WO1999023697A1 - Bauelement und verfahren zum herstellen des bauelements - Google Patents

Bauelement und verfahren zum herstellen des bauelements Download PDF

Info

Publication number
WO1999023697A1
WO1999023697A1 PCT/EP1998/006295 EP9806295W WO9923697A1 WO 1999023697 A1 WO1999023697 A1 WO 1999023697A1 EP 9806295 W EP9806295 W EP 9806295W WO 9923697 A1 WO9923697 A1 WO 9923697A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sub
component
elements
indium
Prior art date
Application number
PCT/EP1998/006295
Other languages
English (en)
French (fr)
Inventor
Xiaoming Xie
Zhongzhe Shen
Jürgen FREYTAG
Frank Stubhan
Original Assignee
Daimlerchrysler Ag
Shanghai Institute Of Metallurgy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag, Shanghai Institute Of Metallurgy filed Critical Daimlerchrysler Ag
Priority to JP2000519464A priority Critical patent/JP2001522143A/ja
Priority to KR1020007004607A priority patent/KR20010031563A/ko
Priority to US09/530,273 priority patent/US6334567B1/en
Priority to EP98951490A priority patent/EP1027728A1/de
Publication of WO1999023697A1 publication Critical patent/WO1999023697A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4827Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/49513Lead-frames or other flat leads characterised by the die pad having bonding material between chip and die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29109Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83193Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83401Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/83409Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83444Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8381Soldering or alloying involving forming an intermetallic compound at the bonding interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8382Diffusion bonding
    • H01L2224/83825Solid-liquid interdiffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01061Promethium [Pm]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Definitions

