WO1999009237A1 - Dispositif et procede servant a obtenir un monocristal - Google Patents

Dispositif et procede servant a obtenir un monocristal Download PDF

Info

Publication number
WO1999009237A1
WO1999009237A1 PCT/JP1998/003649 JP9803649W WO9909237A1 WO 1999009237 A1 WO1999009237 A1 WO 1999009237A1 JP 9803649 W JP9803649 W JP 9803649W WO 9909237 A1 WO9909237 A1 WO 9909237A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
single crystal
vibration
drive unit
support shaft
Prior art date
Application number
PCT/JP1998/003649
Other languages
English (en)
French (fr)
Inventor
Kouji Kitagawa
Kouji Mizuishi
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Priority to US09/485,721 priority Critical patent/US6458201B2/en
Priority to EP19980937844 priority patent/EP1029955B1/en
Priority to DE69827292T priority patent/DE69827292T2/de
Publication of WO1999009237A1 publication Critical patent/WO1999009237A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1072Seed pulling including details of means providing product movement [e.g., shaft guides, servo means]

Definitions

  • the present invention relates to an improvement in a single crystal manufacturing apparatus for manufacturing various crystal materials such as semiconductors, dielectrics, and magnetic materials by the Czochralski method.
  • CZ method a method of obtaining a single crystal material such as a semiconductor silicon single crystal as a rod-shaped single crystal by the Czochralski method (hereinafter referred to as CZ method) has been widely used.
  • a crucible for accommodating a raw material melt is usually arranged in a chamber, a support shaft for supporting the crucible, a pulling mechanism for pulling a crystal from the melt, and a crucible.
  • a single crystal can be manufactured by disposing a furnace internal member such as a heater and a heat insulating material in the chamber.
  • the amount of impurities mixed into the crystal fluctuates under the influence of the rotation speed of the crystal to be pulled, the rotation speed of the crucible, the temperature distribution of the raw material melt, and the like. That is, the crystal rotation speed affects the convection in the melt, the crucible rotation speed affects the oxygen concentration itself in the melt, and the temperature distribution in the raw material melt affects the convection in the melt. Has been exerted.
  • the melt surface position must be kept constant for the purpose of controlling the diameter of the grown crystal.
  • many crystal manufacturing apparatuses using the CZ method have a function of rotating the crucible support shaft and moving the crucible support shaft up and down. Above all, it is necessary to move the rotary drive unit of the crucible support shaft up and down together with the crucible support shaft.
  • the crucible rotary drive unit 26 is It was installed on the slider 31 of the crucible vertical mechanism 30 that moves up and down together with the crucible support shaft 4.
  • vibration may occur on the melt surface, and when vibration occurs on the melt surface, the growing single crystal may be polycrystallized. Disadvantageously that it is no longer possible to continue. Therefore, as a result of investigating the cause of this vibration, it was found that the main cause was the vibration of the crucible supporting shaft. Then, vibration is generated with the rotation of the electric motor, which is the rotation driving source of the crucible, and the vertical movement mechanism vibrates, and the vibration is transmitted to the melt via the crucible support shaft and the crucible. Was.
  • the present invention has been made in view of the above problems, and provides a means for absorbing or removing vibration generated from a crucible rotary drive unit, preventing the vibration from being transmitted to the melt, or attenuating the vibration. Aim. Disclosure of the invention
  • the invention described in claim 1 of the present invention includes a support shaft for supporting at least a crucible containing a raw material melt, a pulling mechanism for pulling a crystal from the melt,
  • a single crystal manufacturing apparatus based on the Czochralski method, comprising a rotating mechanism for rotating a crucible and a moving mechanism for moving the crucible up and down
  • the crucible rotating drive unit constituting the rotating mechanism for the crucible is provided by the single crystal
  • This is a single crystal production equipment that is fixed and installed on the foundation of the production equipment.
  • the crucible rotary drive unit consisting of the electric motor and the speed reducer
  • the vibration generated from the electric motor forming the crucible rotary drive unit will be reduced.
  • the rigid end which is the fixed end It is absorbed and attenuated, and is hardly transmitted to the melt surface via the crucible support shaft and the crucible. Therefore, it is possible to almost eliminate the vibration of the melt surface, which causes the dislocation of the growing single crystal ingot.
  • the basis of the single crystal manufacturing apparatus means a frame for supporting the single crystal manufacturing apparatus, a concrete foundation, a foundation of a factory building, etc., which is vibrated by a crucible rotary drive unit. Anything that can be fixed without any problem is not limited by the wording.
  • the invention as set forth in claim 2 of the present invention includes a support shaft for supporting a crucible accommodating at least the raw material melt, a pulling mechanism for pulling a crystal from the melt, a rotating mechanism for rotating the crucible,
  • a rotation mechanism of the crucible uses a ball spline to transmit power between a crucible support shaft and a crucible rotation drive unit.
  • a single crystal manufacturing apparatus characterized in that a crucible rotation drive unit is fixedly installed on a base of the single crystal manufacturing apparatus.
  • the crucible rotation mechanism is provided by fixing the crucible rotation drive unit including the electric motor and the variable speed reducer on the base of the single crystal manufacturing apparatus, and the crucible support shaft and the crucible rotation drive unit. If a ball spline is used to transmit power to the ball spline, the vibration received by the ball spline will be only the attenuated vibration remaining after being absorbed by the foundation, and the ball spline will not transmit any rotation simultaneously with the vertical motion of the ball spline. The vibration of the melt surface is hardly caused without any influence of the melt, and the single crystal can be manufactured safely and efficiently.
  • each of the rotation transmitting means between the crucible support shaft and the ball spline shaft and between the sleeve of the ball brine and the output shaft of the crucible rotary drive unit has a rubber-like shape.
  • the vibration generated by the crucible rotation drive unit is attenuated by the rubber-like elastic deformation.
