WO1999024530A1 - Appareil de decomposition de matieres plastiques de rebut residuelles - Google Patents

Appareil de decomposition de matieres plastiques de rebut residuelles Download PDF

Info

Publication number
WO1999024530A1
WO1999024530A1 PCT/JP1998/005003 JP9805003W WO9924530A1 WO 1999024530 A1 WO1999024530 A1 WO 1999024530A1 JP 9805003 W JP9805003 W JP 9805003W WO 9924530 A1 WO9924530 A1 WO 9924530A1
Authority
WO
WIPO (PCT)
Prior art keywords
decomposition
phase polymer
decomposition chamber
liquid
liquid phase
Prior art date
Application number
PCT/JP1998/005003
Other languages
English (en)
French (fr)
Inventor
Takeshi Kuroki
Original Assignee
Takeshi Kuroki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeshi Kuroki filed Critical Takeshi Kuroki
Priority to EP98951715A priority Critical patent/EP1052279A4/en
Priority to US09/341,342 priority patent/US6358480B1/en
Publication of WO1999024530A1 publication Critical patent/WO1999024530A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B7/00Coke ovens with mechanical conveying means for the raw material inside the oven
    • C10B7/10Coke ovens with mechanical conveying means for the raw material inside the oven with conveyor-screws
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Definitions

