WO2004092456A1 - 単結晶の製造方法 - Google Patents

単結晶の製造方法 Download PDF

Info

Publication number
WO2004092456A1
WO2004092456A1 PCT/JP2004/004552 JP2004004552W WO2004092456A1 WO 2004092456 A1 WO2004092456 A1 WO 2004092456A1 JP 2004004552 W JP2004004552 W JP 2004004552W WO 2004092456 A1 WO2004092456 A1 WO 2004092456A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
single crystal
melt
field strength
maximum
Prior art date
Application number
PCT/JP2004/004552
Other languages
English (en)
French (fr)
Inventor
Susumu Sonokawa
Ryoji Hoshi
Tatsuo Mori
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Publication of WO2004092456A1 publication Critical patent/WO2004092456A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt

Definitions

  • the present invention relates to a method for producing a single crystal by the Czochralski method applying a magnetic field.
  • a single crystal used as a substrate of a semiconductor device is, for example, a silicon single crystal, and is mainly manufactured by the Czochralski method (Czochra1skiMemethod, hereinafter abbreviated as CZ method).
  • the single crystal manufacturing apparatus 10 includes a member for accommodating and melting a raw material polycrystal such as silicon, a heat insulating member for shutting off heat, and the like. It is housed in chamber 1 1.
  • a pulling chamber 12 extending upward from the ceiling of the main chamber 11 is connected with a mechanism (not shown) for pulling the single crystal 4 by a wire 13 at the upper part.
  • a crucible 5 for accommodating a melt 14 of the molten raw material is provided in the main chamber 11, and the crucible 5 is supported by a shaft 9 so as to be rotatable up and down by a drive mechanism (not shown). .
  • the driving mechanism of the crucible 5 raises the crucible 5 by an amount corresponding to the lowering of the liquid level in order to compensate for the lowering of the melt level 14 caused by the lifting of the single crystal 4.
  • a graphite heater 7 for melting the raw material is arranged so as to surround the crucible 5. Outside the graphite heater 7, a heat insulating member 6 is provided so as to surround the periphery thereof in order to prevent the heat from the graphite heater 7 from being directly radiated to the main chamber 111.
  • the raw material mass is stored in the crucible 5 arranged in the single crystal manufacturing apparatus as described above,
  • the crucible 5 is heated by the graphite heater 7 to melt the raw material mass in the crucible 5.
  • the seed crystal 2 fixed by the seed holder 1 connected to the lower end of the wire 13 is immersed in the melt 14 obtained by melting the raw material mass in this manner.
  • a single crystal 4 having a desired diameter and quality is grown below the seed crystal 2.
  • a so-called seed drawing (necking) is performed, in which the diameter is usually once reduced to about 3 mm to form the drawing portion 3,
  • the dislocation-free crystals are pulled up by increasing the diameter until they reach the diameter.
  • MCZ method Magnetic fieldapppliedCzochra1skiMeethod method, hereinafter abbreviated as MCZ method.
  • MCZ method for example, a magnetic field is applied by a magnet coil 8 provided outside the main chamber 11 as shown in FIG. 1, and thermal convection of the melt is controlled by the magnetic field.
  • a method of manufacturing a crystal by controlling the magnetic field in the MCZ method when a single crystal is manufactured, the melt is perpendicular to the pulling direction under a pulling condition under which the melt has a large peak ratio. Applying a magnetic field of more than 2000 Gauss and applying a magnetic field of about 100 Gauss in parallel with the pulling direction under the pulling condition where the melt has a small aspect ratio, There is disclosed a method of improving the utilization rate of GaN and growing a high-quality single crystal (for example, see Japanese Patent Application Laid-Open No. 60-221392).
  • a method of reducing defects introduced into a single crystal by manufacturing a silicon single crystal while pulling the single crystal while controlling the magnetic field intensity on the crystal growth surface to be substantially constant for example, Japanese Patent Application Laid-Open
  • a crystal with a low impurity concentration having excellent crystallinity can be obtained.
  • a method for obtaining the same for example, refer to Japanese Patent Application Laid-Open No. Hei 6-2278787) is also disclosed.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a method for producing a high-quality single crystal with high productivity in the Czochralski method of applying a magnetic field.
  • the present invention has been made in order to solve the above-mentioned problems, and in a method for producing a single crystal by the Czochralski method of applying a magnetic field, at least a minimum magnetic field intensity in a melt accommodated in a crucible is set to 20%.
  • the maximum magnetic field gradient in the melt should be in the range of 600 G or less, and the difference between the maximum and minimum magnetic field strength divided by that distance.
  • a method for producing a single crystal is provided, wherein the single crystal is pulled up to a range of 55 GZ cm or less.
  • the minimum magnetic field strength in the melt accommodated in the crucible is set to a range of 200 G or more
  • the maximum magnetic field strength in the melt is set to a range of 600 G or less
  • the maximum The maximum magnetic field gradient which is the difference between the minimum magnetic field strength and the minimum magnetic field strength divided by the distance, is set to a range of 55 Gcm or less, and by pulling the single crystal, a recent large-diameter crucible is used. Even so, a high-quality single crystal can be manufactured with high productivity.
  • a crucible containing the melt may have a diameter of 24 inches (600 mm) or more.
  • the method for producing a single crystal of the present invention is particularly effective when applied to a crucible having a large diameter of 24 inches (600 mm) or more, which has been used recently.
  • the applied magnetic field is preferably a horizontal magnetic field.
  • the applied magnetic field is a horizontal magnetic field, the heat convection of the melt can be effectively suppressed.
  • the single crystal can be silicon.
  • the method for producing a single crystal of the present invention can be suitably applied to the production of a silicon single crystal having a particularly large diameter in recent years.
  • a single crystal manufactured by the above-described method for manufacturing a single crystal is provided.
  • a single crystal having a large diameter required in recent years can be produced with high productivity and can be made of high quality. Therefore, the produced single crystal is It will be of high quality and cheap.
  • the single crystal when a single crystal is manufactured by the MCZ method, the single crystal is pulled with the minimum and maximum magnetic field strengths in the melt and the maximum magnetic field gradient within predetermined ranges.
  • the dislocation-free rate can be improved and the production cost can be reduced, and the single crystal to be produced can be of high quality.
  • FIG. 1 is a schematic diagram showing a single crystal manufacturing apparatus.
  • FIG. 2 is a diagram schematically showing a magnetic field line distribution when a horizontal magnetic field is applied.
  • FIG. 3 is an explanatory diagram showing the distribution of the magnetic field strength in the melt when a horizontal magnetic field is applied.
  • Figure 4 shows an example of a magnetic field generator that can make the magnetic field distribution in the melt more uniform.
