze sind jedoch, daß hinsichtlich der Bereitstellung eines Gasgeneratortreibsatzes mit einer möglichst günstigen Schlackenbildung Kompromisse beim Abbrandverhalten (Abbrandgeschwindigkeit), bei der Gasbildung, den Eigenschaften hinsichtlich der Herstellung der Pellets und anderen Verfahrensfaktoren und insbesondere bei der Gasqualität, d.h. dem Anteil von toxischen gasförmigen Abbrandprodukten eingegangen werden mußten. Weiterhin ist die Anzahl der geeigneten Treibstoffe relativ begrenzt.
In der EP-B-0 482 852 gibt es keine Hinweise darauf, wie diese Probleme durch eine Modifizierung der Zusammensetzung des Gasgeneratortreibsatzes gelöst werden können.
In der US-PS 4,948,439 wird von dem gleichen Erfinder auf die Problematik hinsichtlich der Bildung von toxischen gasförmigen Abbrandprodukten bei der Verwendung von Azid- Ersatzstoffen, wie Tetrazolverbindungen (z.B. Aminotetrazol und dessen Metallsalze) und deren Gemische in Gasgeneratortreibsätzen hingewiesen.
In der US-PS 4,948,439 wird jedoch kein Lösungsvorschlag beschrieben, wie der Anteil an toxischen gasförmigen Abbrandprodukten bei der Verbrennung von Gasgeneratortreibsätzen, die als Treibstoff Tetrazol- oder Triazolverbindungen, deren Metallsalze oder Gemische davon enthalten, reduziert werden könnte. Vielmehr wird ein Verfahren zum Aufblasen eines 4
Airbags beschrieben, bei dem zunächst ein Primärgasgemisch durch die Zündung eines Gasgeneratortreibsatzes entsteht, der als Treibstoff mindestens eine Tetrazol- oder Triazolverbin- dung enthält und dieses Primärgemisch wird durch Vermischen mit Umgebungsluft derart verdünnt, daß der Gehalt an toxischen gasförmigen Abbrandprodukten aus dem Primärgas- gemisch auf ein toxikologisch akzeptables Maß gesenkt wird.
Das Vermischen mit der Umgebungsluft führt zu einer Verkomplizierung (Größe, Aufbau, etc.) des gesamten Airbag- Systems. Problematisch ist die Geschwindigkeit, mit der der Air- bag aufgeblasen werden muß (10-50 ms), wenn zusätzlich noch Umgebungsluft angesaugt werden muß.
Aus der DE-C-44 01 213 sind gaserzeugende Mischungen aus einem Brennstoff, einem Oxi- dator, einem "Katalysator" und einem Kühlmittel, dadurch gekennzeichnet, daß der Oxidator Cu(NO3)2-3Cu(OH)2 und der Katalysator ein Metalloxid oder eine Metalloxidmischung oder ein Metallmischoxid ist, bekannt.
Aus der DE-C-44 01 214 sind zudem gaserzeugende Mischungen ähnlicher Zusammensetzungen bekannt, bei denen der Katalysator aus einem Metall oder einer Metallegierung, vorzugsweise einem pyrophoren Metall oder einer pyrophoren Metallegierung auf einem Träger besteht. Bei dem Träger handelt es sich um ein Silikat, vorzugsweise ein Schicht- oder Gerüstsilikat. Als Metall hat sich insbesondere Ag bewährt. Zu den bekannten verwendeten Brennstoffen zählen Triaminoguanidinnitrat (TAGN), Nitroguanidin (NIGU bzw. NQ), 3- Nitro-l,2,3-triazol-5-on und insbesondere Diguanidinium-5,5'-azotetrazolat (GZT).
Der wesentliche Vorteil der in den beiden vorstehenden deutschen Patentschriften beschriebenen gaserzeugenden Mischungen soll in der Herabsetzung der Verbrennungstemperatur und in der Erhöhung der Abbrandgeschwindigkeit liegen.
Die in der DE-C-44 01 213 und DE-C-44 01 214 beschriebenen gaserzeugenden Mischungen enthalten keine niedrig- und hochschmelzenden Schlackenbildner bzw. keine erfindungsgemäßen Schlackenfänger, vielmehr wird dort behauptet, daß auf Schlackenbildner verzichtet werden kann. Entgegen dieser Behauptung haben die Erfinder der vorliegenden Erfindung gefunden, daß die Verwendung von niedrig- und hochschmelzenden Schlackenbildnern, insbesondere der erfindungsgemäßen Schlackenfänger eine deutliche Reduzierung von toxischen gasförmigen Abbrandprodukten bewirkt. Ein Teil des hochschmelzenden erindungsgemäßen Schlackenfängers kann hierbei als Träger für ein Platinmetall bzw. für eine Metallegierung aus Platinmetallen und somit als Katalysatorbestandteil fungieren.
In den beiden vorstehend genannten deutschen Patentschriften wird der Begriff "Katalysator" in einem erweiterten Sinn verwendet und stellt einen aktiven Reaktionsbestandteil dar, der selbst umgesetzt werden kann und reaktionslenkend und/oder reaktionsbeschleunigend wirkt.
Es handelt sich demnach nicht um einen Katalysator im eigentlichen Sinn, da ein Katalysator bei einer Umsetzung keinen Reaktionsbestandteil darstellt. Ein Katalysator im eigentlichen Sinn wird bei Umsetzungen nicht verbraucht, d.h. nicht umgesetzt.
Zur Definition des Katalysators gehört ferner, daß dieser in einer nur sehr geringen Konzentration dem Reaktionsgemsich beigemengt wird. In den beiden deutschen Patentschriften beträgt jedoch der Anteil an "Katalysator" in der gaserzeugenden Mischung bis zu 30 Mas- sen-% und ist damit wesentlicher, auch anteilsmäßig, Bestandteil der gaserzeugenden Mischung.
Aus dem zuvor gesagten ergibt sich, daß in der DE-C-44 01 213 und DE-C-44 01 214 zwar der Begriff "Katalysator" verwendet wird, aber, wie dies auch in den beiden Patentschriften angedeutet ist, die Bedeutung nicht mit der herkömmlichen Definition eines Katalysators übereinstimmt.
Der vorliegenden Erfindung liegt gegenüber dem Stand der Technik die Aufgabe zugrunde, verbesserte Gasgeneratortreibstoffe, insbesondere für Airbags bereitzustellen, deren Abbrandverhalten sich gezielt einstellen läßt und die insbesondere die Entstehung von 6
toxischen Gasen und von lungengängigen, staubförmigen Anteilen, die aus dem Gasgeneratorgehäuse austreten können, auf ein Minimum beschränken.