  • the present invention relates to an apparatus for decomposing waste plastic and collecting it as fuel oil or fuel gas. Background technique
  • waste plastics when incinerated, generate high temperatures and damage the incinerator, and are being sought as waste disposal methods that are difficult to dispose of.
  • many waste plastics for example, polyethylene and polystyrene, can be converted into a liquid phase polymer by performing a thermal decomposition treatment, and can be recovered as fuel oil or fuel gas by further thermal decomposition. Since the recovery of these useful materials from waste is the best means of waste treatment, the development of equipment that can recover fuel oil and fuel gas from waste plastics at a reasonable cost is desired.
  • This carbon covers the heated surface and acts as a thermal insulator, so it separates from the liquid phase polymer. This makes it difficult to control the solution, especially the decomposition temperature, and increases the running cost of the decomposition equipment. Also, if this carbon is mixed into the recovered oil, the oil quality will be reduced. In addition, it is difficult to control the degree of decomposition of the liquid-phase polymer because it is difficult to keep the temperature of the entire liquid-phase polymer uniform during the decomposition reaction. There is also a problem that it is difficult to obtain.
  • an object of the present invention to provide a method for separating a vaporized component generated from a liquid-phase polymer from the liquid-phase polymer quickly and efficiently, thereby suppressing the generation of carbon accompanying the decomposition reaction, and reducing the temperature of the entire liquid-phase polymer.
  • An object of the present invention is to provide an apparatus for decomposing waste plastic that can efficiently recover a vaporized component having a desired molecular weight by performing a decomposition reaction in a uniform state. Disclosure of the invention
  • a waste plastic decomposition apparatus includes a decomposition chamber in which a liquid-phase polymer obtained by heating waste plastic is supplied from the upper side to the lower side and can be heated from the outside
  • the decomposition chamber is basically a waste plastic decomposer that heats and decomposes the liquid phase polymer while stirring inside the decomposition chamber to produce gasoline components that become fuel oil or fuel gas. It consists of a vertically placed cylindrical body, inside of which is provided a rotating body with a shape substantially corresponding to the shape of the inside of the decomposition chamber, and a spiral screw on the outside of the rotating body. In the reaction space formed between the inner surface and the outer surface of the rotating body, the liquid polymer flowing down is raised by a screw and thermally decomposed while stirring.
  • the waste plastic decomposing apparatus of the present invention by providing a rotating body having a shape corresponding to the shape of the side surface of the decomposition chamber in the decomposition chamber having a vertical cylindrical body, a space between the side surface of the decomposition chamber and the outer surface of the rotating body is provided. To form a reaction space.
  • the reaction space for performing the decomposition reaction of the liquid-phase polymer is formed narrow, so that the entire liquid-phase polymer can be brought close to the inner surface of the decomposition chamber where the polymer is heated. And the heating becomes uniform.
  • the liquid-phase polymer can be heated in a state where the temperature gradient is as small as possible, so that it is possible to selectively recover the vaporized components and control the generation of carbon.
  • a spiral screw is provided on the outer surface of the rotating body of the waste plastic decomposer, and the screw lifts up a liquid-phase polymer flowing down in the reaction space as the rotating body rotates. Stir in such a direction.
  • the vaporized components generated in the liquid-phase polymer are forcibly raised to the liquid surface of the liquid-phase polymer, thereby promoting gas-liquid separation.
  • this waste plastic decomposing device it is possible to prevent the vaporized component trapped in the liquid phase polymer from being overheated and generating carbon.
  • raising and stirring the liquid-phase polymer gives the liquid-phase polymer sufficient time for the reaction, and more importantly reacts the high-viscosity liquid-phase polymer that has not generated a gasoline component.
  • the ratio of the liquid-phase polymer in the reaction space immediately before the generation of vaporized components is increased, and it is possible to increase the decomposition reaction rate while preventing carbon generation.
  • the rotating body in the waste plastic decomposing device of the present invention is provided with a hollow portion capable of supplying a high-temperature gas.
  • the liquid phase polymer can be heated from both surfaces forming the reaction space, that is, both the outer surface of the rotating body and the inner surface of the decomposition chamber, so that the temperature gradient in the liquid polymer can be reduced.
  • more heat can be applied to increase the amount of waste plastics broken down per hour.
  • the lower part of the decomposition chamber is formed in a mortar shape, and a circulation pipe for circulating and supplying the liquid phase polymer discharged from the lower end of the decomposition chamber to the decomposition chamber is provided.
  • Waste plastics may contain impurities that cannot be thermally decomposed, in which case it is necessary to remove the residues generated during the decomposition process. If it is made into a mortar shape, the residue naturally concentrates and accumulates at the lower end of the mortar-shaped inner surface, so that the removal operation can be easily performed.
  • Residue can be removed by providing a means for discharging the residue, such as a screw conveyor, in the middle of the circulation pipe, or by providing a means for discharging the residue at the lower end of the lower part of the mortar-shaped decomposition chamber. In either case, once the residue is concentrated at the bottom of the decomposition chamber, the treatment becomes easier.
  • the means for discharging the residue are polymers, It can be provided as appropriate according to the type of the residue or the like. When the residue is to be removed as described above, the liquid polymer having a high viscosity settled at the lower end of the decomposition chamber may also flow out of the decomposition chamber as the residue is removed.
  • FIG. 1 is a conceptual diagram showing an apparatus for decomposing waste plastic according to a first embodiment of the present invention.
  • FIG. 2 is a conceptual diagram showing a decomposition chamber of a waste plastic decomposition apparatus according to a second embodiment of the present invention.
  • FIG. 3 is a conceptual diagram showing a decomposition chamber of the waste plastic decomposition apparatus according to the third embodiment of the present invention.
  • FIG. 1 shows a first embodiment of the waste plastic decomposition apparatus according to the present invention.
  • the decomposition apparatus includes a decomposition chamber 2 and a supply pipe 3 which are surrounded by a casing 1 made of a heat insulating material and connected to each other. Further, inside the casing 1, a burner 4 capable of heating the decomposition chamber 2 and the supply pipe 3 is provided.
  • the supply pipe 3 has one end connected to the decomposition chamber 2 and the other end connected to the raw material hose 5. Further, the supply pipe 3 has a built-in transfer means 7 which is a screw conveyer connected to the drive means 6.
  • the disassembly chamber 2 is generally formed as a vertical cylinder ⁇ ⁇ , and the lower part is —It is mortar-shaped with a par. Further, inside the decomposition chamber 2, a rotating body 10 having an outer surface 9 corresponding to the shape of the inner surface 8 is housed, and the inner surface 8 of the decomposition chamber 2 and the outer surface of the rotating body 10 are stored. A narrow reaction space 11 is formed between the reaction space 9 and the reaction space 9.
  • the rotating body 10 has a helical screw 12 on its outer surface and is rotatably provided around a rotating shaft 14 connected to a driving means 13. A vaporized component discharge port 15 is provided, and a discharge pipe 16 is connected to the lower end of the decomposition chamber 2.
  • a filtration means 19 having a residue discharge pipe 18 containing a screw conveyor 17 mounted on the upper surface thereof, and further below the built-in screw conveyor 20.
  • a retentate reservoir 22 connected to the supply pipe via a circulation pipe 21 is provided.
  • the waste plastic decomposed by this device is temporarily stored in the raw material hopper 5 and then fed into the supply pipe 3 at an arbitrary timing.
  • the waste plastic put into the supply pipe 3 is sent to the decomposition chamber 2 by the transport means 7. Since the supply pipe 3 is externally heated by the burner 4, the waste plastic is melted or partially decomposed during transportation in the supply pipe 3, and becomes a liquid polymer.
  • the liquid-phase polymer generated in the supply pipe 3 is supplied to the decomposition chamber 2 and flows down to the reaction space 11 therein. Since the hot air supplied by the burner also heats the outer wall of the decomposition chamber 2, the liquid phase polymer flowing down into the narrow reaction space 11 and forming a thin layer is decomposed into porcelain components while being uniformly heated. Is done.