  • the invention described in claim 4 of the present invention is a chiyo comprising at least a crucible support shaft for supporting a crucible accommodating a raw material melt, a rotating mechanism for rotating the crucible, and a moving mechanism for vertically moving the crucible.
  • a single crystal manufacturing apparatus according to the Kralski method wherein a vibration in a direction perpendicular to an axis of an upper end of a crucible supporting shaft supporting the crucible is 100 wm or less.
  • the vibration in the direction perpendicular to the axis of the upper end of the crucible support shaft supporting the crucible is 100 wm or less, it is directly applied to the entire raw material melt. Since the acting vibration of the crucible support shaft is small, the vibration on the surface of the raw material melt, which causes dislocations in the growing single crystal, can be almost eliminated.
  • a vibration of 100 m or less means that the range of oscillation due to the vibration is 100 m or less, and the amplitude of the vibration (half of the oscillation range) is 100 m. It does not mean ju m.
  • the moving mechanism includes a slider that moves up and down together with the crucible support shaft, and the vibration of the slider in a direction perpendicular to the crucible support shaft is less than 200 m. Preferably, there is.
  • the vibration of the slider As described above, by setting the vibration of the slider to 200 im or less, the vibration of the crucible supporting shaft can be reduced to 100 m or less, which causes dislocations in the growing single crystal. Vibration on the surface of the raw material melt can be almost eliminated.
  • the vibration generated by the crucible rotation drive unit which is the power of the rotation mechanism, is 50 m or less.
  • the single crystal is manufactured using the single crystal manufacturing apparatus according to any one of claims 1 to 6, the raw material melt hardly vibrates. Therefore, the single crystal can be stably manufactured without causing dislocation or the like in the single crystal.
  • a crucible containing a raw material melt is supported by a crucible support shaft, and the crucible is rotated and moved up and down to produce a single crystal by the Czochralski method.
  • a method for producing a single crystal comprising producing a single crystal by setting the vibration in a direction perpendicular to the axis at the upper end of the crucible support shaft to 10 ° m or less.
  • the single crystal is manufactured with the vibration in the direction perpendicular to the axis of the upper end of the crucible supporting shaft being 100 m or less, the dislocation of the single crystal due to the vibration of the raw material melt, etc. Can be prevented, and the production efficiency of the single crystal can be improved.
  • the vibration of the crucible support shaft is transmitted to the melt surface, causing the dislocation and the like of the growing single crystal.
  • a crucible rotary drive unit is fixed to the base of a single crystal manufacturing equipment, and the rotation is transmitted by a ball spline and a timing belt, so that the vibration is absorbed and attenuated, and the melt is melted. Vibration hardly occurs on the surface, and a single crystal can be produced safely and efficiently by eliminating the cause of dislocation generation of the grown crystal.
  • FIG. 1 is an explanatory view showing one example of the single crystal manufacturing apparatus of the present invention.
  • FIGS. 2A and 2B are explanatory views showing an example of a ball spline used for the crucible rotation mechanism of the present invention.
  • Figure 2A is a front and partial cross-sectional view of the ball spline
  • Figure 2B is a view of the ball spline taken along line A-B. It is sectional drawing.
  • FIG. 3 is an explanatory view showing an example of the crucible rotation mechanism of the present invention.
  • FIG. 4 is an explanatory diagram showing an example of a conventional crucible rotation mechanism.
  • FIG. 5 is a diagram illustrating an example of a state of vibration generated in a crucible rotation drive unit.
  • FIG. 6 is a diagram showing the vibration value of the slider measured by mounting the crucible rotation drive unit shown in FIG. 5 on the slider.
  • the present inventors have found that the vibration generated on the melt surface during the production of a single crystal is mainly caused by the vibration of the crucible support shaft.
  • the causes of the vibration on the surface of the raw material melt include the vibration of the crucible support shaft, the flow of the inert gas flowing into the furnace during crystal growth, the rotation of the growing crystal, and the There are unsteady melt convection caused by temperature gradient, rotation of crystal and crucible. These factors combine to act, causing the surface of the raw material melt to vibrate during crystal growth.
  • the vibration of the crucible support shaft transmits the crucible that contains the raw material melt, causing the entire raw material melt to vibrate. The effect is large because it acts directly on
  • the present inventors investigated the relationship between the vibration of the crucible support shaft and the vibration of the surface of the raw material melt, and found that the vibration in the direction perpendicular to the axis at the upper end of the crucible shaft was 100 jam or less. As a result, it was found that the vibration of the surface of the raw material melt, which is a cause of dislocation of the growing single crystal, can be almost eliminated.
  • the vibration of the crucible support shaft to 100 m or less, for example, if the vibration of the slider of the crucible moving mechanism that moves up and down with the crucible support shaft in the direction perpendicular to the crucible support shaft is set to 200 wm or less, Good.
  • Many devices that rotate and move the crucible up and down have a slider that moves up and down with the crucible shaft.
  • the vibration transmitted from the crucible rotation drive unit to the slider is absorbed and attenuated while transmitting the crucible support shaft, and about half of the vibration of the slider is transmitted to the upper portion of the crucible support shaft. That is, by setting the vibration of the slider to 200 ⁇ m or less, the vibration of the crucible support shaft can be set to 100 ix m or less, and the vibration of the surface of the raw material melt can be almost eliminated.
  • the vibration generated on the melt surface during the production of the single crystal is mainly caused by the vibration generated from the driving unit for crucible rotation.
  • the vibration generated by the crucible rotary drive unit 26 is usually absorbed by the slider 31 and attenuated. Then, it is rarely transmitted to the melt surface via the crucible support shaft 4 and the crucible 2.