  • the invention relates to a component and a method for producing the component, in particular an electronic component with a microelectronic chip and a carrier.
  • the method of isothermal solidification is known for producing components, in particular the assembly of integrated microelectronic components on substrates, heat sinks, etc. Such a method is e.g. described in DE-A-195 31 158.
  • the microelectronic component and the heat sink are first coated with metals, at least one low-melting and one higher-melting metal being used.
  • the metallic coatings are brought into direct contact, heated with a predetermined temperature profile and pressed together during the reaction time until the reaction of the low-melting metal with the higher-melting metal is complete.
  • the low-melting component diffuses into the higher-melting component and leads to a connection layer that is stable at temperatures significantly higher than the melting temperature of the low-melting component.
  • the connection is only firm when this isothermal solidification reaction is complete.
  • the process can take up to 60 minutes at the temperatures applicable for electronic materials in the range of at most about 300 ° C. and is preferably carried out in a vacuum oven.
  • a relatively high pressure must be exerted on the connection point during the entire joining time, during which the two individual parts are being joined, so that the joining process is necessary.
  • the isothermal solidification process is a commercial manufacturing process for microelectronic components with typical throughput times of a few because of the several minutes of joining times The seconds cannot be used when the chip is placed on the carrier.
  • the invention is based on the object of specifying a method for producing a component by means of thermal solidification and a component which requires a joining time of less than one minute.
  • the invention is based on dividing the reaction time period into two time segments.
  • the first time period is characterized by the joining time period and the second time period by the remaining reaction time period.
  • the actual process of firmly joining sub-elements into a single component is carried out during a joining period within the reaction period in which the isothermal solidification takes place.
  • the joining time is preferably shorter than the reaction time.
  • a dynamic contact force in the form of vibration energy, in particular ultrasound energy, of a predetermined power acts on the component or the two sub-elements during the joining period.
  • vibrational energy is to apply frictional vibration to one of the sub-elements or both sub-elements, the abutting contact surfaces being moved against one another and mechanical and / or thermal support of the reaction process of the contact surface materials taking place.
  • the two sub-elements are particularly preferably pressed together at least at the beginning or during the exposure to vibration with a predetermined static contact pressure. It is favorable that the contact pressure acts on the component only during the joining period. It is particularly advantageous if the vibration energy and the contact force act simultaneously. It is preferred that the vibration energy is shorter than the joining time to the Allow sub-components to act, particularly preferably the vibration energy acts at the beginning of the joining period.
  • An advantageous period of exposure to vibration energy is between 50 ms and 600 ms. It is beneficial to allow the vibration energy to act for a maximum of 70% of the joining time. It is advisable to use the ultrasonic power (Pl) between 0.3 W / mm 2 and 3 W / mm 2 .
  • the static contact pressure (Fl) between 0.2 N / mm 2 and 1.5 N / mm 2 ; preferably the greatest possible contact pressure is used.
  • a preferred static contact pressure is at least 1.5 N / mm.
  • An advantageous reaction temperature is between 150 ° C and 400 ° C.
  • a favorable reaction time is between 10 s and 3 min.
  • the method is expediently carried out at least at a temperature which is higher than the room temperature in an inert gas environment.
  • the first metallic coating contains at least one layer of indium, preferably a layer sequence of gold and indium, and / or the second metallic coating contains at least one gold layer and / or a silver layer. It is particularly advantageous to bring an indium layer into contact with a gold layer at the contact point of the two sub-elements. In a further advantageous embodiment, two indium layers are brought into contact.
  • a favorable thickness of the diffusion barrier layer is less than 0.5 ⁇ m.
  • a favorable thickness of the first metallic coating is between 3 and 7 ⁇ m.
  • the thickness ratios of the two metallic coatings are expediently set approximately in the ratio of intermetallic phases that form.
  • a cheap choice is to choose the thickness of the gold layer at most about half as large as the thickness of the indium layer.
  • the indium layer is grown on a thinner gold layer, which protects any adhesion and barrier layer.
  • the first partial element is preferably formed from a microelectronic chip, in particular a silicon chip
  • the second partial element is formed from a heat-conducting body, in particular a silicon body, a ceramic body or a metal body, and has a connecting layer made of an alloy of the composition Auln and / or Auln between the sub-elements and / or a mixture thereof.
  • the connecting layer to one or both sub-elements has a diffusion barrier layer, in particular made of titanium and / or titanium, nickel and chromium. It is particularly advantageous that the connecting layer is stable at temperatures above 400 ° C.
  • FIG. 2 shows a component according to the invention after assembly according to the method according to the invention
  • FIG. 3 shows a temperature-time diagram according to the method according to the invention.
  • Isothermal solidification can be used to form very solid compounds at a relatively low temperature, these compounds being stable and resilient at much higher temperatures.
  • the underlying principle of this connection process according to the prior art is that an intermediate layer made of a low-melting point zenden metal is arranged as a film or thin coating between high-melting components. This arrangement is heated under pressure up to the reaction temperature, a liquid intermediate layer being formed. The melting point of the low-melting layer can either be exceeded or an eutectic reaction takes place between the high- and low-melting components.
  • the molten intermediate layer leads to a relatively rapid interdiffusion or reaction diffusion between the high and low melting components.
  • the following approximation to the thermodynamic equilibrium state results in an isothermal solidification.
  • a solid connection layer is formed.
  • a first sub-element 1 preferably a microelectronic chip, particularly preferably a silicon chip, carries on the contact side 1.1, which is provided for connection to the second sub-element 2, a first metallic coating with several, in particular three, sub-layers 1.2, 1.3 and 1.4.
  • the second sub-element 2 preferably a good heat-conducting substrate, which is to serve as a heat sink or heat spreader for the chip 1, likewise has a metallic coating of a plurality of sub-layers 2.2 and 2.3 on the contact side 2.1 provided for connection to the first sub-element 1.
  • the second sub-element 2 is preferably a silicon substrate or a heat-conducting ceramic or a metal substrate.
  • the partial layers 1.2, 1.3, 1.4, 2.2, 2.3 are preferably formed from different metals.
  • the outer layer of one partial element preferably has a lower melting point than the outer layer of the other partial element.
  • the outer layer 1.2 of the first partial element preferably consists of indium, preferably with a layer thickness of 3-7 ⁇ m.
  • This outer layer 1.2 is deposited on a second, preferably thinner layer 1.3, which preferably consists of the same material with which the isothermal solidification reaction then takes place during the joining process, in particular a gold layer.
  • the layer thickness of the gold layer 1.3 is expediently about 0.1 ⁇ m. It is advantageous if this second layer 1.3 is deposited on a third layer 1.4, which functions as an adhesion promoter layer and / or a diffusion barrier between the isothermally solidifying components and the chip 1.
  • the third layer 1.4 is preferably a layer combination of titanium with additives that is customary for such purposes of nickel and chrome or comparable materials.
  • An advantageous layer thickness for this diffusion barrier is approximately 0.1 ⁇ m.
  • the second layer 1.3 between the outer sub-layer 1.2 and the diffusion barrier 1.4 has the particularly advantageous consequence that when an isothermal solidification reaction sets in, the outer layer 1.2 both from the contact point and from the layer 1.3 and / or the interface to the sub-element body 1 the reaction begins, so that contamination of the reacting layer sequence out of the sub-element 1 is prevented.
  • the second sub-element 2 expediently likewise has an adhesion promoter and / or diffusion barrier layer 2.3, preferably with a composition and thickness comparable to that of the sub-element 1.
  • the outer sub-layer 2.2 of the second sub-element is advantageously formed from gold.
  • the layer thickness of the gold layer 2.2 is preferably chosen so that when the components of the outer two layers 1.2 and 2.2 of the two sub-elements 1 and 2 react completely, stable intermetallic compounds can form, preferably sockets and / or sockets 2 or a mixture thereof.
  • the gold layer thickness is only half as large as the indium layer thickness, the indium layer thickness is preferably between 4-7 ⁇ m and the gold layer thickness by 2 ⁇ m.
  • the thickness ratios of the higher-melting and the lower-melting metallic components are preferably selected so that the number of atoms contributing to the reaction is approximately in the ratio of the composition of the intermetallic phases that form.
  • the materials selected in this version have the advantage that they are compatible with one another.
  • the melting point of the indium is very low at approx. 160 ° C, so that the thermal load on the component when bonding to the heat sink is low; on the other hand, gold is often used as a protective layer for titanium layers in such processes.
  • the layer arrangement according to the invention is advantageously particularly simple because no barrier layers between gold and indium are necessary.
  • an advantage of this arrangement of the metallic layers is that the low-melting component indium only has to be deposited on a partial element. This eliminates a coating step with the low-melting component for the second sub-element.
  • an arrangement is not excluded, in which the two sub-elements are each provided with a layer of the low-melting component, in particular an indium layer, which are provided as a contact layer.
  • connection layers can be used up to about 450 ° C.