  • the rotating body 10 rotates with the rotation of the rotating shaft 14 connected to the driving means 13. Therefore, while the liquid polymer tries to flow downward, a force is applied so as to be lifted up by the rotating screw 12. As a result, the liquid-phase polymer is decomposed into vaporized components while being stirred up.
  • the gasoline component that has been forcibly separated from the liquid-phase polymer by such a stirring-up operation is taken out from the vaporized component discharge port 15.
  • This vaporized component is cooled by a cooling device (not shown) and recovered as fuel oil or fuel gas at room temperature.
  • the molecular weight of the waste plastic is approximately 50,000 to 100,000, and the molecular weight of the liquid phase polymer is about 100,000 to 30,000.
  • the molecular weight of the vaporized component is about 100 to 500.
  • the temperature inside the supply pipe for melting the waste plastic is 250 to 500 ° C, and the temperature of the reaction space for decomposing the liquid phase polymer is 350 to 600 ° C. .
  • the residue discharge pipe 18 when the amount of the deposited residue exceeds a predetermined amount, the residue is removed to the outside via the residue discharge pipe 18. At this time, the residue is compressed and solidified by the screw conveyor 17 inside the residue discharge pipe 18. Since the solidified residue has a function as a sealing member for the decomposition chamber 2, the liquid polymer can be prevented from leaking from the residue discharge pipe 18. Instead of removing all the residues by the residue discharge pipe 18, it is also possible to separate solids and the like that do not decompose by heat using a specific gravity difference and circulate them through the circulation pipe 21. This is preferable because the solids moving in the reaction space 11 can remove carbon and many other deposits on the wall surface in the reaction space 11.
  • the liquid-phase polymer stored in the residual reservoir 22 is circulated and supplied to the supply pipe 3 by the circulation pipe 21.
  • This liquid phase polymer is supplied to the decomposition chamber 2 again while adjusting the supply amount of the waste plastic, and is decomposed into vaporized components by repeating the above-mentioned circulation.
  • FIG. 2 It represents a second embodiment of the waste plastic decomposition apparatus according to the present invention apparatus for decomposing waste plastic in c
  • This 3 ⁇ 453 ⁇ 4 form a 2 has a basically similar to the structure of the first embodiment.
  • the waste plastic decomposition apparatus of this embodiment differs from that of the first embodiment in the structure of the decomposition chamber as follows.
  • the structure of the decomposition chamber is as shown in Fig. 2.
  • a cavity 23 is provided inside the rotating body 10 arranged at the center thereof, and an auxiliary burner 24 that can heat the hollow 23 is provided with the rotating body 10. It is provided at the top.
  • an outer case 25 is further provided outside the decomposition chamber 2, and a heating passage 26 communicating with the cavity 23 inside the rotating body 10 is provided between the decomposition chamber 2 and the outer case.
  • An exhaust port 27 is provided above the reaction space 11, and is connected to a catalyst reservoir 30 via a catalyst supply pipe 29 built in a screw conveyor 28.
  • a horizontal discharge pipe 16 is provided below the decomposition chamber 2. The discharge pipe 16 connects the reaction space 11 with the residual liquid reservoir 22 provided outside the reaction space 11.
  • a filtration means 19 is provided above the residue reservoir 22, and the residue reservoir 22 is connected to the upper part of the decomposition chamber 2 via a circulation pipe 21.
  • the decomposition chamber 2 is connected to a residue discharge means 18 built in the screw conveyor 17 below the decomposition chamber 2.
  • the waste plastic is decomposed by this device, first, the waste plastic is put into the supply pipe 3 as in the case of the device of the first embodiment.
  • the injected waste plastic is heated by the burner 4 while being sent through the supply pipe 3 by the conveying means 7, and is melted to become a liquid phase polymer.
  • the liquid phase polymer generated here is supplied to the decomposition chamber 2 and flows down to the reaction space 11.
  • the reaction space is heated from both inside and outside by the auxiliary burner 24. That is, the high-temperature hot air generated by the auxiliary burner 24 descends the hollow portion 23 inside the rotating body 10 to the lower end thereof, and then rises in the heating passage 26 which is formed as a series with the hollow portion 23. As a result, the reaction space 11 is heated from both the outer surface 9 of the rotating body 10 and the inner surface 8 of the decomposition chamber 2. In the reaction space 11, which is heated from both the inside and outside, the liquid phase polymer is uniformly heated while being stirred up by the screw 12 and decomposed while generating vaporized components. In decomposing the liquid phase polymer, a catalyst is supplied from the catalyst reservoir 30 to the reaction chamber via the catalyst supply pipe 29.
  • the liquid phase polymer in the reaction space is decomposed while contacting the catalyst.
  • the decomposition of the liquid phase polymer is improved. Will be performed sufficiently.
  • the generated vaporized component is discharged from the vaporized component discharge port 15, and the high-temperature hot air that has reached the upper end of the heating 26 is discharged to the outside from the exhaust port 27.
  • the excess liquid-phase polymer flows out of the discharge pipe 16 to the residue reservoir 22.
  • the liquid phase polymer that has flowed out is subjected to filtration means 19 provided above the residue reservoir 22 to remove the residue, and then returned to the reaction space via the circulation pipe 21 at a predetermined timing.
  • the waste plastics are decomposed into vaporized components while appropriately supplying the waste plastics and circulating the liquid polymer.
  • the residue is discharged as appropriate by the residue discharging means 18.
  • the waste plastic decomposition apparatus includes a decomposition chamber 2 of the same type as that of the second embodiment. That is, the decomposition chamber 2 is provided so that the reaction space 11 can be heated from both the outer surface 9 of the rotating body 10 and the inner surface 8 of the decomposition chamber 2.
  • Fig. 3 shows the decomposition chamber of this decomposer.
  • the decomposition chamber 2 of this waste plastic decomposition apparatus has three rotators 10 having a cavity 23 inside and connected in the vertical direction.
  • the cavities 23 provided in each of the rotating bodies 10 are in communication.
  • the series of cavities 23 are communicated with the heating passage 26 outside the decomposition chamber 2 at the lowermost end thereof.
  • the inner side surface 8 of the decomposition chamber 2 is formed as a narrow reaction space 11 between the inner surface 8 and the outer surface 9 of the rotating body 10.
  • an auxiliary burner 24 that can heat the hollow portion 23 inside the rotator 10 is provided above the rotator 10 located at the uppermost stage, and the heat supply is sufficient.
  • a second auxiliary burner 31 is provided outside the decomposition chamber 2.
  • a screw 12 is provided on the outer periphery of each rotating body 10, and an adjusting screw 32 is provided at a connecting portion between the rotating bodies 10.
  • a reaction space 11 formed between the outer surface 9 of the uppermost rotating body 10 and the inner surface 8 of the decomposition chamber 2 is connected to the supply pipe 3.
  • a vaporized component outlet 15 is provided in each of the reaction spaces 11, a vaporized component outlet 15 is provided.
  • the lowermost decomposition chamber 2 is connected to a residue reservoir 22 via a discharge pipe 16 at its lower end. Residue pool The connection 22 is connected to the supply pipe 3 via the circulation pipe 21 and to the residue discharging means 18.
  • the rotating body is provided in the decomposition chamber, and the reaction space is formed in a layer between the inner surface of the decomposition chamber and the outer surface of the rotating body, so that heat transfer in the polymer becomes smooth.
  • the liquid phase polymer can be heated while maintaining a uniform temperature as a whole, and it is possible to selectively recover vaporized components of any molecular weight, and to generate carbon due to overheating caused by a part of the liquid phase polymer. Can be canceled.
  • the temperature gradient in the liquid phase polymer can be made smaller.
  • the liquid polymer flowing down is lifted up by a screw and thermally decomposed while stirring, so that the gas-liquid separation is forcibly performed. It hardly overheats the vaporized components in it, and the problem of the generation of force can be almost eliminated in combination with the uniform heating of the liquid phase polymer.
  • a circulation pipe is provided for circulating the liquid polymer discharged from the lower end of the decomposition chamber to the decomposition chamber, and the liquid phase polymer is circulated. This has the advantage of facilitating the treatment of the generated residue and improving the decomposition efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Processing Of Solid Wastes (AREA)