Die aus den Gasgeneratortreibstoffen hergestellten Gasgeneratortreibsätze sollen thermisch stabil, gut anzündbar, schnell - auch bei niedriger Temperatur - brennend und gut lagerfähig sein und eine hohe Gasausbeute gewährleisten. Zudem sollen diese Gasgeneratortreibsätze eine Verkleinerung, Reduzierung der Anzahl der Komponenten oder Vereinfachung der Gasgeneratorgehäuse und somit deren Gewichtsverminderung im Vergleich zu bekannten Generatoren ermöglichen.
Erfindungsgemäß werden diese Aufgaben durch einen Gasgeneratortreibstoff gelöst, umfassend
(A) mindestens einen Brennstoff aus der Gruppe umfassend Guanidiniumnitrat (GUNI; GuNO3), Dicyanamid, Ammoniumdicyanamid, Natriumdicyanamid (Na-DCA),
Kupferdicyanamid, Zinndicyanamid, Calciumdicyanamid (Ca-DCA),
Guanidiniumdicyanamid (GDCA), Aminoguanidiniumbicarbonat (AGB),
A inoguanidiniumnitrat (AGN), Triaminoguanidiniumnitrat (TAGN), Nitroguanidin (NIGU), Dicyandiamid (DCD), Azodicarbonamid (ADCA) sowie Tetrazol (HTZ), 5- Aminotetrazol (ATZ), 5-Nitro-l,2,4-triazol-3-on (NTO), deren Salze und deren Gemische,
(B) mindestens ein Alkali- oder Erdalkalinitrat oder Ammoniumnitrat, -chlorat oder -perchlorat,
(C) mindestens einen hochschmelzenden, im wesentlichen chemisch inerten Schlackenfänger, ausgewählt aus der Gruppe umfassend Al2O3, TiO2 und ZrO2 in hochdisperser Form oder Gemische davon, und
gegebenenfalls (D) mindestens einen Schlackenbildner, ausgewählt aus Alkali- und Erdal- kalimetallcarbonaten und -oxiden, Silikaten, Aluminaten und Aluminiumsilikaten, Eisen(III)oxid sowie Siliciumnitrid (Si3N4), das beim Abbrand Stickstoff (N2) und Siliciumdioxid (SiO2) zur Weiterreaktion liefert und 7
gegebenenfalls (E) mindestens ein in Wasser bei Raumtemperatur lösliches Bindemittel.
Bevorzugte Brennstoffe (Komponente (A)) sind Nitroguanidin (NIGU), 5-Aminotetrazol (ATZ), Dicyandiamid (DCD), Dicyanamid, deren Salze, insbesondere Natrium- und Calciumdicyanamid und Guanidiniumnitrat, und deren Gemische. Diese sind praktisch ungiftig, nicht hygroskopisch, wenig wasserlöslich, thermisch stabil, bei niedriger Temperatur verbrennend und von geringer Schlag- und Reibempfmdlichkeit. Die Gasausbeute bei der Verbrennung ist hoch, wobei ein großer Anteil an Stickstoffgas entsteht.
Alkali- (Li, Na, K) und Erdalkalisalze (Mg, Ca, Sr, Ba) sind Beispiele für geeignete Salze von 5-Aminotetrazol.
Als Oxidationsmittel, Komponente (B), können Alkali- oder Erdalkalinitrate (wie Lithiumnitrat, Natriumnitrat, Kaliumnitrat, Magnesiumnitrat, Calciumnitrat, Strontiumnitrat oder Bari- umnitrat), Ammoniumnitrat, Alkali- oder Erdalkalichlorate oder -perchlorate (wie Lithium- Natrium-, Kalium-, Magnesium-, Calcium-, Strontium- oder Bariumchlorat und Lithium-, Natrium-, Kalium-, Magnesium-, Calcium-, Strontium- oder Bariumperchlorat) sowie Ammoniumperchlorat und deren Gemische verwendet werden. Vorzugsweise wird Kaliumnitrat und Strontiumnitrat verwendet. Strontiumnitrat ist nicht hygroskopisch, nicht toxisch und ermöglicht beim Abbrand eine hohe Gasausbeute. Kaliumnitrat weist zusätzlich eine niedrige Abbrandtemperatur auf.
Als hochschmelzende, im wesentlichen chemisch inerte Schlackenfänger, Komponente (C), können z.B. Al,O3, TiO2 und ZrO, in hochdisperser Form oder Gemische davon verwendet werden. Besonders bevorzugt sind Al2O3 mit einer BET-Oberfläche (in Anlehnung an DIN 66131) von 100 +/- 15 m2/g (Smp-Punkt ca. 2050°C), TiO2 mit einer BET-Oberfläche von 50 +/- 15 m2/g (Smp-Punkt ca. 1850°C) und ZrO2 mit einer BET-Oberfläche von 40 +/- 10 m2/g (Smp-Punkt ca. 2700°C). Diese hochdispersen Oxide sind z.B. unter den Handelsnamen Aluminiumoxid C, Titanoxid P25 und VP Zirkonoxid (Degussa AG) im Handel erhältlich.
Diese pyrogenen Oxide werden durch Umsetzung der Metallchloride mit H2 und O2 im entsprechenden Molverhältnis durch Gasphasenreaktion (Flammenhydrolyse) hergestellt. Sie 8
haben keine Poren und definierte Agglomerate, wie dies sonst bei der Herstellung im Naßverfahren der Fall ist.
Unter Schlackenfänger (Komponente (C)) im Sinne der vorliegenden Erfindung versteht man hochschmelzende, im wesentlichen chemisch inerte Metalloxide in hochdisperser Form, d.h. diese Oxide weisen eine gegenüber den Oxiden in ihrer herkömmlichen Form sehr viel größere Oberfläche auf.
Zum Beispiel weisen herkömmliches Al2O3 als α-Oxid eine BET-Oberfläche von nur 5-10 m2/g, herkömmliches Pigment-TiO2 eine BET-Oberfläche von nur 5-10 m2/g und herkömmliches ZrO, eine BET-Oberfläche von nur 3-8 m2/g (für Feuerfest-Produkte) auf, wohingegen die in den Gasgeneratortreibsätzen der vorliegenden Erfindung verwendeten Metalloxide BET-Oberflächen von etwa 40 bis etwa 100 m2/g, besonders bevorzugt etwa 50 bis etwa 100 m2/g und insbesondere etwa 100 m2/g aufweisen.
Ferner zeichnen sich die Schlackenfänger der vorliegenden Erfindung durch ihren hohen Schmelzpunkt von etwa 1850 bis etwa 2700°C aus. Diese hohen Schmelzpunkte führen dazu, daß die Schlackenfänger während der Umsetzung nicht schmelzen und somit als Feststoffe fungieren.
Des weiteren handelt es sich bei den Schlackenfängern der vorliegenden Erfindung um im wesentlichen chemisch inerte Verbindungen, d.h. die Schlackenfänger der vorliegenden Erfindung beteiligen sich nicht bei der Verbrennungsreaktion der Gasgeneratortreibsätze an chemischen Umsetzungen oder nur in einem geringen Maß an der Oberfläche der als Schlackenfänger dienenden Metalloxide. Die hochaufgelösten Raumgitter, d.h. die große innere Oberfläche von z.B. Al2O3, TiO2 oder ZrO2 bewirkt einerseits durch ihre Inaktivität die Abkühlung der Verbrennungsprodukte und lagert andererseits speziell flüssige und/oder feste Schlackenteile bzw. Partikel an, die bei der Verbrennung entstehen. Auf diese Weise bleibt die Tablettenform, in der die Gasgeneratortreibsätze verwendet werden, während und nach dem Abbrand erhalten bzw. es lassen sich eventuell entstandene Bruchstücke leicht filtern. Das heißt, es bilden sich kaum Stäube, die bei der Verbrennung aus dem Gasgeneratortreibsatz und somit aus dem Gasgeneratorgehäuse austreten könnten. Die Schlackenfänger wirken 9