  • the two sub-elements 1 and 2 are placed one on top of the other so that the two outer layers 1.2 and 2.2, preferably an indium and a gold layer, are in direct contact and then heated to a reaction temperature T1 which preferably corresponds to at least the melting point of the low-melting component , particularly preferably between 200 ° C and 300 ° C. It is not necessary to apply contact pressure during the warm-up phase.
  • the reaction temperature Tl preferably does not reach the melting temperature of the higher-melting component.
  • a suitable inert gas flow is e.g. between 0.1 liters / min to 1 liter / min.
  • the inert gas environment is expedient, but is not decisive for the method according to the invention. In particular, the inert gas environment can be completely dispensed with in any automated method.
  • the partial elements are preferably kept at the reaction temperature T1 during the entire reaction time t1.
  • T1 reaction temperature
  • the low-melting component has melted and begins to diffuse into the higher-melting component and to react.
  • the two sub-elements 1 and 2 are subjected to vibration energy at the beginning of the reaction time tl, at least when the reaction temperature Tl is reached, and are moved against one another at their contact surfaces.
  • a favorable vibration energy is ultrasound energy.
  • Another favorable vibration energy is a frictional vibration, similar to the vibrations during a friction welding process, between the two sub-elements 1, 2, both or only one sub-element in Vibrations. This vibration energy is particularly favorable to use with large-area components and has the advantage that the load due to the lower frequency during friction welding is lower for the component compared to ultrasound.
  • the component is preferably located locally in a joining zone in which vibration energy is available.
  • the presence of the vibration energy is decisive, while the power Pl in a wide range between 0.3 W / mm 2 and 3 W / mm 2 , preferably between 0.5 W / mm 2 and 2.5 W / mm 2 , can be chosen.
  • the vibration energy Pl acts on the component at most over a joining time period t2.
  • the duration of the action of the vibration energy is preferably shorter than the joining time t2, in particular at most 70% of the joining time t2, particularly preferably the vibration energy acts on the sub-elements at the beginning of the joining time.
  • a contact pressure F1 is additionally exerted on the component in the joining zone, with which the two sub-elements 1, 2 are pressed against one another.
  • the component is preferably subjected to ultrasonic energy Pl and contact pressure F1 at the same time.
  • the contact pressure is preferably between 0.2 N / mm 2 and 1.5 N / mm 2 , particularly preferably between 0.25 N / mm 2 and 1.25 N / mm 2 .
  • a favorable contact pressure eg 1-5N. It is advantageous to select the contact pressure Fl as high as possible.
  • the joining time t2 is considerably shorter than the reaction time tl.
  • the action of the vibration energy is preferably shortened at a higher reactor temperature T1, in particular the vibration duration is between 50 ms and 600 ms, particularly preferably between 100 ms and 500 ms.
  • connection between the two sub-elements 1, 2 is already so firm that no further contact pressure and / or no further ultrasonic energy is required to move the two sub-elements 1, 2.
  • 2 stick together.
  • 2 shows a component according to the invention, which consists of two former partial elements 1, 2, which are firmly connected to a connecting layer 3, preferably indium and gold and / or sockets and / or sockets 2 or a mixture thereof.
  • the component can be removed, preferably at unchanged reaction temperature Tl, from the joining zone, the area affected by ultrasonic energy and contact pressure, and can react completely in another area, in the case of the indium-gold system, preferably for 2-4 minutes, and then on Cool down to room temperature.
  • the joining zone is immediately ready for another joining process after the joining period has ended.
  • the complete isothermal solidification reaction in the full reaction time t1 can then take place in zones of the bonding process that are less critical in terms of time.
  • the connection is so firm that normal shear tests with, for example, 0.6 kg / mm 2 are successfully passed.
  • a typical sequence of the method in a manufacturing process is that a sub-element of the structural element is placed on the second sub-element as a mounting surface, in particular a heat sink, with a conventional tool in a preferably heated joining zone, there for a joining period with the additional introduction of ultrasound or friction energy is held, and then held in a reaction zone for the remainder of the reaction period.
  • the so-called process critical The pick-and-place time of the component on the assembly surface in the process is preferably in the range of seconds, so that the joining zone can be released every second for the assembly with partial elements of a new component.
  • the isothermal solidification takes place at the reaction temperature Tl during the reaction time period tl, within which the joining time period t2 lies, preferably at the beginning of the reaction time period.
  • the joining time t2 is preferably only a fraction of the reaction time tl.
  • the method according to the invention can thus be integrated into a commercial manufacturing process in which cycle times of only a few seconds can be tolerated for such bonding processes.
  • the total time for installing, folding and connecting the sub-elements 1, 2 in the joining zone can be less than 5 seconds. This time can be optimized down to less than 1 second.
  • a component produced using the method according to the invention has a high thermal conductivity, a low electrical resistance of the connecting layer between the two sub-elements, and a high melting temperature of the connecting layer.
  • a microelectronic component produced in this way is preferably suitable for use at high powers.
  • indium and gold is particularly favorable as a low- or higher-melting metallic component, since microelectronic chips are often already supplied by the manufacturer with a gold contact on the back.
  • microelectronic chips are often already supplied by the manufacturer with a gold contact on the back.
  • Such a microle Electronic chip can then be very easily with a conventional lead frame, especially made of copper or an iron-nickel alloy, especially the so-called. Alloy 42, are connected by means of isothermal solidification.
  • An inexpensive alternative is to replace gold partially or entirely with silver.
  • an indium layer of appropriate thickness is applied at least to the chip landing area of the lead frame or chip carrier and the chip is then firmly connected to the lead frame in a method according to the invention. It is particularly cost-effective to apply an indium-containing paste to the chip landing area. It is favorable to provide the lead frame or the chip carrier with a silver layer, at least in some areas, on the area provided for receiving components.
  • an indium layer of appropriate thickness is applied to the back of the chip, which is provided as a contact surface with the carrier.
  • the indium layer is deposited on a layer sequence of thinner titanium and gold layers, while the region of the lead frame or the chip carrier, which is provided for receiving the chip, is covered with a gold layer, the thickness of which is adapted to the indium layer thickness according to the invention. It is expedient and cost-saving if only the immediate chip landing area is coated with gold.
  • contamination of the lead frame with indium is largely avoided. It is particularly favorable that no excess indium is left after the reaction. It is favorable to additionally provide the edge regions of the lead frame or chip carrier that are free of the gold layer with an indium-repellent coating.
  • the surface of the gold layer is only as large as the chip surface. It is particularly advantageous to cover the remaining chip landing area with a material that is not wetted by indium. This prevents contamination of the leadframe by molten indium during the connection process.
  • a silver layer is provided on the lead frame or chip carrier instead of a gold layer.
  • the indium layer on the back of the chip can expediently also be provided with a gold layer which is thinner than the silver layer.
  • the back of the chip provided for contacting a lead frame is coated with a layer sequence in which first a thin titanium layer, then a thin layer of gold and finally a thick layer of indium was deposited on the back of the chip.
  • the preferred layer thicknesses are approximately 100 nm titanium, approximately 100 nm gold and approximately 4 ⁇ m indium.
  • the lead frame is on the side with which the chip is to be connected according to the method according to the invention is coated with a thick gold layer which is approximately half as thick as the indium layer.
  • the lead frame is preferably made of Alloy 42.
  • a preferred gold layer thickness is approximately 2 ⁇ m.
  • the chip rear side provided for contacting a lead frame is coated with a layer sequence in which first a thin titanium layer and / or chrome layer, then a thick indium layer and finally a thin gold layer was deposited on the chip rear side.
  • the preferred layer thicknesses are approximately 100 nm titanium and or chromium, approximately 100 nm gold and approximately 4 ⁇ m indium.
  • the lead frame is on the side to which the chip is to be connected according to the method according to the invention is coated with a thick gold layer and / or a thick silver layer which is approximately half the thickness of the indium layer.
  • the lead frame is preferably made of Alloy 42.
  • a preferred gold layer thickness is approximately 2 ⁇ m.
  • the back of the chip provided for contacting a lead frame is coated with a layer sequence in which first a thin titanium layer, then a thick indium layer and finally a thick gold layer was deposited on the back of the chip.
  • the preferred layer thicknesses are approximately 100 nm titanium, approximately 2 ⁇ m gold and approximately 4 ⁇ m indium.
  • the lead frame is on the side to which the chip is to be connected according to the method according to the invention is coated with a thin silver layer which is approximately half as thick as the indium layer.
  • the lead frame is preferably made of Alloy 42.
  • a preferred silver layer thickness is approximately 2 ⁇ m.
  • the back of the chip provided for contacting a lead frame is coated with a layer sequence in which first a thin titanium layer, then a thick gold layer was deposited on the back of the chip.
  • the lead frame is on the side to which the OR chip is to be connected in accordance with the method according to the invention is coated with a thick layer of an indium-containing paste, in particular a screen printing paste, which is approximately twice as thick as the gold layer.
  • the preferred layer thicknesses are approximately 100 nm titanium, approximately 2 ⁇ m gold and approximately 4 ⁇ m indium paste.
  • the lead frame preferably consists of Alloy 42.