  • the crucible moving mechanism 30 needs to be moved up and down while receiving the load (the weight of the crucible 2 and the melt 3) on the slider 31, as shown in FIG. 1, consisting of a ball screw 3 2 and a fixed shaft, together with the ball screw 32 for vertical movement, supports the slider 31 so that it can move up and down with several fixed shafts. Fixed.
  • Fig. 5 shows an example of the state of vibration generated in the crucible rotation drive unit.
  • This crucible rotation drive unit was mounted on a slider, and the vibration value of the slider measured at five slider positions is shown in Fig. 6.
  • h represents the distance from the lower limit position to the slider, and L represents the entire stroke. From Fig. 6, it can be seen that when the vibration value of the crucible rotation drive unit itself is large, the vibration of the slicer does not always increase, but the vibration is greatly amplified in a specific rotation range.
  • the inventors have developed the motor of the crucible rotation drive unit and the reduction gear.
  • the vibration generated by the crucible rotation drive unit was 50 Um or less, the same measurement was performed. No noticeable increase in vibration was observed.
  • the vibration generated by the crucible rotation drive unit to 50 wm or less, the amplification of the vibration by the crucible moving mechanism can be eliminated, and the vibration on the surface of the raw material melt can be almost eliminated.
  • the present inventors have conducted intensive studies on a force for absorbing and removing the vibration of the crucible rotation drive unit, a force for preventing the vibration from being transmitted to the melt surface, or a means for reducing the force.
  • the inventors have found that it is effective to fix the drive unit on a rigid base of a single crystal manufacturing apparatus, and have completed the present invention.
  • the crucible rotation mechanism of the present invention suppresses the generation of vibrations on the melt surface in a single crystal manufacturing apparatus such as the so-called Czochralski method (CZ method) for growing a silicon crystal, which is a semiconductor material, for growth.
  • CZ method Czochralski method
  • This mechanism is suitable for producing crystals without dislocations.
  • the single crystal production apparatus 1 is provided with a quartz crucible 2 containing a silicon melt 3 at the center thereof and heated by a heater 7.
  • the crucible 2 can be rotated by the crucible support shaft 4 and can be moved up and down by a slider 31 that supports the crucible support shaft 4.
  • the seed crystal 5 attached to the lower end of the wire is brought into contact with the raw material silicon melt 3 in the crucible 2 from the single crystal pulling rotation mechanism 6 at the upper part of the chamber 1, and the grown single crystal 8 is pulled up while rotating. It is configured to be able to.
  • the crucible rotation mechanism 20 of the present invention includes a crucible rotation drive unit 26 as shown in FIG. 1 (partial detailed view is shown in FIG. 3).
  • the crystal manufacturing equipment basics ing.
  • the rotation of the output shaft of the crucible rotation drive unit 26 is transmitted to the spline shaft 22 of the ball spline 21 and transmitted to the crucible support shaft 4 via the sleeve.
  • the output of the crucible movement drive unit 33 fixed to the foundation 10 is shown in FIG.
  • the rotation of the shaft is converted into vertical movement of the slider 31 via the ball screw 32, and the crucible support shaft 4 and the crucible 2 directly connected to the slider 31 are moved up and down.
  • the vibration generated from the drive unit 33 of the crucible moving mechanism 30 is such that none of the components constituting this mechanism are directly connected to the crucible 2 or the crucible support shaft 4 and are fixedly installed on the foundation 10. Therefore, the vibration is hardly transmitted to the melt surface.
  • the crucible rotation drive unit 26 is directly connected to the slider 31 of the crucible moving mechanism 30, and the crucible support shaft 4 is rotated.
  • the vibration generated from the unit 26 was directly transmitted to the crucible supporting shaft 4, causing the melt surface to vibrate.
  • the crucible rotation drive unit 26 is composed of an electric motor, a reduction gear, and a transmission, and the rotation of the final output shaft is supported by the crucible via the spline shaft 22 of the ball spline 21 —sleeve 23. Transmitted to shaft 4.
  • the main cause of the vibration of the crucible melt surface is the vibration generated by the electric motor that is the source of rotation power, and the first step in suppressing this vibration is to use a crucible rotation drive unit 26 as a single crystal.
  • it was fixed by attaching it to a base frame 10 which is directly fixed to the base of the manufacturing apparatus.
  • low frequency vibrations were absorbed by a factory building or the like via the base frame 10.
  • the use of the ball spline 21 in the crucible rotation mechanism 20 of the present invention allows the rotation of the crucible rotation drive unit 26 to follow the vertical movement of the slider 3 1 and smoothly move the rotation to the crucible support shaft 4. Has communicated.
  • the only vibration that the ball spline receives is the attenuated vibration remaining after being absorbed by the foundation, and has no effect on the function of transmitting the rotation at the same time as the vertical movement of the ball spline, and vibrates on the melt surface.
  • a single crystal can be produced safely and efficiently.
  • the ball spline 21 it is sufficient to mainly use a radial ball spline as shown in FIG.
  • a semi-circular groove is provided in both of the sleeves 23 in the axial direction, and a number of steel balls 24 are inserted into the grooves so that torque can be transmitted between the shaft 22 and the sleeve 23.
  • the movement in the direction was extremely light.
  • a sleeve having a return hole 25 in the sleeve 23 may be provided with a ball retainer instead of the return hole.
  • the rotation transmission between the three shafts of the output shaft, ball spline shaft 22 and crucible support shaft 4 is a combination of a rubber-like elastic belt (flat belt, V-belt) and one pulley, and more preferably rubber-like elastic timing.
  • the present invention is not limited to this, and the vibration of the upper end of the crucible support shaft is not limited to this. Is within the technical scope of the present invention as long as it is 100 m or less.
  • the melting of the crucible of the present invention is performed. It goes without saying that the crucible rotation mechanism for preventing vibration of the liquid surface can be applied to the so-called MCZ method (magnetic field lifting method).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