Description

明 細 書 廃棄プラスチックの分解装置 技術分野
本発明は、 廃棄プラスチックを分解し、 燃料油や燃料ガスなどとして回収する ための装置に関する。 背景技
近年、廃棄物処理をいかに行うかということが非常に重要な問題となっている。 特に、廃棄プラスチックは、などを焼却を行うと高温を発し焼却炉を傷めるので、 処理の難しい廃棄物としてその処理方法が模索されている。 ところで、 廃棄ブラ スチックの多く、 例えばポリエチレンやポリスチレンは、 熱分解処理を行うこと により液相ポリマー化し、 これを更に熱分解することにより、 燃料油や燃料ガス として回収可能なものである。 廃棄物からこれら有用なものを回収できるのは、 廃棄物処理の手段として最良であるため、 廃棄プラスチックから燃料油や燃料ガ スを妥当なコストで回収しうる装置の開発が望まれている。
このような観点より廃棄プラスチックの分解装置に関する様々な研究が行われ ており、 例えば特開平 4— 1 8 0 8 7 8号、 特開平 5— 2 3 7 6 4 5号、 特開平 5 - 2 6 3 0 7 9号等の技術が提案されている。
しかしながら、 これらの技術は未だに本格的な実用段階に至っていないのが実 状である。 それは、 この技術特有の以下に示すような問題点があるからである。 即ち、 廃棄プラスチックの分解は、 液相ポリマ一を加熱してポリマーの高次構造 を崩して低次構造とし、 これを更に加熱することにより分解温度に応じた気化成 分を生じさせ、 これを冷却することにより種々の燃料油及び燃料ガスを得るもの として行われる。 この際、 液相ポリマーが分解されて生じる低分子量の気ィ匕成分 を液相ポリマ一から速やかに分離することが困難であるため、 気化成分が加熱壁 面との接触部分で過剰に加熱され多量の力一ボンが発生してしまうことがある。 このカーボンは、 加熱面を覆って断熱材として機能するため、 液相ポリマーの分 解を行う際の制御、 特に分解温度の制御を困難にすると共に、 分解装置のラン二 ングコストを増大させる。 また、 このカーボンが回収油に混入すると油質の低下 を招く。 更に、 分解反応を行うに当たり液相ポリマー全体の温度を均一に保つこ とが困難であるなどの理由により、 液相ポリマー分解の度合を制御することが難 しくなり、 望ましい組成の回収物を選択的に得難いという問題もある。
従って、 本発明の目的は、 液相ポリマーから生じる気化成分を液相ポリマーか ら迅速且つ効率よく分離できるようにして分解反応に伴うカーボン発生を抑止で きると共に、 液相ポリマ一全体の温度を均一とした状態で分解反応を行いうるこ とで所望分子量の気化成分を効率的に回収できるような廃棄プラスチックの分解 装置を提供することにある。 発明の開示
上記課題を解決するため、 本発明による廃棄プラスチックの分解装置は、 廃棄 プラスチックを加熱して得た液相ポリマーが上側から下側へと供給されると共に 外側から加熱可能とした分解室を備え、 分解室内部で攪拌を行いながら液相ポリ マ一を加熱分解して燃料油又は燃料ガスとなる気ィ匕成分を生じさせる廃棄プラス チックの分解装置であることをその基本とし、 その分解室は縦置きした筒状体か らなり、 その内部には分解室内側面の形状にほぼ対応する幵狱の回転体が設けら れると共に回転体外側面には螺旋状のスクリユーが設けられており、 分解室内側 面と回転体外側面との間に形成した反応空間内で、 流下する液相ポリマ一をスク リューにより搔き上げ攪拌しながら熱分解するようなものとされている。
本発明の廃棄プラスチックの分解装置では、縦置きの筒状体とした分解室内に、 分解室内側面の形状に対応する形状とした回転体を設けることにより、 分解室内 側面と回転体外側面との間に反応空間を形成することとしている。 つまり本発明 の分解装置では、 液相ポリマーの分解反応を行う反応空間を狭く形成したことに より、 ポリマーに対して加熱を行う分解室内側面に液相ポリマーの全体を近接さ せることが可能になり、 その加熱が均一になる。従って、本発明の分解装置では、 液相ポリマーを温度勾配が極力小さくなった状態で加熱することができるため、 選択的な気化成分の回収と力一ボン発生の制御とが可能となる。 また、 この廃棄プラスチックの分解装置の回転体外側面には螺旋状のスクリュ 一が設けられており、 そしてこのスクリユーは、 回転体の回転に伴い、 反応空間 内を流下する液相ポリマーを接き上げるような方向で攪拌する。 液相ポリマ一に 対してこのような搔き上げ攪拌を行えば、 液相ポリマー内で発生した気化成分が 液相ポリマ一の液面まで強制的に上昇させられ気液分離が促進される。 従って、 この廃棄プラスチックの分解装置においては、 液相ポリマー中に閉じ込められた 気化成分が過加熱されて炭素を発生させるのを防止することができる。 また、 液 相ポリマーの搔き上げ攪拌は、 液相ポリマーに反応のための十分な時間を与える と共に、 気ィ匕成分を発生させるに至っていない粘度の高い液相ポリマーをより重 点的に反応空間に滞留させることにより、 反応空間における気化成分発生直前の 液相ポリマーの割合を増加させ、 炭素発生を防止しながら分解反応速度を増すこ とを可倉 にする。
また、 本発明の廃棄プラスチヅクの分解装置における回転体には、 高温ガスの 供給が可能な空洞部を設けるのが好ましい。 このようにすれば、 反応空間を形成 する 2つの面、 即ち回転体の外側面及び分解室の内側面の双方から液相ポリマー を加熱できるようになるため、 液相ポリマ一内の温度勾配をより小さくできると 同時に、 より多くの熱量を与えることにより時間当たりの廃棄プラスチック分解 量を増加させることができる。
また、 本発明の廃棄プラスチックの分解装置では、 その分解室下部をすり鉢状 に形成し、 且つ分解室の下端から排出された液相ポリマーを分解室へ循環供給す る循環パイプを設けるようにするのが良い。 廃棄ブラスチックには熱分解できな い不純物が混入する場合があり、 その場合においては分解過程で発生した残渣を 除去する必要が生じるが、 分解室下部にテーパーを付けてその内側面の形状をす り鉢状にしておけば、 すり鉢状とされた内側面の下端に残渣が自然に集中して溜 まることになりその除去作業を容易に行えるようになる。 残渣の除去は、 循環パ イブの途中に例えばスクリユーコンベアからなる残澄排出のための手段を設ける か、 又は上記すり鉢状とした分解室下部の下端に残渣排出のための手段を設ける ことにより行うことができるが、 いずれの方法を取るにしろ、 残渣を分解室下端 に一旦集中させればその処理は容易になる。 残渣排出のための手段はポリマー、 残澄等の種類に応じて、 適宜設けることができる。 また、 上記のように残渣を除 去しょうとする場合には、 残渣を取り出すのに伴い分解室の下端に沈降した粘度 の高い液相ポリマーをも分解室から流出させてしまう場合がある。 このような場 合、 反応室下部から流出した高粘度の液相ポリマーを循環パイプによって分解室 に再度供給することにすれば、 液相ポリマーのロスが防げ、 ひいては回収できる 気化成分量を増加させることにつながる。 また、 このような液相ポリマーの循環 により、 反応室における液相ポリマ一の滞留時間を稼ぐことも可能になる。 図面の簡単な説明
