WO1999041699A1 - Ic card and its frame - Google Patents

Ic card and its frame Download PDF

Info

Publication number
WO1999041699A1
WO1999041699A1 PCT/JP1999/000581 JP9900581W WO9941699A1 WO 1999041699 A1 WO1999041699 A1 WO 1999041699A1 JP 9900581 W JP9900581 W JP 9900581W WO 9941699 A1 WO9941699 A1 WO 9941699A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
coil
semiconductor element
planar coil
card
Prior art date
Application number
PCT/JP1999/000581
Other languages
English (en)
French (fr)
Inventor
Takashi Ikeda
Masatoshi Akagawa
Daisuke Ito
Original Assignee
Shinko Electric Industries Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP3162498A external-priority patent/JP3542266B2/ja
Priority claimed from JP25292098A external-priority patent/JP3542281B2/ja
Application filed by Shinko Electric Industries Co., Ltd. filed Critical Shinko Electric Industries Co., Ltd.
Priority to EP99905190A priority Critical patent/EP0996082B1/en
Priority to AT99905190T priority patent/ATE307363T1/de
Priority to AU25464/99A priority patent/AU2546499A/en
Priority to DE69927765T priority patent/DE69927765T2/de
Priority to KR1019997009241A priority patent/KR100594829B1/ko
Priority to US09/402,946 priority patent/US6252777B1/en
Publication of WO1999041699A1 publication Critical patent/WO1999041699A1/ja
Priority to NO994964A priority patent/NO994964D0/no
Priority to HK00107996A priority patent/HK1028660A1/xx

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/0775Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Definitions