単結晶製造装置および単結晶製造方法 技術分野
本発明は、 チヨクラルスキー法によって、 半導体、 誘電体、 磁性体等 の各種結晶材料を製造する単結晶製造装置の改良に関する。
背景技術
従来、 半導体シリ コン単結晶等の単結晶材料はチヨクラルスキー法 ( 以下、 C Z法という。 ) によって、 棒状単結晶として得る方法が広く用 いられている。
この C Z法に用いられる単結晶製造装置は、 通常、 チャンバ一内に原 料融液を収容するルツボを配置し、 これを支持する支持軸と、 融液から 結晶を引き上げる引上機構と、 ルツボを回転させる回転機構と、 ルツボ を上下動させる移動機構を具備すると共に、 チャンバ内にヒータ、 断熱 材等の炉内部材を配置して単結晶の製造が行えるようになっている。 結晶成長をこの C Z法によって行う場合、 元々原料に含まれていたも のの他、 その結晶成長用原料が収容されるルツボ、 例えば石英ルツボの 構成成分 (例えば酸素) が、 得られる結晶中に混入することが広く知ら れている。
この結晶中に混入する不純物の量は、 引き上げる結晶の回転数、 ルツ ボの回転数、 原料融液の温度分布等の影響を受けて変動する。 すなわち 、 結晶回転数は融液中の対流に影響を与え、 ルツボの回転数は融液中の 酸素濃度自体に影響を与え、 原料融液中の温度分布は、 融液中の対流に 影響を及ぼしている。
また、 ルツボ内の融液の深さは、 結晶成長に伴って徐々に低下するの で、 成長結晶の直径制御をする都合上、 融液面位置を一定としなければ ならないと共に、 融液とヒータとの相対位置を一定とするためには、 結 晶の成長に伴ってルツボを上方に移動させる必要がある。 従って、 従来 から C Z法の結晶製造装置は、 ルツボ支持軸を回転させると共に、 上下 移動させる機能を備えているものが多い。 中でも、 ルツボ支持軸の回転 駆動ュニッ 卜をルツボ支持軸と共に上下移動させる必要があり、 従来の 単結晶製造装置では、 例えば図 4に示したように、 ルツボ回転駆動ュニ ッ 卜 2 6は、 ルツボ支持軸 4と共に上下移動するルツボ上下機構 3 0の スライダ 3 1上に設置されていた。
上記のような従来の装置では、 融液面に振動が発生する場合があり、 融液面に振動が発生した場合には、 成長する単結晶が多結晶化したり、 著しい場合には、 結晶成長の継続が出来なくなるという不利を生ずる。 そこでこの振動の発生原因を調査した結果、 ルッボ支持軸の振動が主原 因であることが判った。 そして、 ルツボの回転駆動源である電動モー夕 の回転に伴って振動が発生し、 上下移動機構が振動し、 その振動がルツ ボ支持軸、 ルツボを経て融液に伝達されていることが判った。
本発明は、 このような問題点に鑑みなされたもので、 ルツボ回転駆動 ュニッ 卜から発生する振動を吸収除去するか、 融液に伝達しないように するか、 あるいは減衰させる手段を提供することを目的とする。 発明の開示
上記課題を解決するため、 本発明の請求項 1に記載した発明は、 少な く とも原料融液を収容するルツボを支持する支持軸と、 前記融液から結 晶を引き上げる引上機構と、 前記ルツボを回転させる回転機構と、 前記 ルツボを上下動させる移動機構とを具備するチヨクラルスキー法による 単結晶製造装置において、 該ルツボの回転機構を構成するルツボ回転駆 動ュニッ 卜を、 該単結晶製造装置の基礎上に固定して設置することを特 徴とする単結晶製造装置である。
このように、 電動モータと変減速機から成るルツボ回転駆動ュニッ 卜 を単結晶製造装置の基礎上に固定して設置すれば、 ルツボ回転駆動ュニ ツ トを構成する電動モータから発生する振動は、 固定端である剛体基礎 に吸収され減衰して、 ルツボ支持軸、 ルツボを経て融液面まで伝達され ることは殆どなくなる。 従って、 成長する単結晶ィンゴッ トを有転位化 させる等の原因である融液面の振動を殆ど除去することができる。 この場合、 単結晶製造装置の基礎とは、 単結晶製造装置を支えるため のフレーム、 コンクリ一卜基礎、 工場建屋の基礎等のことを意味してお り、 ルツボ回転駆動ュニッ 卜により振動させられることなく固定できる ものであればよく、 その文言により拘泥されるものではない。
本発明の請求項 2に記載した発明は、 少なく とも原料融液を収容する ルツボを支持する支持軸と、 前記融液から結晶を引き上げる引上機構と 、 前記ルツボを回転させる回転機構と、 前記ルツボを上下動させる移動 機構とを具備するチヨクラルスキー法による単結晶製造装置において、 該ルツボの回転機構を、 ルツボ支持軸とルツボ回転駆動ュニッ 卜との動 力伝達にボールスプライ ンを用い、 ルツボ回転駆動ユニッ トを、 該単結 晶製造装置の基礎上に固定して設置することを特徴とする単結晶製造装 置である。
このように、 該ルツボの回転機構を、 電動モータと変減速機とから成 るルツボ回転駆動ュニッ 卜を単結晶製造装置の基礎上に固定して設置し 、 ルツボ支持軸とルツボ回転駆動ュニッ 卜との動力伝達にボールスブラ イ ンを用いれば、 ボールスプラインの受ける振動は、 前記基礎に吸収さ れて残った減衰した振動のみとなり、 ボールスプラインの持つ上下動と 同時に回転を伝達する機能には何らの影響を与えることもなく、 融液面 に振動を生じることは殆どなくなり、 安全かつ効率的に単結晶を製造す ることができる。
そして、 本発明の請求項 3に記載した発明は、 前記ルツボ支持軸とボ 一ルスプライン軸間及びボ一ルスブラインのスリーブとルツボ回転駆動 ュニッ 卜の出力軸間の各回転伝達手段を、 ゴム状弾性ベルトープーリま たはゴム状弾性夕ィミングベルトータイミングプ一リ とした。
このように、 軸間の回転伝達手段の材質にゴム状弾性体を使用すれば 、 ルツボ回転駆動ュニッ 卜が発生する振動をゴム状弾性変形により減衰 させて吸収し、 融液面にまで振動を伝達することも殆どなくなり、 従つ て、 成長中の結晶の有転位化をもたらす原因等にはならないで、 安全か つ効率的に単結晶を製造することができる。
本発明の請求項 4に記載した発明は、 少なく とも原料融液を収容する ルツボを支持するルツボ支持軸と、 前記ルツボを回転させる回転機構と 、 前記ルツボを上下動させる移動機構を具備するチヨクラルスキー法に よる単結晶製造装置において、 前記ルツボを支持するルツボ支持軸上端 の軸に垂直な方向への振動が 1 0 0 w m以下であることを特徴とする単 結晶製造装置である。
このように、 チヨクラルスキー法による単結晶製造装置において、 ル ッボを支持するルツボ支持軸上端の軸に垂直な方向への振動が 1 0 0 w m以下であれば、 原料融液全体に直接作用するルツボ支持軸の振動が小 さいため、 成長する単結晶の有転位化等の原因である原料融液表面の振 動を殆ど除去することができる。