somit als internes Filter in den Gasgeneratortreibsätzen selbst, und verhindern somit weitgehend die Entstehung und den Austritt von staubförmigen Schlackenteilen aus dem Gasgeneratorgehäuse, wodurch auch eine wesentliche Filtervereinfachung des Gasgeneratorgehäuses erreicht wird, da auf zusätzliche (mechanische) Feinfilter im Gasgeneratorgehäuse teilweise verzichtet werden kann. Dies führt auch zu einer vorteilhaften Gewichtseinsparung beim Airbag-Gasgenerator.
Gleichzeitig wird durch die Bildung von Schlacken das Entstehen von lungengängigen staubförmigen Anteilen vermindert, die aus dem Gasgenerator eines Airbags austreten könnten. Lungengängige staubförmige Teilchen haben einen Durchmesser von etwa 6 μm oder kleiner.
Wahlweise können als Schlackenbildner, Komponente (D) Alkalimetall- und Erdalkalime- tallcarbonate (wie Natriumcarbonat, Kaliumcarbonat, Magnesiumcarbonat, Calciumcarbonat, Strontiumcarbonat oder Bariumcarbonat), Alkalimetall- oder Erdalkalimetalloxide (wie Natrium-, Kalium-, Magnesium-, Calcium-, Strontium- oder Bariumoxid), Silikate (wie Hectorit), Aluminate (wie Natrium-beta-aluminat (NajOnALjOj) oder Tricalciumaluminat (Ca3Al2O6)) oder Aluminiumsilikate (wie Bentonite oder Zeolithe) oder Eisen(III)oxid oder deren Gemische verwendet werden.
Komponente (D) dient dazu, beim Abbrand des Gasgeneratortreibstoffs eine leicht filtrierbare Schlacke zu bilden.
Die Schlackenbildner, Komponente (D), können zusätzlich noch als Kühlmittel wirken. Die Silikate, Aluminate und Aluminiumsilikate reagieren mit den Alkalimetall- und Erdalkalimetalloxiden, die beim Abbrand entstehen.
Die Erfindung betrifft ferner die Verwendung von Katalysatoren auf der Basis von Platinmetallen (Ru, Os, Rh, Ir, Pd, Pt) oder Metallegierungen aus Platinmetallen oder Kupfer auf den hochdispersen Schlackenfängern als Träger, in den festen Gasgeneratortreibstoffen der vorliegenden Erfindung, insbesondere die Verwendung in festen Gasgeneratortreibsätzen für Airbags. 10
Ein Teil des Schlackenfängers (Komponente (C)) kann als Träger dienen, auf dem ein Platinmetall oder eine Metallegierung aus Platinmetallen oder Kupfer in einer katalytisch wirksamen Schichtdicke aufgebracht ist.
Platinmetalle sind Ruthenium (Ru), Osmium (Os), Rhodium (Rh), Iridium (Ir), Palladium (Pd) und Platin (Pt). Die Katalysatoren, die in der vorliegenden Erfindung verwendet werden, basieren vorzugsweise auf Rh, Pd oder Pt und insbesondere auf Pt.
Beispiele für Metallegierungen aus Platinmetallen sind alle katalytisch wirksamen Metalle- gierungen der vorstehend genannten Platinmetalle, vorzugsweise Pt/Pd- und Pt/Rh-Legierun- gen.
Die Metalle oder Metallegierungen aus Platinmetallen sind in einer katalytisch wirksamen Schichtdicke, vorzugsweise in einer einatomigen Schicht ("monolayer") auf dem Träger auf- gebracht.
Die Katalysatoren sind in nur katalytischen Mengen im Gasgeneratortreibsatz enthalten. Ihr Gewichtsanteil an der Komponente (C) beträgt 0,1-5 Gew.-%, vorzugsweise 0,2-1,2 Gew.-% der Komponente (C).
Bevorzugte Katalysatoren sind die, bei denen der hochdisperse Träger A1203 und das Metall Pt, Pd oder Cu, insbesondere Pt ist.
Geeignete Katalysatoren sind von der Degussa AG erhältlich, z.B. 1% Pt auf gamma-Al203 oder 1% Pd + Pt auf gamma-Al2O3.
Die Katalysatoren dienen dazu, die Reaktion dahingehend zu steuern, daß kaum toxische gasförmige Abbrandprodukte, wie Kohlenmonoxid (CO), Stickoxide (NOx) und Ammoniak (NH3) gebildet werden.
Die vorstehend genannten Katalysatoren sind besonders gut für die Verwendung in Gasgeneratortreibsätzen in Airbags geeignet. 11
Zusätzlich zu den Vorteilen, die sich aus der Verwendung der hochdispersen Metalloxide ergeben (Verringerung der festen Staubteilchen, d.h. von Grob- und Feinstaub) wird hier der ohnehin geringe Anteil an toxischen Gasen weiter reduziert.
Die Katalysatoren können aus ausgelösten, d.h. gebrauchten Airbags, als auch aus nicht ausgelösten, d.h. aus Airbags aus Alt-Kraftfahrzeugen nach bereits bekannten Verfahren recycelt werden. Dies führt zu einer Abfallentlastung der Umwelt und ermöglicht die Wiederverwendung der Katalysatormetalle. Das Katalysatormetall bzw. die Metallegierung wird während des Abbrands nicht oxidiert.
Der Katalysator muß nicht als zusätzlicher Bestandteil dem Gasgeneratortreibsatz zugesetzt werden, sondern der Katalysator ist Bestandteil einer ohnehin im Gasgeneratortreibsatz vorhandenen Komponente (Komponente C)).
Komponente (A) liegt in einer Menge von etwa 20 bis 60 Gew.-%, vorzugsweise von etwa 28 bis 52 Gew.-% und insbesondere von etwa 45 bis 51 Gew.-% vor, Komponente (B) in einer Menge von etwa 38 bis etwa 63 Gew.-%, vorzugsweise von etwa 38 bis etwa 55 Gew.-% und insbesondere von etwa 39 bis 45 Gew.-% vor, Komponente (C) in einer Menge von etwa 5 bis 22 Gew.-%, vorzugsweise von etwa 8 bis 20 Gew.-% und insbesondere von etwa 9 bis 11 Gew.-% und Komponente (D), sofern enthalten, in einer Menge von etwa 2 bis 12 Gew.-%, vorzugsweise von etwa 4 bis 10 Gew.-% vor, jeweils bezogen auf die Gesamtzusammensetzung des Gasgeneratortreibsatzes.