  • the present invention relates to an IC force frame and a frame for an IC force, and more particularly, to a flat coil formed by winding a conducting wire a plurality of times on substantially the same plane by press working or etching.
  • the terminals of the flat coil and the electrode terminals of the semiconductor element are electrically connected.
  • An IC card is composed of a planar coil formed by winding a conductor wire a plurality of times and a semiconductor element, and is made of PVC or the like, and characters or the like are printed on the front side to form the front and back surfaces of the IC card.
  • a planar coil or the like is sandwiched and sealed by an adhesive layer made of a polyurethane resin or the like formed on the inner surface side of the resin film.
  • a planar coil of such an IC card is formed by winding a covered electric wire or by forming a conductive wire by etching a metal foil formed on a resin film. is there.
  • Japanese Patent Application Laid-Open No. 6-310324 proposes an IC force using a planar coil formed by press working.
  • FIG. 50 shows a conventional planar coil 100 formed by press working.
  • the planar coil 100 has terminals 102 and 104 formed inside and outside the coil.
  • the wire 114 is a conductor 101 forming the planar coil 100.
  • Cross Therefore, when insulating wires are used for the wires 112 and 114, it is difficult to further reduce the cost of the IC card.
  • non-insulated wires are used for the wires 1 12 that do not cross the plane coil 100, and insulated wires are used for the wires 1 14 that cross the plane coil 100, do not use two types of wires.
  • the manufacturing process of the IC card is complicated, and it is difficult to reduce the cost and mass production of the IC card.
  • the IC card is formed to a thickness of 1 mm or less, it must be formed to be extremely thin.
  • the planar coil formed by press working or the like must have excellent handling properties such as conveyance and be suitably used for mounting semiconductor elements. Disclosure of the invention
  • a first object of the present invention is to form a semiconductor device by press working.
  • the purpose is to propose an IC card that can achieve low cost and mass production using a planar coil.
  • a second object of the present invention is to provide an IC card frame which is excellent in mass productivity and excellent in handling properties such as transportation, and can be suitably adapted to a thin IC card.
  • the present inventors have conducted various studies to solve the first problem.
  • the surface of the semiconductor element excluding the electrode terminals is electrically insulated by the passivation film, and thus the electrodes are not electrically connected.
  • the parts of the semiconductor element excluding the terminals may be in contact with the conductors of the planar coil, and the electrode terminals of the semiconductor element are arranged on the side of the planar coil, so that the terminals of the planar coil are arranged close to the electrode terminals of the semiconductor element. It turned out that it could be set up.
  • the present inventors arranged the semiconductor element 106 such that the electrode terminals 108 and 110 were on the conducting wire 101 side with respect to the planar coil 100, and provided the electrode terminals 108 and 110 of the semiconductor element 106 and the planar coil 100.
  • Each of the terminals 101 and 103 was bonded with a wire.
  • this IC card it is not necessary to insulate the wire connecting the planar coil 101 and the semiconductor element 106, and it has been conventionally required to bond the semiconductor element to the lead frame of the internal lead.
  • the present inventor has learned that the edge bonding method employed as the bonding method can be employed, and has reached the present invention.
  • the present invention for solving the first problem is that a flat coil formed by winding a conducting wire a plurality of times on substantially the same plane is formed by press working or etching work, and is connected to a terminal of the flat coil.
  • the planar coil includes an inner terminal formed inside the coil and an outer terminal formed outside the coil.
  • the semiconductor element is disposed such that the surface on which the electrode terminal is formed faces the conducting wire of the planar coil.
  • each of the electrode terminals of the semiconductor element connected to the inner terminal and the outer terminal of the planar coil is located inside and outside of the coil, and the electrode terminal of the semiconductor element is positioned with respect to the inward and outward directions of the coil.
  • the present inventors set the flat coil 100 so that the plane on the back side with respect to the surface on which the electrode terminals 108 and 110 are formed is the conductor 101 side.
  • the semiconductor element 106 was disposed, and the electrode terminals 108 and 110 of the semiconductor element 106 and the terminals 101 and 103 of the planar coil 100 were bonded by wires.
  • this 1 C force it is not necessary to insulate the wire connecting the planar coil 101 and the semiconductor element 106, and it is not necessary that the semiconductor element and the inner lead of the lead frame have been conventionally used.
  • the edge bonding method which is adopted as the bonding method, can be used.
  • the present invention for solving the second problem is that a flat coil formed by winding a conductive wire a plurality of times on a substantially same plane is formed by press working or etching work, and a terminal of the flat coil is formed.
  • An IC card electrically connected to an electrode terminal of a semiconductor element, wherein the planar coil includes an inner terminal formed inside the coil and an outer terminal formed outside the coil.
  • the semiconductor element is arranged such that a plane on the back side with respect to a surface on which the electrode terminal is formed is opposed to a conductive wire of the plane coil, and is connected to an inner terminal and an outer terminal of the plane coil.
  • the electrode terminals of the semiconductor element are electrically connected to the terminals of the planar coil located on the same side with respect to the inside and outside directions of the coil.
  • I C force one de, characterized by being.
  • the conductive wires are substantially the same.
  • An IC coil in which a plane coil formed by winding a plurality of times on a plane is formed by pressing or etching, and the terminals of the plane coil and the electrode terminals of the semiconductor element are electrically connected.
  • the planar coil has an inner terminal formed inside the coil and an outer terminal formed outside the coil, and the semiconductor element is connected to a lead connected to the electrode terminal.
  • the connection portion formed at the tip portion is resin-molded so as to be exposed, and each of the connection portions of the leads connected to the inner terminal and the outer terminal of the planar coil is connected to the inside and outside of the coil.
  • the connecting portion of the lead is electrically connected to a terminal of a flat coil located on the same side with respect to the inside and outside of the coil. is there.
  • the present invention for solving the second problem is characterized in that a flat coil formed by winding a conductive wire a plurality of times on substantially the same plane is formed by press working or etching work, and the terminal of the flat coil is formed by pressing or etching.
  • An IC card fringe comprising: an inner terminal formed inside a coil to which electrode terminals of a semiconductor element located are electrically connected, and an outer terminal formed outside the coil. It is a theme.
  • substantially on the same plane means that even if a part of the conductor constituting the planar coil has irregularities, the conductor is wound on the same plane as the whole planar coil. It just needs to be turned.
  • FIG. 1 is a front view for explaining an example of an IC card according to the present invention
  • FIG. 2 is a partial cross-sectional view of the IC card shown in FIG.
  • FIG. 3 is a front view illustrating a frame on which a plurality of planar coils are formed.
  • FIGS. 4 (a) to 4 (e) are explanatory diagrams for explaining the edge bonding method.
  • FIG. 5 is a partial cross-sectional view for explaining another example of the IC card according to the present invention.
  • FIG. 6 is a partial front view for explaining another example of the IC force according to the present invention.
  • FIG. 7 is a partial perspective view for explaining the terminals of the flat coil constituting the IC card shown in FIGS. 1, 2, 5, and 6.
  • FIG. 8 is a partial front view for explaining another example of the IC card according to the present invention
  • FIG. 9 is a partial perspective view for explaining the terminals of the planar coil constituting the IC force shown in FIG. FIG.
  • FIG. 10 is a partial front view for explaining another example of the IC force according to the present invention
  • FIG. 11 is a portion for explaining the terminals of the planar coil constituting the IC force shown in FIG.
  • FIG. 12 is a perspective view
  • FIG. 12 is a partial perspective view illustrating another example of the terminal of the planar coil shown in FIG.
  • FIG. 13 is a partial perspective view C illustrating the end of the conductive wire 11 before forming the terminal of the flat coil constituting the IC card shown in FIGS. 7, 9, 11, and 12.
  • FIG. 14 is a partial cross-sectional view for explaining another example of the IC power according to the present invention
  • FIG. 15 is a perspective view for explaining the shape of the connection metal member 30 shown in FIG.
  • FIG. 16 is a partial front view for explaining another example of the IC force according to the present invention
  • FIG. 17 is a view for explaining the shape of the terminal 10b (10a) of the planar coil 10 shown in FIG. It is a partial sectional view.
  • FIG. 18 is a partial front view for explaining another example of the IC card according to the present invention.
  • FIG. 18 is a partial front view for explaining another example of the IC card according to the present invention.
  • FIG. 19 is a partial cross-sectional view for explaining another example of the IC force according to the present invention.
  • FIG. 20 is a partial front view for explaining another example of the IC card according to the present invention
  • FIG. 21 is a partial cross-sectional view for explaining the IC card shown in FIG.
  • FIG. 22 is a partial front view for explaining another example of the 1C card according to the present invention
  • FIG. 23 is a partial cross-sectional view for explaining the IC force shown in FIG.
  • FIG. 24 is a partial perspective view for explaining another example of the IC card according to the present invention.
  • FIG. 25 is a partial perspective view for explaining another example of the IC card according to the present invention.
  • FIG. 26 is a partial front view for explaining another example of the IC card according to the present invention.
  • FIG. 27 is a partial front view for explaining another example of the IC card according to the present invention
  • FIG. 28 is a partial cross-sectional view for explaining the IC force shown in FIG.
  • FIG. 29 is a front view for explaining another example of the IC card according to the present invention
  • FIGS. 30 (a) and 30 (b) are partial cross-sectional views of the IC card shown in FIG.
  • FIG. 31 is a partial cross-sectional view for explaining another modification of the IC card according to the present invention.
  • FIG. 32 is a partial front view for explaining another modification of the IC card according to the present invention.
  • FIG. 33 is a partial front view for explaining another modification of the IC card according to the present invention.
  • FIG. 34 is a partial cross-sectional view for explaining another modification of the IC card according to the present invention.
  • FIGS. 35 (a) and 35 (b) are a partial plan view and a partial cross-sectional view for explaining another modification of the IC card according to the present invention.
  • FIG. 36 is a partial cross-sectional view for explaining another modification of the IC card according to the present invention.
  • FIG. 37 is a partial perspective view for explaining another modification of the IC card according to the present invention.
  • FIGS. 38 (a) and 38 (b) are a partial plan view and a partial side view for explaining another modification of the IC card according to the present invention.
  • FIG. 39 is a partial plan view for explaining another modification of the IC card according to the present invention.
  • FIG. 40 is a partial plan view for explaining another modification of the IC card according to the present invention
  • FIG. 41 is a partial cross-sectional view for explaining the IC force shown in FIG.
  • FIG. 42 is a partial plan view for explaining another modification of the IC card according to the present invention.
  • FIG. 43 is a plan view for explaining still another example of the IC card according to the present invention
  • FIG. 44 is a partial cross-sectional view of the 1C card shown in FIG. 43
  • FIG. 45 is a view shown in FIG.
  • FIG. 3 is a plan view of a module body 40 used for an IC card.
  • FIG. 46 is a partial plan view for explaining another modification of the IC card according to the present invention.
  • FIGS. 47 (a) to 47 (c) are partial cross-sectional views showing a forming process of another modification of the IC force according to the present invention
  • FIG. 48 is a perspective view of the modification.
  • FIG. 49 is a partial sectional view of a modification using a potting resin.
  • FIG. 50 is a plan view for explaining a conventional IC card. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a plan view showing an example of an IC card according to the present invention.
  • a rectangular planar coil 10 formed by winding a conducting wire 11 having a thickness of 80 m or more formed by press working a plurality of times on substantially the same plane is formed.
  • the planar coil 10 has a conductive wire 11 wound a plurality of times on the same plane as a whole.
  • Terminals 10a and 10b provided at the respective ends located inside and outside the coil of the plane coil 10; and a semiconductor element 12 having a thickness of 40 to 50
  • the electrode terminals 12a and 12b located inside and outside the coil are electrically connected to terminals formed on the same side with respect to the inside and outside directions of the coil.
  • a flat coil 10 on which a semiconductor element 12 is disposed has a concave portion formed by bending a conducting wire 11 forming a flat coil 10 as shown in FIG.
  • the semiconductor element 12 is provided in the recess 14.
  • the bending of the conductor 11 can be performed by press working.
  • the recess 14 is preferably sized so that the entire semiconductor element 12 is inserted into the recess 14.
  • the recess 14 is formed between the corners of the rectangular planar coil 10, but the semiconductor element 10 may be provided by forming the recess 14 at the corner of the planar coil 10. .
  • connection surface 16 is formed by crushing so as to be substantially the same as the formation surface on which the twelve electrode terminals 12a and 12b are formed.
  • the portion where the connection surface 16 is formed is formed to have substantially the same thickness as the semiconductor element 12, as shown in FIG.
  • the edge bonding method or the ball bonding method is used. Therefore, wire bonding can be performed.
  • the terminals 10a, 10b of the planar coil 10 are formed by gold, platinum, or aluminum wires 18, 18 without any part of the loop protruding from the plane of the planar coil 10.
  • the electrode terminals 12a and 12b of the semiconductor element 12 can be electrically connected.
  • the planar coil 10 and the semiconductor element 12 are made of PVC or the like, and characters or the like are printed on the front side to form resin films 20a, 20a, It is sandwiched and sealed by adhesive layers 22a and 22b formed on the inner surface side of 20b and made of a polyurethane resin, a polyolefin resin, or the like.
  • the frame F is formed by pressing a metal plate such as a metal such as copper, iron, or aluminum, or an alloy thereof, and has a flat coil formed between two rails 60 parallel to each other. 10, 10 'are formed in the longitudinal direction of the rail 60.
  • the outermost conductor 11 a is formed to be thicker than the other conductors 11, and the conductor 11 a of the planar coil 10 is connected to the conductor of the adjacent planar coil 10. They are connected to each other by 11 a and a connecting portion 62.
  • the strength of each of the planar coils 10 can be improved, and the handleability in transporting the frame F can be improved.