図 1は、 本発明の第 1実施形態による廃棄プラスチックの分解装置を示す概念 図である。
図 2は、 本発明の第 2 形態による廃棄プラスチックの分解装置の分解室を 示す概念図である。
図 3は、 本発明の第 3 ^形態による廃棄プラスチックの分解装置の分解室を 示す概念図である。 発明を実施するための最良の形態
以下、 添付の図面を用いて本発明による廃棄プラスチック分解装置の第 1〜第 3実施形態について説明する。 尚、 以下の各実施形態の説明において、 重複する 部分については同一の符号を付し、 重複説明を省略する。
第 1実施形態
本発明による廃棄プラスチック分解装置の第 1実施形態を表すのは図 1である。 この分解装置は、 断熱材からなるケ一シング 1に取り囲まれ且つ互いに接続され た分解室 2及び供給管 3とを備えている。 また、 ケーシング 1の内部には、 分解 室 2及び供給管 3を加熱可能としたバーナー 4が設けられている。
供給管 3は、 その一端で分解室 2に接続されると共に他端で原料ホツバ一 5に 接続されている。 また、 供給管 3は、 駆動手段 6と接続されたスクリューコンペ ァである搬送手段 7を内蔵している。
分解室 2は、 概ね縦置きの円筒开狱として形成されており、 またその下部はテ —パーを付されてすり鉢状とされている。 また、 分解室 2の内部には、 その内側 面 8の形状に対応する外側面 9を備えた回転体 1 0が収納されており、 分解室 2 の内側面 8と回転体 1 0の外側面 9との間には、 狭い反応空間 1 1が形成されて いる。 この回転体 1 0は、 その外側面に螺旋状のスクリュー 1 2を有すると共に 駆動手段 1 3に接続された回転軸 1 4を中心として回転自在として設けられてい また、 分解室 2の上部には気化成分排出口 1 5が設けられており、 分解室 2の 下端には排出管 1 6が接続されている。 排出管 1 6の下端には、 スクリユーコン ベア 1 7を内蔵する残渣排出管 1 8をその上面に取り付けた濾過手段 1 9が設け られており、 更にその下方にはスクリユーコンベア 2 0内蔵の循環パイプ 2 1を 介して供給管に接続された残澄溜め 2 2が設けられている。
次に、 この廃棄プラスチック分解装置の動作を説明する。 この装置で分解され る廃棄プラスチヅクは、 一旦原料ホッパー 5に収められ、 その後任意のタイミン グで供給管 3へ投入される。 供給管 3に投入された廃棄プラスチックは、 搬送手 段 7により分解室 2へ送られる。 供給管 3は外部からバーナー 4で加熱されてい るため、 廃棄プラスチックは供給管 3内での搬送中に溶融或いは一部分解し、 液 相ポリマ一になっていく。
供給管 3内で生成した液相ポリマーは、 分解室 2に供給され、 その内部の反応 空間 1 1へ流下する。 バーナーが供給する熱風は分解室 2の外壁をも加熱してい るので、 狭い反応空間 1 1内に流下し薄い層状になった液相ポリマーは、 均一に 加熱されながら気ィ匕成分へと分解される。 上記回転体 1 0は、 駆動手段 1 3に接 続された回転軸 1 4の回転に伴い回転している。 従って、 液相ポリマ一は、 下向 きに流下しようとする一方で、 回転するスクリュー 1 2により搔き上げられるよ うな力を付与される。 その結果、 液相ポリマーは、 接き上げるように攪拌されな がら気化成分に分解されることになる。 このような接き上げ攪拌により、 強制的 に液相ポリマーから分離された気ィ匕成分は、 気化成分排出口 1 5から外部へ取り 出される。 この気化成分は、 図外の冷却装置により冷却され室温で燃料油乃至燃 料ガスとして回収する。 尚、 廃棄プラスチックの分子量は概略 5 0, 0 0 0〜1 0 0 , 0 0 0であり、 液相ポリマーの分子量は 1 0 , 0 0 0〜3 0, 0 0 0程度 であり、 気化成分の分子量は 1 0 0〜5 0 0程度である。 また、 廃棄プラスチヅ クを溶融させる供給管内部の温度は 2 5 0〜5 0 0 °Cであり、 液相ポリマ一を分 解する反応空間の温度は 3 5 0〜6 0 0 °Cである。
また、 上記液相ポリマーの分解反応が進むに連れ反応空間 1 1内部では残渣が 発生する。 この残渣は、 分子量が小さくなつて粘度が下がった液相ポリマーと共 に排出管 1 6から排出される。 排出管 1 6から排出された残渣及び液相ポリマー のうち、 濾過手段 1 9によって濾過された残渣は濾過手段 1 9表面に堆積する。 一方、 濾過手段 1 9を通過した液相ポリマーは残渣溜め 2 2に流下する。 このよ うに残渣溜め 2 2の手前に設けた濾過手段 1 9の表面に残渣を堆積させることに より、 堆積した残渣を以後に排出されてくる液相ポリマ一に対する濾過層として 用いることができる。 但し、 堆積した残渣の量が所定量を超えた場合には、 残渣 排出管 1 8を介して残渣を外部へ除去する。 このとき残渣排出管 1 8内部におい て、 残渣は、 スクリューコンベア 1 7により圧縮固化される。 固化した残渣は分 解室 2のシール部材としての機能を有するため、 残渣排出管 1 8から液相ポリマ —が漏れることを防止することができる。 尚、 残渣排出管 1 8により全ての残渣 を除去するのではなく、 熱により分解しない固形物等を比重差等を利用して分離 して循環パイプ 2 1により循環させるようにするのもよい。 こうすれば、 反応空 間 1 1内を移動する上記固形物により、 反応空間 1 1内の壁面に付着したカーボ ンその多の付着物を除去できるため好ましい。
一方、 残澄溜め 2 2に溜まった液相ポリマーは、 循環パイプ 2 1により供給管 3へと循環供給される。 この液相ポリマ一は、 廃棄プラスチックの供給分との調 整を行いながら再び分解室 2へと供給され、 上記循環を繰り返しながら気化成分 へ分解される。
第 2実施形態