Wahlweise kann der Gasgeneratortreibstoff femer als Komponente (E) ein in Wasser bei Raumtemperatur lösliches Bindemittel enthalten. Bevorzugte Bindemittel sind Cellulosever- bindungen oder Polymerisate aus einem oder mehreren polymerisierbaren olefmisch ungesättigten Monomeren. Beispiele für Celluloseverbindungen sind Celluloseether, wie Carboxy- methylcellulose, Methylcelluloseether, insbesondere Methylhydroxyethylcellulose. Eine gut verwendbare Methylhydroxyethylcellulose ist CULMINAL® MHEC 30000 PR der Firma Aqualon. Geeignete Polymerisate mit Bindewirkung sind Polyvinylpyrrolidon, Polyvinylace- 12
tat, Polyvinylalkohol und Polyvinylbutyral, z.B. Pioloform® B (Firma Wacker Chemie, Burghausen).
Als Bindemittel, Komponente (E), kann auch ein in Wasser bei Raumtemperatur unlösliches Metallsalz der Stearinsäure, wie Aluminiumstearat, Magnesiumstearat, Calciumstearat oder Zinkstearat verwendet werden.
Graphit ist ebenfalls als Bindemittel geeignet.
Komponente (E) liegt in einer Menge von 0 bis 2 Gew.-% und vorzugsweise von 0,3-0,8 Gew.-% vor.
Das Bindemittel, Komponente (E), dient als Desensibilisierungsmittel und als Verarbeitungshilfe bei der Herstellung von Granulat oder Tabletten (Pellets) aus dem Gasgenerator- treibstoff Es dient femer zur Verminderung der Hydrophilie und zur Stabilisierung der Gasgeneratortreibsätze.
Herstellungsvorschrift:
Allgemein erfolgte die Herstellung der Gasgeneratortreibstoffe (Beispiele 1 bis 57 der nachstehenden Tabelle I) und Gasgeneratortreibsätze nach folgendem Vorgehen:
Die grob vorgemischten Rohstoffe (Komponenten (A), (B), (C) und gegebenenfalls (D) und
(E)) wurden mittels einer Kugelmühle gemahlen bzw. vorverdichtet. Das Granulieren der Gasgeneratortreibstoffmischung erfolgte in einem Vertikalmischer durch
Zugabe von ca. 20 % Wasser beim Rühren und bei einer auf ca. 40°C erhöhten Temperatur.
Nach kurzem Ablüften wurde die erhaltene Mischmasse bei Raumtemperatur durch eine
Durchreibemaschine mit einem 1 mm-Sieb gerieben. Das auf diese Weise erhaltene Granulat wurde ca. 2 Stunden in einem Trockenofen bei 80°C getrocknet. Das fertige Granulat des Gasgeneratortreibstoffes (Komverteilung 0-1 mm) wurde anschließend mit einer Rundläuferpresse zu Tabletten (Pellets) verpreßt. Diese
Gasgeneratortreibsatzpellets wurden bei 80°C im Trockenofen nachgetrocknet. 13
Die in den Gasgeneratoren verwendeten Tabletten oder Pellets aus dem Gasgeneratortreibstoff können nach bekannten Verfahren hergestellt werden, etwa durch Strangpressen, Extrudieren, in Rundläuferpressen oder Tablettiermaschinen. Die Größe der Pellets oder Tabletten hängt von der gewünschten Brennzeit im jeweiligen Anwendungsfall ab.
Der erfindungsgemäße Gas generatortreibsto ff besteht aus nicht-toxischen, leicht herstellbaren und kostengünstigen Komponenten, deren Verarbeitung unproblematisch ist. Die Kompo- nente, die weniger kostengünstig ist, nämlich das Katalysatormetall, kann nach bekannten Verfahren recycelt werden. Die thermische Stabilität der Komponenten bewirkt eine gute Lagerfähigkeit. Die Anzündbarkeit der Gemische ist gut. Sie brennen schnell und liefern große Gasausbeuten mit sehr geringen CO-, NOx- und NH3-Anteilen, die unterhalb der zulässigen Höchstgrenze liegen. Die erfindungsgemäßen Gemische sind daher zur Verwen- düng als Gaserzeugungsmittel in den verschiedenen Airbag-Systemen, als Löschmittel oder Treibmittel besonders geeignet.
Die nachstehenden Beispiele 1 bis 57 veranschaulichen die Erfindung, schränken diese jedoch nicht ein. Bei den Beispielen 15, 18 und 21 handelt es sich um Vergleichsbeispiele, bei denen herkömmliches ZrO2, TiO2 und Al2O3 verwendet wurde.
Tabelle I:
Die in der Tabelle angegebenen Indizes haben folgende Bedeutung:
1 Titandioxid P25, Degussa AG
2 Zirkonoxid VP, Degussa AG
3 Aluminiumoxid C, Degussa AG
4 Titandioxid Kronos 3025, Kronos Titan-GmbH 5 Zirkonoxid, Merck
6 Aluminiumoxid NO 615 -30 II 24, Nabaltec
7 Oxid. Katalysator 1% Pt auf Gamma- Aluminiumoxid, Degussa AG
8 Oxid. Katalysator 1% Pd + Pt auf Gamma- Aluminiumoxid, Degussa AG
9 Eisenoxid, Bayoxide E8710, Bayer AG 10 Bentone EW, Rheox, Inc.
11 CULMINAL MHEC 30000 PR, Aqualon 14
Tabelle I
Beispiel Nr. 1 2 3 4 5 6
A = ATZ [%] 30,2 32,8 29,75 29J 29,75 29,7
NIGU [%] - - - - - -
Ca-DCA [%] - - - - - -
Na-DCA [%] - - - - - -
TAGN [%] - - - - - -
GuN03 [%] - - - - - -
B = KNO3 [%] 49,8 - 50,25 - 50,25 -
Sr(N03)2 [%] - 57,2 - 54,8 - 54,8
NaN03 [%] - - - - - -
C = Ti02 1 [%] - - 20,0 15,0 - -
Zr02 2 [%] - - - - 20,0 15,0
AI2O3 3 [%] 10,0 10,0 - - - -
AI2O3 + 1 %Pt 7 [%] - - - - - -
AI2O3 + 1%(Pd+Pt) 8 [%] - - - - - -
D = Eisen(lll)oxid 9 [%] 10,0 - - - - -
Aluminiumsilikat 10 [%] - - - - - -
Siliziumnitrid Si3N4 [%] - - - - - -
E = Graphit [%] - - - - - -
Methylhydroxyethylcellulose11 [%] - - - - - -
Polyvinylbutyral [%} - - - 0,5 - 0,5
Theoretische Werte:
Gasausbeute (V=konstant) [mol/kg] 17,8 19,3 17,6 21 J 17,6 18,0
Temperatur (p=135*105Pa) [K] 1780 2420 1780 2370 1780 2520
Gemessene Werte (in 60 dm3 Kanne. |
Kohlenmonoxid [ppm] 4000 2800 3000 3300 3000 3300
Stickoxide [ppm] 150 300 200 350 200 250
Ammoniak [ppm] 150 0 0 0 100 100
Grobstaub in der Kanne [g] 1 ,2 0,6 1 ,2 1 ,0 1 ,1 1 ,2
Feinstaub in der Kanne [g] 0,2 0,1 0,3 0,3
Figure imgf000016_0001
0,3 0,3 15
Beispiel Nr. 7 8 9 10 11 12
A = ATZ [%] 29,75 32,8 29,75 32,8 21 ,5 25,6
NIGU [%] - - - - - -
Ca-DCA [%] - - - - - -
Na-DCA [%] - - - - - -
TAGN [%] - - - - - -
GuN03 [%] - - - - - -
B = KNO3 [%] 50,25 - 50,25 - 58,0 -
Sr(N03)2 [%3 - 57,2 - 57,2 - 54,1
NaN03 [%] - - - - - -
C = Ti02 1 [%] - - - - - -
Zr02 2 [%] - - - - - -
AI2O3 3 [%] 10,0 - 10,0 - 10,0 10,0
AI203 + 1 %Pt 7 [%] 10,0 10,0 - - - -
AI203 + 1%(Pd+Pt) 8 [%] - - 10,0 10,0 - -
D = Eisen(ll.l)oxid 9 [%] - - - - - 5,0
10
Aluminiumsilikat [%] - - - - - -
Siliziumnitrid Si3N4 [%] - - - - 10,0 5,0
E = Graphit [%] - - - - 0,5 -
Methylhydroxyethylcellulose11 [%] - - - - - -
Polyvinylbutyral [%] - - - - - 0,3