Abstract

Die Erfindung betrifft ein Bauelement und ein Verfahren zum Herstellen des Bauelements, insbesondere eines elektronischen Bauelements mit einem mikroelektronischen Chip und einem Träger, welches mit isothermer Erstarrung hergestellt ist.

Description

Bauelement und Verfahren zum Herstellen des Bauelements
Beschreibung
Die Erfindung betrifft ein Bauelement und ein Verfahren zum Herstellen des Bauelements, insbesondere eines elektronischen Bauelements mit einem mikroelektronischen Chip und einem Träger.
Zum Herstellen von Bauelementen, insbesondere der Montage von integrierten mikroelektronischen Bauelementen auf Substrate, Wärmesenken etc., ist die Methode der isothermen Erstarrung bekannt. Eine solches Verfahren ist z.B. in der DE-A-195 31 158 beschrieben.
Dabei werden das mikroelektronische Bauelement und die Wärmesenke zuerst mit Metal- len beschichtet, wobei zumindest ein niedrigschmelzendes und ein höherschmelzendens Metall verwendet werden. Die metallischen Beschichtungen werden in unmittelbaren Kontakt gebracht, mit einem vorgegebenen Temperaturverlauf erwärmt und während der Reaktionszeit zusammengepreßt, bis die Reaktion des niedrigschmelzenden Metalls mit dem höherschmelzenden Metall abgeschlossen ist. Dabei diffundiert die niedrigschmelzen- de Komponente in die höherschmelzende Komponente ein und fuhrt zu einer Verbindungsschicht, die bei deutlich höheren Temperaturen, als der Schmelztemperatur der niedrigschmelzenden Komponente stabil ist. Erst wenn diese isotherme Erstarrungsreaktion abgeschlossen ist, ist die Verbindung fest. Der Prozeß kann bei den für Elektronikmaterialien anwendbaren Temperaturen im Bereich von höchstens etwa 300°C bis zu 60 min dauern und wird vorzugsweise in einem Vakuumofen durchgeführt. Dabei muß während der gesamten Fügezeit, während der die beiden Einzelteile zusammengefügt werden, ein relativ hoher Druck auf die Verbindungsstelle ausgeübt werden, damit der Fügeprozeß erforderlich ist.
Obwohl diese Art der metallischen Verbindung eine an sich sehr vorteilhafte thermische Ankopplung eines mikroelektronischen Bauelements an eine etwaige Wärmesenke oder einen etwaigen Wärmespreizer ermöglicht, ist das Verfahren der isothermen Erstarrung wegen der mehrere Minuten dauernden Fügezeiten in einem kommerziellen Fertigungsprozeß für mikroelektronische Bauelemente mit typischen Durchlaufzeiten von wenigen Se- künden beim Aufsetzen des Chips auf den Träger nicht einsetzbar.
Für das Herabsetzen der gesamten Reaktionszeit und damit auch der Fügezeit, während der das Bauelement zusammengepreßt werden muß, innerhalb der die Verbindungsschicht er- starrt bzw. durchreagiert, wird vorgeschlagen, eine Materialkombination zu wählen, die eine höhere Wachstumsrate der sich während der isothermen Erstarrung bildenden intermetallischen Phase aufweist. Eine derartige Materialkombination ist jedoch nicht für alle Zwecke geeignet. Als weitere Maßnahme zur Herabsetzung der Reaktionszeit wird vorge- schlagen, die Dicke der aktiven metallischen Schichten zu reduzieren. Eine Halbierung der Schichtdicke führt bei manchen Systemen zu einer Viertelung der Reaktionszeit. Ein unterer Grenzwert für die Schichtdickenreduzierung ist jedoch durch die Rauhigkeit oder die Krümmung der Oberflächen der Teilelemente gegeben.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung eines Bauelements mittels thermischer Erstarrung sowie ein Bauelement anzugeben, welches eine Fügezeit von weniger als einer Minute erfordert.
Die Aufgabe wird durch die Merkmale der unabhängigen Ansprüche gelöst. Weiterführen- de und vorteilhafte Ausgestaltungen sind den weiteren Ansprüchen und der Beschreibung zu entnehmen.
Die Erfindung geht davon aus, die Reaktionzeitdauer in zwei Zeitabschnitte zu zerlegen. Der erste Zeitabschnitt ist durch die Fügezeitdauer und der zweite Zeitabschnitt durch die verbleibende Reaktionszeitdauer charakterisiert. Der eigentliche Vorgang des festen Zu- sammenfügens von Teilelementen zu einem einzigen Bauelement wird während einer Fügezeitdauer innerhalb der Reaktionszeitdauer durchgeführt, in der die isotherme Erstarrung erfolgt. Die Fügezeitdauer ist vorzugsweise kürzer als die Reaktionszeitdauer.
Erfindungsgemäß wirkt während der Fügezeitdauer eine dynamische Anpreßkraft in Form von Vibrationsenergie, insbesondere Ultraschallenergie, einer vorgegebenen Leistung auf das Bauelement bzw. die beiden Teilelemente ein. Eine weitere günstige Vibrationsenergieeinwirkung besteht darin, eines der Teilelemente oder beide Teilelemente mit einer Reibschwingung zu beaufschlagen, wobei die aneinanderlegenden Kontaktflächen gegen- einander bewegt werden und eine mechanische und/oder thermische Unterstützung des Reaktionsvorgangs der Kontaktflächenmaterialien stattfindet.
Besonders bevorzugt werden die beiden Teilelemente zumindest zu Beginn oder während der Vibrationseinwirkung mit einer vorgegebenen statischen Anpreßkraft zusammenge- preßt. Günstig ist, daß die Anpreßkraft nur während der Fügezeitdauer auf das Bauelement einwirkt. Besonders vorteilhaft ist, wenn die Vibrationsenergie und die Anpreßkraft gleichzeitig wirken. Bevorzugt ist, die Vibrationsenergie kürzer als die Fügezeitdauer auf die Teilkomponenten einwirken zu lassen, besonders bevorzugt wirkt die Vibrationsenergie zu Beginn der Fügezeitdauer ein.
Damit gelingt es vorteilhaft, innerhalb einer, verglichen mit der notwendigen eigentlichen Reaktionszeitspanne, sehr kurzen Fügezeit die Teilelemente bereits für den weiteren Fertigungsablaufmechanisch ausreichend fest miteinander zu verbinden, während der isotherme Erstarrungsprozeß sich noch fortsetzt. Besonders vorteilhaft für einen Herstellprozeß ist, daß dadurch die restliche Reaktionszeitdauer an einem anderen Ort als dem Ort des Zu- sammenfügens ablaufen kann, an dem die Vibrationsenergie eingetragen wurde.
Es ist günstig, die Einwirkungszeit der Vibrationsenergie kürzer zu wählen, wenn die Reaktionstemperatur höher gewählt wird.
Eine vorteilhafte Zeitdauer der Einwirkung von Vibrationsenergie liegt zwischen 50 ms und 600 ms. Günstig ist es, die Vibrationsenergie maximal 70% der Fügezeitdauer einwirken zu lassen. Es ist zweckmäßig, die Ultraschalleistung (Pl) zwischen 0,3 W/ mm2 und 3 W/ mm2 anzuwenden.
Günstig ist es, die statische Anpreßkraft (Fl) zwischen 0,2 N/mm2 und 1,5 N/mm2 anzu- wenden; bevorzugt wird eine möglichst große Anpreßkraft angewendet. Eine bevorzugte statische Anpreßkraft beträgt mindestens 1 ,5 N/mm . Eine vorteilhafte Reaktionstemperatur liegt zwischen 150°C und 400°C. Eine günstige Reaktionszeitdauer liegt zwischen 10 s und 3 min.
Zweckmäßigerweise wird das Verfahren zumindest bei einer gegenüber der Raumtemperatur erhöhten Temperatur in Inertgasumgebung durchgeführt.
Vorteilhaft ist, wenn die erste metallische Beschichtung mindestens eine Schicht von Indium, vorzugsweise eine Schichtfolge von Gold und Indium enthält und/oder die zweite me- tallische Beschichtung mindestens eine Goldschicht und/odereine Silberschicht enthält. Besonders vorteilhaft ist, an der Kontaktstelle der beiden Teilelemente eine Indiumschicht mit einer Goldschicht in Kontakt zu bringen. In einer weiteren günstigen Ausführungsform werden zwei Indiumschichten in Kontakt gebracht.
Zweckmäßig ist, wenn die metallischen Beschichtungen auf einer Diffusionsbarrierenschicht aufgewachsen sind. Eine günstige Dicke der Diffusionsbarrierenschicht beträgt weniger als 0,5 μm. Eine günstige Dicke der ersten metallischen Beschichtung liegt zwischen 3 und 7 μm. Zweckmäßigerweise werden die Dickenverhältnisse der beiden metallischen Beschichtungen in etwa im Verhältnis von sich bildenden intermetallischen Phasen eingestellt. Eine günstige Wahl ist, die Dicke der Goldschicht höchstens etwa halb so groß zu wählen wie die Dicke Indiumschicht.
Besonders vorteilhaft ist, daß die Indiumschicht auf einer dünneren Goldschicht aufgewachsen ist, welche eine etwaige Adhäsions- und Barrierenschicht schützt.
Vorzugsweise ist das erste Teilelement aus einem mikroelektronischen Chip, insbesondere einem Siliziumchip gebildet und das zweite Teilelement aus einem wärmeleitenden Körper, insbesondere einem Siliziumkörper, einem Keramikkörper oder einem Metallkörper gebildet und weist zwischen den Teilelementen eine Verbindungsschicht aus einer Legierung der Zusammensetzung Auln und/oder Auln und/oder einer Mischung davon auf.
Vorteilhaft ist, wenn die Verbindungsschicht zu einem oder zu beiden Teilelementen eine Diffusionsbarrierenschicht aufweist, insbesondere aus Titan und/oder Titan, Nickel und Chrom aufweist. Besonders vorteilhaft ist, daß die Verbindungsschicht bei Temperaturen oberhalb von 400°C stabil ist.
Im folgenden sind die Merkmale, soweit sie für die Erfindung wesentlich sind, eingehend erläutert und anhand von Figuren näher beschrieben. Es zeigen
Fig. 1 zwei Teilelemente mit metallischer Beschichtung vor dem Zusammenfügen zu ei- nem erfindungsgemäßen Bauelement,
Fig. 2 ein erfindungsgemäßes Bauelement nach dem Zusammenfügen gemäß dem erfindungsgemäßen Verfahren, Fig. 3 ein Temperatur-Zeit-Diagramm gemäß dem erfindungsgemäßen Verfahren.
Die Erfindung ist im folgenden anhand von Beispielen aus der Mikroelektronik erläutert. Die Erfindung ist jedoch nicht auf diesen Anwendungsbereich eingeschränkt, ebensowenig wie auf die in den Beispielen genannten Materialien, sondern vielmehr für alle Materialien geeignet, mit denen ein isothermer Erstarrungsprozeß durchgeführt werden kann.