  • the outermost conductor 11a is formed thicker, but the conductor 11a may be an IC card in a state where the conductor 11a is thicker than the other conductors 11.
  • the outermost conductor 11 a may be cut to have the same thickness as the other conductors 11.
  • the planar coil 10 is configured.
  • the conductive wires 11 to be formed may be connected by a connecting portion. This connecting portion is cut by a wire before being sandwiched by the adhesive layers 22a and 22b formed on the inner surface side of the resin films 20a and 20b forming the front and back surfaces of the IC force. Short circuit between 1 and 1 can be prevented.
  • the frame F shown in FIG. 3 can also be obtained by etching a metal plate such as a metal such as copper, iron, or aluminum or an alloy thereof.
  • the frame F obtained by the etching process can form the planar coil 10 composed of the thin conductive wire 11 compared to the flat coil conductive wire 11 formed by the press working.
  • the semiconductor element 12 may be mounted on the plane coil 10 separated from the frame F. It is preferable to mount the semiconductor element 12 without disconnecting the semiconductor element 12 from the frame F. In this case, the semiconductor element 12 is mounted on each of the planar coils 10 formed on the frame F, and the terminals 10 a and 10 b of the planar coil 10 and the electrode terminals 12 a and 12 b is bonded with wires 18 and 18. Next, after the plane coil 10 and the semiconductor element 12 are sandwiched and sealed by the resin films 20a and 20b having the adhesive layers 22a and 22b formed on one side, predetermined portions are cut and cut. You can gain 1 C force by disconnecting from Frame F.
  • the edge bonding method is preferable because the bulge (the size of the loop) of the wires 18 and 18 is made as small as possible.
  • Such a page bonding method can be performed using a page bonding apparatus shown in FIG.
  • This edge bonding device is widely used as a semiconductor device manufacturing device.
  • T / JP 9/00581 The tip of the wire 24 that has moved above one of the terminals to be bonded (hereinafter referred to as the bonding terminal) has the tip of the wire 18 held by the clamper 26. Are obliquely inserted [(a) in Fig. 4]. The edge 24 descends, and the tip of the wire 18 is crimped on the connection surface [(b) of FIG. 4].
  • the clamper 26 is opened while moving the page 24 in the direction of the other bonding terminal formed substantially flush with one of the bonding terminals, and the wire 18 is moved to the other bonding terminal. After being guided to the terminal [FIG. 4 (c)], the tip of the wire 18 is crimped onto the connection surface of the other bonding terminal [FIG. 4 (d)].
  • wire bonding can be continued.
  • the distal end of the wire 18 held by the clamper 26 is obliquely passed through the distal end of the edge 24.
  • the bulge (the size of the loop) of the wire 18 can be made as small as possible.
  • the terminals 10 a and 10 b of the flat coil 10 and the electrode 12a and 12b are electrically connected.
  • the loop-shaped wire 18 shown in FIG. 2 sandwiches and seals the planar coil 10 and the semiconductor element 12 by resin films 20 a and 20 b having adhesive layers 22 a and 22 b formed on one side. At this time, the loop portion of the wire 18 is deformed in the flow direction of the adhesive, the crimped portion of the wire 18 is separated, or the wire is 1
  • the wire 18 and the conductive wire 11 of the flat coil 10 may come into contact with each other due to cutting of the wire 18.
  • the crimped portion of the wire 18 crimped to the terminal 10 b of the planar coil 10 and the electrode terminal 12 b of the semiconductor element 12 is made of resin 15. , 15, especially preferably fixed with UV curable resin.
  • the bonding of the wire 18 may be performed by using a ball bonding method in addition to the above-described edge bonding method.
  • bonding is performed by wires 18, 18 in order to electrically connect the terminals 10 a, 10 of the planar coil 10 and the electrode terminals 12 a, 12 b of the semiconductor element 12. are doing. Since the semiconductor element 12 has a thickness of about 40 to 50 zm and is light, the semiconductor element 12 can be sufficiently supported by the wires 18.
  • the supporting wires 25 supporting the semiconductor element 12 are flat. It may be provided between the coil 10 and the conductor 11.
  • the support wire pads 23a, 23b for crimping the support wires 25, 25 are formed on the surface on which the electrode terminals 12a, 12b of the semiconductor element 12 are formed and on the outside and inside of the planar coil 10. It is provided.
  • FIG. 6 two supporting wires 25 are provided, but if the semiconductor element 12 can be sufficiently supported by one supporting wire 25, only one supporting wire 25 may be used.
  • connection surfaces 16 of the terminals 10a and 10b of the planar coil 10 shown in FIGS. 1 to 6 are substantially coplanar with the plane including the surfaces on which the electrode terminals 12a and 12b of the semiconductor element 12 are formed by crushing. Any shape can be used, but the planar coil shown in Figs. 1, 2 and 6 can be used.
  • the ten terminals 10a and 10b preferably have terminal shapes shown in FIG.
  • the crushed connection surface 16 of the terminal 10 a (10 b) shown in FIG. 7 extends while maintaining the width of the conductor 11, and the end of the wire 18 stretched substantially parallel to the conductor 11. Can be sufficiently secured.
  • connection between the terminals 10a and 10b of the planar coil 10 and the electrode terminals 12a and 12b of the semiconductor element 12 is made in a plane bypassing the semiconductor element 12 as shown in FIG. It may be performed between the terminals 10a and 10b provided near the electrode terminals 12a and 12b located inside and outside the coil 10.
  • FIG. 8 shows a case where the wires 18, 18 connecting the two are stretched in a direction perpendicular to the conductor 11.
  • the terminals 10a and 10b of the planar coil 10 shown in FIG. 8 are preferably those shown in FIG.
  • the crushed connection surface 16 of the terminal 10a (10b) in FIG. 9 is wider than the conductor 11, and is connected to the end of the wire 18 stretched in a direction perpendicular to the conductor 11. Can be secured sufficiently.
  • the adhesive flows.
  • the wire 18 may be deformed in the direction. In particular, when the gap between the conductors 11 constituting the planar coil 10 is narrow, the deformed wire 18 may come into contact with the conductor 11. Therefore, in order to reduce the flow of the adhesive near the wire 18, as shown in FIG.
  • the conductor 11 It is preferable to form the wall 27 at a portion opposite to the side.
  • the wire 18 is sandwiched between the adhesive layers 22a and 22b and sealed by the wall portion 27, the flow of the adhesive near the terminals 10a and 10b is reduced so that the wire 18 comes into contact with the conductive wire 11. Deformation can be prevented.
  • the terminals 10a and 10b of the planar coil 10 shown in FIG. 10 those shown in FIG. 11 are preferable. Terminals 10a and 10b in FIG.
  • the connection surface 16 is crushed so as to extend while maintaining the width of the conductor 11, and a wall 27 is formed at a portion of the connection surface 16 opposite to the conductor 11 side. It is erected.
  • terminals 10a and 10b of the planar coil 10 shown in FIG. 11 can be used.
  • Terminals 10a and 10b in FIG. 11 are formed with crushed connection surfaces 16 so that the ends of the conductors 11 extend while maintaining the width of the conductors 11, and both ends of the connection surfaces 16 are formed.
  • Side walls 27a and 27b are formed. According to the terminals 10a and 10b shown in FIG. 12, a place to be connected to the end of the wire 18 stretched substantially in parallel with the conductor 11 can be sufficiently secured, and the wire 18 is connected to the adhesive layers 22a and 22b.
  • each of the terminals 10a (10b) shown in FIGS. 7, 9, 11, and 12 can be formed by crushing the end of the conductive wire 11 constituting the planar coil 10 shown in FIG.
  • the terminals 10a and 10b formed by the crushing process are bonded by wires 18 so that the connection surface 16 of the terminals 10a and 10b is gold-plated or bonded to secure the connection with the wires 10. Palladium plating is preferred.
  • the terminals 10a and 10b have complicated shapes, it is difficult to apply gold plating or palladium plating only to the connection surface 16. For this reason, as shown in FIG. 13, it is preferable to previously apply gold plating or palladium plating to the portion 28 of the end of the conductor 11 where the crushing process is performed.
  • the pre-applied gold or palladium plating can be extended to cover the connection surfaces 16 of the terminals 10a and 10b substantially during the crushing process.
  • the terminals 10a and 10b of the planar coil 10 are used.
  • connection between T / JP99 / 00581 and the electrode terminals 12a, 12b of the semiconductor element 12 is made by gold, platinum, or aluminum wires 18, 18, which have excellent conductivity, but the wires 18, 18 are thin. Therefore, the electric resistance value is higher than that of the conductive wire 11 constituting the planar coil 10. For this reason, there is a concern that electric power generated by electromagnetic induction in the planar coil 10 is not sufficiently transmitted to the semiconductor element 12.
  • the terminals 10a and 10b of the planar coil 10 and the electrode terminals 12a and 12b of the semiconductor element 12 are connected by a ribbon-shaped connection metal member 30. Is preferred.
  • the ribbon-shaped connection metal member 30 has a width substantially equal to the width of the conductive wire 11 and is formed of a metal having good conductivity such as copper, gold, and aluminum.
  • the connecting metal member 30 may be a flat plate, but preferably has a dome-shaped portion 30c formed in the middle as shown in FIG. This is because a stress or the like generated in the planar coil 10 due to a difference in thermal expansion coefficient between the planar coil 10 and the semiconductor element 12 or a bending of the IC force can be absorbed.
  • the connection metal member 30 shown in FIG. 15 has both ends 30a and 30b formed flat, and is connected to the terminal 10a (10b) of the planar coil 10 and the electrode terminal 12a (12b) of the semiconductor element 12. Is done.
  • connection metal member 30 when the connection metal member 30 is made of copper, the connection between the two terminals is performed by applying gold, tin, or solder to the connection surface of the connection metal member 30 and the electrodes of the semiconductor element 12.
  • the terminal 12a, 12b and the terminal 10a, 10b of the planar coil 10 are plated with gold, and the two terminals to be connected are heated and crimped, so that the eutectic alloy can be used.
  • the connection metal member 30 when the connection metal member 30 is made of gold or aluminum, the connection between the two terminals can be performed without applying metal plating to the connection surface of the connection metal member 30.
  • the connection between the two terminals can also be performed using a conductive adhesive. It is needless to say that the dome-shaped portion 30 c has a size that does not protrude from the planar coil 10.
  • the decrease in the electrical resistance at the connection between the terminals 10a and 10b of the planar coil 10 and the electrode terminals 12a and 12b of the semiconductor element 12 is caused by the terminal 10b (10a) and the electrode terminal 12b. It is also possible by directly joining with (12a). Such bonding is performed between the electrode terminals 12 a and 12 b of the gold-plated semiconductor element 12 and the flat coil 10 that has been metal-plated such as gold-plated, tin-plated, or solder-plated.
  • the electrode terminals 12a and 12b of the terminals 10a and 10b can be heated and pressurized by eutectic bonding. Also, the connection of both terminals cannot be made even by using a conductive adhesive o
  • connection surface of the terminal 10b (10a) is connected to the electrode terminal 12b ( It is preferable to form a protrusion 32 which is crushed by contact with the surface 12a).
  • the electrode terminals 12b, 12a of the semiconductor element 12 are directly joined to the terminals 10a, 10b of the planar coil 10, the electrode terminals 12b, 12b are subjected to stresses such as bending and heat applied to the IC card.
  • the stress generated in the planar coil 10 is concentrated at the connection between the terminals, and the connection between the two terminals may be separated.
  • a bent portion 34 shown in FIG. 18 is preferable because it can be easily formed by press working or the like.
  • the stress applied to the planar coil 10 can be absorbed by the expansion and contraction of the bent portion 34, and the stress applied to the connection between the two terminals can be reduced.
  • the recess 14 formed in the planar coil 10 is also formed by bending the conductor 11.
  • the concave portion 14 may be formed by crushing the conductive wire 11 in the middle as shown in FIG.
  • the planar coil 10 and the semiconductor element 12 can be positioned at the center of the IC card in the thickness direction, and the 1C card can be formed thin.
  • the semiconductor element 12 and the wire 18 are accommodated within the range of the thickness t of the conductor 11.
  • the portion of the crushed conductor 11 is thinner than the other conductors 11, but there is no problem in the electric resistance value of the conductor 11 itself.
  • the conducting wire 11 constituting the planar coil 10 is bent or crushed to form a concave portion 14, but as shown in FIGS. 20 and 21, the end of the conducting wire 11 is formed.
  • the connection surface of the terminals 10a and 10b of the flat coil 10 without forming the concave portion 14 in the flat coil 10 is formed.
  • a supporting wire 25 is stretched between the semiconductor element 12 and the conductive wire 11 of the planar coil 10, but when the width of the conductive wire 11 is narrow, the supporting wire is used. It may be difficult to join one end of 25 to conductor 11.
  • FIG. 24 (as shown here), the connection surface of the terminal 10b (10a) of the crushed flat coil 10 is enlarged, and the wire 18 connected to the electrode terminal 12b (12a) of the semiconductor element 12 is enlarged. It is preferable to join a support wire 25 connected to the support pad 23b (23a) to the terminal 10b (10a) of the flat coil 10.
  • the terminal 10b (10a) of the flat coil 10 is connected to the terminal 10b (10a) of the flat coil 10.
  • the terminal 10b (10a) is inserted so as to surround the end of the semiconductor element 12 provided with the electrode terminal 12b (12a) connected to the terminal 10b (10a) of the planar coil 10 by inserting the end of the terminal 10b (10a). Extend along the edge of the end of the semiconductor element 12. Therefore, the positioning of the semiconductor element 12 is performed.
  • the length of the wire 18 and the length of the support wire 25 can be reduced, and the semiconductor element 12 and the conductor 11 of the planar coil 10 are also bonded to the adhesive layer 36 (FIG. 22, FIG. 22). After bonding by 23), it is preferable to bond the wire 18 and the bearing wire 25.
  • the wire 18 and the supporting wire 25 are stretched so as to be parallel to the conductor 11 and in a straight line, so that both wires can be easily bonded and the semiconductor element 12 can be well balanced.
  • the wire 18 was sandwiched between the adhesive layers 22a and 22b.
  • wall portions 27 are formed on the side surfaces of the terminals 10a and 10b of the planar coil 10 in order to reduce the flow of the adhesive near the terminal 10b (10a) of the planar coil 10 and prevent the wire 18 from being deformed.
  • a U-shaped portion 40 in which the electrode terminal 12b (12a) of the semiconductor element 12 is located is formed in the projecting portion 38 formed in the middle of the conductor 11.
  • the terminal 10b (10a) shown in FIG. 9 is preferable as the terminal 10b (10a) of the flat coil 10.
  • the crushed connection surface 16 is wider than the conductor 11, and the portion to be connected to the end of the wire 18 stretched at right angles to the conductor 11 is sufficiently provided. Can be secured.
  • the pressure-bonded portions of the wires 18 crimped to the terminals 10b of the planar coil 10 and the electrode terminals 12b of the semiconductor element 12 are made of resin 15, 15, especially It is preferable to fix with a UV curable resin, since the deformation of the wire 18 can be further prevented.
  • the case where the conductor 11 forming the planar coil 10 is thicker than the semiconductor element 12 has been described.