Theoretische Werte:
Gasausbeute (V=konstant) [mol/kg] 17,6 19,3 17,6 19,3 16,8 16,8
Temperatur (p=135*105Pa) [K] 1780 2420 1780 2420 2120 2420
Gemessene Werte in 60 dm3 Kanne)
Kohlenmonoxid [ppm] 2500 2300 2300 2100 4500 4000
Stickoxide [ppm] 200 250 200 250 400 250
Ammoniak [ppm] 0 0 0 0 200 150
Grobstaub in der Kanne [g] 07 0,6 07 07 0,9 1 ,3
Feinstaub in der Kanne [g] 0,2 0,2 0,2
Figure imgf000017_0001
0,1 0,3 0,5 16
Beispiel Nr. 13 14 15 16 17 18
A = ATZ [%] - - - - - -
NIGU [%] 48,2 47,0 47,0 48,5 47,0 47,0
Ca-DCA [%] - - - - - -
Na-DCA [%] - - - - - -
TAGN [%] - - - - - -
GuNO3 [%] - - - - - -
B = KN03 [%] 41 ,3 - - 41 ,0 - -
Sr(N03)2 [%] - 42,5 42,5 - 42,5 42,5
NaN03 [%] - - - - - -
C = Ti02 1 0der 4 [%] 10,0 1 10,0 1 10,0 4 - - -
Zr02 2 oder 5 [%] - - - 10,0 2 10,0 2 10,0 5
AI2O3 3 [%] - - - - - -
AI2O3 + 1 %Pt 7 [%] - - - - - -
AI2O3 + 1 %(Pd+Pt) 8 [%] - - - - - -
D = Eisen(lll)oxid 9 [%] - - - - - -
Aluminiumsilikat 10 [%] - - - - - -
Siliziumnitrid Si3N4 [%] - - - - - -
E = Graphit [%] - 0,5 0,5 - 0,5 0,5
Methylhydroxyethylcellulose11 [%] - - - - - -
Polyvinylbutyral [%] 0,5 - - 0,5 - -
Theoretische Werte:
Gasausbeute (V=konstant) [mol/kg] 23,8 23,1 23,1 23,9 23,1 23,1
Temperatur (p=135*105Pa) [K] 2030 2490 2490 2080 2550 2550
Gemessene Werte (in 60 dm3 Kann e):
Kohlenmonoxid [ppm] 8000 6500 8000 6500 6500 8000
Stickoxide [ppm] 600 450 450 800 700 800
Ammoniak [ppm] 100 0 0 150 0 0
Grobstaub in der Kanne [g] 1 ,4 0,3 0,7 1 ,0 0,1 0,3
Feinstaub in der Kanne [g] 0,6 0,4 0,3 0,3
Figure imgf000018_0001
0,3 0,3 17
Beispiel Nr. 19 20 21 22 23 24
A = ATZ [%] - - - - - -
NIGU [%] 50,6 46,0 46,0 46,5 50,6 46,5
Ca-DCA [%] - - - - - -
Na-DCA [%] - - - - - -
TAGN [%] - - - - - -
GuNO3 [%] - - - - - -
B = KN03 [%] 39,4 - - - 39,4 -
Sr(N03)2 [%] - 43,5 43,5 38,5 - 38,5
NaN03 [%] - - - - - -
C = Ti02 1 [%] - - - - - -
Zr02 [%] - - - - - -
Al203 30der 6 [%] 10,0 3 10,0 3 10,0 6 15,0 3 - -
Al203 + 1 %Pt 7 [%] - - - - 10,0 15,0
AI203 + 1 %(Pd+Pt) 8 [%] - - - - - -
D = Eisen(lll)oxid 9 [%] - - - - - -
Aluminiumsilikat 10 [%] - - - - - -
Siliziumnitrid Si3N4 [%] - - - - - -
E = Graphit [%] - 0,5 0,5 - - -
Methylhydroxyethylcellulose11 [%] - - - - - -
Polyvinylbutyral [%] - - - - - -
Theoretische Werte:
Gasausbeute (V=konstant) [mol/kg] 24,3 22,8 22,8 22,4 24,3 22,4
Temperatur (p=135*105Pa) [K] 2050 2380 2380 2330 2430 2330
Gemessene Werte (in 60 dm3 Kanne)
Kohlenmonoxid [ppm] 5700 6000 8000 5000 4600 4200
Stickoxide [ppm] 300 450 600 300 200 250
Ammoniak [ppm] 0 0 0 0 0 0
Grobstaub in der Kanne [g] 1 ,0 0,7 0,8 0,3 1 ,2 0,5
Feinstaub in der Kanne [g] 0,4 0,1 0,3 0,3
Figure imgf000019_0001
0,3 0,3 Beispiel Nr. 25 26 27 28 29 30
A = ATZ [%] - - - - - -
NIGU [%] 50,6 46,5 43,5 37,4 48,0 -
Ca-DCA [%] - - - - - -
Na-DCA [%] - - - - - -
TAGN [%] - - - - - -
GuN03 [%] - - - - - 51 ,7
B = KNO3 [%] 39,4 - 45,9 - 41 ,4 -
Sr(N03)2 [%] - 38,5 - 52,1 - 37,8
NaN03 [%] - - - - - -
C = Ti02 1 [%] - - - - - -
Zr02 2 [%] - - - - - -
AI2O3 3 [%] - - - - 5,0 5,0
AI203 + 1 %Pt 7 [%] - - - - - -
AI203 + 1 %(Pd+Pf) 8 [%] 10,0 15,0 - - - -
D = Eisen(lll)oxid 9 [%] - - 5,0 - 5,0 5,0
Aluminiumsilikat 10 [%] - - - - - -
Siliziumnitrid Si3N4 [%] - - 5,0 10,0 - -
E = Graphit [%] - - 0,6 0,5 0,6 -
Methylhydroxyethylcellulose11 [%] - - - - - -
Polyvinylbutyral [%] - - - - - 0,5
Theoretische Werte:
Gasausbeute (V=konstant) [mol/kg] 24,3 22,4 23,3 19,8 23,6 26,0
Temperatur (p=135*105Pa) [K] 2430 2330 2130 2820 1970 2100
Gemessene Werte (in 60 dm3 Kanne)
Kohlenmonoxid [ppm] 4500 4000 6300 6700 8000 5500
Stickoxide [ppm] 250 250 400 450 150 900
Ammoniak [ppm] 0 0 0 0 250 10
Grobstaub in der Kanne [g] 1 ,1 0,4 1 ,3 1 ,3 1 ,5 0,6
Feinstaub in der Kanne [g] 0,2 0,3 0,4 0,5 0,3
Figure imgf000020_0001
0,4 19
Beispiel Nr. 31 32 33 34 35 36
A = ATZ [%] - - - - - -
NIGU [%] - 43,0 17,7 9,0 18,1 16,0
Ca-DCA [%3 27,8 3,0 17,7 23,8 - -
Na-DCA [%] - - - - 18,1 16,0
TAGN [%] - - - - - -
GuN03 [%] - - - - - -
B = KN03 [%] - - - 57,2 - 58,0
Sr(N03)2 [%] 62,2 45,5 54,6 - 53,8 -
NaN03 [%] - - - - - -
C = Ti02 1 [%] - - - - - -
ZrO2 2 [%] - - - - - -
AI2O3 3 [%] 10,0 8,0 10,0 10,0 10,0 10,0
AI2O3 + 1 %Pt 7 [%] - - - - - -
AI2O3 + 1 %(Pd+Pt) 8 [%] - - '- - - -
D = Eisen(lll)oxid 9 [%] - - - - - -
Aluminiumsilikat 10 [%] - - - - - -
Siliziumnitrid Si3N4 [%] - - - - - -
E = Graphit [%] - - - - - -
Methylhydroxyethylcellulose11 [%] - 0,5 - - - -
Polyvinylbutyral [%] - - - - - -
Theoretische Werte:
Gasausbeute (V=konstant) [mol/kg] 11 ,4 22,5 15,8 14,0 17,4 14,7
Temperatur (p=135*105Pa) [K] 2440 2470 2420 1780 2230 1780
Gemessene Werte (in 60 dm3 Kanne 0:
Kohlenmonoxid [ppm] 2800 8000 3600 8000 10000 450
Stickoxide [ppm] 700 1000 800 500 800 100
Ammoniak [ppm] 0 0 0 50 3 2
Grobstaub in der Kanne [g] 2,2 0,6 1 ,2 3,2 1 ,3 1 ,5
Feinstaub in der Kanne [g] 0,5 0,3 0,4 0,4 0,2 0,3
Figure imgf000021_0001
20
Beispiel Nr. 37 38 39 40 41 42
A = ATZ [%] - - - - - -
NIGU [%] - - - - - -
Ca-DCA [%] 26,0 28,7 - - - -
Na-DCA [%] - - 28,5 28,5 - -
TAGN [%] - - - - 48,6 22,7
GuNO3 [%] - - - - - 22,7
B = KNO3 [%] - 61 ,3 - 61 ,0 41 ,4 34,6
Sr(N03)2 [%] 59,6 - 61 ,5 - - -
NaN03 [%] - - - - - -
C = Ti02 1 [%] 14,0 10,0 10,0 10,0 - -
Zr02 2 [%] - - - - - -
Al203 3 [%] - - - - 10,0 20,0
AI2O3 + 1%Pt 7 [%] - - - - - -
AI2O3 + 1 %(Pd+Pt) 8 [%] - - - - - -
D = Eisen(lll)oxid 9 [%] - - - - - -
Aluminiumsilikat 10 [%] - - - - - -
Siliziumnitrid Si3N4 [%] - - - - - -
E = Graphit [%] - - - - - -
Methylhydroxyethylcellulose11 [%] 0,4 - - - - -
Polyvinylbutyral [%] - - - 0,5 - -
Theoretische Werte:
Gasausbeute (V=konstant) [mol/kg] 10,9 11 ,7 9,7 10,7 26,2 23,4
Temperatur (p=135*105Pa) [K] 2400 1780 2240 1780 2140 1800