  • FIG. 2 is a diagram schematically showing a magnetic field line distribution when a magnetic field is applied by the magnet coil 8.
  • Fig. 2 (a) is a cross-sectional view of the crucible viewed from the side
  • Fig. 2 (b) is a plan view of the crucible viewed from above.
  • a horizontal magnetic field with such a line of magnetic force distribution is applied, as shown in Fig. 3, the distribution of the magnetic field strength is not all uniform in the melt, There are parts where the field strength is strong and parts where the field strength is weak.
  • the magnetic field distribution is the same and the overall magnetic field strength is simply increased, the magnetic field strength will increase at the same ratio between the strong and weak parts of the magnetic field. Therefore, the difference in absolute value of the magnetic field strength between the strong and weak parts of the magnetic field increases, and the magnetic field gradient increases. As a result, convection is generated in a certain part of the melt, and the convection suppressing power is considered to be insufficient in that part. The resulting excess convection causes the crystal growth interface to oscillate, increasing temperature fluctuations and making it impossible to obtain high quality crystals.
  • the convection suppressing force becomes partially excessive in the melt or the convection suppressing force becomes insufficient, and as a result, the melt becomes thermally unbalanced, and the operation becomes unstable. It is considered that the quality of the single crystal deteriorated.
  • the present inventors have conducted intensive research and have found that, when producing a single crystal by the MCZ method, instead of focusing only on the magnetic field strength at a certain point in the melt, the magnetic field strength in the entire melt is By considering the distribution and defining the maximum and minimum magnetic field strengths in the melt, and the maximum magnetic field gradient, which is the difference between the maximum and minimum magnetic field strengths divided by the distance, in the optimal range, the crucible is The inventors have conceived that a universal effect can be obtained even in the case of a large diameter, and have completed the present invention.
  • At the time of producing a single crystal by the Czochralski method of applying a magnetic field at the time of producing a single crystal by the Czochralski method of applying a magnetic field, at least the minimum magnetic field strength in the melt accommodated in the crucible is set to a range of 200 G or more. Within the range of 600 G or less, and the maximum magnetic field gradient obtained by dividing the difference between the maximum and minimum magnetic field strengths by that distance is 55 GZc The single crystal is pulled within the range of m or less.
  • the minimum magnetic field strength in the melt is set to 2000 G or more, the effect of suppressing convection can be sufficiently obtained. Therefore, since the convection does not become excessive, the vibration and temperature fluctuation of the growth interface can be kept appropriately small, and a high-quality single crystal can be obtained.
  • the maximum magnetic field strength is 600 G or less, more preferably 55 OG or less, the effect of suppressing convection will not be excessive. Therefore, high-quality single crystals can be manufactured with high productivity without the adverse effect that convection is suppressed excessively and only heat conduction occurs.
  • the maximum magnetic field gradient is set to 55 GZ cm or less, more preferably 45 G / cm or less, it is possible to prevent convection caused by the magnetic field gradient.
  • a crucible having a diameter of at least 24 inches (600 mm) or more and at least 32 inches (800 mm) can be used. Even when large crystals with a diameter of 12 inches (300 mm) or more are pulled from a melt exceeding Kg, high-quality single crystals can be produced with high productivity.
  • the applied magnetic field is a horizontal magnetic field, the heat convection of the melt can be effectively suppressed.
  • a magnetic field generator capable of making the magnetic field distribution in the melt more uniform. Examples of methods for making the magnetic field distribution more uniform include a method using multiple magnet coils as shown in Fig. 4 (a) and a saddle type magnet coil as shown in Fig. 4 (b). Methods can be mentioned. Regardless of the multiple magnet coil system or the saddle magnet coil system, the effect is the same if the magnetic field strength and distribution are the same.
  • silicon single crystals were manufactured by the MCZ method. Specifically, 300 kg of the raw material polycrystalline silicon was charged using a 32 inch (800 mm) crucible and melted by a heater with an inner diameter of 92 mm to form a melt. . Then, while applying a transverse magnetic field to the melt, a silicon single crystal rod having a diameter of 12 inches (300 mm) was pulled up. In this case, the magnet coil for applying the transverse magnetic field was arranged as shown in Fig. 2, and the magnetic field was applied with the center of the magnetic field as the center of the melt.
  • the part where the magnetic field strength is maximum in the melt is the closest part of the center of the magnet coil, while the part where the magnetic field strength is minimum in the melt is the part of the melt surface from the closest part of the center of the magnet coil. At 90 ° in the circumferential direction.
  • the magnetic field strength conditions were set to the following conditions (Examples 1 to 3 and Comparative Examples 1 and 2).
  • the in-plane distribution of dislocations and the number of dislocation-free crystals (DF conversion ratio) were investigated. (Example 1)
  • the center magnetic field strength was set to 400 G.
  • the maximum magnetic field strength in the melt was 600 G
  • the minimum magnetic field strength in the melt was 300 G.
  • the maximum magnetic field gradient which is the difference between the maximum and minimum magnetic field strengths (300 G) divided by the distance, was 50 Gcm.
  • the in-plane distribution of resistivity was about 5%, and the DF conversion rate was 80%. It can be judged that both the in-plane distribution of resistivity and the DF conversion rate are good, which is within a sufficiently acceptable range for producing a silicon single crystal.
  • the center magnetic field strength was set at 350 G.
  • the maximum magnetic field strength in the melt was 520 G
  • the minimum magnetic field strength in the melt was 260 G.
  • the maximum magnetic field gradient which is the difference between the maximum and minimum magnetic field strengths (260 G) divided by the distance, was 44 GZcm.
  • the in-plane distribution of resistivity is about 3%, and the DF conversion rate is 82%. I got it. It can be judged that both the in-plane distribution of resistivity and the DF conversion rate are sufficiently good, which is a desirable range for producing a silicon single crystal.
  • the center magnetic field strength was set to 300 G.
  • the maximum magnetic field strength in the melt was 450 G
  • the minimum magnetic field strength in the melt was 225 G.
  • the maximum magnetic field gradient which is the difference between the maximum and minimum magnetic field strengths (225 G) divided by the distance, was 38 G / cm.
  • the in-plane distribution of resistivity was about 3%, and the DF conversion rate was 85%. It can be judged that both the in-plane distribution of resistivity and the DF conversion rate are sufficiently good, which is a desirable range for producing a silicon single crystal.
  • the center magnetic field strength was set to 500 G.
  • the maximum magnetic field strength in the melt was 700 000 G, while the minimum magnetic field strength in the melt was 375 G.