Isotherme Erstarrung kann zur Bildung sehr fester Verbindungen bei relativ niedriger Temperatur eingesetzt werden, wobei diese Verbindungen bei sehr viel höheren Temperaturen stabil und belastbar sind. Das zugrundeliegende Prinzip dieses Verbindungsprozesses nach dem Stand der Technik besteht darin, daß eine Zwischenschicht aus einem niedrigschmel- zenden Metall als Folie oder dünne Beschichtung zwischen hochschmelzenden Komponenten angeordnet ist. Diese Anordnung wird unter Druck bis zur Reaktionstemperatur erwärmt, wobei sich eine flüssige Zwischenschicht bildet. Dabei kann entweder der Schmelzpunkt der niedrigschmelzenden Schicht überschritten sein oder es findet eine eu- tektische Reaktion zwischen den hoch- und niedrigschmelzenden Komponenten statt.
Die geschmolzene Zwischenschicht führt zu einer relativ schnellen Interdiffusion oder Reaktionsdiffusion zwischen den hoch- und niedrigschmelzenden Komponenten. Die folgende Annäherung an den thermodynamischen Gleichgewichtszustand resultiert in einer iso- thermen Erstarrung. Es bildet sich eine feste Verbindungsschicht. Die festen Phasen, die sich bei der Reaktionstemperatur in der Verbindungsschicht bilden, zeigen bei entsprechender Auswahl der Materialien für die hoch- und niedrigschmelzenden Komponenten eine Aufschmelztemperatur von deutlich oberhalb der Reaktionstemperatur.
In Fig. 1 ist ein Schritt zu Beginn des erfindungsgemäßen Verfahrens dargestellt. Ein erstes Teilelement 1, bevorzugt ein mikroelektronischer Chip, besonders bevorzugt ein Siliziumchip, trägt auf der Kontaktseite 1.1, die zur Verbindung mit dem zweiten Teilelement 2 vorgesehen ist, eine erste metallische Beschichtung mit mehreren, insbesondere drei, Teilschichten 1.2, 1.3 und 1.4. Das zweite Teilelement 2, vorzugsweise ein gut wärmeleitendes Substrat, welches für den Chip 1 als Wärmesenke oder Wärmespreizer dienen soll, trägt ebenfalls eine metallische Beschichtung aus mehreren Teilschichten 2.2 und 2.3 auf der zur Verbindung mit dem ersten Teilelement 1 vorgesehenen Kontaktseite 2.1. Das zweite Teilelement 2 ist vorzugsweise ein Siliziumsubstrat oder eine wärmeleitende Keramik oder ein Metallsubstrat.
Vorzugsweise werden die Teilschichten 1.2, 1.3, 1.4, 2.2, 2.3 aus verschiedenen Metallen gebildet. Die äußere Schicht des einen Teilelements hat dabei vorzugsweise einen niedrigeren Schmelzpunkt als die äußere Schicht des anderen Teilelements.
Bevorzugt besteht die äußere Schicht 1.2 des ersten Teilelements aus Indium, vorzugsweise mit einer Schichtdicke von 3-7 μm. Diese äußere Schicht 1.2 ist auf einer zweiten, vorzugsweise dünneren Schicht 1.3 abgeschieden, welche vorzugsweise aus demselben Material besteht, mit dem beim Fügeprozeß dann die isotherme Erstarrungsreaktion erfolgt, insbesondere eine Goldschicht. Die Schichtdicke der Goldschicht 1.3ist zweckmäßigerweise etwa 0,1 μm. Günstig ist, wenn diese zweite Schicht 1.3 auf einer dritten Schicht 1.4 abgeschieden ist, welche als Haftvermittlerschicht und/oder Diffussionsbarriere zwischen den isotherm erstarrenden Komponenten und dem Chip 1 fungiert. Vorzugsweise ist die dritte Schicht 1.4 eine für derartige Zwecke übliche Schichtkombination aus Titan mit Zusätzen von Nickel und Chrom oder vergleichbaren Materialien. Eine vorteilhafte Schichtdicke für diese Diffusionsbarriere ist etwa 0,1 μm. Die zweite Schicht 1.3 zwischen der äußeren Teilschicht 1.2 und der Diffusionsbarriere 1.4 hat die besonders vorteilhafte Folge, daß bei einer einsetzenden isothermen Erstarrungsreaktion die äußere Schicht 1.2 sowohl von der Kontaktstelle her als auch von der Schicht 1.3 und/oder der Grenzfläche zum Teilelementkörper 1 her mit der Reaktion beginnt, so daß eine Kontamination der reagierenden Schichtfolge aus dem Teilelement 1 heraus unterbunden ist.
Das zweite Teilelement 2 weist zweckmäßigerweise ebenfalls eine Haftvermittler- und/oder Diffusionsbarrierenschicht 2.3 auf, vorzugsweise in vergleichbarer Zusammensetzung und Dicke wie beim Teilelement 1. Die äußere Teilschicht 2.2 des zweiten Teilelements wird vorteilhafterweise aus Gold gebildet. Die Schichdicke der Goldschicht 2.2 ist vorzugsweise so gewählt, daß bei einer vollständigen Reaktion der Komponenten der äußeren beiden Schichten 1.2 und 2.2 der beiden Teilelemente 1 und 2 sich stabile intermetalli- sehe Verbindung bilden kann, vorzugsweise Auln und oder Auln2 oder ein Gemisch davon. Vorteilhaft ist es daher, wenn bei einer Kombination von Indium als äußerer Schicht 1.2 des ersten Teilelements 1 mit Gold als äußere Schicht 2.2 des zweiten Teilelements 2 die Goldschichtdicke nur halb so groß ist wie die Indiumschichtdicke, vorzugsweise liegt die Indiumschichtdicke zwischen 4-7 μm und die Goldschichtdicke um 2 μm.
Bei einer Wahl von anderen Reaktionskonstituenten für die isotherme Erstarrung ist es daher vorteilhaft, die jeweiligen Schichtdicken der metallischen Komponenten an sich etwaig bildende intermetallische Phasen entsprechend anzupassen. Vorzugsweise werden die Dickenverhältnisse der höherschmelzenden und der niedrigschmelzenden metallischen Komponenten so gewählt, daß die Zahl der zur Reaktion beitragenden Atome in etwa im Verhältnis der Zusammensetzung von sich bildenden intermetallischen Phasen vorliegt.
Die in dieser Ausführung gewählten Materialien haben den Vorteil, daß sie miteinander kompatibel sind. Zum einen ist der Schmelzpunkt des Indiums mit ca. 160°C sehr niedrig, so daß die thermische Belastung des Bauelements beim Bonden auf die Wärmesenke gering ist, zum anderen wird Gold häufig auch als Schutzschicht für Titanschichten in derartige Prozessen verwendet. Die erfmdungsgemäße Schichtanordnung ist vorteilhafterweise besonders einfach, weil keine Barriereschichten zwischen Gold und Indium notwendig sind.
Ein Vorteil bei dieser Anordnung der metallischen Schichten besteht darin, daß die niedrigschmelzende Komponente Indium nur auf einem Teilelement abgeschieden werden muß. Damit entfällt ein Beschichtungsschritt mit der niedrigschmelzenden Komponente für das zweite Teilelement. Es ist jedoch eine Anordnung nicht ausgeschlossen, bei der beide Teilelemente für sich mit je einer Schicht der niedrigschmelzenden Komponente, insbesondere einer Indiumschicht, versehen sind, die als Kontaktschicht vorgesehen sind.
Die sich bei der isothermen Erstarrung bevorzugt bildenden Phasen Auln und Auln2 sind bei wesentlich höheren Temperaturen als dem Schmelzpunkt von Indium stabil. Derartige Verbindungsschichten können bis etwa 450°C eingesetzt werden.
Die beiden Teilelemente 1 und 2 werden aufeinander gelegt, so daß die beiden äußeren Schichten 1.2 und 2.2, bevorzugt eine Indium- und eine Goldschicht, in unmittelbarem Kontakt stehen, und anschließend auf eine Reaktionstemperatur Tl erwärmt, die vorzugsweise mindestens dem Schmelzpunkt der niedrigschmelzenden Komponente entspricht, besonders bevorzugt zwischen 200°C und 300°C. Eine Anwendung von Anpreßdruck in der Aufwärmephase ist nicht notwendig. Bevorzugt erreicht die Reaktionstemperatur Tl nicht den Schmelztemperatur der höherschmelzenden Komponente. Im Gegensatz zum Stand der Technik ist es nicht notwendig, das Verfahren in einem Vakuumofen oder in Formiergasumgebung durchzuführen. Zweckmäßig ist, wenn die Reaktion bei erhöhter Temperatur unter Inertgas, insbesondere Stickstoff oder Argon, durchgeführt wird. Damit wird eine etwaige unerwünschte Oxidation von Komponenten, insbesondere dem Indium, im Prozeß vermieden. Dies ermöglicht vorteilhafterweise eine bessere Benetzung der Goldschicht durch das Indium. Ein geeigneter Inertgasfluß liegt z.B. zwischen 0,1 Liter/min bis 1 Liter/min. Die Inertgasumgebung ist zwar zweckmäßig, jedoch nicht ausschlaggebend für das erfindungsgemäße Verfahren. Insbesondere kann bei einem etwaigen automatisierten Verfahren vollständig auf die Inertgasumgebung verzichtet werden.
Die Teilelemente werden bevorzugt während der ganzen Reaktionszeit tl auf der Reaktionstemperatur Tl gehalten. Für das System Indium-Gold ergibt sich eine Reaktionszeit tl von etwa 15 s bei einer Reaktionstemperatur von 300°C, während die Reaktionszeit tl auf knapp 2 min ansteigt, wenn eine niedrigere Reaktionstemperatur von 200°C eingesetzt wird. Bei der Reaktionstemperatur ist die niedrigschmelzende Komponente geschmolzen und beginnt, in die höherschmelzende Komponente einzudiffundieren und zu reagieren.
Wesentlich für das erfindungsgemäße Verfahren ist, daß die beiden Teilelemente 1 und 2 zu Beginn der Reaktonszeit tl, zumindest wenn die Reaktionstemperatur Tl erreicht ist, mit Vibrationsenergie beaufschlagt und an ihren Kontaktflächen gegeneinander bewegt werden. Eine günstige Vibrationsenergie ist Ultraschallenergie. Eine weitere günstige Vibrationsenergie ist eine Reibschwingung, ähnlich der Vibrationen bei einem Reibschweißvorgang, zwischen den beiden Teilelementen 1, 2, wobei beide oder nur ein Teilelement in Vibrationen versetzt wird. Diese Vibrationsenergie ist besonders günstig bei großflächigen Bauelementen anzuwenden und hat den Vorteil, daß die Belastung aufgrund der geringeren Frequenz beim Reibschweißen verglichen mit Ultraschall geringer für das Bauelement ist.
Das Bauelement befindet sich dabei örtlich vorzugsweise in einer Fügezone, in der Vibrationsenergie zur Verfügung steht. Dabei ist das Vorhandensein der Vibrationsenergie- Beaufschlagung ausschlaggebend, während die einwirkende Leistung Pl in einem weiten Bereich zwischen 0,3 W/mm2 und 3 W/mm2, bevorzugt zwischen 0,5 W/mm2 und 2,5 W/mm2, gewählt werden kann. Die Vibrationsenergie Pl wirkt höchstens über eine Füge- Zeitdauer t2 auf das Bauelement ein. Vorzugsweise ist die Zeitdauer der Einwirkung der Vibrationsenergie kürzer als die Fügezeitdauer t2, insbesondere höchstens 70% der Fügezeitdauer t2, besonders bevorzugt wirkt die Vibrationsenergie zu Beginn der Fügezeitdauer auf die Teilelemente ein.