  • the semiconductor element 12 having a thickness substantially equal to the conductor 11 is used, as shown in FIG.
  • the semiconductor element 10 is arranged so that the surface on which the electrode terminals 12a and 12b are formed is located on the conductor 11 side with respect to the planar coil 10, and the terminals 10a and 10b of the planar coil 10 are crushed.
  • a 1C card in which the electrode terminals 12a and 12b of the semiconductor element 12 are connected to the wires 18 and 18 may be used. In this case, a part of the loop of the wires 18 and 18 may protrude from the conductor 11, but the protruding amount is small.
  • the wires 18, 18 can be sufficiently sealed by the adhesive layers 22a, 22b formed on one surface side of the resin films 20a, 20b, and deformation at the time of sealing does not pose a problem.
  • the ten terminals 10a and 10b be bonded to the electrode terminals 12a and 12b of the semiconductor element 12 in the vicinity of the adhesive layer 36 and then connected to the electrode terminals 12a and 12b by wires 18 and 18, respectively.
  • this wire 18 can be formed into a smaller loop as compared with the wire 18 shown in FIG. 26, and is formed on one surface side of resin films 20a and 20b for sealing the wires 18 and the like.
  • the thickness of the adhesive layers 22a and 22b can be reduced.
  • a stress absorbing portion such as the bent portion 34 shown in FIG. 18 may be formed on the conductive wire 11 near the plane coils 10 a and 10 b.
  • the semiconductor element 12 may be bonded via the adhesive layer 36 to the conductive wire 11 of the planar coil passing through the surface on which the electrode terminals 12a and 12b of the semiconductor element 12 are formed.
  • FIG. 30 points different from the IC force shown in FIG. 1 will be described.
  • the semiconductor element 12 disposed in the concave portion 14 (FIG. 30) has a flat surface on the back side with respect to the surface on which the electrode terminals 12a and 12b are formed, placed on the conductive wire 11 forming the bottom surface of the concave portion 14. .
  • the semiconductor element 12 may be simply placed on the conductor 11, but the electrode terminals 12 a and 12 b of the semiconductor element 12 can be easily positioned by bonding the semiconductor element 12 to the conductor 11 with an adhesive. Can be preferred.
  • FIG. 30A shows an example in which a concave portion 14 deeper than the thickness of the semiconductor element 12 is formed in the conductive wire 11 of the planar coil 10.
  • connection surface 16 of the terminal 10b (10a) of the planar coil 10 is made substantially the same as the surface on which the electrode terminals 12a and 12b of the semiconductor element 12 are formed. Has been crushed. By forming the recess 14 deeper than the thickness of the semiconductor element 12 in this manner, the portion of the loop of the wire 18 connecting both terminals that protrudes from the planar coil 10 can be reduced as much as possible.
  • FIG. 30 (b) shows an example in which a recess 14 having a depth substantially equal to the thickness of the semiconductor element 12 is formed in the conductor 11 of the planar coil 10.
  • the connection surface 16 of the terminal 10b (10a) of the planar coil 10 and the surface on which the electrode terminals 12a and 12b of the semiconductor element 12 are formed are substantially the same surface, the terminal 10b (10a ) Can be omitted.
  • connection surfaces 16 of the terminals 10 a and 10 b of the planar coil 10 and the electrode terminals 12 a and 12 b of the semiconductor element 12 are formed. Since the surfaces are substantially flush with each other, wire bonding can be performed by the edge bonding method or the ball bonding method. For this reason, as shown in FIG. 2, while minimizing the loop portion protruding from the surface of the flat coil 10, the terminal 10 a of the flat coil 10 is connected to the wire 18, 18 made of gold, platinum, or aluminum. , 10b and the electrode terminals 12a, 12b of the semiconductor element 12 can be electrically connected.
  • FIGS. 30 (a) and 30 (b) the loops protruding from the plane of the planar coil 10 are reduced as much as possible by the wires 18, 18.
  • the terminals 10a and 10b of the coil 10 and the electrode terminals 12a and 12b of the semiconductor element 12 can be electrically connected.
  • the crimped portion of the wire 18 crimped to the terminal 10 b of the planar coil 10 and the electrode terminal 12 b of the semiconductor element 12 be fixed with the resin 15, 15, in particular, a UV curable resin.
  • connection surfaces 16 of the crushed terminals 10a and 10b are substantially the same as the plane including the formation surfaces of the electrode terminals 12a and 12b of the semiconductor element 12.
  • the terminals may be any shapes as long as they are on the same plane, and the terminals 10a and 10b of the planar coil 10 shown in FIGS. 29, 30 (a), and 31 are the same as those shown in FIG.
  • the terminal shape shown in Fig. 7 is preferred.
  • connection between the terminals 10a and 10b of the planar coil 10 and the electrode terminals 12a and 12b of the semiconductor element 12 is made in a plane bypassing the semiconductor element 12 as shown in FIG. 32 in relation to the operation of the bonding apparatus and the like. This may be performed between the terminals 10a and 10b provided near the electrode terminals 12a and 12b located inside and outside the coil 10.
  • FIG. 32 shows a case where the wires 18, 18 connecting the two are stretched in a direction perpendicular to the conductor 11.
  • the terminals 10a, 10a It is preferable to connect the electrode terminals 10b and the electrode terminals 12a and 12b of the semiconductor element 12 with a ribbon-shaped connection metal member 30.
  • the recess 14 is not formed near each of the terminals 10 a and 10 b of the planar coil 10, but as shown in FIGS. 35 (a) and 35 (b), It may be formed near 10b (10a).
  • the bottom surface of the concave portion 14 is wider than when the concave portion 14 is not formed near the terminal 10b (10a). Therefore, the semiconductor element 12 is recessed 14 It can be stably placed on the bottom surface of the device for wire bonding.
  • the concave portion 14 formed in the planar coil 10 is formed by bending the conductive wire 11 and making use of the fact that the thickness of the conductive wire 11 is larger than that of the semiconductor element 12 as in FIG.
  • the concave portion 14 may be formed by crushing a part of the conductor 11.
  • the planar coil 10 and the semiconductor element 12 can be positioned at the center in the thickness direction of the IC card, and the IC card can be formed thin.
  • the semiconductor element 12 and the wire 18 are accommodated within the range of the thickness t of the conductor 11. Further, as shown in FIG.
  • the terminal 10b (10a) of the planar coil 10 has a U-shaped recess 33 into which the end of the semiconductor element 12 in which the electrode terminal 12b (12a) is formed is inserted. By inserting the end of the semiconductor element 12 into the recess 33, the end of the semiconductor element 12 on which the electrode terminal 12b (12a) connected to the terminal 10b (10a) of the planar coil 10 is formed.
  • a terminal 10b (10a) extends along the edge of the end of the semiconductor element 12 so as to surround it. Therefore, it is preferable that the positioning of the semiconductor element 12 can be facilitated and the length of the wire 18 can be shortened. Also in this case, it is preferable to bond the wire 18 after bonding the semiconductor element 12 and the conductive wire 11 of the flat coil 10 with an adhesive.
  • FIGS. 38 (a) and 38 (b) show that one terminal 10b of the planar coil 10 is crushed to form a recess 14 as a mounting portion of the semiconductor element 12, and the connection surface of the terminal 10b is formed.
  • the semiconductor element 12 is mounted on the terminal 10b in a further enlarged manner.
  • the electrode terminal 12b of the semiconductor element 12 and the terminal 10 b is connected by a normal wire or a covered wire.
  • the other terminal 10a of the flat coil 10 and the electrode terminal 12a of the semiconductor element 12 are connected so that the wire 11 passes through the middle wire 11 between the other terminals 10a and 10b in the orthogonal direction. Connect 18.
  • crushing is performed on a portion of the conductor 11 through which the wire 18 passes to form a through recess 14a, and the wire 18 is formed within the thickness range of the conductor 11. Do not protrude.
  • An insulating resin is applied as an electrically insulating material to at least a portion through which the wire 18 passes through the inner surface of the through recess 14a, or an insulating tape having an electrical insulating property is adhered to the inner portion.
  • the wires 18 can be connected without causing an electric short circuit.
  • FIG. 39 shows an example in which a middle portion of the conductive wire 11 other than the terminals 10 a and 10 b is crushed to form a recess 14 as a mounting portion of the semiconductor element 12, and the semiconductor element 12 is mounted in the recess 14. is there.
  • the recess 14 is formed wider than the line width of the conductor 11, and the conductor 11 adjacent to the mounting portion is arranged so as to bypass the outside of the recess 14.
  • the terminals 10a and 10b are crushed so as to have substantially the same height as the concave portion 14, and the wire 18 is connected to the wire 11 between the mounting portion and the terminals 10a and 10b.
  • a squeezing process is performed on the crossing part to form a through recess, and the wire 18 connecting the terminals 10 a and 10 b to the electrode terminals 12 a and 12 b of the semiconductor element 12 protrudes from within the thickness range of the conductor 11. Don't do it. It is preferable to use a coated wire for the wire 18 connecting the electrode terminals 12a, 12b and the terminals 10a, 10b. If the inner surface of the through recess is covered with an electrically insulating material, connection can be made using ordinary wires 18.
  • the semiconductor element 12 When the semiconductor element 12 is small, the semiconductor element 12 can be mounted in the concave portion 14 formed in the conductive wire 11 by crushing as described above.
  • the method of mounting the semiconductor element 10 in the recess 14 has an advantage that a standard planar coil 10 can be formed regardless of the size of the semiconductor element 12. Ma Also, when the semiconductor element 12 is smaller than the width dimension of the plane coil 10 across the width of the conducting wire 11, it is useful to mount the semiconductor element 12 in the recess 14.
  • the conductor 11 constituting the planar coil 10 is bent or crushed to form a concave portion 14, but as shown in FIGS. 40 and 41, the end of the conductor 11 is formed.
  • the connection surfaces 16 of the terminals 10 a and 10 b of the planar coil 10 can be connected to the electrode terminals 12 a of the semiconductor element 12 without forming the concave portion 14 in the planar coil 10. , 12b.
  • connection surfaces 16 of the terminals 10a and 10b of the flat coil 10 can be crushed without the electrode terminals 12a and 12a of the semiconductor element 12 being crushed. It may be substantially coplanar with the formation surface of b.
  • the case where the conductor 11 forming the planar coil 10 is thicker than the semiconductor element 12 has been described, but when the semiconductor element 12 having a thickness substantially equal to the conductor 11 is used, as shown in FIG.
  • the semiconductor element 10 is disposed so that the plane on the back side with respect to the plane on which the electrode terminals 12a and 12b are formed is located on the conductor 11 side with respect to the plane coil 10, and the terminals 10a and 10b of the plane coil 10 are An IC card in which the electrode terminals 12a and 12b of the semiconductor element 12 are connected by wires 18 without crushing or the like may be used.
  • a part of the loop of the wires 18, 18 protrudes from the conductor 11, but the amount of protrusion is small.
  • the wires 18 and 18 can be sufficiently sealed by the adhesive layers 22a and 22b formed on one surface side of the resin films 20a and 20b, and deformation at the time of sealing does not pose a problem. It is.
  • the connection between the planar coil 10 and the semiconductor element 12 uses a wire 18 or a ribbon-shaped connection metal member 30, as shown in FIG. 43.
  • a module body 40 in which a semiconductor element is resin-molded may be used. As shown in FIG. 44 and FIG. 45, the module body 40 is connected to each of the electrode terminals 12 a, 12 b of the semiconductor element 12 and the ends of the leads 46, 46 joined via the solder bumps 44, 44. The resin molding is performed so that the connection portions 47, 47 formed in the portion are exposed.
  • the connecting portions 47, 47 of the module body 40 are joined to the terminals 10a, 10b of the planar coil 10.
  • This bonding is performed by applying gold plating, tin plating, or solder plating to the connection surfaces of the connection portions 47, 47, and connecting the electrode terminals 12a, 12b of the semiconductor element 12 and the flat coil 10 to each other.
  • This can be performed with a eutectic alloy by applying gold plating to the terminals 10a and 10b and heating and crimping the two terminals to be connected.
  • the connection portions 47, 47 are made of aluminum, the connection of both terminals can be performed without applying metal plating to the connection surfaces of the connection portions 47, 47.
  • the connection between the two terminals can also be performed using a conductive adhesive.
  • a concave portion is formed in the portion of the planar coil 10 on which the module body 40 is mounted, into which the conductive wire 11 is bent and the module body 40 is inserted.
  • the terminals (bonding pads) 12a and 12b of the semiconductor element 12 are formed on both sides in the direction in which the conducting wire 11 wound a plurality of times of the planar coil 10 extends.
  • the side was explained.
  • the IC force shown in Fig. 46 is the bonding pad 12a of the semiconductor element 12. It is formed on one side with respect to the direction in which the conducting wire 11 of the planar coil 10 extends.
  • the terminal 10a on one side (for example, the outer end) of the planar coil 10 is detoured to the outside of the semiconductor element 12, and is extended to a position on the same side as the terminal 10b on the other side (for example, the inner end) of the planar coil 10.
  • the terminals 10a and 10b are pads having an area required for bonding, and wires 18 are connected to the electrode terminals 12a and 12b of the semiconductor element 12 near the terminals 10a and 10b, respectively. , Bonding at 18. It is needless to say that, on the contrary, the one end 10b of the planar coil 10 may be detoured inside the semiconductor element 12.
  • FIGS. 47 (a) to 47 (c) show a manufacturing process in which the semiconductor element 12 is fixed with a sealing resin and fixed, and then sandwiched between resin films 20a and 20b to form an IC card.
  • the semiconductor element 12 is mounted on a portion where the conductive wire 11 constituting the planar coil 10 is crushed to form the concave portion 14.
  • the semiconductor element 12 and the semiconductor element mounting portion of the planar coil 10 are molded with a sealing resin 50.
  • the transfer molding is desirably a transfer molding.
  • FIG. 48 is a perspective view showing a state of the semiconductor element after the molding.
  • the planar coil 10 is sandwiched between the resin films 20a and 20b with the adhesive layers 22a and 22b interposed therebetween from above and below to form an IC card.
  • the sealing resin may be formed by molding as shown in FIGS. 47 (a) to 47 (c) and FIG. 48. As shown, it may be formed by potting 52.
  • the semiconductor element 12 is strengthened, and the semiconductor element 12 and the planar coil 10 are laminated with the resin films 20a and 20b as described above.
  • the stress applied to the element 12 can be reduced, and the semiconductor element 12 can be prevented from being damaged due to cracking or the like. Further, even when the 1C card is used after the manufacture, the stress applied when the IC card is bent or the like can be reduced, so that damage to the semiconductor element can be prevented.
  • the connection between the terminal of the planar coil formed by press working and the electrode terminal of the semiconductor element can be easily performed without the connecting wire crossing the planar coil. It can be carried out. Therefore, the cost and mass production of the IC card and the frame for the IC card can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Credit Cards Or The Like (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Description