なお、 本発明で振動が、 例えば 1 0 0 m以下とは、 その振動により 揺動する範囲が 1 0 0 m以下という意味であり、 振動の振幅 (揺動範 囲の半分) が 1 0 0 ju mという意味ではない。
この場合、 請求項 5に記載したように、 移動機構はルツボ支持軸とと もに上下するスライダを具備し、 該スライダのルツボ支持軸に垂直な方 向への振動が 2 0 0 m以下であることが好ましい。
このように、 スライダの振動を 2 0 0 i m以下とすることにより、 ル ッボ支持軸の振動を 1 0 0 m以下とすることができ、 成長する単結晶 の有転位化等の原因である原料融液表面の振動を殆ど除去することがで きる。
また、 この場合、 請求項 6に記載したように、 回転機構の動力である ルツボ回転駆動ュニッ 卜で発生する振動が 5 0 m以下であることが好 ましい。
このように、 ルツボ回転駆動ュニッ 卜で発生する振動を 5 0 以下 とすることにより、 ルツボ移動機構による振動の増幅を排除し、 成長す る単結晶の有転位化等の原因である原料融液表面の振動を殆ど除去する ことができる。
そして、 請求項 7に記載したように、 請求項 1ないし請求項 6のいず れか 1項に記載した単結晶製造装置を用いて単結晶を製造すれば、 原料 融液の振動が殆どないので、 単結晶を有転位化等させることなく、 安定 して単結晶を製造することができる。
そして、 本発明の請求項 8に記載した発明は、 原料融液を収容したル ッボをルツボ支持軸で支持し、 該ルツボを回転および上下動させて、 チ ョクラルスキー法により単結晶を製造する単結晶製造方法において、 前 記ルツボ支持軸上端の軸に垂直な方向への振動を 1 0◦ m以下にして 単結晶を製造することを特徴とする単結晶製造方法である。
このように、 ルツボ支持軸上端の軸に垂直な方向への振動を 1 O O m以下にして単結晶を製造するようにすれば、 原料融液の振動に起因し た単結晶の有転位化等を防ぐことができ、 単結晶の生産効率を向上させ ることができる。
すなわち本発明によれば、 従来のルツボ回転機構では、 ルツボ支持軸 の振動が融液面に伝達されて、 成長する単結晶の有転位化等の原因を生 じていたが、 ルツボ支持軸の振動を抑えるために、 例えばルツボ回転駆 動ュニッ 卜を単結晶製造装置の基礎に固定し、 回転をボールスプライン とタイミングベルトで伝達するようにしたことにより、 振動は吸収され 、 減衰し、 融液面で振動が発生することは殆どなくなり、 成長結晶の有 転位化の発生原因の消滅により安全かつ効率的に単結晶を製造すること ができる。 図面の簡単な説明
図 1は、 本発明の単結晶製造装置の一例を示す説明図である。
図 2 Aおよび図 2 Bは、 本発明のルツボ回転機構に使用されるボール スプライ ンの一例を示す説明図である。 図 2 Aは、 ボールスプラインの 正面と部分断面図であり、 図 2 Bは、 ボールスプラインの A — B線での 断面図である。
図 3は、 本発明のルツボ回転機構の一例を示す説明図である。
図 4は、 従来のルツボ回転機構の一例を示す説明図である。
図 5は、 ルツボ回転駆動ュニッ 卜で発生する振動の様子の一例を示し た図である。
図 6は、 図 5に示したルツボ回転駆動ュニッ 卜をスライダに搭載して 測定したスライダの振動値を示した図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について詳述するが、 本発明はこれらに限 定されるものではない。
本発明者らは、 単結晶製造時の融液面に発生する振動が、 主にルツボ 支持軸の振動によるものであることを見出した。
原料融液表面に振動を発生させる原因としては、 ルツボ支持軸の振動 の他に、 結晶成長中に炉内に流す不活性ガスの流れ、 成長する結晶の回 転、 非定常な融液内の温度勾配、 結晶およびルツボの回転による非定常 な融液の対流等がある。 これらの原因が複合して作用し、 結晶成長中の 原料融液表面が振動することになるが、 中でもルツボ支持軸の振動は、 原料融液を収容するルツボを伝達して、 原料融液全体に直接作用するた め影響が大きい。
そこで、 本発明者らが、 ルツボ支持軸の振動と原料融液表面の振動と の関係について調査を行ったところ、 ルツボ軸上端の軸に垂直な方向へ の振動を 1 0 0 ja m以下とすることにより、 成長する単結晶の有転位化 等の原因である原料融液表面の振動を殆ど除去することができることが 判った。
ルツボ支持軸の振動を 1 0 0 m以下にするには、 例えば、 ルツボ支 持軸とともに上下するルツボ移動機構のスライダのルツボ支持軸に垂直 な方向への振動を 2 0 0 w m以下とすればよい。 ルツボを回転、 上下動 させる装置の多くはルツボ軸とともに上下するスライダを具備するが、 ルツボ回転駆動ュニッ 卜からスライダに伝達された振動は、 ルツボ支持 軸を伝達する間に吸収され減衰し、 スライダの振動の半分程度がルツボ 支持軸上部まで伝達される。 すなわち、 スライダの振動を 2 0 0 μ m以 下とすることにより、 ルツボ支持軸の振動を 1 0 0 ix m以下とすること ができ、 原料融液表面の振動を殆ど除去することができる。
さらに本発明者らは、 単結晶製造時の融液面に発生する振動が、 主に ルツボ回転用駆動ュニッ 卜から発生する振動に起因していることを突き 止めた。 例えば、 図 4に示すように、 ルツボ回転駆動ユニッ ト 2 6をス ライタ 3 1 に搭載した場合、 ルツボ回転駆動ュニッ 卜 2 6で発生した振 動は、 通常は、 スライダ 3 1 に吸収され減衰して、 ルツボ支持軸 4、 ル ッボ 2を経て融液面まで伝達されることは少ない。
ところ力 ルツボ移動機構 3 0は、 スライダ 3 1 に荷重 (ルツボ 2、 融液 3の重量) を受けながら上下させる必要があることから、 図 4に示 すように、 ルツボ支持軸 4、 スライダ 3 1、 ボールネジ 3 2および固定 軸により構成され、 上下動用のボールネジ 3 2 とともに数本の固定軸に よりスライダ 3 1を上下動可能なように支持し、 固定軸及びボールネジ 3 2は上部及び下部で固定されている。
このため、 ルツボ回転駆動ュニッ 卜 2 6で発生する振動が大きい場合 には、 振動が減衰されず、 またスライダがある特定の位置にある時は、 ルツボ回転駆動ュニッ 卜 2 6で発生した振動が大幅に増幅される場合が ある。
図 5は、 ルツボ回転駆動ュニッ 卜で発生する振動の様子の一例を示し たものである。 このルツボ回転駆動ユニッ トをスライダに搭載して、 5 力所のスライダ位置で測定したスライダの振動値を図 6に示した。 hは 下限位置からスライダまでの距離、 Lは全ストロークを表す。 この図 6 から、 必ずしもルツボ回転駆動ユニッ ト自体の振動値が大きい時に、 ス ライタの振動が大きくなるわけではなく、 ある特定の回転域で振動が大 幅に増幅されていることが判る。