Gemessene Werte (in 60 dm3 Kanne)
Kohlenmonoxid [ppm] 1500 1800 2000 2500 3000 2700
Stickoxide [ppm] 300 800 500 1000 150 350
Ammoniak [ppm] 10 5 15 3 160 24
Grobstaub in der Kanne [g] 1 ,0 17 1 ,1 1 ,5 1 ,4 0,8
Feinstaub in der Kanne lg] 0,4 0,5 0,3 0,4 0,3
Figure imgf000022_0001
0,2 21
Beispiel Nr. 43 44 45 46 47 48
A = ATZ [%] 17,7 - - - - -
NIGU [%] - - - - - -
Ca-DCA [%] - - 18,8 - - -
Na-DCA [%] - - - - - -
TAGN [%] 17,7 - - - - -
GuN03 [%] - 54,2 18,8 50,0 50,0 51 ,5
B = KNO3 [%] 44,6 35,8 52,4 - - -
Sr(N03)2 [%] - - - 39,4 39,4 38,0
NaN03 [%] - - - - - -
C = TiO2 1 [%] - - - - 10,0 -
ZrO2 2 [%] - - - - - 10,0
AI2O3 3 [%] 20,0 5,0 10,0 10,0 - -
AI2O3 + 1%Pt 7 [%] - - - - - -
AI2O3 + 1%(Pd+Pt) 8 [%] - - - - - -
D = Eisen(lll)oxid 9 [%] - 5,0 - - - -
Aluminiumsilikat 10 [%] - - - - - -
Siliziumnitrid Si3N4 [%] - - - - - -
E = Graphit [%] - - - 0,6 0,6 -
Methylhydroxyethylcellulose11 [%] - - - - - 0,5
Polyvinylbutyral [%] - - - - - -
Theoretische Werte:
Gasausbeute (V=konstant) [mol/kg] 20,0 26,6 16,9 25,1 25,1 25,7
Temperatur (p=135*105Pa) [K] 1810 1780 1780 2120 2130 2170
Gemessene Werte (in 60 dm3 Kanne)
Kohlenmonoxid [ppm] 1000 5000 7000 6000 4000 3500
Stickoxide [ppm] 150 400 150 800 100 500
Ammoniak [ppm] 50 100 150 5 0 10
Grobstaub in der Kanne [g] 1 ,0 2,0 1 ,8 1 ,5 1 ,0 0,5
Feinstaub in der Kanne [g] 0,4 0,5 0,6
Figure imgf000023_0001
0,4 0,5 0,3 22
Beispiel Nr. 49 50 51 52 53 54
A = ATZ [%] 29,75 30,2 30,2 26,5 26,8 33,7
NIGU [%] - - - 8,0 - -
Ca-DCA [%] - - - - - -
Na-DCA [%] - - - - - -
TAGN [%] - - - - - -
GuN03 [%] - - - - 8,0 -
B = KN03 [%] 50,25 49,8 49,8 32,5 32,2 56,3
Sr(N03)2 [%] - - - - - -
NaN03 [%] - - - 15,0 15,0 -
C = Ti02 1 [%] - - - - - 10,0
Zr02 2 [%] 3,0 10,0 - - - -
Al203 3 [%] 14,0 10,0 10,0 18,0 18,0 -
AI2O3 + 1 %Pt 7 [%] - - - - - -
AI203 + 1 %(Pd+Pt) 8 [%] 3,0 - - - - -
D = Eisen(lll)oxid 9 [%] - - - - - -
Aluminiumsilikat 10 [%] - - 10,0 - - -
Siliziumnitrid Si3N4 [%] - - - - - -
E = Graphit [%] - - - - - -
Methylhydroxyethylcellulose11 [%] - - - - - -
Polyvinylbutyral [%] - - - - - -
Theoretische Werte:
Gasausbeute (V=konstant) [mol/kg] 17,6 17,8 19,3 19,4 19,7 19,8
Temperatur (p=135*105Pa) [K] 1780 1780 1920 1800 1780 1820
Gemessene Werte (in 60 dm3 Kanne)
Kohlenmonoxid [ppm] 2600 3000 4500 3500 6500 8000
Stickoxide [ppm] 300 200 300 800 500 250
Ammoniak [ppm] 23 50 50 0 5 300
Grobstaub in der Kanne [g] 1.0 1 ,1 1 ,2 0,8 1 ,0 0,8
Feinstaub in der Kanne [g] 0,2 0,4 0,5 0,2 0,2
Figure imgf000024_0001
0,3 23
Beispiel Nr. 55 56 57
A = ATZ [%] 30,35 31 ,66 29,75
NIGU [%] - - -
Ca-DCA [%] - - -
Na-DCA [%] - - -
TAGN [%] - - -
GuNO3 [%] - - -
B = KN03 [%] 49,65 - 50,25
Sr(N03)2 [%] - 56,34 -
NaN03 [%] - - -
C = Ti02 1 [%] - - -
ZrO2 2 [%] - - -
Al2O3 3 [%] 10,0 9,0 20,0
AI203 + 1 %Pt 7 [%] - - -
AI2O3 + 1%(Pd+Pt) 8 [%] - - -
D = Eisen(lll)oxid 9 [%] 6,0 - -
Aluminiumsilikat 10 [%] 4,0 3,0 -
Siliziumnitrid Si3N4 [%] - - -
E = Graphit [%] - - -
Methylhydroxyethylcellulose11 [%] - - -
Polyvinylbutyral [%] - - -
Theoretische Werte:
Gasausbeute (V=konstant) [mol/kg] 18,2 18,8 17,6
Temperatur (p=135*105Pa) [K] 1780 2390 1780
Gemessene Werte (in 60 dm3 Kanne)
Kohlenmonoxid [ppm] 6000 7500 3500
Stickoxide [ppm] 100 250 400
Ammoniak [ppm] 150 0 0
Grobstaub in der Kanne [g] 1 ,5 0,7 0,7
Feinstaub in der Kanne [g] 0,4 0,3 0,3
Figure imgf000025_0001
24
Die Abbrände wurden in einem praxisnahen Gasgeneratorgehäuse für den 60 Liter Fahrer- Airbag durchgeführt, mit Originalabmessungen, -anzünder und Filterpaket aus Edelstahl.
Das eingesetzte Gasgeneratortreibsatzgewicht betrug 50 bis 55 g, je nach Gasausbeute der jeweiligen Gasgeneratortreibstoff-Rezeptur.
Die Pellets hatten je nach Abbrandeigenschaften einen Durchmesser von 4 bis 6 mm, bei einer Pellethöhe von 1,5 bzw. 2,1 mm.
Die Gasausbeute und die Temperatur liegt im für Gasgeneratortreibstoffe für Airbags günstigen Bereich.
Bei der Angabe „Grobstaub" und „Feinstaub" in der Tabelle handelt es sich um den Schmutz in der Kanne nach der Verbrennung.
Die in der vorstehenden Tabelle angegebenen gemessenen Werte für CO, NOx und NH3 beziehen sich auf eine 60 Liter-Kanne. Hierbei handelt es sich um gute Werte für einen nicht optimierten Versuchsgasgenerator.
Aus dem Vergleich der Beispiele 14 mit 15, 17 mit 18 und 20 mit 21 ist der Effekt der hochdispersen Oxide im Vergleich zu den herkömmlichen Oxiden ersichtlich. Die Verringerung des Partikelausstoßes (Grob -und Feinstaub) betrug bei dem System Nitroguanidin/ Strontiumnitrat aufgrund der speziellen, erfindungsgemäß verwendeten hochdispersen Schlackenfänger (C) ca. 20 bis 40% im Vergleich zu den herkömmlichen Oxiden gleicher chemischer St kturformel, aber geringerer spezifischer Oberfläche. Ebenfalls ersichtlich ist die Verringerung der toxischen Gasanteile um ca. 10 bis 25% bedingt durch die Verbesserung der Verbrennung aufgrund der speziellen, erfindungsgemäß verwendeten Schlackenfänger (C) und deren Eigenschaften.
Weiterhin ist aus dem Vergleich, z.B. der Gasgeneratortreibstoffe der Beispiele 2 mit 8 und 10 der zusätzliche günstige Effekt bei der Verwendung von mit Katalysatoren dotierten hochdispersen Schlackenfängem (C) auf die Bildung von toxischen Gasanteilen ersichtlich. 25
Der Anteil an CO und NOx liegt bei den Beispielen 8 und 10 (mit Katalysator) unter den in Beispiel 2 (ohne Katalysator, aber ansonsten mit gleicher Zusammensetzung) angegebenen Werte.
Besonders bevorzugte Zusammensetzungen sind die der Beispiele 14, 17 und 20.
Die thermodynamischen Daten der einzelnen Gasrezepturen wurden auf den Sauerstoffbilanzüberschuß hin berechnet, der möglichst wenig toxische Gasentwicklung beim Abbrand versprach.