明 細 書
IC力一 ド及び IC力一 ド用フ レーム 技術分野
本発明は IC力一ド及び IC力一 ド用フ レームに関し、 更に詳細には 導線が実質的に同一平面上に複数回卷回されて成る平面コィルがプ レス加工又はェッチング加工によつて形成され、 ICカー ドでは前記 平面コィルの端子と半導体素子の電極端子とが電気的に接続された
IC力一ド及び IC力一ド用フ レームに関する。 背景技術
ICカー ドは、 導線が複数回卷回されて成る平面コイルと半導体素 子とから構成され、 PVC 等から成り且つ表面側に文字等が印刷され て IC力一ドの表裏面を形成する各樹脂フ ィ ルムの内面側に形成され たポリ ウ レタ ン樹脂等から成る接着剤層によって、 平面コイル等が 挟み込まれて封止されている。
かかる ICカー ドは、 カー ド処理装置に設けられた磁場内を通過す る際に、 IC力一 ドの平面コイル内に電磁誘導による電力が発生して 半導体素子を起動し、 ICカー ドの半導体素子とカー ド処理装置との 情報の授受をアンテナと しての平面コイルを介して行う こ とができ る o
この様な ICカー ドの平面コイルは、 従来、 被覆電線を卷回して形 成されたものと、 樹脂フ ィ ルム上に形成された金属箔にエッチング 等を施して導線を形成するものとがある。
ところで、 ICカー ドの普及を図るためには、 ICカー ドの低コス ト 化と量産化とが必要であるが、 前述した従来の平面コイルを用いた I Cカー ドでは、 平面コイルの低コス ト化と量産化とを充分に図るこ とができない。
このため、 特開平 6 — 310324号公報においては、 プレス加工によ つて形成した平面コイルを用いた I C力一 ドが提案されている。
前記公報で提案されたように、 プレス加工によって平面コイルを 形成するこ とにより、 従来の平面コイルより も低コス ト化及び量産 化を図ることができる。
図 50はプレス加工によつて形成した従来の平面コイル 100を示す 。 この平面コイル 100は端子 102, 104がコイルの内側と外側に形成 されている。
このため、 平面コイル 100の端子 102, 1 04と半導体素子 106の電 極端子 108, 1 10とを接続するワイヤ 1 12, 1 14のうち、 ワイヤ 1 14 は 平面コイル 100を形成する導線 1 01を横切る。 従って、 ワイヤ 1 12, 1 14に絶縁被覆ワイヤを使用する場合は、 I Cカー ドの更なる低コス ト化を図ることが困難である。
一方、 平面コイル 100を横切ることのないワイヤ 1 12に、 非絶縁 性ワイヤを使用し、 平面コイル 100を横切るワイヤ 1 14に絶縁被覆 ワイヤを使用する場合は、 二種類のワイヤを使用 しな く てはならず 、 I Cカー ドの製造工程が複雑化され、 I Cカー ドの低コス ト化及び量 産化を図ることは困難である。
また、 I Cカー ドは 1 mm以下の厚さに形成するから、 きわめて薄く 形成できる必要がある。 また、 プレス加工等によって形成した平面 コイルは搬送等の取り扱い性に優れ、 かつ半導体素子の搭載等にも 好適に利用できるものでなければならない。 発明の開示
そこで、 本発明の第 1 の課題は、 プレス加工によって形成された 平面コイルを用いて低コス ト化及び量産化を図り得る I Cカー ドを提 案することにある。
本発明の第 2 の課題は、 量産性に優れ、 搬送等の取り扱い性に優 れるとと もに、 I Cカー ドの薄形化にも好適に対応するこ とができる I Cカー ド用フ レーム、 および量産化に優れ薄形化にも好適に対応で きる I C力一 ドを提案するにある。
本発明者等は前記第 1 の課題を解決すべく検討を重ねたところ、 一般的に、 半導体素子の電極端子を除く 表面はパッ シベイ シ ヨ ン膜 によって電気的に絶縁されているため、 電極端子を除く半導体素子 の部分を平面コイルの導線と接触してもよいこと、 及び半導体素子 の電極端子を平面コイル側とすることによって、 平面コイルの端子 を半導体素子の電極端子に近接して配設できることが判明した。
このため、 本発明者等は、 平面コイル 100に対し、 電極端子 108, 110が導線 101側となるように、 半導体素子 106を配設し、 半導体 素子 106の電極端子 108, 110と平面コイル 100の端子 101, 103との 各々をワイヤによってボンディ ングした。 この I Cカー ドでは、 平面 コイル 101と半導体素子 106とを接続するワイヤを絶縁被覆するこ とを要しないこ と、 及び従来から半導体素子と リ ー ドフ レームのィ ンナ一 リ ー ドとのボンディ ング法と して採用されているゥヱ ッ ジ · ボンディ ング法を採用できることを知り、 本発明に到達した。
すなわち、 前記第 1 の課題を解決する本発明は、 導線が実質的に 同一平面上に複数回卷回されて成る平面コイルがプレス加工又はェ ツチング加工によって形成され、 且つ前記平面コィルの端子と半導 体素子の電極端子とが電気的に接続された I C力一 ドにおいて、 該平 面コイルが、 コイルの内側に形成された内側端子とコイルの外側に 形成された外側端子とを具備し、 前記半導体素子が、 その電極端子 の形成面が平面コイルの導線に対し対向するように配設されている と共に、 前記平面コイルの内側端子及び外側端子と接続される半導 体素子の電極端子の各々がコイルの内側と外側とに位置され、 且つ 前記半導体素子の電極端子が、 コイルの内外方向に対して同一側に 位置する平面コィルの端子と電気的に接続されているこ とを特徴と する I C力一 ドにある。
また、 前記第 2 の課題を解決するべく 、 本発明者等は、 平面コィ ル 100に対し、 電極端子 108, 1 10の形成面に対して背面側の平面が 導線 1 01側となるように、 半導体素子 1 06を配設し、 半導体素子 1 06の電極端子 108, 1 10と平面コイル 100の端子 101, 103との各々を ワイヤによってボンディ ングした。 この 1 C力一 ドでは、 平面コイル 101と半導体素子 106とを接続するワイャを絶縁被覆するこ とを要 しないこ と、 及び従来から半導体素子と リ ー ドフ レームのイ ンナ一 リー ドとのボンディ ング法と して採用されているゥエ ッ ジ · ボンデ ィ ング法を採用できることを見い出した。
すなわち、 前記第 2の課題を解決する本発明は、 導線が実質的に 同一平面上に複数回卷回されて成る平面コイルがプレス加工又はェ ツチング加工によって形成され、 且つ前記平面コイルの端子と半導 体素子の電極端子とが電気的に接続された I Cカー ドにおいて、 該平 面コイルが、 コイルの内側に形成された内側端子とコイルの外側に 形成された外側端子とを具備し、 前記半導体素子が、 その電極端子 の形成面に対して背面側の平面が平面コィルの導線と対向するよう に配設されていると共に、 前記平面コイルの内側端子及び外側端子 と接続される半導体素子の電極端子の各々がコィルの内側と外側と に位置され、 且つ前記半導体素子の電極端子が、 コイルの内外方向 に対して同一側に位置する平面コイルの端子と電気的に接続されて いることを特徴とする I C力一 ドにある。
また、 前記第 2の課題を解決する本発明は、 導線が実質的に同一 平面上に複数回卷回されて成る平面コイルがプレス加工又はエッチ ング加工によつて形成され、 且つ前記平面コィルの端子と半導体素 子の電極端子とが電気的に接続された I C力一 ドにおいて、 該平面コ ィルが、 コイルの内側に形成された内側端子とコイルの外側に形成 された外側端子とを具備し、 前記半導体素子が、 その電極端子に接 合された リ ー ドの先端部に形成された接続部が露出するように樹脂 モール ドされていると共に、 前記平面コイルの内側端子及び外側端 子と接続される リ一ドの接続部の各々がコィルの内側と外側とに位 置され、 且つ前記リ ー ドの接続部が、 コイルの内外方向に対して同 一側に位置する平面コィルの端子と電気的に接続されていることを 特徴とする I C力一 ドでもある。
また、 前記第 2 の課題を解決する本発明は、 導線が実質的に同一 平面上に複数回卷回されて成る平面コイルがプレス加工又はエッチ ング加工によって形成され、 且つ前記平面コィルの端子と半導体素 子の電極端子とが電気的に接続された I C力一 ドの製造に使用する I C カー ド用フ レームであって、 前記平面コイルが、 コイルの内側と外 側に対して同一側に位置する半導体素子の電極端子が各々電気的に 接続されるコイルの内側に形成される内側端子と、 コイルの外側に 形成される外側端子とを具備することを特徴とする I Cカー ド用フ レ ームである。
尚、 本発明において言う 「実質的に同一平面上」 とは、 平面コィ ルを構成する導線の一部に凹凸が形成されていても、 平面コイル全 体と して同一平面上で導線が卷回されていればよい。 図面の簡単な説明
図 1 は本発明に係る I Cカー ドの一例を説明するための正面図であ り、 図 2 は図 1 を示す I Cカー ドの部分断面図である。 図 3 は複数個の平面コィルが形成されたフ レームを説明する正面 図である。
図 4 ( a ) 〜 4 ( e ) はゥエ ッ ジ ' ボンディ ング法を説明する説 明図である。
図 5 は本発明に係る ICカー ドの他の例を説明するための部分断面 図である。
図 6 は本発明に係る I C力一 ドの他の例を説明するための部分正面 図である。
図 7 は図 1 、 図 2、 図 5、 及び図 6 に示す ICカー ドを構成する平 面コ イ ルの端子を説明するための部分斜視図である。
図 8 は本発明に係る ICカー ドの他の例を説明するための部分正面 図であり、 図 9 は図 8 に示す IC力一 ドを構成する平面コイルの端子 を説明するための部分斜視図である。
図 10は本発明に係る IC力一 ドの他の例を説明するための部分正面 図であり、 図 11は図 10に示す IC力一 ドを構成する平面コイルの端子 を説明するための部分斜視図であり、 図 12は図 11に示す平面コイル の端子の他の例を説明する部分斜視図である。
図 13は図 7、 図 9、 図 11、 及び図 12に示す ICカー ドを構成する平 面コ イ ルの端子を形成する前の導線 11の端部を説明する部分斜視図 C る。
図 14は本発明に係る IC力― ドの他の例を説明するための部分断面 図であり、 図 15は図 14に示す接続金属部材 30の形状を説明するため の斜視図である。
図 16は本発明に係る IC力一ドの他の例を説明するための部分正面 図であり、 図 17は図 16に示す平面コイル 10の端子 10b (10a ) の形 状を説明するための部分断面図である。
図 18は本発明に係る ICカー ドの他の例を説明するための部分正面 図である。
図 19は本発明に係る I C力一ドの他の例を説明するための部分断面 図である。
図 20は本発明に係る I Cカー ドの他の例を説明するための部分正面 図であり、 図 21は図 20に示す I Cカー ドを説明するための部分断面図 である。
図 22は本発明に係る 1 Cカー ドの他の例を説明するための部分正面 図であり、 図 23は図 22に示す I C力一 ドを説明するための部分断面図 である。
図 24は本発明に係る I Cカー ドの他の例を説明するための部分斜視 図である。
図 25は本発明に係る I Cカー ドの他の例を説明するための部分斜視 図である。
図 26は本発明に係る I Cカー ドの他の例を説明するための部分正面 図である。
図 27は本発明に係る I Cカー ドの他の例を説明するための部分正面 図であり、 図 28は図 27に示す I C力一 ドを説明するための部分断面図 である。
図 29は本発明に係る I Cカー ドの他の例を説明するための正面図で あり、 図 30 ( a ) 及び図 30 ( b ) は図 29に示す I Cカー ドの部分断面 図である。
図 31は本発明に係る I Cカー ドの他の変形例を説明するための部分 断面図である。
図 32は本発明に係る I Cカー ドの他の変形例を説明するための部分 正面図である。
図 33は本発明に係る I Cカー ドの他の変形例を説明するための部分 正面図である。 図 34は本発明に係る I Cカー ドの他の変形例を説明するための部分 断面図である。
図 35 ( a ) 及び図 35 ( b ) は本発明に係る I Cカー ドの他の変形例 を説明するための部分平面図と部分断面図とである。
図 36は本発明に係る I Cカー ドの他の変形例を説明するための部分 断面図である。
図 37は本発明に係る I Cカー ドの他の変形例を説明するための部分 斜視図である。
図 38 ( a ) 及び 38 ( b ) は本発明に係る I Cカー ドの他の変形例を 説明するための部分平面図と部分側面図である。
図 39は本発明に係る I Cカー ドの他の変形例を説明するための部分 平面図である。
図 40は本発明に係る I Cカー ドの他の変形例を説明するための部分 平面図であり、 図 41は図 40に示す I C力一 ドを説明するための部分断 面図である。
図 42は本発明に係る I Cカー ドの他の変形例を説明するための部分 平面図である。
図 43は本発明に係る I Cカー ドの更に他の例を説明するための平面 図であり、 図 44は図 43に示す 1 Cカー ドの部分断面図であり、 図 45は 図 43に示す I Cカー ドに用いたモジュ一ル体 40の平面図である。
図 46は本発明に係る I Cカー ドの他の変形例を説明するための部分 平面図である。
図 47 ( a ) 〜図 47 ( c ) は本発明に係る I C力一ドの他の変形例の 形成工程を示す部分断面図であり、 図 48は同変形例の斜視図である o
図 49はポッティ ング樹脂を用いた変形例の部分断面図である。 図 50は従来の I Cカー ドを説明するための平面図である。 発明を実施するための最良の形態
図 1 は本発明に係る I Cカー ドの一例を示す平面図である。 図 1 に おいて、 プレス加工によって形成された厚さ 80 m以上の導線 1 1が 実質的に同一平面上に複数回卷回して成る矩形状の平面コィル 10が 形成されている。 この平面コイル 10は、 全体と して同一平面に導線 1 1が複数回卷回されているものである。 かかる平面コイル 10のコィ ルの内側と外側とに位置する端部の各々 に設けられた端子 10 a, 10 b と、 厚さ 40〜50 ^ mの半導体素子 12に形成され且つ平面コイル 10 のコイルの内側と外側とに位置する電極端子 12 a, 12 b とは、 コィ ルの内外方向に対して同一側に形成された端子同士が電気的に接続 されている。
図 1 に示す I Cカー ドにおいて、 半導体素子 12が配設されている平 面コイル 10には、 図 2 に示す様に、 平面コイル 1 0を構成する導線 1 1 が曲折されて形成された凹部 14が形成されており、 この凹部 14内に 半導体素子 12が配設されている。 この導線 1 1の曲折はプレス加工に よって行う ことができる。 かかる凹部 14は、 半導体素子 12の全体が 凹部 14内に挿入されるサイズとするこ とが好ま しい。
尚、 図 1 において、 矩形状の平面コイル 10の角部間に凹部 14を形 成しているが、 平面コイル 10の角部に凹部 14を形成して半導体素子 10を配設してもよい。
また、 図 1 に示す I Cカー ドの部分断面図である図 2 に示す様に、 半導体素子 12と間隙を介して配設されている平面コィル 10の端子 10 a , 10 bには、 半導体素子 12の電極端子 12 a , 12 bが形成された形 成面と実質的に同一面となるように、 潰し加工が施されて接続面 16 が形成されている。 この接続面 16が形成された部分は、 図 2 に示す 様に、 半導体素子 12と略同一厚さに形成されている。
この様に、 図 1 及び図 2 に示す I Cカー ドでは、 平面コイル 10の端 子 10a, 10bの接続面 16と、 半導体素子 12の電極端子 12a, 12bの 形成面とが、 実質的に同一平面であるため、 ゥヱ ッ ジ · ボンディ ン グ法又はボール ' ボンディ ング法によ ってワイヤボンディ ングを施 すことができる。 このため、 図 2 に示す様に、 平面コイル 10の面か らループの一部が突出することなく 金、 白金、 又はアルミ ニウム製 のワイヤ 18, 18により、 平面コイル 10の端子 10 a, 10b と、 半導体 素子 12の電極端子 12 a, 12b とを電気的に接続できる。
尚、 平面コイル 10や半導体素子 12等は、 図 2 に示す様に、 PVC 等 から成り且つ表面側に文字等が印刷されて IC力一 ドの表裏面を形成 する樹脂フ ィ ルム 20 a, 20bの内面側に形成された、 ポ リ ウ レタ ン 樹脂やポ リオレフ ィ ン樹脂等から成る接着剤層 22 a , 22bによって 挟み込まれて封止されている。
図 1 及び図 2 に示す ICカー ドを製造する際に、 平面コイル 10と し ては、 図 3 に示すフ レーム Fを用いることが好ま しい。 このフ レー ム Fは、 銅、 鉄、 アルミニウム等の金属や、 その合金等の金属板を プレス加工して形成されたものであり、 互いに平行な二本のレール 60, 60の間に平面コイル 10, 10 · ' がレール 60の長手方向に形成さ れている。 かかる平面コイル 10, 10 · ' を構成する導線 11のうち、 最外周の導線 11 aは他の導線 11より も太く 形成され、 且つ平面コィ ル 10の導線 11 aは隣接する平面コィル 10の導線 11 a と連結部 62によ つて互いに連結されている。 このため、 平面コイル 10の各々の強度 を向上でき、 フ レーム Fの運搬等における取扱性を向上できる。 図 3 に示すフ レーム Fの平面コイル 10は、 その最外周の導線 11 a を太く形成しているが、 導線 11 aを他の導線 11より も太い状態で IC カー ドと してもよく 、 連結部 62等を切断する際に、 最外周の導線 11 aを切断して他の導線 11と同一太さ と してもよい。
また、 平面コイル 10の強度を更に向上すべく 、 平面コイル 10を構 成する導線 1 1間を連結部で連結してもよい。 この連結部は、 I C力一 ドの表裏面を形成する樹脂フ ィ ルム 20 a , 20 bの内面側に形成され た接着剤層 22 a, 22 bによって挟み込む前に切断するこ とによって 、 導線 1 1間の短絡を防止できる。
ところで、 図 3 に示すフ レーム Fは、 銅、 鉄、 アルミ ニウム等の 金属やその合金等の金属板にエッチング加工を施すことによつても 得るこ とができる。 エッチング加工によって得られたフ レーム Fは 、 プレス加工によって形成した平面コイルの導線 1 1に比較して、 細 い導線 1 1から成る平面コイル 10を形成できる。
図 3 に示すフ レーム Fを用いて I C力一 ドを製造する際には、 フ レ —ム Fから切り離した平面コイル 10に半導体素子 12の搭載等を行つ てもよいが、 平面コイル 10をフ レーム Fから切り離すこ となく半導 体素子 12の搭載等を行う こ とが好ま しい。 この場合、 フ レーム Fに 形成された平面コイル 10の各々に半導体素子 12を搭載し、 ボンディ ング装置を用いて平面コイル 10の端子 10 a, 10 b と半導体素子 12の 電極端子 12 a, 12 b とをワイヤ 18, 18によってボンディ ングする。 次いで、 一面側に接着剤層 22 a, 22 bが形成された樹脂フ ィ ルム 20 a , 20 b によって、 平面コイル 10及び半導体素子 12等を挟み込み封 止した後、 所定箇所を切断してフ レーム Fから切り離すこ とによつ て 1 C力一 ドを得ることができる。