そこで、 発明者らが、 ルツボ回転駆動ユニッ トのモーターと減速機の 組み合わせを変更して、 ルツボ回転駆動ュニッ 卜で発生する振動が 5 0 U m以下となるようにしたルツボ回転駆動ュニッ 卜をスライダに搭載し て、 同様の測定を行ったところ、 図 6にみられるような顕著な振動の増 幅はみられなかった。
すなわち、 ルツボ回転駆動ユニッ トで発生する振動を 5 0 w m以下と することにより、 ルツボ移動機構による振動の増幅を排除し、 原料融液 表面の振動を殆ど除去することができる。
さらに、 本発明者らは、 このルツボ回転駆動ユニッ トの振動を吸収除 去する力 融液面に伝達しないようにする力 、 あるいは低減化する手段 を、 鋭意検討した結果、 これにはルツボ回転駆動ユニッ トを単結晶製造 装置の剛体基礎上に固定設置すれば有効であることを見出し、 本発明を 完成させたものである。
先ず、 本発明が適用される単結晶製造装置のルツボ回転機構の一例に ついて、 添付した図面に基づき説明する。
本発明のルツボ回転機構は、 例えば半導体材料であるシリ コン結晶を 育成するいわゆるチヨクラルスキー法 (C Z法) のような単結晶製造装 置において、 融液面の振動発生を抑制して、 成長結晶を有転位化させる ことなく製造するのに好適な機構であり、 まず図 1に基づいて単結晶製 造装置の基本構成の概要について説明する。
単結晶製造装置 1は、 その中心にシリ コン融液 3を収容する石英ルツ ボ 2を設け、 ヒータ 7で加熱する。 このルツボ 2はルツボ支持軸 4によ つて回転することができると共に、 ルツボ支持軸 4を支持するスライダ 3 1によって上下移動することができる。 一方、 チャンバ一 9の上部に ある単結晶引上回転機構 6からワイヤの下端に付けた種結晶 5をルツボ 2内の原料シリコン融液 3に接触させて回転させながら成長単結晶 8を 引き上げることができるように構成されている。
以上のような単結晶製造装置 1において、 本発明のルツボ回転機構 2 0は、 図 1 (図 3に部分詳細図を示す。 ) に示したように、 ルツボ回転 駆動ュニッ 卜 2 6を、 単結晶製造装置の基礎 1 0に直接固定して設置し ている。 そしてルツボ回転駆動ユニッ ト 2 6の出力軸の回転を、 ボール スプライ ン 2 1 のスプライン軸 2 2に伝え、 スリ一ブを介してルツボ支 持軸 4に伝達している。
一方、 ルツボの上下移動機構 3 ◦はその一例として、 図 1 (図 3に部 分詳細図を示す。 ) に示したように、 基礎 1 0に固定されたルツボ移動 駆動ュニッ 卜 3 3の出力軸の回転をボールスクリ ュ 3 2を介して、 スラ イダ 3 1の上下運動に変換し、 スライダ 3 1 に直結したルツボ支持軸 4 とルツボ 2を上下動させている。 このルツボ移動機構 3 0の駆動ュニッ 卜 3 3から発生する振動は、 この機構を構成する部品のいずれもが直接 ルツボ 2あるいはルツボ支持軸 4とは直結していないし、 基礎 1 0に固 定設置しているので融液面に振動を伝達することは殆どない。
従来のルツボ回転機構は、 図 4に示したように、 ルツボ回転駆動ュニ ッ 卜 2 6をルツボ移動機構 3 0のスライダ 3 1 に直結させ、 ルツボ支持 軸 4を回転させていたので、 該ユニッ ト 2 6から発生する振動は直接ル ッボ支持軸 4に伝わり、 融液面を振動させる原因となっていた。
本発明では、 ルツボ回転駆動ユニッ ト 2 6は、 電動モータと減速機お よび変速機から成り、 最終出力軸の回転をボールスプライン 2 1のスプ ライ ン軸 2 2 —スリーブ 2 3を経てルツボ支持軸 4に伝達している。 ル ッボ融液面の振動発生の主たる原因は、 回転動力源である電動モータか ら発生する振動であり、 この振動を抑える第一段階の手段としてルツボ 回転駆動ュニッ 卜 2 6を、 単結晶製造装置の基礎に直接固定されている 例えばべ一スフレーム 1 0に取付けて固定し、 特に低周波振動をベース フレーム 1 0を介して工場建屋等に吸収させるようにした。
本発明のルツボ回転機構 2 0は、 前記ボールスプライン 2 1を使用し たことにより、 ルツボ回転駆動ユニッ ト 2 6の回転をスライダ 3 1の上 下移動に追従して円滑にルッボ支持軸 4に伝達している。
ボールスプラインの受ける振動は、 前記基礎に吸収されて残った減衰 した振動のみとなり、 ボールスプラインの持つ上下動と同時に回転を伝 達する機能には何らの影響を与えることもなく、 融液面に振動を生じる ことは殆どなくなり、 安全かつ効率的に単結晶を製造することができる ここでボールスプライン 2 1は、 主として図 2に示したようなラジア ル形ボールスプラインを使用すればよく、 スプライン軸 2 2とスリ一ブ 2 3の両方に半円状の溝を軸方向に設け、 その中に多数の鋼球 2 4を入 れ、 軸 2 2 とスリーブ 2 3の間でトルク伝達を可能にし、 かつ軸方向の 移動を極めて軽快にしたものである。 図 2の例では、 スリーブ 2 3にリ ターンホール 2 5を持っている力 リターンホールの代わりに球保持器 を備えたものでもよい。
そして、 さらにこのボールスプライ ン 2 1の回転動力伝達、 上下移動 を円滑に行わせ、 ルツボ回転駆動ュニッ 卜 2 6の出力軸から発生する振 動を抑えるために、 ルツボ回転駆動ユニッ ト 2 6の出力軸、 ボールスプ ライ ン軸 2 2、 ルツボ支持軸 4の 3本の軸間の回転伝達をゴム状弾性べ ル卜 (平ベルト、 Vベルト) 一プーリの組合せとし、 さらに好ましくは ゴム状弾性タイミングベル卜 2 7 —夕イ ミングブーリの組合せとした。 このようにすれば、 ベル卜、 タイ ミングベルト等は、 ゴム状弾性体を 主成分として構成されているので、 弾性変形により応力を緩和し、 ルツ ボ回転駆動ュニッ 卜 2 6から発生する振動を吸収あるいは減衰させ、 ボ 一ルスプライ ン 2 1 に対しても振動負荷を軽減し、 最終的にはルツボ 2 の融液面に振動を伝えることは殆どない。
なお、 本発明は、 上記実施形態に限定されるものではない。 上記実施 形態は、 例示であり、 本発明の特許請求の範囲に記載された技術的思想 と実質的に同一な構成を有し、 同様な作用効果を奏するものは、 いかな るものであっても本発明の技術的範囲に包含される。
例えば、 上記実施形態では、 ルツボ回転駆動ユニッ トを単結晶製造装 置の基礎上に固定する場合を中心に説明したが、 本発明はこれに限定さ れるものではなく、 ルツボ支持軸上端の振動が 1 0 0 m以下となる装 置であれば、 本発明の技術的範囲に含まれる。
また、 上記では C Z法について説明してきたが、 本発明のルツボの融 液面の振動防止用のルツボ回転機構が、 いわゆる M C Z法 (磁界下引上 げ法) にも適用できることは言うまでもない。