Claims

Patentansprüche
1. Gasgeneratortreibstoff, umfassend
(A) mindestens einen Brennstoff aus der Gruppe bestehend aus Guanidiniumnitrat (GUNI; GuNO3), Dicyanamid, Ammoniumdicyanamid, Natriumdicyanamid (Na-DCA), Kupferdicyanamid, Zinndicyanamid, Calciumdicyanamid (Ca-DCA), Guanidiniumdicyanamid (GDCA), Aminoguanidiniumbicarbonat (AGB),
Aminoguanidiniumnitrat (AGN), Triaminoguanidiniumnitrat (TAGN), Nitroguanidin (NIGU), Dicyandiamid (DCD), Azodicarbonamid (ADCA) sowie Tetrazol (HTZ), 5- Aminotetrazol (ATZ), 5-Nitro-l,2,4-triazol-3-on (NTO), deren Salze und deren Gemische,
(B) mindestens ein Alkali- oder Erdalkalinitrat oder Ammoniumnitrat, -chlorat oder -perchlorat,
(C) mindestens einen hochschmelzenden, im wesentlichen chemisch inerten Schlackenfänger, ausgewählt aus der Gruppe umfassend Al2O3, TiO2 und ZrO2 in hochdisperser Form oder Gemische davon.
2. Gasgeneratortreibstoff nach Anspruch 1, wobei Komponente (A) in einer Menge von etwa 20 bis 60 Gew.-%, vorzugsweise von etwa 28 bis 52 Gew.-% und insbesondere von etwa 45 bis 51 Gew.-%, Komponente (B) in einer Menge von etwa 38 bis etwa 63 Gew.-%, vorzugsweise von etwa 38 bis etwa 55 Gew.-% und insbesondere von etwa 39 bis 45 Gew.- %, Komponente (C) in einer Menge von etwa 5 bis 22 Gew.-%, vorzugsweise von etwa 8 bis 20 Gew.-% und insbesondere von etwa 9 bis 11 Gew.-% vorliegt. 27
3. Gasgeneratortreibstoff nach Anspruch 1 oder 2, wobei Komponente (A) ausgewählt ist aus der Gruppe bestehend aus Nitroguanidin, 5-Aminotetrazol, Dicyandiamid, Dicyanamid, Natrium- und Calciumdicyanamid und Guanidiniumnitrat, und deren Gemische.
4. Gasgenertortreibstoff nach einem der Ansprüche 1 bis 3, wobei Komponente (B) ausgewählt ist aus der Gruppe bestehend aus Natrium-, Kalium- oder Strontiumnitrat.
5. Gasgenertortreibstoff nach einem der Ansprüche 1 bis 4, wobei Komponente (C) ausgewählt ist aus der G ppe bestehend aus hochdispersem Al2O3, hochdispersem Ti02 oder hochdispersem ZrO2.
6. Gasgenertortreibstoff nach Anspruch 5, wobei Komponente (C) ausgewählt ist aus der Gmppe bestehend aus hochdispersem Al2O3 mit einer spezifischen Oberfläche von 100 +/- 15 m2/g, hochdispersem TiO2 mit einer spezifischen Oberfläche von 50 +/- 15 m2/g oder hochdispersem ZrO2 mit einer spezifischen Oberfläche von 40 +/- 10 m2/g.
7. Gasgenertortreibstoff nach Anspruch 5, wobei ein Teil der Komponente (C) als Träger dient, auf dem ein Platinmetall oder eine Metallegierung aus Platinmetallen oder Kupfer in einer katalytisch wirksamen Schichtdicke aufgebracht ist.
8. Gasgenertortreibstoff nach Anspruch 7, wobei das Platinmetall ausgewählt ist aus Ruthenium (Ru), Osmium (Os), Rhodium (Rh), Iridium (Ir), Palladium (Pd) oder Platin (Pt).
9. Gasgenertortreibstoff nach Anspruch 7, wobei die Metallegierung aus Platinmetallen ausgewählt ist aus Pt/Pd- und Pt/Rh-Legierungen.
10. Gasgenertortreibstoff nach einem der Ansprüche 7 bis 9, wobei der Gewichtsanteil des Katalysators an der Komponente (C) 0,1-5 Gew.-%, vorzugsweise 0,2-1,2 Gew.-% beträgt.
11. Gasgenertortreibstoff nach einem der Ansprüche 1 bis 10, wobei Komponente (A) Nitroguanidin ist, Komponente (B) Strontiumnitrat ist und Komponente (C) hochdisperses Al2O3, TiO2 oder ZrO2 ist.
12. Gasgenertortreibstoff nach Anspruch 11, wobei Komponente (A) in einer Menge von 45 bis 51 Gew.-% vorliegt, Komponente (B) in einer Menge von 39 bis 45 Gew.-% vorliegt und Komponente (C) in einer Menge von 9 bis 11 Gew.-% vorliegt, jeweils bezogen auf die Gesamtzusammensetzung.
13. Gasgenertortreibstoff nach einem der Ansprüche 1 bis 11, wobei zusätzlich Komponente (D) mindestens ein Schlackenbildner, ausgewählt aus Alkali- und Erdalkalimetallcarbonaten, Alkalimetall- oder Erdalkalimetalloxiden, Silikaten, Aluminaten, Aluminiumsilikaten, Siliciumnitrid (Si3N4) und Eisen(III)oxid anwesend ist.
14. Gasgenertortreibstoff nach Anspruch 13, wobei Komponente (D) in einer Menge von etwa 2 bis 12 Gew.-%, vorzugsweise in einer Menge von etwa 4 bis 10 Gew.-% vorliegt.
15. Gasgenertortreibstoff nach einem der Ansprüche 1 bis 14, wobei zusätzlich Komponente (E) mindestens ein in Wasser bei Raumtemperatur lösliches Bindemittel enthalten ist.
16. Gasgenertortreibstoff nach Anspruch 15, wobei das Bindemittel ausgewählt ist aus der Gmppe bestehend aus Celluloseverbmdungen, Polymerisaten aus einem oder mehreren polymerisierbaren olefmisch ungesättigten Monomeren, einem in Wasser bei Raumtemperatur unlöslichen Metallsalz der Stearinsäure oder Graphit.
17. Gasgenertortreibstoff nach Anspruch 15 oder 16, wobei das Bindemittel in einer Menge von 0 bis 2 Gew.-%, vorzugsweise von 0,3-0,8 Gew.-% vorliegt.
18. Verwendung des Gasgeneratortreibstoffs nach einem der Ansprüche 1 bis 17 als Gaserzeugungsmittel in Airbags, als Löschmittel oder Treibmittel.
PCT/DE1999/000782 1998-03-20 1999-03-17 Gasgeneratortreibstoffe WO1999048843A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020007010226A KR20010041919A (ko) 1998-03-20 1999-03-17 가스 발생기용 추진제
DE59913910T DE59913910D1 (de) 1998-03-20 1999-03-17 Gasgeneratortreibstoffe
JP2000537831A JP2002507542A (ja) 1998-03-20 1999-03-17 ガス発生剤のための推進薬
EP99919100A EP1064242B1 (de) 1998-03-20 1999-03-17 Gasgeneratortreibstoffe
AU36999/99A AU3699999A (en) 1998-03-20 1999-03-17 Propellants for gas generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19812372.8 1998-03-20
DE19812372A DE19812372C2 (de) 1998-03-20 1998-03-20 Gasgeneratortreibstoffe

Publications (1)

Publication Number Publication Date
WO1999048843A1 true WO1999048843A1 (de) 1999-09-30

Family

ID=7861744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/000782 WO1999048843A1 (de) 1998-03-20 1999-03-17 Gasgeneratortreibstoffe

Country Status (8)