  • the maximum magnetic field gradient which is the difference between the maximum and minimum magnetic field strengths (325 G) divided by the distance, was 62 GZcm.
  • the in-plane distribution of resistivity was about 8%, and the DF conversion rate was 50%. It can be judged that both the in-plane distribution of resistivity and the DF conversion rate are bad, which is an undesirable range for producing silicon single crystals.
  • the center magnetic field strength was set to 2000 G.
  • the maximum magnetic field strength in the melt was 300 G
  • the minimum magnetic field strength in the melt was 150 G.
  • the maximum magnetic field gradient which is the difference between the maximum and minimum magnetic field strengths (1500 G) divided by the distance, was 25 G / cm.
  • the maximum magnetic field strength is in the range of 600 G or less, Is in the range of 200 G or more, and the maximum magnetic field gradient is in the range of 55 G / cm or less.
  • the in-plane distribution of resistance was improved to about 5%, and the DF conversion rate was also improved to 80%.
  • the maximum magnetic field strength is 550 G The range is as follows, and the maximum magnetic field gradient is below 45 G / cm.
  • the in-plane distribution of resistance was further improved to about 3%, and the DF conversion rate was further improved to 82 and 85%.
  • the maximum magnetic field strength and the maximum magnetic field gradient are in the desired range, but the minimum magnetic field strength is in the range of less than 200 G.
  • the in-plane distribution of resistance was as good as about 3%, but the crystal DF conversion rate was as poor as 47%.
  • silicon single crystals were manufactured by the MCZ method. Specifically, the raw material polycrystalline silicon was charged to 300 kg using a 32 inch (800 mm) nozzle, and was melted by a heater having an inner diameter of 92 mm. Then, while applying a transverse magnetic field to the melt, a silicon single crystal rod with a diameter of 12 inches (300 mm) was pulled up. In this case, the magnet coil to which a transverse magnetic field is applied is arranged as shown in Fig. 4 (a) (multiple magnet coil method) so that the magnetic field distribution in the melt becomes more uniform. did.
  • the magnetic field strength conditions were set as the following conditions (Examples 4 to 6 and Comparative Examples 3 and 4).
  • the in-plane distribution of resistivity and the number of dislocation-free crystals (DF conversion rate) were investigated.
  • the center magnetic field strength was set to 400 G.
  • the maximum magnetic field strength in the melt was 580 G, while the minimum magnetic field strength in the melt was 370 OG.
  • the maximum magnetic field gradient which is the difference between the maximum and minimum magnetic field strengths (2100 G) divided by the distance, was 46 G / cm.
  • the in-plane distribution of resistivity was about 5%, and the DF conversion rate was 67%. It can be judged that both the in-plane distribution of resistivity and the DF conversion rate are good, which is within a sufficiently acceptable range for producing a silicon single crystal.
  • the center magnetic field strength was set at 350 G.
  • the maximum magnetic field strength in the melt was 5100 G, while the minimum magnetic field strength in the melt was 3200 G.
  • the maximum magnetic field gradient which is the difference between the maximum and minimum magnetic field strengths (1900 G) divided by that distance 4552
  • the in-plane distribution of resistivity was about 3%, and the DF conversion rate was 85%. It can be judged that both the in-plane distribution of resistivity and the DF conversion rate are sufficiently good, which is a desirable range for producing a silicon single crystal.
  • the center magnetic field strength was set to 300 G.
  • the maximum magnetic field strength in the melt was 44 OG, while the minimum magnetic field strength in the melt was 270 G.
  • the maximum magnetic field gradient which is the difference between the maximum and minimum magnetic field strengths (1700 G) divided by the distance, was 34 G / cm.
  • the center magnetic field strength was 450 G.
  • the maximum magnetic field strength in the melt was 660 G, while the minimum magnetic field strength in the melt was 420 G.
  • the maximum magnetic field gradient 3 which is the difference between the maximum and minimum magnetic field strengths (2400 G) divided by the distance, was 52 GZcm.
  • the in-plane distribution of resistivity was about 8%, and the DF conversion rate was 50%. It can be judged that both the in-plane distribution of resistivity and the DF conversion rate are bad, which is an undesirable range for producing silicon single crystals.
  • the center magnetic field strength was set to 2000 G.
  • the maximum magnetic field strength in the melt was 30000G
  • the minimum magnetic field strength in the melt was 1850G.
  • the maximum magnetic field gradient which is the difference between the maximum and minimum magnetic field strengths (1150 G) divided by the distance, was 23 G / cm.
  • Example 5 the maximum and minimum magnetic field gradients were within the desired range, and the maximum magnetic field gradient was improved as compared with Examples 2 and 3 having the same central magnetic field strength, respectively. Have been. As a result, the DF conversion rate was further improved.
  • a silicon single crystal was manufactured by the MCZ method. Specifically, 300 kg of the raw material polycrystalline silicon was charged using a 32 inch (800 mm) crucible, and was melted by a heater having an inner diameter of 900 mm. Then, a silicon single crystal rod having a diameter of 12 inches (300 mm) was pulled up while applying a transverse magnetic field to the melt.
  • the magnet coil to which a transverse magnetic field was applied was arranged as shown in FIG. 2, and the magnetic field was applied with the center of the magnetic field being the center of the melt. However, the magnet coil whose coil diameter was reduced by 20% as compared with Example 1 was arranged.
  • the part where the magnetic field strength is maximum in the melt ⁇ is the closest part of the center of the magnet coil, while the part where the magnetic field strength is the smallest in the melt is from the closest part of the center of the magnet coil to the melt surface. It was 90 ° apart in the circumferential direction.
  • the magnetic field strength conditions are set as the following conditions (Comparative Examples 5 and 6). Under each condition, the in-plane resistivity, which is the main quality characteristic of the in-plane of the manufactured crystal, is obtained. The distribution and the number of dislocation-free crystals (DF conversion rate) were investigated.
  • the center magnetic field strength was set at 350 G.
  • the maximum magnetic field strength in the melt was 57 OG, while the minimum magnetic field strength in the melt was 240 G.
  • the maximum magnetic field gradient which is the difference between the maximum and minimum magnetic field strengths (330 G) divided by the distance, was 63 Gnocm.
  • the in-plane distribution of the resistivity was about 10%, and the DF conversion rate was 40%. It can be judged that both the in-plane distribution of resistivity and the DF conversion rate are bad, which is an undesirable range for manufacturing a silicon single crystal.
  • the center magnetic field strength was set to 300 G.
  • the maximum magnetic field strength in the melt was 5100 G, while the minimum magnetic field strength in the melt was 2000 G.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本発明は、磁場を印加するチョクラルスキー法により単結晶を製造する方法において、少なくとも、ルツボに収容された融液内の最小磁場強度を2000G以上の範囲とし、融液内の最大磁場強度を6000G以下の範囲とし、かつ最大と最小の磁場強度の差をその距離で除したものである最大磁場勾配を55G/cm以下の範囲として、単結晶を引き上げることを特徴とする単結晶の製造方法である。これにより、磁場を印加するチョクラルスキー法において、高品質の単結晶を生産性良く製造する方法を提供することができる。