このワイヤを用いたボンディ ングと しては、 ゥヱ ッ ジ · ボンディ ング法がワイヤ 18, 18の膨らみ (ループの大きさ) を可及的に小さ く でき好ま しい。 かかるゥヱ ッ ジ ' ボンディ ング法は、 図 4 に示す ゥ ヱ ッ ジ · ボンディ ング装置を用いて行う ことができる。 このゥェ ッ ジ · ボンディ ング装置は半導体装置の製造装置と して汎用されて いる。
かかるゥヱ ッ ジ · ボンディ ング装置を用いたボンディ ングでは、 T/JP 9/00581 ボンディ ングする端子 (以下、 ボンディ ング端子と称する) の一方 の上方に移動してきたゥヱ ッ ジ 24の先端部には、 クラ ンパ 26で把持 されたワイヤ 18の先端部が斜めに揷通されている 〔図 4 の ( a ) 〕 。 このゥ エ ッ ジ 24が降下し、 ワイヤ 18の先端を接続面上に圧着する 〔図 4の ( b ) 〕 。
次いで、 ゥ ヱ ッ ジ 24を、 ボンディ ング端子の一方と実質的に同一 平面に形成されている他方のボンディ ング端子の方向に移動させつ つクラ ンパ 26を開き、 ヮィャ 18を他方のボンディ ング端子に案内し た後 〔図 4 の ( c ) 〕 、 他方のボンディ ング端子の接続面にワイヤ 18の先端を接続面上に圧着する 〔図 4の ( d ) 〕 。
その後、 ク ラ ンパ 26によってワイヤ 18を把持して引っ張り、 ワイ ャ 18を切断し 〔図 4の ( e ) 〕 、 ボンディ ング操作を完了する。 かかる図 4 の ( a ) 〜 ( e ) の一連の操作を繰り返すことによつ て、 ワイヤボンディ ングを引き続き行う こ とができる。
このゥエ ッ ジ · ボンディ ング法によれば、 図 4 に示す様に、 クラ ンパ 26で把持されたワイヤ 18の先端部がゥヱ ッ ジ 24の先端部に斜め に揷通されているため、 先端がボンディ ング端子の一方に圧着され たワイヤ 18を他方のボンデイ ング端子に案内する際に、 ワイヤ 18の 膨らみ (ループの大きさ) を可及的に小さ くできる。
このため、 図 2 に示す様に、 平面コイル 10の面からループの一部 が突出するこ となく ワイヤ 18, 18により、 平面コイル 10の端子 10 a , 10 b と、 半導体素子 12の電極端子 12 a, 12 b とを電気的に接続で さる。
図 2 に示すループ状のワイヤ 18は、 一面側に接着剤層 22 a, 22 b が形成された樹脂フ ィ ルム 20 a , 20 bによって、 平面コイル 10及び 半導体素子 12等を挟み込み封止する際に、 接着剤の流れ方向にヮィ ャ 18のループ状部の変形、 ワイヤ 1 8の圧着部の剝離、 或いはワイヤ 1
18の切断等が発生し、 ワイヤ 18と平面コィル 10の導線 11とが接触す るおそれがある。 かかるループ状のワイヤ 18の変形等を防止するに は、 図 5 に示す様に、 平面コイル 10の端子 10b と半導体素子 12の電 極端子 12b とに圧着されたワイヤ 18の圧着部を樹脂 15, 15、 特に UV 硬化樹脂によって固定しておく ことが好ま しい。
なお、 ワイヤ 18のボンディ ングは上述のゥヱ ッ ジ · ボンディ ング 法の他に、 ボール ' ボンディ ング法を用いてボンディ ングを行って もよい。
図 1 及び図 2 に示す ICカー ドでは、 平面コイル 10の端子 10 a, 10 と、 半導体素子 12の電極端子 12a , 12b とを電気的に接続するた め、 ワイヤ 18, 18によってボンディ ングをしている。 この半導体素 子 12は、 厚さが 40〜50 z m程度で軽いものであるため、 ワイヤ 18, 18によって半導体素子 12を充分に支承できる。
かかるワイヤ 18, 18のみによっては半導体素子 12を支承できず、 製造中に問題が発生するような場合は、 図 6 に示す様に、 半導体素 子 12を支承する支承用ワイヤ 25, 25を平面コィル 10の導線 11との間 に設けてもよい。 この場合、 半導体素子 12の電極端子 12a , 12bの 形成面で且つ平面コィル 10の外側及び内側となる位置に、 支承用ヮ ィャ 25, 25を圧着する支承用ワイヤ用パッ ド 23a, 23bが設けられ ている。
尚、 図 6 においては、 支承用ワイヤ 25を二本設けているが、 一本 の支承用ワイャ 25によつて半導体素子 12を充分に支承できるならば 、 支承用ワイヤ 25は一本でもよい。
図 1 〜図 6 に示した平面コイル 10の端子 10a , 10bの接続面 16は 、 潰し加工が施されて半導体素子 12の電極端子 12a, 12bの形成面 を含む平面と実質的に同一平面であればよ く、 その形状は任意の形 状とすることができるが、 図 1 、 図 2、 及び図 6 に示す平面コイル 10の端子 10a , 10bは、 図 7 に示す端子形状のものが好ま しい。 図 7 に示す端子 10a (10b ) の潰し加工が施された接続面 16は、 導線 11の幅を保持した状態で延出されており、 導線 11と略平行に張られ たワイヤ 18の端部と接続する箇所を充分に確保できる。
また、 平面コイル 10の端子 10 a, 10b と半導体素子 12の電極端子 12a , 12b との接続を、 ボンディ ング装置の動作等の関係で図 8 に 示す様に、 半導体素子 12を迂回して平面コィル 10の内側及び外側に 位置する電極端子 12a, 12bの近傍に設けられた端子 10 a, 10b と の間で行ってもよい。 図 8 は、 両者を接続するワイヤ 18, 18が導線 11に対して直角方向に張られた場合である。
かかる図 8 に示す平面コイル 10の端子 10 a, 10bは、 図 9 に示す ものが好ま しい。 図 9 の端子 10a (10b ) の潰し加工が施された接 続面 16は、 導線 11より も拡幅されており、 導線 11に対して直角方向 に張られたワイヤ 18の端部と接続する箇所を充分に確保できる。 図 2 に示すループ状のワイヤ 18は、 樹脂フ ィ ルム 20 a, 20 bの一 面側に形成された接着剤層 22 a , 22bによって挟み込まれて封止さ れる際に、 接着剤の流れる方向にワイヤ 18が変形するおそれがある 。 特に、 平面コイル 10を構成する導線 11間の間隙が狭い場合には、 変形したワイヤ 18が導線 11に接触するおそれもある。 このため、 ヮ ィャ 18近傍の接着剤の流れを緩和すべく 、 図 10に示す様に、 平面コ ィル 10の内側及び外側に位置する端子 10 a, 10bにおいて、 接続面 16の導線 11側に対して反対側となる部分に壁部 27を形成することが 好ま しい。 この壁部 27によって、 ワイヤ 18が接着剤層 22a, 22bに 挟み込まれて封止される際に、 端子 10a, 10b近傍の接着剤の流れ を緩和して導線 11と接触するようなワイヤ 18の変形を防止できる。 かかる図 10に示す平面コイル 10の端子 10a, 10b と しては、 図 11 に示すものが好ま しい。 図 11の端子 10a, 10bには、 導線 11の端部 が導線 11の幅を保持した状態で延出されるように潰し加工が施され た接続面 16が形成され、 且つこの接続面 16の導線 11側に対して反対 側となる部分に壁部 27が立設されている。
この図 11に示す平面コイル 10の端子 10 a, 10bに代えて、 図 12に 示す端子 10a, 10bを用いるこ とができる。 図 11の端子 10a, 10b には、 導線 11の端部が導線 11の幅を保持した状態で延出されるよう に潰し加工が施された接続面 16が形成され、 且つこの接続面 16の両 側に壁部 27a, 27bが形成されている。 かかる図 12に示す端子 10 a , 10bによれば、 導線 11と略平行に張られたワイヤ 18の端部と接続 する箇所を充分に確保でき、 且つワイヤ 18が接着剤層 22 a, 22bに 挟み込まれて封止される際に、 端子 10a , 10b近傍の接着剤の流れ を緩和し、 導線 11と接触するようなワイヤ 18の変形を防止できる。 また、 例えワイヤ 18が導線 11側方向に変形しても、 導線 11側に形成 されている壁部により、 ワイヤ 18と導線 11との接触を防止できる。 図 7、 図 9 、 図 11、 及び図 12に示す端子 10a (10b ) のいずれも 、 図 13に示す平面コイル 10を構成する導線 11の端部に潰し加工を施 すことによって形成できる。 かかる潰し加工によって形成された端 子 10a, 10bは、 ワイヤ 18によってボンディ ングされるため、 ワイ ャ 10との接続を確実にすべく、 端子 10a, 10bの接続面 16には金め つ きまたはパラジウムめっ きを施すこ とが好ま しい。
唯、 端子 10a , 10bは複雑な形状をしているため、 その接続面 16 のみに金めつ き又はパラ ジゥムめつ きを施すことは困難である。 こ のため、 図 13に示す様に、 導線 11の端部の潰し加工を施す箇所 28に 、 予め金めつき又はパラ ジウムめっ きを施すことが好ま しい。 予め 施された金めつき又はパラジウムめっ きは、 潰し加工の際に、 展延 されて端子 10 a, 10bの接続面 16を実質的に覆う ことができる。 以上、 述べてきた ICカー ドでは、 平面コイル 10の端子 10a, 10b T/JP99/00581 と半導体素子 12の電極端子 12a, 12b との接続を、 導電性に優れて いる金、 白金、 又はアルミニウム製のワイヤ 18, 18によってなされ ているが、 ワイヤ 18, 18は細いために平面コイル 10を構成する導線 11より も電気抵抗値が高い。 このため、 平面コイル 10に電磁誘導に よって発生した電力が半導体素子 12に充分に送電されない懸念があ る。
この懸念を解消するには、 図 14に示す様に、 平面コイル 10の端子 10 a , 10b と半導体素子 12の電極端子 12 a, 12b とを、 リ ボン状の 接続金属部材 30により接続することが好ま しい。
このリ ボン状の接続金属部材 30は、 導線 11の幅と略等しい幅で且 つ銅、 金、 アルミ ニウム等の導電性が良好な金属によって形成され ている。 かかる接続金属部材 30は、 平板であってもよいが、 図 15に 示す様に、 途中が ドーム状部 30 c に形成されたものが好ま しい。 平 面コイル 10と半導体素子 12との熱膨張率差や、 IC力一 ドの曲げ等に よって、 平面コイル 10に生じた応力等を吸収できるからである。 こ の図 15に示す接続金属部材 30は、 その両端部 30a, 30bが平坦に形 成され、 平面コイル 10の端子 10 a (10b ) と半導体素子 12の電極端 子 12a (12b ) とに接続される。
こ こで、 接続金属部材 30が銅製の場合、 両端子の接続は、 接続金 属部材 30の接続面に金めつき、 錫めつき、 又ははんだめつきを施す と共に、 半導体素子 12の電極端子 12a , 12b と平面コイル 10の端子 10a , 10b とに金めつ きを施し、 接続する両端子を加熱 · 圧着する ことにより、 共晶合金によって行う ことができる。 一方、 接続金属 部材 30が金又はアルミニウム製である場合、 両端子の接続は、 接続 金属部材 30の接続面に金属めつ きを施さなく ても行う こ とができる 。 また、 両端子の接続は導電性接着剤を用いても行う ことができる 尚、 ドーム状部 30 c は、 平面コイル 10から突出しない大きさ とす ることは勿論のことである。
更に、 平面コイル 10の端子 10 a , 10b と半導体素子 12の電極端子 12a , 12b との接続部の電気抵抗値の低下は、 図 16に示す様に、 端 子 10b (10a ) と電極端子 12b (12a ) とを直接接合することによ つても可能である。 かかる接合は、 金めつ きを施した半導体素子 12 の電極端子 12 a , 12b と、 金めつ き、 錫めつき、 又ははんだめつき 等の金属めつ きを施した平面コイル 10の端子 10a , 10bの電極端子 12a , 12b とを、 加熱 · 加圧して共晶結合によって行う ことができ る。 また、 両端子の接続は導電性接着剤を用いても行う ことができ な o
この場合、 端子 10b (10a ) と電極端子 12b (12a ) との接合を 確実にすべく 、 図 17に示す様に、 端子 10b (10a ) の接続面に、 半 導体素子 12の電極端子 12b (12a ) に当接して潰される突起部 32を 形成することが好ま しい。
図 16に示す様に、 半導体素子 12の電極端子 12b, 12a と平面コィ ル 10の端子 10a , 10b とが直接接合されている場合、 ICカー ドに加 えられる屈曲や熱等の応力に因り平面コイル 10に生じる応力は両端 子の接続部に集中し、 両端子の接続が剝離するこ とがある。 この両 端子の接続部への応力の集中を緩和するには、 平面コイル 10の端子 10 a , 10bの近傍に、 平面コイル 10に加えられる応力を吸収する応 力吸収部を形成することが好ま しい。
かかる応力吸収部と しては、 図 18に示す屈曲部 34がプレス加工等 で簡単に形成でき好ま しい。 この屈曲部 34では、 平面コイル 10に加 えられる応力を屈曲部 34の伸縮によって吸収でき、 両端子の接続部 に加えられる応力を緩和できる。
また、 平面コイル 10に形成される凹部 14も、 導線 11を曲折して形 成する他に、 導線 11の厚さが半導体素子 12より も厚いことを利用 し 、 図 19に示す様に、 導線 11の途中に潰し加工を施して凹部 14を形成 してもよい。 この場合、 平面コイル 10及び半導体素子 12を、 IC力一 ドの厚み方向の中央部に位置させることができ、 1Cカー ドを薄く形 成できる。 なお、 この場合において、 導線 11の厚み t の範囲内に、 半導体素子 12及びワイヤ 18が収納される。
尚、 図 19に示す様に、 潰し加工が施された導線 11の部分が他の導 線 11より も薄く なるが、 導線 11自体の電気抵抗値には問題がない。
これまで述べてきた IC力一 ドは、 平面コイル 10を構成する導線 11 に曲折又は潰し加工を施して凹部 14を形成しているが、 図 20及び図 21に示す様に、 導線 11の端部近傍を ICカー ドの厚み方向に曲折する と共に、 先端部に潰し加工を施すことによって、 平面コイル 10に凹 部 14を形成するこ となく平面コイル 10の端子 10 a, 10bの接続面 16 の各々を半導体素子 12の電極端子 12 a, 12 bの形成面を含む平面と 実質的に同一平面とすることができる。
この図 20及び図 21においては、 平面コイル 10の端子 10 a, 10b と 半導体素子 12の電極端子 12a, 12b とをワイヤ 18, 18によってボン ディ ングする際に、 半導体素子 12の上面を通過する平面コイル 10の 導線 11と半導体素子 12とを接着することなく行っている。 これに対 し、 図 22及び図 23に示す様に、 半導体素子 12の上面を通過する平面 コィル 10の導線 11と半導体素子 12とを接着剤層 36によつて接着した 後、 平面コイル 10の端子 10 a, 10b と半導体素子 12の電極端子 12 a , 12b とをワイヤボンディ ングするこ とが好ま しい。 接着剤層 36に よって平面コィル 10の導線 11と半導体素子 12とを接着することによ つて、 ワイヤボンディ ングする際の位置決めを容易に行う ことがで きる。
尚、 図 1 〜図 19においても、 接着剤層 36によって平面コイル 10の 導線 11と半導体素子 12とを接着した後、 平面コイル 10の端子 10 a, 10b と半導体素子 12の電極端子 12 a, 12b とを接続するこ とは好ま しい。
図 6 において、 半導体素子 12を支承すべく 、 支承用ワイヤ 25を半 導体素子 12と平面コィル 10の導線 11との間に掛け渡したが、 導線 11 の幅が狭い場合には、 支承用ワイヤ 25の一端を導線 11に接合するこ とが困難になるこ とがある。 この場合には、 図 24(こ示す様に、 潰し 加工が施された平面コイル 10の端子 10b (10a ) の接続面を拡大し 、 半導体素子 12の電極端子 12b (12a ) と接続するワイヤ 18と、 支 承用のパッ ド 23b (23a ) と接続する支承用ワイヤ 25を平面コイル 10の端子 10b (10a ) に接合するこ とが好ま しい。 かかる平面コィ ル 10の端子 10b (10a ) には、 半導体素子 12の電極端子 12b (12a ) 及び支承ワイヤ用パッ ド 23b (23a ) を具備する端部が挿入され るコ字状の凹部 33が形成されている。 この凹部 33に、 半導体素子 12 の端部を挿入することによって、 平面コイル 10の端子 10b (10 a ) と接続される電極端子 12b (12a ) が設けられた半導体素子 12の端 部を囲むように、 端子 10b (10a ) が半導体素子 12の端部の端縁に 沿って延出されている。 このため、 半導体素子 12の位置決めを容易 とすることができ、 且つワイヤ 18及び支承用ワイャ 25の長さを短く できて好ま しい。 この場合も、 半導体素子 12と平面コイル 10の導線 11とを接着剤層 36 (図 22、 図 23) によって接着した後、 ワイヤ 18及 び支承用ワイャ 25をボンディ ングすることが好ま しい。
更に、 図 24に示す様に、 ワイヤ 18と支承用ワイヤ 25とを、 導線 11 に平行で且つ一直線状となるように張ることによって、 両ワイヤの ボンディ ングを容易に行う ことができ且つ半導体素子 12をバラ ンス よ く支承できる。
また、 図 10において、 ワイヤ 18が接着剤層 22 a, 22 bに挟まれた 際に、 平面コイル 10の端子 10b (10a ) 近傍の接着剤の流れを緩和 してワイヤ 18の変形を防止すべく 、 平面コイル 10の端子 10a, 10b の側面に壁部 27を形成している。 これに対し、 半導体素子 12の電極 端子 12b (12 a ) 近傍の接着剤の流れを緩和してワイヤ 18の変形を 防止するには、 図 25に示す様に、 半導体素子 12の上面を通過する導 線 11の途中に形成した張出部 38に、 半導体素子 12の電極端子 12b ( 12a ) が内部に位置するような U字状部 40を形成するこ とが好ま し い。 かかる張出部 38を形成してワイヤ 18をガー ドする場合、 平面コ ィル 10の端子 10b (10a ) と しては、 図 9 に示す端子 10b (10a ) が好ま しい。 この端子 10b (10a ) は、 潰し加工が施された接続面 16が導線 11より も拡幅されており、 導線 11に対して直角方向に張ら れたワイャ 18の端部と接続する箇所を充分に確保できる。