Innerhalb des gleichen Zeitraums t2 wird in der Fügezone zusätzlich ein Anpreßdruck Fl auf das Bauelement ausgeübt, mit dem die beiden Teilelemente 1 , 2 aufeinandergepreßt werden. Vorzugsweise wird das Bauelement gleichzeitig mit Ultraschallenergie Pl und Anpreßdruck Fl beaufschlagt. Vorzugsweise liegt der Anpreßdruck zwischen 0,2 N/mm2 und 1,5 N/mm2, besonders bevorzugt zwischen 0,25 N/mm2 und 1,25 N/mm2. Bei typi- sseehheenn CChhiippggrröößßeenn vvoonn 22xx22 mmmm2 i isstt eeiinnee ggüünnssttige Anpreßkraft z.B. 1-5N. Vorteilhaft ist, den Anpreßdruck Fl möglichst hoch zu wählen.
Während die Reaktionszeit tl zwischen etwa 15 s bei einer Reaktionstemperatur von 300°C und 2 min bei 200°C beträgt, ist die Fügezeitdauer t2 wesentlich kürzer als die Re- aktionszeit tl. Vorzugsweise wird die Einwirkung der Vibrationsenergie bei höherer Re- aktonstemperatur Tl verkürzt, insbesondere liegt die Vibrationszeitdauer zwischen 50 ms und 600 ms, besonders bevorzugt zwischen 100 ms und 500 ms.
Obwohl die Reaktion der isothermen Erstarrung nach Ablauf der Fügezeitdauer t2 noch nicht abgeschlossen ist, ist die Verbindung zwischen den beiden Teilelementen 1, 2 bereits so fest, daß kein weiterer Anpreßdruck und/oder keine weitere Ultraschallenergie mehr nötig ist, um die beiden Teilelemente 1, 2 zusammenzuhalten. In Fig. 2 ist ein erfindungsgemäßes Bauelement dargestellt, das aus zwei vormaligen Teilelementen 1 , 2 besteht, die mit einer Verbindungsschicht 3, vorzugsweise Indium und Gold und/oder Auln und/oder Auln2 oder einem Gemisch davon, fest verbunden sind. Das Bauelement kann, bevorzugt bei unveränderter Reaktionstemperatur Tl, aus der Fügezone, dem Einwirkungsbereich von Ultraschallenergie und Anpreßdruck, entfernt werden und in einem anderen Bereich fertig durchreagieren, beim System Indium-Gold bevorzugt 2-4 min, und anschließend auf Raumtemperatur abkühlen. Die Fügezone steht nach Abschluß der Fügezeitdauer sofort wieder für einen weiteren Fügeprozeß bereit. Die vollständige isotherme Erstarrungsreaktion in der vollen Reaktionszeit tl kann anschließend in zeitlich unkritischeren Zonen des Bondverfahrens ablaufen. Die Verbindung ist so fest, daß übliche Schertests mit z.B. 0,6 kg/mm2 erfolgreich überstanden werden.
Eine typische Abfolge des Verfahrens in einem Fertigungsprozeß ist, daß ein Teilelement des Bauelelements mit einem üblichen Werkzeug in einer vorzugsweise beheizten Fügezone auf das zweite Teilelement als Montagefläche, insbesondere eine Wärmesenke, gesetzt wird, dort für eine Fügezeitdauer unter zusätzlichem Einbringen von Ultraschall- oder Reibenergie gehalten wird, und anschließend für den noch verbleibenden Rest der Reaktionszeitdauer in einer Reaktionszone gehalten wird. Die prozeßkritische sogen. Pick- and Place-Zeit des Bauelements auf die Montagefläche im Prozeß liegt dabei vorzugsweise im Sekundenbereich, so daß die Fügezone im Sekundentakt für die Bestückung mit Teilele- menten eines neuen Bauelements freigegeben werden kann.
In Fig. 3 ist ein Temperatur-Zeitdiagramm gemäß dem erfindungsgemäßen Verfahren dargestellt. Die isotherme Erstarrung läuft bei der Reaktionstemperatur Tl während der Reaktionszeitdauer tl ab, innerhalb der die Fügezeitdauer t2 liegt, bevorzugt zu Beginn der Re- aktionszeitdauer. Bevorzugt ist die Fügezeitdauer t2 nur ein Bruchteil der Reaktionszeitdauer tl.
Damit läßt sich das erfindungsgemäße Verfahren in einen kommerziellen Herstellprozeß integrieren, bei dem für derartige Bondprozesse Taktzeiten von nur wenigen Sekunden toleriert werden können, Insbesondere ist es möglich, den Fügeprozeß zu automatisieren. Die gesamte Zeit zum Einbau, Zusammenlegen und Verbinden der Teilelemente 1 , 2 in der Fügezone kann unter 5 Sekunden liegen. Diese Zeit kann bis unterhalb von 1 Sekunde optimiert werden.
Ein mit dem erfindungsgemäßen Verfahren hergestelltes Bauelement weist eine hohe Wärmeleitfähigkeit, einen niedrigen elektrischen Widerstand der Verbindungsschicht zwischen den beiden Teilelementen, sowie eine hohe Schmelztemperatur der Verbindungsschicht auf. Ein solcherart hergestelltes mikroelektronisches Bauelement ist bevorzugt für den Einsatz bei hohen Leistungen geeignet.
Besonders günstig ist die Materialkombination Indium und Gold als niedrig- bzw. höherschmelzende metallische Komponente, da häufig mikroelektronische Chips bereits vom Hersteller mit einer Gold-Rückseitenkontaktierung geliefert werden. Ein solcher mikrole- lektronischer Chip kann dann sehr einfach mit einem übliche Leiterrahmen (Lead Frame), insbesondere aus Kupfer oder einer Eisen-Nickellegierung, insbesondere dem sogen. Alloy 42, mittels isothermer Erstarrung verbunden werden. Eine kostengünstige Alternative ist, Gold teilweise oder ganz durch Silber zu ersetzen.
In einer ersteil bevorzugten Ausführung wird eine Indiumschicht entsprechender Dicke zumindest auf die Chiplandefläche des Leiterrahmens bzw. Chipträgers aufgebracht und der Chip anschließend mit dem Leiterrahmen in einem Verfahren gemäß der Erfindung fest verbunden. Besonders kostengünstig ist, eine indiumhaltige Paste auf die Chiplandefläche aufzubringen. Günstig ist, den Leiterrahmen bzw. den Chipträger die zum Aufnehmen von Bauelementen vorgesehenen Fläche zumindest bereichsweise mit einer Silberschicht zu versehen.
In einer weiteren bevorzugten Ausführung wird eine Indiumschicht entsprechender Dicke auf die Chiprückseite aufgebracht, die als Kontaktfläche zum Träger vorgesehen ist. Insbesondere ist die Indiumschicht auf eine Schichtfolge von dünneren Titan- und Goldschichten abgeschieden, während der Bereich des Leiterrahmens bzw. des Chipträgers, welcher zum Aufnehmen des Chips vorgesehen ist, mit einer Goldschicht bedeckt ist, deren Dicke an die Indiumschichtdicke gemäß der Erfindung angepaßt ist. Es ist zweckmäßig und kostenspa- rend, wenn nur die unmittelbare Chiplandefläche mit Gold beschichtet ist. Ein Vorteil ist, daß eine Kontamination des Leiterrahmens mit Indium weitgehend vermieden wird. Besonders günstig ist, daß nach der Reaktion kein überschüssiges Indium übrig ist. Günstig ist, die von der Goldschicht freibleibenden Randbezirke des Leiterrahmens bzw. Chipträ- gers zusätzlich mit einer indiumabweisenden Beschichtung zu versehen.
Vorteilhaft ist, wenn die Fläche der Goldschicht nur so groß ausgebildet ist, wie der Chipfläche entspricht. Besonders günstig ist, die etwaig verbleibende Chiplandefläche mit einem Material zu bedecken, welches von Indium nicht benetzt wird. Damit wird eine Kontamination des Leiterrahmens durch geschmolzenes Indium während des Verbin- dungsprozesses vermieden.
In einer weiteren vorteilhaften und kostengünstigen Ausführung ist statt einer Goldschicht eine Silberschicht auf dem Leiterrahmen bzw. Chipträger vorgesehen. Zweckmäßigerweise kann die Indiumschicht auf der Rückseite des Chips noch mit einer Goldschicht verse- hen sein, die dünner ist als die Silberschicht.
In einer bevorzugten Anordnung ist die zur Kontaktierung eines Leiterrahmens vorgesehene Chiprückseite mit einer Schichtfolge beschichtet, bei der zuerst eine dünne Titanschicht, dann eine dünne Goldschicht und zuletzt eine dicke Indiumschicht auf der Chiprückseite abgeschieden wurde. Die bevorzugten Schichtdicken sind ca. 100 nm Titan, ca. lOOnm Gold und ca. 4 μm Indium. Der Leiterrahmen ist auf der Seite, mit der der Chip gemäß dem erfindungsgemäßen Verfahren verbunden werden soll, ist mit einer dicken Gold- Schicht beschichtet, die etwa halb so dick wie die Indiumschicht ist. Bevorzugt besteht der Leiterrahmen aus Alloy 42. Eine bevorzugte Goldschichtdicke ist ca. 2 μm.
In einer weiteren bevorzugten Anordnung ist die zur Kontaktierung eines Leiterrahmens vorgesehene Chiprückseite mit einer Schichtfolge beschichtet, bei der zuerst eine dünne Titanschicht und/oder Chromschicht, dann eine dicke Indiumschicht und zuletzt eine dünne Goldschicht auf der Chiprückseite abgeschieden wurde. Die bevorzugten Schichtdicken sind ca. 100 nm Titan und oder Chrom, ca. lOOnm Gold und ca. 4 μm Indium. Der Leiterrahmen ist auf der Seite, mit der der Chip gemäß dem erfindungsgemäßen Verfahren verbunden werden soll, ist mit einer dicken Goldschicht und/oder einer dicken Silberschicht beschichtet, die etwa halb so dick wie die Indiumschicht ist. Bevorzugt besteht der Leiterrahmen aus Alloy 42. Eine bevorzugte Goldschichtdicke ist ca. 2 μm.
In einer weiteren bevorzugten Anordnung ist die zur Kontaktierung eines Leiterrahmens vorgesehene Chiprückseite mit einer Schichtfolge beschichtet, bei der zuerst eine dünne Titanschicht, dann eine dicke Indiumschicht und zuletzt eine dicke Goldschicht auf der Chiprückseite abgeschieden wurde. Die bevorzugten Schichtdicken sind ca. 100 nm Titan, ca. 2 μm Gold und ca. 4 μm Indium. Der Leiterrahmen ist auf der Seite, mit der der Chip gemäß dem erfindungsgemäßen Verfahren verbunden werden soll, ist mit einer dünnen Silberschicht beschichtet, die etwa halb so dick wie die Indiumschicht ist. Bevorzugt be- steht der Leiterrahmen aus Alloy 42. Eine bevorzugte Silberschichtdicke ist ca. 2 μm.
In einer weiteren, besonders kostengünstigen Anordnung ist die zur Kontaktierung eines Leiterrahmens vorgesehene Chiprückseite mit einer Schichtfolge beschichtet, bei der zuerst eine dünne Titanschicht, dann eine dicke Goldschicht auf der Chiprückseite abgeschieden wurde. Der Leiterrahmen ist auf der Seite, mit der Oder Chip gemäß dem erfindungsgemäßen Verfahren verbunden werden soll, ist mit einer dicken Schicht einer indiumhaltigen Paste, insbesondere einer Siebdruckpaste, beschichtet, die etwa dopelt so dick wie die Goldschicht ist. Die bevorzugten Schichtdicken sind ca. 100 nm Titan, ca. 2 μm Gold und ca. 4 μm Indiumpaste. Bevorzugt besteht der Leiterrahmen aus Alloy 42.