Description

明 細 書 単結晶の製造方法 技術分野
本発明は、 磁場を印加するチヨクラルスキー法により単結晶を製造する方法に 関する。 背景技術
半導体デバイスの基板と して用いられる単結晶は、 例えばシリ コン単結晶があ り、 主にチヨクラルスキー法 ( C z o c h r a 1 s k i M e t h o d、 以下 C Z法と略称する) により製造されている。
C Z法により単結晶を製造する際には、 例えば図 1に示すよ うな単結晶製造装 置 1 0を用いて製造される。 この単結晶製造装置 1 0は、 例えばシリ コンのよ う な原料多結晶を収容して溶融するための部材や、 熱を遮断するための断熱部材な どを有しており、 これらは、 メインチャンバ一 1 1内に収容されている。 メイ ン チャンバ一 1 1の天井部からは上に伸びる引上げチヤンバー 1 2が連接されてお り、 この上部に単結晶 4をワイヤー 1 3で引上げる機構 (不図示) が設けられて いる。
メインチャンバ一 1 1内には、 溶融された原料の融液 1 4を収容するルツボ 5 が設けられ、 このルツボ 5は駆動機構 (不図示) によって回転昇降自在にシャフ ト 9で支持されている。 このルツボ 5の駆動機構は、 単結晶 4の引き上げに伴う 融液 1 4液面低下を捕償すべく、 ルツボ 5を液面低下分だけ上昇させるようにし ている。
そして、 ルツボ 5を囲繞するように、 原料を溶融させるための黒鉛ヒーター 7 が配置されている。 この黒鉛ヒーター 7の外側には、 黒鉛ヒーター 7からの熱が メインチャンバ一 1 1に直接輻射されるのを防止するために、 断熱部材 6がその 周囲を取り囲むように設けられている。
以上のような単結晶製造装置内に配置されたルツボ 5に原料塊を収容し、 この ルツボ 5を、 黒鉛ヒーター 7により加熱し、 ルツボ 5内の原料塊を溶融させる。 このよ うに原料塊を溶融させたものである融液 1 4に、 ワイヤー 1 3の下端に接 続している種ホルダー 1で固定された種結晶 2を着液させ、 その後、 種結晶 2を 回転させながら引き上げることにより、 種結晶 2の下方に所望の直径と品質を有 する単結晶 4を育成する。 この際、 種結晶 2を原料融液 1 4に着液させた後に、 通常直径を 3 mm程度に一旦細く して絞り部 3を形成するいわゆる種絞り (ネッ キング) を行い、 次いで、 所望の口径になるまで太らせて、 無転位の結晶を引き 上げている。
近年、 製造する単結晶の結晶直径の大型化に伴い、 ルツボサイズが大型化し、 ルツボ内の融液の体積が増大してきている。 この増大した体積の融液の熱対流を いかに制御するかということが、 課題となっている。 その方策の一つと して、 磁 場を印カ卩した C Z法 (M a g n e t i c f i e l d a p p l i e d C z o c h r a 1 s k i M e t h o d法、 以下 M C Z法と略称する) がある。 この M C Z法では、 例えば図 1に示したようなメインチヤンバー 1 1の外側に設けられ たマグネッ トコイル 8で磁場を印加し、その磁場により融液の熱対流を制御する。
MC Z法において磁場を制御して結晶を製造する方法の例と しては、 単結晶を 製造する際に融液のァスぺク ト比が大きい引上げ条件下では引上げ方向に対して 垂直に 2 0 0 0ガウス以上の磁場を印加し、 融液のァスぺク ト比が小さい引上げ 条件下では引上げ方向に対して平行に 1 0 0 0ガウス程度の磁場を印加すること で、 融液の利用率を良くするとともに高品質の単結晶を育成する方法が開示され ている (例えば、 特開昭 6 0 — 2 2 1 3 9 2号公報参照。)。 また、 シリ コン単結 晶を製造する際に結晶成長面における磁場強度を略一定に制御しつつ単結晶を引 き上げることで、 単結晶に導入される欠陥を低減する方法 (例えば、 特開 2 0 0 0— 2 4 7 7 8 7号公報参照。) や、 結晶を製造する際に強度勾配を持つ磁場中 で結晶の引き上げを行うことで、 結晶性に優れた低不純物濃度の結晶を得る方法 (例えば、 特開平 6 - 2 2 7 8 8 7号公報参照。) なども開示されている。
しかし、 近年のさらなるルツボの大口径化に伴い、 高品質の結晶を生産性良く 製造するためには上記結晶製造方法だけでは不十分となり、 さらなる磁場強度を 制御した結晶の製造方法が求められていた。 発明の開示
本発明はこのような問題点に鑑みてなされたもので、 磁場を印加するチョク ラ ルスキー法において、 高品質の単結晶を生産性良く製造する方法を提供すること を目的とする。
本発明は、 上記課題を解決するためになされたもので、 磁場を印加するチヨク ラルスキー法により単結晶を製造する方法において、 少なく とも、 ルツボに収容 された融液内の最小磁場強度を 2 0 0 0 G以上の範囲と し、 融液内の最大磁場強 度を 6 0 0 0 G以下の範囲とし、 かつ最大と最小の磁場強度の差をその距離で除 したものである最大磁場勾配を 5 5 G Z c m以下の範囲と して、 単結晶を引き上 げることを特徴とする単結晶の製造方法が提供される。
このよ うに、 ルツボに収容された融液内の最小磁場強度を 2 0 0 0 G以上の範 囲と し、 融液内の最大磁場強度を 6 0 0 0 G以下の範囲と し、 かつ最大と最小の 磁場強度の差をその距離で除したものである最大磁場勾配を 5 5 Gノ c m以下の 範囲と して、 単結晶を引き上げることで、 近年の大口径のルツボを用いた場合で あっても高品質の単結晶を生産性良く製造することができる。
この場合、 前記融液を収容するルツボの直径が 2 4インチ ( 6 0 0 m m ) 以上 のものを用いることができる。
. 本発明の単結晶の製造方法では、 近年用いられている直径 2 4ィンチ ( 6 0 0 m m ) 以上といった大口径のルツボに適用する場合に特に有効である。
この場合、 前記印加する磁場を水平磁場とするのが好ましい。
このよ うに、 印加する磁場が水平磁場であれば、 効果的に融液の熱対流を抑制 することができる。
この場合、 前記単結晶をシリ コンとすることができる。
このよ うに、 本発明の単結晶製造方法は、 近年特に大口径化が著しいシリ コン 単結晶を製造する際に好適に適用することができる。
さらに、 以上のような単結晶の製造方法で製造された単結晶が提供される。 本発明の製造方法を用いれば、 近年要求される大口径の単結晶を生産性良く製 造できる上に、 高品質のものとすることができる。 従って、 製造された単結晶は 高品質かつ安価なものとなる。
以上説明したように、本発明によれば、 M C Z法により単結晶を製造する際に、 融液内の最小及び最大磁場強度、 ならびに最大磁場勾配を所定範囲内と して単結 晶を引き上げることで、無転位化率が向上し製造コス トの低減が達成できる上に、 製造する単結晶も高品質のものにできる。 図面の簡単な説明