Claims

請 求 の 範 囲
1 . 少なく とも原料融液を収容するルツボを支持する支持軸と、 前記融 液から結晶を引き上げる引上機構と、 前記ルツボを回転させる回転機構 と、 前記ルツボを上下動させる移動機構とを具備するチヨクラルスキー 法による単結晶製造装置において、 該ルッボの回転機構を構成するルツ ボ回転駆動ュニッ 卜を、 該単結晶製造装置の基礎上に固定して設置する ことを特徴とする単結晶製造装置。
2 . 少なく とも原料融液を収容するルツボを支持する支持軸と、 前記融 液から結晶を引き上げる引上機構と、 前記ルツボを回転させる回転機構 と、 前記ルツボを上下動させる移動機構とを具備するチヨクラルスキー 法による単結晶製造装置において、 該ルツボの回転機構を、 ルツボ支持 軸とルツボ回転駆動ュニッ 卜との動力伝達にボールスプラインを用い、 ルツボ回転駆動ュニッ 卜を、 該単結晶製造装置の基礎上に固定して設置 することを特徴とする単結晶製造装置。
3 . 前記ルツボ支持軸とボールスプライン軸間及びボールスプラインの スリーブとルツボ回転駆動ュニッ 卜の出力軸間の各回転伝達手段を、 ゴ ム状弾性ベルト一ブーリまたはゴム状弾性タイ ミングベル卜一タイ ミン グブーリ とすることを特徴とする請求項 2に記載した単結晶製造装置。
4 . 少なく とも原料融液を収容するルツボを支持するルツボ支持軸と、 前記ルツボを回転させる回転機構と、 前記ルツボを上下動させる移動機 構を具備するチヨクラルスキー法による単結晶製造装置において、 前記 ルツボを支持するルツボ支持軸上端の軸に垂直な方向への振動が 1 0 0 i m以下であることを特徴とする単結晶製造装置。
5 . 前記移動機構はルツボ支持軸とともに上下するスライダを具備し、 該スライダのルツボ支持軸に垂直な方向への振動が 2 0 0 w m以下であ ることを特徴とする請求項 4に記載した単結晶製造装置。
6 . 前記回転機構の動力であるルツボ回転駆動ュニッ 卜で発生する振動 が 5 0 w m以下であることを特徴とする請求項 4または請求項 5に記載 した単結晶製造装置。
7 . 請求項 1ないし請求項 6のいずれか 1項に記載した単結晶製造装置 を用いて単結晶を製造することを特徴とする単結晶製造方法。
8 . 原料融液を収容したルツボをルツボ支持軸で支持し、 該ルツボを回 転および上下動させて、 チヨクラルスキー法により単結晶を製造する単 結晶製造方法において、 前記ルツボ支持軸上端の軸に垂直な方向への振 動を 1 0 0 以下にして単結晶を製造することを特徴とする単結晶製 造方法。
PCT/JP1998/003649 1997-08-19 1998-08-18 Dispositif et procede servant a obtenir un monocristal WO1999009237A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/485,721 US6458201B2 (en) 1997-08-19 1998-08-18 Apparatus for producing single crystals and method for producing single crystals
EP19980937844 EP1029955B1 (en) 1997-08-19 1998-08-18 Apparatus and method for producing single crystal
DE69827292T DE69827292T2 (de) 1997-08-19 1998-08-18 Anlage und verfahren zur herstellung eines einkristalls