Claims

Patentansprüche
1. Verfahren zum Herstellen eines Bauelements, bei dem ein erstes Teilelement mit einer seiner Kontaktseiten (1.1), deren äußere Oberfläche durch ein schmelzbares Metall gebildet wird, auf eine der Kontaktseiten (2.1), deren äußere Oberfläche durch ein schmelzbares Metall gebildet wird, eines zweiten Teilelements aufgelegt wird, und das Bauelement unter einem vorgegebenen Temperatur- und Anpreßdruckverlauf solange erwärmt wird, bis eine isotherme Erstarrungsreaktion zwischen den Oberflächen abge- schlössen ist, dadurch gekennzeichnet, daß die aneinander angelegten Kontaktflächen (1.1, 2.1) der beiden Teilelemente (1, 2) zumindest während eines Bruchteils einer Fügezeitdauer (t2), die kürzer ist als die Reaktionszeitdauer (tl), durch Vibrationsenergie (Pl) mit einem dynamischen Anpreß- druck beaufschlagt werden, indem zumindest eines der Teilelemente (1, 2) in longitu- dinale und/oder transversale Vibrationen versetzt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die Zeit, während der Teilelemente mit Vibrationsenergie (Pl) beaufschlagt werden, kürzer als die Fügezeitdauer (t2) ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Vibrationen durch Ultraschallenergie erzeugt werden.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Vibrationen durch Reibschwingungen mit einer Frequenz unterhalb des Ultra- schallbereichs erzeugt werden.
5. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Teilelemente (1, 2) während der Fügezeitdauer (t2) zusätzlich mit einem stati- sehen Anpreßdruck (F 1 ) zusammengepreßt werden.
6. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Ultraschallenergie (Pl) und der Anpreßdruck (Fl) gleichzeitig einwirken.
7. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Vibrationsenergie (Pl) mit einer Leistung zwischen 0,3 W/ mm2 und 3 W/ mm angewendet wird.
8. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß ein Anpreßdruck (Fl) zwischen 0,2 N/mm2 und 1,5 N/mm2 angewendet wird.
9. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche 1 bis 7, dadurch gekennzeichnet, daß ein Anpreßdruck (Fl) von mindestens 1,5 N/mm2 angewendet wird.
10. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Vibrationszeitdauer (t2) kürzer gewählt wird, wenn die Reaktionstemperatur (Tl) höher gewählt wird.
11. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Reaktionszeitdauer zwischen 10 s und 3 min liegt.
12. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Teilelemente (1, 2) zwischen 50 ms und 600 ms mit Vibrationsenergie (Pl) beaufschlagt werden.
13. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Teilelemente (1, 2) höchstens 70% der Fügezeitdauer mit Vibrationsenergie (Pl) beaufschlagt werden.
14. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Teilelemente (1, 2) zu Beginn der Fügezeitdauer mit Vibrationsenergie (Pl) beaufschlagt werden.
15. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die äußeren Oberflächen der Teilelemente (1, 2) durch bei unterschiedlichen Tem- peraturen schmelzende Metalle gebildet werden.
16. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die äußeren Oberflächen der Teilelemente (1, 2) durch Metalle gebildet werden, die bei derselben Temperatur schmelzen.
17. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Reaktionstemperatur (Tl) unterhalb der Schmelztemperatur der höherschmel- zenden Komponente liegt.
18. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Reaktionstemperatur (Tl) zwischen 150°C und 400°C liegt.
19. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß das Verfahren zumindest bei einer gegenüber der Raumtemperatur erhöhten Temperatur in Inertgasumgebung durchgeführt wird.
20. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß Dickenverhältnisse der höherschmelzenden und der niedrigschmelzenden metallischen Komponenten (1.2, 2.2) so gewählt werden, daß die Zahl der zur Reaktion zur Verfügung stehenden Atome der jeweiligen Komponenten (1.2, 2.2) in etwa im Verhältnis der Zusammensetzung den gewünschten intermetallischen Phasen vorliegt, die in der Reaktion gebildet werden.
21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß die Dickenverhältnisse so gewählt werden, daß ein Überschuß der höherschmelzenden Komponente (2.2) vorhanden ist.
22. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die erste metallische Beschichtung (1.2, 1.3, 1.4) mindestens eine Schichtfolge von Gold und Indium enthält.
23. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die zweite metallische Beschichtung (2.1, 2.2) mindestens eine Goldschicht enthält.
24. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß an der Kontaktstelle der beiden Teilelemente (1, 2) eine Indiumschicht (1.2) mit einer Goldschicht (2.2) in Kontakt gebracht wird.
25. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß an der Kontaktstelle der beiden Teilelemente (1, 2) eine Indiumschicht (1.2) mit einer Indiumschicht in Kontakt gebracht wird.
26. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Dicke der Indiumschicht (1.2) zwischen 3 und 7 μm liegt.
27. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß eine Indiumschicht (1.2) auf einer dünneren Goldschicht (1.3) aufgewachsen ist.
28. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Dicke der Goldschicht (2.2) nur halb so groß ist wie die Dicke der Indiumschicht (1.2).
29. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß das erste Teilelement (1) aus einem mikroelektronischen Chip gebildet wird.
30. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß das zweite Teilelement (2) aus einem Siliziumkörper gebildet wird.
31. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß das zweite Teilelement (2) aus einem hochwärmeleitenden Keramikkörper gebildet wird.
32. Verfahren nach einem oder mehreren der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß das zweite Teilelement (2) aus einem Metallkörper gebildet wird.
33. Bauelement bestehend aus einem ersten Teilelement und einem zweiten Teilelement, insbesondere einem mikroelektronischen Chip und einem Leiterrahmen, dadurch gekennzeichnet, daß das Bauelement eine isotherm erstarrte Verbindungsschicht (3) mit einer Schmelztemperatur oberhalb von 400°C aufweist, über die das erste Teilelement (1) und das zweite Teilement (2) fest miteinander verbunden sind.
34. Bauelement nach Anspruch 33, dadurch gekennzeichnet, daß daß die Verbindungsschicht (3) im wesentlichen eine Legierung der Zusammensetzung Auln und/oder Auln2 oder eine Mischung davon aufweist.
35. Bauelement nach Anspruch 33 oder 34, dadurch gekennzeichnet, daß das Bauelement eine Diffusionsbarrierenschicht (1.4, 2.3) zwischen einem oder zu beiden der Teilelemente (1, 2) und der Verbindungsschicht (3) aufweist.
36. Bauelement nach Anspruch 33, 34 oder 35, dadurch gekennzeichnet, daß die Diffusionsbarrierenschicht Titan, Nickel und Chrom aufweist.
37. Bauelement nach einem oder mehreren der vorangegangenen Ansprüche 33 bis 36, dadurch gekennzeichnet, daß die Diffusionsbarrierenschicht Titan und/oder Nickel und/oder Chrom oder eine Kombination von Titan, Nickel und/oder Chrom aufweist.
PCT/EP1998/006295 1997-10-30 1998-10-02 Bauelement und verfahren zum herstellen des bauelements WO1999023697A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000519464A JP2001522143A (ja) 1997-10-30 1998-10-02 構成素子および該構成素子の製造法
KR1020007004607A KR20010031563A (ko) 1997-10-30 1998-10-02 소자 및 소자의 제조 방법
US09/530,273 US6334567B1 (en) 1997-10-30 1998-10-02 Component and method for production thereof
EP98951490A EP1027728A1 (de) 1997-10-30 1998-10-02 Bauelement und verfahren zum herstellen des bauelements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19747846A DE19747846A1 (de) 1997-10-30 1997-10-30 Bauelement und Verfahren zum Herstellen des Bauelements
DE19747846.8 1997-10-30

Publications (1)

Publication Number Publication Date
WO1999023697A1 true WO1999023697A1 (de) 1999-05-14

Family

ID=7847031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/006295 WO1999023697A1 (de) 1997-10-30 1998-10-02 Bauelement und verfahren zum herstellen des bauelements

Country Status (8)

Country Link
US (1) US6334567B1 (de)
EP (1) EP1027728A1 (de)
JP (1) JP2001522143A (de)
KR (1) KR20010031563A (de)
CN (1) CN1139974C (de)
DE (1) DE19747846A1 (de)
TW (1) TW411592B (de)
WO (1) WO1999023697A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19924252A1 (de) * 1999-05-27 2000-11-30 Controls Gmbh Deutsche Verfahren und Vorrichtung zum Reibschweißverbinden
DE10014308B4 (de) * 2000-03-23 2009-02-19 Infineon Technologies Ag Vorrichtung zum gleichzeitigen Herstellen von mindestens vier Bondverbindungen und Verfahren dazu
JP2002353251A (ja) * 2001-05-22 2002-12-06 Rohm Co Ltd 半導体素子の実装構造
DE10147789B4 (de) * 2001-09-27 2004-04-15 Infineon Technologies Ag Vorrichtung zum Verlöten von Kontakten auf Halbleiterchips
AU2003264717A1 (en) * 2002-08-16 2004-03-03 New Transducers Limited Method of bonding a piezoelectric material and a substrate
DE102004036961B3 (de) * 2004-07-30 2006-04-20 Osram Opto Semiconductors Gmbh Verfahren zum Verbinden eines Halbleiterchips mit einem Substrat
US7528061B2 (en) * 2004-12-10 2009-05-05 L-3 Communications Corporation Systems and methods for solder bonding
EP1783829A1 (de) 2005-11-02 2007-05-09 Abb Research Ltd. Verfahren zum Befestigen elektronischer Bauelemente
DE102005058654B4 (de) * 2005-12-07 2015-06-11 Infineon Technologies Ag Verfahren zum flächigen Fügen von Komponenten von Halbleiterbauelementen
JP5119658B2 (ja) * 2005-12-16 2013-01-16 三菱電機株式会社 半導体素子および半導体素子のダイボンド接続方法
US7955900B2 (en) 2006-03-31 2011-06-07 Intel Corporation Coated thermal interface in integrated circuit die
DE102008050798A1 (de) * 2008-10-08 2010-04-15 Infineon Technologies Ag Verfahren zum Positionieren und Fixieren eines Bauteils auf einem anderen Bauteil sowie eine Anordnung zum Positionieren und Vorfixieren
CN101728289B (zh) * 2008-10-10 2011-12-28 哈尔滨工业大学深圳研究生院 一种面阵封装电子元件的室温超声波软钎焊方法
KR101077340B1 (ko) * 2009-12-15 2011-10-26 삼성전기주식회사 기판 제조용 캐리어 부재 및 이를 이용한 기판의 제조방법
KR101055473B1 (ko) * 2009-12-15 2011-08-08 삼성전기주식회사 기판 제조용 캐리어 부재 및 이를 이용한 기판의 제조방법
KR101278658B1 (ko) * 2012-09-27 2013-06-25 오성문 골드 또는 실버 바의 제조방법
US9355984B2 (en) * 2013-07-18 2016-05-31 Infineon Technologies Ag Electronic device and method for fabricating an electronic device
JP2015056641A (ja) 2013-09-13 2015-03-23 株式会社東芝 半導体装置及びその製造方法
WO2015176715A1 (de) * 2014-05-23 2015-11-26 Hesse Gmbh Verfahren zum schwingungsunterstützten flächigen metallischen verbinden von bauteilen
US10312429B2 (en) * 2016-07-28 2019-06-04 Eyob Llc Magnetoelectric macro fiber composite fabricated using low temperature transient liquid phase bonding
DE102017104276B4 (de) 2017-03-01 2020-01-16 Osram Opto Semiconductors Gmbh Verfahren zum Befestigen eines Halbleiterchips auf einem Leiterrahmen und elektronisches Bauelement
DE102017112866A1 (de) * 2017-06-12 2018-12-13 Osram Opto Semiconductors Gmbh Verfahren zum Befestigen eines Halbleiterchips auf einem Substrat und elektronisches Bauelement
FR3134021A1 (fr) * 2022-03-29 2023-10-06 Safran Procédé de soudage par ultrasons