図 1は、 単結晶製造装置を示す概略図である。
図 2は、 水平磁場を印加した時の磁力線分布を模式的に示した図である。
( a ) ルツボを横から見た断面図、
( b ) ルツボを上から見た平面図。
図 3は、 水平磁場を印加した時の融液内の磁場強度の分布の様子を示す説明図 である。
図 4は、 融液内の磁場分布をより均一にできる磁場発生装置の例である。
( a ) 複数マグネッ トコィル方式、
( b ) 鞍型マグネッ トコィル方式。 発明を実施するための最良の形態
以下本発明について説明する。
単結晶の製造において、 近年のルツボの大口径化にともない、 融液の対流が増 大するという問題がある。 この増大した対流を抑制するために、 M C Z法におい ては、 従来磁場強度を増大するという対策がとられてきた。 しかし、 磁場強度を 増大した結果、 かえって単結晶の生産性が低下し、 品質も悪化するというケース が見受けられた。
この原因と しては次のことが考えられる。
図 2は、 マグネッ トコイル 8により磁場を印加した時の磁力線分布を模式的に 示した図である。 図 2 ( a ) はルツボを横から見た断面図であり、 図 2 ( b ) は ルツボを上から見た平面図である。 このような磁力線分布の水平磁場を印加した 場合、 図 3に示したように、 磁場強度の分布が融液内で全て均一とはならず、 磁 場強度の強い部分と弱い部分が生じる。
先ず、 磁場強度が弱い部分を補うために全体の磁場強度を増大した場合、 磁場 強度が強い部分がさらに強くなり、 その部分では磁場による対流抑制力が過剰と なる。 その結果、 融液内で磁場が強い部分では、 対流が生じない結果熱伝導が支 配的になる。 したがって、 ①温度の不均一による育成単結晶の無転位化の阻害、 品質の不均一性の発生、 ②育成単結晶付近の温度勾配の低下による結晶の無転位 化の阻害、 成長速度の低下による生産性の低下、 ③結晶付近の不純物拡散の抑制 による面内品質の不均一化といった問題が発生する。
一方、 磁場分布が同じ状態で、 単純に全体の磁場強度を増大すると、 磁場の強 い部分と弱い部分とで同じ比率で磁場強度が増大することにもなる。 したがって 磁場の強い部分と弱い部分の磁場強度の絶対値の差は広がり、 磁場勾配が大きく なる。 その結果、 融液内のある部分では対流が発生し、 その部分では対流抑制力 は不足すると考えられる。 その結果生じた過剰な対流により、 結晶成長界面が振 動し、 温度変動が大きくなり、 高品質の結晶を得ることができなくなる。
このよ うに、 融液内で部分的に対流抑制力が過剰になったり、 対流抑制力が不 足したり して、 融液が熱的にアンバランスとなる結果と して、 操業が不安定にな り、 また単結晶の品質が悪化するという問題が生じたと考えられる。
以下、 本発明の実施の形態について説明するが、 本発明はこれらに限定される ものではない。
本発明者らは鋭意研究を重ねた結果、 M C Z法により単結晶を製造する際に、 融液内のある点での磁場強度にのみ着目するのではなく、 融液内全体での磁場強 度分布について考慮し、 融液内の最大と最小磁場強度、 さらには最大と最小の磁 場強度の差をその距離で除したものである最大磁場勾配を最適な範囲に規定する ことにより、 ルツボが大口径の場合でも、 普遍的な効果を得ることが可能である ことに想到し、 本発明を完成させた。
すなわち本発明では、 磁場を印加するチヨ クラルスキー法により単結晶を製造 する際に、 少なく とも、 ルツボに収容された融液内の最小磁場強度を 2 0 0 0 G 以上の範囲と し、 融液内の最大磁場強度を 6 0 0 0 G以下の範囲と し、 かつ最大 と最小の磁場強度の差をその距離で除したものである最大磁場勾配を 5 5 G Z c m以下の範囲と して、 単結晶を引き上げる。
このように、 融液内の最小磁場強度を 2 0 0 0 G以上とすれば、 対流抑制の効 果を十分に得ることができる。 したがって、対流が過剰になることがないために、 成長界面の振動、 温度変動を適度に小さく保つことができ、 高品質の単結晶を得 ることができる。
また、 最大磁場強度を 6 0 0 0 G以下、 より好ましくは 5 5 O O G以下とすれ ば、 対流抑制の効果が過剰になることもない。 したがって、 対流抑制が過剰で熱 伝導のみになってしまう といった弊害もなく、 高品質の単結晶を生産性良く製造 することができる。
さらに、 最大磁場勾配を 5 5 GZ c m以下、 より好ましくは 4 5 G/ c m以下 とすることで、 磁場勾配が起因の対流の発生を防ぐことができる。
上記条件で磁場を印加することで、 融液を収容する直径が 2 4インチ ( 6 0 0 mm) 以上、 さらには 3 2インチ ( 8 0 0 mm) 以上のルツボを用いて、 例えば 3 0 0 K gを超す融液から直径 1 2インチ ( 3 0 0 mm) 以上の大口径の結晶を 引き上げる場合であっても、 生産性良く、 高品質の単結晶を製造できる。
特に、 近年大口径化が著しいシリ コン単結晶を製造する際に好適に適用するこ とができる。
また、 印加する磁場が水平磁場であれば、 効果的に融液の熱対流を抑制するこ とができる。 磁場を印加する際には、 融液内の磁場分布をより均一にできる磁場 発生装置を使用するのが好ましい。 磁場分布をより均一にする方法の例と して、 図 4 ( a ) に示したように複数のマグネッ トコイルを用いる方法や、 図 4 ( b ) に示したように鞍型のマグネッ トコイルを用いる方法を挙げることができる。 な お、 複数マグネッ トコイル方式、 鞍型マグネッ トコイル方式、 いずれにしても、 磁場強度及ぴ分布が同じであれば、 その効果は同じである。
こう して、 本発明の製造方法を用いれば、 近年要求される大口径の単結晶を生 産性良く製造できる上に、 高品質のものとすることができる。 従って、 製造され た単結晶は高品質かつ安価なものとなる。 以下、 本発明を実施例および比較例を挙げて具体的に説明する。 P T/JP2004/004552
7
[実施例 1〜 3、 比較例 1, 2 ]
図 1に示した引上げ装置を用いて、 MC Z法によりシリ コン単結晶を製造した。 具体的には、 口径 3 2イ ンチ ( 8 0 0 mm) ルツボを用いて原料多結晶シリ コ ン を 3 0 0 K gチャージし、 内径 9 2 0 mmのヒーターで溶融して融液にした。 そ して、 この融液に横磁場を印加しながら直径 1 2ィンチ ( 3 0 0 mm) のシリ コ ン単結晶棒を引上げた。 なおこの場合、 横磁場を印加するマグネッ トコイルは図 2に示すように配置し、 磁場中心を融液の中央部と して磁場を印加した。 融液内 で磁場強度が最大となる部分は、 マグネッ トコイル中心の最近接部分であり、 一 方融液内で磁場強度が最小となる部分は、 マグネッ トコイル中心の最近接部分か ら融液面で周方向に 9 0° 離れた部分であった。