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP23777297 1997-08-19
JP9/237772 1997-08-19

Publications (1)

Publication Number Publication Date
WO1999009237A1 true WO1999009237A1 (fr) 1999-02-25

Family

ID=17020216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003649 WO1999009237A1 (fr) 1997-08-19 1998-08-18 Dispositif et procede servant a obtenir un monocristal

Country Status (4)

Country Link
US (1) US6458201B2 (ja)
EP (1) EP1029955B1 (ja)
DE (1) DE69827292T2 (ja)
WO (1) WO1999009237A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10119947A1 (de) * 2001-04-24 2002-10-31 Crystal Growing Systems Gmbh Verfahren zum Steuern einer Kristallziehanlage und Kristallziehanlage zu seiner Durchführung

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3927786B2 (ja) * 2001-10-30 2007-06-13 シルトロニック・ジャパン株式会社 単結晶の製造方法
JP4061473B2 (ja) 2002-04-26 2008-03-19 日本電気株式会社 折り畳み型携帯電話機
KR101317197B1 (ko) 2011-10-24 2013-10-15 한국생산기술연구원 사파이어 성장로의 자세 제어장치
WO2014034081A1 (ja) * 2012-08-26 2014-03-06 国立大学法人名古屋大学 結晶製造装置、SiC単結晶の製造方法およびSiC単結晶
CN107208311B (zh) * 2015-02-18 2019-12-10 昭和电工株式会社 碳化硅单晶块的制造方法和碳化硅单晶块
CN115506008A (zh) * 2022-09-27 2022-12-23 西安奕斯伟材料科技有限公司 用于单晶炉的坩埚支承组件和单晶炉

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59160561U (ja) * 1983-04-14 1984-10-27 東芝機械株式会社 半導体結晶引上機のルツボ回転駆動装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3700412A (en) * 1968-12-06 1972-10-24 Kokusai Electric Co Ltd Crystal pulling apparatus having means for maintaining liquid solid crystal interface at a constant temperature
US4784715A (en) * 1975-07-09 1988-11-15 Milton Stoll Methods and apparatus for producing coherent or monolithic elements
JPS55104996A (en) * 1979-02-02 1980-08-11 Toshiba Corp Single crystal pulling device
SU928853A1 (ru) * 1980-08-13 1997-01-20 Государственный научно-исследовательский и проектный институт редкометаллической промышленности Устройство для вращения и перемещения тигля в аппарате для вытягивания кристаллов
GB8805478D0 (en) * 1988-03-08 1988-04-07 Secr Defence Method & apparatus for growing semi-conductor crystalline materials
JPH0772116B2 (ja) * 1991-02-15 1995-08-02 信越半導体株式会社 単結晶引上装置
KR0149287B1 (ko) * 1995-04-17 1998-10-15 심상철 실리콘 단결정 제조장치 및 그를 이용한 실리콘 단결정의 제조방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59160561U (ja) * 1983-04-14 1984-10-27 東芝機械株式会社 半導体結晶引上機のルツボ回転駆動装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10119947A1 (de) * 2001-04-24 2002-10-31 Crystal Growing Systems Gmbh Verfahren zum Steuern einer Kristallziehanlage und Kristallziehanlage zu seiner Durchführung

Also Published As

Publication number Publication date
US20020005160A1 (en) 2002-01-17
DE69827292T2 (de) 2005-11-03
EP1029955B1 (en) 2004-10-27
EP1029955A1 (en) 2000-08-23
US6458201B2 (en) 2002-10-01
DE69827292D1 (de) 2004-12-02
EP1029955A4 (en) 2003-07-16

Similar Documents

Publication Publication Date Title
CN105506731B (zh) 单晶硅生长氧含量控制方法
WO1999009237A1 (fr) Dispositif et procede servant a obtenir un monocristal
US4235848A (en) Apparatus for pulling single crystal from melt on a seed
JPH10287489A (ja) チョクラルスキシリコン融液を安定化するための振動ルツボ
EP1030354A1 (en) Compression bonded semiconductor device and power converter using the same
TW202225501A (zh) 拉晶方法和拉晶裝置
JP2008214118A (ja) 半導体単結晶の製造方法
WO2004092456A1 (ja) 単結晶の製造方法
JP2004189559A (ja) 単結晶成長方法
JP2939919B2 (ja) 半導体単結晶引き上げ装置
US7195671B2 (en) Thermal shield
JP2003137688A (ja) 単結晶の製造方法
JPH034517B2 (ja)
JP2819979B2 (ja) 単結晶引上装置
JP3521070B2 (ja) 繊維状結晶製造装置
EP0466457A1 (en) Method for pulling semiconductor single crystal
RU2035530C1 (ru) Способ выращивания монокристаллов
KR100714215B1 (ko) 고품질 실리콘 단결정 잉곳 및 그로부터 제조된 고 품질 실리콘 웨이퍼
JP4513407B2 (ja) 単結晶の製造方法
US6423135B1 (en) Method for manufacturing a single crystal
JP2785615B2 (ja) Cz法による単結晶成長装置
KR20110088687A (ko) 이중가이더를 구비하는 실리콘 단결정 잉곳 형성장치
JP4389487B2 (ja) 単結晶製造装置およびその設置方法
KR101218571B1 (ko) 잉곳 성장장치
US6251181B1 (en) Method for forming a solid solution alloy crystal

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09485721

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998937844

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998937844

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998937844

Country of ref document: EP