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151977A (ja) * 1982-03-03 1983-09-09 Hitachi Ltd 拡散接合方法
EP0106598A2 (de) * 1982-10-08 1984-04-25 Western Electric Company, Incorporated Lötmittelfreie Verbindung mikroelektronischer Chips
EP0186829A2 (de) * 1984-12-21 1986-07-09 Asea Brown Boveri Aktiengesellschaft Verfahren und Verbindungswerkstoff zum metallischen Verbinden von Bauteilen
EP0238066A2 (de) * 1986-03-18 1987-09-23 Fujitsu Limited Verfahren zur Ausführung der Adhäsion zwischen Scheiben aus Silizium oder Siliziumdioxid
FR2656193A1 (fr) * 1986-12-19 1991-06-21 Telecommunications Sa Procede de montage d'un pave semi-conducteur sur un support de dissipation thermique et de connexion electrique.
DE19531158A1 (de) * 1995-08-24 1997-02-27 Daimler Benz Ag Verfahren zur Erzeugung einer temperaturstabilen Verbindung
US5651494A (en) * 1995-03-17 1997-07-29 Nippondenso Co., Ltd. Method of ultrasonic welding of different metals

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE106598C (de)
DE186829C (de)
US3590467A (en) * 1968-11-15 1971-07-06 Corning Glass Works Method for bonding a crystal to a solid delay medium
US3839780A (en) * 1971-04-14 1974-10-08 Raytheon Co Method of intermetallic bonding
US3857161A (en) * 1973-02-09 1974-12-31 T Hutchins Method of making a ductile hermetic indium seal
US3921885A (en) * 1973-06-28 1975-11-25 Rca Corp Method of bonding two bodies together
US4077558A (en) * 1976-12-06 1978-03-07 International Business Machines Corporation Diffusion bonding of crystals
US4620215A (en) * 1982-04-16 1986-10-28 Amdahl Corporation Integrated circuit packaging systems with double surface heat dissipation
DE3815003A1 (de) * 1988-05-03 1989-11-16 Branson Ultraschall Verfahren und vorrichtung zum steuern von maschinenparametern beim reibungsschweissen
US4895291A (en) * 1989-05-04 1990-01-23 Eastman Kodak Company Method of making a hermetic seal in a solid-state device
DE4241439A1 (de) * 1992-12-10 1994-06-16 Daimler Benz Ag Verfahren zur Erzeugung einer formschlüssigen Verbindung zwischen metallischen Verbindern und metallischen Kontakten von Halbleiteroberflächen
DE19532250A1 (de) * 1995-09-01 1997-03-06 Daimler Benz Ag Anordnung und Verfahren zum Diffusionslöten eines mehrschichtigen Aufbaus
DE19546997C2 (de) * 1995-12-15 1997-12-18 Siemens Ag Verfahren zum Verbinden von metallischen Teilen mit nichtmetallischen Teilen
US6158647A (en) * 1998-09-29 2000-12-12 Micron Technology, Inc. Concave face wire bond capillary

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151977A (ja) * 1982-03-03 1983-09-09 Hitachi Ltd 拡散接合方法
EP0106598A2 (de) * 1982-10-08 1984-04-25 Western Electric Company, Incorporated Lötmittelfreie Verbindung mikroelektronischer Chips
EP0186829A2 (de) * 1984-12-21 1986-07-09 Asea Brown Boveri Aktiengesellschaft Verfahren und Verbindungswerkstoff zum metallischen Verbinden von Bauteilen
EP0238066A2 (de) * 1986-03-18 1987-09-23 Fujitsu Limited Verfahren zur Ausführung der Adhäsion zwischen Scheiben aus Silizium oder Siliziumdioxid
FR2656193A1 (fr) * 1986-12-19 1991-06-21 Telecommunications Sa Procede de montage d'un pave semi-conducteur sur un support de dissipation thermique et de connexion electrique.
US5651494A (en) * 1995-03-17 1997-07-29 Nippondenso Co., Ltd. Method of ultrasonic welding of different metals
DE19531158A1 (de) * 1995-08-24 1997-02-27 Daimler Benz Ag Verfahren zur Erzeugung einer temperaturstabilen Verbindung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 007, no. 271 (M - 260) 3 December 1983 (1983-12-03) *

Also Published As

Publication number Publication date
CN1278363A (zh) 2000-12-27
TW411592B (en) 2000-11-11
US6334567B1 (en) 2002-01-01
JP2001522143A (ja) 2001-11-13
KR20010031563A (ko) 2001-04-16
EP1027728A1 (de) 2000-08-16
CN1139974C (zh) 2004-02-25
DE19747846A1 (de) 1999-05-06

Similar Documents

Publication Publication Date Title
EP1027728A1 (de) Bauelement und verfahren zum herstellen des bauelements
EP0186829B1 (de) Verfahren und Verbindungswerkstoff zum metallischen Verbinden von Bauteilen
DE3924225C2 (de) Verfahren zur Herstellung eines Keramik-Metall-Verbundsubstrats sowie Keramik-Metall-Verbundsubstrat
EP2158997A2 (de) Steuerung der Porosität von Metallpasten für den druckfreien Niedertemperatursinterprozess
DE112014002345B4 (de) Halbleitervorrichtung und Herstellungsverfahren für die Halbleitervorrichtung
DE3618102A1 (de) Verfahren zum stoffschluessigen verbinden von keramik-werkstoffen und metall sowie von gleichartigen und verschiedenartigen keramik-werkstoffen miteinander
EP1883962B1 (de) Ubm-pad, lötkontakt und verfahren zur herstellung einer lötverbindung
DE112017001768T5 (de) Verfahren zur Herstellung einer Verbindung in einem binären System und Verbindung dafür
DE69923337T2 (de) Löten eines halbleiterchips auf ein substrat
DE102005058654B4 (de) Verfahren zum flächigen Fügen von Komponenten von Halbleiterbauelementen
DE102011013172A1 (de) Paste zum Verbinden von Bauteilen elektronischer Leistungsmodule, System und Verfahren zum Auftragen der Paste
DE102009034483A1 (de) Bleifreie Hochtemperaturverbindung für die AVT in der Elektronik
EP3698400B1 (de) Verfahren zum erzeugen eines kühlkörpers auf einer elektronischen baugruppe
DE10314876B4 (de) Verfahren zum mehrstufigen Herstellen von Diffusionslötverbindungen und seine Verwendung für Leistungsbauteile mit Halbleiterchips
DE19532250A1 (de) Anordnung und Verfahren zum Diffusionslöten eines mehrschichtigen Aufbaus
DE102008011265B4 (de) Verfahren zum Herstellen eines Substrats zum Bonden von Vorrichtungen mit einer Lötschicht
DE19532251A1 (de) Anordnung und Verfahren zum Diffusionslöten
DE3740773A1 (de) Verfahren zum herstellen elektrisch leitender verbindungen
WO1999004423A1 (de) Verfahren und vorrichtung zur herstellung einer chip-substrat-verbindung
EP0833384A2 (de) Halbleiterkörper mit Lotmaterialschicht
DE102006053146A1 (de) Goldhaltiges Lotdepot, Verfahren zu dessen Herstellung, Lötverfahren und Verwendung
DE102014116030A1 (de) Verfahren zur Herstellung einer Verbindung und Anordnung für eine Chipzusammenstellung mit Direktverbindung
DE3110080A1 (de) Verfahren zum verbinden eines halbleiterkoerpers mit einem metallischen systemtraeger und danach hergestellte halbleiteranordnung
DE102021124877A1 (de) Lotmaterial, schichtstruktur, chipgehäuse, verfahren zum herstellen einer schichtstruktur und verfahren zum herstellen eines chipgehäuses
DE102012216546A1 (de) Halbleiterchip, verfahren zur herstellung eines halbleiterchips und verfahren zum verlöten eines halbleiterchips mit einem träger

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98810712.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998951490

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09530273

Country of ref document: US

Ref document number: 1020007004607

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1998951490

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007004607

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998951490

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020007004607

Country of ref document: KR