以上のような単結晶製造方法で、 さらに磁場強度条件を以下の条件 (実施例 1 ~ 3、 比較例 1 , 2 ) とし、 それぞれの条件で、 製造結晶の面内の主品質特性で ある抵抗率の面内分布、 ならびに結晶の無転位化本数率 (D F化率) を調査した。 (実施例 1 )
中心磁場強度を 4 0 0 0 Gと した。 この場合、 融液内の最大磁場強度は、 6 0 0 0 Gであり、 一方融液内の最小磁場強度は、 3 0 0 0 Gであった。 また、 最大 と最小の磁場強度の差 ( 3 0 0 0 G) をその距離で除したものである最大磁場勾 配は、 5 0 G c mであった。
この条件では、 抵抗率の面内分布は約 5 %であり、 また D F化率は 8 0 %であ つた。 抵抗率の面内分布と D F化率の両方が良好であると判断でき、 シリ コ ン単 結晶を製造する上で十分に許容できる範囲である。
(実施例 2 )
中心磁場強度を 3 5 0 0 Gと した。 この場合、 融液内の最大磁場強度は、 5 2 0 0 Gであり、 一方融液内の最小磁場強度は、 2 6 0 0 Gであった。 また、 最大 と最小の磁場強度の差 ( 2 6 0 0 G) をその距離で除したものである最大磁場勾 配は、 4 4 G Z c mであった。
この条件では、 抵抗率の面内分布は約 3 %であり、 また D F化率は 8 2 %であ つた。 抵抗率の面内分布と D F化率の両方が十分に良好であると判断でき、 シリ コン単結晶を製造する上でも望ましい範囲である。
(実施例 3 )
中心磁場強度を 3 0 0 0 Gと した。 この場合、 融液内の最大磁場強度は、 4 5 0 0 Gであり、 一方融液内の最小磁場強度は、 2 2 5 0 Gであった。 また、 最大 と最小の磁場強度の差 ( 2 2 5 0 G ) をその距離で除したものである最大磁場勾 配は、 3 8 G / c mであった。
この条件では、 抵抗率の面内分布は約 3 %であり、 また D F化率は 8 5 %であ つた。 抵抗率の面内分布と D F化率の両方が十分に良好であると判断でき、 シリ コン単結晶を製造する上でも望ましい範囲である。
(比較例 1 )
中心磁場強度を 5 0 0 0 Gと した。 この場合、 融液内の最大磁場強度は、 7 0 0 0 Gであり、 一方融液内の最小磁場強度は、 3 7 5 0 Gであった。 また、 最大 と最小の磁場強度の差 ( 3 2 5 0 G ) をその距離で除したものである最大磁場勾 配は、 6 2 G Z c mであった。
この条件では、 抵抗率の面内分布は約 8 %であり、 また D F化率は 5 0 %であ つた。 抵抗率の面内分布と D F化率の両方が悪いと判断でき、 シリ コン単結晶を 製造する上で望ましくない範囲である。
(比較例 2 )
中心磁場強度を 2 0 0 0 Gと した。 この場合、 融液内の最大磁場強度は、 3 0 0 0 Gであり、 一方融液内の最小磁場強度は、 1 5 0 0 Gであった。 また、 最大 と最小の磁場強度の差 ( 1 5 0 0 G ) をその距離で除したものである最大磁場勾 配は、 2 5 G / c mであった。
この条件では、 抵抗率の面内分布は約 3 %であり、 また D F化率は 4 7 %であ つた。 抵抗率の面内分布は十分に良好であると判断できるが、 D F化率が悪く、 シリ コン単結晶を製造する上で望ましくない範囲である。 P T/JP2004/004552
二れらの結果を下記表 1にまとめた。
(表 1 )
Figure imgf000010_0001
直径 1 2インチ ( 3 0 0 mm) の単結晶の製造では、 直径 8インチ ( 2 0 0 m m) の単結晶の製造に比べ、 ルツボ口径が大型化し、 原料のチャージ量も増加し ている。 従って、 融液の対流抑制向上を目的と し磁場を印加するのであれば、 中 心磁場強度を増大することが望ましいことが容易に想像される。 したがって、 直 径 1 2インチ ( 3 0 0 mm) の単結晶の製造する際には、 従来は、 例えば比較例 1のように中心磁場強度を 5 0 0 0 Gと した条件で単結晶を製造する必要がある と思われていた。 しかし、 この条件では、 最大磁場強度が 6 0 0 0 Gを超え、 し かも最大磁場勾配が 5 5 GZ c mを超えることになる。 その結果、 抵抗の面内分 布は約 8 %と悪く、 また D F化率も 5 0 %と悪い。
そこで、 例えば実施例 1のように従来より も弱い中心磁場強度である 4 0 0 0 Gと した条件で単結晶を製造した場合、 最大磁場強度が 6 0 0 0 G以下の範囲、 最小磁場強度が 2 00 0 G以上の範囲、 及ぴ最大磁場勾配が 5 5 G/ c m以下の 範囲となる。 その結果、 抵抗の面内分布は約 5 %と改善され、 また D F化率も 8 0 %と改善された。 さらに、 例えば実施例 2、 実施例 3のようにさらに弱い中心 磁場である 3 5 0 0 G、 3 0 0 0 Gの条件で単結晶を製造した場合、 最大磁場強 度が 5 5 0 0 G以下の範囲となり、 しかも最大磁場勾配が 4 5 G/ c m以下の範 囲となる。 その結果、 抵抗の面内分布は約 3 %とさらに改善され、 D F化率も 8 2、 8 5 %とさらに改善された。
しかし、 例えば比較例 2のようにさらに中心磁場強度を弱めた 2 0 0 0 Gの条 4004552
10 件で単結晶を製造した場合、 最大磁場強度及び最大磁場勾配は所望の範囲となる が、 最小磁場強度が 2 0 0 0 G未満の範囲となる。 その結果、 抵抗の面内分布は 約 3 %と良好であつたが、 結晶 D F化率は 4 7 %と悪かった。
[実施例 4〜 6、 比較例 3 , 4 ]
図 1に示した引上げ装置を用いて、 MC Z法によりシリ コン単結晶を製造した。 具体的には、 口径 3 2イ ンチ ( 8 0 0 mm) ノレッボを用いて原料多結晶シリ コン を 3 0 0 K gチャージし、 内径 9 2 0 mmのヒーターで溶融した。 そして、 この 融液に横磁場を印加しながら直径 1 2インチ ( 3 0 0 mm) のシリ コン単結晶棒 を引上げた。 なおこの場合、 横磁場を印加するマグネッ トコイルは、 融液内で磁 場分布がより均一になるよ うに、 図 4 ( a ) に示すように配置して (複数マグネ ッ トコイル方式) 磁場を印加した。
以上のような単結晶製造方法で、 さらに磁場強度条件を以下の条件 (実施例 4 〜 6、 比較例 3, 4 ) と し、 それぞれの条件で、 製造結晶の面内の主品質特性で ある抵抗率の面内分布、 ならびに結晶の無転位化本数率 (D F化率) を調査した。
(実施例 4)