Country Link
EP (1) EP1064242B1 (de)
JP (1) JP2002507542A (de)
KR (1) KR20010041919A (de)
AT (1) ATE342246T1 (de)
AU (1) AU3699999A (de)
CZ (1) CZ297313B6 (de)
DE (2) DE19812372C2 (de)
WO (1) WO1999048843A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100376515C (zh) * 2005-03-28 2008-03-26 东方久乐汽车安全气囊有限公司 一种产气组合物及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10064285C1 (de) * 2000-12-22 2002-10-17 Nigu Chemie Gmbh Gasgeneratortreibstoff-Zusammensetzung und deren Verwendung
CZ301335B6 (cs) * 2005-06-15 2010-01-20 Explosia, A. S. Pyrotechnické smesi pro predpínace bezpecnostních pásu
DE102008022749B4 (de) * 2008-05-08 2015-05-13 Trw Airbag Systems Gmbh Gasgenerator
CZ303225B6 (cs) * 2008-10-23 2012-06-06 Explosia A.S. Pyrotechnická slož pro bezpecnostní systémy pasivní ochrany, zejména pro použití v airbagu ci predpínaci bezpecnostních pásu
DE102012024799A1 (de) * 2012-12-19 2014-06-26 Trw Airbag Systems Gmbh Gepresstes Treibladungselement, Verfahren zu dessen Herstellung und Gasgenerator mit Treibladungselement
JP6231876B2 (ja) * 2013-12-27 2017-11-15 日本工機株式会社 移動体搭載用エアロゾル消火装置及びこれに用いるエアロゾル消火薬剤
CN114349584B (zh) * 2022-01-27 2023-04-07 湖北航天化学技术研究所 一种低烧蚀性高能低特征信号推进剂
DE102022108291A1 (de) 2022-04-06 2023-10-12 Zf Airbag Germany Gmbh Gepresstes Treibstoffelement, Verfahren zu dessen Herstellung und Gasgenerator mit Treibstoffelement

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035757A (en) * 1990-10-25 1991-07-30 Automotive Systems Laboratory, Inc. Azide-free gas generant composition with easily filterable combustion products
US5143567A (en) * 1991-08-23 1992-09-01 Morton International, Inc. Additive approach to ballistic and slag melting point control of azide-based gas generant compositions
DE9416112U1 (de) * 1993-10-06 1994-12-15 Contec - Chemieanlagen GmbH, 84544 Aschau Gasgeneratortreibstoff
DE4401214C1 (de) * 1994-01-18 1995-03-02 Fraunhofer Ges Forschung Gaserzeugende Mischung
DE4435790A1 (de) * 1993-10-06 1995-04-13 Contec Chemieanlagen Gmbh Gasgeneratortreibstoff
EP0659714A2 (de) * 1993-12-10 1995-06-28 Morton International, Inc. Gaserzeugende Zusammensetzung zur Verwendung in Aluminiumbauteilen
EP0661253A2 (de) * 1993-12-10 1995-07-05 Morton International, Inc. Gaserzeugende Zusammensetzungen, wobei als Brennstoff Dicyanamid-Salze benutzt werden
WO1996025375A1 (en) * 1995-02-16 1996-08-22 Royal Ordnance Plc Vehicle occupant restraint systems powered by gas generating compositions
DE19505568A1 (de) * 1995-02-18 1996-08-22 Dynamit Nobel Ag Gaserzeugende Mischungen
EP0763512A1 (de) * 1995-02-03 1997-03-19 Otsuka Kagaku Kabushiki Kaisha Gasgenerator für einen airbag

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4411654C2 (de) * 1993-10-20 1996-04-04 Temic Bayern Chem Airbag Gmbh Gaserzeugendes Gemisch
DE4423088A1 (de) * 1994-07-01 1996-01-04 Temic Bayern Chem Airbag Gmbh Gaserzeugendes, azidfreies Stoffgemisch
DE19531130A1 (de) * 1995-08-24 1997-02-27 Bayern Chemie Gmbh Flugchemie Gaserzeugende Masse mit einem Verschlackungsmittel
DE19617538C1 (de) * 1996-05-02 1997-10-30 Temic Bayern Chem Airbag Gmbh Gaserzeugendes, azidfreies Stoffgemisch
DE19643468A1 (de) * 1996-10-22 1998-04-23 Temic Bayern Chem Airbag Gmbh Gaserzeugendes, azidfreies Feststoffgemisch

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035757A (en) * 1990-10-25 1991-07-30 Automotive Systems Laboratory, Inc. Azide-free gas generant composition with easily filterable combustion products
EP0482852A1 (de) * 1990-10-25 1992-04-29 Automotive Systems Laboratory Inc. Gaserzeugende, azidfreie Zusammensetzung, die leicht zu filternde Verbrennungsprodukte ergibt
US5143567A (en) * 1991-08-23 1992-09-01 Morton International, Inc. Additive approach to ballistic and slag melting point control of azide-based gas generant compositions
DE9416112U1 (de) * 1993-10-06 1994-12-15 Contec - Chemieanlagen GmbH, 84544 Aschau Gasgeneratortreibstoff
DE4435790A1 (de) * 1993-10-06 1995-04-13 Contec Chemieanlagen Gmbh Gasgeneratortreibstoff
EP0659714A2 (de) * 1993-12-10 1995-06-28 Morton International, Inc. Gaserzeugende Zusammensetzung zur Verwendung in Aluminiumbauteilen
EP0661253A2 (de) * 1993-12-10 1995-07-05 Morton International, Inc. Gaserzeugende Zusammensetzungen, wobei als Brennstoff Dicyanamid-Salze benutzt werden
DE4401214C1 (de) * 1994-01-18 1995-03-02 Fraunhofer Ges Forschung Gaserzeugende Mischung
EP0763512A1 (de) * 1995-02-03 1997-03-19 Otsuka Kagaku Kabushiki Kaisha Gasgenerator für einen airbag
WO1996025375A1 (en) * 1995-02-16 1996-08-22 Royal Ordnance Plc Vehicle occupant restraint systems powered by gas generating compositions
DE19505568A1 (de) * 1995-02-18 1996-08-22 Dynamit Nobel Ag Gaserzeugende Mischungen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100376515C (zh) * 2005-03-28 2008-03-26 东方久乐汽车安全气囊有限公司 一种产气组合物及其制备方法

Also Published As

Publication number Publication date
CZ297313B6 (cs) 2006-11-15
DE59913910D1 (de) 2006-11-23
EP1064242B1 (de) 2006-10-11
CZ20003417A3 (cs) 2001-02-14
ATE342246T1 (de) 2006-11-15
AU3699999A (en) 1999-10-18
DE19812372A1 (de) 1999-09-30
EP1064242A1 (de) 2001-01-03
KR20010041919A (ko) 2001-05-25
DE19812372C2 (de) 2001-10-04
JP2002507542A (ja) 2002-03-12

Similar Documents

Publication Publication Date Title
DE69423626T2 (de) Gaserzeugende rückstandsfreie azidfreie zusammensetzung
DE69220412T2 (de) Verfahren zur Kontrolle der Menge von Stickoxiden im generierten Gas für Airbags
DE69106667T2 (de) Gaserzeugende, azidfreie Zusammensetzung, die leicht zu filternde Verbrennungsprodukte ergibt.
US5500059A (en) Anhydrous 5-aminotetrazole gas generant compositions and methods of preparation
US5670740A (en) Heterogeneous gas generant charges
EP0712384B1 (de) Wasserfreie gaserzeugende tetrazolzusammensetzung und verfahren zur herstellung
EP0722429B1 (de) Gasgeneratortreibstoff
US5460668A (en) Nonazide gas generating compositions with reduced toxicity upon combustion
DE69423631T2 (de) Thermit-zusammensetzungen zur verwendung als gaserzeugende körper
EP0503341B1 (de) Stabile, stickstoffreiche Verbindung
EP0765299B1 (de) Katalysator enthaltende, azidfreie gaserzeugende zusammensetzungen
EP0905108B1 (de) Partikelfreies gaserzeugendes Gemisch
EP1345872B1 (de) Gasgeneratortreibstoff-zusammensetzung
EP1064242B1 (de) Gasgeneratortreibstoffe
WO1998017607A1 (de) Gaserzeugendes, azidfreies feststoffgemisch
EP1162183B1 (de) Anzündmischung zur Verwendung in Gasgeneratoren
DE4435790A1 (de) Gasgeneratortreibstoff
KR20000076253A (ko) 저잔사 에어백용 가스발생제 조성물
WO1997042142A1 (de) Gaserzeugendes, azidfreies stoffgemisch
EP1051373B1 (de) Azidfreie, gaserzeugende zusammensetzung
DE102004059992A1 (de) Gaserzeugende Zusammensetzung
DE2327741A1 (de) Festes mittel zur gaserzeugung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: RO

Ref document number: 2000 200000884

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020007010226

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PV2000-3417

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 1999919100

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09646767

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999919100

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV2000-3417

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1020007010226

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: CA

WWR Wipo information: refused in national office

Ref document number: 1020007010226

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999919100

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: PV2000-3417

Country of ref document: CZ