本発明による廃棄プラスチック分解装置の第 2実施形態を表すのは図 2である c この ¾5¾形態における廃棄プラスチックの分解装置は、 基本的に第 1実施形態の それと同様の構造を備えている。 しかしながら、 この実施形態の廃棄プラスチッ ク分解装置は、 第 1実施形態のそれとその分解室の構造において以下のように相 違する。具体的には、 その分解室の構造は、 図 2に示すようなものとなっている。 この実施形態における分解室 2では、 その中心に配された回転体 1 0内部に空 洞部 2 3を設けると同時に、 この空洞部 2 3を加熱可能な補助バーナー 2 4を回 転体 1 0の上部に設けている。 また、 この分解装置においては、 分解室 2の外部 に更に外側ケース 2 5を設け、 分解室 2と外側ケースとの間に回転体 1 0内部の 空洞部 2 3と連通する加熱通路 2 6を形成している。 尚、 反応空間 1 1の上方に は、 排気口 2 7が設けられていると共に、 スクリユーコンベア 2 8内蔵の触媒供 給管 2 9を介して触媒溜め 3 0と接続されている。 また、 分解室 2の下方には水 平の排出管 1 6が設けられている。 そして、 この排出管 1 6は、 上記反応空間 1 1と反応空間 1 1の外部に設けられた残澄溜め 2 2とを接続している。 また、 こ の残渣溜め 2 2の上方には濾過手段 1 9が設けられていおり、 この残渣溜め 2 2 は循環パイプ 2 1を介して分解室 2上部に接続されている。更に、該分解室 2は、 その下方においてスクリユーコンベア 1 7内蔵の残澄排出手段 1 8に接続されて いる。
次にこの装置の動作について説明する。 この装置により廃棄プラスチックの分 解を行う場合には、 第 1実施形態の装置の場合と同様に、 まず廃棄プラスチック を供給管 3に投入する。 投入された廃棄プラスチックは、 供給管 3内部を搬送手 段 7により送られながらバーナー 4により加熱され、 溶融して液相ポリマーとな る。 ここで生じた液相ポリマ一は分解室 2に供給され、 反応空間 1 1へと流下す る。
反応空間は、 補助バーナー 2 4により内外両面から加熱されている。 即ち、 補 助バーナー 2 4が発した高温の熱風は、 回転体 1 0内部の空洞部 2 3をその下端 にまで下降した後、 該空洞部 2 3と一連とされた加熱通路 2 6を上昇するように なっており、 これにより回転体 1 0外側面 9と分解室 2内側面 8の双方から反応 空間 1 1が加熱される。 内外両面から加熱されるこの反応空間 1 1内で、 液相ポ リマーは、 スクリユー 1 2により接き上げ攪拌されながら均一に加熱され、 気化 成分を生じながら分解していく。 この液相ポリマーの分解を行うにあたり、 触媒 溜め 3 0から触媒供給管 2 9を介して反応室への触媒供給が行われる。 この触媒 供給により、 反応空間における液相ポリマーは触媒と接触しながら分解されるこ とになる。 このような接触分解を利用することにより、 液相ポリマーの分解がよ り十分行われることになる。 そして、 生成した気化成分は、 気化成分排出口 1 5 から排出されると共に、 加熱 2 6の上端に達した高温の熱風は、 上記排気口 2 7から外部へ排気される。
一方、 液相ポリマーの量が所定量を超えた場合、 過剰分の液相ポリマ一は排出 管 1 6から残渣溜め 2 2へと流出する。 この流出した液相ポリマーは、 残澄溜め 2 2の上方に設けた濾過手段 1 9で残渣を除去された後、 循環パイプ 2 1を介し て所定のタイミングで反応空間に戻される。 このように、 廃棄プラスチックの供 給と、 液相ポリマーの循環とを適宜行いながら、 廃棄プラスチックを気化成分に 分解していく。 尚、 残渣の排出は、 残渣排出手段 1 8により適宜行う。
第 3実施形態
この第 3実施形態の廃棄ブラスチックの分解装置は、 第 2実施形態の場合と同 種の分解室 2を備えている。 即ち、 回転体 1 0外側面 9と分解室 2内側面 8の双 方から反応空間 1 1を加熱できるような分解室 2を備えている。 この分解装置の 分解室を図 3により示す。
この廃棄プラスチック分解装置の分解室 2は、 内部に空洞部 2 3を持ち且つ縦 方向に連結された 3つの回転体 1 0を備えている。 この各回転体 1 0内に設けら れた空洞部 2 3は連通されている。 そして、 その一連となった空洞部 2 3は、 分 解室 2外部の加熱通路 2 6とその最下端で連通されている。 また、 分解室 2の内 側面 8は、 それと回転体 1 0外側面 9との間に狭い反応空間 1 1を形成するよう な幵娥となっている。 また、 最も上段に位置する回転体 1 0の上部には、 回転体 1 0内部の空洞部 2 3を加熱可能とした補助バーナー 2 4が設けられていると共 に、 熱量供給を十分なものとすべく分解室 2の外側には、 第 2補助バーナー 3 1 が設けられている。 また各回転体 1 0の外周には、 スクリユー 1 2が設けられて おり、 且つ回転体 1 0相互間の接続部分には調整スクリユー 3 2が設けられてい る ο
最も上部に位置する回転体 1 0外側面 9と分解室 2内側面 8との間に形成され る反応空間 1 1は、 供給管 3と接続されている。 また、 各反応空間 1 1のそれそ れには、 気化成分排出口 1 5が設けられている。 更に、 最も下部に位置する分解 室 2はその下端で、 排出管 1 6を介して残渣溜め 2 2に接続されている。 残渣溜 め 2 2は、 循環パイプ 2 1を介して供給管 3と接続されると共に、 残渣排出手段 1 8と接続されている。
この装置においても、 回転体 1 0外側面 9及び分解室 2内側面の双方から反応 空間 1 1を加熱することが可能になる。 そして、 この装置においては、 調整スク リュー 2 7を用いて液相ポリマーの流量を調節することにより、 液相ポリマー分 解のための時間をより十分に稼げるようになる。 尚、 分解室 2内側面 8の形状を 円筒状にすると共にその内部に複数の回転体 1 0を収めた装置によっても、 上記 装置と同様の効果を得ることができる。 産業上の利用可能性
本発明による廃棄プラスチックの分解装置では、 分解室内に回転体を設け、 分 解室内側面と回転体外側面との間で反応空間を層状に形成しているので、 ポリマ —における熱伝がスムーズになり、 全体として均一な温度としながら液相ポリマ —を加熱することが可能になり、 任意分子量の気化成分を選択的に回収できると 共に、 液相ポリマ一の部位によって生じる過加熱によるカーボン発生の問題を解 消できる。 特に、 回転体の内部に空洞を設けて、 反応空間を形成する回転体外側 面及び分解室内側面の両面から加熱する場合には、 液相ポリマ一内の温度勾配を より小さなものにできる。また、本発明による廃棄プラスチックの分解装置では、 流下する液相ポリマ一をスクリューにより搔き上げ攪拌しながら熱分解するよう にして、 気液分離を強制的に行うこととしたので、 液相ポリマー中の気化成分を 過加熱することがほとんどなくなり、 上記液相ポリマーの均一加熱と相俟って力 一ボン発生の問題をほとんど解消できる。 更に、 分解室の下部をすり鉢状に形成 し、 且つ分解室の下端から排出された液相ポリマ一を分解室へ循環供給する循環 パイプを設け、 液相ポリマーを循環させるようにした場合には、 発生する残渣の 処理を容易にし且つ分解効率を向上させるという利点を得られる。