中心磁場強度を 4 0 0 0 Gと した。 この場合、 融液内の最大磁場強度は、 5 8 0 0 Gであり、 一方融液内の最小磁場強度は、 3 7 0 O Gであった。 また、 最大 と最小の磁場強度の差 ( 2 1 0 0 G) をその距離で除したものである最大磁場勾 配は、 4 6 G / c mであった。
この条件では、 抵抗率の面内分布は約 5 %であり、 また D F化率は 6 7 %であ つた。 抵抗率の面内分布と D F化率の両方が良好であると判断でき、 シリ コン単 結晶を製造する上で十分に許容できる範囲である。
(実施例 5 )
中心磁場強度を 3 5 0 0 Gと した。 この場合、 融液内の最大磁場強度は、 5 1 0 0 Gであり、 一方融液内の最小磁場強度は、 3 2 0 0 Gであった。 また、 最大 と最小の磁場強度の差 ( 1 9 0 0 G) をその距離で除したものである最大磁場勾 4552
11 酉 3は、 4 0 G / c mであった。
この条件では、 抵抗率の面内分布は約 3 %であり、 また D F化率は 8 5 %であ つた。 抵抗率の面内分布と D F化率の両方が十分に良好であると判断でき、 シリ コン単結晶を製造する上で望ましい範囲である。
(実施例 6 )
中心磁場強度を 3 0 0 0 Gと した。 この場合、 融液内の最大磁場強度は、 4 4 O O Gであり、 一方融液内の最小磁場強度は、 2 7 0 0 Gであった。 また、 最大 と最小の磁場強度の差 ( 1 7 0 0 G) をその距離で除したものである最大磁場勾 配は、 3 4 G/ c mであった。
この条件では、 抵抗率の面内分布は約 3 %であり、 また D F化率は 8 8 %であ つた。 抵抗率の面内分布と D F化率の両方が十分に良好であると判断でき、 シリ コン単結晶を製造する上で望ましい範囲である。 (比較例 3 )
中心磁場強度を 4 5 0 0 Gと した。 この場合、 融液内の最大磁場強度は、 6 6 0 0 Gであり、 一方融液内の最小磁場強度は、 4 2 0 0 Gであった。 また、 最大 と最小の磁場強度の差 ( 2 4 0 0 G) をその距離で除したものである最大磁場勾 酉 3は、 5 2 G Z c mであった。
この条件では、 抵抗率の面内分布は約 8 %であり、 また D F化率は 5 0 %であ つた。 抵抗率の面内分布と D F化率の両方が悪いと判断でき、 シリ コン単結晶を 製造する上で望ましくない範囲である。
(比較例 4)
中心磁場強度を 2 0 0 0 Gと した。 この場合、 融液内の最大磁場強度は、 3 0 0 0 Gであり、 一方融液内の最小磁場強度は、 1 8 5 0 Gであった。 また、 最大 と最小の磁場強度の差 ( 1 1 5 0 G) をその距離で除したものである最大磁場勾 配は、 2 3 G / c mであった。
この条件では、 抵抗率の面内分布は約 3 %であり、 また D F化率は 5 6 %であ JP2004/004552
12 つた。 抵抗率の面内分布は十分に良好であると判断できるが、 D F化率が悪く シリ コン単結晶を製造する上でも望ましくない範囲である。 これらの結果を下記表 2にまとめた。
(表 2 ) -
Figure imgf000013_0001
実施例 5、 実施例 6では、 最大、 最小磁場勾配が所望の範囲内である上に、 そ れぞれ同じ中心磁場強度の実施例 2、 実施例 3 と比較して最大磁場勾配が改善さ れている。 その結果、 D F化率がさらに向上した。
[比較例 5 , 6 ]
図 1に示した引上げ装置を用いて、 M C Z法によりシリ コン単結晶を製造した。 具体的には、 口径 3 2インチ ( 8 0 0 m m ) ルツボを用いて原料多結晶シリ コン を 3 0 0 K gチャージし、 内径 9 2 0 m mのヒーターで溶融した。 そ して、 この 融液に横磁場を印加しながら直径 1 2インチ ( 3 0 0 m m ) のシリ コン単結晶棒 を引上げた。 なおこの場合、 実施例 1 と同様に、 横磁場を印加するマグネッ トコ ィルは図 2に示すように配置し、磁場中心を融液の中央部と して磁場を印加した。 ただし、 マグネッ トコイルを、 実施例 1 と比較してコィル径を 2割小さく したも のを配置した。 融液內で磁場強度が最大となる部分は、 マグネッ トコイル中心の 最近接部分であり、 一方融液内で磁場強度が最小となる部分は、 マグネッ トコィ ル中心の最近接部分から融液面で周方向に 9 0 ° 離れた部分であった。
以上のような単結晶製造方法で、 さらに磁場強度条件を以下の条件(比較例 5 , 6 ) と し、 それぞれの条件で、 製造結晶の面内の主品質特性である抵抗率の面内 分布、 ならびに結晶の無転位化本数率 (D F化率) を調査した,
(比較例 5 )
中心磁場強度を 3 5 0 0 Gと した。 この場合、 融液内の最大磁場強度は、 5 7 O O Gであり、 一方融液内の最小磁場強度は、 2 4 0 0 Gであった。 また、 最大 と最小の磁場強度の差 ( 3 3 0 0 G) をその距離で除したものである最大磁場勾 配は、 6 3 Gノ c mであった。
この条件では、 抵抗率の面内分布は約 1 0 %であり、 また D F化率は 4 0 %で あった。 抵抗率の面内分布と D F化率の両方が悪いと判断でき、 シリ コン単結晶 を製造する上で望ましくない範囲である。
(比較例 6 )
中心磁場強度を 3 0 0 0 Gと した。 この場合、 融液内の最大磁場強度は、 5 1 0 0 Gであり、 一方融液内の最小磁場強度は、 2 0 0 0 Gであった。 また、 最大 と最小の磁場強度の差 ( 3 1 0 0 G) をその距離で除したものである最大磁場勾 酉 3は、 5 8 G / c mであった。
この条件では、 抵抗率の面内分布は約 8 %であり、 また D F化率は 4 7 %であ つた。 抵抗率の面内分布と D F化率の両方が悪いと判断でき、 シリ コン単結晶を 製造する上で望ましくない範囲である。 これらの結果を下記表 3に示す。
(表 3 ) 比較例 5 比較例 6
中心磁場強度 3500G 3000G
最大磁場強度 5700G 5100G
最小磁場強度 2400G 2000G
最大一最小 3800G 3100G
最大磁場勾配 63G/cm 58G/cm
抵抗率面内分布 10% 8%
D F化率 40% 47% 比較例 5、 比較例 6では、 最大磁場強度が 6 0 0 0 G以下の範囲で、 最小磁場 強度が 2 0 0 O G以上の範囲であるものの、 最大磁場勾配が 5 5 G / c niを超え たものとなっている。 その結果、 抵抗率の面内分布と D F化率の両方が悪くなつ ている。 尚、 本発明は、 上記実施形態に限定されるものではない。 上記実施形態は、 例 示であり、 本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構 成を有し、 同様な作用効果を奏するものは、 いかなるものであっても本発明の技 術的範囲に包含される。