更に、 図 25に示す場合でも、 図 5 に示す様に、 平面コイル 10の端 子 10 b と半導体素子 12の電極端子 12b とに圧着されたワイヤ 18の圧 着部を樹脂 15, 15、 特に UV硬化樹脂により固定しておく ことが、 ヮ ィャ 18の変形を更に防止でき好ま しい。
尚、 図 25でも、 半導体素子 12と平面コイル 10の導線 11とを接着剤 層 36によって接着した後、 ワイヤ 18をボンディ ングするこ とが好ま しい。
以上の ICカー ドでは、 平面コイル 10を形成する導線 11が半導体素 子 12より も厚い場合について説明してきたが、 導線 11と略等しい厚 さの半導体素子 12を用いる場合、 図 26に示す様に、 平面コイル 10に 対し、 電極端子 12a, 12bの形成面が導線 11側に位置するように半 導体素子 10を配設し、 平面コイル 10の端子 10 a, 10bに潰し加工等 を施すことなく 半導体素子 12の電極端子 12 a, 12b とをワイヤ 18, 18によって接続した 1Cカー ドでもよい。 この場合、 ワイヤ 18, 18の ループの一部が導線 11から突出するこ とがあるが、 突出量は僅かで P T/JP99/00581 ある。 このため、 樹脂フ ィ ルム 20a , 20bの一面側に形成された接 着剤層 22a, 22bによってワイヤ 18, 18を充分に封止でき、 封止の 際の変形も問題とならないものである。
また、 ワイヤ 18, 18のループを可及的に小さ く すると共に、 ワイ ャ 18, 18のボンディ ングを容易とすべく 、 図 27に示す様に、 導線 11 の幅より も広く 形成した平面コイル 10の端子 10a, 10bを、 半導体 素子 12の電極端子 12 a, 12 bの近傍に接着剤層 36によって接着した 後、 電極端子 12a, 12b とワイヤ 18, 18によって接続することが好 ま しい。 このワイヤ 18は、 図 28に示す様に、 図 26に示すワイヤ 18に 比較して、 小さなループとすることができ、 ワイヤ 18等を封止する 樹脂フ ィ ルム 20a, 20bの一面側に形成された接着剤層 22a , 22 b を薄く できる。
この様に、 平面コイル 10の端子 10 a, 10bを半導体素子 12に接着 剤層 36によって接着した場合、 平面コイル 10に加えられる応力を吸 収して両端子の接合は剝離することを防止すべく 、 図 18に示す屈曲 部 34等の応力吸収部を平面コイル 10の 10 a , 10bの近傍の導線 11に 形成してもよい。
尚、 半導体素子 12の電極端子 12a, 12bの形成面を通過する平面 コイルの導線 11に、 接着剤層 36を介して半導体素子 12を接着しても よいことは勿論のことである。
図 29において、 図 1 に示した IC力一 ドと相違する点を説明する。 凹部 14 (図 30) に配設された半導体素子 12は、 その電極端子 12a , 12bの形成面に対して背面側の平面が、 凹部 14の底面を形成する 導線 11上に載置されている。 この半導体素子 12は、 導線 11上に単に 載置されていてもよいが、 導線 11上に接着剤によつて接着すること によって、 半導体素子 12の電極端子 12a , 12bの位置決め等を容易 に行う ことができ好ま しい。 図 30 ( a ) は、 半導体素子 12の厚さより も深い凹部 14を平面コィ ル 10の導線 11に形成した例である。 この例では、 平面コイル 10の端 子 10b (10a ) の接続面 16を半導体素子 12の電極端子 12a, 12bの 形成面と実質的に同一面とすべく、 平面コイル 10の端子 10b (10a ) に潰し加工を施している。 この様に、 凹部 14を半導体素子 12の厚 さより も深く 形成することによって、 両端子を接続するワイヤ 18の ループの平面コイル 10からの突出する部分を可及的に少なく できる o
一方、 図 30 ( b ) は、 半導体素子 12の厚さ と略等しい深さの凹部 14を平面コイル 10の導線 11に形成した例である。 この例では、 平面 コイル 10の端子 10b (10a ) の接続面 16と半導体素子 12の電極端子 12 a , 12bの形成面とが実質的に同一面であるため、 平面コイル 10 の端子 10b (10a ) に潰し加工を施す工程を省略できる。
この様に、 図 29及び図 30 ( a ) , 30 ( b ) に示す ICカー ドでは、 平面コイル 10の端子 10 a, 10bの接続面 16と、 半導体素子 12の電極 端子 12a , 12bの形成面とが、 実質的に同一平面であるため、 ゥ ェ ッ ジ · ボンディ ング法又はボール ' ボンディ ング法によってワイヤ ボンディ ングを施すこ とができる。 このため、 図 2 に示す様に、 平 面コイル 10の面から突出するループ部分を可及的に少なく しつつ、 金、 白金、 又はアルミニウム製のワイヤ 18, 18により、 平面コイル 10の端子 10a, 10b と、 半導体素子 12の電極端子 12 a, 12b とを電 気的に接続できる。
図 2 に示す場合と同様に、 図 30 ( a ) 及び図 30 ( b ) においても 、 平面コイル 10の面から突出するループ部分を可及的に少なく しつ つ、 ワイヤ 18, 18により、 平面コイル 10の端子 10 a, 10b と半導体 素子 12の電極端子 12a, 12b とを電気的に接続できる。
ループ状のワイヤ 18の変形等を防止するには、 図 31に示す様に、 平面コイル 10の端子 10 bと半導体素子 12の電極端子 12 bとに圧着さ れたワイヤ 18の圧着部を樹脂 15, 15、 特に UV硬化樹脂によつて固定 しておく ことが好ま しい。
図 29〜図 31に示した平面コイル 10のうち、 潰し加工が施された端 子 10a , 10bの接続面 16は、 半導体素子 12の電極端子 12a, 12bの 形成面を含む平面と実質的に同一平面であればよく、 その形状は任 意の形状とすることができるが、 図 29、 図 30 ( a ) 、 及び図 31に示 す平面コイル 10の端子 10 a, 10bは、 前述の図 7 に示す端子形状の ものが好ま しい。
また、 平面コイル 10の端子 10 a , 10bと半導体素子 12の電極端子 12a , 12bとの接続を、 ボンディ ング装置の動作等の関係で図 32に 示す様に、 半導体素子 12を迂回して平面コィル 10の内側及び外側に 位置する電極端子 12a , 12bの近傍に設けられた端子 10 a, 10b と の間で行ってもよい。 図 32は、 両者を接続するワイヤ 18, 18が導線 11に対して直角方向に張られた場合である。
かかる図 32に示す平面コイル 10の端子 10 a, 10 bに潰し加工を施 す場合は、 前述の図 9 に示すものが好ま しい。
平面コイル 10に電磁誘導によって発生した電力が半導体素子 12に 充分に送電されない懸念を解消するには、 図 14に示す例と同様に、 図 34に示すように、 平面コイル 10の端子 10 a, 10bと半導体素子 12 の電極端子 12a, 12b とを、 リボン状の接続金属部材 30により接続 することが好ま しい。
図 29〜図 34においては、 平面コイル 10の端子 10 a, 10bの各近傍 に凹部 14が形成されていないが、 図 35 ( a ) 、 図 35 ( b ) に示す様 に、 凹部 14を端子 10b (10a ) の近傍に形成してもよい。 これらの 図において、 凹部 14の底面は、 凹部 14を端子 10b (10a ) の近傍に 形成しない場合に比較して広い。 このため、 半導体素子 12を凹部 14 の底面に安定した状態で載置してワイヤボンディ ングを行う ことが できる。
また、 平面コイル 10に形成される凹部 14も、 導線 11を曲折して形 成する他に、 導線 11の厚さが半導体素子 12より も厚いこ とを利用 し 、 図 19の場合と同様に、 図 36に示す様に、 導線 11の途中に潰し加工 を施して凹部 14を形成してもよい。 この場合、 平面コイル 10及び半 導体素子 12を、 ICカー ドの厚み方向の中央部に位置させることがで き、 ICカー ドを薄く形成できる。 また、 この場合において、 導線 11 の厚み t の範囲内に、 半導体素子 12及びヮィャ 18が収納される。 更に、 平面コイル 10の端子 10 a, 10bを、 図 37に示す様に、 潰し 加工が施された平面コイル 10の端子 10b (10a ) の接続面を拡大し 、 一端が半導体素子 12の電極端子 12b (12a ) に接続されたワイヤ 18の他端を、 端子 10b (10 a ) に接合するようにしてもよい。 この 平面コイル 10の端子 10b (10 a ) には、 電極端子 12b (12a ) が形 成された半導体素子 12の端部が挿入されるコ字状の凹部 33が形成さ れている。 この凹部 33に、 半導体素子 12の端部を揷入することによ つて、 平面コイル 10の端子 10b (10a ) と接続される電極端子 12b (12a ) が形成された半導体素子 12の端部を囲むように、 端子 10b (10a ) が半導体素子 12の端部の端縁に沿って延出されている。 こ のため、 半導体素子 12の位置決めを容易とするこ とができ、 且つヮ ィャ 18の長さを短くできて好ま しい。 この場合も、 半導体素子 12と 平面コィル 10の導線 11とを接着剤によって接着した後、 ワイヤ 18を ボンディ ングすることが好ま しい。
図 38 ( a ) 及び図 38 ( b ) は平面コイル 10の一方の端子 10 bに潰 し加工を施して半導体素子 12の搭載部と して凹部 14を形成し、 端子 10 bの接続面をさ らに拡大して端子 10 b上に半導体素子 12を搭載し た例である。 端子 10b上では半導体素子 12の電極端子 12b と端子 10 b とを通常のワイヤも し く は被覆したワイヤによつて接続する。 平 面コィル 10の他方の端子 10 a と半導体素子 12の電極端子 12 a とは他 方の端子 1 0 a, 10 bで挟まれた中間を通る導線 1 1を直交方向に跨ぐ ようにしてワイャ 18を接続する。 端子 10 aに潰し加工を施すととも に、 導線 1 1上でワイャ 18が通過する部位に潰し加工を施して通し凹 部 14 aを形成し、 ワイャ 18が導線 1 1の厚さ範囲内から突出しないよ うにする。 通し凹部 14 aの内面で少なく と もワイャ 18が通過する部 位に電気的絶縁性材と して絶縁性の樹脂を塗布し、 あるいは電気的 絶縁性を有する絶縁テープを接着することにより、 通常のワイヤ 18 を用いて電気的短絡を生じさせずに接続することができる。
図 39は端子 10 a, 10 b以外の導線 1 1の中途部分に潰し加工を施し て半導体素子 12の搭載部と しての凹部 14を形成し、 凹部 14に半導体 素子 12を搭載した例である。 半導体素子 12を搭載するため凹部 14を 導線 1 1の線幅より も広幅に形成し、 搭載部に隣接する導線 1 1を凹部 14の外側を迂回するように配置する。 この場合も、 凹部 14と略同一 高さ面となるように端子 10 a, 10 bに潰し加工を施すとともに、 搭 載部と端子 10 a, 10 bで挟まれた導線 1 1でワイャ 18が横切る部位に 潰し加工を施して通し凹部を形成し、 端子 10 a, 1 0 b と半導体素子 12の電極端子 12 a, 12 b とを接続するワイヤ 18が導線 1 1の厚さ範囲 内から突出しないようにする。 なお、 電極端子 12 a, 12 b と端子 10 a, 10 b とを接続するワイヤ 18には被覆ワイヤを使用するのがよい 。 通し凹部の内面を電気的絶縁性材で被覆すれば、 通常のワイヤ 18 を使用 して接続することができる。
半導体素子 12が小さい場合には、 このように潰し加工により導線 1 1に形成した凹部 14に半導体素子 12を搭載することができる。
凹部 14に半導体素子 10を搭載する方法は半導体素子 12の大きさに 係わらず標準的な平面コィル 10が形成できるという利点がある。 ま た、 平面コィル 10で導線 11が通過する幅を跨ぐ幅寸法より も半導体 素子 12が小さい場合に凹部 14に半導体素子 12を搭載する方法が有用 である。
これまで延びてきた ICカー ドは、 平面コイル 10を構成する導線 11 に曲折又は潰し加工を施して凹部 14を形成しているが、 図 40及び図 41に示す様に、 導線 11の端部近傍を曲折すると共に、 先端部に潰し 加工を施すことにより、 平面コイル 10に凹部 14を形成することなく 平面コイル 10の端子 10 a, 10bの各接続面 16を半導体素子 12の電極 端子 12 a, 12 bの形成面を含む平面と実質的に同一平面とすること ができる。
この図 40及び図 41においては、 平面コイル 10の端子 10 a , 10b と 半導体素子 12の電極端子 12a, 12b とをワイヤ 18, 18によってボン ディ ングする際に、 半導体素子 12の下面を通過する平面コイル 10の 導線 11と半導体素子 12とを接着剤により接着することによって、 ヮ ィャボンディ ングする際の位置決めを容易とすることができ好ま し い。
尚、 導線 11の端部近傍の曲折量を調整することにより、 平面コィ ル 10の端子 10a, 10bの各接続面 16を、 潰し加工を施すことなく半 導体素子 12の電極端子 12 a, 12 bの形成面と実質的に同一平面とす ることもできる。
以上の IC力一 ドでは、 平面コイル 10を形成する導線 11が半導体素 子 12より も厚い場合について説明したが、 導線 11と略等しい厚さの 半導体素子 12を用いる場合、 図 42に示す様に、 平面コイル 10に対し 、 電極端子 12a, 12bの形成面に対して背面側の平面が導線 11側に 位置するように半導体素子 10を配設し、 平面コイル 10の端子 10a, 10 bに潰し加工等を施すことなく半導体素子 12の電極端子 12 a , 12 b とをワイヤ 18, 18によって接続した ICカー ドでもよい。 この場合 、 ワイヤ 18, 18のループの一部が導線 1 1から突出するが、 突出量は 僅かである。 このため、 樹脂フ ィルム 20 a , 20 bの一面側に形成さ れた接着剤層 22 a, 22 bによってワイヤ 18, 18を充分に封止でき、 封止の際の変形も問題とならないものである。
図 29〜図 42によつて説明してきた I Cカー ドは、 平面コイル 10と半 導体素子 12との接続は、 ワイヤ 18又はリ ボン状の接続金属部材 30を 用いているが、 図 43に示す様に、 半導体素子を樹脂モール ドしたモ ジュール体 40を用いてもよい。 このモジュール体 40は、 図 44及び図 45に示す様に、 半導体素子 12の電極端子 12 a , 12 bの各々 とはんだ バンプ 44, 44を介してに接合されたリ ー ド 46, 46の先端部に形成さ れた接続部 47, 47が露出するように樹脂モール ドされている。
かかるモジュール体 40の接続部 47, 47は、 平面コイル 10の端子 1 0 a , 10 bに接合されている。 この接合は、 接続部 47, 47の接続面に 、 金めつ き、 錫めつき、 又ははんだめつ きを施すと共に、 半導体素 子 12の電極端子 12 a , 12 b と平面コイル 10の端子 10 a, 10 b とに金 めっ きを施し、 接続する両端子を加熱 ' 圧着することにより、 共晶 合金によって行う ことができる。 一方、 接続部 47, 47がアルミ ニゥ ム製である場合、 両端子の接続は、 接続部 47, 47の接続面に金属め つきを施さなくても行う ことができる。 また、 両端子の接続は導電 性接着剤を用いても行う ことができる。
また、 図 43に示す様に、 モジュール体 40が装着される平面コイル 10の部分には、 導線 1 1が曲折されてモジュ一ル体 40が揷入される凹 部が形成されている。
以上に説明した I Cカー ドは、 平面コイル 10の複数回卷回された導 線 1 1の延びる方向に対して半導体素子 12の端子 (ボンディ ングパッ ド) 12 a, 12 bが両側に形成された側について説明した。 これに対 し、 図 46に示す I C力一 ドは半導体素子 12のボンディ ングパッ ド 12 a , 12b力く、 平面コイル 10の導線 11の延びる方向に対して片側に形成 されている。 この例では平面コイル 10の一方 (例えば、 外側端) の 端子 10aを半導体素子 12の外側に迂回させ、 平面コイル 10の他方 ( 例えば、 内側端) の端子 10b と同じ側に並ぶ位置まで延ばす。 そし て、 端子 10a , 10bの部分はボンディ ングに必要な領域をもったパ ッ ドと し、 端子 10a , 10bの近傍にある半導体素子 12の電極端子 12 a , 12b との間でそれぞれワイヤ 18, 18でボンディ ングする。 なお 、 上記とは逆に、 平面コイル 10の片側端 10bを半導体素子 12の内側 に迂回させてもよいことは勿論である。
図 47 ( a ) 〜図 47 ( c ) は半導体素子 12を封止樹脂で固めて固定 した後、 樹脂フィ ルム 20 a, 20 bで挟み込んで ICカー ドとする場合 の製造工程を示す。 まず、 図 47 ( a ) に示すように、 平面コイル 10 を構成する導線 11が押し潰されて凹部 14が形成された部位に半導体 素子 12が搭載される。 次いで、 図 47 ( b ) に示すように、 半導体素 子 12と平面コィル 10の半導体素子搭載部を封止樹脂 50でモール ド成 形する。 この場合のモール ド成形は トラ ンスファーモール ドである のが望ま しい。 図 48はモール ド成形後の半導体素子の状態を斜視図 で示すものである。 次いで、 平面コイル 10の上下から接着剤層 22a , 22bを介在させて樹脂フ ィ ルム 20a, 20bで挟み込み、 ICカー ド とする。
なお、 半導体素子 12を樹脂により封止する場合は、 図 47 ( a ) 〜 図 47 ( c ) 及び図 48のようにモール ド成形により封止樹脂を形成し てもよいが、 図 49に概略示すように、 ポッティ ング 52により形成し てもよい。
このように半導体素子 12を樹脂封止することにより、 半導体素子 12が捕強され、 上述したような、 半導体素子 12と平面コイル 10を樹 脂フ ィ ルム 20 a, 20bでラ ミネー トする等の製造工程中に、 半導体 素子 12にかかる応力を緩和でき、 クラ ッ クが入る等による、 半導体 素子 12の破損を防止することが出来る。 また、 製造後の 1 Cカー ドの 使用時においても、 I Cカー ドを曲げた際等にかかる応力を緩和でき るので、 半導体素子の破損を防止することができる。 産業上の利用可能性
本発明に係る I Cカー ド及び I Cカー ド用フ レームによれば、 プレス 加工によって形成された平面コィルの端子と半導体素子の電極端子 との接続を、 接続ワイヤが平面コイルを横切ることなく容易に行う ことができる。 このため、 I Cカー ド及び I Cカー ド用フ レームの低コ ス ト化と量産化とを図ることができる。

Claims

請 求 の 範 囲
1. 導線が実質的に同一平面上に複数回卷回されて成る平面コィ ルと、 該平面コイルの端が電気的に接続された、 電極端子を有する 半導体素子とを具備する I C力一 ドにおいて、
該平面コィルが、 コィルの内側に形成された内側端子とコィルの 外側に形成された外側端子とを具備し、
前記半導体素子が、 その電極端子の形成面が平面コィルの導線に 対し対向するように配設されていると共に、 前記平面コイルの内側 端子及び外側端子と接続される半導体素子の電極端子の各々が、 該 平面コイルの内側端子及び外側端子とそれぞれ隣接して位置され、 且つ前記半導体素子の電極端子が、 コイルの内外方向に対して同 一側に位置する平面コイルの端子と電気的に接続されていることを 特徴とする I C力一ド。
2. 平面コイル及び半導体素子は、 I Cカー ドの表裏面を形成する 各樹脂フ ィ ルムにより、 それらの内面側に形成された接着剤層によ つて、 挟み込まれて封止されている請求項 1記載の I Cカー ド。
3. 平面コイルの端子が、 半導体素子の電極端子が形成された形 成面と実質的に同一平面となるように、 潰し加工が施されている請 求項 1記載の I C力一ド。
4. 潰し加工が施された平面コイルの端子が、 前記平面コイルの 端子と接続される電極端子が設けられた半導体素子の端部を囲むよ うに、 前記半導体素子の端部の端縁に沿つて延出されている請求項 3記載の I C力一ド。
5. 半導体素子が、 平面コイルに形成された凹部に配設されてい る請求項 1 のいずれか一項記載の I C力一 ド。
6. 平面コイルに形成された凹部が、 平面コイルを形成する導線 が曲折されて形成されている請求項 5記載の I Cカー ド。
7. 平面コイルに形成された凹部が、 前記平面コイルを形成する 導線の途中に潰し加工が施されて形成されている請求項 5記載の I C カー ド。
8. 平面コイルの端子と半導体素子の電極端子との接続が、 ルー プ状のボンディ ングワイヤによってなされていると共に、 前記ボン ディ ングワイャのループが平面コイルの厚みの範囲内から突出する こ とがないように形成されている請求項 1 記載の I C力一 ド。
9. ボンディ ングワイヤによる接続が、 ゥヱ ッ ジ ' ボンディ ング 法によってなされている請求項 8記載の I C力一ド。
10. ボンディ ングワイヤによる接続が、 ボール · ボンディ ング法 によってなされている請求項 8記載の I Cカー ド。
11. 平面コイルの端子と半導体素子の電極端子との接続が、 リ ボ ン状の接続金属部材によつてなされている請求項 1 記載の i c力一 ド
12. 平面コィルの端子と半導体素子の電極端子とが直接接続され ている請求項 1記載の I C力一 ド。
13. 平面コイルは、 その端子の近傍に、 前記平面コイルに生じる 応力を吸収する応力吸収部が形成されている請求項 12記載の I C力一 F o
14. 平面コイルはプレス加工により形成されている請求項 1 記載 の I Cカー ド。
15. 平面コイルはエツチング加工により形成されている請求項 1 記載の I C力一ド。
16. 平面コィルの内側端子及び外側端子と接続される半導体素子 の電極端子の各々は、 平面コィルの内側及び外側にそれぞれ位置し ている請求項 1記載の I Cカー ド。
17. 導線が実質的に同一平面上に複数回卷回されて成る平面コィ ルと、 該平面コィルの端が電気的に接続される電極端子を有する半 導体素子とを具備する I C力一 ドにおいて、
該平面コィルが、 コィルの内側に形成された内側端子とコイルの 外側に形成された外側端子とを具備し、
前記半導体素子が、 その電極端子の形成面に対して背面側の平面 が平面コィルの導線と対向するように配設されていると共に、 前記 平面コィルの内側端子及び外側端子と接続される半導体素子の電極 端子の各々が、 該平面コィルの内側端子及び外側端子に隣接して位 置され、
且つ前記半導体素子の電極端子が、 コイルの内外方向に対して同 一側に位置する平面コイルの端子と電気的に接続されていることを 特徵とする I C力一 ド。
18. 平面コイル及び半導体素子は、 I Cカー ドの表裏面を形成する 各樹脂フィ ルムにより、 それらの内面側に形成された接着剤層によ つて、 挟み込まれて封止されている請求項 17記載の I Cカー ド。
19. 半導体素子が、 平面コイルに形成された凹部に配設されてい る請求項 17記載の I C力― ド。
20. 平面コイルに形成された凹部が、 平面コイルを形成する導線 が曲折されて形成されている請求項 19記載の I C力一 ド。
21. 平面コイルに形成された凹部が、 前記平面コイルを形成する 導線の途中に潰し加工が施されて形成されている請求項 19記載の I C 力一ド。
22. 平面コイルの端子と半導体素子の電極端子との接続が、 ル一 プ状のボンディ ングワイャによつてなされている請求項 17項記載の I C力一ド。
23. ボディ ングワイヤによる接続が、 ゥヱ ッ ジ · ボンディ ング法 によってなされている請求項 22記載の I C力一ド。
24. ボンディ ングワイヤによる接続が、 ボール ' ボンディ ング法 によってなされている請求項 22記載の I C力一ド。
25. 平面コイルの端子と半導体素子の電極端子との接続が、 リ ボ ン状の接続金属部材によってなされている請求項 17記載の I Cカー ド o
26. 平面コイルはプレス加工により形成されている請求項 Π記載 の I C力一ド。
27. 平面コイルはエッチング加工により形成されている請求項 Π 記載の I C力一ド。
28. 平面コィルの内側端子及び外側端子と接続される半導体素子 の電極端子の各々は、 平面コィルの内側及び外側にそれぞれ位置し ている請求項 Π記載の I Cカー ド。
29. 導線が実質的に同一平面上に複数回卷回されて成る平面コィ ルがプレス加工又はエッチング加工によって形成され、 且つ前記平 面コィルの端子と半導体素子の電極端子とが電気的に接続された I C カー ドにおいて、
該平面コィルが、 コィルの内側に形成された内側端子とコィルの 外側に形成された外側端子とを具備し、
前記半導体素子が、 その電極端子に接合されたリー ドの先端部に 形成された接続部が露出するように樹脂モール ドされていると共に 、 前記平面コイルの内側端子及び外側端子と接続される リ ー ドの接 続部の各々が、 該コィルの内側端子及び外側端子に隣接して位置さ れ、
且つ前記リ一ドの接続部が、 コィルの内外方向に対して同一側に 位置する平面コィルの端子と電気的に接続されていることを特徴と する I C力一 ド。
30. 導線が実質的に同一平面上に複数回卷回されて成る平面コィ ルがプレス加工又はェッチング加工によつて形成され、 且つ前記平 面コィルの端子と半導体素子の電極端子とが電気的に接続された I C 力一 ドにおいて、
該平面コィルの端子が、 コィルの内側に形成された内側端子とコ ィルの外側に形成された外側端子とを具備し、
前記内側端子と外側端子の内の一方の端子が、 端子面内に前記半 導体素子を搭載する搭載部として形成され、
該搭載部に搭載された半導体素子の電極端子と前記内側端子およ び外側端子とが各々ワイヤボンディ ングにより電気的に接続されて いることを特徴とする I C力一ド。
31. 前記搭載部が導線に潰し加工を施して導線より も幅広の凹部 に形成され、
—方の端子と他方の端子との中間を通る導線の、 他方の端子と半 導体素子の電極端子とを接続するボンディ ングワイャが横切る部位 に通し凹部が設けられていることを特徴とする請求項 30記載の I C力 一ド。
32. 導線が実質的に同一平面上に複数回卷回されて成る平面コィ ルがプレス加工又はェッチング加工によつて形成され、 且つ前記平 面コィルの端子と半導体素子の電極端子とが電気的に接続された I C カー ドにおいて、
該平面コイルの端子が、 コイルの内側に形成された内側端子とコ ィルの外側に形成された外側端子とを具備し、
前記内側端子と外側端子とで挟まれた中間を通る少なく とも 1本 の導線の中途部分が導線面内に半導体素子を搭載する搭載部に形成 され、
該搭載部に搭載された半導体素子と前記内側端子及び外側端子と が各々 ワイヤボンディ ングにより電気的に接続されたことを特徴と する I C力一 ド。
33. 前記搭載部が導線に潰し加工を施して導線より も幅広の凹部 に形成され、
搭載部と一方の端子に挟まれた中間を通る導線、 および搭載部と 他方の端子に挟まれた中間を通る導線のボンディ ングワイヤが横切 る部位に通し凹部が設けられていることを特徴とする請求項 32記載 の 1 Cカー ド。
34. 導線が実質的に同一平面上に複数回卷回されて成る平面コィ ルがプレス加工又はエッチング加工によって形成され、 且つ前記平 面コィルの端子と半導体素子の電極端子とが電気的に接続された I C カー ドの製造に使用する I Cカー ド用フ レームであって、
前記平面コイルが、 コイルの内側と外側に対して同一側に位置す る半導体素子の電極端子が各々電気的に接続されるコィルの内側に 形成される内側端子と、 コイルの外側に形成される外側端子とを具 備することを特徴とする I Cカー ド用フ レーム。
35. 前記平面コィルに半導体素子を搭載する凹部が形成されてい るこ とを特徴とする請求項 34記載の I Cカー ド用フ レーム。
36. 平面コイルに形成された凹部が、 平面コイルを形成する導線 を曲折して形成されている請求項 35記載の I C力一 ド用フ レーム。
37. 平面コイルに形成された凹部が、 前記平面コイ ルを形成する 導線の途中に潰し加工が施されて形成されていることを特徴とする 請求項 35記載の I C力ー ド用フ レーム。
38. 前記内側端子と外側端子の一方の端子が、 端子面内に前記半 導体素子を搭載する搭載部と して形成されていることを特徴とする 請求項 34記載の I Cカー ド用フ レーム。
39. 前記搭載部が導線に潰し加工を施して導線より も幅広の凹部 に形成され、
一方の端子と他方の端子との中間を通る導線の、 他方の端子と半 導体素子の電極端子とを接続するボンディ ングワイヤが横切る部位 に通し凹部が設けられていることを特徴とする請求項 38記載の I C力 ― ド用フ レーム。
40. 前記通し凹部の少なく ともボンディ ングワイャが通過する内 面部分が電気的絶縁性材により被覆されていることを特徴とする請 求項 39記載の I C力一 ド用フ レーム。
41. 前記内側端子と外側端子とで挟まれた中間を通る少なく とも 1 本の導線の中途部分が導線面内に半導体素子を搭載する搭載部と して形成されていることを特徴とする請求項 34記載の I Cカー ド用フ レーム。
42. 前記搭載部が導線に潰し加工を施して導線より も幅広の凹部 に形成され、 搭載部と一方の端子に挟まれた中間を通る導線、 およ び搭載部と他方の端子に挟まれた中間を通る導線のボンディ ングヮ ィャが横切る部位に通し凹部が設けられていることを特徴とする請 求項 41記載の I Cカー ド用フ レーム。
43. 平行な二本のレールの間に、 同一形状の平面コイルがレール の長手方向に複数個数連設されている請求項 34記載の I C力一ド用フ レーム。
44. 平面コイルを形成する導線のうち、 最外周の導線が他の導線 より も太く形成されている請求項 43記載の I C力ー ド用フ レーム。
45. 平面コィルの隣接する最外周の導線が連結部により連結され ている請求項 43記載の I C力一 ド用フ レーム。
PCT/JP1999/000581 1998-02-13 1999-02-10 Ic card and its frame WO1999041699A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP99905190A EP0996082B1 (en) 1998-02-13 1999-02-10 Ic card and its frame
AT99905190T ATE307363T1 (de) 1998-02-13 1999-02-10 Ic-karte und ihre struktur
AU25464/99A AU2546499A (en) 1998-02-13 1999-02-10 Ic card and its frame
DE69927765T DE69927765T2 (de) 1998-02-13 1999-02-10 Ic-karte und ihre struktur
KR1019997009241A KR100594829B1 (ko) 1998-02-13 1999-02-10 Ic 카드 및 ic 카드용 프레임
US09/402,946 US6252777B1 (en) 1998-02-13 1999-02-10 IC card and its frame
NO994964A NO994964D0 (no) 1998-02-13 1999-10-12 IC-kort og dets ramme
HK00107996A HK1028660A1 (en) 1998-02-13 2000-12-13 Ic card and its frame

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP10/31624 1998-02-13
JP3162498A JP3542266B2 (ja) 1998-02-13 1998-02-13 Icカード及びフレーム
JP6091698 1998-03-12
JP10/60916 1998-03-12
JP25292098A JP3542281B2 (ja) 1998-03-12 1998-09-07 Icカード及びicカード用フレーム
JP10/252920 1998-09-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/768,607 Continuation US6452806B2 (en) 1998-02-13 2001-01-25 Frame for IC card

Publications (1)

Publication Number Publication Date
WO1999041699A1 true WO1999041699A1 (en) 1999-08-19

Family

ID=27287385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000581 WO1999041699A1 (en) 1998-02-13 1999-02-10 Ic card and its frame

Country Status (10)

Country Link
US (2) US6252777B1 (ja)
EP (1) EP0996082B1 (ja)
KR (1) KR100594829B1 (ja)
CN (1) CN1217396C (ja)
AT (1) ATE307363T1 (ja)
AU (1) AU2546499A (ja)
DE (1) DE69927765T2 (ja)
HK (1) HK1028660A1 (ja)
NO (1) NO994964D0 (ja)
WO (1) WO1999041699A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3484356B2 (ja) * 1998-09-28 2004-01-06 新光電気工業株式会社 Icカード及びicカード用アンテナ並びにicカード用アンテナフレーム
JP2001188891A (ja) * 2000-01-05 2001-07-10 Shinko Electric Ind Co Ltd 非接触型icカード
JP3809056B2 (ja) * 2000-09-14 2006-08-16 新光電気工業株式会社 Icカード
JP2002319011A (ja) * 2001-01-31 2002-10-31 Canon Inc 半導体装置、半導体装置の製造方法及び電子写真装置
DE10117994A1 (de) * 2001-04-10 2002-10-24 Orga Kartensysteme Gmbh Trägerfolie für elektronische Bauelemente zur Einlaminierung in Chipkarten
DE10122416A1 (de) 2001-05-09 2002-11-14 Giesecke & Devrient Gmbh Verfahren und Halbzeug zur Herstellung einer Chipkarte mit Spule
JP4789348B2 (ja) * 2001-05-31 2011-10-12 リンテック株式会社 面状コイル部品、面状コイル部品の特性調整方法、idタグ、及び、idタグの共振周波数の調整方法
EP1405258A1 (en) * 2001-07-12 2004-04-07 Sokymat S.A. Lead frame antenna
JP4114446B2 (ja) * 2002-09-13 2008-07-09 ソニー株式会社 アンテナ装置及びこれを用いた読み出し書き込み装置、情報処理装置、通信方法並びにアンテナ装置の製造方法
JP4141857B2 (ja) * 2003-02-18 2008-08-27 日立マクセル株式会社 半導体装置
US7397672B2 (en) * 2003-08-05 2008-07-08 Lintec Corporation Flip chip mounting substrate
TWI457835B (zh) * 2004-02-04 2014-10-21 Semiconductor Energy Lab 攜帶薄膜積體電路的物品
US7061769B1 (en) * 2005-03-11 2006-06-13 Jung-Che Chang USB/OTG-interface storage card
KR100956683B1 (ko) * 2007-09-20 2010-05-10 삼성전기주식회사 수소발생장치의 전극연결방법 및 그것을 이용한수소발생장치
JP5248224B2 (ja) * 2008-07-09 2013-07-31 リンテック株式会社 電子回路及びicタグ
CN113921238A (zh) * 2018-01-12 2022-01-11 乾坤科技股份有限公司 电子装置及其制作方法
CN109192470A (zh) * 2018-08-27 2019-01-11 昆山联滔电子有限公司 一种线圈装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104128A (ja) * 1985-10-31 1987-05-14 Toshiba Corp 位置検出装置
JPH08287208A (ja) * 1995-04-13 1996-11-01 Sony Chem Corp 非接触式icカード及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104128A (ja) 1986-10-21 1988-05-09 Nec Corp 端末装置における画面フオ−マツトデ−タ格納方式
JPH06310324A (ja) 1993-04-21 1994-11-04 Nippon Mektron Ltd 平面コイル
FR2716281B1 (fr) * 1994-02-14 1996-05-03 Gemplus Card Int Procédé de fabrication d'une carte sans contact.
DE4431606A1 (de) * 1994-09-05 1996-03-07 Siemens Ag Chipkartenmodul für eine kontaktlose Chipkarte und Verfahren zu deren Herstellung
DE4437721A1 (de) * 1994-10-21 1996-04-25 Giesecke & Devrient Gmbh Kontaktloses elektronisches Modul
DE4446369A1 (de) * 1994-12-23 1996-06-27 Giesecke & Devrient Gmbh Datenträger mit einem elektronischen Modul
US5671525A (en) * 1995-02-13 1997-09-30 Gemplus Card International Method of manufacturing a hybrid chip card
DE19527359A1 (de) * 1995-07-26 1997-02-13 Giesecke & Devrient Gmbh Schaltungseinheit und Verfahren zur Herstellung einer Schaltungseinheit
KR19990035991A (ko) * 1995-08-01 1999-05-25 노버트 토마셰크, 요셉 발크너 비접촉 작용 전송 시스템 및 콤포넌트를 구비한 비접촉 작용카드형 데이터 캐리어와 이런 카드형 데이터 캐리어 및 그모듈의 생산 방법
CZ197098A3 (cs) 1995-12-22 1999-01-13 Sempac Sa Způsob výroby čipové karty pro bezkontaktní provoz
DE19710144C2 (de) * 1997-03-13 1999-10-14 Orga Kartensysteme Gmbh Verfahren zur Herstellung einer Chipkarte und nach dem Verfahren hergestellte Chipkarte
US6255725B1 (en) * 1998-05-28 2001-07-03 Shinko Electric Industries Co., Ltd. IC card and plane coil for IC card
DE19923807A1 (de) * 1999-05-19 2000-11-23 Deutsche Telekom Ag Verfahren zur Erhöhung der Sicherheit bei digitalen Unterschriften

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104128A (ja) * 1985-10-31 1987-05-14 Toshiba Corp 位置検出装置
JPH08287208A (ja) * 1995-04-13 1996-11-01 Sony Chem Corp 非接触式icカード及びその製造方法

Also Published As

Publication number Publication date
KR100594829B1 (ko) 2006-07-03
US6252777B1 (en) 2001-06-26
US6452806B2 (en) 2002-09-17
EP0996082A1 (en) 2000-04-26
EP0996082B1 (en) 2005-10-19
AU2546499A (en) 1999-08-30
DE69927765D1 (de) 2006-03-02
CN1256776A (zh) 2000-06-14
ATE307363T1 (de) 2005-11-15
CN1217396C (zh) 2005-08-31
NO994964D0 (no) 1999-10-12
HK1028660A1 (en) 2001-02-23
DE69927765T2 (de) 2006-07-06
KR20010006162A (ko) 2001-01-26
US20010004136A1 (en) 2001-06-21
EP0996082A4 (en) 2001-10-31

Similar Documents

Publication Publication Date Title
WO1999041699A1 (en) Ic card and its frame
US5826328A (en) Method of making a thin radio frequency transponder
JP4294161B2 (ja) スタックパッケージ及びその製造方法
US6344683B1 (en) Stacked semiconductor package with flexible tape
TW550776B (en) Semiconductor device and method of manufacturing the same
JP2509422B2 (ja) 半導体装置及びその製造方法
JPH09260538A (ja) 樹脂封止型半導体装置及び製造方法とその実装構造
JPH0870084A (ja) 半導体パッケージおよびその製造方法
JPH0448767A (ja) 樹脂封止型半導体装置
KR20030017676A (ko) 듀얼 다이 패키지
US10854538B2 (en) Microelectronic device with floating pads
US6036173A (en) Semiconductor element having a carrying device and a lead frame and a semiconductor chip connected thereto
US5403785A (en) Process of fabrication IC chip package from an IC chip carrier substrate and a leadframe and the IC chip package fabricated thereby
US6768211B2 (en) Five layer adhesive/insulator/metal/insulator/adhesive tape for semiconductor die packaging
CN206774530U (zh) 用于双基岛封装电路的引线框架
KR20020054475A (ko) 반도체 칩 적층 패키지 및 그 제조 방법
JP3542281B2 (ja) Icカード及びicカード用フレーム
JP3542266B2 (ja) Icカード及びフレーム
JP2003347132A (ja) 面実装型コイル部品及びその製造方法
JP4610613B2 (ja) Icタグの実装構造および実装用icチップ
JPH06104369A (ja) 多層リードフレーム
TWI244620B (en) IC card and frame for IC card
CN106952888A (zh) 用于双基岛封装电路的引线框架
JPH10189864A (ja) モールドパッケージ用多層リードフレーム
JP4521954B2 (ja) Icモジュールの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99800134.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1019997009241

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09402946

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999905190

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999905190

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1019997009241

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999905190

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019997009241

Country of ref document: KR