Claims

請 求 の 範 囲
1 . 廃棄プラスチックを加熱して得た液相ポリマーが上側から下側へと供給され ると共に外側から加熱可能とした分解室を備え、 分解室内部で攪拌を行いながら 液相ポリマーを加熱分解して燃料油又は燃料ガスとなる気ィ匕成分を生じさせる廃 棄プラスチックの分解装置であって、
分解室は縦置きした筒状体からなり、 その内部には分解室内側面の形状にほぼ 対応する形状の回転体が設けられると共に回転体外側面には螺旋状のスクリュ一 が設けられており、分解室内側面と回転体外側面との間に形成した反応空間内で、 流下する液相ポリマーをスクリューにより搔き上げ攪拌しながら熱分解するよう にした廃棄ブラスチックの分解装置。
2 . 回転体は、 高温ガスの供給が可能な空洞部を備える請求の範囲 1記載の廃棄 プラスチックの分解装置。
3 . 分解室の下部をすり鉢状に形成し、 且つ分解室の下端から排出された液相ポ リマーを分解室へ循環供給する循環パイプを設けたものである請求の範囲 1又は 2のいずれかに記載の廃棄プラスチックの分解装置。
PCT/JP1998/005003 1997-11-10 1998-11-06 Appareil de decomposition de matieres plastiques de rebut residuelles WO1999024530A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP98951715A EP1052279A4 (en) 1997-11-10 1998-11-06 APPARATUS FOR DECOMPOSING PLASTIC RESIDUAL WASTE MATERIALS
US09/341,342 US6358480B1 (en) 1997-11-10 1998-11-06 Apparatus for decomposing waste plastics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP09306954A JP3096448B2 (ja) 1997-11-10 1997-11-10 廃棄プラスチックの分解装置
JP9/306954 1997-11-10

Publications (1)

Publication Number Publication Date
WO1999024530A1 true WO1999024530A1 (fr) 1999-05-20

Family

ID=17963279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005003 WO1999024530A1 (fr) 1997-11-10 1998-11-06 Appareil de decomposition de matieres plastiques de rebut residuelles

Country Status (5)

Country Link
US (1) US6358480B1 (ja)
EP (1) EP1052279A4 (ja)
JP (1) JP3096448B2 (ja)
KR (1) KR100314363B1 (ja)
WO (1) WO1999024530A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL199261B1 (pl) * 2003-02-17 2008-08-29 Zbigniew Tokarz Sposób ciągłego przetwarzania odpadów organicznych, zwłaszcza silnie zanieczyszczonych odpadowych tworzyw sztucznych oraz zużytych opon pojazdów mechanicznych oraz urządzenie do ciągłego przetwarzania odpadów organicznych, zwłaszcza silnie zanieczyszczonych odpadowych tworzyw sztucznych oraz zużytych opon pojazdów mechanicznych
DE112004000315D2 (de) * 2003-02-20 2005-11-17 Werkstoff & Funktion Grimmel W Katalytischer Reaktor
JP4734485B2 (ja) * 2005-07-01 2011-07-27 独立行政法人産業技術総合研究所 廃棄プラスチック処理装置、及び廃棄プラスチック処理方法
US20090267349A1 (en) 2008-04-23 2009-10-29 Spitzauer Michael P Production Processes, Systems, Methods, and Apparatuses
JP5222183B2 (ja) * 2009-03-03 2013-06-26 正夫 金井 連続式乾燥装置
DE102009019734A1 (de) 2009-05-05 2010-11-11 Pyrum Innovations International S.A. Pyrolyseverfahren und Vorrichtung zum Durchführen des Verfahrens
RU2763026C2 (ru) * 2014-12-17 2021-12-24 Пилкингтон Груп Лимитед Печь
IT202100028121A1 (it) * 2021-11-04 2023-05-04 Lifenergy Italia S R L Impianto e processo di depolimerizzazione termo-catalitica di materie plastiche poliolefiniche per la produzione di idrocarburi
JP7178680B1 (ja) * 2022-05-16 2022-11-28 環境エネルギー株式会社 連続式有機物熱分解方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108003A (en) * 1975-03-14 1976-09-25 Deko Ind Inc Gomutaiya oyobi hatsupurasuchitsukuzairyokara tankasuisooshutokusurutamenohoho oyobi sochi
JPS6063285A (ja) * 1983-09-16 1985-04-11 Nippon Meka Kk プラスチック廃棄物の処理装置
JPS6063543U (ja) * 1983-10-07 1985-05-04 株式会社協和リ−ス プラスチツクから油を回収する装置に於ける分解槽
JPH04225092A (ja) * 1990-12-27 1992-08-14 Ishihara Yasuhiro プラスチック廃棄物油化装置における原料溶融機
JPH06206058A (ja) * 1993-01-11 1994-07-26 Osaka Prefecture 廃プラスチックの溶融分解装置および方法
JPH0731845U (ja) * 1993-11-15 1995-06-16 株式会社クボタ 自動残渣取出し装置を備えたプラスチック廃棄物油化装置
JPH08151581A (ja) * 1994-11-30 1996-06-11 Mitsui Petrochem Ind Ltd 合成重合体の熱分解による分解油の製造装置及び分解油の製造方法
JPH0913045A (ja) * 1995-07-04 1997-01-14 Nippon Furnace Kogyo Kaisha Ltd プラスチック廃棄物の油化装置
JPH0913044A (ja) * 1995-07-01 1997-01-14 Nippon Furnace Kogyo Kaisha Ltd 廃プラスチック油化装置の分解槽
JPH09104876A (ja) * 1995-10-06 1997-04-22 Sumitomo Heavy Ind Ltd 廃プラスチック処理装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1723932A (en) * 1925-10-24 1929-08-06 Old Ben Coal Corp Apparatus for carbonizing coal and the like
JPS6063543A (ja) * 1983-09-19 1985-04-11 Ricoh Co Ltd 重合体粒子

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108003A (en) * 1975-03-14 1976-09-25 Deko Ind Inc Gomutaiya oyobi hatsupurasuchitsukuzairyokara tankasuisooshutokusurutamenohoho oyobi sochi
JPS6063285A (ja) * 1983-09-16 1985-04-11 Nippon Meka Kk プラスチック廃棄物の処理装置
JPS6063543U (ja) * 1983-10-07 1985-05-04 株式会社協和リ−ス プラスチツクから油を回収する装置に於ける分解槽
JPH04225092A (ja) * 1990-12-27 1992-08-14 Ishihara Yasuhiro プラスチック廃棄物油化装置における原料溶融機
JPH06206058A (ja) * 1993-01-11 1994-07-26 Osaka Prefecture 廃プラスチックの溶融分解装置および方法
JPH0731845U (ja) * 1993-11-15 1995-06-16 株式会社クボタ 自動残渣取出し装置を備えたプラスチック廃棄物油化装置
JPH08151581A (ja) * 1994-11-30 1996-06-11 Mitsui Petrochem Ind Ltd 合成重合体の熱分解による分解油の製造装置及び分解油の製造方法
JPH0913044A (ja) * 1995-07-01 1997-01-14 Nippon Furnace Kogyo Kaisha Ltd 廃プラスチック油化装置の分解槽
JPH0913045A (ja) * 1995-07-04 1997-01-14 Nippon Furnace Kogyo Kaisha Ltd プラスチック廃棄物の油化装置
JPH09104876A (ja) * 1995-10-06 1997-04-22 Sumitomo Heavy Ind Ltd 廃プラスチック処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1052279A4 *

Also Published As

Publication number Publication date
EP1052279A1 (en) 2000-11-15
JPH11140225A (ja) 1999-05-25
JP3096448B2 (ja) 2000-10-10
US6358480B1 (en) 2002-03-19
KR100314363B1 (ko) 2001-11-16
EP1052279A4 (en) 2008-07-02
KR20000070052A (ko) 2000-11-25

Similar Documents

Publication Publication Date Title
KR100815857B1 (ko) 폐플라스틱의 유화 환원 장치
WO1999024530A1 (fr) Appareil de decomposition de matieres plastiques de rebut residuelles
JP2001300497A (ja) 廃棄物処理装置と廃棄物処理方法
KR20060102577A (ko) 반응로 4개의 가스 냉각식 폐합성수지 유화장치
JP3585637B2 (ja) 合成重合体の接触分解装置及びそれを用いる油状物の製造方法
JP2004035851A (ja) 油化装置
JPH09291290A (ja) プラスチック処理装置及びプラスチック油化処理装置
JP3529502B2 (ja) 廃プラスチック油化装置の分解槽
JP2003292970A (ja) 油化装置
KR100531501B1 (ko) 폐합성수지 유화장치
KR100817738B1 (ko) 폐플라스틱의 유화 방법 및 그 장치
JPH10237461A (ja) 廃プラスチックの油化処理方法
JP2955551B1 (ja) 廃棄プラスチック連続処理装置
JP2622934B2 (ja) 廃プラスチックの熱分解反応器内からの異物除去方法
JP2003183672A (ja) 混合プラスチック油化装置
JP2003019428A (ja) 感染性廃棄物用熱分解炉及び処理装置
JP3826532B2 (ja) プラスチック熱分解装置の熱分解残渣抜出装置
JP2000319665A (ja) 廃プラスチックの油化方法及び装置
JPH10204444A (ja) 廃プラスチック複合材の処理装置
JPH09188881A (ja) 廃棄プラスチック油化装置
JP2006002116A (ja) 再生油精製方法及び再生油精製装置
KR20220154909A (ko) 폐합성수지의 유화장치
KR101606076B1 (ko) 폐기물용 열분해기 및 이를 포함하는 열분해장치
JPH09290229A (ja) 熱分解装置
JP2000297175A (ja) 廃プラスチックの油化処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1998951715

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09341342

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019997006272

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998951715

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997006272

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997006272

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998951715

Country of ref document: EP