Claims

請 求 の 範 囲
1 . 磁場を印加するチ 3クラルスキー法により単結晶を製造する方法において、 少なく とも、 ルツボに収容された融液内の最小磁場強度を 2 0 0 0 G以上の範囲 と し、 融液内の最大磁場強度を 6 0 0 0 G以下の範囲と し、 かつ最大と最小の磁 場強度の差をその距離で除したものである最大磁場勾配を 5 5 G / c ni以下の範 囲と して、 単結晶を引き上げることを特徴とする単結晶の製造方法。
2 . 前記融液を収容するルツボの直径が 2 4インチ ( 6 0 0 m m ) 以上のもの を用いることを特徴とする請求項 1に記載の単結晶の製造方法。
3 . 前記印加する磁場を水平磁場とすることを特徴とする請求項 1又は請求項 2に記載の単結晶の製造方法。
4 . 前記単結晶をシリ コンとすることを特徴とする請求項 1乃至請求項 3のい ずれか 1項に記載の単結晶の製造方法。
5 . 請求項 1乃至請求項 4のいずれか 1項に記載の方法で製造されたことを特 徴とする単結晶。
PCT/JP2004/004552 2003-04-16 2004-03-30 単結晶の製造方法 WO2004092456A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003111265A JP4193558B2 (ja) 2003-04-16 2003-04-16 単結晶の製造方法
JP2003-111265 2003-04-16

Publications (1)

Publication Number Publication Date
WO2004092456A1 true WO2004092456A1 (ja) 2004-10-28

Family

ID=33295992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004552 WO2004092456A1 (ja) 2003-04-16 2004-03-30 単結晶の製造方法

Country Status (3)

Country Link
JP (1) JP4193558B2 (ja)
TW (1) TW200506114A (ja)
WO (1) WO2004092456A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513407B2 (ja) * 2004-05-06 2010-07-28 株式会社Sumco 単結晶の製造方法
US8147611B2 (en) 2005-07-13 2012-04-03 Shin-Etsu Handotai Co., Ltd. Method of manufacturing single crystal
JP2007022825A (ja) * 2005-07-13 2007-02-01 Shin Etsu Handotai Co Ltd 単結晶の製造方法
JP4535283B2 (ja) * 2005-12-05 2010-09-01 三菱マテリアル株式会社 比抵抗値の面内バラツキが少ないプラズマエッチング用単結晶シリコン電極板
JP2007210865A (ja) * 2006-02-13 2007-08-23 Sumco Corp シリコン単結晶引上装置
JP4849247B2 (ja) * 2006-12-22 2012-01-11 三菱マテリアル株式会社 比抵抗値の面内バラツキの小さい複合シリコン電極およびその製造方法
KR101000326B1 (ko) 2007-05-30 2010-12-13 가부시키가이샤 사무코 실리콘 단결정 인상 장치
JP5044295B2 (ja) * 2007-06-12 2012-10-10 コバレントマテリアル株式会社 単結晶引上方法
KR100954291B1 (ko) * 2008-01-21 2010-04-26 주식회사 실트론 고품질의 반도체 단결정 잉곳 제조장치 및 방법
JP2010100474A (ja) * 2008-10-23 2010-05-06 Covalent Materials Corp シリコン単結晶引上げ水平磁場の最適化方法およびシリコン単結晶の製造方法
JP6436031B2 (ja) * 2015-09-18 2018-12-12 信越半導体株式会社 単結晶引き上げ装置、及び単結晶引き上げ方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221392A (ja) * 1984-04-16 1985-11-06 Toshiba Corp 単結晶生成方法
JPH08333191A (ja) * 1995-06-01 1996-12-17 Shin Etsu Handotai Co Ltd 単結晶の製造方法及び装置
JP2000247787A (ja) * 1999-02-25 2000-09-12 Toshiba Corp 単結晶の製造方法および製造装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221392A (ja) * 1984-04-16 1985-11-06 Toshiba Corp 単結晶生成方法
JPH08333191A (ja) * 1995-06-01 1996-12-17 Shin Etsu Handotai Co Ltd 単結晶の製造方法及び装置
JP2000247787A (ja) * 1999-02-25 2000-09-12 Toshiba Corp 単結晶の製造方法および製造装置

Also Published As

Publication number Publication date
JP4193558B2 (ja) 2008-12-10
TW200506114A (en) 2005-02-16
JP2004315289A (ja) 2004-11-11

Similar Documents

Publication Publication Date Title
CN1904147B (zh) 高质量硅单晶的生长方法和装置、硅单晶结晶块及硅晶片
JP5240191B2 (ja) シリコン単結晶引上装置
US8268077B2 (en) Upper heater, single crystal production apparatus, and method for producing single crystal
JP5249498B2 (ja) シリコン単結晶の成長方法,成長装置及びそれから製造されたシリコンウエハ
TWI324643B (ja)
WO2004092456A1 (ja) 単結晶の製造方法
JPH10101482A (ja) 単結晶シリコンの製造装置および製造方法
EP2045372A2 (en) Method for growing silicon ingot
WO2004061166A1 (ja) 単結晶製造用黒鉛ヒーター及び単結晶製造装置ならびに単結晶製造方法
JP6631460B2 (ja) シリコン単結晶の製造方法およびシリコン単結晶
JP4161655B2 (ja) 結晶製造用ヒーター及び結晶製造装置並びに結晶製造方法
JP5417965B2 (ja) 単結晶成長方法
JP2003286024A (ja) 一方向凝固シリコンインゴット及びこの製造方法並びにシリコン板及び太陽電池用基板及びスパッタリング用ターゲット素材
JP2004189559A (ja) 単結晶成長方法
WO2004092455A1 (ja) 単結晶の製造方法
JP3132412B2 (ja) 単結晶引き上げ方法
US8308864B2 (en) Single-crystal manufacturing method
KR101611439B1 (ko) 단결정의 제조 방법 및 단결정의 제조 장치
JP4735594B2 (ja) 酸化物単結晶の育成方法
KR100749938B1 (ko) 고품질 실리콘 단결정 잉곳 성장장치 및 성장방법
WO2018116637A1 (ja) シリコン単結晶の製造方法
TWI796517B (zh) 單晶矽鑄碇及其製造方法
JPH01164790A (ja) 半導体単結晶の製造方法
JP2008019128A (ja) 単結晶製造装置、単結晶製造方法および単結晶
JP2007210865A (ja) シリコン単結晶引上装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase